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Abstract. We present a first-order algorithm for solving semi-infinite generalized min-max problems which
consist of minimizing a functionf0(x) = F (ψ1(x), ...., ψm(x)), whereF is a smooth function and eachψi is
the maximum of an infinite number of smooth functions.

In Section 3.3 of [17] Polak finds a methodology for solving infinite dimensional problems by expanding
them into an infinite sequence of consistent finite dimensional approximating problems, and then using a master
algorithm that selects an appropriate subsequence of these problems and applies a number of iterations of a finite
dimensional optimization algorithm to each of these problems, sequentially. Our algorithm was constructed within
this framework; it calls an algorithm by Kiwiel as a subroutine. The number of iterations of the Kiwiel algorithm
to be applied to the approximating problems is determined by a test that ensures that the overall scheme retains
the rate of convergence of the Kiwiel algorithm.

Under reasonable assumptions we show that all the accumulation points of sequences constructed by our
algorithm are stationary, and, under an additional strong convexity assumption, that the Kiwiel algorithm converges
at least linearly, and that our algorithm also converges at least linearly, with the same rate constant bounds as
Kiwiel’s.

Keywords: generalized min-max problems, consistent approximations, optimality functions, first-order methods,
linear convergence

Dedication: Olvi, please accept this modest tribute in celebration of your 65th birthday. I wish you another 65
years of good health, happiness, and important contributions to nonlinear programming. - Elijah Polak

1. Introduction

Generalized min-max problems have the form

P
min
x∈<n

f0(x), (1)

where

f0(x) := F (ψ(x)), (2)

* The research of the first author was supported by the National Science Foundation grant NSF-INT-9725220,
and the research of the second author and the third author was supported by the Australian Research Council.
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whereF : <m → <, ψ : <n → <m, with ψ(x) = (ψ1(x), ..., ψm(x))1, and, for
j = 1, ...,m, ψj : <n → < are of the form

max
yj∈Yj

φj(x, yj), (3)

andφj : <n × <mj → <. It is usual to assume that the functionsF (·), φ(·, ·) are smooth
and that the setsYj ⊂ <mj are compact. When the cardinality of the setsYj is finite,P is
afinitegeneralized min-max problem, while when the cardinality of at least one of the sets
Yj is infinite,P is asemi-infinitegeneralized min-max problem.

Generalized min-max problems are among the simplest of nonsmooth problems beyond
ordinary min-max problems that have manifestly exploitable structure. Quite early, they
were recognized to be in the class of quasi-differentiable problems, see, e.g., [4] and hence,
at least in principle, finite-dimensional generalized min-max problems are solvable by
algorithms developed for minimizing quasi-differentiable functions, see, e.g., [2, 3, 7,
8, 9, 10, 11, 18]. Under the additional assumption that∂F (y)/∂yj ≥ 0 for all y ∈
<m andj = 1, ...,m, finite generalized min-max problems can also be solved by means
of nonlinear programming algorithms, using a transformation that converts a generalized
min-max problem into a smooth constrained nonlinear programming problem2 (see e.g.,
[1, 5, 12]). Other methods that depend on the assumption that∂F (y)/∂yj ≥ 0 for all
y ∈ <m andj = 1, ...,m, can be found, for example, in [7]. To date, only finite-dimensional
generalized min-max problems have been considered.

Generalized min-max problems are not only of theoretical interest. For example, when

F (y) =
m∑
j=0

yj , orF (y) =
m∑
j=0

(yj)2, orF (y) =
m∑
j=0

log yj , minimizingf0(·) corresponds

to minimizing the average value, mean square value, or nonlinearly weighted mean value
of theψj(x), respectively. Less obvious cases are bound to emerge in the engineering
and economics literatures as efficient algorithms for the solution of generalized min-max
problems become available.

It is a well known fact that the less problem structure is taken into account, the less
efficient are the resulting nonsmooth optimization algorithms. Thus, there are both linearly
and superlinearly converging algorithms for the solution of min-max problems of the form
(1) (see. e.g., Chapter 4 in [17]), which make strong use of the structure of these problems.
In this paper we make full use of the structure of the nonsmooth problem and of the theory
of consistent approximations in [17] to obtain a linearly converging algorithm.

We will consider problem (1) under the following hypotheses.

Assumption 1. We will assume that

(a) The functionsF (·) andφj(·, ·), j ∈m, are at least once continuously differentiable.

(b) There exists acF > 0 such that for ally ∈ <m andj ∈m, ∂F∂yj (y) ≥ cF .

(c) The setsYj are either convex and compact, or of finite cardinality, of the form

Yj = {yj,1, . . . , yj,qj} . (4)
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Parts(a)and(b)of Assumption 1 ensure that when both theF (·) and theψj(·) are convex,
the functionf0(·) is also convex. In addition, as we will see, when parts(a) and (b) of
Assumption 1 hold, the functionf0(·) has a subgradient.

In Section 2 we derive optimality conditions in optimality function form that will be needed
in the construction of our generalized semi-infinite optimization algorithm. In Section 3 we
show that a particular case of the Kiwiel extension [7, 10] of the Pshenichnyi-Pironneau-
Polak Minimax Algorithm (see [19, 13, 14] and Algorithm 4.1 in [17]) to generalized finite
min-max problems converges linearly3. In Section 4 we present our algorithm for solving
generalized semi-infinite min-max problems, which can be seen to be an extension of the
Polak-He PPP Rate-Preserving Algorithm 3.4.9 in [17] (see also [15]). The algorithm
consists of a master algorithm that constructs consistent finite dimensional approximations
by discretizing the intervals in the max functions in (1), calls the Kiwiel algorithm as a
subroutine for solving the resulting finite dimensional problems, and determines how long
the Kiwiel algorithm should be used at a given level of discretization. We show that our
algorithm converges linearly. In Section 5 we present a couple of numerical results that
illustrate the behavior of our algorithm, and our conclusions are in Section 6.

2. Optimality Conditions

In this section we will present optimality conditions for problem (1) both in “classical”
form and in terms of an optimality function which leads to a linearly converging first-order
algorithm. First, we need the following straightforward result.

Lemma 1 Suppose thatF : <m → < is continuously differentiable and thatψ : <n →
<m is a locally Lipschitz continuous function that has directional derivatives at every
x ∈ <n. Letf0 : <n → < be defined by

f0(x) = F (ψ(x)) . (5)

Then, given anyx ∈ <n, and direction vectorh ∈ <n, the functionf0(·) has a directional
derivativedf0(x;h) which is given by

df0(x;h) = 〈∇F (ψ(x)), dψ(x;h)〉 . (6)

Suppose that Assumption 1 is satisfied. Then it follows from Lemma 1 that the directional
derivative off0(·), at a pointx ∈ <n in the directionh, is given by

df0(x;h) =
∑
j∈m

∂F

∂yj
(ψ(x))dψj(x;h)

=
∑
j∈m

∂F

∂yj
(ψ(x)) max

yj∈Ŷj(x)
〈∇xφj(x, yj), h〉, (7)

where

Ŷj(x) := {yj ∈ Yj | φj(x, yj) = ψj(x)}. (8)
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When all the setsYj are as in (4), (7) assumes the form

df0(x;h) =
∑
j∈m

∂F

∂yj
(ψ(x)) max

k∈q̂j(x)
〈∇f j,k(x), h〉, (9)

where the functionsf j,k(·) are defined by

f j,k(x) := φj(x, yj,k), k ∈ qj, (10)

and the setŝqj(x) by

q̂j(x) := {k ∈ qj | f j,k(x) = ψj(x)} . (11)

Hence the following result is obvious.

Theorem 1 Suppose that̂x is a local minimizer for the problem (1). Then for allh ∈ <n,

df0(x̂;h) =
∑
j∈m

∂F

∂yj
(ψ(x̂))dψj(x̂;h)

=
∑
j∈m

∂F

∂yj
(ψ(x̂)) max

yj∈Ŷj(x̂)
〈∇xφj(x̂, yj), h〉 ≥ 0 . (12)

Furthermore, (12) holds if and only if0 ∈ ∂f0(x̂), where the subgradient∂f0(x̂) is given
by

∂f0(x̂) =
∑
j∈m

{
convyj∈Ŷj(x̂)

{
∂F

∂yj
(ψ(x̂))∇xφj(x̂, yj)

}}
. (13)

Since (12) is a necessary condition of optimality, any pointx̂ ∈ <n that satisfies (12) will
be calledstationary.

When all the setsYj are of the form (4), the expressions (12) and (13) assume the following
form:

df0(x̂;h) =
∑
j∈m

∂F

∂yj
(ψ(x̂)) max

k∈q̂j(x̂)
〈∇f j,k(x̂), h〉 ≥ 0 , ∀h ∈ <n, (14)

∂f0(x̂) =
∑
j∈m

convk∈q̂j(x̂)

{
∂F

∂yj
(ψ(x̂))∇f j,k(x̂)

}
. (15)

Definition 1. We will say thatθ : <n → < is anoptimality functionfor problem (1) if

(a) θ(·) is upper-semicontinuous,

(b) θ(x) ≤ 0 for all x ∈ <n, and

(c) for anyx̂ ∈ <n, (12) holds if and only ifθ(x̂) = 0.
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Let δ > 0 be arbitrary. Then we define the functionθ : <n → < and the associated
search direction functionh : <n → <n by4

θ(x) = min
h∈<n

∑
j∈m

∂F

∂yj
(ψ(x)) max

yj∈Yj
{φj(x, yj)− ψj(x)

+〈∇xφj(x, yj), h〉+ 1
2δ‖h‖2}

(16)

and

h(x) = arg min
h∈<n

∑
j∈m

∂F

∂yj
(ψ(x)) max

yj∈Yj
{φj(x, yj)− ψj(x)

+〈∇xφj(x, yj), h〉+ 1
2δ‖h‖

2}.

(17)

For anyj ∈m, and anyx ∈ <n, let Ḡψj(x) ⊂ <n+1 be a set with elements̄ξj = (ξ0
j , ξj),

ξ0
j ∈ <, ξj ∈ <n, defined by

Ḡψj(x) := convyj∈Yj

{[
ψj(x)− φj(x, yj)
∇xφj(x, yj)

]}
, j ∈m , (18)

and let

a(x) := (
∂F

∂y1
(ψ(x)), ...,

∂F

∂ym
(ψ(x))) . (19)

Then we conclude from (16) that an alternative expression forθ(x) is as follows

θ(x) = min
h∈<n

∑
j∈m

aj(x) max
ξ̄j∈Ḡψj(x)

{−ξ0
j + 〈ξj , h〉+ 1

2δ‖h‖
2}. (20)

Using the fact that

max
j∈p

uj + max
k∈q

vk = max
j∈p

max
k∈q

(uj + vk), (21)

we conclude that

θ(x) = min
h∈<n

max
ξ̄∈Ḡf0(x)

{−ξ0 + 〈ξ, h〉+ 1
2γ(x)‖h‖2} , (22)

whereḠf0(x) ⊂ <n+1 is defined by

Ḡf0(x) :=
∑
j∈m

aj(x)Ḡψj(x), (23)

and

γ(x) := δ
∑
j∈m

aj(x). (24)
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Since the set̄Gf0(x) is convex and compact, and the function−ξ0
j + 〈ξ, h〉+ 1

2γ(x)‖h‖2
is convex inh, concave in̄ξ, and−ξ0

j + 〈ξ, h〉+ 1
2γ(x)‖h‖2 → ∞ as‖h‖ → ∞, we can

make use of a corollary to the von Neumann Theorem (see Corollary 5.5.6 in [17]) and
interchange the max and the min in (22), to obtain

θ(x) = max
ξ̄∈Ḡf0(x)

min
h∈<n

{−ξ0 + 〈ξ, h〉+ 1
2γ(x)‖h‖2}. (25)

Now, solving the inner minimization problem in (25) forh, we find that

h = − 1
γ(x)

ξ (26)

and hence (25) simplifies out to

θ(x) = − min
ξ̄∈Ḡf0(x)

{ξ0 +
1

2γ(x)
‖ξ‖2} . (27)

Now, let

ξ̄∗(x) = (ξ0∗(x), ξ∗(x)) = − arg min
ξ̄∈Ḡf0(x)

{ξ0 +
1

2γ(x)
‖ξ‖2} . (28)

Then it follows from Corollary 5.5.6 in [17] and (26) that an alternative expression forh(x)
is given by

h(x) = − 1
γ(x)

ξ∗(x) . (29)

When all the setsYj are of the form (4), (27) reduces to the following quadratic program-
ming problem:

θ(x) = − min
µj∈
∑

qj
j∈m

∑
j∈m

∑
k∈qj

aj(x)µkj (ψj(x)− f j,k(x))

+ 1
2

∑
j∈m

aj(x)δ

−1

‖
∑
j∈m

∑
k∈qj

aj(x)µkj∇f j,k(x)‖2

 , (30)

where, for any positive integerq, Σq denotes the unit simplex in<q, which is defined by

Σq = {µ ∈ <q| µj ≥ 0, j ∈ q,
∑
j∈q

µj = 1}. (31)

Let µ(x) = (µ1(x), ..., µm(x)), with µj(x) ∈ <mj , denote any solution of (30). Then
we see that

h(x) = −
∑
j∈m

∑
k∈qj

aj(x)µkj (x)∇f j,k(x) . (32)

The following theorem shows thatθ(·) is indeed an optimality function for the problem
(1) and that the search direction functionh(·) is a descent direction function forf0(·).
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Theorem 2 Suppose that Assumption 1 is satisfied. Consider the functionsθ(·) andh(·)
defined by (16) and (17). Then

(i) For all x ∈ <n,

θ(x) ≤ 0 . (33)

(ii) For all x ∈ <n,

df0(x;h(x)) ≤ θ(x)− 1
2

∑
j∈m

aj(x)δ‖h(x)‖2, (34)

wheredf0(x;h(x)) is the directional derivative off0 at x in the directionh(x).

(iii) For any x ∈ <n, 0 ∈ ∂f0(x) if and only ifθ(x) = 0, where∂f0(x) is the subgradient
of f0(x) at x, defined in (13).

(iv) The functionθ(·) is continuous.

(v) The functionh(·) is point-valued and continuous.

The proof of this theorem can be obtained by straightforward extension of the proof of
Theorem 3.1.6 in [17] and is therefore omitted.

3. An Algorithm for Solving Generalized
Finite Min-Max Problems

We will need a special case of the generalized finite min-max algorithm described in [7, 10]
as a subroutine, for solving problems of the form (1) when the setsYj are of the form (4).
Defining the functionsf j,k(·) are as in (10), these generalized finite min-max problems are
of the form (1), with

min
x∈<n

f0(x)

f0(x) = F (ψ(x)),

ψ(x) = (ψ1(x), ..., ψm(x)),

ψj(x) = max
k∈qj

f j,k(x), j ∈m ,


(35)

where, in view of Assumption 1, the functionsF (·) andf j,k(·), j ∈ m, k ∈ qj are all
continuously differentiable.

The special case of the Kiwiel algorithm [7, 10] that we need is a straightforward extension
of the Pshenichnyi-Pironneau-Polak Minimax Algorithm 2.4.1 in [17] and has the following
form:
Algorithm 1 (Solves Problem (35))
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Parameters.α ∈ (0, 1), β ∈ (0, 1), andδ > 0.

Data. x0 ∈ <n.

Step 0. Seti = 0.

Step 1. Compute the optimality function valueθi := θ(xi) and the search directionhi :=
h(xi) according to the formulae (30) and (32).

Step 2. If θi = 0, stop. Else, compute the step-size

λi = λ(xi) := max
k∈N
{βk| f0(xi + βkhi)− f0(xi)− βkαθi ≤ 0}, (36)

whereN := {0, 1, 2, ..., }.

Step 3. Set

xi+1 = xi + λihi, (37)

replacei by i+ 1, and go to Step 1.

Theorem 3 [7] Suppose that Assumption 1 is satisfied and that all theYj , j ∈mare of the
form (4), so that problem (1)-(2) reduces to problem (35). If{xi}∞i=0 is an infinite sequence
generated by Algorithm1 andx̂ is an accumulation point of{xi}∞i=0, thenθ(x̂) = 0.

We will show that Algorithm1 converges linearly under the following additional assump-
tion.

Assumption 2. We will assume that

(a) the functionsφj(·, yj), j ∈ m, yj ∈ Yj , andF (·), in (1)-(2), are twice continuously
differentiable, and

(b) there exist constants0 < c ≤ C <∞, such that for allj ∈m, yj ∈ Yj , x ∈ <n, and
h ∈ <n,

c‖y‖2 ≤ 〈h, φjxx(x, yj)h〉 ≤ C‖h‖2 (38)

and

0 ≤ 〈h, Fxx(x)h〉 ≤ C‖h‖2. (39)

The following result is obvious.



GENERALIZED MIN-MAX PROBLEMS 145

Lemma 2 Suppose that Assumption 1 holds. Then for anyy, y′ ∈ <m such thaty′ ≥ y,

F (y′)− F (y) ≥ cF
∑
j∈m

(y′j − yj). (40)

Lemma 3 Suppose that Assumptions 1 and 2 are satisfied. Then there exists a constant
τ > 0 such that for allx, x′ ∈ <n andλ ∈ [0, 1],

f0(λx+ (1− λ)x′) ≤ λf0(x) + (1− λ)f0(x′)− 1
2τλ(1− λ)‖x− x′‖2. (41)

Proof: It follows from Assumption 2 that for anyx, x′ ∈ <n andλ ∈ [0, 1],

f j,k(λx+ (1− λ)x′) ≤ λf j,k(x) + (1− λ)f j,k(x′)− 1
2cλ(1− λ)‖x− x′‖2. (42)

Hence, for allj ∈m,

ψj(λx+ (1− λ)x′) ≤ λψj(x) + (1− λ)ψj(x′)− 1
2cλ(1− λ)‖x− x′‖2. (43)

It follows from (40) and (43) that

F (λψ(x) + (1− λ)ψ(x′)) ≥ F (ψ(λx+ (1− λ)x′)) + 1
2cF cmλ(1− λ)‖x− x′‖2.

(44)

SinceF is convex, we conclude from (44) that

λF (ψ(x)) + (1− λ)F (ψ(x′))

≥ F (ψ(λx+ (1− λ)x′)) + 1
2cF cmλ(1− λ)‖x− x′‖2.

(45)

By letting τ = cF cm, we conclude that

λf0(x) + (1− λ)f0(x′) ≥ f0(λx+ (1− λ)x′) + 1
2τλ(1− λ)‖x− x′‖2. (46)

This proves (41).

Proposition 1 Suppose that Assumptions 1 and 2 are satisfied, that all theYj , j ∈m are
of the form (4), so that problem (1)-(2) reduces to problem (35). Then any sequence{xi}∞i=0

constructed by Algorithm1, in solving problem (35), converges to the unique minimizerx̂
of f0(·).
Proof: First, by Lemma 3, the functionf0(·) is strongly convex, and hence it has a
unique minimizerx̂. This minimizer is also the unique stationary point off0(·). Also,
since the functionf0(·) is strongly convex, its level sets are compact. Consequently, since
the cost sequence{f0(xi)}∞i=0 is monotone decreasing, the sequence{xi}∞i=0 must have
accumulation points. It now follows from Theorem 3 that each of these accumulation points
must be stationary. Sincef0(·) has a unique stationary pointx̂, it follows that the sequence
{xi}∞i=0 converges tôx.
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Theorem 4 Suppose that Assumptions 1 and 2 are satisfied, that all theYj , j ∈ m are
of the form (4), so that problem (1)-(2) reduces to problem (35), and thatδ ∈ [c, C]. If
{xi}∞i=0 is a sequence constructed by Algorithm1, in solving problem (35), then

f0(xi+1)− f0(x̂)
f0(xi)− f0(x̂)

≤ 1− αβ c

C∗
, ∀i ∈ N , (47)

where

C∗ = C sup
i∈N

max
s∈[0,1]

{1 + max
j∈m

max
k∈qj

‖∇f j,k(xi + shi)‖2/
∂F

∂yj
(ψ(xi))} . (48)

Proof: Since by Lemma 2,

F (y′)− F (y) ≥ 0, (49)

whenevery′ ≥ y, it follows that for anyx′, x ∈ <n,

f0(x′)− f0(x) = F (ψ(x′))− F (ψ(x))

≥ F (ψ̃(x, x′ − x))− F (ψ(x)), (50)

whereψ̃(x, x′ − x) = (ψ̃1(x, x′ − x), ..., ψ̃m(x, x′ − x)), with

ψ̃j(x, x′ − x) = max
k∈qj

f j,k(x) + 〈∇f j,k(x), x′ − x〉+ 1
2c‖x

′ − x‖2, j ∈m. (51)

Next, sinceF (·) is convex, for anyy, y′ ∈ <m,

F (y′)− F (y) ≥ 〈∇F (y), y′ − y〉, (52)

which, together with (50), implies that for anyx, x′ ∈ <n,

f0(x′)− f0(x) ≥
∑
j∈m

∂F

∂yj
(ψ(x))[max

k∈qj

{f j,k(x)− ψj(x)

+〈∇f j,k(x), x′ − x〉+ 1
2c‖x′ − x‖2}]

≥ δ

c

∑
j∈m

∂F

∂yj
(ψ(x))[max

k∈qj
{f j,k(x)− ψj(x)

+〈∇f j,k(x), cδ (x′ − x)〉+ 1
2δ‖ cδ (x′ − x)‖2}]. (53)

It follows directly from (53) that

f0(x′)− f0(x) ≥ δ

c
θ(x). (54)

Sincex̂ is a global minimizer off0(·), we deduce from (54) that for allx ∈ <n,
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f0(x̂)− f0(x) ≥ δ

c
θ(x). (55)

To complete our proof of linear convergence, we need one more inequality. By the Mean
Value Theorem, for everyj ∈m, x ∈ <n, andλ > 0,

ψj(x+ λh(x)) = max
k∈qj

{f j,k(x) + λ〈∇f j,k(ξj,k), h(x)〉}, ξj,k ∈ [x, x+ λh(x)].

(56)

Hence, for everyj ∈m, x ∈ <n, andλ > 0

λmin
k∈qj

〈∇f j,k(ξj,k), h(x)〉 ≤ ψj(x+ λh(x))− ψj(x) ≤ λmax
k∈qj

〈∇f j,k(ξj,k), h(x)〉,

(57)

which leads to the conclusion that

|ψj(x+ λh(x))− ψj(x)| ≤ λmax
k∈qj

|〈∇f j,k(ξj,k), h(x)〉|. (58)

Because of Assumption 2, for anyλ > 0 andj ∈m, andx ∈ <n,

ψj(x+ λh(x))− ψj(x) ≤ max
k∈qj

{f j,k(x)− ψj(x) + λ〈∇f j,k(x), h(x)〉
+1

2λ
2C‖h(x)‖2},

(59)

which, together with Assumptions 1 and 2, and (58), implies that for anyλ ∈ (0, 1],

F (ψ(x+ λh(x)))− F (ψ(x))

≤ 〈∇F (ψ(x)), ψ(x+ λh(x))− ψ(x)〉+ 1
2C‖ψ(x+ λh(x))− ψ(x)‖2

≤ λ

∑
j∈m

∂F

∂yj
(ψ(x))[max

k∈qj

{f j,k(x)− ψj(x) + 〈∇f j,k(x), h(x)〉

+
λC

2δ
δ‖h(x)‖2}] +

λC

2δ
max
k∈qj

‖∇f j,k(ξj,k)‖2δ‖h(x)‖2
}
. (60)

Consequently, if

λC

δ
[1 + max

k∈qj

‖∇f j,k(ξj,k)‖2/ ∂F
∂yj

(ψ(x))] ≤ 1, (61)

then we conclude from (60) that

f0(x+ λh(x))− f0(x) ≤ λθ(x). (62)

Now suppose that{xi}∞i=0 is a sequence constructed by Algorithm1 from an initial point
x0 ∈ L∗ := {x ∈ <n| f(x) ≤ f(x0)}. Then, because by construction the sequence
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{f0(xi)}∞i=0 is monotone decreasing, it follows that the whole sequence{xi}∞i=0 is inL∗.
Hence it follows from (48) and (62) that for everyi ∈ N ,

λi ≥
δβ

C∗
. (63)

It follows from (36) and (55) that for everyi ∈ N

f0(xi+1)− f0(xi) ≤ λiαcδ−1(f0(x̂)− f0(xi)). (64)

So,

f0(xi+1)− f0(x̂)
f0(xi)− f0(x̂)

≤ 1− λiαcδ−1. (65)

Hence from (63) and (65) we deduce that

f0(xi+1)− f0(x̂)
f0(xi)− f0(x̂)

≤ 1− αβ c

C∗
. (66)

This completes our proof.

The following consequence of Theorem 4 should be obvious:

Corollary 1 Suppose Assumptions 1 and 2 are satisfied. Letx̂ be the unique minimizer
of f0(·), and let

Ĉ = C{1 + max
j∈m

max
k∈qj

‖∇f j,k(x̂)‖2/ ∂F
∂yj

(ψ(x̂))} . (67)

If δ ∈ [c, Ĉ] , then, for any sequence{xi}∞i=0 constructed by Algorithm1

lim
f0(xi+1)− f0(x̂)
f0(xi)− f0(x̂)

≤ 1− αβ c
Ĉ
. (68)

4. An Algorithm for Solving Generalized Semi-Infinite Min-Max Problems

We are now ready to tackle the generalized semi-infinite min-max problems defined in
(1)-(2). Such problems can be solved only by discretization techniques. We will use
discretizations that result in consistent approximations (as defined in Section 3.3 of [17])
and use them in conjunction with a master algorithm that calls Algorithm1 as a subroutine.
We will see that under a reasonable assumption, the resulting algorithm retains the rate of
convergence of Algorithm1.
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4.1. Consistent Approximations

LetN0 be a strictly positive integer, and, forN ∈ N0 := {N0, N0 +1, N0 +2, ...}, letYj,N
be finite cardinality subsets ofYj , j ∈m, such thatYj,N ⊂ Yj,N+1 for allN and the closure
of the setlimYj,N is equal toYj , j ∈ m. Then we define the family of approximating
problemsPN,N ∈ N0, as follows:

PN

min
x∈<n

f0
N (x), (69)

where

f0
N (x) := F (ψN (x)) (70)

whereψN (x) = (ψ1
N (x), ..., ψmN (x)), and forj ∈m,

ψjN (x) = max
yj∈Yj,N

φj(x, yj) . (71)

It should be clear that the approximating problemsPN are of the form (35) and that one
can define optimality functionsθN (·) for them of the form (4). We will refer to the original
problem (1) asP.

Definition 2. [17] We will say that the pairs(PN, θN), in the sequence{(PN, θN)}N∈N0

are consistent approximations for the pair(P, θ), if the problemsPN epi-converge toP,
(i.e., the epigraphs of thef0

N (·) converge to the epigraph off0(·) in the sense defined in
Definition 5.3.6 in [17]), and for any infinite sequence{xN}N∈K , K ⊂ N0, such that
xN → x, limθN (xN ) ≤ θ(x).

Assumption 3. We will assume as follows:

(a) For everyN ∈ N0, the problem (69) has a solution.

(b) There exists a strictly positive valued, strictly monotone decreasing function∆ : N →
<, such that∆(N) → 0, asN → ∞, and aK < ∞, such that for everyN ≥ N0,
j ∈m, andy ∈ Yj , there exists ay′ ∈ Yj,N such that

‖y − y′‖ ≤ K∆(N). (72)

For example, if for allj ∈m, Yj is the unit cube in<mj , i.e.,Yj = Imj , with I := [0, 1],
then we can defineYj,N = I

mj
N , where

IN = {0, 1/a(N), 2/a(N), ..., (a(N)− 1)/a(N), 1},

with a(N) := 2N−N0 . In this case it is easy to see that∆(N) = 1/a(N) andK =
1
2 maxj∈mmj

(1/mj). Similar constructions can be obtained for other polyhedral sets.
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We infer from (16) that the optimality functionsθN (·), for the problemsPN have the
following form:

θN (x) := min
h∈<n

f̃0
N (x, x+ h)−

∑
j∈m

∂F

∂yj
(ψN (x))ψjN (x) (73)

where

f̃0
N (x, x+ h) =

∑
j∈m

∂F

∂yj
(ψN (x)) max

yj∈Yj,N
[φj(x, yj) + 〈∇xφj(x, yj), h〉

+1
2δ‖h‖2]. (74)

Since the cardinality of the setsYj,N is finite, it is obvious that theθN (x) can be evaluated,
using the dual form (30), by means of a quadratic programming code.

Lemma 4 Suppose that Assumptions 1 and 3 are satisfied, and that for allN ∈ N0, f0
N (·)

is defined by (70) andθN (·) by (73). LetS ⊂ <n be a bounded subset and letL < ∞ be
a Lipschitz constant valid for the functionsφj(·, ·) and∇xφj(·, ·) onS × Yj , j ∈ q. Then
there exists a constantCS <∞ such that for allx ∈ S,N ∈ N0,

|f0
N (x)− f0(x)| ≤ CS∆(N), (75)

and

|θN (x)− θ(x)| ≤ CS∆(N), (76)

provided that bothθN (x),N ∈ N0, andθ(x) are defined using the same parameterδ > 0.

Proof: First, becauseYj,N ⊂ Yj , j ∈m, we always have that

ψjN (x) ≤ ψj(x). (77)

It now follows from Lemma 2 that

f0
N (x) ≤ f0(x). (78)

Next, for anyx ∈ S, and eachj ∈m, there must exist ayj,x ∈ Yj such that

ψj(x) = φj(x, yj,x) . (79)

By Assumption 3, for eachj ∈ m, there exitsy′j,x ∈ Yj,N such that‖y′j,x − yj,x‖ ≤
K∆(N). Hence, for eachj ∈m, we have that

ψjN (x) ≥ φj(x, y′j,x) ≥ φj(x, yj,x)− LK∆(N) = ψj(x)− LK∆(N) . (80)

It therefore follows from Lemma 2 that

f0
N (x) = F (ψN (x)) ≥ F (ψ1(x)− LK∆(N), ..., ψm(x)− LK∆(N)). (81)
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Sinceψ(·) is continuous and∇F (·) is Lipschitz continuous, there exists a constant0 <
L1 <∞ such that for anyx ∈ S, and eachj ∈ q,

|ψj(x)| ≤ L1,

∣∣∣∣ ∂F∂yj (ψN (x))
∣∣∣∣ ≤ L1,

∣∣∣∣ ∂F∂yj (ψ(x))
∣∣∣∣ ≤ L1 (82)

and ∣∣∣∣ ∂F∂yj (ψN (x))− ∂F

∂yj
(ψ(x))

∣∣∣∣ ≤ L1|ψN (x)− ψ(x)|. (83)

Making use of the Mean Value Theorem, (81), and (82), we find that

f0
N (x) = F (ψN (x))

≥ F (ψ(x)) +
∑
j∈m

∂F

∂yj
(ξ)(−LK∆(N))

≥ f0(x)−mL1LK∆(N), (84)

whereξ ∈ <m is such that for eachj ∈m,

ξj ∈ [ψj(x)− LK∆(N), ψj(x)].

It now follows from (78) and (84) that (75) holds withCS = mL1LK.
Next, we turn to (76). For anyx, h ∈ <n, let

f̃0(x, x+ h) :=
∑
j∈m

∂F

∂yj
(ψ(x)) max

yj∈Yj
[φj(x, yj) + 〈∇xφj(x, yj), h〉+ 1

2δ‖h‖
2],

(85)

and for anyN ∈ N0, x, h ∈ <n, let f̃0
N (x, x+ h) be defined by (74). Then, by inspection,

f̃0
N (x, x+ h) ≤ f̃0(x, x+ h) always holds. Therefore, given anyh′ ∈ <n,

min
h∈<n

f̃0
N (x, x+ h) ≤ f̃0

N (x, x+ h′) ≤ f̃0(x, x+ h′), (86)

and hence

min
h∈<n

f̃0
N (x, x+ h) ≤ min

h′∈<n
f̃0(x, x+ h′). (87)

Since

θ(x) = min
h∈<n

f̃0(x, x+ h)−
∑
j∈m

∂F

∂yj
(ψ(x))ψj(x),

and

θN (x) = min
h∈<n

f̃0
N (x, x+ h)−

∑
j∈m

∂F

∂yj
(ψN (x))ψjN (x),
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we conclude, making use of (87), (80), (82), and (83), that

θN (x) ≤ θ(x) +
∑
j∈m

∂F

∂yj
(ψ(x))ψj(x)−

∑
j∈m

∂F

∂yj
(ψN (x))ψjN (x)

= θ(x) +
∑
j∈m

∂F

∂yj
(ψN (x))[ψj(x)− ψjN (x)]

+
∑
j∈m

[
∂F

∂yj
(ψ(x))− ∂F

∂yj
(ψN (x))

]
ψj(x)

≤ θ(x) + C∆(N) , (88)

with C = m(L1 + L2
1)LK.

Next, referring to Theorem 2, (23) and (29), we see that for anyx ∈ <n, and anyN ∈ N ,
hN (x), the minimizer of(73), satisfies

hN (x) ∈ −γN (x)−1
∑
j∈m

ajN (x)convyj∈Yj,N {∇xφj(x, yj,N )} , (89)

where

aN (x) := (
∂F

∂y1
(ψN (x)), ...,

∂F

∂ym
(ψN (x))), (90)

and

γN (x) := δ
∑
j∈m

ajN (x). (91)

Hence, since the gradients∇xφj(·, ·) are continuous, and since the setS and the setsYj
are bounded, there exists aκ <∞ such that‖hN (x)‖ ≤ κ for all x ∈ S, andN ∈ N . For
anyx ∈ <n and eachj ∈m, let yj,x ∈ Yj,N be such that

f̃0(x, x+ hN (x)) =
∑
j∈m

∂F

∂yj
(ψ(x))[φj(x, yj,x)

+〈∇xφj(x, yj,x), hN (x)〉+ 1
2δ‖hN (x)‖2]. (92)

By Assumption 3, for eachj ∈ m, there exists ay′j,x ∈ Yj such that‖y′j,x − yj,x‖ ≤
K∆(N). Hence, because (82) holds, and because

‖f j,jx(x, yj,jx)− f j,jx(x, y′j,jx)‖ ≤ LK∆(N), (93)

and

‖〈∇xf j,jx(x, yj,jx), hN (x)〉 − 〈∇xf j,jx(x, y′j,jx), hN (x)〉‖ ≤ LK∆(N)κ, (94)
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we conclude that

f̃0
N (x, x+ hN (x)) ≥

∑
j∈m

∂F

∂yj
(ψ(x))[φj(x, y′j,x) + 〈∇xφj(x, y′j,x), hN (x)〉

+ 1
2δ‖hN (x)‖2]

≥ f̃0(x, x+ hN (x))− (mL1LK + κmL1LK)∆(N). (95)

Hence, sinceθN (x) = f̃0
N (x, x + hN (x)) −

∑
j∈m

∂F

∂yj
(ψN (x))ψjN (x), ∂F

∂yj (ψN (x)) > 0,

andψj(x) ≥ ψjN (x), j ∈m,

θN (x) ≥ θ(x) +
∑
j∈m

∂F

∂yj
(ψ(x))ψj(x)−

∑
j∈m

∂F

∂yj
(ψN (x))ψjN (x)

−(mL1LK + κmL1LK)∆(N)

= θ(x) +
∑
j∈m

∂F

∂yj
(ψN (x))[ψj(x)− ψjN (x)]

+
∑
j∈m

[
∂F

∂yj
(ψ(x))− ∂F

∂yj
(ψN (x))

]
ψj(x)

−(mL1LK + κmL1LK)∆(N)

≥ θ(x) +
∑
j∈m

[
∂F

∂yj
(ψ(x))− ∂F

∂yj
(ψN (x))

]
ψj(x)

−(mL1LK + κmL1LK)∆(N). (96)

Finally, from (87) and (96), we deduce that

θN (x) ≥ θ(x)− [m(L1 + L2
1)LK + κmL1LK]∆(N). (97)

It follows by inspection from (88) and (97) that (76) holds withCS = m(L1 + L2
1)LK +

κmL1LK. Obviously, this value ofCS is also good for (75), and therefore our proof is
completed.

Corollary 2 The pairs(PN, θN), defined by (69)-(71) and (73) respectively, are con-
sistent approximations for the pair(P, θ), defined by (1)-(2), (16), respectively.

Proof: Letx ∈ <n be arbitrary, and let{xN}N∈N0 be a sequence in<n that converges to
x. Then, since{xN}N∈N0 is bounded, it follows from Lemma 4 that there exists a constant
C∗ <∞ such that
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lim |f0
N (xN )− f0(x)| ≤ lim{|f0

N (xN )− f0(xN )|+ |f0(xN )− f0(x)|}

≤ lim{C∗∆(N) + |f0
N (xN )− f0(xN )|} = 0 . (98)

Referring to Theorem 3.3.2 in [17], we see that (98) implies epi-convergence.
Similar reasoning leads to the conclusion thatθN (xN ) → θ(x), asN → ∞, which

completes our proof.

Note that it follows directly from (75) that if̂x is a minimizer off0(·) and x̂N is a
minimizer off0

N (·), then|f0
N (x̂N )− f0(x̂)| ≤ CS∆(N).

4.2. Rate Preserving Algorithm

Algorithm 2 (Solves Problem (1))

Parameters.α, β ∈ (0, 1), δ > 0,D > 0, σ > 1.

Data. x0 ∈ <n,N0 ∈ N .

Step 0. Seti = 0,N = N0.

Step 1. Compute theoptimality function valueθN (xi) according to (73), i.e.,

θN (xi) = min
h∈<n

∑
∈m

∂F

∂yj
(ψN (xi)) max

yj∈Yj,N
[φj(xi, yj)

+〈∇xφj(xi, yj), h〉+ 1
2δ‖h‖

2]−
∑
j∈m

∂F

∂yj
(ψN (xi))ψ

j
N (xi) (99)

and the correspondingsearch directionhN (xi) according to

hN (xi) = arg min
h∈<n

∑
j∈m

∂F

∂yj
(ψN (xi)) max

k∈qj

max
yj∈Yj,N

[φj(xi, yj)

+〈∇xφj(xi, yj), h〉+ 1
2δ‖h‖

2]. (100)

Step 2. If

D∆(N) ≤ |θN (xi)|σ, (101)

setθi = θN (xi), hi = hN (xi), Ni = N , and go to Step 3. Else replaceN byN + 1
and go to Step 1.
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Step 3. Compute the step-size

λi = max
k∈N
{βk| f0

Ni(xi + βkhi)− f0
Ni(xi)− β

kαθi ≤ 0}, (102)

and go to Step 4.

Step 4. Set

xi+1 = xi + λihi, (103)

replacei by i+ 1 and go to Step 1.

Remark.

(a) It follows from Lemma 4 thatθN (xi)→ θ(xi), asN →∞. Hence, wheneverθ(xi) 6=
0, the loop consisting Step 1 and Step 2 of Algorithm2 yields a finite discretization
parameterNi. For simplicity, we will assume that Algorithm2 does not produce an
iteratexi such thatθ(xi) = 0.

(b) Note that the work needed to computexi by Algorithm 2 increases with the iteration
numberi.

Lemma 5 Suppose that Assumption 3 is satisfied, and that Algorithm2 has constructed a
sequence{xi}∞i=0 together with the corresponding sequence of discretization parameters
{Ni}∞i=0. If the sequence{xi}∞i=0 has at least one accumulation point, thenNi → ∞, as
i→∞.

Proof: For the sake of contradiction, suppose that the sequence{Ni}∞i=0 is bounded. Then,
because{Ni}∞i=0 is a monotonically increasing sequence of integers, there exists ani0 ∈ N ,
such that for alli ≥ i0,Ni = Ni0 =: N∗. Hence fori ≥ i0, the construction of the sequence
{xi}∞i=0 is carried out by Algorithm1 applied to problem (69) withN = N∗. Furthermore,
it follows from (101) that there exists anε > 0, such thatθi = θN∗(xi) ≤ −ε for all i ≥ i0.
Since by assumption the sequence{xi}∞i=0 has at least one accumulation pointx̂, with
xi →K x̂, asi → ∞, for some infinite sequenceK ⊂ N . It now follows from Theorem
3 thatθN∗(x̂) = 0 and from the continuity ofθN∗(·), thatθN∗(xi) →K θN∗(x̂) = 0, as
i→∞, which contradicts the previous finding, and completes our proof.

By applying Theorem 3.3.23 of [17] or Theorems in Section 5 of [16] to Algorithm2, we
obtain the following global convergence theorem:

Theorem 5 Suppose that Assumptions 1 and 3 are satisfied, and that Algorithm2 has
constructed a bounded sequence{xi}∞i=0. Then every accumulation pointx̂ of {xi}∞i=0

satisfiesθ(x̂) = 0.

Theorem 6 Suppose that Assumptions 1, 2, and 3 are satisfied, and thatδ ∈ [c, C]. Then

(i) any bounded sequence{xi}∞i=0, generated by Algorithm2, converges to the unique
solutionx̂ of (1.3), and, in addition,
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(ii) we have that

lim
f0(xi+1)− f0(x̂)
f0(xi)− f0(x̂)

≤ 1− αβ c

C∗
, (104)

where

C∗ = C sup
i∈N

[
1 + max

j∈m
max
λ∈[0,1]

max
yj∈Yj

‖∇xφj(x̂, yj))‖2/
∂F

∂yj
(ψNi(x̂))

]
. (105)

Proof: (i) First we note that it follows from Assumption 2 that the functionf0(·) has a
unique stationary point̂x. Next, since the sequence{xi}∞i=0 is bounded it must have accu-
mulation points, and finally, by Theorem 5, these accumulation points must be stationary.
Hence the sequence{xi}∞i=0 converges tôx.

(ii) We deduce from the optimality of̂xN and Lemma 4 that for someκ <∞,

f0
N (x̂N ) ≤ f0

N (x̂) ≤ f0(x̂) + κ∆(N). (106)

Similarly, we see that

f0(x̂) ≤ f0(x̂N ) ≤ f0
N (x̂N ) + κ∆(N). (107)

Hence

|f0(x̂)− f0
N (x̂N )| ≤ κ∆(N). (108)

Next, becauseδ ∈ [c, C], an examination of the proof of Theorem 4 shows that (47) must
hold for alli ∈ N , on the sequence{xi}∞i=0 constructed by Algorithm2, i.e., for alli ∈ N ,

f0
Ni(xi+1)− f0

Ni(x̂Ni) ≤ [1− αβ c

Ci
](f0

Ni(xi)− f
0
Ni(x̂Ni)) , (109)

where

Ci := C

[
1 + max

j∈m
max
λ∈[0,1]

max
yj∈Yj

‖∇xφj(xi, yj)(xi + λhNi(xi))‖2/
∂F

∂yj
(ψNi(xi))

]
(110)

is finite. It therefore follows from Lemma 4 and (108) that

f0(xi+1)− f0(x̂) ≤ [1− αβ c

Ci
]
(
f0(xi)− f0(x̂)

)
+ 4κ∆(Ni). (111)

Next, we conclude from the proof of Theorem 4 that, for anyλ ∈ (0, 1],

F (ψNi(xi + λhNi(xi)))− F (ψNi(xi))

≤ λ

∑
j∈m

∂F

∂yj
(ψNi(xi)) max

yj∈Yj,Ni
[φj(xi, yj)

−ψjNi(xi) + 〈∇xφj(x, yj), h〉+
λCi
2δ

δ‖hNi(xi)‖2]
}
. (112)
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Hence, ifλC/δ ≤ 1, thenλCi/δ ≤ 1 and

F (ψNi(xi + λhNi(xi)))− F (ψNi(xi)) ≤ λθNi(xi). (113)

We therefore conclude from (113) and (102) of Algorithm2 that

λi ≥
δβ

Ci
. (114)

It now follows from (114) and (102) that

f0
Ni(x̂Ni)− f

0
Ni(xi) ≤ f

0
Ni(xi+1)− f0

Ni(xi) ≤
δαβ

Ci
θNi(xi) . (115)

Next, making use of Lemma 4, (108), (115), the fact thatθi = θNi(xi) by definition, and
that−θi ≥ [D∆(Ni)]1/σ by construction in (101), we conclude that

Ci
δβ

[f0(xi)− f0(x̂)] ≥ Ci
δαβ

[f0
Ni(xi)− f

0
Ni(x̂Ni)]−

2Ciκ
δβ

∆(Ni)

≥ −θi −
2Ciκ
δβ

∆(Ni)

≥ [D∆(Ni)]1/σ −
2C∗κ
δβ

∆(Ni)

= [D∆(Ni)]1/σ[1− 2Ciκ/(δβD1/σ)∆(Ni)(σ−1)/σ] . (116)

Sinceσ > 1 and since by Lemma 5,Ni →∞, asi→∞, we conclude that there exists an
i0 such that for alli ≥ i0,

Ci
δαβ

[f0(xi)− f0(x̂)] ≥ 1
2 [D∆(Ni)]1/σ, (117)

and hence that

Ci
δαβ

[D∆(Ni)](σ−1)/σ[f0(xi)− f0(x̂)] ≥ 1
2D∆(Ni) . (118)

It now follows from (111) and (118) that for alli ≥ i0,

f0(xi+1)− f0(xi) ≤
[
1− αβc

Ci
+

8κCi∆(Ni)(σ−1)/σ

δβD

]
[f0(xi)− f0(x̂)] . (119)

SinceCi → Ĉ, as i → ∞, (104) follows from (119) and the fact that, by Lemma 5,
Ni →∞, asi→∞. This completes our proof.
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Figure 1. Numerical results for Example-1

5. Some Numerical Results

We now present some numerical results that illustrate the behavior of the algorithm proposed
in Section 4 for generalized semi-infinite programming problems. The algorithm was
implemented in Matlab and run on a DEC Alpha Server 8200. Throughout the computational
experiments, the parameters used in the algorithm wereα = 0.5, β = 0.85, δ = 1, D =
0.01, andσ = 1.1.

Example-1. In this case,f0(x) = F (ψ1(x), ψ2(x)), with x = (x1, x2) ∈ <2, F (z) =
z1 + z2, with z = (z1, z2) ∈ <2, and

ψ1(x) = max
t∈Y1
{t2 − (tx1 + etx2) + (x1 + x2)2 + (x1)2 + (x2)2}

and

ψ2(x) = max
t∈Y2
{(t− 1)2 + 0.5(x1 + x2)2 − 2t(x1 + x2) + 0.5[(x1)2 + (x2)2]},

whereY1 = [0, 2] andY2 = [−1, 1]. We used the starting pointx0 = [1, 1].
Figure 1 displays both the exact value off0(xi) and the current approximating value

f0
Ni

(xi), constructed by the algorithm at iterationi. Note the expected sudden increase
in the approximating valuef0

Ni
(xi) when the discretization level is refined by the master

algorithm. The observed rate of convergence is linear.
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Figure 2. Numerical results for Example-2

Example-2. In this case, the functionsf0(·), ψ1(·), andψ2(·) are also defined as in
Example-1, butF (·) is defined by

F (z) = 0.5(z1 +
√

(z1)2 + 4) + ln(1 + ez
2
), z = (z1, z2) ∈ <2.

Figure 2 displays both the exact value off0(xi) and the current approximating value
f0
Ni

(xi), constructed by the algorithm at iterationi. Again note the expected sudden
increase in the approximating valuef0

Ni
(xi) when the discretization level is refined by the

master algorithm. The observed rate of convergence is linear.

6. Conclusion

We have presented an algorithm for solving semi-infinite generalized min-max problems
of the form (1) and (2), which we have obtained by making use of the Kiwiel algorithm
in [7] and of the concepts underlying the construction the Polak-He PPP Rate-Preserving
Algorithm in [15] (see also Algorithm 3.4.9 in [17], respectively. The construction of the
algorithm depends on the cost function having a subgradient and hence Assumption 2 is
essential.

Our numerical results are consistent with our theoretical predictions and show that the
algorithm was efficient in solving our two generalized semi-infinite min-max test problems.
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Notes

1. We denote the components of a vector by superscripts, and elements of a set by subscripts.

2. These transformations result in a smooth problem with more variables than in the nonsmooth problem. Al-
though not documented in the literature, it is widely observed that these transformations induce considerable
ill-conditioning in the resulting smooth problem because they introduce arbitrary scaling, and hence lead to
less efficient solution of the original nonsmooth problems than using algorithms that exploit problem structure.

3. We were unable to show that the general case of the Kiwiel algorithm in [7, 10] converges linearly.

4. In [7], Kiwiel defines a family of algorithms with the term
∑

j∈m
∂F
∂yj

(ψ(x)) 1
2
δ‖h‖2 replaced by1

2
〈h,Bh〉,

with B any symmetric positive definite matrix. However, our rate of convergence analysis does not appear to
carry over to the entire family of algorithms even when Assumptions 1 and 2 are satisfied.
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