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Abstract The class of matrix optimization problems (MOPs) has been recognized in
recent years to be a powerful tool to model many important applications involving
structured low rank matrices within and beyond the optimization community. This
trend can be credited to some extent to the exciting developments in emerging fields
such as compressed sensing. The Löwner operator, which generates a matrix valued
function via applying a single-variable function to each of the singular values of a
matrix, has played an important role for a long time in solving matrix optimization
problems.However, the classical theory developed for theLöwner operator has become
inadequate in these recent applications. The main objective of this paper is to provide
necessary theoretical foundations from the perspectives of designing efficient numer-
ical methods for solving MOPs. We achieve this goal by introducing and conducting
a thorough study on a new class of matrix valued functions, coined as spectral oper-
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ators of matrices. Several fundamental properties of spectral operators, including the
well-definedness, continuity, directional differentiability and Fréchet-differentiability
are systematically studied.

Keywords Spectral operators ·Directional differentiability ·Fréchet differentiability ·
Matrix valued functions · Proximal mappings

Mathematics Subject Classification 90C25 · 90C06 · 65K05 · 49J50 · 49J52

1 Introduction

In this paper, we introduce a class of matrix valued functions, to be called spectral
operators ofmatrices. This class ofmatrix valued functions frequently arises in various
applications such as matrix optimization problems (MOPs). MOPs have recently been
found to have many important applications involving matrix norm approximation,
matrix completion, rank minimization, graph theory, machine learning, and etc. [2–
4,6,9,14,16,17,20,26,36,42–44]. A simple class of MOPs takes the form of

min f0(X) + f (X)

s.t. AX = b, X ∈ X ,
(1)

where X is the real Euclidean vector space of real/complex matrices over the scalar
field of real numbersR, f0 : X → R is continuously differentiable with a Lipschitzian
gradient, f : X → (−∞,∞] is a closed proper convex function, A : X → R

p is a
linear operator, and b ∈ R

p. By takingX = S
m , the real vector subspace ofm×m real

symmetric or complex Hermitian matrices, f0(X) = 〈C, X〉 := Re(trace(CTX)), and
f = δSm+ , the convex indicator function of the positive semidefinite matrix cone Sm+,
one recovers semidefinite programming (SDP) [41]. Here CT is either the transpose
or the conjugate transpose depending on whether C is a real or complex matrix. By
[37, Corollary 28.3.1] and [31], the Karush-Kuhn-Tucker (KKT) conditions of (1) are
equivalent to the following Lipschitzian system of equations

⎡
⎣

∇ f0(X) − A∗y + �

AX − b
X − Pf (X + �)

⎤
⎦ = 0 ,

where Pf : X → X is the proximal mapping of f at X from convex analysis [37],
i.e.,

Pf (X) := argminY∈X
{
f (Y ) + 1

2
‖Y − X‖2

}
, X ∈ X . (2)

The optimal value function (denoted by ψ f ) for the minimization problem in (2) is
called the Moreau-Yosida regularization of f . It is continuously differentiable with
the Lipschitzian gradient ∇ψ f (X) = X − Pf (X). The proximal mappings form one
of the most important classes of spectral operators of matrices, and the differential
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Spectral operators of matrices 511

properties of Pf play a crucial role in the algorithmic designs of MOPs, see e.g.,
[7,24,48].

Proximal mappings of unitarily invariant proper closed convex functions belong
to a class of matrix functions studied previously in two seminal papers by Lewis
[19], and Lewis and Sendov [21]. In [19], Lewis defined a Hermitian matrix valued
function by using the gradient mapping g(·) = ∇φ(·) : Rm → R

m of a symmetric
function φ : Rm → (−∞,∞]. The corresponding Hermitian matrix valued function
G : Sm → S

m is defined by G(Y ) = ∑m
i=1gi (λ(Y ))pi pTi , where {p1, . . . , pm} forms

an orthonormal basis of Rm (or Cm) and λ : Sm → R
m is the mapping of the ordered

eigenvalues of a Hermitian matrix satisfying λ1(Y ) ≥ λ2(Y ) ≥ . . . ≥ λm(Y ) for
Y ∈ S

m . Properties of G such as conditions assuring its (continuous) differentiability
are well studied in [19,21]. The (strong) semismoothness [28,35] of G is studied in
[34]. Note that if the function g has the form g(y) = (h(y1), . . . , h(ym)) ∀ y ∈ R

m for
a given function h : R → R, then the corresponding Hermitian matrix valued function
G is called Löwner’s (Hermitian) operator [25] (see e.g., [8,40] for more details).

In the potentially non-Hermitian case, i.e., X = V
m×n , where V

m×n is either
R
m×n or Cm×n with m ≤ n, the mapping g above is assumed to be the gradient

mapping of an absolutely symmetric function φ, that is, φ(x) = φ(Qx) for any
x ∈ R

m and any signed permutation matrix Q, i.e., an m × m matrix each of whose
rows and columns has one nonzero entry which is ±1. In [18], Lewis studied the
corresponding matrix valued function G(Y ) = ∑m

i=1gi (σ (Y ))uivTi for Y ∈ V
m×n ,

where {u1, . . . , um} and {v1, . . . , vm} are two orthonormal bases of Rm (or Cm) and
σ is the mapping of the ordered singular values of matrices (see also [22] for more
details). The related properties of Löwner’s (non-Hermitian) operators are studied by
Yang [47]. The spectral operators ofmatrices considered here gowell beyond proximal
mappings, and so the theoretical results of this paper are not covered by the previously
mentioned works [19,21,34,47]. More general spectral operators have been used and
played a pivotal role in the studyof the low-rankmatrix completion problemswithfixed
basis coefficients [27], where a non-traditional spectral operator G was introduced as
the rank-correction function. It is shown in [27, (24)–(26)] that this spectral operator
does not arise from either a proximal mapping or gradient mapping of an absolutely
symmetric function.

Our main contributions here consist of defining a new class of matrix valued
functions involving both Hermitian/symmetric and non-Hermitian/non-symmetric
complex/real matrices, which we call spectral operators of matrices and providing
the first extensive study of their first- and second-order properties, including the well-
definedness, continuity, directional differentiability, and Fréchet-differentiability. We
believe that these results are fundamental for both the computational and theoretical
study of the general MOPs, based on the recent exciting progress made in solving the
SDP problems [5,13,30,38–40,46,48], in which the Löwner operator has played an
essential role in the algorithmic design. Therefore, it is expected that the theoretical
results for spectral operators established here will shed new light on both designing
efficient numericalmethods for solving large scaleMOPs and conducting second-order
variational analysis of the general MOPs.

The remaining parts of this paper are organized as follows. In Sect. 2, we give the
definition of spectral operators of matrices and study their well-definedness. We study
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the continuity, directional and Fréchet-differentiability of spectral operators defined
on the single matrix space Vm×n in Sect. 3. In Sect. 4, we extend the corresponding
results to spectral operators defined on the Cartesian product of several matrix spaces.
We make some final remarks in Sect. 5.

Below are some common notations and symbols to be used:

– For any X ∈ V
m×n , we denote by Xi j the (i, j)-th entry of X and x j the j-th

column of X . Let I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} be two index sets. We use
X J to denote the sub-matrix of X obtained by removing all the columns of X not
in J and XI J to denote the |I |× |J | sub-matrix of X obtained by removing all the
rows of X not in I and all the columns of X not in J .

– For X ∈ V
m×m , diag(X) denotes the column vector consisting of all the diagonal

entries of X being arranged from the first to the last. For x ∈ R
m , Diag(x) denotes

the m × m diagonal matrix whose i-th diagonal entry is xi , i = 1, . . . ,m.
– We use “◦′′ to denote the usual Hadamard product between two matrices, i.e., for
any two matrices A and B in V

m×n the (i, j)-th entry of Z := A ◦ B ∈ V
m×n is

Zi j = Ai j Bi j .
– For any given vector y ∈ R

m , let |y|↓ be the vector of entries of |y| =
(|y|1, . . . , |y|m) being arranged in the non-increasing order |y|↓1 ≥ . . . ≥ |y|↓m .

– LetOp (p = m, n) be the set of p× p orthogonal/unitary matrices. Denote Pp and
±P

p the sets of all p × p permutation matrices and signed permutation matrices,
respectively. For any Y ∈ S

m and Z ∈ V
m×n , we use Om(Y ) to denote the set of

all orthogonal matrices whose columns form an orthonormal basis of eigenvectors
of Y , and useOm,n(Z) to denote the set of all pairs of orthogonal matrices (U, V ),
where the columns ofU and V form a compatible set of orthonormal left and right
singular vectors for Z , respectively.

2 Spectral operators of matrices

In this section, we will first define the spectral operators on the Cartesian product
of several real or complex matrix spaces. The study of spectral operators under this
general setting is not only useful but also necessary. In fact, spectral operators defined
on the Cartesian product of several matrix spaces appear naturally in the study of
the differentiability of spectral operators, even if they are only defined on a single
matrix space (see the discussion below). Moreover, the spectral operators used in
many applications are defined on the Cartesian product of several matrix spaces. See,
e.g., [12,45] for more details.

Let s be a positive integer and 0 ≤ s0 ≤ s be a nonnegative integer. For given
positive integers m1, . . . ,ms and ns0+1, . . . , ns , define the real vector space X by
X := S

m1 × . . . × S
ms0 × V

ms0+1×ns0+1 × . . . × V
ms×ns . Without loss of generality,

we assume that mk ≤ nk , k = s0 + 1, . . . , s. For any X = (X1, . . . , Xs) ∈ X , we
have for 1 ≤ k ≤ s0, Xk ∈ S

mk and s0 + 1 ≤ k ≤ s, Xk ∈ V
mk×nk .

Denote Y := R
m1 × . . . × R

ms0 × R
ms0 × . . . × R

ms . For any X ∈ X , define
κ(X) ∈ Y by κ(X) := (

λ(X1), . . . , λ(Xs0), σ (Xs0+1), . . . , σ (Xs)
)
. Define the set P

byP := {(Q1, . . . , Qs) | Qk ∈ P
mk , 1 ≤ k ≤ s0 and Qk ∈ ±P

mk , s0 + 1 ≤ k ≤ s}.
Let g : Y → Y be a given mapping. For any x = (x1, . . . , xs) ∈ Y with xk ∈ R

mk ,
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Spectral operators of matrices 513

we write g(x) ∈ Y in the form g(x) = (g1(x), . . . , gs(x)) with gk(x) ∈ R
mk for

1 ≤ k ≤ s.

Definition 1 1 The given mapping g : Y → Y is said to be mixed symmetric, with
respect to P , at x = (x1, . . . , xs) ∈ Y with xk ∈ R

mk , if

g(Q1x1, . . . , Qsxs) = (Q1g1(x), . . . , Qsgs(x)) ∀ (Q1, . . . , Qs) ∈ P . (3)

The mapping g is said to be mixed symmetric, with respect to P , over a set D ⊆ Y if
(3) holds for every x ∈ D. We call g a mixed symmetric mapping, with respect to P ,
if (3) holds for every x ∈ Y .

Note that for each k ∈ {1, . . . , s}, the function value gk(x) ∈ R
mk is dependent

on all x1, . . . , xs . When there is no danger of confusion, in later discussions we often
drop “with respect to P” from Definition 1. The following result on g can be checked
directly from the definition.

Proposition 1 Suppose that the mapping g : Y → Y is mixed symmetric at x =
(x1, . . . , xs) ∈ Y with xk ∈ R

mk . Then, for all 1 ≤ k ≤ s and any i, j ∈ {1, . . . ,mk},
(gk(x))i = (gk(x)) j if (xk)i = (xk) j and for all s0 + 1 ≤ k ≤ s and any i ∈
{1, . . . ,mk}, (gk(x))i = 0 if (xk)i = 0.

Let N be a given nonempty set in X . Define κN := {κ(X) ∈ Y | X ∈ N }.
Definition 2 Suppose that g : Y → Y is mixed symmetric on κN . The spectral opera-
torG : N → X with respect to g is defined byG(X) := (G1(X), . . . ,Gs(X)), X =
(X1, . . . , Xs) ∈ N with

Gk(X) :=
{
PkDiag

(
gk(κ(X))

)
PT

k if 1 ≤ k ≤ s0,
Uk

[
Diag

(
gk(κ(X))

)
0
]
V T

k if s0 + 1 ≤ k ≤ s,

where Pk ∈ O
mk (Xk), 1 ≤ k ≤ s0, (Uk, Vk) ∈ O

mk ,nk (Xk), s0 + 1 ≤ k ≤ s.

Before showing that spectral operators are well-defined, it is worth mentioning that
for the case that X ≡ S

m (or Vm×n) if g has the form g(y) = (h(y1), . . . , h(ym)) ∈
R
m with yi ∈ R for some given scalar valued functional h : R → R, then the

corresponding spectral operator G is called the Löwner operator [40] in recognition
of Löwner’s original contribution on this topic in [25] (or the Löwner non-Hermitian
operator [47] if h(0) = 0).

Let Y ∈ S
m be given. Let μ1 > μ2 > . . . > μr denote the distinct eigenvalues of

Y . Define the index sets αl := {i | λi (Y ) = μl , 1 ≤ i ≤ m}, l = 1, . . . , r . Let 
(Y )

1 Note that Definition 1 is different from the property (E) used in [29, Definition 2.2] for the special
Hermitian/symmetric case, i.e.,X = S

m1 . The conditions used in [29, Definition 2.1 & 2.2] do not seem to
be proper ones for studying spectral operators. For instance, consider the function f : R2 → R

2 defined by
f (x) = x↓ for x ∈ R

2, where x↓ is the vector of entries of x being arranged in the non-increasing order,

i.e., x↓
1 ≥ x↓

2 . Clearly, f satisfies [29, Definition 2.1 & 2.2] and f is not differentiable at x with x1 = x2.

However, the corresponding matrix function F(X) = X is differentiable on S2, which implies that [29,
Corollary 4.2] is incorrect.
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be the m ×m diagonal matrix whose i-th diagonal entry is λi (Y ). Then, the following
elementary property on the eigenvalue decomposition of Y can be checked directly.

Proposition 2 The matrix Q ∈ O
m satisfies Q
(Y ) = 
(Y )Q if and only if there

exist Ql ∈ O
|αl |, l = 1, . . . , r such that Q is a block diagonal matrix whose l-th

diagonal block is Ql , i.e., Q = Diag(Q1, Q2, . . . , Qr ).

Let Z ∈ V
m×n be given. We use ν1 > ν2 > . . . > νr > 0 to denote the nonzero

distinct singular values of Z . Let al , l = 1, . . . , r , a, b and c be the index sets defined
by

al := {i | σi (Z) = νl , 1 ≤ i ≤ m}, l = 1, . . . , r, a := {i | σi (Z) > 0, 1≤ i ≤ m},
b := {i | σi (Z) = 0, 1 ≤ i ≤ m} and c := {m + 1, . . . , n} .

(4)
By combining Propositions 1 and 2 and [12, Proposition 5] with the mixed sym-

metric property of g, one can check the following result on the well-definedness of
spectral operators readily. For simplicity, we omit the detailed proofs here.

Theorem 1 Let g : Y → Y be mixed symmetric on κN . Then the spectral operator
G : N → X defined in Definition 2 with respect to g is well-defined.

3 Continuity, directional and Fréchet differentiability

In this section, we will first focus on the study of spectral operators for the case that
X ≡ V

m×n . The corresponding extensions for the spectral operators defined on the
general Cartesian product of several matrix spaces will be presented in Sect. 4. Let
N be a given nonempty open set in V

m×n . Suppose that g : R
m → R

m is mixed
symmetric, with respect to P ≡ ±P

m (called absolutely symmetric in this case), on
an open set σ̂N in R

m containing σN := {σ(X) | X ∈ N }. The spectral operator
G : N → V

m×n with respect to g defined in Definition 2 then takes the form of
G(X) = U

[
Diag(g(σ (X))) 0

]
VT, X ∈ N , where (U, V ) ∈ O

m,n(X). For the
given X ∈ N , consider the singular value decomposition (SVD) for X , i.e.,

X = U
[
�(X) 0

]
V

T
, (5)

where�(X) is anm×m diagonal matrix whose i-th diagonal entry is σi (X),U ∈ O
m

and V = [
V 1 V 2

] ∈ O
n with V 1 ∈ V

n×m and V 2 ∈ V
n×(n−m). Let σ := σ(X) ∈

R
m . Let a, b, c, al , l = 1, . . . , r be the index sets defined by (4) with Z being replaced

by X . Denote ā := {1, . . . , n} \ a. For each i ∈ {1, . . . ,m}, we also define li (X) to
be the number of singular values which are equal to σi (X) but are ranked before i
(including i), and l̃i (X) to be the number of singular values which are equal to σi (X)

but are ranked after i (excluding i), i.e., define li (X) and l̃i (X) such that

σ1(X) ≥ . . . ≥ σi−li (X)(X) > σi−li (X)+1(X) = . . . = σi (X) = . . . = σi+l̃i (X)
(X)

> σi+l̃i (X)+1(X) ≥ . . . ≥ σm(X) . (6)
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Spectral operators of matrices 515

In later discussions, when the dependence of li and l̃i on X is clear from the context,
we often drop X from these notations for convenience. We define two linear matrix
operators S : Vp×p → S

p, T : Vp×p → V
p×p by

S(Y ) := 1

2
(Y + YT), T (Y ) := 1

2
(Y − YT), Y ∈ V

p×p . (7)

Next,we introduce somenotationswhich are used in later discussions. For any given
X ∈ N , let σ = σ(X). For the mapping g, we define three matrices E0

1 (σ ), E0
2 (σ ) ∈

R
m×m and F0(σ ) ∈ R

m×(n−m) (depending on X ∈ N ) by

(E0
1 (σ ))i j :=

{
(gi (σ ) − g j (σ ))/(σi − σ j ) if σi �= σ j ,

0 otherwise ,
i, j ∈ {1, . . . ,m} , (8)

(E0
2 (σ ))i j :=

{
(gi (σ ) + g j (σ ))/(σi + σ j ) if σi + σ j �= 0 ,

0 otherwise ,
i, j ∈ {1, . . . ,m} ,

(9)

(F0(σ ))i j :=
{
gi (σ )/σi if σi �= 0 ,

0 otherwise,
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n − m} .

(10)

When the dependence of E0
1 (σ ), E0

2 (σ ) and F0(σ ) on σ is clear from the context,

we often drop σ from these notations. In particular, let E0
1, E

0
2 ∈ V

m×m and F0 ∈
V
m×(n−m) be the matrices defined by (8)–(10) with respect to σ = σ(X). Since g is

absolutely symmetric at σ , we know that for all i ∈ al , 1 ≤ l ≤ r , the function values
gi (σ ) are the same (denoted by ḡl ). Therefore, for any X ∈ N , define

GS(X) :=
r∑

l=1

ḡlUl(X) and GR(X) := G(X) − GS(X), (11)

where Ul(X) := ∑
i∈al uiv

T

i with O
m,n(X). The following lemma on the differen-

tiablity ofGS follows from thederivative formula ofLöwner’sHermitianoperators (see
e.g., [1]). By constructing a special Löwner’s non-Hermitian operator and employing
the relationship between the SVD of a given X ∈ V

m×n and the eigenvalue decom-

position of its extended symmetric counterpart

[
0 X
XT 0

]
∈ S

m+n , one can derive the

corresponding derivative formula ofUl , especially the three components E0
1 (σ ), E0

2 (σ )

and F0(σ ) defined by (8)–(10) (see [23, Section 5.1] for details).

Lemma 1 Let GS : N → V
m×n be defined by (11). Then, there exists an open

neighborhood B of X in N such that GS is twice continuously differentiable on B,
and for any Vm×n � H → 0, GS(X + H) − GS(X) = G ′

S(X)H + O(‖H‖2) with

G ′
S(X)H = U

[E0
1 ◦ S(U

T
HV 1) + E0

2 ◦ T (U
T
HV 1) F0 ◦ (U

T
HV 2)

]
V

T
. (12)
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Lemma1 says that in an open neighborhood of X ,G can be decomposed into a “smooth
part” GS plus a “nonsmooth part” GR . As we will see in the later developments, this
decomposition simplifies many of our proofs.

Next, we will first study the continuity of spectral operators. The following simple
observation essentially follows from the absolutely symmetric property of g on σ̂N ,
directly.

Proposition 3 Let U ∈ O
m and V = [V1 V2] ∈ O

n with V1 ∈ V
n×m and V2 ∈

V
n×(n−m) be given. Let y ∈ σ̂N . Then, for Y := U

[
Diag(y) 0

]
V T it always holds

that G(Y ) = U
[
Diag(g(y)) 0

]
VT = UDiag(g(y))VT

1 .

Proof Let P ∈ ±P
m be a signed permutation matrix such that Py = |y|↓. Then, we

know that σ(Y ) = |y|↓ and Y has the following SVD

Y = U
[
PTDiag(|y|↓)W 0

]
VT = U PT

[
Diag(|y|↓) 0

][
V1W

T V2
]T

,

where W := |P| ∈ P
m is the m by m permutation matrix whose (i, j)-th element is

the absolute value of the (i, j)-th element of P . Then, we know fromDefinition 2 that

G(Y ) = U PT
[
Diag(g(|y|↓)) 0

][
V1W

T V2
]T

.

Since g is absolutely symmetric at y, one has Diag(g(|y|↓)) = Diag(g(Py)) =
Diag(Pg(y)) = PDiag(g(y))WT. Thus, G(Y ) = U PT

[
PDiag(g(y))WT 0

][
V1WT

V2
]T = U

[
Diag(g(y)) 0

]
V T, which proves the conclusion. ��

By using [12, Proposition 7], we have the following result on the continuity of the
spectral operator G.

Theorem 2 Suppose that X ∈ N has the SVD (5). The spectral operator G is con-
tinuous at X if and only if g is continuous at σ(X).

Proof “ ⇐�′′ Let X ∈ N . Denote H = X − X and σ = σ(X). Let U ∈ O
m

and V ∈ O
n be such that X = X + H = U [�(X) 0] V T. Then, we know from

(5) that
[
�(X) 0

] + U
T
HV = U

T
U

[
�(X) 0

]
V TV . It follows from [12, (31) in

Proposition 7] that for any X sufficiently close to X , there exist Q ∈ O
|a|, Q′ ∈ O

|b|
and Q′′ ∈ O

n−|a| such that

U
T
U =

[
Q 0
0 Q′

]
+ O(‖H‖) and V

T
V =

[
Q 0
0 Q′′

]
+ O(‖H‖) , (13)

where Q = Diag(Q1, Q2, . . . , Qr ), Ql ∈ O
|al |. On the other hand, from the defini-

tion of the spectral operator G one has UT
(
G(X) − G(X)

)
V = [

Diag(g(σ )) 0
] −

UTU
[
Diag(g(σ )) 0

]
V

T
V . Thus, we obtain from (13) and Proposition 1 that for any

X sufficiently close to X ,UT
(
G(X)−G(X)

)
V = [

Diag(g(σ )−g(σ )) 0
]+O(‖H‖).

Therefore, since g is assumed to be continuous at σ , we can conclude that the spectral
operator G is continuous at X .
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“ �⇒′′ Suppose thatG is continuous at X . Let (U , V ) ∈ O
m×n(X) befixed.Choose

any σ ∈ σ̂N and denote X := U [Diag(σ ) 0]VT
. Then, it follows from Proposition

3 that G(X) = UDiag(g(σ ))V
T

1 and Diag(g(σ ) − g(σ )) = U
T(
G(X) − G(X)

)
V 1.

Hence, we know from the assumption that g is continuous at σ . ��
Secondly, we study the directional differentiability of spectral operators. LetZ and

Z ′ be two finite dimensional real Euclidean spaces and O be an open set in Z . A
function F : O ⊆ Z → Z ′ is said to be Hadamard directionally differentiable at
z ∈ O if the limit

lim
t↓0, h′→h

F(z + th′) − F(z)

t
exists for any h ∈ Z . (14)

It is clear that if F is Hadamard directionally differentiable at z, then F is directionally
differentiable at z, and the limit in (14) equals the directional derivative F ′(z; h) for
any h ∈ Z .

Assume that the g is directionally differentiable at σ . Then, from the definition of
directional derivative and the absolutely symmetry of g on the nonempty open set σ̂N ,
it is easy to see that the directional derivative g′(σ ; ·) : Rm → R

m satisfies

g′(σ ; Qh) = Qg′(σ ; h) ∀ Q ∈ ±P
m
σ and ∀ h ∈ R

m , (15)

where±P
m
σ is the subset defined with respect to σ by±P

m
σ := {Q ∈ ±P

m | σ = Qσ }.
Since σ i �= σ j > 0 if i ∈ al and j ∈ al ′ for all l, l ′ = 1, . . . , r with l �= l ′, we know
that Q ∈ ±P

m
σ if and only if

Q = Diag
(
Q1, . . . , Qr , Qr+1

)
with Ql ∈ P

|al |, l = 1, . . . , r and Qr+1 ∈ ±P
|b| .
(16)

Denote V := R
|a1| × . . . × R

|ar | × R
|b|. For any h ∈ V , we rewrite g′(σ ; h) in the

following form φ(h) := g′(σ ; h) = (φ1(h), . . . , φr (h), φr+1(h)) with φl(h) ∈ R
|al |,

l = 1, . . . , r and φr+1(h) ∈ R
|b|. Therefore, it follows from (15) and (16) that the

function φ : V → V is a mixed symmetric mapping, with respect to P
|a1| × . . . ×

P
|ar | ×±P

|b|. LetW := S
|a1| × . . .×S

|ar | ×V
|b|×(n−|a|). Define the spectral operator


 : W → W with respect to the mixed symmetric mapping φ as follows: for any
W = (W1, . . . ,Wr ,Wr+1) ∈ W ,


(W ) := (

1(W ), . . . , 
r (W ),
r+1(W )

)
(17)

with 
l(W ) = P̃lDiag(φl(κ(W )))P̃T

l if 1 ≤ l ≤ r and 
l(W ) = M̃Diag(φl(κ(W )))

ÑT

1 if l = r + 1, where κ(W ) := (λ(W1), . . . , λ(Wr ), σ (Wr+1)) ∈ R
m ; P̃l ∈

O
|al |(Wl); and (M̃, Ñ ) ∈ O

|b|,n−|a|(Wr+1), Ñ := [
Ñ1 Ñ2

]
with Ñ1 ∈ V

(n−|a|)×|b|,
Ñ2 ∈ V

(n−|a|)×(n−m). From Theorem 1, we know that 
 is well defined on W .
In order to present the directional differentiability results for the spectral operator

G, we define the following first divided directional difference g[1](X; H) ∈ V
m×n of

g at X along the direction H ∈ V
m×n by

123



518 C. Ding et al.

g[1](X; H) :=
[
E0
1 ◦ S(U

T
HV 1) + E0

2 ◦ T (U
T
HV 1) F0 ◦UT

HV 2

]
+
̂(D(H)),

(18)

where E0
1, E

0
2,F

0
are defined as in (8)-(10) at σ = σ(X),

D(H) :=
(
S(U

T

a1HVa1), . . . , S(U
T

ar HV ar ),U
T

b H [V b V 2]
)

∈ W (19)

and for any W = (W1, . . . ,Wr ,Wr+1) ∈ W , 
̂(W ) ∈ V
m×n is defined by


̂(W ) :=
[
Diag (
1(W ), . . . , 
r (W )) 0

0 
r+1(W )

]
. (20)

For the directional differentiability of the spectral operator G, we have the following
result.

Theorem 3 Suppose that X ∈ N has the SVD (5). The spectral operator G is
Hadamard directionally differentiable at X if and only if g is Hadamard directionally
differentiable at σ = σ(X). In that case, the directional derivative of G at X along
any direction H ∈ V

m×n is given by

G ′(X; H) = Ug[1](X; H)V
T

. (21)

Proof “ ⇐�′′ Let H ∈ V
m×n be any given direction. For any V

m×n � H ′ → H and
τ > 0, denote X := X + τH ′. Consider the SVD of X , i.e.,

X = U [�(X) 0]V T . (22)

Denote σ = σ(X). For τ and H ′ sufficiently close to 0 and H , let GS and GR be the
mappings defined in (11). Then, by Lemma 1, we know that

lim
τ↓0, H ′→H

1

τ
(GS(X) − GS(X)) = G ′

S(X)H , (23)

where G ′
S(X)H is given by (12). On the other hand, for τ and H ′ sufficiently close to

0 and H , we have Ul(X) = ∑
i∈al uiv

T

i , l = 1, . . . , r and

GR(X) = G(X)−GS(X) =
r∑

l=1

∑
i∈al

[gi (σ )−gi (σ )]uivTi +
∑
i∈b

gi (σ )uiv
T

i . (24)

For τ and H ′ sufficiently close to 0 and H , denote �l(τ, H ′) = 1
τ

∑
i∈al [gi (σ ) −

gi (σ )]uivTi , l = 1, . . . , r and �r+1(τ, H ′) = 1
τ

∑
i∈b gi (σ )uivTi .
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Firstly, consider the case that X = [�(X) 0]. Then, from the directional differen-
tiability of the singular value functions (see e.g., [23, Section 5.1] or [12, Proposition
6]), we know that for any τ and H ′ ∈ V

m×n sufficiently close to 0 and H ,

σ(X) = σ(X) + τσ ′(X; H ′) + O(τ 2‖H ′‖2) , (25)

where (σ ′(X; H ′))al = λ(S(H ′
alal )), l = 1, . . . , r and (σ ′(X; H ′))b = σ([H ′

bb H ′
bc]).

Denote h′ := σ ′(X; H ′) and h := σ ′(X; H). By using the fact that the singular value
functions of a general matrix are globally Lipschitz continuous, we know that

lim
τ↓0, H ′→H

(h′ + O(τ‖H ′‖2)) = h . (26)

Since g is assumed to be Hadamard directionally differentiable at σ , we have

lim
τ↓0, H ′→H

g(σ ) − g(σ )

τ
= lim

τ↓0, H ′→H

1

τ
[g(σ + τ(h′ + O(τ‖H ′‖2))) − g(σ )]

= g′(σ ; h) = φ(h) ,

where φ ≡ g′(σ ; ·) : Rm → R
m satisfies the condition (15). By noting that uivTi ,

i = 1, . . . ,m are uniformly bounded, we know that for τ and H ′ sufficiently close to
0 and H , �l(τ, H ′) = UalDiag(φl(h))VT

al + o(1), l = 1, . . . , r and �r+1(τ, H ′) =
UbDiag(φr+1(h))VT

b + o(1). By [12, (31) in Proposition 7], we obtain that there
exist Ql ∈ O

|al |, l = 1, . . . , r , M ∈ O
|b| and N = [N1 N2] ∈ O

n−|a| with N1 ∈
V

(n−|a|)×|b| and N2 ∈ V
(n−|a|)×(n−m) (depending on τ and H ′) such that

Ual =
⎡
⎣

O(τ‖H ′‖)
Ql + O(τ‖H ′‖)

O(τ‖H ′‖)

⎤
⎦ , Val =

⎡
⎣

O(τ‖H ′‖)
Ql + O(τ‖H ′‖)

O(τ‖H ′‖)

⎤
⎦ l = 1, . . . , r ,

Ub =
[

O(τ‖H ′‖)
M + O(τ‖H ′‖)

]
, [Vb Vc] =

[
O(τ‖H ′‖)

N + O(τ‖H ′‖)
]

.

Thus, we have

�l(τ, H
′) =

⎡
⎣
0 0 0
0 QlDiag(φl(h))QT

l 0
0 0 0

⎤
⎦ + O(τ‖H ′‖) + o(1), l = 1, . . . , r,

(27)

�r+1(τ, H
′) =

[
0 0
0 MDiag(φr+1(h))NT

1

]
+ O(τ‖H ′‖) + o(1) . (28)
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We know from [12, (32) and (33) in Proposition 7] that

S(H ′
alal ) = S(Halal ) + o(1) = 1

τ
Ql [�(X)alal − νl I|al |]QT

l + O(τ‖H ′‖2),
l = 1, . . . , r , (29)

[H ′
bb H ′

bc] = [Hbb Hbc] + o(1) = 1

τ
M[�(X)bb − νr+1 I|b|]NT

1 + O(τ‖H ′‖2).
(30)

Since Ql , l = 1, . . . , r , M and N are uniformly bounded, by taking subsequences if
necessary, we may assume that when τ ↓ 0 and H ′ → H , Ql , M and N converge to
Q̃l , M̃ and Ñ , respectively. Therefore, by taking limits in (29) and (30), we obtain from
(25) and (26) that S(Halal ) = Q̃l
(S(Halal ))Q̃

T

l , l = 1, . . . , r and [Hbb Hbc] =
M̃ [�([Hbb Hbc]) 0] ÑT = M̃�([Hbb Hbc])ÑT

1 . Hence, by using the notation
(17), we know from (24), (27), (28) and (20) that

lim
τ↓0, H ′→H

1

τ
GR(X) = lim

τ↓0, H ′→H

r+1∑
l=1

�l(τ, H
′) = 
̂(D(H)) , (31)

where D(H) = (
S(Ha1a1), . . . , S(Harar ), Hbā

)
.

To prove the conclusion for the general case of X , rewrite (22) as

[�(X) 0] +U
T
H ′V = U

T
U [�(X) 0]VTV .

Let Ũ := U
T
U , Ṽ := V

T
V and H̃ = U

T
HV . Denote X̃ := [�(X) 0] + U

T
H ′V .

Then, we obtain that GR(X) = UGR(X̃)V
T
. Thus, we know from (31) that

lim
τ↓0, H ′→H

1

τ
GR(X) = U
̂(D(H̃))V

T
. (32)

Therefore, by combining (23) and (32) and noting that G(X) = GS(X), we obtain
that for any given H ∈ V

m×n ,

lim
τ↓0, H ′→H

G(X) − G(X)

τ
= lim

τ↓0, H ′→H

GS(X) − GS(X) + GR(X)

τ

= Ug[1](X; H̃)V
T

,

where g[1](X; H̃) is given by (18). This implies that G is Hadamard directionally
differentiable at X and (21) holds.

“ �⇒′′ Suppose thatG is Hadamard directionally differentiable at X . Let (U , V ) ∈
O

m×n(X) be fixed. For any given direction h ∈ R
m , suppose that Rm � h′ → h.

Denote H ′ := U [Diag(h′) 0]V T
and H := U [Diag(h) 0]V T

. Then, we have
H ′ → H as h′ → h. Since for all τ > 0 and h′ sufficiently close to 0 and h,
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σ := σ + τh′ ∈ σ̂N , we know from Proposition 3 that for all τ > 0 and h′ suffi-
ciently close to 0 and h, G(X + τH ′) = UDiag(g(σ + τh′))VT

1 . This implies that

Diag
(
limτ↓0, h′→h

g(σ+τh′)−g(σ )
τ

) = U
T(

limτ↓0, H ′→H
G(X+τH ′)−G(X)

τ

)
V 1. Thus,

we know from the assumption that lim
τ↓0, h′→h

g(σ + τh′) − g(σ )

τ
exists and that g is

Hadamard directionally differentiable at σ . ��

Remark 1 Note that for a general spectral operatorG, we cannot obtain the directional
differentiability at X if we only assume that g is directionally differentiable at σ(X).
In fact, a counterexample can be found in [19]. However, since V

m×n is a finite
dimensional Euclidean space, it is well-known that for locally Lipschitz continuous
functions, the directional differentiability in the sense of Hadamard and Gâteaux are
equivalent (see e.g. [32, Theorem 1.13], [10, Lemma 3.2], [15, p.259]). Therefore,
if G and g are locally Lipschitz continuous near X and σ(X), respectively (e.g., the
proximalmapping Pf and its vector counterpart), thenG is directionally differentiable
at X if and only if g is directionally differentiable at σ(X).

Finally, we shall study the Fréchet differentiability of spectral operators. For a
given X ∈ N , suppose that the given absolutely symmetric mapping g is F(réchet)-
differentiable at σ = σ(X). The following results on the Jacobian matrix g′(σ ) can
be obtained directly from the assumed absolute symmetry of g on σ̂N and the block
structure (16) for any Q ∈ ±P

m
σ .

Lemma 2 For any X ∈ N , suppose that g is F-differentiable at σ = σ(X). Then,
the Jacobian matrix g′(σ ) has the following property g′(σ ) = QTg′(σ )Q for any
Q ∈ ±P

m
σ .

In particular,

⎧⎨
⎩

(g′(σ ))i i = (g′(σ ))i ′i ′ if σi = σi ′ and i, i ′ ∈ {1, . . . ,m},
(g′(σ ))i j = (g′(σ ))i ′ j ′ if σi = σi ′ , σ j = σ j ′ , i �= j , i ′ �= j ′ and i, i ′, j, j ′ ∈ {1, . . . ,m},
(g′(σ ))i j = (g′(σ )) j i = 0 if σi = 0, i �= j and i, j ∈ {1, . . . ,m}.

Lemma 2 is a simple extension of [21, Lemma 2.1] for symmetric mappings. But
one should note that the Jacobian matrix g′(σ ) of g at the F-differentiable point σ may
not be symmetric since here g is not assumed to be the gradient mapping as in [21,
Lemma 2.1]. For example, the absolutely symmetric mapping g defined by [27, (26)]
is differentiable at x = (2, 1) by taking m = 2 and τ = ε = 1. However, it is easy to
see that the Jacobian matrix g′(x) is not symmetric.

Let η(σ ) ∈ R
m be the vector defined as

(η(σ ))i :=
{

(g′(σ ))i i − (g′(σ ))i j if ∃ j ∈ {1, . . . ,m} and j �= i such that σi = σ j ,

(g′(σ ))i i otherwise ,
i ∈ {1, . . . ,m} .

(33)
Define the corresponding divided difference matrix E1(σ ) ∈ R

m×m , the divided addi-
tion matrix E2(σ ) ∈ R

m×m , the division matrix F(σ ) ∈ R
m×(n−m), respectively,

by
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(E1(σ ))i j :=
{

(gi (σ ) − g j (σ ))/(σi − σ j ) if σi �= σ j ,

(η(σ ))i otherwise ,
i, j ∈ {1, . . . ,m} , (34)

(E2(σ ))i j :=
{

(gi (σ ) + g j (σ ))/(σi + σ j ) if σi + σ j �= 0 ,

(g′(σ ))i i otherwise ,
i, j ∈ {1, . . . ,m} ,

(35)

(F(σ ))i j :=
{
gi (σ )/σi if σi �= 0 ,

(g′(σ ))i i otherwise,
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n−m}. (36)

Define the matrix C(σ ) ∈ R
m×m to be the difference between g′(σ ) and Diag(η(σ )),

i.e.,
C(σ ) := g′(σ ) − Diag(η(σ )) . (37)

When the dependence of η, E1, E2, F and C on σ is clear from the context, we often
drop σ from the corresponding notations. Note that the divided difference matrix
E1(σ ) is similar with that of [21, (3.1)] for the symmetric matrix case. Furthermore,
the divided addition matrix E2(σ ) and the division matrix F(σ ) arise naturally for
general non-Hermitian matrices.

Let X ∈ N be given and denote σ = σ(X). Denote η = η(σ) ∈ R
m to be the

vector defined by (33). Let E1, E2, F and C be the real matrices defined in (34)–(37)
with respect to σ . Now, we are ready to state the result on the F-differentiability of
spectral operators. It is worth to note that the following result, when reduced to the
special symmetric case, is consistent with those obtained in [21].

Theorem 4 Suppose that the given matrix X ∈ N has the SVD (5). Then the spectral
operator G is F-differentiable at X if and only if g is F-differentiable at σ . In that
case, the derivative of G at X is given by

G ′(X)H = U [E1◦S(A)+Diag
(Cdiag(S(A))

)+E2◦T (A) F◦B]V T ∀ H ∈ V
m×n,

(38)

where A := U
T
HV 1, B := U

T
HV 2 and for any X ∈ V

m×m, diag(X) denotes the
column vector consisting of all the diagonal entries of X being arranged from the
first to the last. Moreover, G is continuously differentiable at X if and only if g is
continuously differentiable at σ = σ(X).

Proof By employing the decomposition GS and GR defined in (11), Lemma 1 and
the properties of the Jacobian matrix g′(σ ) obtained in Lemma 2, one can derive the
first part easily in the similar manner to Theorem 3. For brevity, we omit the detail
proofs of the first part and only focus on the second part here.

“ ⇐�′′ By the assumption, we know from the first part that there exists an open
neighborhood B ⊆ N of X such that the spectral operator G is differentiable on B,
and for any X ∈ B, the derivative G ′(X) is given by

G ′(X)H = U [E1◦S(A)+Diag (Cdiag(S(A)))+E2◦T (A) F◦B]VT ∀ H ∈ V
m×n ,

(39)
where (U, V ) ∈ O

m,n(X), A = UTHV1, B = UTHV2 and η, E1, E2, F and C are
defined by (33)–(37) with respect to σ = σ(X), respectively. Next, we shall prove that
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lim
X→X

G ′(X)H → G ′(X)H ∀ H ∈ V
m×n . (40)

Firstly, we will show that (40) holds for the special case that X = [�(X) 0]
and X = [�(X) 0] → X . Let {F (i j)} be the standard basis of Vm×n , i.e., for each
i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, F (i j) ∈ V

m×n is a matrix whose entries are zeros,
except the (i, j)-th entry is 1 or

√−1. Therefore, we only need to show (40) holds for
all F (i j). Note that since σ(·) is globally Lipschitz continuous, we know that for X suf-
ficiently close to X , σi �= σ j if σ i �= σ j . For each i ∈ {1, . . . ,m} and j ∈ {1, . . . , n},
write F (i j) in the following form F (i j) = [

F (i j)
1 F (i j)

2

]
with F (i j)

1 ∈ V
m×m and

F (i j)
2 ∈ V

m×(n−m). Let us consider the following cases.
Case 1: i, j ∈ {1, . . . ,m} and i = j . In this case, since g′ is continuous at σ , we

know that if F (i j) is real, then limX→X G ′(X)F (i j) = limX→X

[
Diag(g′(σ )ei ) 0

] =[
Diag(g′(σ )ei ) 0

] = G ′(X)F (i j), where ei is the vector whose i-th entry is one, and
zero otherwise; if F (i j) is complex, then

lim
X→X

G ′(X)F (i j) = lim
X→X

[gi (σ ) + g j (σ )

σi + σ j
T (F (i j)

1 ) 0
]

=
[gi (σ ) + g j (σ )

σi + σ j
T (F (i j)

1 ) 0
]

= G ′(X)F (i j) .

Case 2: i, j ∈ {1, . . . ,m}, i �= j , σi = σ j and σ i = σ j > 0. Therefore, we know
that there exists l ∈ {1, . . . , r} such that i, j ∈ al . Since g′ is continuous at σ , we
know from (33) that

lim
X→X

G ′(X)F (i j) =
[ (

(g′(σ ))i i − (g′(σ ))i j
)
S(F (i j)

1 ) + gi (σ ) + g j (σ )

σ i + σ j
T (F (i j)

1 ) 0
]

= G ′(X)F (i j) .

Case 3: i, j ∈ {1, . . . ,m}, i �= j , σi �= σ j and σ i = σ j > 0. In this case, we know

that G ′(X)F (i j) =
[
gi (σ )−g j (σ )

σi−σ j
S(F (i j)

1 ) + gi (σ )+g j (σ )

σi+σ j
T (F (i j)

1 ) 0
]
. Let s, t ∈ R

m be

two vectors defined by

sp :=
{

σp if p �= i ,
σ j if p = i

and tp :=
⎧⎨
⎩

σp if p �= i, j ,
σ j if p = i,
σi if p = j,

p ∈ {1, . . . ,m} . (41)

It is clear that both s and t converge to σ as X → X . By noting that g is absolutely
symmetric on σ̂N , we know from (3) that g j (σ ) = gi (t), since the vector t is obtained
from σ by swapping the i-th and the j-th components. By the mean value theorem
(cf. e.g., [33, Page 68–69]), we have
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gi (σ ) − g j (σ )

σi − σ j
= gi (σ ) − gi (s) + gi (s) − g j (σ )

σi − σ j

=
∂gi (ξ)

∂μi
(σi − σ j ) + gi (s) − g j (σ )

σi − σ j

= ∂gi (ξ)

∂μi
+

∂gi (ξ̂ )

∂μ j
(σ j − σi )+gi (t) − g j (σ )

σi − σ j
= ∂gi (ξ)

∂μi
− ∂gi (ξ̂ )

∂μ j
,

(42)

where ξ ∈ R
m lies between σ and s and ξ̂ ∈ R

m is between s and t . Consequently,
we have ξ → σ and ξ̂ → σ as X → X . By the continuity of g′, we obtain that

limX→X
gi (σ )−g j (σ )

σi−σ j
= (g′(σ ))i i − (g′(σ ))i j and limX→X

gi (σ )+g j (σ )

σi+σ j
= gi (σ )+g j (σ )

σ i+σ j
.

Therefore, we have

lim
X→X

G ′(X)F (i j) = [ (
(g′(σ ))i i − (g′(σ ))i j

)
S(F (i j)

1 ) + gi (σ ) + g j (σ )

σ i + σ j
T (F (i j)

1 ) 0
]

= G ′(X)F (i j) .

Case 4: i, j ∈ {1, . . . ,m}, i �= j , σi > 0 or σ j > 0 and σ i �= σ j . Then, we have
σi > 0 or σ j > 0 and σi �= σ j . Since g′ is continuous at σ , we know that

lim
X→X

G ′(X)F (i j) =
[
gi (σ ) − g j (σ )

σ i − σ j
S(F (i j)

1 ) + gi (σ ) + g j (σ )

σ i + σ j
T (F (i j)

1 ) 0

]

= G ′(X)F (i j) .

Case 5: j ∈ {m + 1, . . . , n} and σ i > 0. Since g′ is continuous at σ , we have

lim
X→X

G ′(X)F (i j) = lim
X→X

[
0

gi (σ )

σi
F (i j)
2

] = [
0

gi (σ )

σ i
F (i j)
2

] = G ′(X)F (i j).

Case 6: i, j ∈ {1, . . . ,m}, i �= j , σ i = σ j = 0 and σi = σ j > 0. Therefore, we
know that

G ′(X)F (i j) =
[ (

(g′(σ ))i i − (g′(σ ))i j
)
S(F (i j)

1 ) + gi (σ ) + g j (σ )

σi + σ j
T (F (i j)

1 ) 0
]
.

We know from (33) and Lemma 2 that

lim
X→X

(g′(σ ))i i = (g′(σ ))i i = ηi and lim
X→X

(g′(σ ))i j = (g′(σ ))i j = 0 . (43)

Let ŝ, t̂ ∈ R
m be two vectors defined by

ŝ p :=
{

σp if p �= i ,
−σ j if p = i

and t̂ p :=
⎧⎨
⎩

σp if p �= i, j ,
−σ j if p = i ,
−σi if p = j ,

p ∈ {1, . . . ,m}. (44)
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Also, it clear that both ŝ and t̂ converge to σ as X → X . Again, by noting that g is abso-
lutely symmetric on σ̂N , we know from (3) that gi (σ ) = −g j (t̂) and g j (σ ) = −gi (t̂).
By using similar arguments for deriving (42), we have

gi (σ ) + g j (σ )

σi + σ j
= ∂gi (ζ )

∂μi
+ ∂gi (ζ̂ )

∂μ j
, (45)

where ζ ∈ R
m is between σ and ŝ and ζ̂ ∈ R

m is between ŝ and t̂ . Consequently, we
know that ζ, ζ̂ → σ as X → X . By the continuity of g′, we know from (33) that

lim
X→X

gi (σ ) + g j (σ )

σi + σ j
= (g′(σ ))i i = ηi . (46)

Therefore, from (43) and (46), we have limX→X G ′(X)F (i j) = [
ηi F

(i j)
1 0

] =
G ′(σ )F (i j).

Case 7: i, j ∈ {1, . . . ,m}, i �= j , σ i = σ j = 0, σi �= σ j and σi > 0 or σ j > 0.
Let s, t and ŝ, t̂ be defined by (41) and (44), respectively. By the continuity of g′, we
know from (42) and (45) that limX→X G ′(X)F (i j) = limX→X

[ gi (σ )−g j (σ )

σi−σ j
S(F (i j)

1 )+
gi (σ )+g j (σ )

σi+σ j
T (F (i j)

1 ) 0
] = [

ηi F
(i j)
1 0

] = G ′(X)F (i j).
Case 8: i �= j ∈ {1, . . . ,m}, σ i = σ j = 0 and σi = σ j = 0. By the continuity of

g′, we obtain that

lim
X→X

G ′(X)F (i j) = lim
X→X

[
(g′(σ ))i i F

(i j)
1 0

]
=

[
ηi F

(i j)
1 0

]
= G ′(X)F (i j) .

Case 9: j ∈ {m + 1, . . . , n}, σ i = 0 and σi > 0. We know that G ′(X)F (i j) =
[
0

gi (σ )

σi
F (i j)
2

]
. Let s̃ ∈ R

m be a vector given by s̃ p :=
{

σp if p �= i ,
0 if p = i ,

p ∈
{1, . . . ,m}. Therefore, we have s̃ converges to σ as X → X . Since g is abso-
lutely symmetric on σ̂N , we know that gi (s̃) = 0. Also, by the mean value
theorem, we have gi (σ )/σi = (gi (σ ) − gi (s̃))/σi = ∂gi (ρ)

∂μi
, where ρ ∈ R

m is

between σ and s̃. Consequently, we have ρ converges to σ as X → X . By the
continuity of g′, we know from (33) that limX→X

gi (σ )
σi

= (g′(σ ))i i = ηi . Thus,

limX→X G ′(X)F (i j) = limX→X

[
0

gi (σ )

σi
F (i j)
2

] = [
0 ηi F

(i j)
2

] = G ′(X)F (i j).

Case 10: j ∈ {m+1, . . . , n}, σ i = 0 and σi = 0. By the continuity of g′, we know
that

lim
X→X

G ′(X)F (i j) = [
0 (g′(σ ))i i F

(i j)
2

] = G ′(X)F (i j) .

Finally, for the general case that X = U [�(X) 0] VT and X = U
[
�(X) 0

]
V

T
,

it follows from the first part of this theorem that G is F-differential at X if and
only if G is F-differential at [�(X) 0] and for any H ∈ V

m×n , G ′(X)H =
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U
(
G ′([�(X) 0])(UT HV )

)
V T . Thus, we know from the above analysis that (40)

holds, which implies that G is continuously differentiable at X .
“ �⇒′′ Suppose thatG is continuously differentiable at X . Let (U , V ) ∈ O

m×n(X)

be fixed. For any σ ∈ R
m , define X := U [Diag(σ ) 0]V T

. For any h ∈ R
m , let

H := U [Diag(h) 0]VT
. By the derivative formula (38), we know from the assump-

tion that for all σ sufficiently close to σ , Diag(g′(σ )h) = U
T
(G ′(X)H)V 1 for all

h ∈ R
m . Consequently, g is continuously differentiable at σ . ��

Remark 2 In order to compute (38), it appears that one needs to compute and store
V 2 ∈ V

n×(n−m) explicitly, which would incur huge memory costs if n � m. Fortu-
nately, due to the special form of F , the explicit computation of V 2 can be avoided as
we shall show next. Let f̄ = ( f̄1, . . . , f̄m)T be defined by f̄i = gi (σ̄ )/σ̄i if σ̄i �= 0
and f̄i = (g′(σ̄ ))i i otherwise. Observe that the term in (38) involving V 2 is given by

U (F ◦ (U
T
HV 2))V

T

2 = UDiag( f̄ )U
T
H(In − V 1V

T

1 )

= UDiag( f̄ )U
T
(H − (HV 1)V

T

1 ).

Thus, in numerical implementations, the large matrix V 2 is not needed.

4 Extensions

In this section, we consider the spectral operators defined on the Cartesian product of
several real or complex matrices. The corresponding properties, including continuity,
directional differentiability and (continuous) differentiability, can be studied in the
same fashion as those in Sect. 3 though the analysis for the general case is more
involved. For simplicity, we omit the proofs here. For readers who are interested in
seeking the complete proofs, we refer them to the PhD thesis of Ding [11] for worked
out details.

Without loss of generality, from now on, we assume that X = S
m1 × V

m2×n2 and
Y = R

m1 ×R
m2 withm = m1 +m2. For any X = (X1, X2) ∈ S

m1 ×V
m2×n2 , denote

κ(X) = (λ(X1), σ (X2)) ∈ Y . LetN be a given nonempty open set inX . Suppose that
g : Y → Y is mixed symmetric, with respect toP ≡ P

m1 ×±P
m2 , on an open set κ̂N

in Rm containing κN = {κ(X) ∈ Y | X ∈ N }. Let G : X → X be the corresponding
spectral operator defined in Definition 2.

Let X = (X1, X2) ∈ N be given. Suppose the given X1 ∈ S
m1 and X2 ∈ V

m2×n2

have the following decompositions

X1 = PDiag(λ(X1))P
T

and X2 = U [Diag(σ (X2)) 0]VT
, (47)

where P ∈ O
m1 , U ∈ O

m2 and V = [
V 1 V 2

] ∈ O
n2 with V 1 ∈ V

n2×m2 and
V 2 ∈ V

n2×(n2−m2). Denote λ := λ(X1), σ := σ(X2) and κ := (λ, σ ). We use
ν1 > . . . > νr1 to denote the distinct eigenvalues of X1 and νr1+1 > . . . > νr1+r2 > 0
to denote the distinct nonzero singular values of X2. Define the index sets al :=
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{i | λi = νl , 1 ≤ i ≤ m1}, l = 1, . . . , r1, al := {i | σ i = νl , 1 ≤ i ≤ m2},
l = r1 + 1, . . . , r1 + r2 and b := {i | σ i = 0, 1 ≤ i ≤ m2}.

First, we have the following result on the continuity of spectral operators.

Theorem 5 Let X = (X1, X2) ∈ N be given. Suppose that X1 and X2 have the
decompositions (47). The spectral operator G is continuous at X if and only if g is
continuous at κ(X).

In order to present the results on the directional differentiability of spectral operators
of matrices, we introduce some notations. For the given mixed symmetric mapping

g = (g1, g2) : Y → Y , let E0
1 ∈ S

m2 , E0
2 ∈ V

m2×m2 and F0 ∈ V
m2×(n2−m2) be the

matrices given by (8)-(10) with respect to κ = (λ, σ ), and A0 ∈ S
m1 be the matrix

defined by

(A0
)i j :=

{
((g1(κ))i − (g1(κ)) j )/(λi − λ j ) if λi �= λ j ,
0 otherwise,

i, j ∈ {1, . . . ,m1} .

Suppose that g is directionally differentiable at κ . Then,we know that the directional
derivative g′(κ; ·) = (

g′
1(κ; ·), g′

2(κ; ·)) : Y → Y satisfies that for any (Q1, Q2) ∈
Pκ and any (h1, h2) ∈ R

m1 × R
m2 ,

(
g′
1(κ; (Q1h1, Q2h2)), g

′
2(κ; (Q1h1, Q2h2))

)

=
(
Q1g

′
1(κ; (h1, h2)), Q2g

′
2(κ; (h1, h2))

)
, (48)

where Pκ is the subset of P ≡ P
m1 × ±P

m2 defined with respect to κ by Pκ :=
{(Q1, Q2) ∈ P

m1 × ±P
m2 | (λ, σ ) = (Q1λ, Q2σ)}. Note that λi �= λ j if i ∈ al and

j ∈ al ′ for all l, l ′ = 1, . . . , r1 with l �= l ′ and σ i �= σ j > 0 if i ∈ al and j ∈ al ′ for
all l, l ′ = r1 + 1, . . . , r1 + r2 with l �= l ′. Therefore, we have (Q1, Q2) ∈ Pκ if and
only if there exist Ql

1 ∈ P
|al |, l = 1, . . . , r1, Ql

2 ∈ P
|al |, l = r1 + 1, . . . , r1 + r2 and

Qr1+r2+1
2 ∈ ±P

|b| such that

Q1 = Diag
(
Q1

1, . . . , Q
r1
1

) ∈ P
m1 and Q2 = Diag

(
Qr1+1

2 , . . . , Qr1+r2
2 , Qr1+r2+1

2

) ∈ ±P
m2 .

(49)
Denote V := R

|a1| × . . .×R
|ar1+r2 | ×R

|b|. For any h ∈ V , rewrite g′(κ; h) =: φ(h) ∈
V as φ(h) = (

φ1(h), . . . , φr1+r2+1(h)
)
with φl(h) ∈ R

|al | for l = 1, . . . , r1 + r2
and φr1+r2+1(h) ∈ R

|b|. Therefore, we know from (48) and (49) that the directional
derivativeφ ismixed symmetricmapping, with respect toP|a1|×. . .×P

|ar1+r2 |×±P
|b|.

Denote W := S
|a1| × . . . × S

|ar1+r2 | × V
|b|×(|b|+n2−m2). Let 
 : W → W be the

corresponding spectral operator defined in Definition 2 with respect to the mixed
symmetric mapping φ, i.e., for anyW = (

W1, . . . ,Wr1+r2 ,Wr1+r2+1
) ∈ W ,
(W ) =(


1(W ), . . . , 
r1+r2(W ),
r1+r2+1(W )
)
with


l(W ) =
{
R̃lDiag(φl(κ(W )))R̃T

l if l = 1, . . . , r1 + r2,

M̃Diag(φr1+r2+1(κ(W )))ÑT

1 if l = r1 + r2 + 1,

123



528 C. Ding et al.

where R̃l ∈ O
|al |(Wl), (M̃, Ñ ) ∈ O

|b|,|b|+n2−m2(Wr1+r2+1) and

κ(W ) = (
λ(W1), . . . , λ(Wr1+r2), σ (Wr1+r2+1)

) ∈ R
m .

Then, the first divided directional difference g[1](X; H) ∈ X of g at X along the

direction H = (H1, H2) ∈ X is defined by g[1](X; H) :=
(
g[1]
1 (X; H), g[1]

2 (X; H)
)

with

g[1]
1 (X; H) = A0 ◦ P

T
H1P + Diag

(

1(D(H)), . . . , 
r1(D(H))

)
∈ S

m1

and

g[1]
2 (X; H) =

[
E0
1 ◦ S(U

T
H2V 1) + E0

2 ◦ T (U
T
H2V 1) F0 ◦UT

H2V 2

]

+
[
Diag

(

r1+1(D(H)), . . . , 
r1+r2 (D(H))

)
0

0 
r1+r2+1(D(H))

]
∈ V

m2×n2 ,

where

D(H) = (
P
T

a1H1Pa1 , . . . , P
T

ar1
H1Par1

, S(U
T

ar1+1
H2V ar1+1), . . . , S(U

T

ar1+r2

H2V ar1+r2
),U

T

b H2[V bV 2]
) ∈ W .

Now, we are ready to state the results on the directional differentiability of the
spectral operator G.

Theorem 6 Let X = (X1, X2) ∈ N be given. Suppose that X1 and X2 have the
decompositions (47). The spectral operatorG isHadamard directionally differentiable
at X if and only if g is Hadamard directionally differentiable at κ(X). In that case,
G is directionally differentiable at X and the directional derivative at X along any

direction H ∈ X is given by G ′(X; H) =
(
Pg[1]

1 (X; H)P
T
, Ug[1]

2 (X; H)V
T
)
.

In order to present the derivative formulas of spectral operators,we introduce the fol-
lowing notation. For the given X = (X1, X2) ∈ N , suppose that g is F-differentiable
at κ . Denote by g′(κ) ∈ R

m×m the Jacobian matrix of g at κ . Let η1 ∈ R
m1 and

η2 ∈ R
m2 be the vectors defined by for each i ∈ {1, . . . ,m1},

(
η1

)
i :=

{
(g′

1(κ))i i − (g′
1(κ))i(i+1) if ∃ j ∈ {1, . . . ,m1} and j �= i such that λi = λ j ,

(g′
1(κ))i i otherwise ,

and for each i ∈ {1, . . . ,m2},

(
η2

)
i :=

{
(g′

2(κ))i i − (g′
2(κ))i(i+1) if ∃ j ∈ {1, . . . ,m2} and j �= i such that σ i = σ j ,

(g′
2(κ))i i otherwise .
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Define the corresponding divided difference matrices A ∈ R
m1×m1 by

(A)i j :=
{

((g1(κ))i − (g1(κ)) j )/(λi − λ j ) if λi �= λ j ,
(η1(κ))i otherwise,

i, j ∈ {1, . . . ,m1} .

Let E1 ∈ R
m2×m2 , E2 ∈ R

m2×m2 and F ∈ R
m2×(n2−m2) by the matrices defined by

(34)–(37) with respect to κ . Moreover, define the matrices C1 ∈ R
m1×m and C2 ∈

R
m2×m by C1 = g′

1(κ) − [
Diag(η1) 0

]
and C2 = g′

2(κ) − [
0 Diag(η2)

]
. Then, we

have the following results on the F-differentiability of spectral operators.

Theorem 7 Let X = (X1, X2) ∈ N be given. Suppose that X1 and X2 have the
decompositions (47). The spectral operator G is (continuously) differentiable at X if
and only if g is (continuously) differentiable at κ = κ(X). In that case, the derivative
of G at X is given by for any H = (H1, H2) ∈ X ,

G ′(X)(H) =
(
P[A ◦ P

T
H1P + Diag

(
C1h

)
]PT

,

U
[
E1 ◦ S(U

T
H2V 1) + Diag

(
C2h

)
+ E2 ◦ T (U

T
H2V 1) F ◦UT

H2V 2

]
V

T
)

,

where h := (
diag

(
P
T
H1P

)
, diag

(
S(U

T
H2V 1)

)) ∈ R
m.

5 Conclusions

In this paper, we have introduced a class of matrix-valued functions, termed spectral
operators of matrices and have systematically studied several fundamental properties
of spectral operators, including the well-definedness, continuity, directional differen-
tiability and Fréchet-differentiability. These results provide the necessary theoretical
foundations for both the computational and theoretical aspects of many applications
such as MOPs. Consequently, one is able to use these results to design some efficient
numerical methods for solving large-scale MOPs arising from various applications.
For instance, Chen et al. [7] proposed an efficient and robust semismooth Newton-CG
dual proximal point algorithm for solving large scale matrix spectral norm approxima-
tion problems. The work done in this paper on spectral operators of matrices is by no
means complete. Due to the rapid advances in the applications of matrix optimization
in different fields, spectral operators of matrices will become even more important and
many other properties of spectral operators are waiting to be explored.
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