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a b s t r a c t

Several attempts to estimate covariance matrices with sparsity constraints have been
made. A convex optimization formulation for estimating correlation matrices as opposed
to covariance matrices is proposed. An efficient accelerated proximal gradient algorithm
is developed, and it is shown that this method gives a faster rate of convergence. An
adaptive version of this approach is also discussed. Simulation results and an analysis of
a cardiovascular microarray confirm its performance and usefulness.
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1. Introduction

The covariance matrix plays a fundamental role and is a pivotal quantity in statistical analysis, for example in linear
regression and multivariate analysis. Given observations xi ∈ Rp, i = 1, . . . , n from the same distribution F , a simple way
to estimate the population covariancematrix, which is assumed to be non-degenerate, is via the empirical covariancematrix

Σn = (σ̂ij)1≤i,j≤p =
1

n − 1

n
i=1

(xi − x̄)(xi − x̄)T ,

where x̄ = n−1n
i=1 xi is the sample mean. When the dimensionality p is high compared to the sample size n, however, the

sample covariance matrix becomes less useful or even degenerate if p > n.
To overcome this difficulty, a host of approaches have been proposed to estimate the covariance under the assumption

that it is sparse or approximately so. Bickel and Levina (2008a,b) proposed to band or to threshold the entries of the sample
covariancematrix. Rothman et al. (2009) studiedmore flexible thresholding rules. Cai and Liu (2011) advocated to adaptively
threshold the entries according to their individual variability. Cai and Yuan (2012) applied blocked thresholding for adaptive
estimation. A major drawback of these approaches is that the estimated covariance matrix is not guaranteed to be positive
definite, a minimum requirement for a matrix to be a covariance matrix. Lam and Fan (2009) outlined a unified analysis
of various early approaches for estimating sparse matrices. Cai and Zhou (2012) discussed optimal rates of convergence
for estimating sparse covariance matrices under various assumptions. Yi and Zou (2013) studied a tapering procedure and
Maurya (2014) developed a doubly convex method for estimating the inverse of a covariance matrix.

∗ Correspondence to: Department of Statistics, University of Warwick, Coventry, CV4 7AL, United Kingdom. Tel.: +44 0 2476150779; fax: +44 0
2476524532.

E-mail address: C.Leng@warwick.ac.uk (C. Leng).

http://dx.doi.org/10.1016/j.csda.2014.10.001
0167-9473/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.csda.2014.10.001
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2014.10.001&domain=pdf
mailto:C.Leng@warwick.ac.uk
http://dx.doi.org/10.1016/j.csda.2014.10.001


Y. Cui et al. / Computational Statistics and Data Analysis 93 (2016) 390–403 391

To simultaneously achieve sparsity and positive definiteness, Bien and Tibshirani (2011) applied the penalized likelihood
method under Gaussianity, but their objective function is non-convex. Lin (2010) provided an algorithm for obtaining the
local optimal solution of this formulation. Rothman (2012) suggested to minimize the squared Frobenius distance between
the sample covariance matrix and the estimate by adding a sparsity penalty, and a log-determinant barrier that guarantees
the positive definiteness. Xue et al. (2012) studied a constrained optimization formulation that enforces more explicitly the
positive definite constraint. More specifically, they proposed to solve the following optimization problem

Σ̃ = argmin
Σ

∥Σ −Σn∥
2
F + ρ|Σ |1, such thatΣ ≽ εI, (1)

where ∥ · ∥F is the Frobenius norm, | · |1 is the element-wise ℓ1-norm for sparsity (Tibshirani, 1996), andΣ ≽ εI means that
Σ − εI is semipositive definite for a small positive constant ε. Thus,Σ itself is guaranteed positive definite.

There are potential problems with estimating the covariance matrix. The covariance matrix is not scale invariant. Should
one scale the variables in xi differently, Σ̃ would be different no matter how λ is chosen. A common practice is to normalize
the variables to have zero mean and unit variances before the analysis, effectively making Σn a sample correlation matrix.
However, in estimating Σ , this important prior information is ignored and Σ is treated as a usual covariance matrix as
in Rothman (2012) and Xue et al. (2012). As we show in the theoretical study, this incurs p additional parameters in the
diagonal ofΣ that slows down the rate of convergence in terms of the spectral and the Frobenius norm.

To overcome the limitations elaborated above, we propose a new approach termed Sparse Estimation of the Correlation
matrix (SEC). Instead of targeting a high-dimensional covariance matrix, we estimate a sparse correlation matrix by forcing
the diagonal entries of the estimate to be unity. In addition, we formulate a general approach that adaptively penalizes the
correlations according to the empirical ones.

Because estimating a correlation is notably much more challenging than estimating a covariance matrix, and in practice
Σn may have large dimension so that it costs much to achieve a desirable solution, a new and efficient algorithm is highly
needed. In this paper we take a dual approach to solve this constrained optimization by the accelerated proximal gradient
algorithm (APG). As shown by Nesterov (1983), APG is a fast gradient method with the attractive O(1/k2) complexity of the
function value, where k is the iteration number. The resulting estimate is guaranteed to be positive definite and a correlation
matrix. Comparing to the estimation of a covariance matrix, the new estimate enjoys a faster rate of convergence. After this
paper was completed, we became aware of Liu et al. (2014) where they used a similar ℓ1 penalized formulation as ours and
a similar algorithm as in Xue et al. (2012). As demonstrated in the simulation study, however, our algorithm is usually faster
and the performance of the algorithm in Xue et al. (2012) and Liu et al. (2014) depends on a parameter usually difficult to
tune.

The rest of the paper is organized as follows. In Section 2, we present the SECmethod and discuss a weighted SEC scheme
for adaptively estimating the correlations. In Section 3, we give some preliminaries onMoreau–Yosida regularization which
will be used to design the algorithm later on. Then we introduce the framework of the APG algorithm to solve the dual
problem of (3). Section 4 presents the statistical property of our SEC model. Section 5 reports the numerical performance
and Section 6 draws the conclusion. All proofs are deferred to the Appendix.

2. Sparse estimation of correlation

Let Rn = D−1
n ΣnD−1

n be the empirical correlation matrix, where Dn is the diagonal matrix with the square roots of the
diagonal elements ofΣn. We estimate the sparse correlation matrix by solving

R̂ = argmin
R

1
2
∥R − Rn∥

2
F + ρ|R|1, such that R ≽ εI, Rjj = 1, j = 1, . . . , p. (2)

Themajor difference between this approach and that of Xue et al. (2012) is thatwe addhard constraints Rjj = 1, j = 1, . . . , p
to the formulation, making sure effectively that the correlation matrix is the main quantity of interest. In this work, we set
ε = 10−5. We note that the choice of ε makes little difference as long as it is small enough. In practice, we recommend to
use an ε such that log10 ε ∈ [−8,−5].

Inspired by the adaptive lasso (Zou, 2006), we also consider a more general SEC problemwith the weighted ℓ1 penalty as
ρ|W ◦R|1. Here ◦ denotes the Hadamard product, i.e.W ◦R = (WijRij)p×p. We aim to solve a general optimization problem as

R̂ = argmin
R

1
2
∥R − Rn∥

2
F + ρ|W ◦ R|1

s.t. Rij = bij, (i, j) ∈ Ω

R ≽ εI.

(3)

For the equality constraints in (2), Ω = {(j, j) : j = 1, . . . , p}, and bij = 1. To adaptively penalize the entries in R, one
possible choice of the weight matrixW is ( 1

|(Rn)ij|
)p×p, the componentwise inverse of the sample correlationmatrix. The idea

is to apply a larger amount of penalization to smaller empirical correlations.
Computationally, (Rn)ij may be close to zero sometimes if the true (ij)th correlation is close to zero, so that Wij will be

close to ∞. As a result, this will cause a great difficulty for computation since the constraint R ≽ εI strictly prohibits us
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from eliminating those infinity penalized entries from the objective function. Therefore, we naturally introduce an index
setΩ to allow some fixed entries for R̂. These entries include the diagonal part of a correlation matrix as well as the infinity
ℓ1 penalty coefficient, where the latter one will definitely induce zero components for the resulting estimator R̂. That is,

Ω = {(i, j), (Rn)ij = 0 or i = j}, where we include (i, j) inΩ if |(Rn)ij| < δ. In theory we need δ = o(


log p
n ), and in practice

we set δ = 10−8. Hence we take

Wij =


1

|(Rn)ij|
for (i, j) ∉ Ω

0 otherwise
and bij =


0 for |(Rn)ij| < δ
1 for i = j.

In fact our algorithm also works when Ω includes other prior information, for example, when some variables are
correlated with fixed correlations frequently occurring in finance. One can easily see that if W is a matrix with all entries
equal to 1 inΩc,Ω is exactly the set of diagonal elements, (3) will reduce to (2), the sparse correlation estimation problem.
Moreover, ifΩ is an empty set, then (3) provides the sparse covariance matrix studied by Xue et al. (2012).

3. The algorithm

Before stating our APG algorithm, first we show that the alternating direction method of multipliers (ADMM) used by
Xue et al. (2012) can be applied to this model as well. Note that problem (3) can be formulated equivalently as follows:

R̂ = argmin
R

1
2
∥R − Rn∥

2
F + ρ|W ◦ R|1

s.t. Rij = bij, (i, j) ∈ Ω

Y ≽ εI,
R = Y .

(4)

The augmented Lagrangian function of (4) is

Lµ(R, Y ,Λ) :=


1
2
∥R − Rn∥

2
F + ρ|W ◦ R|1 + ⟨R − Y ,Λ⟩ +

1
2µ

∥R − Y∥
2
F , Rij = bij, (i, j) ∈ Ω; Y ≽ εI


,

whereΛ is the Lagrangian multiplier and µ is the penalty parameter. Therefore the k-th iteration for ADMM is

Rk+1
= argmin{Lµ(R, Y k,Λk)|Rij = bij, (i, j) ∈ Ω},

Y k+1
= argmin{Lµ(Rk+1, Y ,Λk)|Y ≽ εI},

Λk+1
= Λk

+
1
µ
(RK+1

− Y k+1).

It is easy to see that the first two subproblems have closed form solution, which is respectively given by

Rk+1
ij =


bij if (i, j) ∈ Ω

sgn


1
µ
Y k

+ Rn −Λk


ij




1
µ
Y k

+ Rn −Λk


ij

− ρWij


+


1 +

1
µ


if (i, j) ∈ Ωc,

and

Y k+1
= ΠSn

+
(µΛk

+ Rk+1).

By the method stated above, one can solve the SEC problem. However, the numerical performance is not as good as the
following dual approach. Detailed results are presented in Section 5.

3.1. The Moreau–Yosida regularization

In this subsection, we review some concepts and properties concerningMoreau–Yosida regularization. These results will
be used to design the APG algorithm later on.

Let f : X → (−∞,+∞] be a closed proper convex function, where X is a real finite dimensional Euclidean space with
an inner product ⟨·, ·⟩ and its induced norm ∥ · ∥. The Moreau (Moreau, 1965)–Yosida (Yosida, 1980) regularization of f
associated with a given parameter ρ > 0 is defined by

ψ
ρ

f (x) := min
y∈X


f (y)+

1
2ρ

∥y − x∥2

, x ∈ X. (5)

The unique minimizer of (5), written as Pρf (x), is called the proximal point mapping associated with f . There are some im-
portant properties forψρ

f and Pρf which we summarize belowwithout proof, see, e.g. Hiriart-Urruty and Lemaréchal (1993).
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Proposition 1. Let f : X → (−∞,+∞] be a closed proper convex function,ψρ

f be the Moreau–Yosida regularization of f , and
Pρf be the associated proximal point mapping. Then the following properties hold.

(1) ψρ

f is continuously differentiable with gradient given by

∇ψ
ρ

f (x) =
1
ρ
(x − Pρf (x)).

Furthermore, ∇ψρ

f is globally Lipschitz continuous with modulus 1/ρ .
(2) For any x, x′

∈ X, one has

⟨Pρf (x)− Pρf (x
′), x − x′

⟩ ≥ ∥Pρf (x)− Pρf (x
′)∥2.

This implies that Pρf (·) is globally Lipschitz continuous with modulus 1 by the Cauchy–Schwarz inequality.

The above proposition shows that for any closed proper convex function, not necessarily continuous, its Moreau–Yosida
regularization is continuously differentiable with Lipschitz continuous gradient. This is of particular interest when the
constrained optimization problem involves a nonsmooth term in the objective function like SEC, where directly applying
the APG algorithm to the primal is almost impossible.

3.2. A dual accelerated proximal gradient framework

In this sectionwe take a dual approach to solve (3) by the accelerated proximal gradient algorithm. Before that we briefly
review the idea of this algorithm.

Let X be a real finite dimensional Euclidean space with an inner product ⟨·, ·⟩ and its induced norm ∥ · ∥. Let g : X →

(−∞,+∞] be a smooth convex function on an open set containing dom g = {x : g(x) < ∞}, and h : X → (−∞,+∞]

be a proper, convex, lower semicontinuous but possibly nonsmooth function.We further assume∇g is Lipschitz continuous
on dom g with modulus L, i.e.

∥∇g(x)− ∇g(y)∥∗ ≤ L∥x − y∥, ∀x, y ∈ dom g, (6)

where ∥ · ∥∗ stands for the dual norm of ∥ · ∥.
Consider a class of nonsmooth convex optimization problem

min
x

f (x) ≡ g(x)+ h(x). (7)

The classical proximal gradient algorithm solves (7) iteratively by minimizing its quadratic approximation at each iteration
point as

xk+1 = argmin
x


g(xk)+ ⟨∇g(xk), x − xk⟩ +

L
2
∥x − xk∥2

+ h(x)


= argmin
x


L
2
∥x − (xk −

1
L
∇g(xk))∥2

+ h(x)

. (8)

It can be shown that for such algorithm, it satisfies f (xk)−inf f ≤ O(1/k) for any iteration number k, see, e.g. Nesterov (2004,
Theorem 2.1.14). Based on this idea, Nesterov (1983, 2005), Tseng (2009), and others proposed various kinds of accelerated
proximal gradient (APG)methods, which have an attractive O(1/k2) complexity. Recently, Beck and Teboulle (2009) studied
a fast shrinkage-thresholding algorithm (abbreviated FISTA), which is a special case of the classical accelerated proximal
gradient method. They suggested to solve the following sequence iteratively:

xk+1 = argmin
x


g(yk)+ ⟨∇g(yk), x − yk⟩ +

L
2
∥x − yk∥2

+ h(x)

,

tk+1 =

1 +


1 + 4t2k
2

,

yk+1 = xk+1 +
tk − 1
tk+1

(xk+1 − xk).

(9)

The initial algorithm in Beck and Teboulle’s paper (2009) is designed for the vector case, where X = Rn. Later on many
researchers extended the idea to matrix programming, see, e.g. Toh and Yun (2010). In this paper we shall adopt FISTA in
matrix form to solve the dual problem of (3).

Let Sp and S
p
+ be the space of p×p symmetric matrices and the cone of positive semidefinite matrices in Sp respectively.

Denote ∥ · ∥F as the Frobenius norm induced by the standard trace inner product ⟨·, ·⟩ in Sp, i.e. ⟨A, B⟩ = trace(ATB) for
A, B ∈ Sp. The Lagrangian dual problem of (3) is given by

max
Z≽0

inf
Rij=bij,
(i,j)∈Ω

L(R, Z) :=
1
2
∥R − Rn∥

2
F + ρ|W ◦ R|1 − ⟨Z, R − εI⟩.
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Denote X(Z) = Z + Rn. Then we can solve the inner problem analytically as follows:

g(Z) := − inf
Rij=bij,
(i,j)∈Ω


1
2
∥R − Rn∥

2
F + ρ|W ◦ R|1 − ⟨Z, R − εI⟩



= − inf
Rij=bij,
(i,j)∈Ω


1
2
∥R − X(Z)∥2

F + ρ|W ◦ R|1


+

1
2
∥X(Z)− εI∥2

F −
1
2
∥Rn − εI∥2

F

= −
1
2
∥S(Z)− X(Z)∥2

F − ρ|W ◦ S(Z)|1 +
1
2
∥X(Z)− εI∥2

F −
1
2
∥Rn − εI∥2

F ,

where

S(Z)ij =


bij if (i, j) ∈ Ω,
sgn(X(Z)ij)max{|X(Z)ij| − ρWij, 0} if (i, j) ∈ Ωc (10)

is the ℓ1-norm soft thresholding inΩc .
Therefore the dual problem of (3) is

(D) min
Z

f (Z) := g(Z)+ δSp
+
(Z), (11)

where δSp
+
(Z) is the indicator function of S

p
+.

From part (1) of Proposition 1 we know that the function g(Z) is continuously differentiable, for which the gradient is
given by

∇g(Z) = S(Z)− εI. (12)

Moreover, part (2) of this proposition shows that ∇g(Z) is globally Lipschitz continuous with modulus 1. Therefore we can
apply the framework of FISTA to solve (3). Note that in the (k + 1)th iteration of FISTA, one needs to obtain the solution of
the subproblem

Yk+1 = argmin
Z≽0


g(Zk)+ ⟨∇g(Zk), Z − Zk⟩ +

1
2
∥Z − Zk∥2.


(13)

Substituting (12) in, it is easy to derive that the unique solution of (13) can be expressed as

Yk+1 = ΠS
p
+
[Zk − (S(Zk)− εI)],

whereΠSp
+
(·) denotes the projection onto S

p
+. It is well-known that if X ∈ Sp has the eigen-decomposition X =

p
i=1 λiviv

T
i ,

thenΠSp
+
(X) =

p
i=1 max{λi, 0}vivTi .

Hence we are ready to propose an accelerated proximal gradient algorithm to solve the SEC problem.

The Accelerated Proximal Gradient Algorithm.
Choose an initial point Y1, Z1, t1 = 1. Set k := 1. Iterate until convergence:
Step 1. Compute S(Zk) given by (10). Then take Yk+1 = ΠS

p
+
(Zk − (S(Zk)− εI)).

Step 2. Compute tk+1 =
1+

1+4t2k
2 .

Step 3. compute Zk+1 = Yk+1 +
tk−1
tk+1

(Yk+1 − Yk).

There is a complete complexity theory of the APG algorithm to solve problems like (7). This work is first done by Nesterov
(1983) with h(x) = 0, and extended by Beck and Teboulle (2009) with p = 1 and dom h = Rm. More recently, Tseng (2009)
presented a unified framework for general APG methods solving problems like (7) on a real linear space, and a similar
complexity result was provided.

The following theorem states the O(1/k2) complexity of the APG algorithmwhich solves the dual problem of SEC. In fact
this is the best complexity one can possibly have under the convex black box oracle, which means the only information
we can get about function g at each iteration point xk is the value g(xk) and ∇g(xk). Since the proof is a straightforward
extension to the matrix case of Beck and Teboulle (2009, Theorem 4.4), we omit it here.

Theorem 1. Assume f is defined in (11) and {Zk} are generated by the APG algorithm. Then for any optimal solution Z∗ of
minZ f (Z), we have

f (Zk)− f (Z∗) ≤
2∥Z0 − Z∗

∥
2

(k + 1)2
, ∀ k ≥ 1.
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3.3. A postprocessing: calibrating the estimator with equality and semidefinite constraints

Due to the large p, small n nature of the problem, the estimation error between our estimator R̂ and the true correlation
matrix R is quite large (one may find the details about the estimation performance in Section 5). Hence it is often of less use
and inefficient for the algorithm to achieve high accuracy in practice. In fact our APG algorithm is able to compute the whole
solution path of the adaptive SECmodel with a modest scaled weight matrixW , say ∥W∥∞ ≤ 100, in several minutes when
n is up to 1000 with 10−8 relative accuracy, but we find that the performance of the resulting estimator is not much better
than a less accurate one. One problem of generating merely a coarse solution is that the solution is not feasible, so it fails to
be a correlation matrix with fixed entries inΩ . To bridge the gap, we need a postprocessing to calibrate the estimator into
the feasible set.

We denote the APG solution of SEC model as R̂apg . If theΩ set only contains diagonal entries and those zero off-diagonal
entries, we could apply a simple correction step as follows: Let λ be the smallest eigenvalue of R̂apg , write

R̄ = R̂apg − (ε − max{0,−λ})I

and

D =



R̄11

b11 − ε
R̄22

b22 − ε
. . .

R̄pp

bpp − ε


,

then the corrected solution is given by

R̂c = D−
1
2 R̄D−

1
2 + εI.

In this way the resulting estimator R̂c satisfies both the equality constraints and positive definiteness. Note that the above
procedure cannot keep nonzero off-diagonal entries, it is not suitable if additional prior information is given in theΩ set. In
that case, we can alternatively use the fast semismooth Newton-CG algorithm proposed by Qi and Sun (2006), which aims
at computing the nearest correlation matrix with fixed diagonal and off diagonal elements.

4. Statistical properties

Let Σ0
= (σ 0

ij )1≤i,j≤p and R0
= (r0ij )1≤i,j≤p be the population covariance and correlation matrix respectively. We denote

the non-diagonal support of R0 as A0 = {(i, j) : i ≠ j, r0ij ≠ 0} and its cardinality as s.
After an estimate R̂ is available, the covariance matrix can be estimated as Σ̂ = DnR̂Dn. As in Cai and Liu (2011) and Xue

et al. (2012), we discuss two general distributions that have interesting tail probabilities. The theorem is formally established
for the estimator in (2).

Theorem 2. Assume that the true correlation matrix R0 is positive definite and that the marginal variances of the variables are
bounded away from zero. Furthermore, assume that the variables follow either of the following distributions.
a. (Exponential-type tails) Suppose that for some η > 0,

E{exp(tX2
ij )} ≤ K1 for all |t| < η

for all i, j, and log(p) ≤ n.
b. (Polynomial-type tails) Suppose that for some γ , c > 0, p ≤ cnγ , and for some τ > 0

E{|Xij|
4γ+τ+4

} ≤ K1

for all i, j.

If either a or b holds and ρ = M


log p
n for some constant M, we have for the estimator defined in (2),

∥R̂ − R0
∥
2
F = Op


s
log p
n


.

Since R0 is positive definite, we can specify a small constant ε to bound its smallest eigenvalue. In this paper, we use
ε = 10−5, which is realistically small enough. Note that for estimating the covariance matrix, the rate of convergence is
Op((s + p) log p/n) in the squared Frobenius norm (Cai and Liu, 2011; Cai and Zhou, 2012; Xue et al., 2012). Thus, when
the sample correlation is used for estimating a covariance matrix, the rate of convergence will be Op((s + p) log p/n) if
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additional constraints on the diagonals are not enforced, as in Xue et al. (2012) and Rothman (2012). Our estimator of R0

enjoys a fast rate of convergence by a difference of the order at least of p/n. This is due to the fact that the diagonals of R0

need no estimation. In principal, we can allow p ≫ n in our approach as long as n ≫ s log p to obtain the convergence
result in terms of the Frobenius norm and spectral norm for estimating R0. On the other hand, for estimating R0 using the
approach in Xue et al. (2012), in practice, p can at most be comparable to n to have a meaningful convergence result. More
discussion of this difference can be found in Rothman et al. (2008) and Lam and Fan (2009). This rate can also be obtained
via a penalized likelihood method in principle, if a multivariate Gaussian distribution is assumed (Lam and Fan, 2009). A
major problem, however, is that the solution for this formulation is only a local optimum, because the likelihood-based loss
function is nonconvex (Bien and Tibshirani, 2011).

Now, we discuss the adaptive estimator defined in (3).

Corollary 1. Assume that either of the tail conditions in Theorem 2 holds. If δ = o(


log p
n ),min(i,j)∈A0 r

0
ij ≫


log p
n . Then, if we

take ρ = M


log p
n min(i,j)∈A0(Rn)ij for some constant M, we have

∥R̂ − R0
∥
2
F = Op


s
log p
n


.

Furthermore, if vp(R0) ≫


s log pn , where v1(R) ≥ v2(R) ≥ · · · ≥ vp(R) are eigenvalues of R, then we have: (i) r̂ij = 0 for

(i, j) ∈ AC
0 and i ≠ j, and (ii) r̂ij ≠ 0 for (i, j) ∈ A0 with probability tending to one.

We note that the additional assumptions made for this corollary may not be tight. The assumption δ = o(


log p
n ) is

to make sure that we only set very small entries in Rn as zero. The assumption min(i,j)∈A0 r
0
ij ≫


log p
n specifies the signal

strength. In Lemma 2 in the Appendix, we show that in Rn, the zero correlations will be estimated at a maximummagnitude
log p
n , and nonzero correlations at a minimum magnitude much larger than


log p
n with probability tending to one. Thus,

a small δ ensures that only some of the zero correlations would be fixed as zeros in their estimates. Although setting δ
does not affect the theoretical results in Corollary 1 as long as it is small enough, as discussed before, having a small δ

brings computational benefit. The eigenvalue assumption vp(R0) ≫


s log pn is to ensure that the adaptive estimator in (3)

is estimated as a positive definite matrix without the positive definite assumption R ≽ εI with probability tending to one.
The second part of the corollary states that the weighted estimator in (3) estimates the sparsity pattern of R0 consistently,
which is attractive from a model selection perspective.

5. Simulation and data analysis

5.1. Simulation

In this part we demonstrate the numerical performance of our SEC method in (3) by the accelerated proximal gradient
algorithm.WeuseRp, Rd and gap to denote the relative primal feasibility, dual feasibility and gap of primal–dual respectively,
i.e.

Rp =
max{ε − λ1(S), 0}

1 + ∥S∥F
, Rd =

∥ΠSn
+
(Z − (S(Z)− εI))∥F

1 + ∥Z∥F
, gap =

|pobj − dobj|
1 + |pobj| + |dobj|

,

where λ1(S) is theminimal eigenvalue of S, pobj and dobj are the respective values of the primal and dual objective function.
We stop the APG algorithm when

max{RP , RD, gap} ≤ 5 × 10−5.

Thenwe apply the postprocessing step as described in Section 3.2 to calibrate the solution as a correlationmatrix with fixed
entries inΩ .

We will consider the following three correlation models throughout our simulation study.

Example 1 (Banded Matrix With Ordering). r0ij = (1 −
|i−j|
10 )+.

Example 2 (Block Diagonal Matrix). Let K = p/20, and ik denote the maximum index in Ik, then

r0ij = 0.6I{i=j} + 0.4
K

i=1

I{i∈Ik,j∈Jk} + 0.4
K−1
k=1

(I{i=ik,j∈ik+1} + I{i∈Ik+1,j=ik}).

Example 3 (Approximately Sparse Matrix). AR(1), where r0ij = 0.3|i−j|.

The first two examples have been used previously by Bickel and Levina (2008a), Rothman (2012) and Xue et al. (2012). As
opposed to the sparse models in Examples 1 and 2, the third example is a non-sparse model. This example is meant to shed
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Table 1
Performance of the ADMM and APG algorithm.

Algo. Par. (µ) Example 1 Example 1 Example 2 Example 2 Example 3 Example 3
(100|50) (1000|100) (100|50) (1000|100) (100|50) (1000|100)
Iter. Time Iter. Time Iter. Time Iter. Time Iter. Time Iter. Time

APG – 271 1.1 1,986 808 877 67 996 421 169 0.7 680 286

ADMM

0.1 3939 6.9 6,154 2657 3693 390 3713 2440 2271 6.3 2647 1818
0.5 981 2.9 7,140 3083 1359 104 1767 743 598 1.9 995 448
1 667 2.0 12,197 5145 1882 150 2660 1160 408 1.3 1374 599
2 715 2.2 18,845 7964 3270 266 4808 2115 380 1.3 2355 1032

some light on the approximation power of various methods designed for estimating sparse matrices when the true matrix
is dense.

We generate n = 50 independent p-variate samples for p = 100 or 500, and generate n = 100 samples for p = 1000
from the normal distribution X ∼ N(0p, (r0ij )p×p). Then we standardize the variables with zero mean and unit variance such
that what we obtain is the sample correlation matrix Rn.

Before showing the estimation performance of our adaptive SEC method, first we use these three examples to illustrate
why we choose the APG algorithm to solve this model.

Note that the computational cost of the ADMM algorithm discussed at the beginning of Section 3 is essentially the same
as our APG algorithmwithin each iteration, which is dominated by one eigenvalue decomposition. Generally speaking, there
are two main reasons that we prefer the APG algorithm here. One is its attractive complexity stated in Theorem 1, which
provides a theoretical guarantee for the iteration numbers before reaching the prescribed accuracy. And this property fails
to hold for the ADMM algorithm. The other one is that the APG algorithm is free of tuning parameters, while there is an
unknown parameter µ in the augmented Lagrangian function. And whether µ is suitable or not will largely influence the
performance of ADMM in the sense of CPU time and iteration numbers. To illustrate more clearly about this part, we run
the solution path for ρ = {0.01, 0.02, . . . , 1} with different choice of µ for all examples, and compare the results with the
APG algorithm. The stopping criterion for ADMM is essentially of the same spirit with the APG algorithm, that is, we stop it
when the primal feasibility, the dual feasibility and the duality gap are within the tolerance simultaneously. The number of
iterations (iter) and CPU time (time, in seconds) are listed in Table 1 for different settings of (p | n).

Table 1 shows that for all the test instances, our APG algorithm substantially outperforms the ADMM in terms of
computing time. For example, theADMMtakes at least three timesmore time to solve Example 1with p = 1000 andn = 100
than our APG. Also, we can observe clearly that the performance of the ADMM is over sensitive to the parameter µ and no
single value seems to fit for all scenarios. In model 1 with (p, n) = (100, 50), µ = 1 appears to be the best choice, but under
this selection the ADMMperformsmuch slower comparedwithµ = 0.1 for the samemodel with (p, n) = (1000, 100). This
inconsistency may give rise to great difficulties in tuning the parameter µ, especially in many real applications. Therefore,
the APG algorithm, which enjoys the optimal complexity in theory combined with simple implementation in practice,
becomes amuchmore natural choice for the adaptive SECmethod, andwe employ this algorithm in the rest of our numerical
experiment.

Next we concentrate on the estimation performance of our model. We choose two kinds of weight matrix W : one is
the matrix with all entries equal to 1 in Ωc , which represents the classical ℓ1 penalty, and the other one is Wij =

1
|Rij|

for
(i, j) ∈ Ωc , the adaptive penalty.We compare the performance of our two estimators (SEC, Adaptive SEC)with the covariance
estimator (Hard thresholding, Xue’s estimator) given by Bickel and Levina (2008b) andXue et al. (2012) respectively. In order
to make a fair comparison, the covariance estimators are normalized to have unit diagonal entries. For all estimators, we
apply five-fold cross validation to select the optimal ρ by minimizing ∥R̂ − Rn∥

2
F , where Rn is the sample correlation matrix

of the fold of the data set not included in estimating R̂. The effectiveness of V-fold cross validation is proved by Bickel and
Levina (2008b).

We evaluate the performance of all estimators by the average relative error of Frobenius norm (relerr F-norm) and
spectral norm (relerr S-norm) between the true correlation matrix R0

= (r0ij )p×p and the estimators. That is, the relative
error is defined as ∥R̂ − R0

∥∗/∥R0
∥∗ for some norm ∥ · ∥∗. Besides we test the ability of recovering the sparse correlation

matrix by the true positive rate (TPR) together with the false positive rate (FPR), defined as respectively

TPR =
#{(i, j), R̂ij ≠ 0, R0

ij ≠ 0}

#{(i, j), R0
ij ≠ 0}

,

FPR =
#{(i, j), R̂ij ≠ 0, R0

ij = 0}

#{(i, j), R0
ij = 0}

,

as in Rothman et al. (2008, 2009).
Here we also report the estimator for which the sparsity structure is given (Prior information), that is, we first let R̂ij = 0

if the true correlation matrix r0ij = 0 and then project them as a correlation matrix. Since this problem is much easier than
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Table 2
Average (standard error) performance of the estimators for Example 1 over 100 replications.

p|n Estimator relerr (F-norm) relerr (S-norm) FPR TPR

100|50 Sample 53.41% (0.07) 69.80% (0.09) – –
Hard thresholding 29.28% (0.06) 25.38% (0.04) 0.0 (0.0) 68.7 (0.0)
Xue’s estimator 32.65% (0.06) 40.41% (0.04) 33.2 (0.1) 89.5 (0.0)
Adaptive Xue’s estimator 28.50% (0.07) 33.79% (0.04) 13.3 (0.0) 84.2 (0.0)
SEC 32.52% (0.06) 40.21% (0.04) 32.5 (0.0) 89.7 (0.0)
Adaptive SEC 27.86% (0.04) 31.70% (0.02) 10.5 (0.0) 82.9 (0.0)
Prior information 25.18% (0.10) 28.55% (0.04) 0.0 (0.0) 100.0 (0.0)

500|50 Sample 122.6% (0.09) 240.4% (0.14) – –
Hard thresholding 35.71% (0.06) 34.11% (0.04) 0.1 (0.0) 89.5 (0.0)
Xue’s estimator 42.74% (0.05) 53.16% (0.02) 10.4 (0.0) 59.7 (0.0)
Adaptive Xue’s estimator 36.17% (0.07) 45.52% (0.04) 6.2 (0.0) 79.1 (0.0)
SEC 42.41% (0.05) 53.00% (0.02) 10.5 (0.0) 82.3 (0.0)
Adaptive SEC 35.39% (0.06) 44.78% (0.03) 4.5 (0.0) 78.3 (0.0)
Prior information 30.48% (0.15) 37.95% (0.03) 0.0 (0.0) 100.0 (0.0)

1000|100 Sample 122.4% (0.09) 252.2% (0.14) – –
Hard thresholding 25.67% (0.05) 29.32% (0.04) 0.0 (0.0) 69.6 (0.0)
Xue’s estimator 33.96% (0.10) 43.41% (0.04) 7.5 (0.0) 87.0 (0.0)
Adaptive Xue’s estimator 26.75% (0.07) 34.10% (0.04) 4.7 (0.0) 82.8 (0.0)
SEC 33.94% (0.10) 43.57% (0.04) 7.6 (0.0) 87.2 (0.0)
Adaptive SEC 25.31% (0.07) 33.50% (0.04) 2.9 (0.0) 86.1 (0.0)
Prior information 22.46% (0.10) 28.87% (0.02) 0.0 (0.0) 100.0 (0.0)

Table 3
Average (standard error) performance of the estimators for Example 2 over 100 replications.

p|n Estimator relerr (F-norm) relerr (S-norm) FPR TPR

100|50 Sample 66.33% (0.05) 67.38% (0.08) – –
Hard thresholding 51.10% (0.08) 40.22% (0.04) 2.19 (0.1) 84.62 (0.0)
Xue’s estimator 47.07% (0.07) 49.37% (0.05) 30.2 (0.0) 97.3 (0.0)
Adaptive Xue’s estimator 44.93% (0.09) 43.63% (0.04) 26.1 (0.0) 96.8 (0.0)
SEC 47.05% (0.07) 49.29% (0.05) 29.2 (0.0) 96.8 (0.0)
Adaptive SEC 44.75% (0.08) 44.08% (0.04) 20.8 (0.0) 95.8 (0.0)
Prior information 26.89% (0.06) 28.63% (0.05) 0.0 (0.0) 100.0 (0.0)

500|100 Sample 151.8% (0.06) 225.0% (0.10) – –
Hard thresholding 36.88% (0.07) 38.96% (0.04) 0.4 (0.1) 91.3 (0.0)
Xue’s estimator 62.57% (0.06) 67.95% (0.03) 16.3 (0.0) 94.2 (0.0)
Adaptive Xue’s estimator 55.70% (0.07) 62.76% (0.04) 13.3 (0.0) 93.5 (0.0)
SEC 60.08% (0.06) 67.39% (0.03) 17.4 (0.0) 95.0 (0.0)
Adaptive SEC 55.00% (0.07) 62.43% (0.06) 12.4 (0.0) 94.9 (0.0)
Prior information 28.94% (0.07) 37.68% (0.04) 0.0 (0.0) 100.0 (0.0)

1000|100 Sample 151.7% (0.04) 239.0% (0.09) – –
Hard thresholding 41.68% (0.09) 44.46% (0.06) 0.3 (0.1) 87.9 (0.0)
Xue’s estimator 47.95% (0.06) 55.42% (0.03) 10.4 (0.0) 99.7 (0.0)
Adaptive Xue’s estimator 41.27% (0.07) 53.72% (0.04) 8.6 (0.0) 98.8 (0.0)
SEC 47.79% (0.06) 55.23% (0.03) 11.1 (0.0) 99.7 (0.0)
Adaptive SEC 39.34% (0.07) 48.64% (0.04) 5.2 (0.0) 99.2 (0.0)
Prior information 20.38% (0.07) 28.39% (0.03) 0.0 (0.0) 100.0 (0.0)

SEC for which we have to find zero elements and estimate other entries simultaneously, we regard it as a benchmark to
analyze our estimation quality.

Tables 2–4 show the estimation results for the threemodels using different approaches to estimate the covariancematrix.
Clearly, all the sparse estimators perform uniformly better than the sample covariance matrix in terms of the relative
Frobenius norm loss and spectral norm loss, even for the nonsparse model in Example 3. This observation confirms the
effectiveness of sparse methods for estimating large dimensional covariance matrices. The correlation estimators, with or
without adaptive weights, generally achieve a smaller estimation error than the covariance estimator in Xue et al. (2012),
especially for Examples 1 and 2. This is in agreement with the theoretical result in Theorem 2 that the convergence rate
of SEC is faster than Xue et al.’s estimator. When the true covariance matrix is sparse as in Examples 1 and 2, we see
that the correlation estimator with adaptive weighting is more accurate, and performs better in terms of identifying the
sparsity pattern. In addition, the correlation estimator without weighting and the covariance estimator perform similarly in
recovering the sparsity pattern. For the nonsparse model in Example 3, we find that sparse estimation of the covariance
matrix continues to outperform the sample estimator by a large margin. For this example, adaptive weighting for the
correlation estimator does not improve the one without weighting, which is to be expected as this is not a sparse model.
Note that the Frobenius norm loss and spectral norm loss generated by SEC and adaptive SEC are usually less than twice of
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Table 4
Average (standard error) performance of the estimators for Example 3 over 100 replications.
Since the underlying correlation matrix in model 3 has no true zeros, the estimator with prior
information is not available here.

p|n Estimator relerr (F-norm) relerr (S-norm) FPR TPR

100|50 Sample 129.7% (0.02) 252.9% (0.03) – –
Hard thresholding 40.43% (0.03) 46.97% (0.04) – –
Xue’s estimator 37.63% (0.03) 46.36% (0.01) – –
Adaptive Xue’s estimator 37.52% (0.06) 46.85% (0.04) – –
SEC 37.63% (0.03) 46.36% (0.01) – –
Adaptive SEC 37.52% (0.04) 47.31% (0.02) – –

500|50 Sample 291.6% (0.02) 891.5% (0.05) – –
Hard thresholding 40.63% (0.06) 47.06% (0.04) – –
Xue’s estimator 39.57% (0.01) 48.08% (0.04) – –
Adaptive Xue’s estimator 39.83% (0.06) 48.50% (0.03) – –
SEC 39.57% (0.01) 48.08% (0.04) – –
Adaptive SEC 39.71% (0.06) 48.43% (0.03) – –

1000|100 Sample 290.1% (0.01) 896.9% (0.03) – –
Hard thresholding 39.27% (0.06) 51.68% (0.04) – –
Xue’s estimator 35.98% (0.04) 46.36% (0.01) – –
Adaptive Xue’s estimator 35.95% (0.06) 47.58% (0.04) – –
SEC 35.97% (0.04) 46.36% (0.01) – –
Adaptive SEC 35.80% (0.07) 47.52% (0.04) – –

Table 5
Pairwise comparison between Xue’s estimator and SEC. The number in the table denotes the frequency that SEC is more accurate than Xue’s estimator in
terms of Frobenius norm and spectral norm respectively.

p|n Example 1 Example 2 Example 3
100|50 500|50 1000|100 100|50 500|50 1000|100 100|50 500|50 1000|100

F-norm 99/100 100/100 100/100 89/100 100/100 100/100 57/100 52/100 66/100
S-norm 97/100 71/100 62/100 98/100 100/100 71/100 81/100 63/100 54/100

that given prior information under Examples 1 and 2. And especially inmodel 1, the adaptive SEC estimator is almost as good
as the one given prior information. This indicates that the performance of the SEC method is close to the oracle. The hard-
thresholding estimator also performs well by the above evaluation. But the potential trouble is that the resulting estimator
cannot be guaranteed to be positive definite. Fig. 1 shows the eigenvalues of the hard-thresholding for three examples
respectively. All of them contain negative ones. Moreover, this drawback cannot be fixed by projecting the estimate to a
positive definite cone which destroys the sparsity pattern.

Observing that the difference between Xue’s estimator and SEC is not large, we also present a pairwise comparison
between the relative errors of the two norms in Table 5. One can see clearly that our SECmethod is superior to the covariance
estimation in terms of the spectral and the Frobenius norm for most instances. This again conforms the claim that the
estimation of the correlation may be preferred over that of the covariance.

5.2. A microarray data

In this section we compare our SEC estimator with the regularized covariance estimator (Xue et al., 2012) by analyzing
a cardiovascular microarray experiment (Efron, 2009, 2010) for gene group-average agglomerative clustering. This data set
has 63 training samples with 20436 gene expression valuesmeasured for each sample. Among them, 44 samples come from
healthy controls and 19 come from cardiovascular patients.

As suggested by Rothman et al. (2009), we first calculate the F statistic

F =

1
k−1

k
m=1

nm(x̄m − x̄)2

1
n−k

k
m=1

(nm − 1)σ̂ 2
m

for all genes, where k is the number of classes, n, nm are the total sample size and that of classm respectively, x̄ and x̄m are the
overallmean andmean of classm, and σ̂ 2

m is the sample variance of classm. This statistic represents howmuchdiscriminative
information a gene can provide. In order to include both the informative and noninformative genes, we select the top 50
and bottom 150 genes from them. The resultant correlation matrix is expected to have a sparse structure. These 200 genes
are standardized before the analysis is conducted. To choose the regularization parameter, we use five-fold cross validation.

First, we look at the covariance estimator by choosing the regularization term as ρ


j≠k |σjk|. The hope is to keep the unit
diagonal entries by not penalizing the diagonal terms of the covariance matrix. However, as shown in Fig. 2 the resulting
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Fig. 1. The eigenvalues of the hard thresholding estimator.

Fig. 2. The diagonal entries of the covariance estimator.

estimator fails to be a correlationmatrix, as the diagonal entries are usually larger than 1. Of coursewemay force the diagonal
entries to be unity by taking R̂ = D−1Σ̂D−1 to obtain an estimate of the correlation matrix, where D consists of the diagonal
terms of Σ̂ . But doing so would slow down the convergence rate as discussed before. Thus, it is desirable, practically and
theoretically, to enforce unity constraints of the diagonals in estimating the correlation matrix.

Next, we plot in Fig. 3 the heatmaps of the covariance estimator of Xue et al. (2012), the proposed SEC estimator without
weighting, and the SEC estimator using the empirical correlation matrix in weighting. It is seen that the SEC estimator,
especially the weighted one, gives sparser graph than that of the covariance estimator.

In order to compare these three estimates quantitatively, we implement cross validation again in the following manner.
The selected 200 gene data set is randomly split into a training and a testing with sample size 2 : 1. Then we choose the
tuning parameter ρ by five-fold cross validation on the training data and come up with the estimated correlation matrices
(and the covariancematrix) within this set. Following that we compare the resultingmatrices with the empirical covariance
matrix of the testing data via Frobenius norm and spectral norm together with their sparsity (#{(i, j) : i ≠ j, ρij ≠ 0}). The
results are listed in Table 6. We can see that our SEC estimators provide sparse structures and smaller estimation errors at
the same time, which agrees with the simulation performance and reassuring our theoretical conclusions.

6. Conclusion

We have proposed a new approach for estimating high dimensional correlation matrices, as opposed estimating
covariance matrices in the literature. The proposed estimator can be efficiently computed, and enjoys attractive theoretical
properties. We have also discussed an adaptive version of the estimator motivated by the adaptive lasso with the adaptive
weights readily read off from the sample correlationmatrix. Extensive simulation studies and an analysis of a cardiovascular
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(a) Regularized covariance estimator. (b) SEC with equal ℓ1 penalty. (c) SEC with adaptive penalty.

Fig. 3. Heatmap of the absolute values of estimated correlationmatrices. The genes are ordered by hierarchical clustering using the estimated correlations.

Table 6
Performance of the correlation (covariance) estimators for the
cardiovascular microarray data.

Σ̂ R̂ R̂adapt.

F-norm error 52.9 52.8 52.4
S-norm error 35.5 32.5 34.3
Zero numbers 9386 10,530 14,690

microarray confirms that the proposed method performs better than its competitors. The Matlab code, implementing the
SEC estimator, will appear on the second author’s website.
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Appendix

Only a sketch of the proof is provided here due to similarities to the proof in Cai and Liu (2011) or Xue et al. (2012).

Lemma 1. Under the exponential-tail or the polynomial-tail conditions in Theorem 2, we have for some large constant C1

Pr

max
i,j

|σ̂ij − σ 0
ij | > C1


log p
n


= o(1).

The proof of Lemma 1 follows straightforwardly from Cai and Liu (2011) and Xue et al. (2012). From Lemma 1 and the
fact that r̂ij = σ̂ij/


σ̂iiσ̂jj, the following can be easily shown.

Lemma 2. Under the exponential-tail or the polynomial-tail conditions in Theorem 2, if minj σ
0
jj is bounded from below, we have

for some large constant M

Pr

max
i,j

|r̂ij − r0ij | > M

log p/n


= o(1).

Proof of Theorem 2. Let

∆̂ = R̂ − R0
= argmin

∆
F(∆) s.t. R0

+∆ ≽ εI and∆jj = 0,

where F(∆) =
1
2∥R

0
+∆− Rn∥

2
F + ρ|R0

+∆|1.

Define the event E = {|r̂ij − r0ij | ≤ ρ, ∀(i, j)} where ρ = M


log p
n as in Lemma 2. We show that if event E holds, the

global minimizer of our estimate defined in (2) satisfies ∥R̂ − R0
∥
2
F = Op(s log p/n).
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Consider any ∆ ∈ B for B = {∆ : ∆ = ∆T , R0
+ ∆ ≽ εI,∆jj = 0, j = 1, . . . , p, ∥∆∥F ≥ 5s1/2ρ}. Denote ∆A0 as an

matrix such that [∆A0 ]ij = [∆]ij for (i, j) ∈ A0 and [∆A0 ]ij = 0 for (i, j) ∉ A0. We see that

F(∆)− F(0) =
1
2
∥R0

+∆− Rn∥
2
F −

1
2
∥R0

− Rn∥
2
F + ρ(|R0

+∆|1 − |R0
|1)

=
1
2
∥∆∥

2
F +


∆, R0

− Rn

+ ρ|∆AC0

|1 + ρ(|∆A0 + R0
A0 |1 − |R0

A0 |1)

≥
1
2
∥∆∥

2
F − ρ|∆|1 + ρ|∆AC0

|1 − ρ|∆A0 |1 =
1
2
∥∆∥

2
F − 2ρ|∆A0 |1

≥
1
2
∥∆∥

2
F − 2ρs1/2∥∆∥F

> 0,

where A0 denotes the index set of the nonzero off-diagonal correlations in R0 again. Because G(∆) = F(∆)− F(0) is convex,
G(∆) = F(∆)− F(0) > 0 for any∆ ∈ B and G(0) = 0, we see that the global optimal solution ∆̂ that minimizes G(∆)must
satisfy ∆̂ ∉ B or ∥∆̂∥F ≤ 5s1/2ρ, i.e.

∥R̂ − R0
∥F ≤ 5

√
sρ.

Together with Lemma 2, we have proved

∥R̂ − R0
∥
2
F = Op


s
log p
n


. �

Proof of Corollary 1. Note that δ = o(


log p
n ). By Lemma 2 and min(i,j)∈A0 r

0
ij ≫


log p
n , if R̂ij = 0 in (3) and (i, j) ∈ Ω , then

(i, j) ∈ AC
0 with probability tending to one. All the following arguments are conditional on event B defined in the proof of

Theorem 2 and the event {R̂ij = 0, (R0)ij = 0, (i, j) ∈ Ω}. Without loss of generality, it suffices to prove the corollary when
δ = 0.

The proof to show ∥R̂ − R0
∥
2
F = Op


s log pn


is similar to that of Theorem 2, and is thus omitted. From it, we have

∥R̂ − R0
∥
2

≤ ∥R̂ − R0
∥
2
F = Op


s
log p
n


,

where ∥ · ∥ is the spectral norm. By the Weyl inequality vi+j−1(A1 + A2) ≤ vi(A1) + vj(A2) for Hermitian matrices A1 and

A2, we have vp(R̂) ≥ vp(R0) − v1(R0
− R̂) > 0 by assumption vp(R0) ≫


s log pn , meaning that R̂ is positive definite with

probability tending to one.
Note that the above argument also holds true if the positive definite constraint R ≽ εI is removed. Therefore, with

probability tending to one,

R̂ij = sign((Rn)ij)


|(Rn)ij| −

ρ

Wij


+

,

where (a)+ > 0 for a > 0, and (a)+ = 0 otherwise, which is the soft-thresholding estimator of (Rn)ij with an adaptive

threshold ρ

Wij
. Now we have the assumptions that min(i,j)∈A0 r

0
ij ≫


log p
n , ρ = M


log p
n min(i,j)∈A0(Rn)ij andWij = 1/|(Rn)ij|,

and the conclusion of Lemma 2.
Case 1: If (i, j) ∈ AC

0 for i ≠ j, we have

|(Rn)ij| −
ρ

Wij
= Op


log p
n


− M


log p
n

min
(i,j)∈A0

(Rn)ij/ max
(i,j)∉A0,i≠j

(Rn)ij < 0.

Thus, R̂ij = 0 with probability tending to one.

Case 2: If (i, j) ∈ A0, we have |(Rn)ij|−
ρ

Wij
≥ min(i,j)∈A0 |(Rn)ij|−

M


log p
n min(i,j)∈A0 (Rn)ij

(Rn)ij
> 0. It follows that R̂ij ≠ 0 for (i, j) ∈ A0

with probability tending to one.
The proof is completed. �
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