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SEMISMOOTH MATRIX-VALUED FUNCTIONS

DEFENG SUN and JIE SUN

Matrix-valued functions play an important role in the development of algorithms for semidefi-
nite programming problems. This paper studies generalized differential properties of such functions
related to nonsmooth-smoothing Newton methods. The first part of this paper discusses basic prop-
erties such as the generalized derivative, Rademacher’s theorem, �-derivative, directional deriva-
tive, and semismoothness. The second part shows that the matrix absolute-value function, the
matrix semidefinite-projection function, and the matrix projective residual function are strongly
semismooth.

1. Introduction. Let �mn and �pq be the spaces of m×n and p×q matrices, respec-
tively. Let �′ be a subset of �mn� A matrix-valued function (matrix function for short) is a
function that maps a matrix in �′ to a matrix in �pq� We are particularly concerned with
the case in which both �mn and �pq are real, symmetric, and of the same sizes, although
many of the results can be established for the general case.
The differential properties of F are important in view of the recent research on semidef-

inite programs (SDP) and its generalization, the semidefinite complementarity problems
(SDCP). For instance, it is shown (Tseng 1998) that the solution of SDP and SDCP can be
reduced to solving a matrix equation F�X	= 0, where F is a certain matrix merit function.
However, in order to develop Newton-type methods for such equations, some kind of semis-
moothness properties has to be established for F � Historically, vector-valued semismooth
functions played a crucial role in constructing high-order nonsmooth and smoothing Newton
methods (see e.g., Qi and Sun 1993, 2001) for nonlinear equations, complementarity prob-
lems, and variational inequality problems. There are computational evidences showing that
those methods are competitive compared with interior point methods in solving comple-
mentarity and variational inequality problems (Burke and Xu 1998, Facchinei and Kanzow
1997). In particular, the recent paper of Chen and Tseng (1999) provided promising results
in this type of methods for SDCP. In order to extend semismooth and smoothing Newton
methods to SDP, SDCP, and other problems involving the cone of positive semidefinite
matrices, the first goal in this direction naturally is to study the semismoothness of matrix
functions. In our research we find that this task is not trivial and is often difficult due to
the hardship of algebraically representing the constraint of positive semidefiniteness.
This paper is organized as follows. We study the Fréchet differentiability of matrix func-

tions in §2 by using an isometry between vector spaces and matrix spaces and by invoking
some results in matrix analysis. The semismoothness and related concepts are considered
in §3. Then we show that the absolute-value, the semidefinite projection, and the projective
residual matrix functions are strongly semismooth in §4.
Some notations to be used are as follows.
• Usually, calligraphic letters denote matrix sets. Capital letters represent matrices or

matrix-valued functions. Lowercase letters are for vectors or vector-valued functions. Greek
letters stand for scalars.
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• � n is the space of real symmetric n×n matrices; � n
+ is the subset of � n consisting

of positive semidefinite matrices.
• � �n1
 � � � 
 nm	 is the space of real symmetric n×n block-diagonal matrices with m

blocks of sizes n1
 � � � 
 nm.
• � is the set of all n×n orthogonal matrices.
• For matrices A
B ∈� n, we define

�A
B� = �A
B�F = A•B �= Trace �AB	=
n∑

i
 j=1

AijBij �

• A superscript “T ” represents the transpose of matrices and vectors.
• 	A	F , or simply 	A	, is the Frobenius norm of matrix A � 	A	F �= �A
A�1/2�
• We write X 
 0 and X � 0 if X is positive definite and positive semidefinite, respec-

tively. For X � 0, we denote its symmetric square root by
√
X or X1/2.

• vec �A	 is a column vector whose entries come from A by stacking up columns of A

from the first to the nth column, on top of each other. The operator mat is the inverse of
vec ; i.e., mat �vec�A		= A�

• We write X =O��	 (respectively, o��	) if 	X	/
�
 is uniformly bounded (respectively,
tends to zero) as �→ 0.

2. The differential properties of matrix functions.

2.1. Differentiability of functions.
Definition 2.1. Let F � � n → � n and let X
H ∈ � n. If F ′

X � � n → � n is a linear
operator that satisfies

lim
H→0

	F�X+H	−F�X	−F ′
X�H		

	H	 = 0
(1)

then F is said to be Fréchet differentiable (� -differentiable) at X and F ′
X is the � -derivative

of F at X�

Example 2.2. Let F�X	= AXAT for any X ∈� n, where A ∈ �n×n� It is easy to verify
that 	F�X+H	−F�X	−AHAT	F = 0. Thus, F ′

X�H	= AHAT �

Since � n and the inner product • form an Euclidean space, there is a natural isometry
identifying � n and �� where � �= n�n+1	/2. We could formally define it as follows.
Definition 2.3. If A ∈� n
 then svec�A	 is a column vector of length � whose entries

come from A by stacking up the lower half of A, including the diagonal entries, in the order
of column 1, column 2,� � � , up to column n� The operator smat is the inverse of svec ; i.e.,
smat�svec �A		=A� The map svec and its inverse then define an isometry between � n and
�� if the inner product of the latter space is defined as �a
b�� �= �smat�a	
 smat�b	�F �
Example 2.4.

A=
(
1 2
2 3

)

 svec �A	=

(
1
2
3

)

 	svec�A		� =

√
12+2�2	2+32 =√

18�

Under such an isometry, each matrix function F ��→� n will induce a vector function
f � U = svec��	→ �� by

f �x	= svec�F �X	�
(2)

where x �= svec�X	
X ∈�. Then F�X	 and f �x	 will have the same topological properties.
In particular, the following results are immediate.
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Theorem 2.5. (i) F is (locally Lipschitz, respectively) continuous on � if and only if
f is (locally Lipschitz, respectively) continuous on U�
(ii) If F has an � -derivative F ′

X at X, then f also has an � -derivative f ′
x defined similarly

to (1) and vise versa. Moreover, f ′
x is the Jacobian in the usual sense and there holds

F ′
X = smat � J�x	� svec 
(3)

where � represents the operator composition and J�x	 �=  f �x	

 x
�

Example 2.6. Let

F�X	= X2
 X =
(
x11 x12
x21 x22

)

 H =

(
h11 h12

h21 h22

)
�

Then

f �x	=
 x2

11+x2
21

x21x11+x22x21

x2
21+x2

22

 
 J �x	=
2x11 2x21 0

x21 x11+x22 x21
0 2x21 2x22

 


and

F ′
X�H	 = smat � J�x	� svec �H	

= smat �
2x11 2x21 0

x21 x11+x22 x21
0 2x21 2x22

h11

h21

h22


= smat

 2x11h11+2x21h21

x21h11+x11h21+x22h21+x21h22

2x21h21+2x22h22


=
(

2x11h11+2x21h21 x21h11+x11h21+x22h21+x21h22

x21h11+x11h21+x22h21+x21h22 2x21h21+2x22h22

)
= XH +HX�

There are two important implications of Theorem 2.5, in which the second claim is a
direct extension of Rademacher’s Theorem from vector functions to matrix functions.

Corollary 2.7. (i) The � -derivative of F at X is unique.
(ii) If F is locally Lipschitzian on � n, then F is almost everywhere � -differentiable

on � n�

Proof. The first claim is due to the uniqueness of Jacobian J�x	 and Theorem 2.5. The
second is obtained by combining Theorem 2.5 and Rademacher’s Theorem on R� . �

2.2. Extension to symmetric block-diagonal matrix functions. Some semidefinite
complementarity problems particularly involve symmetric block-diagonal matrix functions.
The results in the last subsection can be extended directly to those matrix functions. The
proofs are straightforward.
Definition 2.8. For any X ∈� �n1
 � � � 
 nm	 let Vec �X	 be a column vector with

Vec�X	 �= (
vec�X1	

T 
 � � � 
vec�Xm	
T
)T




where Xi
 i = 1
 � � � 
m is the ith block of X� The operator Mat is the inverse of Vec; i.e.,
Mat�Vec�X	�= X� The operator Svec is defined by

Svec�X	 �= (
svec�X1	

T 
 � � � 
 svec�Xm	
T
)T

and Smat is the inverse of Svec .
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The matrix function F �� �n1
 � � � 
 nm	→� �n1
 � � � 
 nm	 under Svec becomes a vector-
valued function f � ��̄ → ��̄ defined by

f �x	 �= Svec�F �X	�
(4)

where x= Svec�X	 and �̄ =∑m
i=1 ni�ni+1	/2� Conversely, the vector valued f under Smat

turns to be a matrix function F �� �n1
 � � � 
 nm	→� �n1
 � � � 
 nm	 with

F�X	 �= Smat �f �x	�

where X = Smat �x	.
Parallel to Theorem 2.5 and Corollary 2.7, we have the following results.

Theorem 2.9. 1. F is (locally Lipschitz) continuous on � �n1
 � � � 
 nm	 if and only if
f is (locally Lipschitz) continuous on ��̄ �
2. F�X	 is � -differentiable at X if and only if f �x	 is differentiable at x in the usual

Jacobian sense.
3. The � -derivative of F at X is unique.
4. If F is locally Lipschitzian on � �n1
 � � � 
 nm	, then F is almost everywhere

� -differentiable on � �n1
 � � � 
 nm	.
5. Let f � ��̄ → ��̄ be defined and differentiable on an open subset U of ��̄ � Let � =

Smat�U	 and x = Svec�X	� Then

 f �x	

 x
= J�x	 for x ∈ U

if and only if F ′
X = Smat � J�x	�Svec �

3. Generalized derivative, directional derivative, �-derivative, and semismoothness
of matrix functions. Suppose that F �� n →� n is a locally Lipschitzian matrix function
and f � �� → �� is defined as in (2). According to Corollary 2.7, F is � -differentiable
almost everywhere on � n. Denote the set of points at which F is � -differentiable by DF .
Definition 3.1. The generalized derivative of F at X, denoted by  FX , is the set defined

as the following:

 FX �= co
{
limF ′

Z 
 Z → X
Z ∈DF

}

(5)

where “co” stands for the convex hull in the usual sense of convex analysis (Rockafellar
1970).
This definition is an extension of the generalized (Clarke) Jacobian  f �x	 (Clarke 1983):

 f �x	= co  Bf �x	 with  Bf �x	= %lim J�z	 
 z→ x
 z ∈Df'
(6)

where Df is the set of differentiable points of f in �� and J�z	 is the Jacobian of f at
z ∈Df . It is easy to see by the differential correspondence that there is an isometry between
 f �x	 and  FX� Similar to (3), one can write

 FX = smat �  f �x	� svec �(7)

The following topological properties of  FX can then be identified with the corresponding
properties of  f �x	�

Theorem 3.2. Let F � � n → � n be locally Lipschitzian on an open neighborhood �
of X�
(a)  FX is nonempty, convex, and compact subset of ��

n	∗.
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(b) The mapping  FX is closed at X; that is, if Z→X
W ∈  FZ
W → V 
 then V ∈  FX�
(c)  F is upper-semicontinuous: For any *> 0 there is ,> 0 such that, for all Y ∈X+,B

(B is the unit ball in � n),
 FY ⊂  FX +*B∗


where B∗ is the unit ball in �� n	∗�
(d) If each entry Fij of F�X	 is �ij Lipschitzian at x�= svec �X		 in the sense that

	Fij�x	−Fij�y		 ≤ �ij	x−y	

then F�X	 is � �=max��ij	 Lipschitzian at X.
(e) The mean value theorem holds:

F�X	−F�Y 	 ∈ co
{
 FZ�X−Y 	
Z ∈ �X
Y �

}=�  F�X
Y �
(8)

where �X
Y � is the line segment connecting X and Y �

The directional derivative and �-derivative of a matrix function can be defined in a
similar way to scalar or vector-valued functions.
Definition 3.3. Let F � � n → � n and X
H ∈ � n. The directional derivative of F at

X along H is the following limit (if it exists at all):

F ′�X/H	= lim
0↓0

F�X+ 0H	−F�X	

0
�

F is said to be directionally differentiable at X if F ′�X/H	 exists for all H�

Corollary 3.4. If F is � -differentiable at X, then for any H ∈� n,

F ′�X/H	= FX�H	�

Definition 3.5. Let F � � n → � n and X ∈ � n. Then F is said to be �-differentiable
at X if there exists a function BF�X	 �� n →� n, called the �-derivative of F at X, which
is positively homogeneous of degree 1 (i.e., BF�X	�0H	= 0BF�X	�H	 for all H ∈� n and
all 0 ≥ 0), such that for any H ∈� n and H → 0,

F�X+H	−F�X	−BF�X	�H	= o�	H		�(9)

It can easily be seen that there is also an isometry identifying the �-differentiable of f
at x with �-derivative of F at X.
Shapiro (1990) showed that a vector-valued locally Lipschitzian function f � R� → R�

is �-differentiable at x if and only if it is directionally differentiable at x. Therefore, the
�-differentiability of matrix-valued locally Lipschitzian functions is also equivalent to their
directional differentiability.
In the case in which a function f ��� →�� is not differentiable, but locally Lipschitzian,

Mifflin (1977) and Qi and Sun (1993) introduced the concepts of semismoothness and
p-order semismoothness for vector-valued function f . The definition of semismoothness
implies that the function is directionally differentiable (hence is �-differentiable according
to Shapiro 1990) and that (Proposition 1 of Pang and Qi 1993) there exists * > 0 such that

sup
v∈ f �x+h	

	f �x+h	−f �x	−vh	 = o�	h		 ∀ 	h	< *�(10)

In the case of p-order semismooth the term o�	h		 is replaced by O�	h	1+p	�
Equation (10) plays an important role in developing semismooth Newton methods and

smoothing methods for nonlinear equation systems and nonlinear programming problems.
We now extend the definition of semismoothness to matrix functions in terms of (10).
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Definition 3.6. Suppose that F � � n → � n is a locally Lipschitzian matrix-valued
function. F is said to be semismooth at X ∈� n if F is directionally differentiable at X and
for any V ∈  FX+H and H → 0,

F�X+H	−F�X	−V �H	= o�	H		�

F is said to be p-order (0< p <�) semismooth at X if F is semismooth at X and

F�X+H	−F�X	−V �H	= O�	H	1+p	�(11)

In particular, F is called strongly semismooth at X if F is first-order semismooth at X�

We find it is convenient to establish an equivalent definition for the analysis of matrix
functions.

Theorem 3.7. Suppose that F � � n → � n is locally Lipschitzian and directionally dif-
ferentiable in a neighborhood of X. Then for any p ∈ �0
�	 the following two statements
are equivalent:
(a) for any V ∈  F�X+H	
H → 0,

F�X+H	−F�X	−V �H	= O�	H	1+p	/

(b) for any X+H ∈DF
H → 0,

F�X+H	−F�X	−F ′�X+H/H	= O�	H	1+p	�

Proof. From the differential correspondence between F and f the conclusion of this
theorem is valid if one can show that the following two statements are equivalent:

(a′) for any v ∈  f �x+h	
h→ 0,

f �x+h	−f �x	−vh= O�	h	1+p	/

(b′) for any x+h ∈Df 
h→ 0,

f �x+h	−f �x	−f ′�x+h/h	= O�	h	1+p	�

(a′)⇒(b′) is obvious.
Next we prove (b′)⇒(a′): Assume by contradiction that (b′) holds while (a′) does not

hold. Then, there exists a sequence %hi'�i=1 (hi �= 0) converging to 0 and a corresponding
generalized Jacobian sequence vi ∈  f �x+hi	 such that

	f �x+hi	−f �x	−vih
i	

	hi	1+p
→�
 i →��(12)

By the Carathéodory theorem, any vi ∈  f �x+hi	 can be expressed as

vi =
�2+1∑
j=1

3ij
vij 
(13)

where

3ij
∈ �0
1�


�2+1∑
j=1

3ij
= 1(14)
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and vij ∈  Bf �x+hi	. For each vij ∈  Bf �x+hi	, by the definition of  Bf �x+hi	, there
exists yij ∈Df such that

	yij − �x+hi		 ≤ 	hi	1+p(15)

and

	vij −f ′�yij 		 ≤ 	hi	p�(16)

By (13)–(16), we obtain

	f �x+hi	−f �x	−vih
i	

≤
�2+1∑
j=1

3ij
	f �x+hi	−f �x	−f ′�yij 	hi	+

�2+1∑
j=1

3ij
	�vij −f ′�yij 	�hi	

≤
�2+1∑
j=1

3ij
	f �x+hi	−f �x	−f ′�yij 	hi	+O�	hi	1+p	

=
�2+1∑
j=1

3ij
	f �x+hi	−f �x	−f ′�yij 	��yij −x	+�x+hi−yij 	�	

+O�	hi	1+p	

≤
�2+1∑
j=1

3ij
	f �x+hi	−f �x	−f ′�yij 	�yij −x		

+
�2+1∑
j=1

3ij
	f ′�yij 	�x+hi−yij 		+O�	hi	1+p	

≤
�2+1∑
j=1

3ij
	f �x+hi	−f �x	−f ′�yij 	�yij −x		+O�	hi	1+p	


(17)

where in the last inequality we used the fact that %f ′�yij 	' are uniformly bounded because
of the local Lipschitzian property of f . Relations (17), (14), and (15), together with the
Lipschitzian continuity of f , imply that

	f �x+hi	−f �x	−vih
i	 ≤

�2+1∑
j=1

3ij
	f �yij 	−f �x	−f ′�yij 	�yij −x		+O�	hi	1+p	�(18)

Thus, by (b′), (14), and (15), from (18) we obtain

	f �x+hi	−f �x	−vih
i	 ≤ O�	yij −x	1+p	+O�	hi	1+p	= O�	hi	1+p	


which contradicts (12). This contradiction shows that �b′	⇒ �a′	. �

Remark. Note that the result of Theorem 3.7 is also true if O�	H	1+p	 is replaced by
o�	H		.
We list below some properties of semismooth matrix functions involving components and

composition.

Theorem 3.8. Suppose that F � � n → � n is a locally Lipschitzian function. Let p ∈
�0
�	. If each entry of F , viewed as Fkj � � n → diag��
0
 � � � 
0	 ⊂ � n
 is (p-order
semismooth) semismooth at X, then F is (p-order semismooth) semismooth at X.
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Proof. For X+H ∈DF
H → 0,

	F�X+H	−F�X	−F ′�X+H/H		

≤
n∑

j
k=1


�F �X+H	�kj − �F �X	�kj − ��F 	kj�
′�X+H/H	



which completes the proof. �

The following result on semismoothness is due to Mifflin (1977) and the result on p-order
semismoothness is essentially due to Fischer (1997).

Lemma 3.9. Let p ∈ �0
�	. Suppose that f � �� → ��1 is (p-order semismooth) semi-
smooth at x ∈ �� and g � ��1 → ��2 is (p-order semismooth) semismooth at f �x	. Then,
the composite function h �= g �f is (p-order semismooth) semismooth at x.

The above lemma implies

Theorem 3.10. Let p ∈ �0
�	. Suppose F �� n →� d is (p-order semismooth) semis-
mooth at X and G � � d → � t is (p-order semismooth) semismooth at F�X	� Then the
composite function G�F is (p-order semismooth) semismooth at X�

Proof. Define two vector-valued functions g and h by

g�y	 �= svec�G�Y 	�


where y �= svec�Y 	
 Y ∈� d and

h�x	 �= svec �G�F�X		�


where x �= svec�X	
X ∈ � n. Then, by Lemma 3.9 and the relationship smat � �g � f 	 �
svec =G�F , the above result follows directly. �

We conclude this section by noting that all the results obtained in this section can be
analogously extended to block-diagonal matrix functions.

4. Some strongly semismooth matrix functions. The projective residual function r �
�� → ��

r�x	 �= g�x	−max�0
 g�x	−f �x	�
(19)

is often used in continuation methods, QP-free methods, smoothing methods, and merit
function methods; see Qi and Sun (2001) for its applications. It is also closely related
to other merit functions. We will show that the corresponding matrix projective residual
function is locally Lipschitzian and strongly semismooth.
Let � �n1
 � � � 
 nm	+ be the cone of symmetric block-diagonal positive semidefinite

matrices. Define the semidefinite projection matrix function �·�+ � � �n1
 � � � 
 nm	 →
� �n1
 � � � 
 nm	+ as the matrix-valued function that satisfies:
(1) �X�+ ∈� �n1
 � � � 
 nm	+/
(2) 	X− �X�+	 ≤ 	X−Z	 ∀ Z ∈� �n1
 � � � 
 nm	+�
The following proposition means that we can focus our discussion on matrix projection

from � n to � n
+ rather than that from � �n1
 � � � 
 nm	 to � �n1
 � � � 
 nm	+�

Proposition 4.1. For any X ∈� �n1
 � � � 
 nm	, we have

�X�+ =
�X1�+

� � �
�Xm�+

 


where Xi is the i-th block matrix of X.
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Proof. Straightforward. �

Since �� n
 �·
 ·�	 is a Hilbert space, we have the following proposition (Zarantonello
1971).

Proposition 4.2. For the positive semidefinite projection function �·�+, we have
(a) for any X ∈� n and Z ∈� n

+, Z = �X�+ if and only if �X−Z
Y −Z� ≤ 0 ∀ Y ∈� n
+�

(b) 	�Y �+− �X�+	 ≤ 	Y −X	 ∀ Y 
X ∈� n�

Proposition 4.2(b) says that �·�+ is globally Lipschitz continuous with Lipschitz con-
stant 1.
Definition 4.3. Let F
G � � �n1
 � � � 
 nm	 → � �n1
 � � � 
 nm	. The matrix projective

residual function is defined as

R�X	 �=G�X	− �G�X	−F�X	�+
 X ∈� �n1
 � � � 
 nm	�

It is well known (Tseng 1998, Zarantonello 1971) that the root of the above function
satisfies G�X	 � 0
F �X	 � 0
 and �G�X	
F�X	� = 0� Thus, one can obtain a solution
to SDCP by solving R�X	 = 0� Similarly to Proposition 4.1, we could focus on residual
functions from � n to � n only. The strong semismoothness of such functions depends on
the strong semismoothness of �·�+ according to Theorem 3.10 if G and F are strongly
semismooth.
Note that function �·�+ can be expressed as the optimal solution of the parametric SDP

�X�+ = argmin%	X−Y 	
Y � 0'�

Hence �·�+ is quite different from the vector function max�0
 ·	. The vector case is always
strongly semismooth due to the piecewise linear structure of the function max. However,
the matrix case does not have a piecewise linear structure. This poses great difficulty in
proving the (strong) semismoothness of �·�+.

We further reduce the problem to the strong semismoothness of the so-called absolute-
value function.
Definition 4.4. Let A ∈ � �n1
 � � � 
 nm	 be positive semidefinite. Then there exists a

unique symmetric positive semidefinite matrix B ∈ � �n1
 � � � 
 nm	 such that B2 = A� We
call B the square root of A and denote it by B = √

A� The matrix absolute value of A is
defined as 
A
 �=√

A2�

The following proposition says that the three matrix functions—the absolute-value, the
semidefinite-projection, and the projective residual functions—will be all strongly semis-
mooth if one of them is.

Proposition 4.5. There hold 
X
 = �X�++ �−X�+ and �X�+ = �X+
X
�/2.
Proof. Tseng (1998) showed that for any X ∈� n


�X�+ = P diag
[
max�0
31	
 � � � 
max�0
3n	

]
PT 


where P ∈ � and 31
 � � � 
 3n ∈ R satisfy X = Pdiag �31
 � � � 
 3n�P
T � By definition we have


X
 = P diag�
31

 � � � 
 
3n
�PT �

The proposition follows. �

For any matrix X ∈� n, there exists P ∈ � such that

X = P

(
D 0
0 0

)
PT 
(20)
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where D is a nonsingular matrix. Let m denote the rank of X and let

K �= %1
 � � � 
m'
 J �= %1
 � � � 
 n'\K�

Let C �= 
D
 and define the linear operator LC by

LC�Z	 �= CZ+ZC
 Z ∈�m

and L−1
C its inverse operator (see Tseng 1998 for more discussions on the linear operator

LC and its inverse).

Theorem 4.6. Denote 
Y 
 by F�Y 	
 Y ∈ � n. If X ∈ � n is nonsingular, then F ′
X exists

and satisfies

F ′
X�H	= L−1


X
�XH +HX	�(21)

Moreover, for H → 0, H ∈� n, we have

F�X+H	−F�X	−F ′
X�H	= O�	H	2	�(22)

Proof. Let

T �= F�X+H	−F�X	−F ′
X�H	


>F �= F�X+H	−F�X	�

We shall substitute (21) for F ′
X�H	 to verify that T =O�	H	2	
 which will prove both (21)

and (22). Notice that from (21) we have


X
F ′
X�H	+F ′

X�H	
X
 = XH +HX
 H ∈� n�(23)

From the definition of T ,

�
X+H 
+ 
X
	T = �X+H	2−X2−
X+H 

X
+ 
X

X+H 
− �
X+H 
+ 
X
	F ′
X�H	

= �X+H	2−X2−>F 
X
+ 
X
>F − �
X+H 
+ 
X
	F ′
X�H	�

That is,

�2
X
+O�	H		�T = XH +HX+H 2−>F 
X
+ 
X
>F − �2
X
+O�	H		�F ′
X�H	


which implies that

2
X
>F −2
X
F ′
X�H	= XH +HX−>F 
X
+ 
X
>F −2
X
F ′

X�H	+O�	H	2	(24)

because from the definitions of F ′
X�H	 and >F it is clear that

	F ′
X�H		 = O�	H		 and 	>F	 = O�	H		�

Hence, from (23) and (24) we have

L
X
�>F −F ′
X�H		= O�	H	2	�

By observing that L
X
 is invertible because 
X
 is positive definite, we have

T = >F −F ′
X�H	= O�	H	2	�

The proof is complete. �
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Theorem 4.7. Let F � � n → � n be defined by F�Y 	 �= 
Y 

 Y ∈ � n. Then F is direc-
tionally differentiable at any X ∈� n and for any H ∈� n,

F ′�X/H	= P

(
L−1

C �DH̃KK + H̃KKD� C−1DH̃KJ

H̃T
KJDC−1 
H̃JJ 


)
PT 


where D is a nonsingular diagonal matrix defined in (20), C �= 
D

 and H̃ = PTHP.

Proof. For any H ∈ S and 0 ∈ �0
�	, let

>�0	 �= F�X+ 0H	−F�X	

and
>̃�0	 �= PT>�0	P�

Then,

>̃�0	 = PTF�X+ 0H	P−PTF�X	P

= 
PT �X+ 0H	P
− 
PTXP

= √

�PTXP+ 0PTHP�2−√�PTXP	2


=
√
�X̃+ 0H̃�2−

√
X̃2


where X̃ �= PTXP� Define

C̃ �=
√
X̃2 =

(
C 0
0 0

)
�

Then,

>̃�0	=
√
C̃2+ W̃ − C̃


where
W̃ = 0X̃H̃ + 0H̃X̃+ 02H̃ 2�

After simple computations we have

W̃ = 0

(
DH̃KK + H̃KKD DH̃KJ

H̃T
KJD 0

)
+
(
O�02	 O�02	

O�02	 02�H̃T
KJ H̃KJ + H̃ 2

JJ �

)
�(25)

By Lemma 6.2 in Tseng (1998), we have

>̃�0	KK = L−1
C �W̃KK	+o�	W̃		
(26)

>̃�0	KJ = C−1W̃KJ +o�	W̃		
(27)

and

W̃JJ = >̃�0	TKJ >̃�0	KJ + >̃�0	2JJ �(28)

Thus,

>̃�0	KJ = 0C−1DH̃KJ +o�0	�(29)

Let
E �= C−1D�
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Then

Eij =
{
1 or −1 if j = i

0 otherwise�

Thus, from (29),

>̃�0	TKJ >̃�0	KJ = 02H̃T
KJE

2H̃KJ +o�02	= 02H̃T
KJ H̃KJ +o�02	�(30)

According to (26) and (25),

>̃�0	KK = 0L−1
C �DH̃KK + H̃KKD	+o�0	�(31)

Since
W̃JJ = 02�H̃T

KJ H̃KJ + H̃ 2
JJ �


from (28) and(30), we obtain

>̃�0	2JJ = 02H̃ 2
JJ +o�02	�(32)

Furthermore, since >̃�0	JJ is positive semidefinite (see the definition of >̃�0	), from (32),
>̃�0	JJ satisfies

>̃�0	JJ = 0

√
H̃ 2

JJ +o�1	�(33)

Then from (31), (29), and (33) we obtain

lim
0↓0

>̃�0	

0
=
(
L−1

C �DH̃KK + H̃KKD� C−1DH̃KJ

H̃T
KJDC−1 
H̃JJ 


)



which proves the theorem. �

Theorem 4.7 says that the matrix absolute-value function is directionally differentiable
with the explicit formula given for the directional derivative. Theorem 4.6 says that the
function is � -differentiable at all nonsingular X. The following theorem says that the
� -differentiability is lost elsewhere.

Theorem 4.8. Let F � � n → � n be defined by F�Y 	 �= 
Y 

 Y ∈ � n. Then for any
singular matrix X ∈ S, F is not � -differentiable at X.

Proof. By Theorem 4.7, F is directionally differentiable at X. By contradiction, sup-
pose that F is � -differentiable at X. Then F ′�X/ ·	 = F ′

X�·	 is a linear operator. But, let
H ∈ Sn be such that

H̃ �= PTHP =
(
0 0
0 I

)
and G = −H , where I is the identity matrix in �r×r and r = n− rank�X	 ≥ 1. Then, by
Theorem 4.7, we should have

0 = F ′�X/G+H	= F ′
X�G+H	= F ′

X�G	+F ′
X�H	

= F ′�X/G	+F ′�X/H	= 2P
(
0 0
0 I

)
PT 


which is a contradiction. This contradiction shows that F is not � -differentiable at X. The
proof is complete. �

An interesting implication of Theorems 4.6 and 4.8 is that the Lebesgue measure of
singular symmetric matrices is zero. This is almost intuitively obvious and is a useful fact
in our analysis later.
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Corollary 4.9. Matrices in � n are almost everywhere nonsingular.

Proof. By Theorems 4.6 and 4.8, F�Y 	 �= 
Y 

 Y ∈ � n is � -differentiable at X ∈ � n

if and only if X is nonsingular. Since F is Lipschitzian, F is � -differentiable almost every-
where in � n by Theorem 2.7. Thus, matrices in � n are almost everywhere nonsingular. �

Lemma 4.10. Let F �� n →� n be defined by F�Y 	= 
Y 

 Y ∈ S. Then for any nonsin-
gular matrix H ∈� n, F ′

H�·	 exists and satisfies
F�H	−F�0	−F ′

H�H	= 0�(34)

Proof. By Theorem 4.6, for any nonsingular H ∈� n, F ′
H�·	 exists and satisfies

F ′
H�H	
H 
+ 
H 
F ′

H�H	= 2H 2


which implies that F ′
H�H	 = 
H 
 = F�H	 because F ′

H�H	 is the unique Z ∈ � n satisfy-
ing Z
H 
+ 
H 
Z = 2H 2 and Z = 
H 
 satisfies this equation. This completes the proof by
observing F�0	= 0. �

The following Weyl’s perturbation result for eigenvalues of symmetric matrices (see
Bhatia 1997, Corollary III.2.6) is useful in proving the strong semismoothness of the abso-
lute value function.

Lemma 4.11. Let B1 ≥ · · · ≥ Bn be the eigenvalues of any A ∈� n and 31 ≥ · · · ≥ 3n be
the eigenvalues of A+H for any H ∈� n. Then

max
1≤i≤n


Bi −3i
 ≤ 	H	�

We now prove a main lemma that, together with Theorem 3.7, leads to the strong semi-
smoothness of the absolute-value function.

Lemma 4.12. Let F � � n → � n be defined by F�Y 	 �= 
Y 

 Y ∈ � n. Assume that X ∈
� n
X �= 0. Then, for any H ∈ � n such that X+H is nonsingular, F�·	 is � -differentiable
at X+H and

F�X+H	−F�X	−F ′
X+H�H	= O�	H	2	�(35)

Proof. For any H ∈� n such that X+H is nonsingular, denote

>T �= F�X+H	−F�X	−F ′
X+H�H	�(36)

Then,


X+H 
>T = �X+H	2−
X+H 

X
− 
X+H 
F ′
X+H�H	(37)

and

>T 
X+H 
 = �X+H	2−
X

X+H 
−F ′
X+H�H	
X+H 
�(38)

By (37), (38), and Theorem 4.6, we have


X+H 
>T +>T 
X+H 
 = 2�X+H	2− �
X+H 

X
+ 
X

X+H 
�
− �
X+H 
F ′

X+H�H	+F ′
X+H�H	
X+H 
�

= 2�X+H	2− �
X+H 

X
+ 
X

X+H 
�
− ��X+H	H +H�X+H	�

= �X+H	X+X�X+H	− �
X+H 

X
+ 
X

X+H 
��

(39)
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Since 0 �= X, there exists an orthogonal matrix Q ∈ � and a diagonal matrix D such that

QTXQ = D= diag �B1
 � � � 
Bm
0
 � � � 
0�


where B1 ≥ · · · ≥ Bm
Bi �= 0
 i = 1
 � � � 
m and m ∈ %1
 � � � 
 n−1'. Let

H̃ =QTHQ�

Then, from (39), we have


D+ H̃ 
QT>TQ+QT>TQ
D+ H̃ 

= �D+ H̃	D+D�D+ H̃	− [
D+ H̃ 

D
+ 
D

D+ H̃ 
]�(40)

It is noted that if X+H ∈� n is nonsingular, then D+H̃ =QT�X+H	Q is also nonsingular
and H → 0 ⇐⇒ H̃ → 0. Thus, for any H ∈ � n such that X +H is nonsingular, there
exists an orthogonal matrix P ∈ � (depending on H ) and a nonsingular diagonal matrix E
(depending on H ) such that

PT �D+ H̃	P =E= diag �31
 · · · 
3m
3m+1
 � � � 
 3n�
(41)

where

31 ≥ · · · ≥ 3m
 min
1≤i≤m


3i
 ≥ min
m+1≤i≤n


3i

 and 3i �= 0
 i = 1
2
 � � � 
 n�

Then, by Lemma 4.11,

3i = Bi +O�	H̃		
 i = 1
 � � � 
m(42)

and

3i = O�	H̃		
 i =m+1
 � � � 
 n�(43)

Equations (40) and (41) imply


E
>T̃ +>T̃ 
E
 =E�PTDP	+ �PTDP	E− [
E
PT 
D
P+PT 
D
P
E
]
(44)

where

>T̃ �= PTQT>TQP�(45)

Therefore, from (44) we have in fact obtained for i
 j = 1
 � � � 
 n that

>T̃ij =
3i +3j


3i
+ 
3j 

Uij −Vij
(46)

where U = PTDP and V = PT 
D
P. Define a vector s ∈ �m by

si =
{
1 if Bi > 0

−1 otherwise,

i = 1
 � � � 
m�

Then for i
 j = 1
 � � � 
 n,

Uij =
m∑

k=1

PkiPkjBk(47)
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and

Vij =
m∑

k=1

PkiPkjBksk
(48)

where Pij is the �i
 j	-th entry of P� Hence, for i
 j = 1
 � � � 
 n,

>T̃ ij =
3i +3j


3i
+ 
3j 


(
m∑

k=1

PkiPkjBk

)
−

m∑
k=1

PkiPkjBksk�(49)

Next, we establish a relationship between P and H̃ . Suppose q is a nonnegative integer
such that

B1 ≥ · · · ≥ Bq > 0> Bq+1 ≥ · · · ≥ Bm�

Then, from (41), we have PE= �D+ H̃	P, which implies for i = 1
 � � � 
 n,

3i



P1i
���

Pqi

���
Pmi
���

Pni


=



�B1+ H̃11	P1i +· · ·+ H̃1qPqi +· · ·+ H̃1mPmi +· · ·+ H̃1nPni

���

H̃1qP1i +· · ·+ �Bq + H̃qq	Pqi +· · ·+ H̃qmPmi +· · ·+ H̃qnPni

���

H̃1mP1i +· · ·+ H̃qmPqi +· · ·+ �Bm+ H̃mm	Pmi +· · ·+ H̃mnPni

���

H̃1nP1i +· · ·+ H̃qnPqi +· · ·+ H̃mnPmi +· · ·+ H̃nnPni


�(50)

Since P in an orthogonal matrix, for i
 j = 1
 � � � 
 n,

	P·i	2 = 1
 PT
·i P·j = 0
 j �= i
(51)

where for any k= 1
 � � � 
 n, P·k denotes the k-th column of P. Thus, in terms of (42), (43),
(50), and (51), we have

P�q+1	i
���

Pni

 =
O�	H̃		

���

O�	H̃		

 
 i = 1
 � � � 
 q
(52)



P1i
���

Pqi

P�m+1	i
���

Pni


=



O�	H̃		
���

O�	H̃		
O�	H̃		

���

O�	H̃		



 i = q+1
 · · · 
m(53)

and P1i
���

Pmi

=
O�	H̃		

���

O�	H̃		

 
 i =m+1
 � � � 
 n�(54)
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Then for i = 1
 � � � 
m, (50) and (52)–(54) give

3i



P1i
���

Pqi

���
Pmi
���

Pni


=



�B1+ H̃11	P1i +· · ·+ H̃1qPqi +· · ·+ H̃1mPmi +O�	H̃	2	
���

H̃1qP1i +· · ·+ �Bq + H̃qq	Pqi +· · ·+ H̃qmPmi +O�	H̃	2	
���

H̃1mP1i +· · ·+ H̃qmPqi +· · ·+ �Bm+ H̃mm	Pmi +O�	H̃	2	
���

O�	H̃		


�(55)

In the following we will prove for i
 j = 1
 � � � 
 n the following equation

>T̃ij = O�	H̃	2	(56)

holds. We analyze this in eight different cases.
Case 1. i
 j = 1
 � � � 
 q. Then, by (49) and (52)–(54),

>T̃ij = 2
m∑

k=q+1

PkiPkjBk = O�	H̃	2	�

Hence, (56) holds for this case.
Case 2. i = q+1
 � � � 
m and j = 1
 � � � 
 q. Then, again, by (49),

>T̃ij =
3i +3j


3i
+ 
3j 


(
m∑

k=1

PkiPkjBk

)
−

q∑
k=1

PkiPkjBk +
m∑

k=q+1

PkiPkjBk�(57)

Now we assume

B1 ≥ · · · ≥ Bj−s−1 > Bj−s = · · · = Bj = · · · = Bj+t > Bj+t+1 ≥ · · · ≥ Bq > 0

and

0> Bq+1 ≥ · · · ≥ Bi−a−1 > Bi−a = · · · = Bi = · · · = Bi+b > Bi+b+1 ≥ · · · ≥ Bm

for some nonnegative integers s
 t
 a
 and b.
Then, by (42) and (55), 

P1j
���

P�j−s−1	j
P�j+t+1	j

���
Pmj


=



O�	H̃		
���

O�	H̃		
O�	H̃		

���

O�	H̃		


(58)

and 

P1i
���

P�i−a−1	i
P�i+b+1	i

���
Pmi


=



O�	H̃		
���

O�	H̃		
O�	H̃		

���

O�	H̃		


�(59)
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Then, by (52)–(54) and (57)–(59), we have

>T̃ij =
3i +3j


3i
+ 
3j 

[
P�j−s	iP�j−s	jBj +· · ·+PjiPjjBj +· · ·+P�j+t	iP�j+t	jBj

+P�i−a	iP�i−a	jBi +· · ·+PiiPijBi +· · ·+P�i+b	iP�i+b	jBi +O�	H̃	2	]
− [P�j−s	iP�j−s	jBj +· · ·+PjiPjjBj +· · ·+P�j+t	iP�j+t	jBj

−P�i−a	iP�i−a	jBi −· · ·−PiiPijBi −· · ·−P�i+b	iP�i+b	jBi +O�	H̃	2	]�

(60)

Let

G1 �= P�j−s	iP�j−s	j +· · ·+PjiPjj +· · ·+P�j+t	iP�j+t	j(61)

and

G2 = P�i−a	iP�i−a	j +· · ·+PiiPij +· · ·+P�i+b	iP�i+b	j �(62)

Then, by (42), (60) becomes

>T̃ij =
3i +3j


3i
+ 
3j 

[
BjG1+BiG2+O�	H̃		2�− �BjG1−BiG2+O�	H̃		2]

= 2
3j −3i

[
3iBjG1+3jBiG2

]+O�	H̃		2


(63)

where we used the fact that when H → 0, 3j → Bj > 0
 and 3i → Bi < 0.
According to (55) and the fact that Bj−s = · · · = Bj+t = Bj and Bi−a = · · · = Bi+b = Bi


we have

3j


P�j−s	j

���
Pjj

���
P�j+t	j

=



BjP�j−s	j +O�	H̃		
���

BjPjj +O�	H̃		
���

BjP�j+t	j +O�	H̃		

(64)

and

3i


P�i−a	i

���
Pii
���

P�i+b	i

=



BiP�i−a	i +O�	H̃		
���

BiPii +O�	H̃		
���

BiP�i+b	i +O�	H̃		

 �(65)

Equations (61), (62), (52)–(54), (58), (59), and (51) imply

�P�j−s	j	
2+· · ·+ �P�j+t	j	

2 = 1+O�	H̃	2	

�P�i−a	i	

2+· · ·+ �P�i+b	i	
2 = 1+O�	H̃	2	(66)

and

G1 = O�	H̃		
 G2 = O�	H̃		
 G1+G2 = O�	H̃	2	�(67)
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Therefore, by (63), (67), and (42), we obtain

>T̃ij =
2

Bj −Bi +O�	H̃		
[
BiBj�G1+G2	+O�	H̃		G1+O�	H̃		G2

]
= 2

Bj −Bi +O�	H̃		
[
BiBjO�	H̃	2	+O�	H̃		G1+O�	H̃		G2

]
= O�	H̃	2	


which proves (56).
Case 3. i =m+1
 � � � 
 n and j = 1
 � � � 
 q. Then, by (49),

>T̃ij =
3i −
3i


3i
+3j

(
q∑

k=1

PkiPkjBk

)
+ 23j +3i +
3i



3i
+3j

(
m∑

k=q+1

PkiPkjBk

)



which, together with (52)–(54), implies

>T̃ij =
3i −
3i


3i
+3j

(
q∑

k=1

PkiPkjBk

)
+O�	H̃	2	�(68)

By Equations (54) and (43), we have

3i

(
q∑

k=1

PkiPkjBk

)
= O�	H̃	2	


which, together with (68), proves (56).
Case 4. i = 1
 � � � 
 q and j = q+ 1
 � � � 
m. By the symmetry of >T̃ and Case 2, (56)

holds.
Case 5. i
 j = q+1
 � � � 
m. Similar to the discussion in Case 1, we can prove (56). We

omit the detail here.
Case 6. i =m+1
 � � � 
 n and j = q+1
 � � � 
m. Similar to the discussion in Case 3, we

can prove (56). Again, we omit the detail here.
Case 7. i = 1
 � � � 
m and j = m+ 1
 � � � 
 n. Due to the symmetric property of >T̃ we

can prove (56) according to Cases 3 and 6.
Case 8. i
 j =m+1
 � � � 
 n. Then, by (53), (54), and (49), we have

>T̃ij =
3i +3j


3i
+ 
3j 

�O�	H̃	2	�− �O�	H̃	2	�= O�	H̃	2	


which proves (56).
Overall, we have proved that (56) holds for i
 j = 1
 � � � 
 n. Since H̃ =QHQT , we have

in fact proved

	>T̃	 = O�	H̃	2	
(69)

which, together with (45), proves (35). �

Theorem 4.13. Let F �� n →� n be defined by F�Y 	= 
Y 

 Y ∈� n. Then F is strongly
semismooth at any X ∈� n.



168 D. SUN AND J. SUN

Proof. By Theorem 4.7, F is directionally differentiable at X. On the other hand, in
terms of Lemmas 4.10 and 4.12,

F�X+H	−F�X	−F ′
X+H�H	= O�	H	2	 ∀ X+H ∈DF
H → 0�

Thus, according to Theorem 3.7, F is semismooth at X ∈� n.
By Theorem 3.7, Lemmas 4.10 and 4.12, and the semismoothness of F , F is strongly

semismooth at any X ∈� n. �

Corollary 4.14. Let F � � �n1
 � � � 
 nm	 → � �n1
 � � � 
 nm	 be defined by F�Y 	 =

Y 

 Y ∈� �n1
 � � � 
 nm	. Then F is strongly semismooth at any X ∈� �n1
 � � � 
 nm	.

Corollary 4.15. The function of semidefinite projection is strongly semismooth on
� �n1
 � � � 
 nm	.

Corollary 4.16. The function of projective residual defined on � �n1
 � � � 
 nm	 is
strongly semismooth at X ∈ � �n1
 � � � 
 nm	 if both F and G are strongly semismooth at
X ∈� �n1
 � � � 
 nm	.

Proof. These are direct implications of Theorems 3.10 and 4.13. �

5. Final remarks. We have discussed some important differential properties of matrix-
valued functions. In particular, we have proved that the semidefinite-projection function,
the absolute-value function, and the projective residual function are strongly semismooth
on � �n1
 � � � 
 nm	. To use these properties to design semismooth Newton methods and
smoothing Newton methods for matrix-valued equations and the SDCP is a logical step in
future research.
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