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2 Variational Analysis on Metric

Projectors Over Closed Convex Sets

Let Z be a finite-dimensional Hilbert vector space equipped with a
scalar product (-,-) and its induced norm || - || and D be a
nonempty closed convex set in Z. For any z € Z, let IIp(z) denote

the metric projection of z onto D:

The operator IIp : Z — Z is called the metric projection operator

or metric projector over D.

o %
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/Proposition 2.1 Let D be a nonempty closed convex set in Z. \
Then the point y € D is an optimal solution to (1) if and only if it

satisfies

(z—y,d—y) <0 VdeD. (2)

Proof. “=" Suppose that y € D is an optimal solution to (1). Let
d be an arbitrary point in D. Then y; := (1 —t)y + td € D for any
t € [0,1]. This, together with the fact that y is an optimal solution,
implies that

lz = well? > Iz —wlI* Vit e0,1],

which further implies

(L =t)(z —y) +t(z = D = |z —y[|* Yt elo,1].

o %
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us,

(t? =2t)||z —y|* +2t(1 —t)(z —y, 2z —d) + t?||z = d||* > 0Vt € [0,1].

By taking ¢ | 0 and dividing £ on both sides of the above equation,
we obtain
2|z =yl* +2{z —y,z2 —d) > 0,

which turns into (2).

“<” Suppose that y € D satisfies (2). Assume on the contrary that

y does not solve (1). Then we have by the assumption,
(z =y, 1Ip(z) —y) <0
and by the sufficiency part,

(z—Ip(z),y —1Ip(z)) <O0.

o %
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Summing up the above two inequalities leads to

(Ip(z) =y, 1p(2) —y) < 0.

This implies that y = IIp(z). The contradiction shows that y solves
(1). O]

Note that Proposition 2.1 holds even if Z is infinite-dimensional.

If D is a nonempty closed convex cone, then (2) is equivalent to

(z —p(2),lIp(z)) =0 & (z—1IIp(z),dy <0 VdeD. (3)
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Groposition 2.2 Let D be a nonempty closed convex set in Z. \
Then the metric projector llp(-) satisfies

(y — 2z,Up(y) —p(2)) > |Up(y) —Ip(2)|* Vyz€Z. (4)

Note that (4) implies

Mp(y) =Ip(2)| < fly =2l Vy,z€Z.

Proof. Let y,z € Z. Then by Proposition 2.1, we have

(z —Ip(z),p(y) —IIp(z)) <0

and
(y —p(y),p(z) —1p(y)) <0.

\Summing them up gives the desired inequality (4). D/
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The metric projector IIp(-) is only globally Lipschitz continuous
and is not differentiable everywhere, but we have
Proposition 2.3 Let D be a nonempty closed convex set in Z. Let

1
0(2) =5 llz=Tp ()| =€ Z.

Then 6 is continuously differentiable with

VO(z) =2z —-1Ip(z), z€Z.
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Proof. For any z € Z, let

Q(z) ==z —1p(z).

Then we have for Az — 0 that

O(z+ Az) —0(z2)

= L0+ A2 — Q2), Q= + Az) + Q)

2
= {8z — [z + Az) ~ TTp(2)]. Q= + A2) +Q(:)
— (A2~ [p(= + A2) — Ip(2)}, Q=) + O(| A2]]?)
Q(2). A7) — (Ip(= + A2) ~ TIp(2), Q(2)) + O(|Az])
Q(2), Az) — (ITp(z + Az) ~ TIp(2), 2 — Tp(2)) + O([A]?)

Q(2),Az) + O(||Az[*) (by (2))

o %
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and similarly

O(z+ Az) —0(z)

— %(Az — [Mp(z+ Az) —1Ip(2)],Q(z + Az) + Q(2))

= (Az — [lIp(z + Az) — IIp(2)], Q(z + Az)) + O(||Az|]*)
= (Q(z + Az),Az) — (Ip(z + Az) — IIp(2), Q(z + A2)) + O(||Az)
= (Q(2), Az) + (IIp(z) — IIp(z + A2), Q2 + Az)) + O(||Az|?)
< (Q(2),Az) + O(||Az[]*) (by (2)).

Thus 6 is Fréchet differentiable at z with
Vo(z) =z —1Ip(z).

The continuity of V() follows from the global Lipschitz continuity
of II D () L]

o %
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Recall that the normal cone Np(y) at y in the sense of convex

analysis is

{deY : {d,z—y) <0 Vze D} ifyeD,
0 if y ¢ D.

Proposition 2.4 Let D be a nonempty closed convex set in Z.
Then a point p € Np(y) if and only if

y=1Ilp(y+u). (5)

Note that u € Np(y) already implies that y € D.

o %
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Proof. “=" Suppose that u € Np(y). Then y € D and

(,z—1y) <0 VzeD.

Thus,
(y+p)—y,z—y) <0 VzeD,

which, according to Proposition 2.1, implies y = [Ip(y + u).

“<” Suppose that y = lIp(y + ). Then y € D. By Proposition

2.1, we have
(y+p)—y,z—y) <0 VzeD,

l.e.,
(,z—y)y <0 VzeD.

That is, u € Np(y). O

o %
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Groposition 2.5 Let D be a nonempty closed convexr cone in Z \
and D° := —D* be the polar of D. Then any z € Z can be uniquely
decomposed into

z=1Ip(z) +Ipo(z). (6)

Proof. Let u := 2z —IIp(2). By (3), we have

(u, lIp(2)) =0 & (u,d) <0 Vd €D.

Thus u € D°, (z — u,u) =0, and
(z—u,w) =(z— (z —Ip(z)),w) = IIp(z),w) <0 Vwe D°.

Hence, u = IIpo(2). The uniqueness of the decomposition is

vaious. D/
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For A and B in S?, define

(A,B) :=Tr (A"B) = Tr (AB) ,

following spectral decomposition

where “Tr” denotes the trace of a square matrix (i.e., the sum of all
diagonal elements of the symmetric matrix). Let A € SP have the

~

A = PAPT,

where A is the diagonal matrix of eigenvalues of A and P is a

corresponding orthogonal matrix of orthonormal eigenvectors.

o

9
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Let

A+ = PA+PT.

Then, <A — A_|_,A_|_> — <A — A_|_,A_|_> =0 and
(A— A, H)y=(A—Ay,P"HP)<0 VHEeS?.

Thus, by (3), we obtain that :

Hsi(A):A+:PA+PT.
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Get =:0 CY — Z be a locally Lipschitz continuous function on\
the open set O, where Y is another finite-dimensional REAL
Hilbert space.

Then by the Rademacher theorem, = is almost everywhere (in the
Lebesgue sense) Fréchet differential in O. We denote by Oz the set
of points in O where = is Fréchet differentiable. If O =Y, we use
D= to represent Y=. Then Clarke’s generalized Jacobian of = at y
is:

0=(y) := conv{dgZ=(y)},

where “conv” denotes the convex hull and

IpE(y) :={V : V= lim JE"), " -y, y" € O=}.

k— 00

\
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Groposition 2.6 Let D be a nonempty closed convex set in Z. Fm
anyy € Z and V € 0llp(y),

(i) V is self-adjoint;

(ii) (d,Vd) >0 Vde Z; and
(iii) (Vd,d—Vd) >0 Vde Z.
Proof. (i) Define ¢ : Z — R by

o(2) = %[(z,z) (s —TIp(2). 2 —Tg(2))], z€Z.

Then, by Proposition 2.3, ¢ is continuously differentiable with
Vo(z) =z— [z —1p(z)| =ply), =z€Z.

It then follows that if IIp(+) is Fréchet differentiable at some z,
then JIIp(2) is self-adjoint. Thus, V', as the limit of JIIp(y*) for

\some y* € Dy, converging to vy, is also self-adjoint. /
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(iii) First, we consider z € Dyr,. By Proposition 2.2, for any d € Z

(ii) is a special case of (iii).

and t > 0, we have
(IMp(z+td) —p(z),tdy > ||lIp(z + td) — HD(Z)HQ, for all ¢ > 0.

Hence,

(Jp(2)d,dy > (Jlp(z)d, Tp(2)d). (7)

Next, let V € 0llp(y). Then, by Carathéodory’s theorem, there
exist a positive integer K > 0, V* € dgllp(y), i = 1,2,...,x such

that
V=> ANV
1=1

where \; > 0,i=1,2,...,k,and > . \; = 1.

9
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Let d€ Z. Foreachi=1,...,kand £k =1,2,..., there exists
y"* € Dy, such that

ly —y™ [ < 1/k
and
[T (y™*) = V'] < 1/k
By (7), we have

(Tp(y*™*)d, d) = (TUp(y™)d, THp(y™)d).

Hence,
(V'd,d)y > (V'd,V'd),
and so,
> o X(Vidd)y =y \(Vid, Vid). (8)
1=1 1=1

o %
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Hence,

The proof is completed.

o

Define 0(z) := ||2]|?, 2 € Z. By the convexity of §, we have

e(i Aivid) < i NO(Vid) = i A (Vid,Vid) = i: A ||Vid]|? .
1=1 =1 1 =1 1=1

i Ail[Vid| 2 > i \Vid, i \Vid).
1=1 1=1 1=1

By using (8) and (9), we obtain for all d € Z that

(Vd,d) > (Vd,Vd).

~

(9)
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Recall that if A € SP has the following spectral decomposition

A= PAPT,

where A is the diagonal matrix of eigenvalues of A and P is a

corresponding orthogonal matrix of orthonormal eigenvectors, then

Ay =Tlgr (A) = PAL P
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Define

a:={i: \>0}, g:={i: N =0} v:={i: )\ <O0}L

Write
A O 0 ]
A=1 0 0 0 |andP=[P, P3 P, |
00 A,
Define U € SP:

max{A;, 0} + max{};, 0} ij=1,...,p
Ail + [ Ay o -

where 0/0 is defined to be 1.

o %

Ui' =
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The operator 11 s? (+) is strongly semismooth at A, i.e., in addition
to the directional differentiability of IIs» (1) at A, for any H € SP
and V € 8H5i(A + H) we have

[Msp (A+ H) —Ilgz (A) = V(H) = O(| H|*). (10)
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The directional derivatve of 11 st (-) at A has a very compact form

- PTHP, PTHP; Uayo PTHP,
Mn (A; H) = P PiHF. Ty (PfHP) 0 P,
P'HP,oUZL, 0 0

where o denotes the Hadamard product. Note that II'g, (A; H) does
+

not depend on any particularly chosen P.

o %
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The following result needs a long but not very complicated proof.

Proposition 2.7 Let

It holds that
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Proposition 2.8 Let W : X — Y be continuously differentiable on
an open neighborhood N of x and = : O CY — Z be a locally

Lipschitz continuous function on an open set O containing
y:=V(x).

Suppose that = is directionally differentiable at every point in O
and that JV(Z) : X — Y is onto. Then it holds that

Op®(z) = 0pE(y) T ¥(2),
where ® : N — Z is defined by

O(z) == Z(V(z)), e N.
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Proof. By shrinking N if necessary, we may assume that

AN
F—

=(N) C O. Then = is Lipschitz continuous and directionally
differentiable on O. By further shrinking IV if necessary, we may
also assume that for each x € N, JW¥(x) is onto.

We shall first show that ® is F-differentiable at z € N if and only if
= is F-differentiable at ¥(x), which ensures that

Certainly, ® is F-differentiable at z € N if = is F-differentiable at
U (x). Now, suppose that ® is F-differentiable at x € N. Then,
since = is directionally differentiable at W(x), for any d € X we have

JO(z)d = Z'(¥(x); TY(x)d),

o %
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which implies that for any s,t € ® and u,v € X,

=(U(2); 8TV (2)u +tTV(x)v) = Z'(¥(2); TV(x)(su + tv))
= J®(x)(su + tv)
= sJ®(2)u + tT®(x)v
= sZ/(U(z); TU(2)u) + t= (U (2); TV (z)v).

By the surjectivity of JW¥(x), we can conclude that =/(¥(x);-) is a
linear operator and so = is Gateau differentiable at W(x). Since =

is assumed to be locally Lipschitz continuous on O, = is
F-differentiable at W(x).

o %
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Next, we show that the second half inclusion holds:

Op®(z) 2 0pE(Y)TY(Z).

Let W € 9Z(%). Then there exists a sequence {y*} in O
converging to 7 such that = is F-differentiable at y* and

W = limg_o0 JZ(y5).
By applying the classical Inverse Function Theorem to
U(z+J¥(@)(y—y) - ¥(z)=0,

we obtain that there exists a sequence {§*} in O converging to %
such that

U (Z+J9(@)" (5" - 7)) - @) =y" - ()

for all k sufficiently large.

o %
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Let 2% := 2 4+ J¥(z)*(¢* — 7). Then y* = ¥(z*) and & is
F-differentiable at ¥ with

Jo(z") = TEWY")T ¥ (z").

By using the fact that §* — ¢ implies ¥ — z, we know that there
exists a V € dp®(x) such that

WIT¥(z) = lim JE(y") lim J¥ (%) = lim J&(F") =V € 05®(7).

k— oo k— oo

This completes the proof. []

o %
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V(H) =P

(11) holds.

o

~

HCYO(

1T
Haﬁ

T T
- Hory © Ua’y

where H == PTHP.

Conversely, for any W € 0gll

~

Hyp
W (Hgg)

0

Uar

~

o Heny

Proposition 2.9 For any V € 0pllsr (A) (respectively, OllLsr (A)),
there exists a W € Opllgis(0) (’respectwely, 8HS|B|( )) such that
_.l_

Sf|(0) (respectively, 8H8|g|( )
there exists a V' € dpllsr (A) (respectively, Ollsr (A)) such that

~

P VHEeSP,

(11)

9
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Proof. We only need to prove that (11) holds for V' € Opllsr (A)
and W € 6’BH8|5| (O)
+

Let O(-) := Il (A;-). Define W : 8P — SP by U(H) := PTHP.
_|_
H e 8P and =: SP — SP by

Baa Baﬁ Uoz’y O Bory
E(B) = P ng HSE' (BBB) 0 PT, B € SP.
| BToUL o 0o

Then we have
O(H)=ZE(VY(H)), HeS".

o %
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o

Since Il is directionally differentiable everywhere and
_|_

JY(H):SP — SP is onto, we know from Proposition 2.8 that

950(0) = dp=(0)T T (0).

This, together with Proposition 2.7, completes the proof.

~




NUS Graduate University of Chinese Academy of Sciences 33

4 N

Next, we consider an application of the variational analysis of the
metric projector to a financial engineering problem: Given a
symmetric matrix G € 8", its nearest correlation matrix is the

optimal solution to

1
min §HG_XH2
S.t. szl, izl,...,n, (12)

X e St
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Define: A : 8™ — R" by

A(X) — (X117X227 s 7Xnn)T°

The adjoint of A is given by

A*(y) — diag(y17 Yya, ... 7yn)
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Then, by using the Karush-Kuhn-Tucker (KKT) theory, we may

solve the correlation matrix problem by solving the equation:

Fly) = AG+A"y), —e=0, yeR",

where e € R"™ is the vector of all ones.

Let y* be a root of F'(y) = 0. Then we can recover the optimal

solution to the correlation matrix problem by letting

X* = (G +A"y"), .
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Indeed, the dual problem is

~

where

min 6(y)

2

Then we have

1 ) 1 i
0(y) = 5 My (G + AY)|” = {e,y) = SIIGIP, y e R

F(y) =Vo(y) = Allsn (G+ A'y) —e=0, yeR".
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In numerical computations, we use the following globalized

Newton’s method for solving the dual problem. Recall that for any
ye R Vi(y) = F(y) — e.

Algorithm 2.1 (Newton’s Method)
Step 0. Given y° € ®*, n € (0,1), p,o € (0,1/2). k := 0.

Step 1. Select an element V), € OF (y*) and apply the conjugate
gradient (CG) method of Hestenes and Stiefel to find an
approximate solution d* to

VO(y") + Vid =0 (13)

such that
IVO(y*) + Vid®| < nil|VO(y")|] (14)

where ;== min{z, | VO(y*)||}.

o %
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Step 2. (continued)

If (14) is not achievable or if the condition

VO(y")'db < —mp||d"|? (15)

is not satisfied, let d* := —B, ' VO(y*), where By, is any

symmetric positive definite matrix in S”.

Let mg be the smallest nonnegative integer m such that
O(y" + p™d*) — 0(y*) < ap™VO(y") d".
Set t5, = p™* and y*T! = y*F + t,d¥.

Step 3. Replace k by £+ 1 and go to Step 1.

o %
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Theorem 2.1 Suppose that in Algorithm 2.1 both {||Bk||} and
{IIB; |} are uniformly bounded. Then the iteration sequence {y*}
generated by Algorithm 2.1 converges to the unique solution y* of

F(y) = 0 quadratically.
For details on the above Newton’s method for computing the
nearest correlation matrix problem, see

e H.-D. Q1 AND D. SUN. A quadratically convergent Newton
method for computing the nearest correlation matrix. SIAM

Journal on Matrix Analysis and Applications (2006).

Source code in MatLab is available at

http://www.math.nus.edu.sg/ matsundf

o %
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The material on the basic properties of metric projectors is quite
standard. For the properties on the Jacobian of metric projectors,

see the following papers:

e D. SUN AND J. SUN. Semismooth matrix valued functions.
Mathematics of Operations Research 27 (2002) 150-169.

e J.S. PANG, D. SUN, AND J. SUN. Semismooth
homeomorphisms and strong stability of semidefinite and

Lorentz complementarity problems. Mathematics of
Operations Research 28 (2003) 39-63.
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e I'. MENG, D. SUN, AND G. ZHAO. Semismoothness of
solutions to generalized equations and the Moreau-Yosida
regularization. Mathematical Programming 104 (2005)
561-581.

e D. SUN. The strong second order sufficient condition and
constraint nondegeneracy in nonlinear semidefinite

programming and their implications. Mathematics of
Operations Research 31 (2006).
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