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Abstract. We present two second-order algorithms, one for solving a class of finite generalized
min-max problems and one for solving semi-infinite generalized min-max problems. Our algorithms
make use of optimality functions based on second-order approximations to the cost function and of
corresponding search direction functions. Under reasonable assumptions we prove that both of these
algorithms converge Q-superlinearly, with rate at least 3/2.
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1. Introduction. As is also the case with ordinary min-max problems, general-
ized min-max problems can be either finite or semi-infinite. Both are of the form

P min
x∈�n

f0(x),(1.1)

where

f0(x) = F (ψ(x)) ,(1.2)

with F : �m → � is a smooth function and ψ : �n → �m is a nonsmooth, vector-
valued function. In the case of generalized finite min-max problems, the components
of ψ(·) are of the form1

ψj(x) = max
k∈qj

f j,k(x) ,(1.3)

where the functions f j,k : �n → �, j ∈ m and k ∈ qj, are continuously differentiable
and the sets qj := {1, 2, ..., qj} are of finite cardinality.2

In semi-infinite generalized min-max problems the components of ψ(·) are of the
form

ψj(x) = max
yj∈Yj

φj(x, yj) ,(1.4)
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938 ELIJAH POLAK, LIQUN QI, AND DEFENG SUN

where the functions φj : �n ×�mj → �, j ∈ m, and Yj ⊂ �mj , j ∈ m.

Finite generalized min-max problems are obviously a special case of semi-infinite
generalized min-max problems, since when the sets

Yj = {yj,k}k∈qj
,(1.5)

we can define the functions f j,k(x) by

f j,k(x) := φj(x, yj,k) .(1.6)

The best known generalized min-max problem occurs when an optimization prob-
lem with a max function cost and equality and inequality constraints is set up for so-
lution using exact penalty functions, which results in an unconstrained optimization
problem with f0(x) in (1.1) of the form

f0(x) = max
i∈p

ci(x) + πe

q∑
j=1

|gj(x)|+ πi

r∑
k=1

max{0, fk(x)} ,(1.7)

where πe and πi are two positive penalty parameters.

Another simple example occurs in a least squares problem involving max func-
tions, in which case

f0(x) =

q∑
j=1

ψj(x)2 ,(1.8)

where each ψj(x) is as in (1.3).

As a last example, in trying to approximate a structural optimization problem,
the aim of which was to minimize the sum of the probability of failure3 plus the cost
of the steel in the structure, using linearizations of a state-limit function, we obtained
a cost function of the form

f0(x) = F (−a/(ψ(x) + b)),(1.9)

where F ′(y) > 0, a > 0,

ψ(x) = max
u∈Bρ

g(x, u) ,(1.10)

Bρ is a ball of radius ρ, centered at the origin in the space of the random variables
u, and g(x, u) is a smooth state-limit function which defined the boundary between
outcomes that result in structural failure from those that do not [4].

Functions of the form f0(x) = F (ψ(x)), with ψ(·) as in (1.4), are the best known
examples of quasi-differentiable functions and are treated in depth in [3]. Hence
generalized min-max problems can be solved using algorithms developed for quasi-
differentiable functions; see, e.g., [3, 6, 7, 8]. Under the additional assumption that
∂F (y)/∂yj > 0 for all y ∈ �m and j = 1, . . . ,m, finite generalized min-max problems

3The probability of failure was given by
∫
g(x,u)≥0

φ(u)du, with φ(·) the normal probability

density function.
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SECOND-ORDER ALGORITHMS 939

can be solved using transformations4 into a smooth, constrained nonlinear program-
ming problem (see, e.g., [1, 5, 9]). Direct methods that depend on the assumption
that ∂F (y)/∂yj > 0 for all y ∈ �m and j = 1, . . . ,m can be found, for example, in
[6, 8] and in [17].

We will consider semi-infinite generalized min-max problems under the following
hypotheses.
Assumption 1.1. We will assume that
(a) the functions F (·) and φj(·, y), j ∈ m, y ∈ Yj , are at least once continuously

differentiable;
(b) there exists a positive number cF > 0 such that ∂F (y)/∂yj ≥ cF for all

y ∈ �m and j ∈ m;
(c) the sets Yj are either compact sets of infinite cardinality, or sets of finite

cardinality, of the form given in (1.5).
Parts (a) and (b) of Assumption 1.1 ensure that when both the F (·) and the ψj(·)

are convex, the function f0(·) is also convex. In addition, as we will see, when all
parts of Assumption 1.1 hold, the function f0(·) has a subgradient. In [17], this fact
was used in defining an optimality function and an associated descent direction for the
problem P and in extending the Pshenichnyi–Pironneau–Polak (PPP) Algorithm 4.1
in [13] (see also [18, 10, 11]) to finite generalized min-max problems and the Polak–He
PPP Rate-Preserving Algorithm 3.4.9 in [13] (see also [14]) to semi-infinite generalized
min-max problems.

In this paper we make use of the following observations, described in section 3.3
of [13] and also used in [15] and [16], for constructing Q-superlinearly converging
algorithms for solving finite and semi-infinite min-max problems, of the form (1.1)
and (1.2).

First, suppose that the sets Yj , j ∈ m, are as in (1.5), i.e., they are of finite
cardinality; that the cost function f0(·) is strongly convex at the minimizer x̂, i.e.,
there exist α < ∞ such that

f0(xi)− f0(x̂) ≥ α‖xi − x̂‖2 ;(1.11)

and that we have a local model f̂0(xi, x − xi) for the cost function at xi, with the
property that for some κ < ∞,

|f0(x)− f̂0(xi, x− xi)| ≤ κ‖x− xi‖3 .(1.12)

Then, a local algorithm of the form

xi+1 ∈ arg min
x∈�n

f̂0(xi, x− xi)(1.13)

converges superlinearly, and, in particular, there exists a κ′ < ∞ such that

‖xi+1 − x̂‖ ≤ κ′‖xi − x̂‖3/2 .(1.14)

4These transformations result in a smooth problem with more variables than in the nonsmooth
problem. There is a fair bit of anecdotal evidence that they can induce considerable ill-conditioning
in the smooth problem because they introduce arbitrary scaling. In particular, all methods based
on the smooth transformations require the linear independent constraint qualification (LICQ) to be
satisfied, which is unlikely to be true for the problem considered here, and some of these methods also
require the strict complementarity condition to hold. Instead of using smooth transformations, we
directly exploit the problem structure to avoid assuming either LICQ or the strict complementarity
condition. However, we do need to solve a slightly more complicated subproblem at each iteration
than methods based on smooth transformations.

D
ow

nl
oa

de
d 

07
/3

1/
16

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



940 ELIJAH POLAK, LIQUN QI, AND DEFENG SUN

Next, consider a problem P, with a unique solution x̂, and a sequence of approx-
imating problems PN , with unique solutions x̂N , such that x̂N → x̂, as N → ∞.
Suppose we have an algorithm for solving the problems PN such that the iterates
that it constructs satisfy the relation

‖xi+1 − x̂N‖ ≤ γ‖xi − x̂N‖τ(1.15)

for some γ < ∞ and τ > 1. If we choose N at each iteration so that

‖x̂N − x̂‖ ≤ γ′‖xi − x̂N‖σ(1.16)

for some γ′ < ∞ and any 1 < τ < σ, then there exists a γ′′ such that

‖xi+1 − x̂‖ ≤ γ′′‖xi − x̂‖τ .(1.17)

Note that our convergence analysis is heavily dependent on Assumption 2.4, to
be introduced in section 2, and hence our results are valid only for convex problems.

In section 2, we present a continuous optimality function and its associated search
direction function which, together with a backstepping rule, constitute the backbone of
our algorithms. In section 3, we extend the Polak–Mayne–Higgins Newton’s method
[15], for solving finite min-max problems, to generalized finite min-max problems.
We prove the Q-superlinear convergence of this extension in section 4. In section 5,
we make use of the theory of consistent approximations developed in [13] and the
algorithm presented in section 3 to develop an algorithm for solving generalized semi-
infinite min-max problems and prove its convergence and Q-superlinear convergence.
Section 6 is devoted to some numerical results to demonstrate the behavior of the
proposed algorithms. We sum up in the concluding section 7.

2. Optimality conditions. We will now present optimality conditions for the
semi-infinite generalized min-max problem, defined in (1.1), (1.2), (1.4), both in “clas-
sical” form and in terms of an optimality function which leads to a superlinearly
converging second-order algorithm.

Lemma 2.1 (see [17]). Suppose that F : �m → � is continuously differentiable
and that ψ : �n → �m is a locally Lipschitz continuous function that has directional
derivatives at every x ∈ �n. Let f0 : �n → � be defined by

f0(x) = F (ψ(x)) .(2.1)

Then, given any x ∈ �n, and any direction vector h ∈ �n, the function f0(·) has a
directional derivative df0(x;h) which is given by

df0(x;h) = 〈∇F (ψ(x)), dψ(x;h)〉 .(2.2)

Suppose that Assumption 1.1 is satisfied. Then it follows from Lemma 2.1 that the
directional derivative of f0(·), at a point x ∈ �n in the direction h, is given by



df0(x;h) =
∑
j∈m

∂F

∂yj
(ψ(x))dψj(x;h)

=
∑
j∈m

∂F

∂yj
(ψ(x)) max

yj∈Ŷj(x)
〈∇xφ

j(x, yj), h〉,
(2.3)
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SECOND-ORDER ALGORITHMS 941

where

Ŷj(x) := {yj ∈ Yj | φj(x, yj) = ψj(x)}.(2.4)

When all the sets Yj are as in (1.5), (2.3) assumes the form

df0(x;h) =
∑
j∈m

∂F

∂yj
(ψ(x)) max

k∈q̂j(x)
〈∇f j,k(x), h〉 ,(2.5)

where the functions f j,k(·) are defined by

f j,k(x) := φj(x, yj,k), k ∈ qj,(2.6)

and the sets q̂j(x) by

q̂j(x) := {k ∈ qj | f j,k(x) = ψj(x)} .(2.7)

Hence the following result is obvious.
Theorem 2.2. Suppose that x̂ is a local minimizer for the problem (1.1), (1.2),

(1.4). Then for all h ∈ �n,


df0(x̂;h) =
∑
j∈m

∂F

∂yj
(ψ(x̂))dψj(x̂;h)

=
∑
j∈m

∂F

∂yj
(ψ(x̂)) max

yj∈Ŷj(x̂)
〈∇xφ

j(x̂, yj), h〉 ≥ 0 .

(2.8)

Furthermore, (2.8) holds if and only if 0 ∈ ∂f0(x̂), where the subgradient ∂f0(x̂) is
given by

∂f0(x̂) =
∑
j∈m

{
convyj∈Ŷj(x̂)

{
∂F

∂yj
(ψ(x̂))∇xφ

j(x̂, yj)

}}
.(2.9)

Since (2.8) is a necessary condition of optimality, any point x̂ ∈ �n that satisfies
(2.8) will be called stationary.

When all the sets Yj are of the form (1.5), the expressions (2.8) and (2.9) assume
the following form:

df0(x̂;h) =
∑
j∈m

∂F

∂yj
(ψ(x̂)) max

k∈q̂j(x̂)
〈∇f j,k(x̂), h〉 ≥ 0 ∀ h ∈ �n,(2.10)

∂f0(x̂) =
∑
j∈m

convk∈q̂j(x̂)

{
∂F

∂yj
(ψ(x̂))∇f j,k(x̂)

}
.(2.11)

Definition 2.3. We will say that θ : �n → � is an optimality function for
problem (1.1), (1.2), (1.4) if

(a) θ(·) is upper semicontinuous,
(b) θ(x) ≤ 0 for all x ∈ �n, and
(c) for any x̂ ∈ �n, (2.8) holds if and only if θ(x̂) = 0.
Assumption 2.4. We will assume that
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942 ELIJAH POLAK, LIQUN QI, AND DEFENG SUN

(a) the functions φj(·, yj), j ∈ m, yj ∈ Yj , and F (·), in (1.1), (1.2), (1.4), are
twice Lipschitz continuously differentiable on bounded sets,

(b) the functions φj(·, yj), ∇xφ
j(·, yj), and ∇2

xφ
j(·, yj) are locally Lipschitz con-

tinuous, j ∈ m, yj ∈ Yj , and
(c) there exist constants 0 < c ≤ C < ∞, such that for all j ∈ m, yj ∈ Yj , x ∈ �n,

h ∈ �n, and w ∈ �m,

c‖h‖2 ≤ 〈h,∇2
xφ

j(x, yj)h〉 ≤ C‖h‖2(2.12)

and

0 ≤ 〈w,∇2F (ψ(x))w〉 ≤ C‖w‖2.(2.13)

For the sake of convenience, for any x, h ∈ �n and w ∈ �m, we define

u(x, h, w) := 〈∇F (ψ(x)), ψ̂(x, h)− ψ(x) + w〉(2.14)

and

v(x, h, w) := 1
2 〈ψ̂(x, h)− ψ(x) + w,∇2F (ψ(x))(ψ̂(x, h)− ψ(x) + w)〉,(2.15)

where ψ̂(x, h) = (ψ̂1(x, h), . . . , ψ̂m(x, h)), and

ψ̂j(x, h) := max
yj∈Yj

{φj(x, yj) + 〈∇xφ
j(x, yj), h〉+ 1

2 〈h,∇2
xφ

j(x, yj)h〉}.(2.16)

The reason for the introduction of the artificial variable w is as follows. The
function

f̃0(x, h) := F (ψ(x)) + u(x, h, 0) + v(x, h, 0)(2.17)

is a perfectly good second-order approximation to F (ψ(x+h)), but unfortunately, it is
not always convex and hence leads to problems in developing an algorithm for solving
semi-infinite generalized min-max problems. By introducing the artificial variable w,
we can define the function

f̂0(x, h) := min
w∈�m

+

{F (ψ(x)) + u(x, h, w) + v(x, h, w)}(2.18)

which, as we will later see, is a convex second-order approximation to F (ψ(x + h))
and hence much more useful in algorithm construction.

We define the function θ : �n → � and the associated search direction function
H : �n → �n by

θ(x) := min
h∈�n

{ min
w∈�m

+

[u(x, h, w) + v(x, h, w)]}(2.19)

and

H(x) := arg min
h∈�n

{ min
w∈�m

+

[u(x, h, w) + v(x, h, w)]} .(2.20)

Note that

θ(x) = min
h∈�n

{f̂0(x, h)− f0(x)}.(2.21)
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SECOND-ORDER ALGORITHMS 943

We will shortly see that the function θ(·) is an optimality function for the problem
(1.1), (1.2), (1.4). For any y, δy ∈ �m, let

F̂ (y, δy) := min
w∈�m

+

{F (y) + 〈∇F (y), δy + w〉+ 1
2 〈δy + w,∇2F (y)(δy + w)〉}.(2.22)

Lemma 2.5. Suppose that Assumptions 1.1 and 2.4 are satisfied. For any y, δy ∈
�m, let Ω∗(y, δy) ⊂ �m

+ be the solution set of (2.22). Then Ω∗(y, δy) is nonempty and
compact and for any w∗ ∈ Ω∗(y, δy), we have

∇F (y) +∇2F (y)δy +∇2F (y)w∗ ≥ 0.(2.23)

Proof. Since ∇F (y) > 0 and ∇2F (y) is positive semidefinite, for any w ∈ �m
+

and ‖w‖ → ∞ we have

F (y) + 〈∇F (y), δy + w〉+ 1
2 〈δy + w,∇2F (y)(δy + w)〉 → +∞.(2.24)

Thus, Ω∗(y, δy) is nonempty and compact.
Suppose that w∗ ∈ Ω∗(y, δy). Then w∗ satisfies the following first-order optimality

conditions which follow directly from (and are equivalent to) the KKT conditions:


∇F (y) +∇2F (y)(δy + w∗)− λ∗ = 0,

w∗ ≥ 0, λ∗ ≥ 0, 〈w∗, λ∗〉 = 0,
(2.25)

i.e., 


∇F (y) +∇2F (y)(δy + w∗) ≥ 0,

w∗ ≥ 0,

〈w∗,∇F (y) +∇2F (y)(δy + w∗)〉 = 0.

(2.26)

Clearly, (2.26) implies that for any w∗ ∈ Ω∗(y, δy), we have

∇F (y) +∇2F (y)δy +∇2F (y)w∗ ≥ 0.(2.27)

Lemma 2.6. Suppose that Assumptions 1.1 and 2.4 are satisfied. Then for any
z ∈ �n there exists an ε > 0 such that for all h ∈ �n with ‖h‖ ≤ ε and for all x ∈ �n

with ‖x− z‖ ≤ ε we have

f̂0(x, h) = F (ψ(x)) + u(x, h, 0) + v(x, h, 0),(2.28)

i.e.,

f̂0(x, h) = f̃0(x, h),(2.29)

where f̃0(·, ·) is defined by (2.17).
Proof. Since F (ψ(x)) + u(x, h, ·) + v(x, h, ·) is a convex quadratic function, any

w ∈ �m satisfying the first-order conditions


w ≥ 0,

∇F (ψ(x)) +∇2F (ψ(x))(ψ̂(x, h)− ψ(x) + w) ≥ 0,

〈w,∇F (ψ(x)) +∇2F (ψ(x))(ψ̂(x, h)− ψ(x) + w)〉 = 0

(2.30)D
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944 ELIJAH POLAK, LIQUN QI, AND DEFENG SUN

is a solution of (2.18). Then, because ∂F (y)/∂yj ≥ cF , for every j ∈ m and y ∈ �m,

and ψ̂(·, ·) is uniformly continuous on any compact set and ψ̂(x, 0) = ψ(x), we see
that for any z ∈ �n there exists an ε > 0 such that for all h ∈ �n with ‖h‖ ≤ ε and
for all x ∈ �n with ‖x− z‖ ≤ ε, w = 0 satisfies (2.30). This implies that for all those
h and x, we have

f̂0(x, h) = F (ψ(x)) + u(x, h, 0) + v(x, h, 0) = f̃0(x, h).(2.31)

Hence our proof is complete.
The above lemma shows that f̂0(x, h) is identical to f̃0(x, h) for all h sufficiently

small. This fact will be used in proving our superlinear convergence results.
In general, f̃0(x, h) is not convex in h. We will now show that f̂0(x, h) is convex

in h.
Lemma 2.7. Suppose that Assumptions 1.1 and 2.4 are satisfied. Then for any

fixed x ∈ �n, f̂0(x, ·) is a convex function. Moreover, f̂0(·, ·) is continuous.
Proof. First we will show that f̂0(x, ·) is a convex function. For any y ∈ �m and

δy ∈ �m, we have

F̂ (y, δy) = F (y) + 〈∇F (y), δy〉+ 1
2 〈δy,∇2F (y)δy〉+ S(δy),(2.32)

where

S(δy) = min
w∈�m

+

〈∇F (y) +∇2F (y)δy, w〉+ 1
2 〈w,∇2F (y)w〉 .(2.33)

It is easy to verify that S(δy) is a concave function and that its subgradient is given
by

∂S(δy) = conv{∇2F (y)w∗ : w∗ ∈ Ω∗(y, δy)},(2.34)

where Ω∗(y, δy) ⊂ �m
+ is the solution set of (2.33). It now follows from (2.32) that for

any y ∈ �m, F̂ (y, ·) is locally Lipschitz continuous and that its generalized gradient
at δy in the sense of Clarke [2] is given by

∂δyF̂ (y, δy) = conv{∇F (y) +∇2F (y)δy +∇2F (y)w∗ : w∗ ∈ Ω∗(y, δy)}.(2.35)

Since, by Lemma 2.5, for any w∗ ∈ Ω∗(y, δy),

∇F (y) +∇2F (y)δy +∇2F (y)w∗ ≥ 0,(2.36)

we conclude that s ≥ 0 for any s ∈ ∂δyF̂ (y, δy). Hence, since ψ̂j(x, ·) is convex for

every j ∈ {1, . . . ,m}, it follows that f̂0(x, h) = F̂ (ψ(x), ψ̂(x, h) − ψ(x)) is convex in
h ∈ �n (because it is the composition of a convex function with positive elements in
the generalized gradient and a vector function whose components are convex).

Next, we will prove that f̂0(x, h) is continuous. First, since ∂F (y)/∂yj ≥ cF > 0
and ∇2F (y) is positive semidefinite for all j ∈ {1, . . . ,m} and y ∈ �m, it follows
from (2.22) that Ω∗(y, δy) is uniformly bounded in a neighborhood of given point
(z, δz) ∈ �m×�m. It now follows from Corollary 5.4.2 in [13] that F̂ (·, ·) is continuous.
Hence

F̂ (y, δy) → F̂ (z, δz) as y → z, δy → δz ,(2.37)

D
ow

nl
oa

de
d 

07
/3

1/
16

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



SECOND-ORDER ALGORITHMS 945

which implies that f̂0(x, h) is continuous on �n ×�n because

f̂0(x, h) = F̂ (ψ(x), ψ̂(x, h)− ψ(x))(2.38)

with y := ψ(x) and δy := ψ̂(x, h)− ψ(x).
The following theorem shows that θ(·) is indeed an optimality function for the

problem (1.1), (1.2), (1.4) and that the set-valued function H(·) is a descent direction
function for f0(·).

Theorem 2.8. Suppose that Assumptions 1.1 and 2.4 are satisfied. Consider the
functions θ(·) and H(·) defined by (2.19) and (2.20), respectively. Then the following
hold:

(i) For all x ∈ �n,

θ(x) ≤ 0 .(2.39)

(ii) For all x ∈ �n,

df0(x;h) ≤ θ(x)− γ‖h‖2 ∀ h ∈ H(x),(2.40)

where df0(x;h) is the directional derivative of f0 at x in the direction h and γ =
1
2mcF c.

(iii) For any x ∈ �n, 0 ∈ ∂f0(x) if and only if θ(x) = 0, where ∂f0(x) is the
subgradient of f0(·) at x, defined in (2.9). Moreover, for any x ∈ �n such that
θ(x) = 0 we have H(x) = {0}.

(iv) The set-valued map H(·) is (a) bounded on bounded sets, (b) compact valued,
and (c) outer-semicontinuous, i.e., for any x ∈ �n, H(x) is closed and, for every
compact set S such that H(x) ∩ S = ∅, there exists a ρ > 0 such that H(z) ∩ S = ∅
for all z ∈ B(x, ρ) := {y ∈ �n|‖y − x‖ ≤ ρ}.

(v) The function θ(·) is continuous.
Proof. (i) Since h = 0 is admissible in (2.19) that θ(x) ≤ 0 for all x ∈ �n.
(ii) Since Ŷj(x) ⊂ Yj , it follows directly from the definition of θ(x) in (2.19) that

for any h ∈ H(x),


θ(x) ≥ min
w∈�m

+

〈∇F (ψ(x)), ψ̂(x, h)− ψ(x) + w〉

= 〈∇F (ψ(x)), ψ̂(x, h)− ψ(x)〉

≥
∑
j∈m

∂F

∂yj
(ψ(x)) max

yj∈Ŷj(x)
{φj(x, yj)− ψj(x)

+〈∇xφ
j(x, yj), h〉+ 1

2c‖h‖2}

≥ df0(x, h) + 1
2mcF c‖h‖2.

(2.41)

Thus we have shown that (2.40) holds.
(iii) For any x ∈ �n, let

η(x) := min
h∈�n

min
w∈�m

+

u(x, h, w) = min
h∈�n

u(x, h, 0) .(2.42)

We will first prove that

θ(x) = 0 ⇐⇒ η(x) = 0.(2.43)
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946 ELIJAH POLAK, LIQUN QI, AND DEFENG SUN

It is easy to see that η(x) = 0 ⇒ θ(x) = 0 because θ(x) ≥ η(x) and θ(x) ≤ 0. Hence
we only need to show that θ(x) = 0 ⇒ η(x) = 0.

Suppose that θ(x) = 0 but η(x) < 0. Then, there exists an h′ ∈ �n such that
η(x) = u(x, h′, 0) < 0.

For any j ∈ {1, . . . ,m}, we have


ψ̂j(x, h)− ψj(x)

= max
yj∈Yj

{φj(x, yj) + 〈∇xφ
j(x, yj), h〉+ 1

2 〈h,∇xxφ
j(x, yj)h〉} − ψj(x)

≤ max
yj∈Yj

{〈∇xφ
j(x, yj), h〉+ 1

2 〈h,∇xxφ
j(x, yj)h〉}

(2.44)

and 


ψ̂j(x, h)− ψj(x)

≥ max
yj∈Ŷj(x)

{φj(x, yj) + 〈∇xφ
j(x, yj), h〉+ 1

2 〈h,∇xxφ
j(x, yj)h〉} − ψj(x)

= max
yj∈Ŷj(x)

{〈∇xφ
j(x, yj), h〉+ 1

2 〈h,∇xxφ
j(x, yj)h〉}

≥ min
yj∈Yj

{〈∇xφ
j(x, yj), h〉+ 1

2 〈h,∇xxφ
j(x, yj)h〉} .

(2.45)

Thus, there exists a constant C0 such that

‖ψ̂(x, h)− ψ(x)‖ ≤ C0 max{‖h‖, ‖h‖2} ∀ h ∈ �n,(2.46)

which further implies that there exists a constant C1 such that

0 ≤ v(x, h, 0) ≤ C1 max{‖h‖2, ‖h‖4} ∀ h ∈ �n.(2.47)

Since u(x, ·, 0) is a convex function and u(x, 0, 0) = 0, for λ > 0 sufficiently small we
have 



u(x, λh′, 0) + v(x, λh′, 0) ≤ λu(x, h′, 0) + λ2C1‖h′‖2

= λη(x) + λ2C1‖h′‖2

< 0,

(2.48)

which contradicts that θ(x) = 0. Hence θ(x) = 0 ⇒ η(x) = 0.
Next, with ∂f0(x) the subgradient of f0(·) at x, defined in (2.9), by emulating

the proof of Lemma 2.5.5 in [13], we can prove that for any x ∈ �n, 0 ∈ ∂f0(x) if and
only if η(x) = 0, and therefore if and only if θ(x) = 0.

Finally we will show that for any x ∈ �n such that θ(x) = 0 we have H(x) = {0}.
For the sake of contradiction, suppose that there exists an x ∈ �n such that θ(x) = 0
but H(x) �= {0}. Then there exist 0 �= h ∈ �n and w ∈ �m

+ such that

u(x, h, w) + v(x, h, w) = θ(x) = 0,(2.49)
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SECOND-ORDER ALGORITHMS 947

which, together with the fact that v(x, h, w) ≥ 0 implies that u(x, h, w) ≤ 0. Hence
we conclude that both u(x, h, w) = 0 and w = 0 because otherwise η(x) ≤ u(x, h, 0) ≤
u(x, h, w) < 0, which contradicts (2.43). However, η(x) = u(x, h, 0) = 0 implies that
h = 0 because u(x, h, 0) is strongly convex in h and u(x, 0, 0) = 0.

(iv) According to our definition, for each h ∈ �n there exists a w(h) ∈ �m
+ such

that

f̂0(x, h) = F (ψ(x)) + u(x, h, w(h)) + v(x, h, w(h)),(2.50)

which, together with the fact that ∇F (y) > 0, y ∈ �m and v(x, h, w(h)) ≥ 0, implies
that

f̂0(x, h) ≥ F (ψ(x)) + u(x, h, w(h)) ≥ F (ψ(x)) + u(x, h, 0).(2.51)

Since for each j ∈ {1, . . . ,m} and h ∈ �n,

ψ̂j(x, h) ≥ max
yj∈Yj

{φj(x, yj) + 〈∇xφ
j(x, yj), h〉+ 1

2c〈h, h〉} ,(2.52)

it follows from (2.51) that for all s in any bounded neighborhood of x,

f̂0(s, h) → ∞ as ‖h‖ → ∞.(2.53)

Consequently, for any x ∈ �n, H(x) is nonempty and bounded and H(·) is bounded
on bounded sets. Since f̂0(x, h) is continuous (Lemma 2.7), it follows that H(x) is
closed. Next we will prove that for every x ∈ �n and every compact set S such that
H(x)∩S = ∅, there exists a ρ > 0 such that H(z)∩S = ∅ for all z ∈ B(x, ρ). Suppose
not; then there exists an x ∈ �n and a compact set S such that H(x) ∩ S = ∅ and a
sequence {xi} converging to x such that H(xi)∩S �= ∅. Hence there exists a sequence
{hi} such that hi ∈ H(xi) ∩ S. Since S is a compact set, without loss of generality,
we can assume that

hi → h̄ ∈ S.(2.54)

By definition of H(xi),

f̂0(xi, hi) ≤ f̂0(xi, h) ∀ h ∈ �n.(2.55)

Since f̂0(·, ·) is continuous, it follows from (2.55) that

f̂0(x, h̄) ≤ f̂0(x, h) ∀ h ∈ �n,(2.56)

which implies that h̄ ∈ H(x). This contradicts that H(x) ∩ S = ∅. Thus, we have
shown that H(·) is outer-semicontinuous.

(v) Finally, it follows from Corollary 5.4.2 in Polak [13] that θ is
continuous.

By introducing an additional variable, we can rewrite the expression for θ(x),
defined in (2.19), as follows:{

θ(x) = min
(p,h)

{〈∇F (ψ(x)), p〉+ 1
2 〈p,∇2F (ψ(x))p〉}

s.t. p− ψ̂(x, h) + ψ(x) ≥ 0.
(2.57)
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948 ELIJAH POLAK, LIQUN QI, AND DEFENG SUN

The constraints in (2.57) involve maximum functions, and hence (2.57) appears to
be a nonsmooth problem. However, (2.57) can be reformulated as a smooth problem
with quadratic cost and quadratic constraints, as follows:


θ(x) = min
(p,h)

{〈∇F (ψ(x)), p〉+ 1
2 〈p,∇2F (ψ(x))p〉}

s.t. pj − φj(x, yj)− 〈∇xφ
j(x, yj), h〉 − 1

2 〈h,∇2
xφ

j(x, yj)h〉+ ψj(x) ≥ 0,
j ∈ m, yj ∈ Yj .

(2.58)
Under the assumptions in this paper, (2.58) is convex, and hence can be solved using
the smoothing Newton method in [19] (see [19, 21] for the details of the implemen-
tation of the smoothing Newton method as well as section 6 for numerical results).
Alternatively, one can use primal-dual interior point methods, described in [20] and
references therein.

Theorem 2.9. Suppose that Assumptions 1.1 and 2.4 are satisfied and the sets
Yj are as in (1.5). For any x ∈ �n, let Γ(x) be the solution set of (2.57), i.e., any
(p, h) ∈ Γ(x) solves (2.57). Then

(i) problem (2.57) is a convex quadratic problem with convex quadratic constraints;
(ii) for x ∈ �n, Γ(x) is nonempty and compact and Γ(·) is outer-semicontinuous

and bounded on bounded sets;
(iii) if z ∈ �n is such that θ(z) = 0, then Γ(z) = {(0, 0)} and there exist a

neighborhood N(z) of z and an ε > 0 such that for any (p, h) ∈ Γ(x), x ∈ N(z), we
have

θ(x) ≤ −ε‖h‖2.(2.59)

Proof. (i) Under the conditions of Assumptions 1.1 and 2.4, ∇2F (ψ(x)) is positive

semidefinite and for each j ∈ {1, 2, . . . ,m}, ψ̂j(x, ·) is strongly convex. Hence (2.57)
is a convex quadratic problem with convex quadratic constraints.

(ii) Since for all z in a bounded neighborhood N(x) of x and j ∈ {1, 2, . . . ,m},

ψ̂j(z, h)− ψj(z) → +∞ as ‖h‖ → ∞,(2.60)

it follows that for all z ∈ N(x) and (p, h) ∈ �m ×�n satisfying

p ≥ ψ̂(z, h)− ψ(z),(2.61)

we have

〈∇F (ψ(z)), p〉+ 1
2 〈p,∇2F (ψ(z))p〉 ≥ cF

∑
j∈m

pj → ∞ as ‖(p, h)‖ → ∞.(2.62)

Hence, for all x ∈ �n, Γ(x) is nonempty and compact, and Γ(·) is bounded on bounded
sets.

The outer-semicontinuity of Γ(·) follows from the fact that θ(·) is continuous and
the constraint set in (2.57) is outer-semicontinuous.

(iii) Since z ∈ �n is such that θ(z) = 0, (0, 0) ∈ Γ(z). For any x ∈ �n, the KKT
conditions for (2.57) are


∇F (ψ(x)) +∇2F (ψ(x))p = λ,

0 ∈
∑
j∈m

λj∂hψ̂
j(x, h),

λ ≥ 0, p− ψ̂(x, h) + ψ(x) ≥ 0, λT (p− ψ̂(x, h) + ψ(x)) = 0,

(2.63)D
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SECOND-ORDER ALGORITHMS 949

where ∂hψ̂
j(x, h) is the subgradient of ψ̂j(x, h) with respect to h.

Suppose that (p, h) ∈ Γ(z). By (iii) of Theorem 2.8, we have h = 0. Hence it

follows from (2.63) and the fact that ψ̂(z, 0) = ψ(z) that

〈p,∇F (ψ(z))〉+ 〈p,∇2F (ψ(z))p〉 = 0,(2.64)

which implies that p = 0 because p ≥ 0, ∇F (ψ(z)) > 0 and ∇2F (ψ(z)) is positive
semidefinite. Thus, we have proved that Γ(z) = {(0, 0)}. Hence, since Γ(·) is outer-
semicontinuous, it follows that if x → z and (p, h) ∈ Γ(x), then

(p, h) → (0, 0) .(2.65)

It now follows from (2.63), (2.65), and the fact that for any y ∈ �m, ∂F (y)/∂yj ≥
cF > 0 for j ∈ {1, 2, . . . ,m} that there exists a neighborhood N(z) of z such that for
all x ∈ N(z), the multiplier λ in the KKT (2.63) must have all components positive
and hence for all x ∈ N(z), the KKT conditions for (2.57) become




∇F (ψ(x)) +∇2F (ψ(x))p = λ,

0 ∈
∑
j∈m

λj∂hψ̂
j(x, h),

λ > 0, p− ψ̂(x, h) + ψ(x) = 0.

(2.66)

Thus, for any x ∈ N(z) and j ∈ {1, 2, . . . ,m}, there exist nonnegative numbers
µj,k ∈ [0, 1] satisfying

∑
k∈qj

µj,k = 1 such that for any (p, h) ∈ Γ(x)

∑
j∈m

λj
∑
k∈qj

µj,k(∇f j,k(x) +∇2f j,k(x)h) = 0,(2.67)

where

λ = ∇F (ψ(x)) +∇2F (ψ(x))p > 0,(2.68)

and for any k ∈ qj such that

ψ̂j(x, h) > f j,k(x) + 〈∇f j,k(x), h〉+ 1
2 〈h,∇2f j,k(x)h〉,(2.69)

we have

µj,k = 0.(2.70)
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950 ELIJAH POLAK, LIQUN QI, AND DEFENG SUN

We conclude from (2.66), (2.67), and (2.68) that for all x ∈ N(z) and (p, h) ∈ Γ(x),


θ(x) = 〈∇F (ψ(x)), p〉+ 1
2 〈p,∇2F (ψ(x))p〉

= 〈λ, p〉 − 1
2 〈p,∇2F (ψ(x))p〉

≤ 〈λ, p〉

= 〈λ, ψ̂(x, h)− ψ(x)〉

=
∑
j∈m

λj
∑
k∈qj

µj,k[(f j,k(x)− ψj(x)) + 〈∇f j,k(x), h〉+ 1
2 〈h,∇2f j,k(x)h〉]

=
∑
j∈m

λj
∑
k∈qj

µj,k[(f j,k(x)− ψj(x))− 1
2 〈h,∇2f j,k(x)h〉]

≤
∑
j∈m

λj
∑
k∈qj

µj,k[(f j,k(x)− ψj(x))− 1
2c〈h, h〉]

≤ −1
2c‖h‖2

∑
j∈m

λj ,

(2.71)
where the last inequality follows from the fact that f j,k(x) ≤ ψj(x) for all k ∈ qj

and j ∈ m. By shrinking N(z) if necessary, we conclude from (2.68), (2.71), and
Assumptions 1.1 and 2.4 that there exists a positive number ε > 0 such that for all
x ∈ N(z) and (p, h) ∈ Γ(x), θ(x) ≤ −ε‖h‖2.

3. An algorithm for solving generalized finite min-max problems. An
algorithm for solving generalized finite min-max problems is obviously of interest in
its own right. However, we will also need it as a subroutine for our algorithms for
solving generalized semi-infinite min-max problems. Hence, for the time being, we
will assume that the sets Yj are of the form (1.5) and that the functions f j,k(·) are as
in (2.6). As a result, our generalized finite min-max problem assumes the form (1.1),
(1.2), (1.4), with 



min
x∈�n

f0(x)

f0(x) = F (ψ(x)),

ψ(x) = (ψ1(x), . . . , ψm(x)),

ψj(x) = max
k∈qj

f j,k(x), j ∈ m ,

(3.1)

where, in view of Assumption 1.1, the functions F (·) and f j,k(·), j ∈ m, k ∈ qj are
all continuously differentiable, where f j,k(·) are defined by (2.6).

We are now ready to state an algorithm for solving generalized finite min-max
problems. This algorithm is a generalization of the Polak–Mayne–Higgins Newton’s
algorithm for solving finite min-max problems [15].

Algorithm 3.1 (solves problem (3.1)).
Parameters. α ∈ (0, 1), β ∈ (0, 1), and δ > 0.
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SECOND-ORDER ALGORITHMS 951

Data. x0 ∈ �n.
Step 0. Set i = 0.
Step 1. Compute the optimality function value θi := θ(xi) and a search direction
hi ∈ H(xi) according to the formulae (2.19) and (2.20).
Step 2. If θi = 0, stop. Else, compute the step-size

λi = λ(xi) := max
k∈N

{βk| f0(xi + βkhi)− f0(xi)− βkαθi ≤ 0},(3.2)

where N := {0, 1, 2, . . .}.
Step 3. Set

xi+1 = xi + λihi,(3.3)

replace i by i+ 1, and go to Step 1.
Lemma 3.2 (see [17]). Suppose that Assumption 1.1 holds. Then for any y, y′ ∈

�m such that y′ ≥ y,

F (y′)− F (y) ≥ cF
∑
j∈m

(y′j − yj).(3.4)

Lemma 3.3 (see [17]). Suppose that Assumptions 1.1 and 2.4 are satisfied. Then
there exists a constant τ > 0 such that for all x, x′ ∈ �n and λ ∈ [0, 1],

f0(λx+ (1− λ)x′) ≤ λf0(x) + (1− λ)f0(x′)− 1
2τλ(1− λ)‖x− x′‖2.(3.5)

Theorem 3.4. Suppose that Assumptions 1.1 and 2.4 are satisfied and that all
the Yj, j ∈ m, are of the form (1.5), so that problem (1.1), (1.2), (1.4) reduces to
problem (3.1). If {xi}∞i=0 is an infinite sequence generated by Algorithm 3.1 and x∗ is
the unique solution of (3.1), then {xi}∞i=0 converges to x

∗.
Proof. Suppose that {xi}∞i=0 is an infinite sequence generated by Algorithm 3.1.

Since f(·) is strongly convex by Lemma 3.3, the sequence {xi}∞i=0 is bounded. Suppose
that x̂ is an accumulation point of this sequence. Since the cost function f0(·) is
continuous, f0(x̂) is an accumulation point of the cost sequence. Hence, since, by
construction, the cost sequence {f0(xi)}∞i=0 is monotone decreasing, it follows that
f0(xi) → f0(x̂), as i → ∞.

Now, for the sake of contradiction, suppose that θ(x̂) < 0. Since for any x ∈ �n,
H(x) is compact, and H(·) is bounded on bounded sets and is outer-semicontinuous
((iv) of Theorem 2.8), it follows from Theorem 5.3.7 (b) in Polak [13] that there

exists a subsequence {ji}∞i=0 of the integers such that xji → x̂ and hji → ĥ ∈ H(x̂),

as i → ∞. It follows from (ii) and (iii) of Theorem 2.8 that ĥ �= 0 and

df0(x̂; ĥ) ≤ θ(x̂)− γ‖ĥ‖2.(3.6)

Let ε > 0 be such that 0 < α − ε < 1. Then it follows from the definition of the
directional derivative of f0(·) that there exists a kε ∈ N such that


f0(x̂+ βkε ĥ)− f0(x̂) ≤ βkε(α− ε)df0(x̂; ĥ)

≤ βkε(α− ε)[θ(x̂)− γ‖ĥ‖2].

(3.7)
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952 ELIJAH POLAK, LIQUN QI, AND DEFENG SUN

Hence,

f0(x̂+ βkε ĥ)− f0(x̂)− βkεαθ(x̂) ≤ −βkε [εθ(x̂) + (α− ε)γ‖ĥ‖2].(3.8)

Now,

εθ(x̂) + (α− ε)γ‖ĥ‖2 > 0(3.9)

for all ε > 0 such that

ε < ε′ :=
αγ‖ĥ‖2

−θ(x̂) + γ‖ĥ‖2
.(3.10)

Let ε̂ := 1
2ε

′. Then, since f0(·) and θ(·) are continuous and hji → ĥ, as i → ∞, there
exists a ρ > 0 such that for all xji ∈ B(x̂; ρ),

f0(xji + βkε̂hji)− f0(xji)− βkε̂αθ(xji) < 0,(3.11)

which shows that for all xji ∈ B(x̂; ρ), λ(xji) ≥ βkε̂ . Next, since θ(·) is continuous,
there exists ρ̂ ∈ (0, ρ) such that for all xji ∈ B(x̂; ρ̂), θ(xji) ≤ 1

2θ(x̂). It therefore
follows from the step-size rule (3.2) that for all xji ∈ B(x̂; ρ̂),

f0(xji+1)− f0(xji) ≤ βkε̂αθ(xji) ≤ 1
2β

kε̂αθ(x̂) .(3.12)

Since {f0(xi)}∞i=0 is monotone decreasing, (3.12) implies that f0(xi) → −∞, as i →
∞, contradicting the fact that f0(xi) → f0(x̂), as i → ∞. Hence we conclude that
θ(x̂) = 0, and therefore that x̂ = x∗. Since by Lemma 3.3, f0(·) is strongly convex,
the whole sequence {xi} converges to x∗.

4. Rate of convergence of Algorithm 3.1. We will now show that (1.11)–
(1.13) hold for Algorithm 3.1.

Proposition 4.1. Suppose that Assumptions 1.1 and 2.4 are satisfied and that
x̂ is the unique minimizer of f0(·). Then for all x ∈ �n,

f0(x)− f0(x̂) ≥ 1
2ccFm‖x− x̂‖2.(4.1)

Proof. By Lemma 3.3, f0(·) is a strongly convex function. Hence, for any x ∈ �n

we have 


F (ψ(x))− F (ψ(x̂))

≥
∑
j∈m

∂F

∂yj
(ψ(x̂))(ψj(x)− ψj(x̂))

≥
∑
j∈m

∂F

∂yj
(ψ(x̂)) max

k∈qj(x)
{f j,k(x̂)− ψj(x̂)

+〈∇f j,k(x̂), x− x̂〉+ c
2‖x− x̂‖2}

≥
∑
j∈m

∂F

∂yj
(ψ(x̂)) max

k∈q̂j(x)
{〈∇f j,k(x̂), x− x̂〉+ c

2‖x− x̂‖2},

(4.2)
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SECOND-ORDER ALGORITHMS 953

where q̂j(x) is defined by (2.7). It now follows from (2.5) and (4.2) that

F (ψ(x))− F (ψ(x̂)) ≥ df0(x̂, x− x̂) +
mcF c

2
‖x− x̂‖2,(4.3)

Since df0(x̂, x− x̂) ≥ 0, (4.1) follows.
Proposition 4.2. Suppose that Assumptions 1.1 and 2.4 are satisfied. Then for

any compact convex set S there exists a κ > 0 such that for any x, z ∈ S,

|f0(x)− f̃0(z, x− z)| ≤ κ‖x− z‖3,(4.4)

where f̃0(z, x− z) was defined in (2.17).
Proof. First, it follows from Polak [13, Lemma 2.5.4] or [15] that there exists a

constant L1 < ∞ such that for any x, z ∈ �n,

|ψj(x)− ψ̂j(z, x− z)| ≤ L1

6
‖x− z‖3, j ∈ m.(4.5)

Let S ⊂ �n be a compact set, and let L2(≥ C) < ∞ be a constant associated with
S, such that for any z ∈ S,

‖∇F (ψ(z))‖ ≤ L2.(4.6)

Then for all x, z ∈ S, by the mean-value theorem, it holds that


f0(x) = F (ψ(x))

= F (ψ(z)) + 〈∇F (ψ(z)), ψ(x)− ψ(z)〉

+ 1
2 〈ψ(x)− ψ(z),∇2F (ψ(z))(ψ(x)− ψ(z))〉

+

∫ 1

0

t

∫ 1

0

〈ψ(x)− ψ(z), [∇2F (ψ(z) + st(ψ(x)− ψ(z)))

−∇2F (ψ(z))](ψ(x)− ψ(z))〉dsdt

≤ F (ψ(z)) + 〈∇F (ψ(z)), ψ(x)− ψ(z)〉

+ 1
2 〈ψ(x)− ψ(z),∇2F (ψ(z))(ψ(x)− ψ(z))〉+ L2

6 ‖ψ(x)− ψ(z)‖3

= f̃0(z, x− z) + 〈∇F (ψ(z)), ψ(x)− ψ̂(z, x− z)〉

+ 1
2 〈ψ(x)− ψ(z),∇2F (ψ(z))(ψ(x)− ψ(z))〉

− 1
2 〈ψ̂(z, x− z)− ψ(z),∇2F (ψ(z))(ψ̂(z, x− z)− ψ(z))〉

+L2

6 ‖ψ(x)− ψ(z)‖3 .

(4.7)

Thus, according to (4.5) and (4.7), we have


f0(x) ≤ f̃0(z, x− z) + L3‖x− z‖3 + L2

6 ‖ψ(x)− ψ(z)‖3

+ 1
2 〈ψ(x)− ψ(z),∇2F (ψ(z))(ψ(x)− ψ̂(z, x− z))〉

+ 1
2 〈ψ(x)− ψ̂(z, x− z),∇2F (ψ(z))(ψ̂(z, x− z)− ψ(z))〉,

(4.8)
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954 ELIJAH POLAK, LIQUN QI, AND DEFENG SUN

where L3 := mL2L1/6. For x, z ∈ S and j ∈ m, by the definition of ψ̂j(·, ·) (see
(2.16)), it holds that

ψ̂j(z, x− z)− ψj(z)

= max
k∈qj

{f j,k(z) + 〈∇f j,k(z), x− z〉+ 1
2 〈x− z,∇2f j,k(z)(x− z)〉} − ψj(z)

≤ max
k∈qj

f j,k(z) + max
k∈qj

{〈∇f j,k(z), x− z〉+ 1
2 〈x− z,∇2f j,k(z)(x− z)〉} − ψj(z)

= max
k∈qj

{〈∇f j,k(z), x− z〉+ 1
2 〈x− z,∇2f j,k(z)(x− z)〉}

and, on the other hand,

ψ̂j(z, x− z)− ψj(z)

= max
k∈qj

{f j,k(z) + 〈∇f j,k(z), x− z〉+ 1
2 〈x− z,∇2f j,k(z)(x− z)〉} − ψj(z)

≥ max
k∈q̂j(z)

f j,k(z) + 〈∇f j,k(z), x− z〉+ 1
2 〈x− z,∇2f j,k(z)(x− z)〉} − ψj(z)

= max
k∈q̂j(z)

{〈∇f j,k(z), x− z〉+ 1
2 〈x− z,∇2f j,k(z)(x− z)〉} ,

where the definition of q̂j(z) can be found in (2.7). Thus, since S is compact, there
exists a positive number L4 such that for all x, z ∈ S,

‖ψ̂(z, x− z)− ψ(z)‖ ≤ L4‖x− z‖.(4.9)

By the Lipschitzian property of ψ and (4.5) it follows that there exists a positive
number L5(≥ L4) such that for all x, z ∈ S,

‖ψ(x)− ψ(z)‖ ≤ L5‖x− z‖(4.10)

and

‖ψ(x)− ψ̂(z, x− z)‖ ≤ L5‖x− z‖2.(4.11)

Hence for all x, z ∈ S,

f0(x)− f̃0(z, x− z) ≤ κ‖x− z‖3(4.12)

with

κ := L3 +
L2L5

6
+ L2L

2
5.(4.13)

The other half of the inequality of (4.4) follows similarly (with κ as defined in
(4.13)).

Theorem 4.3. Suppose that Assumptions 1.1 and 2.4 are satisfied, that all the
Yj, j ∈ m are of the form (1.5), so that problem (1.1), (1.2), (1.4) reduces to problem
(3.1). If {xi}∞i=0 is a sequence constructed by Algorithm 3.1, in solving problem (3.1),
then, {xi}∞i=0 converges superlinearly with Q-order at least 3/2.
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SECOND-ORDER ALGORITHMS 955

Proof. First we will prove that after a finite number of iterations, the step-size λi

stabilizes to 1, so that eventually xi+1 = xi + hi holds for the sequence {xi}∞i=0. We
will then complete our proof by making use of results in [13, Corollary 2.5.8].

It follows from Theorem 3.4 that the sequence {xi}∞i=0 converges to the unique
minimizer x̂ of f0(·). Hence we conclude from Theorem 2.8 that

hi → 0 as i → ∞.(4.14)

In view of this, we conclude from Lemma 2.6 that there exist a positive number ε > 0
and a nonnegative integer i0 such that for all i ≥ i0,

f̂0(xi, hi) = u(xi, hi, 0) + v(xi, hi, 0) = f̃0(xi, hi) = min
h∈�n,‖h‖≤ε

f̃0(xi, h).(4.15)

Suppose that i0 is sufficiently large to ensure that for all i ≥ i0,

‖hi‖ ≤ ε, ‖xi − x̂‖ ≤ ε .(4.16)

Then, making use of (4.1), we find that, for i = i0, i0 + 1, i0 + 2, . . . ,


1
2ccFm‖xi + hi − x̂‖2

≤ f0(xi + hi)− f0(x̂)

= f0(xi + hi)− f̃0(xi, hi) + f̃0(xi, hi)− f0(x̂)

≤ f0(xi + hi)− f̃0(xi, hi) + f̃0(xi, x̂− xi)− f0(x̂),

(4.17)

because f̃0(xi, hi) ≤ f̃0(xi, x̂ − xi), by (4.15). It now follows from Proposition 4.2
that there exists a κ > 0 such that for all i ≥ i0,



1
2ccFm‖xi + hi − x̂‖2

≤ κ(‖xi + hi − xi‖3 + ‖xi − x̂‖3)

≤ κ[(‖xi + hi − x̂‖+ ‖xi − x̂‖)3 + ‖xi − x̂‖3].

(4.18)

Now, by Theorem 2.9, there exist a positive integer i1 ≥ i0 and an ε1 > 0 such
that for all i ≥ i1,

θ(xi) ≤ −ε1‖hi‖2.(4.19)

Next, Proposition 4.2 and (4.15) imply that for all i ≥ i1,


θ(xi) = f̂0(xi, hi)− f0(x)

= f̃0(xi, hi)− f0(x)

= f̃0(xi, hi)− f0(xi + hi) + f0(xi + hi)− f0(xi)

≥ −κ‖hi‖3 + f0(xi + hi)− f0(xi).

(4.20)
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956 ELIJAH POLAK, LIQUN QI, AND DEFENG SUN

Hence, from (4.20) and (4.19), we have


f0(xi + hi)− f0(xi)− αθ(xi) ≤ (1− α)θ(xi) + κ‖hi‖3

≤ −(1− α)ε1‖hi‖2 + κ‖hi‖3.
(4.21)

It now follows from (4.21) and the fact that hi → 0 as i → ∞ that for all i sufficiently
large,

xi+1 = xi + hi.(4.22)

We therefore conclude from [13, Corollary 2.5.8] or [15], (4.18), and (4.19) that {xi}∞i=0

converges to x̂ superlinearly with Q-order at least 3/2.

5. An algorithm for solving generalized semi-infinite min-max prob-
lems. We are now ready to tackle the generalized semi-infinite min-max problems
defined in (1.1), (1.2), (1.4). Such problems can be solved only by discretization tech-
niques. We will use discretizations that result in consistent approximations (as defined
in section 3.3 of [13]) and use them in conjunction with a master algorithm that calls
Algorithm 3.1 as a subroutine. We will see that under a reasonable assumption, the
resulting algorithm retains the rate of convergence of Algorithm 3.1.

5.1. Consistent approximations. Let N0 be a strictly positive integer, and,
for N ∈ N0 := {N0, N0 + 1, N0 + 2, . . .}, let Yj,N be finite cardinality subsets of Yj ,
j ∈ m, such that Yj,N ⊂ Yj,N+1 for all N and the closure of the set limYj,N is equal
to Yj , j ∈ m. Then we define the family of approximating problems PN, N ∈ N0, as
follows:

PN min
x∈�n

f0
N (x),(5.1)

where

f0
N (x) := F (ψN (x)),(5.2)

ψN (x) = (ψ1
N (x), . . . , ψm

N (x)), and for j ∈ m,

ψj
N (x) = max

yj∈Yj,N

φj(x, yj) .(5.3)

It should be clear that the approximating problems PN are of the form (3.1) and
that one can define optimality functions θN (·) for them of the form (2.19). We will
refer to the original problem (1.1), (1.2), (1.4) as P.

Definition 5.1 (see [13]). We will say that the pairs (PN, θN) in the sequence
{(PN, θN)}N∈N0 are consistent approximations to the pair (P, θ) if the problems PN

epi-converge to P (i.e., the epigraphs of the f0
N (·) converge to the epigraph of f0(·) in

the sense defined in Definition 5.3.6 in [13]) and for any infinite sequence {xN}N∈K ,
K ⊂ N0, such that xN →K x, limN∈KθN (xN ) ≤ θ(x).
Assumption 5.2. We will assume as follows:
(a) For every N ∈ N0, the problem (5.1) has a solution.
(b) There exists a strictly positive valued, strictly monotone decreasing function

∆ : N → �, such that ∆(N) → 0, as N → ∞, and a L < ∞, such that for every
N ≥ N0, j ∈ m, and y ∈ Yj , there exists a y′ ∈ Yj,N such that

‖y − y′‖ ≤ L∆(N).(5.4)
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SECOND-ORDER ALGORITHMS 957

For example, if for all j ∈ m, Yj is the unit cube in �mj , i.e., Yj = Imj , with
I := [0, 1], then we can define Yj,N = I

mj

N , where

IN = {0, 1/a(N), 2/a(N), . . . , (a(N)− 1)/a(N), 1},
with a(N) := 2N−N0 . In this case it is easy to see that ∆(N) = 1/a(N) and L =
1
2 maxj∈m

{
mj

(1/mj)
}
. Similar constructions can be obtained for other polyhedral

sets.
For any x, h ∈ �n and w ∈ �m, we define

uN (x, h, w) := 〈∇F (ψN (x)), ψ̂N (x, h)− ψN (x) + w〉(5.5)

and 


vN (x, h, w)

= 1
2 〈ψ̂N (x, h)− ψN (x) + w,∇2F (ψN (x))(ψ̂N (x, h)− ψN (x) + w)〉,

(5.6)

where

ψ̂N (x, h) = (ψ̂1
N (x, h), . . . , ψ̂m

N (x, h))(5.7)

and

ψ̂j
N (x, h) = max

yj∈Yj,N

{φj(x, yj) + 〈∇xφ
j(x, yj), h〉+ 1

2 〈h,∇2
xφ

j(x, yj)h〉} .(5.8)

We infer from (2.19) that the optimality functions θN (·), for the problems PN

have the following form:

θN (x) := min
h∈�n

{ min
w∈�m

+

(uN (x, h, w) + vN (x, h, w))}.(5.9)

Since the cardinality of the sets Yj,N is finite, it is obvious that the θN (x) can be
evaluated.

As was also done in the Polak–Mayne–Higgins rate-preserving method [16] (see
also [17]), we use an alternative optimality function for the problems PN for precision
adjustment in our algorithm. This optimality function is defined by

θ̄N (x) := min
h∈�n

f̄0
N (x, h)−

∑
j∈m

∂F

∂yj
(ψN (x))ψj

N (x),(5.10)

where 


f̄0
N (x, h)

=
∑
j∈m

∂F

∂yj
(ψN (x)) max

yj∈Yj,N

[φj(x, yj) + 〈∇xφ
j(x, yj), h〉+ 1

2δ‖h‖2],
(5.11)

with δ > 0, a constant.
Similarly (as in [17]), we define an alternative optimality function for the problem

P by

θ̄(x) := min
h∈�n

f̄0(x, h)−
∑
j∈m

∂F

∂yj
(ψ(x))ψj(x),(5.12)
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958 ELIJAH POLAK, LIQUN QI, AND DEFENG SUN

where

f̄0(x, h) =
∑
j∈m

∂F

∂yj
(ψ(x)) max

yj∈Yj

[φj(x, yj) + 〈∇xφ
j(x, yj), h〉+ 1

2δ‖h‖2],(5.13)

with δ > 0 the same constant as in (5.11).
Proposition 5.3 (see [17]). Suppose that Assumptions 1.1 and 5.2 are satisfied

and that for all N ∈ N0, f
0
N (·) is defined by (5.2) and θ̄N (·) by (5.10). Let S ⊂ �n be

a bounded subset and let L < ∞ be a Lipschitz constant valid for the functions φj(·, ·)
and ∇xφ

j(·, ·) on S × Yj, j ∈ q. Then there exists a constant CS < ∞ such that for
all x ∈ S,N ∈ N0,

|f0
N (x)− f0(x)| ≤ CS∆(N),(5.14)

and

|θ̄N (x)− θ̄(x)| ≤ CS∆(N).(5.15)

5.2. The superlinear rate-preserving algorithm.
Algorithm 5.4 (solves problem (1.1), (1.2), (1.4)).

Parameters. α, β ∈ (0, 1), δ > 0, D > 0, σ ≥ 3.
Data. x0 ∈ �n, N0 ∈ N .
Step 0. Set i = 0, N = N0.
Step 1. Compute the optimality function value θ̄N (xi) according to (5.10) and (5.11).
Step 2. If

D∆(N) ≤ |θ̄N (xi)|σ,(5.16)

go to Step 3. Else, replace N by N + 1, and go to Step 1.
Step 3. Compute the second optimality function value θN (xi) according to (5.9), i.e.,

θN (xi) = min
h∈�n

{ min
w∈�m

+

(uN (xi, h, w) + vN (xi, h, w))}(5.17)

and the corresponding search direction hi according to

hi ∈ arg min
h∈�n

{ min
w∈�m

+

(uN (xi, h, w) + vN (xi, h, w))}.(5.18)

Step 4. Compute the step-size

λi = max
k∈N

{βk| f0
N (xi + βkhi)− f0

N (xi)− βkαθN (xi) ≤ 0},(5.19)

and go to Step 5.
Step 5. Set

xi+1 = xi + λihi.(5.20)

Set Ni = N , replace i by i+ 1, and go to Step 1.
Remark.
(a) It follows from Proposition 5.3 that θ̄N (xi) → θ̄(xi), as N → ∞. Hence,

whenever θ̄(xi) �= 0, the loop consisting of Step 1 and Step 2 of Algorithm 5.4 yields
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SECOND-ORDER ALGORITHMS 959

a finite discretization parameter Ni. For simplicity, we will assume that Algorithm
5.4 does not produce an iterate xi such that θ̄(xi) = 0.

(b) Note that the work needed to compute xi by Algorithm 5.4 increases with the
iteration number i.

The purpose of the following results is to show that the relations (1.15)–(1.17)
hold for Algorithm (5.4)

Lemma 5.5. Suppose that Assumptions 1.1, 2.4, and 5.2 are satisfied and that
Algorithm 5.4 has constructed a sequence {xi}∞i=0 together with the corresponding se-
quence of discretization parameters {Ni}∞i=0. If the sequence {xi}∞i=0 has at least one
accumulation point, then Ni → ∞ as i → ∞.
Proof. For the sake of contradiction, suppose that the sequence {xi}∞i=0 has an

accumulation point x̂ and that the sequence {Ni}∞i=0 is bounded. Then, because
{Ni}∞i=0 is a monotonically increasing sequence of integers, there exists an i0 ∈ N ,
such that for all i ≥ i0, Ni = Ni0 =: N∗. Hence for i ≥ i0, the construction of
the sequence {xi}∞i=0 is carried out by Algorithm 3.1 applied to problem (5.1) with
N = N∗. Furthermore, it follows from (5.16) that there exists an ε > 0, such that
θ̄i = θ̄N∗(xi) ≤ −ε for all i ≥ i0. However, it follows from Theorem 3.4 that θN∗(x̂) =
0. Thus, by (iii) of Theorem 2.8, 0 ∈ ∂f0

N∗(xi). By [17, Theorem 2], 0 ∈ ∂f0
N∗(xi)

implies θ̄N∗(xi) = 0. Then, from the continuity of θ̄N∗(·) [17, Theorem 2], it holds
that θ̄N∗(xi) → θ̄N∗(x̂) = 0 as i → ∞, i ∈ K, where the infinite subsequence {xi}i∈K ,
K ⊂ N , converges to x̂, which contradicts the previous finding, and hence completes
our proof.

Theorem 5.6. Suppose that Assumptions 1.1, 2.4, and 5.2 are satisfied and that
Algorithm 5.4 has constructed a bounded sequence {xi}∞i=0. Then every accumulation
point x̂ of {xi}∞i=0 satisfies θ̄(x̂) = 0.

Proof. By applying Theorem 3.3.23 of [13] or theorems in section 5 of [12] and
Lemma 5.5 to Algorithm 5.4, we obtain the desired result.

Theorem 5.7. Suppose that Assumptions 1.1, 2.4, and 5.2 are satisfied and that
Algorithm 5.4 has constructed a bounded sequence {xi}∞i=0. Then {xi} converges to
the unique minimizer x̂ of f0(·) with Q-order 3/2.
Proof. First, by Theorem 5.6 and the fact that f0(·) has a unique minimizer x̂,

the whole sequence {xi} converges to x̂. Hence one can deduce from Theorem 4.3 and
the proof of [13, Theorem 3.4.20], that {xi} converges to x̂ with Q-order 3/2. Since
the derivation is straightforward, we omit the details here.

6. Some numerical results. We now present some numerical results that illus-
trate the behavior of the algorithm proposed in section 5 for generalized semi-infinite
programming problems. The algorithm was implemented in Matlab. Throughout the
computational experiments, the parameters used in the algorithm were α = 0.05, β =
0.5, δ = 1.0, D = 10−10, and σ = 3.1. For both examples, we used the starting point
(1, 1). The iteration of the algorithm is stopped at xi if for some N the meshsize
∆(N) < 0.005 and |θN (xi)| ≤ 10−8. A Matlab code developed in [21], which was
based on a smoothing Newton method [19] for variational inequalities, was used to
solve our search direction finding subproblem (2.57).

Example 1. In this case, f0(x) = F (ψ1(x), ψ2(x)), with x = (x1, x2) ∈ �2,
F (z) = z1 + z2, with z = (z1, z2) ∈ �2, and

ψ1(x) = max
t∈Y1

{t2 − (tx1 + etx2) + (x1 + x2)2 + (x1)2 + (x2)2 + e(x
1+x2)}
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Table 6.1
Numerical results for Example 1.

Iteration i 0 1 2 3 4
||xi − x̂‖ 1.6× 100 5.7× 10−1 5.1× 10−2 2.9× 10−4 0.0
Discretization level 1 1 1 1 9

Table 6.2
Numerical results for Example 2.

Iteration i 0 1 2 3 4
||xi − x̂‖ 1.7× 100 6.4× 10−1 5.0× 10−2 1.9× 10−4 0.0
Discretization level 1 1 1 1 9

and

ψ2(x) = max
t∈Y2

{(t− 1)2 + 0.5(x1 + x2)2 − 2t(x1 + x2) + 0.5[(x1)2 + (x2)2]},

where Y1 = [0, 1] and Y2 = [−1, 0].

Example 2. In this case, the functions f0(·), ψ1(·), and ψ2(·) are also defined as
in Example 1, but F (·) is defined by

F (z) = 0.5(z1 +
√
(z1)2 + 4) + ln(1 + ez

2

) + 0.5((z1)2 + (z2)2), z = (z1, z2) ∈ �2.

The numerical results are summarized in Table 6.1 and Table 6.2. In these two
tables the first row represents the iteration number, the second row is the residue
||xi − x̂|| (we used the last iterate as a substitute for x̂) and the third row shows
the discretization level (the meshsize at the present level is decreased to half of the
previous one) refined by the master algorithm at the i-th step. It is clear from the
numerical results that the rate of convergence is superlinear.

7. Conclusion. We have presented two superlinearly converging algorithms, one
for solving finite generalized min-max problems of the form (1.1), (1.2), (1.3) and
one for solving generalized semi-infinite min-max problems of the form (1.1), (1.2),
(1.4). These algorithms were obtained by making use of the concepts underlying
the construction of the Polak–Mayne–Higgins Newton’s method [15] and the Polak–
Mayne–Higgins rate-preserving method [16], respectively. The construction of the
algorithms depends on the cost function having a subgradient and their rate of con-
vergence depends on convexity and second order smoothness, and hence Assumption
2.4 is essential.

Our numerical results are consistent with our theoretical prediction that the al-
gorithms converge Q-superlinearly.
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suggesting the function f̂0(x, h) as a way to get around the possible nonconvexity
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optimality function is defined by a quadratically constrained quadratic programming
problem. They also thank two anonymous referees for their helpful comments and
suggestions.
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