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Abstract. We present a first-order algorithm for solving semi-infinite generalized min-max problems which
consist of minimizing a functioff® (z) = F (! (x), ....,4y™(z)), whereF is a smooth function and eaglt is
the maximum of an infinite number of smooth functions.

In Section 3.3 of [17] Polak finds a methodology for solving infinite dimensional problems by expanding
them into an infinite sequence of consistent finite dimensional approximating problems, and then using a master
algorithm that selects an appropriate subsequence of these problems and applies a number of iterations of a finite
dimensional optimization algorithm to each of these problems, sequentially. Our algorithm was constructed within
this framework; it calls an algorithm by Kiwiel as a subroutine. The number of iterations of the Kiwiel algorithm
to be applied to the approximating problems is determined by a test that ensures that the overall scheme retains
the rate of convergence of the Kiwiel algorithm.

Under reasonable assumptions we show that all the accumulation points of sequences constructed by our
algorithm are stationary, and, under an additional strong convexity assumption, that the Kiwiel algorithm converges
at least linearly, and that our algorithm also converges at least linearly, with the same rate constant bounds as
Kiwiel's.

Keywords: generalized min-max problems, consistent approximations, optimality functions, first-order methods,
linear convergence

Dedication: Olvi, please accept this modest tribute in celebration of your 65th birthday. | wish you another 65
years of good health, happiness, and important contributions to nonlinear programming. - Elijah Polak

1. Introduction

Generalized min-max problems have the form

P .

znelglﬁf}lf (z), 1)
where

fO(x) = F(y(x)), 2
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and the research of the second author and the third author was supported by the Australian Research Council.
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where F : R™ — R, ¢ : R* — R™, with ¢(z) = (¥ (z),...,v™(x))!, and, for
j=1,..,m,7 : R — R are of the form

J
max ¢'(z,y;), (3)
andg’ : R x R™i — R. Itis usual to assume that the functiofi§), ¢(-, -) are smooth
and that the sefs; C R are compact. When the cardinality of the sE}ss finite, P is
afinite generalized min-max problem, while when the cardinality of at least one of the sets
Y; is infinite, P is asemi-infinitegeneralized min-max problem.

Generalized min-max problems are among the simplest of nonsmooth problems beyond
ordinary min-max problems that have manifestly exploitable structure. Quite early, they
were recognized to be in the class of quasi-differentiable problems, see, e.g., [4] and hence,
at least in principle, finite-dimensional generalized min-max problems are solvable by
algorithms developed for minimizing quasi-differentiable functions, see, e.g., [2, 3, 7,
8, 9, 10, 11, 18]. Under the additional assumption aYy)/0y’ > 0 for all y €
R™ andj = 1,...,m, finite generalized min-max problems can also be solved by means
of nonlinear programming algorithms, using a transformation that converts a generalized
min-max problem into a smooth constrained nonlinear programming prél{ese e.g.,

[1, 5, 12]). Other methods that depend on the assumptiondthiéy)/dy’ > 0 for all
y € R™and;j = 1, ..., m, can be found, forexample, in [7]. To date, only finite-dimensional
generalized min-max problems have been considered.

Generahzed min-max problems are not only of theoretical interest. For example, when

Z Y, orF(y Z( 72 or F(y Z log »/, minimizing f°(-) corresponds
0 0
to m|n|m|Z|ng the averagé value, mean squa?e value, or nonlinearly weighted mean value
of the ¢’ (), respectively. Less obvious cases are bound to emerge in the engineering
and economics literatures as efficient algorithms for the solution of generalized min-max
problems become available.

It is a well known fact that the less problem structure is taken into account, the less
efficient are the resulting nonsmooth optimization algorithms. Thus, there are both linearly
and superlinearly converging algorithms for the solution of min-max problems of the form
(2) (see. e.g., Chapter 4 in [17]), which make strong use of the structure of these problems.
In this paper we make full use of the structure of the nonsmooth problem and of the theory
of consistent approximations in [17] to obtain a linearly converging algorithm.

We will consider problem (1) under the following hypotheses.

Assumption 1.  We will assume that
(@) The functiong”(-) and¢’(-,-), j € m, are at least once continuously differentiable.
(b) There exists ar > 0 such that for ally € R™ andj € m, dy] E () > cp.

(c) The setg; are either convex and compact, or of finite cardinality, of the form

}/j = {yj,l,"'vyj.,q_j} . (4)
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Partg(a) and(b) of Assumption 1 ensure that when both fiig) and the’ (-) are convex,
the functionf?(-) is also convex. In addition, as we will see, when péasand (b) of
Assumption 1 hold, the functiofi’(-) has a subgradient.

In Section 2 we derive optimality conditions in optimality function form that will be needed
in the construction of our generalized semi-infinite optimization algorithm. In Section 3 we
show that a particular case of the Kiwiel extension [7, 10] of the Pshenichnyi-Pironneau-
Polak Minimax Algorithm (see [19, 13, 14] and Algorithm 4.1 in [17]) to generalized finite
min-max problems converges lineatlyin Section 4 we present our algorithm for solving
generalized semi-infinite min-max problems, which can be seen to be an extension of the
Polak-He PPP Rate-Preserving Algorithm 3.4.9 in [17] (see also [15]). The algorithm
consists of a master algorithm that constructs consistent finite dimensional approximations
by discretizing the intervals in the max functions in (1), calls the Kiwiel algorithm as a
subroutine for solving the resulting finite dimensional problems, and determines how long
the Kiwiel algorithm should be used at a given level of discretization. We show that our
algorithm converges linearly. In Section 5 we present a couple of numerical results that
illustrate the behavior of our algorithm, and our conclusions are in Section 6.

2. Optimality Conditions

In this section we will present optimality conditions for problem (1) both in “classical”
form and in terms of an optimality function which leads to a linearly converging first-order
algorithm. First, we need the following straightforward result.

LEMMA 1 Suppose that’ : R™ — R is continuously differentiable and that: R" —
R™ is a locally Lipschitz continuous function that has directional derivatives at every
z € N". LetfO : R* — R be defined by

fO(z) = F((x)) . ()

Then, given any € ", and direction vectoh € R, the functionf(-) has a directional
derivativedf®(z; h) which is given by

df®(x; h) = (VE(p(x)), dip(; b)) - (6)
Suppose that Assumption 1 is satisfied. Then it follows from Lemma 1 that the directional
derivative of f°(-), at a pointz € R in the directionh, is given by
OF ,
folash) =3 550 (@h)

Jjem

=Y L (p@) max (Tadi(z,y),h), 7)

o 5, €Y, (@)
where

Yj(2) = {y; € Y | ¢/ (x,5) = ¢ () }. (8)
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When all the set¥; are as in (4), (7) assumes the form

0 5,k
df° (s ) ];n ay] (=) max (Vf75(), h), ()

where the functiong’-*(-) are defined by

fPR@) = ¢ (2, y5n), K € q, (10)
and the set§;(z) by
5(z) = {k € qj | [7*(2) =9’ (2)} . (11)

Hence the following result is obvious.
THEOREM 1 Suppose that is a local minimizer for the problem (1). Then for ale R™,

A E) = 3 5@ @ h)

jEm

o O Y E€Y;(2)
Furthermore, (12) holds if and only if € 07°(%), where the subgradiertf°(2) is given
by

of() =Y {ny " { OF (5(a)) .0 (2, y>}} . (13)

JEmM 8y]

Since (12) is a necessary condition of optimality, any poirt ™ that satisfies (12) will
be calledstationary

When all the set¥); are of the form (4), the expressions (12) and (13) assume the following
form:

@ =Y SEWE) max (VANDR 20, vheR,  (4)
JEm
0(4 oF . k(A
af°(2) Z CONVkeg;(2) {8—yj(w(ac))VfJ (x)} ) (15)
JjE€m

Definition 1.  We will say thad : " — R is anoptimality functionfor problem (1) if
(@) 6(-) is upper-semicontinuous,

(b) O(x) <0Oforall z € R*, and

(c) foranyi € ", (12) holds if and only i (z) =
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Let & > 0 be arbitrary. Then we define the functién: ®* — R and the associated
search direction functioh : % — R" by*

oF

6(z) = min a—yj(w(x))yr?gg {¢ (z,y5) — ¢/ (2)
jem (16)
H(Vad? (2,5), h) + 30]10]1}
and
OF , ,
hz) = argmin ) 55 (¥(x) max {¢' (@,y;) = ()
jem (17)

+H(Vad! (@,95), h) + 361117}

Foranyj € m, and anyz € R", letGy (z) C R"*! be a set with elements = (¢2,¢;),
£) e R, & € R, defined by

7 () := conv W () _»q}j(x’yj) j €m

G'l/} ( ) . Yy; €Y {|: Vx(b](ﬂ?,yj) :|}7 J € ) (18)
and let

ala) = (g () s g () (19)

Then we conclude from (16) that an alternative expressiofi(foy is as follows

0(z) = mi j —€9 4 (&5, h) + L5||h)2)- 20
(z) ;g;}ljema (x)gjerg3§(1){ & + (&, h) + 50[IA)17} (20)

Using the fact that

max v’ + max v® = max max(u’ + v¥), (21)
JEP keq Jjep keq

we conclude that

_ : 0 2
0(z) = min (e {=€"+ (& 1) + 3y (@) [|A]1%} (22)

whereG fO(z) c ®"*! is defined by

Gf'(x) = ) o (@)GV (x), (23)
and
y(x) =46 Z a’ (z). (24)

jEmM
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Since the se'f°(x) is convex and compact, and the functieg) + (¢, h) + 3(x)|h[?

is convex ink, concave irg, and—¢? + (¢, k) + 57(x)||k[|* — oo as||h|| — oo, we can
make use of a corollary to the von Neumann Theorem (see Corollary 5.5.6 in [17]) and
interchange the max and the min in (22), to obtain

6(x) = max min {- £+ (&) + 37(2)[|]1%}- (25)

Now, solving the inner minimization problem in (25) fbr we find that

1
h=——— 26
v(x) 29
and hence (25) simplifies out to
O(z) = Oy — 27
(@) = min (" + el @)
Now, let

~* _ O*x *(2)) = — ar min 0
§@) = (" @, @) = —arg_min {&"+ -

Then it follows from Corollary 5.5.6 in [17] and (26) that an alternative expressiof(for
is given by

h(z) = *%x) “(z) . (29)

When all the set¥]; are of the form (4), (27) reduces to the following quadratic program-
ming problem:

0(z) = — min {Z Y d @b (@) - f7H ()

(28)

+%(Za]’(m)é) 1Y @)k k@)? (30)

JjE€Em keaq;

where, for any positive integet X, denotes the unit simplex ¢, which is defined by
Se={neRp >0,jeq, » p =1} (31)
Jj€aq

Let u(z) = (1 (), ..., pm(2)), with p;(x) € R™7, denote any solution of (30). Then

we see that
=30 d (@) () V() (32)

jEm keq;

The following theorem shows thét-) is indeed an optimality function for the problem
(1) and that the search direction functib() is a descent direction function fgf ().
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THEOREM 2 Suppose that Assumption 1 is satisfied. Consider the funéjorsndh(-)
defined by (16) and (17). Then

(i) Forall z € ™,
f(x) <0. (33)
(i) Forall z € R™,
df°(a; h(z)) < 0(x) = 5 D a;(x)a]|()], (34)
jEm
wheredf(x; h(z)) is the directional derivative of® at x in the directionh(x).

(iii)y Forany z € ®",0 € 9f°(x) if and only ifg(x) = 0, whered f°(x) is the subgradient
of fO(x) atx, defined in (13).

(iv) The functiord(-) is continuous.

(v) The functiori(-) is point-valued and continuous.

The proof of this theorem can be obtained by straightforward extension of the proof of
Theorem 3.1.6 in [17] and is therefore omitted.

3. An Algorithm for Solving Generalized
Finite Min-Max Problems

We will need a special case of the generalized finite min-max algorithm described in [7, 10]
as a subroutine, for solving problems of the form (1) when theXSeise of the form (4).

Defining the functiong?* () are as in (10), these generalized finite min-max problems are
of the form (1), with

min f%(z)

zeR"

(35)
P(z) = (H(2), ..., ¥ (2)),

W@=%§ﬂﬂmj€m>

where, in view of Assumption 1, the functiodd(-) and f-¥(-), j € m, k € q; are all
continuously differentiable.

The special case of the Kiwiel algorithm [7, 10] that we need is a straightforward extension
of the Pshenichnyi-Pironneau-Polak Minimax Algorithm 2.4.1in [17] and has the following
form:

Algorithm 1 (Solves Problem (35))
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Parametersa € (0,1), 8 € (0,1), and§ > 0.
Data. zy € R".
Step 0. Set; = 0.

Step 1. Compute the optimality function valde := 6(x;) and the search directioh; :=
h(z;) according to the formulae (30) and (32).

Step 2. If §; = 0, stop. Else, compute the step-size
Ai = Ai) = lgleag{ﬁﬂ FO(xi+ B hi) — fO(w;) — B ab; < 0}, (36)

whereN :={0,1,2,..., }.

Step 3. Set
Tiy1 = x; + Ahy, (37)

replace: byi + 1, and go to Step 1.

THEOREM 3 [7]Suppose that Assumption 1 is satisfied and thatallthg € m are ofthe
form (4), so that problem (1)-(2) reduces to problem (35)]if} 2, is an infinite sequence
generated by Algorithnh andz is an accumulation point ofz; }22,,, thend(z) = 0.

We will show that Algorithml converges linearly under the following additional assump-
tion.

Assumption 2.  We will assume that

(@) the functionsp’(-,y;), j € m, y; € Y;, andF(-), in (1)-(2), are twice continuously
differentiable, and

(b) there exist constants < ¢ < C < oo, such thatfor allj € m, y; € Y;, z € ®*, and
h € R",

cllyll* < (h, ¢, (,y;)h) < C||h|? (38)
and

0 < (h, Fuu(2)h) < C|l|1%. (39)

The following result is obvious.
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LEMMA 2 Suppose that Assumption 1 holds. Then for@ny € R™ such that)’ > y,

F(y') = Fly) > cr Y () — v5)- (40)

JEmM
LEMMA 3 Suppose that Assumptions 1 and 2 are satisfied. Then there exists a constant
7 > 0 such that for allz, z’ € " and X € [0, 1],

PO+ (1= Na') S A0@) + (1= V) — bra(1 =Nz -2 (@41)

Proof: It follows from Assumption 2 that for any, 2’ € " and € [0, 1],

FRO + (1= N)a')  AfHF() + (1= N fFRa) = Lea(d = Nz - '|]%. (42)
Hence, for allj € m,

YAz + (1= Nz') < X () + (1= N (2) = ged(1 = N|lz —2'|*. (43)
It follows from (40) and (43) that

F(X(x) + (1= N(a") = F(ya + (1 = N)a)) + gepemA(1 = M)z — /||,
(44)

SinceF is convex, we conclude from (44) that
AF(Y(x)) + (1 = AN F(p(a))

> F(Ax+ (1—Nz')) + %chm)\(l —A)lz — 2’2

(45)

By letting T = crpcm, we conclude that
M)+ (1 =N f") = POz + (1= N)a') + 57AQ = Nfla = 2'[%. (46)
This proves (41). ]

PRrROPOSITION 1 Suppose that Assumptions 1 and 2 are satisfied, that difthjec m are

of the form (4), so that problem (1)-(2) reduces to problem (35). Then any sequengg,
constructed by Algorithr, in solving problem (35), converges to the unique minimizer

of °(.).

Proof: First, by Lemma 3, the functiorf®(-) is strongly convex, and hence it has a
unique minimizerz. This minimizer is also the unique stationary pointf3f-). Also,
since the functiorf(-) is strongly convey, its level sets are compact. Consequently, since
the cost sequencgf®(z;)}:2, is monotone decreasing, the sequefieg °, must have
accumulation points. It now follows from Theorem 3 that each of these accumulation points
must be stationary. Sing®(-) has a unique stationary poiftit follows that the sequence
{z;}52, converges td:. [
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THEOREM 4 Suppose that Assumptions 1 and 2 are satisfied, that al’thg¢ € m are
of the form (4), so that problem (1)-(2) reduces to problem (35), andd&hat[c, C]. If
{z:}32, is a sequence constructed by Algoritiimin solving problem (35), then

fo@iv1) — fO2 :
fgf;)l) 70 (gg)) <1- aﬁé , Yie N, 47)
where
C* = C'sup max {1+ maxmax IV f9% (25 + shy) || / ( (z:))} - (48)
ieN s€[0,1] jem

Proof: Since by Lemma 2,
F(y') = Fy) 20, (49)
whenevery’ > v, it follows that for anyz’, = € ®",
o) = fx) = F((a")) — Fy(x))
> F(i(,2' — x)) = F(4(2)), (50)
where))(z, 2’ — x) = (P (z, 2’ — ), ..., " (z, 2’ — x)), with

P (2,2’ —x) = IgleaXf”( ) + (Vf*(), 2" —x) + gella’ — 2|, j € m. (51)
qj

Next, sinceF () is convex, for any, y’' € R™,
F(y') = F(y) > (VF(y),y' —v), (52)
which, together with (50), implies that for anyx’ € R™,

@) = fola Z 8y7 maX{fjk( ) — ¢ (x)

JjEmM

HV (@), 2’ — 2) + gefla’ — 2]?}]

> 03 G b)) {7 (2) ~ ()

qu
JEM

HV @), 52 = 2)) + 30]1 5 (" — 2)[?}]. (53)
It follows directly from (53) that

o) () > 20(a). (54

Sincez is a global minimizer off°(-), we deduce from (54) that for all € R",
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@) - ) > o). (55)

c

To complete our proof of linear convergence, we need one more inequality. By the Mean
Value Theorem, for every € m, z € R", and\ > 0,

¥ (x + Ah(x)) = glegs{fj”“(x) FMVSIEER), h@)}y, &k € [2,@ 4+ Mn(x)].
(56)
Hence, for every € m, x € R™, and\ > 0

Amin(V (800, A(w) < 1 (@ + M(2) = 19 (2) < Amax(9 £, h(a),
€q; €q;

(57)
which leads to the conclusion that
[0 (z + Ah(z)) — ¢ (2)] < Aggf (V7R 0), b)) (58)
Because of Assumption 2, for any> 0 andj € m, andx € R",
J i sl £k () — ol .k
P (@ + Ah(x)) — o () < max {75() = ¢/ (2) + MV /5 (), h(x)) (59)
+3A%C||h(2)|?},
which, together with Assumptions 1 and 2, and (58), implies that foraay0, 1],
F(p(x + Ah(x))) = F(ip(x))
<(VF (), (z + An(x)) — (@) + 3C|[d(a + M(z)) — ()|
<AL a—F4(w(rf))[rnax{f-’”"“(ﬂc) — (@) + (V7 (), h(x))
B jem oyl keq; ’
AC AC o
+ 55 OGP} + S5 pa fov’“<sﬂ”“>||25||h<x>||2} . (60)
Consequently, if
AC o OF
1+ max IIVfJ”“(ﬁj”“)||2/8—w(1/)(:c))] <1, (61)
then we conclude from (60) that
fO@ + M(z)) = fO(z) < N (=). (62)

Now suppose th&tz; } 52, is a sequence constructed by Algorithrffom an initial point
o € L* = {z € R"| f(z) < f(=°)}. Then, because by construction the sequence
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{f%(z:)}52, is monotone decreasing, it follows that the whole sequéngg®,, is in L*.
Hence it follows from (48) and (62) that for every N,

op
Ai > o (63)
It follows from (36) and (55) that for everyc A/
Fo@irn) = fO(xi) < NaedH(fO(2) = fO(22)). (64)
So,
fo(xipr) — f“(f%) 1
1— \acd™ . 65
)~ @) ©9
Hence from (63) and (65) we deduce that
fxipr) = fO(2)
o)~ PG =1V ©o
This completes our proof. ]

The following consequence of Theorem 4 should be obvious:

COROLLARY 1 Suppose Assumptions 1 and 2 are satisfiedz betthe unique minimizer
of f°(-), and let

C= C{1+maxmaX||Vf]k( )| /6 ]( (@)} (67)

If § € [¢, C], then, for any sequender; }2°, constructed by Algorithri

mfo(lﬂl) — (& ) <
fO(xi) — fO(2)

<1- aﬁ— (68)

4. An Algorithm for Solving Generalized Semi-Infinite Min-Max Problems

We are now ready to tackle the generalized semi-infinite min-max problems defined in
(1)-(2). Such problems can be solved only by discretization techniques. We will use
discretizations that result in consistent approximations (as defined in Section 3.3 of [17])
and use them in conjunction with a master algorithm that calls Algoritlasia subroutine.

We will see that under a reasonable assumption, the resulting algorithm retains the rate of
convergence of Algorithn.
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4.1. Consistent Approximations

Let Vg be a strictly positive integer, and, fof € No := {Ny, No+1, No+2, ...}, letY; n
be finite cardinality subsets &f, j € m, suchthal’; y C Y; x4 forall N andthe closure
of the setlim Y; v is equal toY;, j € m. Then we define the family of approximating
problemsPyn, N € Ny, as follows:

Pn

min fy(z), (69)
where

Ix(@) = F(n (@) (70)
whereyy (z) = (Vi (), ..., 7 (), and forj € m,

Yp(z) = max ¢ (x,y;) . (71)

Y; €Y N

It should be clear that the approximating probldis are of the form (35) and that one
can define optimality functiongy (-) for them of the form (4). We will refer to the original
problem (1) a®.

Definition2.  [17] We will say that the paifl®n, ), inthe sequencE(Pn, On) } NeN,
are consistent approximations for the p&lP, 9), if the problems epi-converge t®,
(i.e., the epigraphs of th¢ (-) converge to the epigraph ¢’ (-) in the sense defined in
Definition 5.3.6 in [17]), and for any infinite sequen¢ey } nex, K C Ny, such that
Ty — z, limOy(zn) < 0(z).

Assumption 3.  We will assume as follows:
(a) ForeveryN € Ny, the problem (69) has a solution.

(b) There exists a strictly positive valued, strictly monotone decreasing funktioN —
R, such thatA(N) — 0, asN — oo, and aK < oo, such that for everyV. > N,
Jj € m, andy € Yj, there exists @’ € Y; n such that

ly =¥l < KA(N). (72)

For example, if for allj € m, Yj is the unit cube it™7, i.e.,Y; = I3, with I := [0, 1],
then we can defin&; y = I;’, where

Iy ={0,1/a(N),2/a(N), ..., (a(N) = 1)/a(N), 1},

with a(N) := 2N¥~No_ In this case it is easy to see thA{N) = 1/a(N) and K =

1 maxjem m; /™). Similar constructions can be obtained for other polyhedral sets.
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We infer from (16) that the optimality functiortsy (), for the problem&Pn have the
following form:

_ oF .
On(a) = min f(aa+h) - X 5 v (73)
where
RBwa+h) =3 2 @) max (7, 55) + (Vod? (2,55, )
o PR T B
+18R). (74

Since the cardinality of the se¥5 v is finite, it is obvious that thé (=) can be evaluated,
using the dual form (30), by means of a quadratic programming code.

LEMMA 4 Suppose that Assumptions 1 and 3 are satisfied, and that fdr allVo, f$(+)
is defined by (70) andy (-) by (73). LetS C R" be a bounded subset and let< co be
a Lipschitz constant valid for the functioné(-,-) andV,¢’(-,-) onS x Y;, j € q. Then
there exists a constalits < oo such that forallr € S, N € Ny,

|fx(z) = fO(x)] < CsA(N), (75)
and
0N (x) — 0(z)| < CsA(N), (76)

provided that botl 5 (z), N € Ny, andf(z) are defined using the same parameler 0.

Proof: First, becaus&’; y C Y}, j € m, we always have that

(@) < 9 (2). (77)
It now follows from Lemma 2 that

(@) < fO(@). (78)
Next, for anyz € S, and eacly € m, there must exist g; , € Y; such that

V(@) = ¢ (2, yj.0) - (79)

By Assumption 3, for eachi € m, there exitsy; , € Y; v such that||y; . — y; .|| <
KA(N). Hence, for each € m, we have that

(@) > ¢ (2,9),) = ¢ (2,yj2) — LKA(N) = ¢/ (x) — LKA(N) . (80)
It therefore follows from Lemma 2 that

S (@) = F(dn () > F(4' (@) — LKA(N), ...y (&) - LKA(N)).  (81)
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Sincey(+) is continuous and/ F(+) is Lipschitz continuous, there exists a constant
Ly < oo such that for any € S, and eachy € q,

oF

9 (2)] < L, %("/]N(JJ))‘ < Ly, 8_yj(¢(x)) <I (82)
and
g—;(iﬁN(x)) - g—;(w(x))‘ < Ly|n () — (). (83)

Making use of the Mean Value Theorem, (81), and (82), we find that

(@) =Fn(z))

> f(x) —mL LKA(N), (84)
where¢ € R™ is such that for each € m,
¢ € ¥ (z) = LKAN), ¢ (2)].

It now follows from (78) and (84) that (75) holds wittis = m L, LK.
Next, we turn to (76). For any, h € R", let

5 OF , ,
0 — ) . 1 2
folee+h)=>" @(zb(x))yglg%[qb](w,yg) +(Vad’ (2,55), h) + 56[[h[7],

(85)
and foranyN € No,z,h € R", let £ (x, z + h) be defined by (74). Then, by inspection,
I¥(z,x+ h) < fO(x,z + h) always holds. Therefore, given ahy e R,

gniéRn f]%(x,x—i—h) < f]%(x,x—i—h’) < fo(az,m—i—h'), (86)
S
and hence
. 70 < . 70 /

jin fy(z,z +h) < min f(z,2+h). (87)

Since OF
_ i 0 _ or j
0(x) = min f*(z,2+h) j;l a7 V@I @)

and oF
On(x) = min fY(z,z+h) =Y @(wzv(x))w?v(fc),

heR :
JjEm
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we conclude, making use of (87), (80), (82), and (83), that
0 0 ;
(@) <0(0)+ 3 ) (2) = 3 5 (o (a)) (@)

JjEmM JEmM

)+ Y G @) (@) - v (o)

JEmM

+Y [ S - G @) @)

< 0(z) + CA(N), (88)

with C = m(L; + L3)LK.
Next, referring to Theorem 2, (23) and (29), we see that forraayR™, and anyN € N,
hy(x), the minimizer of(73), satisfies

hy(x) € (@)™ ) ajy(@)convy,ey, v {Vod (2, y5n)} | (89)
JEmM
where
an(0) 1= (5 () o (v (a) (%0)
and
W (x) =08 al(x). (91)
JEmM

Hence, since the gradients, ¢’ (-, ) are continuous, and since the $eaind the set¥;
are bounded, there existsia< oo such that|hy (z)|| < s forallz € S, andN € N. For
anyr € R" and eacly € m, lety; , € Y} x be such that

JjEmM
HVad (,Y52), hv (@) + 58] v (2)]12]. (92)

By Assumption 3, for eacli € m, there exists &, € Y; such thatl|y} . — y; .| <
KA(N). Hence, because (82) holds, and because

177 (@, y.) = f77 (@5, < LEA(N), (93)
and

(Ve f7 (2, .4,) b (2)) = (Vo f 77 (2,95 5,), hv (@) | < LEA(N) s, (94)
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we conclude that
ez +hn(@) 2> 2= W(@)[¢ (2,9),) + (Vo (2,9],), hn ()
+30 hn (2)]?]
> fO%z,z + hy(x)) — (ML LK + kmLi LK)A(N).  (95)

Hence, sincéy (z) = f¥ (2,2 + hy(z)) — %(Z/JN(%))WQ(I): S5 (Un () > 0,

JEmM

On(z) > 0)+ Y 2—;<w<x>>w< Y g—;w»m
—(mL LK + kmL1LK)A(N)

—0@)+ Y g—;ww»wx) )

jEm

Y [” (b(a)) - 8—F.<wN<x>>] (@)

= oy oyl
—(mL1LK + kmL1LK)A(N)
0 9 ,
20+ 3 |52 0t - Gt | w0
—(mLiLK 4+ kmLiLK)A(N). (96)
Finally, from (87) and (96), we deduce that
On(z) > 0(x) — [m(Ly + L) LK + kmL; LK]A(N). (97)

It follows by inspection from (88) and (97) that (76) holds witlh = m(L; + L?)LK +
xmL, LK. Obviously, this value ot’s is also good for (75), and therefore our proof is
completed. [ ]

COROLLARY 2 The pairs(Pn, fn), defined by (69)-(71) and (73) respectively, are con-
sistent approximations for the paiP, ), defined by (1)-(2), (16), respectively.

Proof: Letx € R™ be arbitrary, and lefx x } ve N, be @ sequence IR™ that converges to
x. Then, sincdzy } nen, IS bounded, it follows from Lemma 4 that there exists a constant
C* < oo such that
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lim | f{ (en) — fO(a)] < lm{[fR(zn) = FOxn)| + 1 (zn) = fO2)]}
< Hm{C*A(N) + |} (zn) = f(zn)[} = 0. (98)
Referring to Theorem 3.3.2 in [17], we see that (98) implies epi-convergence.

Similar reasoning leads to the conclusion thagt{zy) — 6(z), asN — oo, which
completes our proof. [ ]

Note that it follows directly from (75) that if: is a minimizer of f°(-) and Z is a
minimizer of f% (), then| f (Zn) — f°(2)| < CsA(N).

4.2. Rate Preserving Algorithm

Algorithm 2 (Solves Problem (1))
Parametersa, 8 € (0,1),6 >0,D > 0,0 > 1.
Data. xp € R", Ng € N.

Step 0. Seti = 0, N = Nj.

Step 1. Compute theptimality function valueé)y (x;) according to (73), i.e.,

OF .
On(z:) = min @(ww(xi))yiggx [ (i, y5)
cm 7 7N
(Va9 (), B + L8R]2) — %wmowmxa (99)

JEmM

and the correspondingearch directior y (z;) according to

(e =are g 3 o (i) max e 6921, 1)
V) (1,7, ) + S0P, (100)
Step 2. If
DA(N) < [on ()" (101)

set; = On(x;), hy = hy(z;), N; = N, and go to Step 3. Else repla¢gé by N + 1
and go to Step 1.
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Step 3. Compute the step-size
Ao = max {84 SR, (@ + B°hi) = [, (@) - B*ab; <0}, (102)
[S

and go to Step 4.
Step 4. Set

Tip1 = T + Aihy, (103)

replace: byi + 1 and go to Step 1.

Remark.

(@) Itfollows from Lemmad4thafy (z;) — 6(z;), asN — oco. Hence, whenevek(x;) #
0, the loop consisting Step 1 and Step 2 of AlgoritBrgields a finite discretization
parameterV,;. For simplicity, we will assume that Algorithra does not produce an
iteratex; such tha¥(z;) = 0.

(b) Note that the work needed to computgby Algorithm 2 increases with the iteration
number:.

LEMMA 5 Suppose that Assumption 3 is satisfied, and that Algor2thas constructed a
sequencd z; }22, together with the corresponding sequence of discretization parameters
{N;}52,. If the sequencéz; }°, has at least one accumulation point, th&h — oo, as

1 — 00.

Proof: Forthe sake of contradiction, suppose thatthe seque¥ige® , is bounded. Then,
becausé N, }5° , is amonotonically increasing sequence of integers, there exigfsaw,
suchthatforall > iy, N, = N;, =: N*. Hencefok > i, the construction of the sequence
{z:}$2, is carried out by Algorithmi applied to problem (69) wittv = N*. Furthermore,

it follows from (101) that there exists arn> 0, such that), = Oy« (z;) < —eforall i > .
Since by assumption the sequer{eg}:°, has at least one accumulation pointwith

x; —% &, asi — oo, for some infinite sequends C N. It now follows from Theorem
3 thatfy-(2) = 0 and from the continuity of v~ (-), thatdx«(x;) —% Oy-(2) = 0, as

1 — 00, which contradicts the previous finding, and completes our proof. ]

By applying Theorem 3.3.23 of [17] or Theorems in Section 5 of [16] to Algorithme
obtain the following global convergence theorem:

THEOREM 5 Suppose that Assumptions 1 and 3 are satisfied, and that Algogithas
constructed a bounded sequerfeg }°,. Then every accumulation poititof {x;}°,
satisfied) (&) = 0.

THEOREM 6 Suppose that Assumptions 1, 2, and 3 are satisfied, and thét, C]. Then

(i) any bounded sequende;}°,, generated by Algorithr2, converges to the unique
solutionz of (1.3), and, in addition,
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(i) we have that

— [ xi1) — [O2) <

i o ) = 790) (104)

where

; OF .
cr Cfg]g 1+%§Arg[%§]gggl\v¢( ))H/ (m(m)) . (105)

Proof: (i) First we note that it follows from Assumption 2 that the functifi{-) has a
unique stationary point. Next, since the sequenée; }:°, is bounded it must have accu-
mulation points, and finally, by Theorem 5, these accumulation points must be stationary.
Hence the sequende; } 2, converges ta.

(i) We deduce from the optimality afy and Lemma 4 that for some < oo,

fR(@n) < fr(@) < fO(2) + KAN). (106)
Similarly, we see that

@) < fP@n) < fx(@n) + rAN). (107)
Hence

[f2(#) = fr(@n)] < KA(N). (108)

Next, becausé < [¢, C], an examination of the proof of Theorem 4 shows that (47) must
hold for alli € N, on the sequencir; }5°, constructed by Algorithrg, i.e., for alli € N,

R (@iv1) = fx,(@n;) < 1-abm S @) = 13, (@) (109)

’L

where

Ci:=0O |1+ max max max V2 (i, y7) (@i + M, (20) | /—(wN (z:))
(110)
is finite. It therefore follows from Lemma 4 and (108) that
FPin) = £ < 1= 0B ] (1) — f°(2)) + 4RA (V). (111)
Next, we conclude from the proof of Theorem 4 that, for any (0, 1],

{Z oys V(@) max & (zi,;)

j€m . N;

() + (Vo (2 5), ) +

i<xi>||2]} . (112)
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Hence, ifAC/6 < 1, thenAC; /6 < 1 and
F(n, (i + A, (23) = F(Y, (2:) < A0y, (2:). (113)
We therefore conclude from (113) and (102) of AlgoritBrthat

A > 2—5 (114)

It now follows from (114) and (102) that

$ ) = £ 1) < (i) = ) < 200

?

Next, making use of Lemma 4, (108), (115), the fact that 0y, (z;) by definition, and
that—6; > [DA(N;)]'/? by construction in (101), we conclude that

o
0B

. 20,’/&
0B

£2) = @) 2 551w - S (o)) = 25 AMN)

> _
2 53

A(N:)

2C*k
0B

= [DA(N)]Y°[1 = 2C;k/(6BDY 7 )A(N;)"~V/7] . (116)

> [DA(N;)]V7 — A(Ny)

Sinces > 1 and since by Lemma 3Y; — oo, asi — oo, we conclude that there exists an
19 such that for ali > ig,

Ci

5ag (@) = /@) 2 DANII, (117)

and hence that

Ci

S5 DAV ) — (@) =

LDA(N;) . (118)

It now follows from (111) and (118) that for all> i,

af N 8kC; A(N;)(o=D/e

C; 53D [£0(z:) — £°(2)] . (119)

o) — o) < |1 -

SinceC; — C, asi — oo, (104) follows from (119) and the fact that, by Lemma 5,
N; — o0, asi — oo. This completes our proof. ]
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Figure 1. Numerical results for Example-1

5. Some Numerical Results

We now present some numerical results that illustrate the behavior of the algorithm proposed
in Section 4 for generalized semi-infinite programming problems. The algorithm was
implemented in Matlab and runon a DEC Alpha Server 8200. Throughoutthe computational
experiments, the parameters used in the algorithm wete 0.5, = 0.85,6 = 1,D =

0.01, ando = 1.1.

Example-1 In this casef%(z) = F(¢!(z),¢%(z)), with z = (z1,2%) € R2, F(2) =
2t + 22, with 2 = (21, 22) € R?, and

V(@) = max{t” — (ta' + e'a®) + (¢! +27) + (¢1)" + (27)°}

and

V2 (z) = max{ (t — D2 +0.5(2' +2%)2 — 2t(z! + 22) + 0.5[(2")* + (z%)?]},
2
whereY; = [0,2] andYz = [—1, 1]. We used the starting poiat = [1,1].

Figure 1 displays both the exact value 8¥(z;) and the current approximating value
fj%i (z;), constructed by the algorithm at iteration Note the expected sudden increase
in the approximating valu¢§,7 (z;) when the discretization level is refined by the master
algorithm. The observed rate of convergence is linear.
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Figure 2. Numerical results for Example-2

Example-2 In this case, the functiong®(-), ¥!(-), and?(-) are also defined as in
Example-1, but'(+) is defined by

F(2) =05( + V)2 +4) + In(1 + 7)), z=(24,2%) e R2.

Figure 2 displays both the exact value #f(x;) and the current approximating value
f}{,i (z;), constructed by the algorithm at iteration Again note the expected sudden
increase in the approximating valwéi (z;) when the discretization level is refined by the
master algorithm. The observed rate of convergence is linear.

6. Conclusion

We have presented an algorithm for solving semi-infinite generalized min-max problems
of the form (1) and (2), which we have obtained by making use of the Kiwiel algorithm
in [7] and of the concepts underlying the construction the Polak-He PPP Rate-Preserving
Algorithm in [15] (see also Algorithm 3.4.9 in [17], respectively. The construction of the
algorithm depends on the cost function having a subgradient and hence Assumption 2 is
essential.

Our numerical results are consistent with our theoretical predictions and show that the
algorithm was efficient in solving our two generalized semi-infinite min-max test problems.
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Notes

1. We denote the components of a vector by superscripts, and elements of a set by subscripts.

2. These transformations result in a smooth problem with more variables than in the nonsmooth problem. Al-
though not documented in the literature, it is widely observed that these transformations induce considerable
ill-conditioning in the resulting smooth problem because they introduce arbitrary scaling, and hence lead to
less efficient solution of the original nonsmooth problems than using algorithms that exploit problem structure.

3. We were unable to show that the general case of the Kiwiel algorithm in [7, 10] converges linearly.

4. In[7], Kiwiel defines a family of algorithms with thete@:jEm % (Y(z)) %6||h||2 replaced by% (h, Bh),
with B any symmetric positive definite matrix. However, our rate of convergence analysis does not appear to

carry over to the entire family of algorithms even when Assumptions 1 and 2 are satisfied.
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