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1 Robinson’s Constraint Qualification

and Optimality Conditions

Let us first consider the following simple one-dimensional
optimization problem

min
x∈<

1
2
x2

s.t. x ≤ 0 .

The corresponding Lagrangian function is

L(x, λ) :=
1
2
x2 + 〈λ, x〉 , (x, λ) ∈ <2
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The unique optimal solution and its corresponding Lagrangian
multiplier are given by

x∗ = 0 & λ∗ = 0 ,

which satisfy the Karush-Kuhn-Tucker (KKT) condition

∇xL(x∗, λ∗) = x∗ + λ∗ = 0 , 0 ≤ x∗ ⊥ λ∗ ≥ 0 .

The Hessian of L with respect to x∗ is:

∇2
xxL(x∗, λ∗) = I (the best one can dream of) .
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Now, let us consider the following equivalent forms:

min
(t,x)∈<2

t

s.t. x ≤ 0 ,

1
2
x2 ≤ t .

m
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(SOC)

min
(t,x)∈<2

t

s.t. x ≤ 0 ,

‖(2x, 2− t)‖2 ≤ 2 + t ⇐⇒ (2 + t, 2x, 2− t) ∈ K3 ,

where for each n ≥ 1, Kn+1 is the (n + 1)-dimensional second-order
cone

Kn+1 := {(t, x) ∈ < × <n : t ≥ ||x||2} .
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The Lagrangian function for (SOC) is

L(t, x, λ, µ) := t + 〈λ, x〉+ 〈µ, (2 + t, 2x, 2− t)〉 .

The Hessian of L with respective to (t, x) now turns to be

∇2
(t,x)(t,x)L(t, x, λ, µ) = 0 (too bad???) .
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The seemingly harmless transformations have completed changed
the Hessian of the corresponding Lagrangian functions (from I to
0).

This change should be related to the non-polyhedral structure of
Kn+1.

This simple example suggests that when we talk about
second-order optimality conditions and perturbation analysis, we
need to include the “curvature” of the non-polyderal set involved.
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Let’s now turn to the general optimization problem

(OP )

min
x∈X

f(x)

s.t. G(x) ∈ K ,

where f : X → < and G : X → Y are C1 (continuously
differentiable), X,Y finite-dimensional real Hilbert vector spacesa

each equipped with a scalar product 〈·, ·〉 and its induced norm
‖ · ‖, and K is a closed convex set in Y .

aA real vector space H is called a Hilbert space if there is an “inner product”

(or a “scalar product”) denoted 〈·, ·〉 satisfying i) 〈x, y〉 = 〈y, x〉 ∀x, y ∈ H; ii)

〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 ∀x, y, and z ∈ H; iii) 〈αx, y〉 = α〈x, y〉 ∀α ∈ < and

x, y ∈ H; iv) 〈x, x〉 ≥ 0 ∀x ∈ H; and v) 〈x, x〉 = 0 only if x = 0.
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The problem (OP) is very general and includes

(i) Linear programming (LP): when f is a linear functional, g is
affine, and K is a polyhedral convex cone.

(ii) Nonlinear programming (NLP): when f or g is nonlinear and
K is a polyhedral convex cone.

(iii) Linear conic programming: when f is a linear functional, g is
affine, and K is a closed (non-polyhedral) convex cone.

(iv) Nonlinear conic programming: when f or g is nonlinear and
K is a closed (non-polyhedral) convex cone.
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In particular, it includes the nonlinear semidefinite programming

(NLSDP )

min
x∈X

f(x)

s.t. h(x) = 0 ,

g(x) ∈ Sp
+ ,

where Sp is the linear space of all p× p real symmetric matrices,
and Sp

+ is the cone of all p× p positive semidefinite matrices.

Difficulty:
Sp

+ is not a polyhedral set.
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Note that (NLSDP) can be equivalently written as either
semi-infinite programming problem

min
x∈X

f(x)

s.t. h(x) = 0 ,

dT g(x)d ≥ 0 ∀ ‖d‖2 = 1

or nonsmooth optimization problem

min
x∈X

f(x)

s.t. h(x) = 0 ,

λmin(g(x)) ≥ 0 ,
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where λmin(g(x)) is the smallest eigenvalue of g(x).

Indeed, early in seventies and eighties of the last century,
researchers working on semi-infinite programming problems and
nonsmooth optimization problems realized that in order to get
satisfactory second-order necessary and sufficient conditions, an
additional term, which represents the curvature of the set K, must
be added.
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Some notation:

Suppose that X ′ and Y ′ are two finite-dimensional real Hilbert
spaces and that F : X ×X ′ 7→ Y ′. If F is Fréchet-differentiablea at
(x, x′) ∈ X ×X ′, then we use JF (x, x′) (respectively, JxF (x, x′))
to denote the Fréchet-derivative of F at (x, x′) (respectively, the
partial Fréchet-derivative of F at (x, x′) with respect to x).

aA function Ψ : X → Y is said to be Fréchet-differentiable at x ∈ X if there

exists a linear operator, denoted by JΨ(x), such that

Ψ(x + ∆x)−Ψ(x)− JΨ(x)(∆x) = o(‖∆x‖).

For example, if Ψ(x) = Ax + xAT , where x ∈ Sp and A ∈ <p×p, then

JΨ(x)(∆x) = A∆x + ∆xAT ∀∆x ∈ Sp.

Another example is Ψ(x) = x2, x ∈ Sp. By the definition, one can check directly

JΨ(x)(∆x) = x(∆x) + (∆x)x ∀∆x ∈ S.
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Let

∇F (x, x′) := JF (x, x′)∗

be the adjointa of JF (x, x′) (respectively,
∇xF (x, x′) := JxF (x, x′)∗, the adjoint of JxF (x, x′)).

aFor a linear operator A : X → Y , its adjoint is the unique linear operator

mapping Y into X, denoted by A∗, satisfies

〈y, Ax〉Y = 〈A∗y, x〉X ∀x ∈ X and y ∈ Y.
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If F is twice Fréchet-differentiable at (x, x′) ∈ X ×X ′, we define

J 2F (x, x′) := J (JF )(x, x′)

J 2
xxF (x, x′) := Jx(JxF )(x, x′),

∇2F (x, x′) := J (∇F )(x, x′) ,

∇2
xxF (x, x′) := Jx(∇xF )(x, x′) .
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Some definitions.

Definition 1.1 The following two sets are called the upper and
lower limits of a parameterized family At, of subsets of Y :

lim sup
t→t0

At := {y ∈ Y : ∃ tn → t0 such that

yn → y for some yn ∈ Atn }

and

lim inf
t→t0

At := {y ∈ Y : for every tn → t0 ∃

yn ∈ Atn such that yn → y } .
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Definition 1.2 For any closed set D ⊆ Y and a point y ∈ D, we
define the radial cone

RD(y) := {d ∈ Y : ∃ t∗ > 0 such that y + td ∈ D ∀ t ∈ [0, t∗]};

the inner tangent cone

T i
D(y) := lim inf

t↓0
D − y

t
;

the contingent (Bouligand) cone

TD(y) := lim sup
t↓0

D − y

t
;

and the Clarke tangent cone

T c
D(y) := lim inf

t↓0
D3y′→y

D − y′

t
.
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Obviously, we have

RD(y) ⊂ T i
D(y) ⊂ TD(y) .

The contingent, inner, and Clarke tangent cones are closed while
the radial cone is not closed.

From Definitions 1.1 and 1.2 we have the following equivalent forms
for T i

D(y) and TD(y):

T i
D(y) = {d ∈ Y : dist(y + td,D) = o(t) , t ≥ 0}

TD(y) = {d ∈ Y : ∃ tk ↓ 0, dist(y + tkd,D) = o(tk)}.

where for each w ∈ Y , dist(w, D) := inf{‖w − d‖ : d ∈ D}.
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Proposition 1.1 If D is a closed convex set and y ∈ D, then

RD(y) =
⋃
t>0

{t−1(D − y)}

and

TD(y) = T i
D(y) = T c

D(y) = cl[RD(y)] ,

where “cl” denotes the topological closure.
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Therefore, when D is a closed convex set, the inner tangent cone
and the contingent cone are equal:

TD(y) = T i
D(y) = {d ∈ Y : dist(y + td,D) = o(t) , t ≥ 0}, y ∈ D .

We use NK(y) to denote the normal cone of K at y in the sense of
convex analysis

NK(y) =




{d ∈ Y : 〈d, z − y〉 ≤ 0 ∀ z ∈ K} if y ∈ K,

∅ if y /∈ K.
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Let Z be another Hilbert space and D be a closed convex set in Z.
Let ΠD : Z → Z denote the metric projector over D:

min
1
2
〈z − y, z − y〉

s.t. z ∈ D.

The operator ΠD(·) is globally Lipschitz continuous with modulus
1.
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Next, we demonstrate how to compute TSp
+
(·).

For A and B in Sp,

〈A,B〉 := Tr
(
AT B

)
= Tr (AB) ,

where “Tr” denotes the trace of a square matrix (i.e., the sum of all
diagonal elements of the symmetric matrix). Let A have the
following spectral decomposition

A = PΛPT ,

where Λ is the diagonal matrix of eigenvalues of A and P is a
corresponding orthogonal matrix of orthonormal eigenvectors.
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Then, one can check without difficulty that (more about this part
in the next talk):

A+ := ΠSp
+
(A) = PΛ+PT ,

where ΠSp
+
(A) is the metric projector of A onto Sp

+ under the
above trace inner product.

Note that computing A+ is equivalent to computing the full
eigen-decomposition of A, which in turn needs 9n3 flops. For a
typical Pentium IV type desktop PC, it needs about 10 seconds for
n = 1, 000 and less than 90 seconds for n = 2, 000.
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Define

α := {i : λi > 0}, β := {i : λi = 0}, γ := {i : λi < 0}.

Write

Λ =




Λα 0 0

0 0 0

0 0 Λγ




and P = [ Pα Pβ Pγ ].

Define U ∈ Sp:

Uij :=
max{λi, 0}+ max{λj , 0}

|λi|+ |λj | , i, j = 1, . . . , p,

where 0/0 is defined to be 1.



NUS Graduate University of Chinese Academy of Sciences 25

'

&

$

%

ΠSp
+

is directionally differentiable, i.e., there exists a positive
homogeneous function denoted by Π′Sp

+
(A; ·), such that for any

H ∈ Sp,

ΠSp
+
(A + tH)−ΠSp

+
(A)− tΠ′Sp

+
(A;H) = o(t) ∀ t ↓ 0 ,

with

Π′Sp
+
(A; H) = P

2
666664

P T
α HPα P T

α HPβ Uαγ ◦ P T
α HPγ

P T
β HPα ΠS|β|+

(P T
β HPβ) 0

P T
γ HPα ◦ UT

αγ 0 0

3
777775

P T ,

where ◦ denotes the Hadamard product. Note that Π′Sp
+
(A;H) does

not depend on any particularly chosen P .
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When |β| = 0, ΠSn
+
(·) is continuously differentiable around A and

the above formula reduces to the classical result of Löwnera.

The tangent cone of Sp
+ at A+ = ΠSp

+
(A) is b:

TSp
+
(A+) = {B ∈ Sp : PT

ᾱ BPᾱ º 0} .

where ᾱ := {1, . . . , p}\α and Pᾱ := [Pβ Pγ ].

aK. Löwner. Über monotone matrixfunctionen. Mathematische Zeitschrift

38 (1934) 177–216.
bV.I. Arnold. Matrices depending on parameters. Russian Mathematical

Surveys, 26 (1971) 29–43.
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One may use the following relations to get TSp
+
(A+) directly:

TSp
+
(A+)

= {B ∈ Sp : dist(A+ + tB,Sp
+) = o(t), t ≥ 0}

= {B ∈ Sp : ‖A+ + tB −ΠSp
+
(A+ + tB)‖ = o(t), t ≥ 0}

= {B ∈ Sp : ‖A+ + tB − [A+ + tΠ′Sp
+
(A+;B) + o(t)]‖ = o(t), t ≥ 0}

= {B ∈ Sp : B = Π′Sp
+
(A+; B)}
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and

Π′Sp
+
(A+; B) = P

2
64

P T
α BPα P T

α HPᾱ

P T
ᾱ HPα ΠS|ᾱ|+

(P T
ᾱ HPᾱ)

3
75P T .

The lineality space of TSp
+
(A+), i.e., the largest linear space in

TSp
+
(A+), is thus given by

lin
(
TSp

+
(A+)

)
= {B ∈ Sn : PT

ᾱ BPᾱ = 0}, .
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Now, let us define Robinson’s constraint qualification (CQ).

Definition 1.3 Let x̄ be a feasible solution to (OP). Robinson’s
constraint qualification is as follows:

0 ∈ int{G(x̄) + JG(x̄)X −K}, (1)

where “int” denotes the topological interior.

Proposition 1.2 Suppose that G(x̄) ∈ K. Then Robinson’s CQ
(1) is equivalent to

JG(x̄)X + TK(G(x̄)) = Y . (2)
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Proposition 1.3 If Y is the Cartesian product of Y1 and Y2, and
K = K1 ×K2 ⊂ Y1 × Y2, where K1 and K2 are closed convex
subsets of Y1 and Y2, respectively. Let
G(x) = (G1(x), G2(x)) ∈ Y1 × Y2. Assume that G(x̄) ∈ K. Suppose
that JG1(x̄) is onto and that K2 has a nonempty interior. Then
Robinson’s CQ (1) is equivalent to the existence of d ∈ X such that





G1(x̄) + JG1(x̄)d ∈ K1 .

G2(x̄) + JG2(x̄)d ∈ int(K2) .
(3)

[If K1 = {0}, the first relation in (3) becomes an equation.]
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In particular, for conventional nonlinear programming

(NLP )

min
x∈<n

f(x)

s.t. h(x) = 0 ,

g(x) ≤ 0 ,

Robinson’s CQ reduces to the well-known Mangasarian-Fromovitz
constraint qualification (MFCQ):




J hi(x̄), i = 1, . . . , m, are linearly independent,

∃ d ∈ X : J hi(x̄)d = 0 , i = 1, . . . ,m , J gj(x̄)d < 0 , j ∈ I(x̄),

where I(x̄) := {j : gj(x̄) = 0 , j = 1, . . . , p}.
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Proposition 1.4 Let x̄ be a feasible solution to (OP) and
Φ := {x ∈ X : G(x) ∈ K} = G−1(K). Then we have

(i) The point d = 0 is an optimal solution to

min
x∈X

J f(x̄)d

s.t. d ∈ TΦ(x̄) .
(4)

(ii) If Robinson’s CQ (1) holds, then d = 0 is an optimal solution
to the linearized problem

min
x∈X

J f(x̄)d

s.t. JG(x̄)d ∈ TK(G(x̄)) .
(5)
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Proof. (i) Let d ∈ TΦ(x̄). Then there exist sequences tn ↓ 0 and
xn = x̄ + tnd + o(tn) such that xn ∈ Φ. Since x̄ is a local solution
to (OP), we obtain

0 ≤ lim
n→∞

f(xn)− f(x̄)
tn

= J f(x̄)d .

Thus, d = 0 is an optimal solution to (4).

(ii) Since Robinson’s CQ holds, the inner and outer tangent sets to
Φ at x̄ coincide and are the same as the feasible solution set of (5).
Then (ii) follows from (i). ¤
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The Lagrangian function L : X × Y → < for (OP) is defined by

L(x, µ) := f(x) + 〈µ,G(x)〉 , (x, µ) ∈ X × Y. (6)

We say that µ̄ ∈ Y is a Lagrangian multiplier of (OP) at x̄ if it,
together with x̄, satisfies the Karush-Kuhn-Tucker (KKT)
condition:

∇xL(x̄, µ̄) = 0 and µ̄ ∈ NK(G(x̄)) .
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If K is a closed convex cone, then the KKT system is equivalent to

∇f(x̄) +∇G(x̄)µ̄ = 0 & K 3 G(x̄) ⊥ (−µ̄) ∈ K∗ ,

where K∗ is the dual cone of K given by

K∗ := {d ∈ Y : 〈d, y〉 ≥ 0 ∀ y ∈ K } .

For example, if K = {0}m × Sp
+, then

K∗ = <m × Sp
+ .

Let M(x̄), possibly empty set, denote the set of Lagrangian
multipliers of (OP) at x̄. We call x̄ a stationary point of (OP) if
M(x̄) 6= ∅.
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Theorem 1.1 Let x̄ be a locally optimal solution to (OP). Suppose
that Robinson’s CQ (1) holds. Then M(x̄) is a nonempty and
bounded convex set.

Proof. The proof is based on Proposition 1.4 and some duality
theory for the linearized problem (5). We omit the details here. ¤

Note that the converse part of Theorem 1.1 is also true, i.e., if
M(x̄) is nonempty and bounded, then Robinson’s CQ (1) holds.
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Let x̄ be a feasible solution to (OP). The critical cone of (OP) at x̄

is defined as

C(x̄) := {d ∈ X : JG(x̄)d ∈ TK(G(x̄)), J f(x̄)d ≤ 0}.

The cone C(x̄) consists of directions for which the linearized
problem (5) does not provide any information about the optimality
of x̄, and will be useful in the study of second-order optimality
conditions.
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Proposition 1.5 Let x̄ be a feasible solution to (OP). If
M(x̄) 6= ∅, then d = 0 is an optimal solution to the linearized
problem (5) and

C(x̄) := {d ∈ X : JG(x̄)d ∈ TK(G(x̄)), J f(x̄)d = 0}.

Moreover, for any µ ∈M(x̄),

C(x̄) := {d ∈ X : JG(x̄)d ∈ TK(G(x̄), 〈µ,JG(x̄)d〉 = 0}.

Note that for any µ ∈M(x̄),

0 = 〈∇xL(x̄, µ), d〉 = J f(x̄)d + 〈µ,JG(x̄)d〉 .
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The inner and outer second order tangent setsa to the set D at the
point y ∈ D and in the direction d ∈ Y are defined by

T i,2
D (y, d) := {w ∈ Y : dist(y + td +

1
2
t2w, D) = o(t2) , t ≥ 0}

and

T 2
D(y, d) := {w ∈ Y : ∃ tk ↓ 0 & dist(y + tkd +

1
2
t2kw,D) = o(t2k)}.

aJ.F. Bonnans and A. Shapiro. Perturbation Analysis of Optimization

Problems, Springer (New York, 2000). This is also our major reference book

on this part.
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We have T i,2
D (z, d) ⊆ T 2

D(y, d) and T i,2
D (z, d) = ∅ (respectively,

T 2
D(z, d) = ∅) if d /∈ T i

D(y) (respectively, d /∈ TD(y)).

In general, T i,2
D (z, d) 6= T 2

D(z, d) even if D is convex. However,
when K := {0} × Sp

+ ⊂ Y := <m × Sp,

T i,2
K (y, d) = T 2

K(y, d) ∀ y, d ∈ Y.

Recall that for any set D ⊆ Z, the support function of the set D is
defined as

σ(y,D) := sup
z∈D

〈z, y〉, y ∈ Y .
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Theorem 1.2 (Second-Order Necessary Condition.)

Suppose that f and G are twice continuously differentiable. Let x̄ be
a local optimal solution to (OP). Suppose that Robinson’s CQ (1)
holds. Then for every d ∈ C(x̄) and any convex set
T (d) ⊂ T 2

K(G(x̄,JG(x̄)d), the following inequality holds

sup
µ∈M(x̄)

{〈
d,∇2

xxL(x̄, µ)d
〉− σ (µ, T (d))

} ≥ 0 .

Before we state the second order sufficient conditions for (OP), we
need below the concept of C2-cone reducibility.
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Definition 1.4 A closed (not necessarily convex) set D ⊆ Y is
called C2-cone reducible at a point ȳ ∈ D if there exist a
neighborhood V ⊆ Y of ȳ, a pointed closed convex cone Q (a cone is
said to be pointed if and only its lineality space is the origin) in a
finite dimensional space Z and a twice continuously differentiable
mapping Ξ : V → Z such that:

(i) Ξ(ȳ) = 0 ∈ Z,

(ii) the derivative mapping JΞ(ȳ) : Y → Z is onto, and

(iii) D ∩ V = {y ∈ V |Ξ(y) ∈ Q}. We say that D is C2-cone
reducible if D is C2-cone reducible at every point ȳ ∈ Y (possibly to
a different pointed cone Q).
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Many interesting sets such as

the polyhedral convex set,

the second-order cone, and

the cone Sp
+

are all C2-cone reducible, and

the Cartesian product of C2-cone reducible sets is again C2-cone
reducible

In particular, K = {0} × Sp
+ is C2-cone reducible.
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Theorem 1.3 (Second-Order Sufficient Condition.)

Suppose that f and G are twice continuously differentiable. Let x̄ be
a stationary point to (OP). Suppose that Robinson’s CQ (1) holds
and that the set K is C2-cone reducible at ȳ := G(x̄). Then the
following condition

sup
µ∈M(x̄)

{〈
d,∇2

xxL(x̄, µ)d
〉− σ

(
µ, T 2

K(G(x̄),JG(x̄)d)
)}

> 0

for all d ∈ C(x̄)\{0} is necessary and sufficient for the quadratic
growth condition at the point x̄:

f(x) ≥ f(x̄) + c‖x− x̄‖2 ∀x ∈ N̂ such that G(x) ∈ K

for some constant c > 0 and a neighborhood N̂ of x̄ in X.
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By combining Theorems 1.2-1.3 and the C2-cone reducibility of
polyhedral convex sets and Sp

+, we can now state the “no-gap”
second order necessary condition and the second order sufficient
condition for (NLSDP ).

Theorem 1.4 (Second-Order Necessary and Sufficient Conditions
for (NLSDP).)

Let K = {0} × Sp
+ ⊂ <m × Sp. Suppose that x̄ is a locally optimal

solution to (NLSDP ) and Robinson’s CQ holds at x̄. Then

sup
µ∈M(x̄)

{〈
d,∇2

xxL(x̄, µ)d
〉− σ

(
µ, T 2

K(G(x̄),JG(x̄)d)
)} ≥ 0

for all d ∈ C(x̄).



NUS Graduate University of Chinese Academy of Sciences 46

'

&

$

%

(continued)

Conversely, let x̄ be a feasible solution to (NLSDP ) such that
M(x̄) is nonempty. Suppose that Robinson’s CQ holds at x̄. Then
the following condition

sup
µ∈M(x̄)

{〈
d,∇2

xxL(x̄, µ)d
〉− σ

(
µ, T 2

K(G(x̄),JG(x̄)d)
)}

> 0

for all d ∈ C(x̄)\{0} is necessary and sufficient for the quadratic
growth condition at the point x̄:

f(x) ≥ f(x̄) + c‖x− x̄‖2 ∀x ∈ N̂ such that G(x) ∈ K

for some constant c > 0 and a neighborhood N̂ of x̄ in X.
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Since

T 2
K(G(x̄),JG(x̄)d) ⊂ TTK(G(x̄))(JG(x̄)d)

and

TTK(G(x̄))(JG(x̄)d) = cl {TK(G(x̄)) + span(JG(x̄)d)} ,

we have for any µ ∈M(x̄) and d ∈ C(x̄),

σ
(
µ, T 2

K(G(x̄),JG(x̄)d)
) ≤ σ

(
µ, TTK(G(x̄))(JG(x̄)d)

)
= 0 .
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Thus, unless 0 ∈ T 2
K(G(x̄),JG(x̄)d) for all h ∈ C(x̄) as in the case

when K is a polyhedral convex set, the additional “sigma term” in
the necessary and sufficient second-order conditions will not
disappear.

Example. Let x̄ be a feasible solution to (NLSDP ) such that
M(x̄) is nonempty. Then for any (ζ, Γ) ∈M(x̄) with ζ ∈ <m and
Γ ∈ Sp, one has

Υg(x̄)(Γ,J g(x̄)d) = σ
(
Γ, T 2

Sp
+
(g(x̄),J g(x̄)d)

)
∀ d ∈ C(x̄)

where

ΥB(Γ, A) := 2
〈
Γ, AB†A

〉
, (Γ, A) ∈ Sp × Sp.
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Exercises.

1. Let Ψ(x) = Ax2AT , where x ∈ Sp and A ∈ <p×p. Compute
JΨ(x) and J 2Ψ(x).

2. Prove the converse part of Theorem 1.1.

3. Show that all polyhedral convex sets and second-order-cones
are C2-cone reducible.

For details on topics discussed here, see the following excellent
monograph

J.F. Bonnans and A. Shapiro. Perturbation Analysis of

Optimization Problems, Springer (New York, 2000)


