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2 Variational Analysis on Metric

Projectors Over Closed Convex Sets

Let Z be a finite-dimensional Hilbert vector space equipped with a
scalar product 〈·, ·〉 and its induced norm ‖ · ‖ and D be a
nonempty closed convex set in Z. For any z ∈ Z, let ΠD(z) denote
the metric projection of z onto D:

min
1
2
〈y − z, y − z〉

s.t. y ∈ D.
(1)

The operator ΠD : Z → Z is called the metric projection operator
or metric projector over D.
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Proposition 2.1 Let D be a nonempty closed convex set in Z.
Then the point y ∈ D is an optimal solution to (1) if and only if it
satisfies

〈z − y, d− y〉 ≤ 0 ∀ d ∈ D . (2)

Proof. “⇒” Suppose that y ∈ D is an optimal solution to (1). Let
d be an arbitrary point in D. Then yt := (1− t)y + td ∈ D for any
t ∈ [0, 1]. This, together with the fact that y is an optimal solution,
implies that

‖z − yt‖2 ≥ ‖z − y‖2 ∀ t ∈ [0, 1],

which further implies

‖(1− t)(z − y) + t(z − d)‖2 ≥ ‖z − y‖2 ∀ t ∈ [0, 1].
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Thus,

(t2− 2t)‖z− y‖2 + 2t(1− t)〈z− y, z− d〉+ t2‖z− d‖2 ≥ 0 ∀ t ∈ [0, 1].

By taking t ↓ 0 and dividing t on both sides of the above equation,
we obtain

−2‖z − y‖2 + 2〈z − y, z − d〉 ≥ 0 ,

which turns into (2).

“⇐” Suppose that y ∈ D satisfies (2). Assume on the contrary that
y does not solve (1). Then we have by the assumption,

〈z − y, ΠD(z)− y〉 ≤ 0

and by the sufficiency part,

〈z −ΠD(z), y −ΠD(z)〉 ≤ 0 .
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Summing up the above two inequalities leads to

〈ΠD(z)− y, ΠD(z)− y〉 ≤ 0 .

This implies that y = ΠD(z). The contradiction shows that y solves
(1). ¤

Note that Proposition 2.1 holds even if Z is infinite-dimensional.

If D is a nonempty closed convex cone, then (2) is equivalent to

〈z −ΠD(z), ΠD(z)〉 = 0 & 〈z −ΠD(z), d〉 ≤ 0 ∀ d ∈ D . (3)



NUS Graduate University of Chinese Academy of Sciences 6

'

&

$

%

Proposition 2.2 Let D be a nonempty closed convex set in Z.
Then the metric projector ΠD(·) satisfies

〈y − z, ΠD(y)−ΠD(z)〉 ≥ ‖ΠD(y)−ΠD(z)‖2 ∀ y, z ∈ Z . (4)

Note that (4) implies

‖ΠD(y)−ΠD(z)‖ ≤ ‖y − z‖ ∀ y, z ∈ Z .

Proof. Let y, z ∈ Z. Then by Proposition 2.1, we have

〈z −ΠD(z), ΠD(y)−ΠD(z)〉 ≤ 0

and
〈y −ΠD(y), ΠD(z)−ΠD(y)〉 ≤ 0 .

Summing them up gives the desired inequality (4). ¤



NUS Graduate University of Chinese Academy of Sciences 7

'

&

$

%

The metric projector ΠD(·) is only globally Lipschitz continuous
and is not differentiable everywhere, but we have

Proposition 2.3 Let D be a nonempty closed convex set in Z. Let

θ(z) :=
1
2
‖z −ΠD(z)‖2, z ∈ Z .

Then θ is continuously differentiable with

∇θ(z) = z −ΠD(z) , z ∈ Z .
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Proof. For any z ∈ Z, let

Q(z) := z −ΠD(z).

Then we have for ∆z → 0 that

θ(z + ∆z)− θ(z)

=
1
2
〈Q(z + ∆z)−Q(z), Q(z + ∆z) + Q(z)〉

=
1
2
〈∆z − [ΠD(z + ∆z)−ΠD(z)], Q(z + ∆z) + Q(z)〉

= 〈∆z − [ΠD(z + ∆z)−ΠD(z)], Q(z)〉+ O(‖∆z‖2)
= 〈Q(z), ∆z〉 − 〈ΠD(z + ∆z)−ΠD(z), Q(z)〉+ O(‖∆z‖2)
= 〈Q(z), ∆z〉 − 〈ΠD(z + ∆z)−ΠD(z), z −ΠD(z)〉+ O(‖∆z‖2)
≥ 〈Q(z), ∆z〉+ O(‖∆z‖2) (by (2))
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and similarly

θ(z + ∆z)− θ(z)

=
1
2
〈∆z − [ΠD(z + ∆z)−ΠD(z)], Q(z + ∆z) + Q(z)〉

= 〈∆z − [ΠD(z + ∆z)−ΠD(z)], Q(z + ∆z)〉+ O(‖∆z‖2)
= 〈Q(z + ∆z), ∆z〉 − 〈ΠD(z + ∆z)−ΠD(z), Q(z + ∆z)〉+ O(‖∆z‖2)
= 〈Q(z), ∆z〉+ 〈ΠD(z)−ΠD(z + ∆z), Q(z + ∆z)〉+ O(‖∆z‖2)
≤ 〈Q(z), ∆z〉+ O(‖∆z‖2) (by (2)) .

Thus θ is Fréchet differentiable at z with

∇θ(z) = z −ΠD(z) .

The continuity of ∇θ(·) follows from the global Lipschitz continuity
of ΠD(·). ¤
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Recall that the normal cone ND(y) at y in the sense of convex
analysis is

ND(y) =




{d ∈ Y : 〈d, z − y〉 ≤ 0 ∀ z ∈ D} if y ∈ D,

∅ if y /∈ D.

Proposition 2.4 Let D be a nonempty closed convex set in Z.
Then a point µ ∈ ND(y) if and only if

y = ΠD(y + µ) . (5)

Note that µ ∈ ND(y) already implies that y ∈ D.
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Proof. “⇒” Suppose that µ ∈ ND(y). Then y ∈ D and

〈µ, z − y〉 ≤ 0 ∀ z ∈ D .

Thus,
〈(y + µ)− y, z − y〉 ≤ 0 ∀ z ∈ D ,

which, according to Proposition 2.1, implies y = ΠD(y + µ).

“⇐” Suppose that y = ΠD(y + µ). Then y ∈ D. By Proposition
2.1, we have

〈(y + µ)− y, z − y〉 ≤ 0 ∀ z ∈ D ,

i.e.,
〈µ, z − y〉 ≤ 0 ∀ z ∈ D .

That is, µ ∈ ND(y). ¤
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Proposition 2.5 Let D be a nonempty closed convex cone in Z

and Do := −D∗ be the polar of D. Then any z ∈ Z can be uniquely
decomposed into

z = ΠD(z) + ΠDo(z) . (6)

Proof. Let u := z −ΠD(z). By (3), we have

〈u, ΠD(z)〉 = 0 & 〈u, d〉 ≤ 0 ∀d ∈ D .

Thus u ∈ Do, 〈z − u, u〉 = 0, and

〈z − u,w〉 = 〈z − (z −ΠD(z)), w〉 = 〈ΠD(z), w〉 ≤ 0 ∀w ∈ Do.

Hence, u = ΠDo(z). The uniqueness of the decomposition is
obvious. ¤.
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For A and B in Sp, define

〈A,B〉 := Tr
(
AT B

)
= Tr (AB) ,

where “Tr” denotes the trace of a square matrix (i.e., the sum of all
diagonal elements of the symmetric matrix). Let A ∈ Sp have the
following spectral decomposition

A = PΛPT ,

where Λ is the diagonal matrix of eigenvalues of A and P is a
corresponding orthogonal matrix of orthonormal eigenvectors.
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Let

A+ := PΛ+PT .

Then, 〈A−A+, A+〉 = 〈Λ− Λ+, Λ+〉 = 0 and

〈A−A+,H〉 = 〈Λ− Λ+, PT HP 〉 ≤ 0 ∀H ∈ Sp
+.

Thus, by (3), we obtain that :

ΠSp
+
(A) = A+ = PΛ+PT .



NUS Graduate University of Chinese Academy of Sciences 15

'

&

$

%

Let Ξ : O ⊆ Y → Z be a locally Lipschitz continuous function on
the open set O, where Y is another finite-dimensional REAL
Hilbert space.

Then by the Rademacher theorem, Ξ is almost everywhere (in the
Lebesgue sense) Fréchet differential in O. We denote by OΞ the set
of points in O where Ξ is Fréchet differentiable. If O ≡ Y , we use
DΞ to represent YΞ. Then Clarke’s generalized Jacobian of Ξ at y

is:

∂Ξ(y) := conv{∂BΞ(y)},

where “conv” denotes the convex hull and

∂BΞ(y) := {V : V = lim
k→∞

JΞ(yk) , yk → y , yk ∈ OΞ}.
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Proposition 2.6 Let D be a nonempty closed convex set in Z. For
any y ∈ Z and V ∈ ∂ΠD(y),

(i) V is self-adjoint;

(ii) 〈d, V d〉 ≥ 0 ∀ d ∈ Z; and

(iii) 〈V d, d− V d〉 ≥ 0 ∀ d ∈ Z.

Proof. (i) Define ϕ : Z → < by

ϕ(z) :=
1
2
[〈z, z〉 − 〈z −ΠD(z), z −ΠK(z)〉], z ∈ Z .

Then, by Proposition 2.3, ϕ is continuously differentiable with

∇ϕ(z) = z − [z −ΠD(z)] = ΠD(y) , z ∈ Z .

It then follows that if ΠD(·) is Fréchet differentiable at some z,
then JΠD(z) is self-adjoint. Thus, V , as the limit of JΠD(yk) for
some yk ∈ DΠD

converging to y, is also self-adjoint.
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(ii) is a special case of (iii).

(iii) First, we consider z ∈ DΠD . By Proposition 2.2, for any d ∈ Z

and t ≥ 0, we have

〈ΠD(z + td)−ΠD(z), td〉 ≥ ||ΠD(z + td)−ΠD(z)||2, for all t ≥ 0.

Hence,
〈JΠD(z)d, d〉 ≥ 〈JΠD(z)d,JΠD(z)d〉. (7)

Next, let V ∈ ∂ΠD(y). Then, by Carathéodory’s theorem, there
exist a positive integer κ > 0, V i ∈ ∂BΠD(y), i = 1, 2, . . . , κ such
that

V =
κ∑

i=1

λiV
i ,

where λi ≥ 0, i = 1, 2, . . . , κ, and
∑κ

i=1 λi = 1.
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Let d ∈ Z. For each i = 1, . . . , κ and k = 1, 2, . . . , there exists
yik ∈ DΠD such that

||y − yik || ≤ 1/k

and
||JΠD(yik)− V i|| ≤ 1/k

By (7), we have

〈JΠD(yik)d, d〉 ≥ 〈JΠD(yik)d,JΠD(yik)d〉.

Hence,
〈V id, d〉 ≥ 〈V id, V id〉,

and so,
κ∑

i=1

λi〈V id, d〉 ≥
κ∑

i=1

λi〈V id, V id〉. (8)
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Define θ(z) := ||z||2, z ∈ Z. By the convexity of θ, we have

θ
( κ∑

i=1

λiV
id

)
≤

κ∑

i=1

λiθ(V id) =
κ∑

i=1

λi〈V id, V id〉 =
κ∑

i=1

λi||V id||2 .

Hence,
κ∑

i=1

λi||V id||2 ≥
〈 κ∑

i=1

λiV
id,

κ∑

i=1

λiV
id

〉
. (9)

By using (8) and (9), we obtain for all d ∈ Z that

〈V d, d〉 ≥ 〈V d, V d〉.

The proof is completed. ¤
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Recall that if A ∈ Sp has the following spectral decomposition

A = PΛPT ,

where Λ is the diagonal matrix of eigenvalues of A and P is a
corresponding orthogonal matrix of orthonormal eigenvectors, then

A+ = ΠSp
+
(A) = PΛ+PT .
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Define

α := {i : λi > 0}, β := {i : λi = 0}, γ := {i : λi < 0}.

Write

Λ =




Λα 0 0

0 0 0

0 0 Λγ




and P = [ Pα Pβ Pγ ].

Define U ∈ Sp:

Uij :=
max{λi, 0}+ max{λj , 0}

|λi|+ |λj | , i, j = 1, . . . , p,

where 0/0 is defined to be 1.
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The operator ΠSp
+
(·) is strongly semismooth at A, i.e., in addition

to the directional differentiability of ΠSp
+
(·) at A, for any H ∈ Sp

and V ∈ ∂ΠSp
+
(A + H) we have

ΠSp
+
(A + H)−ΠSp

+
(A)− V (H) = O(‖H‖2) . (10)
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The directional derivatve of ΠSp
+
(·) at A has a very compact form

Π′Sp
+
(A; H) = P

2
666664

P T
α HPα P T

α HPβ Uαγ ◦ P T
α HPγ

P T
β HPα ΠS|β|+

(P T
β HPβ) 0

P T
γ HPα ◦ UT

αγ 0 0

3
777775

P T ,

where ◦ denotes the Hadamard product. Note that Π′Sp
+
(A;H) does

not depend on any particularly chosen P .
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The following result needs a long but not very complicated proof.

Proposition 2.7 Let

Θ(·) := Π′Sp
+
(A; ·).

It holds that

∂BΠSp
+
(A) = ∂BΘ(0).
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Proposition 2.8 Let Ψ : X → Y be continuously differentiable on
an open neighborhood N̂ of x̄ and Ξ : O ⊆ Y → Z be a locally
Lipschitz continuous function on an open set O containing
ȳ := Ψ(x̄).

Suppose that Ξ is directionally differentiable at every point in O
and that JΨ(x̄) : X → Y is onto. Then it holds that

∂BΦ(x̄) = ∂BΞ(ȳ)JΨ(x̄),

where Φ : N̂ → Z is defined by

Φ(x) := Ξ(Ψ(x)), x ∈ N̂ .
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Proof. By shrinking N̂ if necessary, we may assume that
Ξ(N̂) ⊆ O. Then Ξ is Lipschitz continuous and directionally
differentiable on O. By further shrinking N̂ if necessary, we may
also assume that for each x ∈ N̂ , JΨ(x) is onto.

We shall first show that Φ is F-differentiable at x ∈ N̂ if and only if
Ξ is F-differentiable at Ψ(x), which ensures that

∂BΦ(x̄) ⊆ ∂BΞ(ȳ)JΨ(x̄).

Certainly, Φ is F-differentiable at x ∈ N̂ if Ξ is F-differentiable at
Ψ(x). Now, suppose that Φ is F-differentiable at x ∈ N̂ . Then,
since Ξ is directionally differentiable at Ψ(x), for any d ∈ X we have

JΦ(x)d = Ξ′(Ψ(x);JΨ(x)d),
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which implies that for any s, t ∈ < and u, v ∈ X,

Ξ′(Ψ(x); sJΨ(x)u + tJΨ(x)v) = Ξ′(Ψ(x);JΨ(x)(su + tv))

= JΦ(x)(su + tv)

= sJΦ(x)u + tJΦ(x)v

= sΞ′(Ψ(x);JΨ(x)u) + tΞ′(Ψ(x);JΨ(x)v).

By the surjectivity of JΨ(x), we can conclude that Ξ′(Ψ(x); ·) is a
linear operator and so Ξ is Gâteau differentiable at Ψ(x). Since Ξ
is assumed to be locally Lipschitz continuous on O, Ξ is
F-differentiable at Ψ(x).
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Next, we show that the second half inclusion holds:

∂BΦ(x̄) ⊇ ∂BΞ(ȳ)JΨ(x̄).

Let W ∈ ∂BΞ(ȳ). Then there exists a sequence {yk} in O
converging to ȳ such that Ξ is F-differentiable at yk and
W = limk→∞ JΞ(yk).

By applying the classical Inverse Function Theorem to

Ψ (x̄ + JΨ(x̄)∗(y − ȳ))−Ψ(x̄) = 0,

we obtain that there exists a sequence {ỹk} in O converging to ȳ

such that

Ψ
(
x̄ + JΨ(x̄)∗(ỹk − ȳ)

)−Ψ(x̄) = yk −Ψ(x̄)

for all k sufficiently large.
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Let x̃k := x̄ + JΨ(x̄)∗(ỹk − ȳ). Then yk = Ψ(x̃k) and Φ is
F-differentiable at x̃k with

JΦ(x̃k) = JΞ(yk)JΨ(x̃k).

By using the fact that ỹk → ȳ implies x̃k → x̄, we know that there
exists a V ∈ ∂BΦ(x̄) such that

WJΨ(x̄) = lim
k→∞

JΞ(yk) lim
k→∞

JΨ(x̃k) = lim
k→∞

JΦ(x̃k) = V ∈ ∂BΦ(x̄).

This completes the proof. ¤
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Proposition 2.9 For any V ∈ ∂BΠSp
+
(A) (respectively, ∂ΠSp

+
(A)),

there exists a W ∈ ∂BΠS|β|+
(0) (respectively, ∂ΠS|β|+

(0)) such that

V (H) = P




H̃αα H̃αβ Uαγ ◦ H̃αγ

H̃T
αβ W (H̃ββ) 0

H̃T
αγ ◦ UT

αγ 0 0




PT ∀H ∈ Sp,

(11)
where H̃ := PT HP .

Conversely, for any W ∈ ∂BΠS|β|+
(0) (respectively, ∂ΠS|β|+

(0)) ,

there exists a V ∈ ∂BΠSp
+
(A) (respectively, ∂ΠSp

+
(A)) such that

(11) holds.
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Proof. We only need to prove that (11) holds for V ∈ ∂BΠSp
+
(A)

and W ∈ ∂BΠS|β|+
(0).

Let Θ(·) := Π′Sp
+
(A; ·). Define Ψ : Sp → Sp by Ψ(H) := PT HP ,

H ∈ Sp and Ξ : Sp → Sp by

Ξ(B) := P




Bαα Bαβ Uαγ ◦Bαγ

BT
αβ ΠS|β|+

(Bββ) 0

BT
αγ ◦ UT

αγ 0 0




PT , B ∈ Sp.

Then we have
Θ(H) = Ξ(Ψ(H)), H ∈ Sp.
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Since ΠS|β|+
is directionally differentiable everywhere and

JΨ(H) : Sp → Sp is onto, we know from Proposition 2.8 that

∂BΘ(0) = ∂BΞ(0)JΨ(0).

This, together with Proposition 2.7, completes the proof. ¤
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Next, we consider an application of the variational analysis of the
metric projector to a financial engineering problem: Given a
symmetric matrix G ∈ Sn, its nearest correlation matrix is the
optimal solution to

min
1
2
‖G−X ‖2

s.t. Xii = 1, i = 1, . . . , n ,

X ∈ Sn
+ .

(12)
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Define: A : Sn → <n by

A(X) = (X11, X22, . . . , Xnn)T .

The adjoint of A is given by

A∗(y) = diag(y1, y2, . . . , yn).
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Then, by using the Karush-Kuhn-Tucker (KKT) theory, we may
solve the correlation matrix problem by solving the equation:

F (y) := A (G +A∗y)+ − e = 0, y ∈ <n ,

where e ∈ <n is the vector of all ones.

Let y∗ be a root of F (y) = 0. Then we can recover the optimal
solution to the correlation matrix problem by letting

X∗ = (G +A∗y∗)+ .
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Indeed, the dual problem is

min θ(y)

where

θ(y) =
1
2
‖ΠSn

+
(G +A∗y)‖2 − 〈e, y〉 − 1

2
||G‖2, y ∈ <n .

Then we have

F (y) = ∇θ(y) = AΠSn
+
(G +A∗y)− e = 0, y ∈ <n.
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In numerical computations, we use the following globalized
Newton’s method for solving the dual problem. Recall that for any
y ∈ <n, ∇θ(y) = F (y)− e.

Algorithm 2.1 (Newton’s Method)

Step 0. Given y0 ∈ <n, η ∈ (0, 1), ρ, σ ∈ (0, 1/2). k := 0.

Step 1. Select an element Vk ∈ ∂F (yk) and apply the conjugate
gradient (CG) method of Hestenes and Stiefel to find an
approximate solution dk to

∇θ(yk) + Vkd = 0 (13)

such that
‖∇θ(yk) + Vkdk‖ ≤ ηk‖∇θ(yk)‖ (14)

where ηk := min{η, ‖∇θ(yk)‖}.
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Step 2. (continued)

If (14) is not achievable or if the condition

∇θ(yk)T dk ≤ −ηk‖dk‖2 (15)

is not satisfied, let dk := −B−1
k ∇θ(yk), where Bk is any

symmetric positive definite matrix in Sn.

Let mk be the smallest nonnegative integer m such that

θ(yk + ρmdk)− θ(yk) ≤ σρm∇θ(yk)T dk.

Set tk = ρmk and yk+1 = yk + tkdk.

Step 3. Replace k by k + 1 and go to Step 1.
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Theorem 2.1 Suppose that in Algorithm 2.1 both {‖Bk‖} and
{‖B−1

k ‖} are uniformly bounded. Then the iteration sequence {yk}
generated by Algorithm 2.1 converges to the unique solution y∗ of
F (y) = 0 quadratically.

For details on the above Newton’s method for computing the
nearest correlation matrix problem, see

• H.-D. Qi and D. Sun. A quadratically convergent Newton
method for computing the nearest correlation matrix. SIAM

Journal on Matrix Analysis and Applications (2006).

Source code in MatLab is available at
http://www.math.nus.edu.sg/ matsundf
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The material on the basic properties of metric projectors is quite
standard. For the properties on the Jacobian of metric projectors,
see the following papers:

• D. Sun and J. Sun. Semismooth matrix valued functions.
Mathematics of Operations Research 27 (2002) 150–169.

• J.S. Pang, D. Sun, and J. Sun. Semismooth
homeomorphisms and strong stability of semidefinite and
Lorentz complementarity problems. Mathematics of

Operations Research 28 (2003) 39–63.
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• F. Meng, D. Sun, and G. Zhao. Semismoothness of
solutions to generalized equations and the Moreau-Yosida
regularization. Mathematical Programming 104 (2005)
561–581.

• D. Sun. The strong second order sufficient condition and
constraint nondegeneracy in nonlinear semidefinite
programming and their implications. Mathematics of

Operations Research 31 (2006).


