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Abstract We consider a class of matrix spectral norm approximation problems for
finding an affine combination of given matrices having the minimal spectral norm
subject to some prescribed linear equality and inequality constraints. These problems
arise often in numerical algebra, engineering and other areas, such as finding Cheby-
shev polynomials of matrices and fastest mixing Markov chain models. Based on
classical analysis of proximal point algorithms (PPAs) and recent developments on
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semismooth analysis of nonseparable spectral operators, we propose a semismooth
Newton-CG based dual PPA for solving the matrix norm approximation problems.
Furthermore, when the primal constraint nondegeneracy condition holds for the sub-
problems, our semismooth Newton-CGmethod is proven to have at least a superlinear
convergence rate. We also design efficient implementations for our proposed algo-
rithm to solve a variety of instances and compare its performance with the nowadays
popular first order alternating direction method of multipliers (ADMM). The results
show that our algorithm, which is warm-started with an initial point obtained from the
ADMM, substantially outperforms the pure ADMM, especially for the constrained
cases and it is able to solve the problems robustly and efficiently to a relatively high
accuracy.

Keywords Spectral norm approximation · Spectral operator · PPA · Semismooth
Newton-CG method

Mathematics Subject Classification 90C06 · 90C25 · 65F10

1 Introduction

Let�m×n be the space ofm×n real matrices equipped with the standard inner product
〈X, Y 〉 = Tr(X T Y ) for X, Y ∈ �m×n . Given a family of matrices {A1, A2, . . . , Ap}
in �m×n , define the linear operator A and its adjoint A∗, respectively, by

A(X) := [〈A1, X〉, . . . , 〈Ap, X〉]T , A∗(y) :=
p∑

k=1
yk Ak, ∀ X ∈ �m×n, y ∈ �p.

In this paper, we consider the following matrix norm approximation (abbreviated as
MNA) problem:

min
y∈�p

{
‖A0 −A∗y‖2 | By − b ∈ Q

}
, (1)

where A0 ∈ �m×n , B ∈ �(n1+n2)×p are given matrices, b ∈ �n1+n2 ,Q = {0}n1×�n2+
is a polyhedral cone, and ‖·‖2 denotes the matrix spectral normwhich is defined as the
largest singular value of a matrix. Without loss of generality, we assume that m ≤ n.

For the unconstrained version of (1), some theoretical questions such as uniqueness
and characterizations of the best approximation have been analyzed in [26,48]. In the
more general setting of a normed linear space, a general characterization theorem for
the best approximation of an element in a normed linear space by elements of a finite
dimensional subspace was established in [36, p. 170]. Here, in our setting, the feasible
set is no longer a linear subspace.

The MNA problems arise from a variety of fields, such as numerical algebra and
engineering. An illustrative example is the problem of finding the degree-t Chebyshev
polynomial of a given matrix A ∈ �n×n , as studied in [15,27,40]. In this problem,
one is interested in finding the degree-t monic polynomial q̄t which minimizes the
spectral norm of qt (A), i.e.,
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A semismooth Newton-CG based dual PPA 437

min {‖qt (A)‖2 | qt is a monic polynomial of degree t}. (2)

Since qt (A) is an affine combination of the matrices I, A, . . . , At , the matrix Cheby-
shev polynomial approximation problem is actually a special case of the MNA
problem (1).

In contrast to the unconstrained example (2), some other problems may have pre-
scribed linear constraints, for example, the fastest mixing Markov chain (FMMC)
problem studied in [2,3]. Let G = (N , E) be an undirected connected graph with n
nodes. The FMMC problem is to find a symmetric stochastic matrix P with Pi j = 0
for (i, j) /∈ E that minimizes μ(P), where

μ(P) = max
i=2,...,n |λi (P)|

and λi (P) is the i th largest eigenvalue of P in magnitude. Let d be the vector of
transition probabilities on the non-self-loop edges (labeled by l = 1, 2, . . . , p). Define
the matrix B ∈ �n×p by

Bil :=
{
1, if edge l is incident to vertex i,
0, otherwise

and the matrix E (l) by

E (l)
i j :=

⎧
⎨

⎩

1, if edge l is incident to vertices i and j, i 
= j,
−1, if edge l is incident to vertex i, i = j,
0, otherwise.

(3)

Then by the analysis in [2,3], the FMMCproblem can be rewritten as anMNAproblem
in terms of d as follows:

min

{
‖I − (1/n)11T +

p∑

l=1
dl E (l)‖2 | d ≥ 0, Bd ≤ 1

}
. (4)

Note that if the constraints in (4) are dropped, the resulting unconstrained problem

min
d
‖I − (1/n)11T +∑p

l=1 dl E (l)‖2 (5)

is a mathematical model for the fastest distributed linear averaging (FDLA) problem
with symmetric weights [44].

The above examples serve tomotivate the study of numerical algorithms for solving
the MNA problems. It is easy to show that the MNA problem (1) can be converted to
the following semidefinite programming (SDP):

min

{
t |

[
t Im A0 −A∗y

(A0 −A∗y)T t In

]
� 0, By ∈ b +Q

}
. (6)
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Thus it may be solved by standard SDP packages such as SDPT3 [39], SeDuMi [37], or
SDPNAL [47]. However, this SDP reformulation is potentially very computationally
expensive since one has to deal with a linear matrix inequality involving matrices
of dimensions (m + n) × (m + n) instead of matrices of dimensions m × n as in
the original problem. The computational cost and memory requirement are especially
unnecessarily high when we have large m + n, but m 
 n. In the extreme case
when m = 1, it is certainly not wise to solve the MNA problem (1) via (6). Instead
one should deal with (1) directly since it is just a second-order cone problem, which
requires far lower computational cost to solve compared to the SDP (6). For large scale
problems, one may attempt to apply the projected subgradient method to the MNA
problem (1) directly instead of via the SDP reformulation (6). However, as pointed by
the authors in [2], the algorithm is relatively slow in terms of number of iterations and
has no simple stopping criterion guaranteeing a certain level of suboptimality while
compared to a primal-dual interior point method for FMMC problems. In addition,
the projection step may not be easy to compute when the polyhedral constraints are
not simple constraints such as y ∈ Q.

In this paper, we propose a semismooth Newton-CG based dual PPA (SNDPPA)
which is able to solve large scale MNA problems (1) with p or n large and m mod-
erate. We also propose to use a first order alternating direction method of multipliers
(ADMM) to obtain an initial point to warm-start the SNDPPA. As we shall see later,
in each iteration of the ADMM, the subproblem involved can either be solved by a
fast algorithm or has a closed form solution, due to recent advances in [9]. Hence,
the ADMM can easily be applied to solve the MNA problem. However, the perfor-
mance of the ADMM is well known to behave erratically in that for some problems,
it can efficiently deliver a good accuracy solution, while frequently for some others, it
stagnates with a low accuracy solution. The slow convergence/stagnation difficulty of
the ADMM can be clearly seen in the numerical results presented later in the paper.
The SNDPPA we propose here is able to overcome the weakness of the ADMMwhile
also able to capitalize on the strength of the ADMM in using it for warm-start. For
the dual PPA, we note that the subproblem in each iteration is an unconstrained mini-
mization problem whose objective function is convex and continuously differentiable
but not twice continuously differentiable. However, since the corresponding gradi-
ent is strongly semismooth, we are able to apply the inexact semismooth Newton
method to solve the unconstrained minimization subproblem with at least a super-
linear convergence rate. At each iteration of the semismooth Newton method, the
Newton direction is computed by a preconditioned conjugate gradient (CG) method.
In each CG iteration, one would calculate each matrix–vector multiplication in at most
O(m2n+ pmn)+O(p(n1+n2)) flops. This is in contrast to the inexact interior point
proposed in [38] for the SDP reformulation where the matrix–vector multiplication
would require more than O((m + n)3 + p(m + n)2)+ O(p(n1 + n2)) flops. We also
design efficient implementations for our proposed algorithm to solve a variety of large
scalematrix norm approximation problems and compare its performancewith the pop-
ular first order ADMM. The numerical results show that our semismooth Newton-CG
dual PPA substantially outperforms the pure ADMM, especially on constrained MNA
and FMMC problems and it is able to solve a variety of large scale instances with p
up to 19,176 and m up to 2,000 robustly and efficiently to a relatively high accuracy.

123



A semismooth Newton-CG based dual PPA 439

A problem related to (1) is to minimize the largest eigenvalue (λ1(A0 −A∗y)) of
an affine combination of given symmetric matrices. In [5], the authors studied the
convex smooth approximations of the nonsmooth function λ1(A0−A∗y). We should
mention that it is possible to modify our proposed algorithm to solve the problem of
minimizing λ1(A0 −A∗y) subject to polyhedral constraints on y. But this is not the
focus of this paper.

The contributions of our paper are as follows. Firstly, we design a semismooth
Newton-CG based PPA to solve the MNA problems involving the matrix spectral
norm. The idea of using a semismooth Newton-CG based PPA to solve convex opti-
mization problems involvingmatrix norms is not new. For example, Jiang et al. [22,23]
considered similar ideas of using semismooth/smoothing Newton-CGmethod to solve
nuclear norm regularized matrix least squares problems. However, there exists a fun-
damental difference on matrix spectral operators employed. The concept of spectral
operators was defined by Ding [8] in his Ph.D. thesis for the study of matrix program-
ming. See also Definition 2.2. While the spectral operator used in [22,23] is separable,
the one used in our study is inherently non-separable due to the use of the spectral
norm instead of the nuclear norm. If one is only interested in low accuracy solutions
by employing the first order methods such as the ADMM, then there is virtually no
conceptual difference in solving the nuclear norm or the spectral norm regularized
convex matrix optimization problems. The big difference arises when the derivative
of the spectral operator is involved as it is the case in this work. To the best of our
knowledge, this is the first time that large scale MNA problems with matrix dimen-
sion larger than 500 can be solved with high accuracy, efficiently and reliably, with the
help of the theory on non-separable spectral operators. Secondly, we address various
numerical issues pertaining to the efficient implementation of the semismoothNewton-
CG method for solving the subproblems in the dual PPA. In particular, we analyze
the structure of matrix–vector multiplication in Newton-CG carefully in Sect. 4.4 and
show that it can be computed efficiently onlywith the reduced SVDof anm×n matrix.
Hence, with modest effort, the Newton-CG is easy to implement to solve the subprob-
lems of the dual PPA. Thirdly, we establish the global and local convergence of the dual
PPA under certain standard conditions. We also establish the suplinear convergence
of the semismooth Newton-CG method under the primal constraint nondegeneracy
conditions of the subproblems. Finally, we demonstrate numerically that although
the proposed SNDPPA is more complex to implement compared to the ADMM, its
superior efficiency and reliability in solving constrained MNA and FMMC problems
in comparison to the ADMM fully reveals the necessity of having a second-order
information employed method such as the SNDPPA for solving constrained MNA
problems.

The remaining parts of this paper are organized as follows. In Sect. 2, we list
some preliminaries on the semismooth mappings, the Moreau–Yosida regularization,
and the spectral operator associated with the spectral norm. In Sect. 3, we introduce
the framework of the inexact dual PPA for solving the MNA problem and establish
its global and local convergence under certain conditions. In Sect. 4, we present a
semismooth Newton-CG method for solving the subproblems in the dual PPA, and
we establish its suplinear convergence under the primal constraint nondegeneracy
conditions of the subproblems. In addition, some numerical issues pertaining to the
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efficient implementation of the semismooth Newton-CG method are also addressed.
In Sect. 5, we first give the details on the implementation of the classical ADMM for
the MNA problem and then report numerical experiments for our proposed algorithm
and the comparison of its performance against the ADMM. We conclude our paper in
Sect. 6.
Notation For any given positive integer m and n, we denote by In , 1m×n and 0m×n the
n×n identitymatrix, them×n matrices of ones and zeros, respectively.We also use 1n

and 0n to denote the vectors of ones and zeros, respectively. We frequently drop m, n
from the above notations when their dimensions are clear from the context. For any
x ∈ �n , Diag(x) denotes the diagonal matrix with diagonal entries xi , i = 1, . . . , n,
while for any X ∈ �m×n , diag(X) denotes the main diagonal of X . For any η > 0, we
write Bη := {x ∈ �m | ‖x‖1 ≤ η} and Bη := {X ∈ �m×n | ‖X‖∗ ≤ η}, where ‖ · ‖∗
denotes the nuclear normwhich is defined as the sum of the singular values of amatrix.
If η = 1, we just use B and B to denote the unit l1 norm ball and nuclear norm ball,
respectively. Let α ⊆ {1, . . . , n} be an index set, we use |α| to represent the cardinality
of α and Xα to denote the sub-matrix of X obtained by removing all the columns of X
not in α. Let β ⊆ {1, . . . , n} be another index set, we use Xαβ to denote the |α| × |β|
sub-matrix of X obtained by removing all the rows of X ∈ �m×n not in α and all the
columns of X not in β. The Hadamard product between two matrices is denoted by
“◦”, i.e., for any two matrices X and Y in �m×n , the (i, j)-th entry of Z = X ◦ Y is
Zi j = Xi j Yi j . We use ‖ ·‖ to denote the matrix Frobenius norm throughout this paper.
For any given linear space H , H⊥ denotes the orthogonal complement of H .

2 Preliminaries

In this section, we review and develop some results on the semismooth mappings, the
Moreau–Yosida regularization and the spectral operator associated with the matrix
spectral norm, which are useful for our subsequent discussion.

Let X and Y be two finite dimensional real Euclidean spaces and O be an open
set in X . Suppose that � : O → Y is a locally Lipschitz continuous function on
the open set O. By Rademacher’s theorem, � is almost everywhere F (Fréchet)-
differentiable inO. LetD� be the set of points where� is differentiable. Let�′(x) be
the derivative of � at x ∈ D�. Then the B-subdifferential of � at x ∈ O is defined by

∂B�(x) :=
{

lim
D��xk→x

�′(xk)

}
and Clarke’s generalized Jacobian [6] of � at x ∈ O,

denoted by ∂�(x), is the convex hull of ∂B�(x).

Definition 2.1 (c.f. [11,31]) Let � : O ⊂ X → Y be a locally Lipschitz continuous
function on the open set O and x be a point in O. The function � is said to be G-
semismooth at x ∈ O if for any y → x and V ∈ ∂�(y), ‖�(y)−�(x)−V (y−x)‖ =
o(‖y− x‖). The function� is said to be strongly G-semismooth at x if for any y → x
and V ∈ ∂�(y), ‖�(y) − �(x) − V (y − x)‖ = O(‖y − x‖2). Furthermore, if the
(strongly) G-semismooth function � is also directionally differentiable at x , then �

is said to be (strongly) semismooth at x .
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A semismooth Newton-CG based dual PPA 441

Let f : X → (−∞,+∞] be a closed proper convex function [34] and η > 0 be
a positive constant. Then the Moreau–Yosida regularization [30,46] of f at x ∈ X
associated with η is defined by

ψ
η
f (x) := min

y∈X
{

f (y)+ 1

2η
‖y − x‖2}. (7)

The unique optimal solution to (7), denoted by Pη
f (x), is called the proximal point at

x associated with f and η. Let C be a closed convex set inX and χC(·) be the indicator
function of C. Then, for any η > 0, the proximal point at x associated with χC(·) is
the metric projection of x onto C, which is denoted by 
C(x).

Proposition 2.1 (c.f. [19,24]) Let f : X → (−∞,+∞] be a closed proper convex
function and η > 0 be a positive constant. Let ψη

f be the Moreau–Yosida regularization

associated with f and η and Pη
f be the corresponding proximal point mapping. Then,

the following properties hold.

(i) ψ
η
f is a continuously differentiable convex function, and

∇ψ
η
f (x) = 1

η

(
x − Pη

f (x)
)
, ∀ x ∈ X .

(ii) Let g : X → (−∞,+∞] be defined by

g(x) = f ∗(x/η), ∀ x ∈ X ,

where f ∗ is the conjugate of f . Then any x ∈ X has the following unique Moreau
decomposition

x = Pη
f (x)+ Pη

g (x).

In what follows, we shall calculate the proximal point mapping associated with
the spectral norm, which plays a crucial role in our numerical implementation. Let
X ∈ �m×n be given with the following singular value decomposition (SVD):

X = U [Diag(σ (X)) 0]V T , (8)

where U ∈ �m×m , V ∈ �n×n are orthogonal matrices, σ1(X) ≥ · · · ≥ σm(X) ≥ 0
are the singular values of X , and σ(X) := (σ1(X), σ2(X), . . . , σm(X))T . In later
discussions, when the dependence of σi (X) on X is clear from the context, we will
drop X from these notations.

Proposition 2.2 Let f (·) := ‖ · ‖2 be defined on �m×n and η > 0. Let X ∈ �m×n be
given with the SVD as in (8). Then it holds that

Pη
f (X) = X −
Bη

(X), (9)

where 
Bη
(X) = U [Diag(
Bη

(σ (X))) 0]V T .
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Proof Recall that the conjugate of a norm is the indicator function of the dual normunit
ball. Since the dual norm of ‖·‖2 is ‖·‖∗, we know that f ∗ = χB, the indicator function
of the unit nuclear normballB. Hence (9) follows frompart (ii) of Proposition 2.1.Note
that
Bη

(X) is the unique solution of the following optimization problem:min{ 12‖Y−
X‖2 | ‖Y‖∗ ≤ η}. Since both ‖·‖F and ‖·‖∗ are unitarily invariant, by vonNeumann’s
trace inequality [41]:

‖σ(Y )− σ(X)‖ ≤ ‖Y − X‖, ∀Y ∈ �m×n,

we know that


Bη
(X) = U [Diag(
Bη

(σ (X))
)
0]V T ,

where
Bη
(σ (X)) is the unique optimal solution to min{ 12‖y−σ(X)‖2 | ‖y‖1 ≤ η}.

��

With the above preparation, we are ready to give the exact expression of the pro-
jection operator 
Bη

(·). Let X admit the SVD as in (8). Define the vector s(σ ) by

si (σ ) = 1

i

(∑i

j=1σ j − η
)
, i = 1, 2, . . . , m.

Let k1(σ ) and k2(σ ) denote, respectively, the maximal indices of the following two
sets:

{i | σi > si (σ ), 1 ≤ i ≤ m}, {i | σi ≥ si (σ ), 1 ≤ i ≤ m}. (10)

From the breakpoint search algorithm in [18, Sect. 5], it follows that


Bη
(σ ) =

{
σ, if ‖σ‖1 ≤ η,

max{σ − sk1(σ )(σ ), 0}, otherwise
(11)

and hence 
Bη
(X) can be computed analytically.

Definition 2.2 (c.f. [8]) Let h be a symmetric mapping from �m to �m , that is, for
any signed permutation matrix Q,

h(x) = QT h(Qx), ∀ x ∈ �m .

The spectral operator H : �m×n → �m×n with respect to the symmetric function h
is defined by

H(X) := U [Diag(h(σ )) 0]V T , ∀ X ∈ �m×n .
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Since 
Bη
(·) is a symmetric function, we know that 
Bη

(·) is a matrix spectral
operator with respect to the nonseparable function 
Bη

(·). To employ the techniques
developed in [8], we introduce some notations. Write

g(σ ) := (g1(σ ), g2(σ ), . . . , gm(σ ))T = 
Bη
(σ ) (12)

and use μ1 > μ2 > · · · > μt to denote the nonzero singular values of X . Define the
index sets αk, k = 1, 2, . . . , t + 1 by

αk := {i | σi = μk, 1 ≤ i ≤ m}, k = 1, 2, . . . , t; αt+1 := {i | σi = 0, 1 ≤ i ≤ m}.

If 
Bη
is F-differentiable at σ , we define three matrices �(σ), 
(σ ),F(σ ) ∈ �m×m

by

[�(σ)]i j :=

⎧
⎪⎪⎨

⎪⎪⎩

gi (σ )−g j (σ )

σi−σ j
, if σi 
= σ j ,

(g′(σ ))i i − (g′(σ ))i(i+1), if σi = σ j , i ∈ αk, |αk | 
= 1,

(g′(σ ))i i , otherwise,

(13)

[
(σ)]i j :=
{ gi (σ )+g j (σ )

σi+σ j
, if σi + σ j 
= 0,

(g′(σ ))i i , otherwise,
(14)

[F(σ )]i j :=

⎧
⎪⎨

⎪⎩

(g′(σ ))i j , if i 
= j,

(g′(σ ))i(i+1), if i = j ∈ αk, |αk | 
= 1,
0, otherwise

(15)

and the vector ϒ(σ) ∈ �m by

[ϒ(σ)]i =
{ gi (σ )

σi
, if σi 
= 0,

(g′(σ ))i i , otherwise.

Define the two linear operators S and T by

S(A) := 1

2
(A + AT ), T (A) := 1

2
(A − AT ), ∀ A ∈ �m×m .

Proposition 2.3 Suppose that X ∈ �m×n has the SVD as in (8). Then

(i) The matrix spectral operator 
Bη
is F-differentiable at X if and only if σ satisfies

‖σ‖1 < η or ‖σ‖1 > η but k1(σ ) = k2(σ ). In this case, the function g in (12)
is F-differentiable at σ and the derivative of 
Bη

at X satisfies that for any
H ∈ �m×n,


′Bη
(X)H = U

[
�(σ) ◦ S(H̃1)+ Diag

(F(σ )diag(H̃1)
)+ 
(σ) ◦ T (H̃1), Diag(ϒ(σ))H̃2

]
V T

= U
[
�(σ) ◦ S(H̃1)+ Diag

(F(σ )diag(H̃1)
)+ 
(σ) ◦ T (H̃1)

]
V T
1

+UDiag(ϒ(σ))U T H(V2V T
2 ),
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where H̃1 ∈ �m×m, H̃2 ∈ �m×(n−m) and [H̃1 H̃2] = U T H V ; V1 ∈
�m×m, V2 ∈ �m×(n−m) and V = [V1 V2].

(ii) 
Bη
is strongly G-semismooth everywhere on �m×n.

Proof By Eq. (11), it can be easily verified that 
Bη
(·) is F-differentiable at σ if and

only if ‖σ‖1 < η or ‖σ‖1 > η but k1(σ ) = k2(σ ). Then invoking [8, Theorem 3.6],
one can establish part (i) of the assertion. Moreover, since
Bη

(·) is a piecewise linear
function, we know
Bη

(·) is strongly G-semismooth. This, together with [8, Theorem
3.12], proves part (ii) of the assertion. ��
Proposition 2.4 (c.f. [25]) Suppose that X ∈ �m×n has the SVD as in (8). Let r be
the rank of X. Then the orthogonal matrices P and W satisfy

P[Diag(σ ) 0] = [Diag(σ ) 0]W

if and only if there exist orthogonal matrices Q ∈ �r×r , Q′ ∈ �(m−r)×(m−r) and
Q′′ ∈ �(n−r)×(n−r) such that

P =
[

Q 0
0 Q′

]
and W =

[
Q 0
0 Q′′

]
.

3 A dual proximal point algorithm framework

In this section, we shall introduce the framework of the inexact dual PPA for solving
the MNA problem and establish its global and local convergence.

3.1 The proximal point algorithm

In various fields of applied mathematics, many problems can be equivalently formu-
lated as amaximalmonotone inclusion problem, that is, given a, possiblymulti-valued,
maximal monotone operator T : X → 2X , where X is a real Hilbert space, it is to
find an x ∈ X such that 0 ∈ T (x). The PPA [35] applied to the maximal monotone
inclusion problem takes the following scheme

xk+1 ≈ pλk (xk) := (I + λkT )−1(xk),

where the parameter λk > 0 is bounded away from zero. Rockafellar [35] suggested
computing xk+1 only approximately to satisfy the following accuracy criteria:

∥∥∥xk+1 − pλk (xk)

∥∥∥ ≤ εk, εk > 0,
∞∑

k=1
εk <∞, (16)

∥∥∥xk+1 − pλk (xk)

∥∥∥ ≤ δk

∥∥∥xk+1 − xk
∥∥∥ , δk > 0,

∞∑

k=1
δk <∞. (17)
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In [35], he showed that the sequence generated above converges (in theweak topology)
to a zero point of T , if it exists. Moreover, if λk ↑ λ∞ ≤ ∞ and T −1 is Lipschitz
continuous at 0, then condition (17) ensures that the local convergence is linear and the
rate is approximately proportional to 1/λ∞. If in addition λ∞ = ∞, the convergence
becomes superlinear.

Possibly due to its versatility and effectiveness, the PPA has received continuous
attention fromnumerous researchers and iswell accepted as a powerful tool for solving
various classes of convex optimization problems, see, e.g., [16,28,33,42,47]. In this
section, we consider the dual PPA, i.e., applying the idea to the maximal monotone
operator associated with the dual problem. By rewriting (1) as

min
{
‖X‖2 | A∗y + X = A0, By − b ∈ Q

}
, (18)

we can derive the following explicit form of its dual

max
Z∈�m×n , w∈Q∗

inf
X∈�m×n , y∈�p

{‖X‖2 − 〈Z , A∗y + X − A0〉 − 〈w, By − b〉}

= max
Z∈�m×n , w∈Q∗

inf
X∈�m×n , y∈�p

{
‖X‖2 − 〈X, Z〉 − 〈AZ + BT w, y〉 + 〈A0, Z〉 + 〈b, w〉

}

= max
Z∈�m×n , w∈Q∗

{
〈A0, Z〉 + 〈b, w〉 − χB(Z) | AZ + BT w = 0

}

= max
Z∈�m×n , w∈Q∗

{
〈A0, Z〉 + 〈b, w〉 | AZ + BT w = 0, Z ∈ B

}
,

where the second equality holds since the conjugate of ‖ · ‖2 is the indicator function
of the unit nuclear norm ball B, and Q∗(:= �n1 × �n2+ ) is the dual cone of Q.
Obviously, we can recast the dual maximization problem equivalently as the following
minimization problem:

min
{
− 〈A0, Z〉 − 〈b, w〉 | AZ + BT w = 0, ‖Z‖∗ ≤ 1, w ∈ Q∗

}
. (19)

For the convergence analysis later, we assume that the Slater condition for (19) holds,
i.e., there exists (Z , w) ∈ �m×n ×�n1+n2 such that

AZ + BT w = 0, ‖Z‖∗ < 1, wi > 0, i = n1 + 1, . . . , n1 + n2. (20)

If in addition, the Slater condition also holds for (18), i.e., ∃ ŷ such that B ŷ − b ∈
relint(Q), where “relint” denotes the relative interior, then the strong duality holds
for (18) and (19), and (X, Z , w) is an optimal solution pair of the primal and dual
problems if and only if it is the solution to the following KKT conditions:

A∗y + X = A0, By − b ∈ Q,

AZ + BT w = 0, ‖Z‖∗ ≤ 1, w ∈ Q∗,
〈X, Z〉 − ‖X‖2 = 0, 〈By − b, w〉 = 0.
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Write

Tl(X, y) =
(

∂‖X‖2
0

)
+ ∂χF1(X, y), ∀ X ∈ �m×n, y ∈ �p,

Tg(Z , w) = −
(

A0
b

)
+ ∂χF2(Z , w), ∀ Z ∈ �m×n, w ∈ �n1+n2

and

pλ(Z , w) = (I + λTg)
−1(Z , w), ∀ Z ∈ �m×n, w ∈ �n1+n2 ,

where F1 and F2 are the feasible sets of (18) and (19) respectively.
For any given Zk ∈ �m×n, wk ∈ �n1+n2 and λk > 0, it is easy to see that

pλk (Zk, wk) is the unique optimal solution to the following minimization problem:

min −〈A0, Z〉 − 〈b, w〉 + 1

2λk
‖Z − Zk‖2 + 1

2λk
‖w − wk‖2

s.t. AZ + BT w = 0, ‖Z‖∗ ≤ 1, w ∈ Q∗.
(21)

Let K be the epigraph of the nuclear norm, i.e.,

K := {(t, X) ∈ � × �m×n | t ≥ ‖X‖∗}

and K ∗ be its dual which is the epigraph of the spectral norm. Note that the constraint
that ‖Z‖∗ ≤ 1 is equivalent to (1,−Z) ∈ K . Direct computation shows that the dual
of (21) is given by

max
y∈�p, (t,X)∈K ∗

inf
Z∈�m×n ,w∈Q∗

⎧
⎨

⎩
−〈A0, Z〉 − 〈b, w〉 + 1

2λk
(‖Z − Zk‖2 + ‖w − wk‖2)

+〈y, AZ + BT w〉 − t + 〈X, Z〉

⎫
⎬

⎭

= max
y∈�p, X∈�m×n

⎧
⎪⎨

⎪⎩

−‖X‖2 + 1

2λk

(
‖Zk‖2 −

∥∥∥Zk − λk(A∗y + X − A0)

∥∥∥
2 )

+ 1

2λk

(
‖wk‖2 −

∥∥∥
Q∗
[
wk − λk(By − b)

]∥∥∥
2 )

⎫
⎪⎬

⎪⎭

= max
y∈�p

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

2λk

∥∥∥
B
(

Zk − λk(A∗y − A0)
)
−

(
Zk − λk

(A∗y − A0
))∥∥∥

2

+ 1

2λk

(
‖Zk‖2 −

∥∥∥Zk − λk(A∗y − A0)

∥∥∥
2 )

+ 1

2λk

(
‖wk‖2 −

∥∥∥
Q∗
[
wk − λk(By − b)

]∥∥∥
2 )

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

:= max
y∈�p

θk(y), (22)

where the first equality holds when

t = ‖X‖2, w = 
Q∗ [wk − λk(By − b)] (23)

123



A semismooth Newton-CG based dual PPA 447

and
Z = Zk − λk(A∗y + X − A0), (24)

and the second equality holds when

X = 1

λk

[
Zk − λk(A∗y − A0)−
B(Zk − λk(A∗y − A0))

]
. (25)

Clearly, the Slater condition (20) asserts that the optimal solution set of (22) is non-
empty. Let yk+1 be a maximizer of (22). Combining (23), (24) and (25), we have

pλk (Zk, wk) =
[


B(Zk − λk(A∗yk+1 − A0))


Q∗(wk − λk(Byk+1 − b))

]
. (26)

Therefore, in order to implement the PPA, one needs to solve (22) and then update the
variable (Z , w) by

(Zk+1, wk+1) ≈ pλk (Zk, wk).

and X by

Xk+1 ≈ (Zk − λk(A∗yk+1 − A0)− Zk+1)/λk .

In view of (26), we are able to present an inexact dual PPA framework:

Algorithm 3.1 (A dual PPA framework)
Given (Z0, w0, y0), λ0 > 0 and ε > 0, at the k-th iteration, do the following
steps:

Step 1. For fixed Zk, wk and yk, compute an approximate maximizer

yk+1 ≈ argmax{θk(y) | y ∈ �p},

where θk is defined in (22).
Step 2. Update the variables Zk+1, wk+1 and Xk+1 via

Zk+1 = 
B
(

Zk − λk(A∗yk+1 − A0)
)

,

wk+1 = 
Q∗
(
wk − λk(Byk+1 − b)

)
,

Xk+1 =
(

Zk − λk

(
A∗yk+1 − A0

)
− Zk+1) /λk .

Step 3. If max{‖A0 −A∗yk+1 − Xk+1‖, ‖
Q∗(b − Byk+1)‖} ≤ ε, stop; else,
update λk to λk+1, end.
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3.2 Convergence analysis

In Step 1 of the dual PPA, we use the following stopping criteria1 suggested in [33]:

max θk(y)− θk(yk+1) ≤ ε2k

2λk
, εk > 0,

∞∑

k=1
εk <∞, (27)

max θk(y)− θk(yk+1) ≤ δ2k

2λk
(‖Zk+1 − Zk‖2 + ‖wk+1 − wk‖2),

δk > 0,
∞∑

k=1
δk <∞, (28)

∥∥∥∇yθk(yk+1)
∥∥∥ ≤ δ′k

λk

∥∥∥∥

(
Zk+1 − Zk

wk+1 − wk

)∥∥∥∥ 0 ≤ δ′k → 0. (29)

Next we present two results on the global and local convergence of the dual PPA. The
proofs are omitted since they follow directly from [33, Theorems 4–5].

Theorem 3.1 (Global Convergence) Let the inexact PPA be executed with stopping
criterion (27). Suppose that the primal problem (18) satisfies the Slater condition. Then
the sequence {(Zk+1, wk+1)} ⊂ B ×Q∗ generated by the inexact PPA converges to
an optimal solution of (19). Moreover, the sequence {yk} is also bounded and any of
its accumulation point is an optimal solution of (1).

Theorem 3.2 (Local Convergence) Let the dual PPA be executed with stopping crite-
ria (27) and (28). Suppose that the Slater condition holds for (18). If T −1g is Lipschitz

continuous at the origin with the modulus ag, then {(Zk+1, wk+1)} converges to an
optimal solution (Z , w̄) of (19), and

∥∥∥∥

(
Zk+1 − Z
wk+1 − w̄

)∥∥∥∥ ≤ νk

∥∥∥∥

(
Zk − Z
wk − w̄

)∥∥∥∥ , for all k sufficiently large, (30)

where νk = [ag(ag + λ2k)
−1/2 + δk](1− δk)

−1 → ag(a2
g + λ2∞)−1/2 < 1. Moreover,

the conclusion about {yk} in Theorem 3.1 is valid.
If in addition to (28) and the condition on T −1g , one also has (29) and that T −1l is

Lipschitz continuous at the origin with modulus al (≥ ag), then {yk+1} converges to
the unique optimal solution ȳ of (1), and

∥∥∥∥

(
Xk+1 − X
yk+1 − ȳ

)∥∥∥∥ ≤ ν′k
∥∥∥∥

(
Zk+1 − Zk

wk+1 − wk

)∥∥∥∥ , for all k sufficiently large,

where X = A0 −A∗ ȳ, and ν′k = al(1+ δ′k)/λk → al/λ∞.

1 The stopping criteria introduced here are for the convergence analysis of the PPA. Since it is not easy
to obtain the upper bound of max θk (y), we use (29) to terminate the y-subproblem in the practical imple-
mentation of the dual PPA.
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4 A semismooth Newton-CG method for inner problems

In this section, we will apply the well-known inexact semismooth Newton method to
approximately solve the unconstrained subproblem (22). Using Proposition 2.1(i), we
know that the first order optimality condition for (22) is given by

0 = ∇θk(y) := A
B
[
Zk − λk(A∗y − A0)] + BT 
Q∗ [wk − λk(By − b)

]
.

Since
B(·) and
Q∗(·) are Lipschitz continuous,∇θk(·) is also Lipschitz continuous.
Hence Clarke’s generalized Jacobian of ∇θk (which is the generalized Hessian of θk

and we denote it by ∂2θk) is well defined. Since it is difficult to derive an exact
characterization of ∂2θk , we will slightly modify the classical semismooth Newton
method by selecting elements in ∂̂2θk instead of ∂2θk , where ∂̂2θk is a set-valued
mapping defined by

∂̂2θk(y) := −λk
[
A∂
B(Zk − λk(A∗y − A0))A∗

+ BT ∂
Q∗(wk − λk(By − b))B
]
, y ∈ �p.

Note that by [6, p. 75] and [20, Example 2.5],

∂2θk(y)h ⊆ ∂
(
A
B

[
Zk − λk(A∗y − A0)]

)
h + ∂

(
BT 
Q∗ [wk − λk(By − b)

])
h

= −λk
[
A∂
B(Zk − λk(A∗y − A0))A∗h

+BT ∂
Q∗(wk − λk(By − b))Bh
]

= ∂̂2θk(y)h, ∀ h ∈ �p.

It is, however, not clear to us if ∂2θk(y) = ∂̂2θk(y) holds. Fortunately, ∂̂2θk(y) is
sufficient for our use both theoretically and numerically.

4.1 Characterization of ∂̂2θk

To obtain the explicit expression of ∂̂2θk , it suffices to characterize ∂
B(·) and
∂
Q∗(·). For a given Y ∈ �m×n , suppose that it has the following SVD:

Y = U [Diag(σ ) 0]V T , (31)

where σ = (σ1, σ2, . . . , σm)T with σ1 ≥ σ2 ≥ · · · ≥ σr > 0 = σr+1 = · · · = σm .
When ‖Y‖∗ = 1, we know from direct calculation that k1(σ ) = r and k2(σ ) = m,
where k1(σ ) and k2(σ ) are defined in (10) with η = 1 since B is the unit nuclear norm
ball. For any positive integer N ∈ [r, m], we define the following four index sets:

α1 := {1, 2, . . . , r}, α2 := {r + 1, r + 2, . . . , N },
α3 := {N + 1, N + 2, . . . , m}, α4 := {m + 1, m + 2, . . . , n}. (32)
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In another case that ‖Y‖∗ > 1, it is easily seen that k1(σ ) ≤ k2(σ ) ≤ r . Given an
integer N ∈ [k1(σ ), k2(σ )], we partition the set {1, 2, . . . , m} into the following four
subsets:

β1 := {1, 2, . . . , k1(σ )}, β2 := {k1(σ )+ 1, k1(σ )+ 2, . . . , N },
β3 := {N + 1, N + 2, . . . , k2(σ )}, β4 := {k2(σ )+ 1, k2(σ )+ 2, . . . , m}.

and write

γ1 := β1 ∪ β2, γ2 := β3 ∪ β4.

Also, for the sake of simplicity, we will drop the parameter σ in �(σ), 
(σ ), F(σ )

and ϒ(σ), and represent the notations by �,
,F and ϒ , respectively.
The next proposition characterizes exactly ∂B
B(·) at anyY ∈ �m×n whose convex

hull is Clarke’s generalized Jacobian of 
B(·).
Proposition 4.1 Let Y ∈ �m×n admit the SVD as in (31).

(i) If ‖Y‖∗ < 1, then ∂B
B(Y ) is a singleton set consisting of the identity operator
from �m×n to itself.

(ii) If ‖Y‖∗ = 1, for V ∈ ∂B
B(Y ), either V is the identity operator or there exist
an integer N ∈ [r, m], (�∞α2α3 , 


∞
α2α2

, 
∞α2α3 , ϒ
∞
α2

) ∈ SN and singular vector
matrices U∞, V∞ of Y such that for any H ∈ �m×n,

VH = U∞
⎡

⎣W∞ − Tr(H̃11)

N

[
IN 0
0 0

]
, Diag

⎡

⎣
1r

ϒ∞α2
0

⎤

⎦ H̃2

⎤

⎦ (V∞)T , (33)

where the matrix W∞ ∈ �m×m is defined by

W∞ :=
⎡

⎢⎣
1N×N

1r×(m−N )

�∞α2α3
1(m−N )×r (�∞α2α3)

T 0

⎤

⎥⎦ ◦ S(H̃1)

+
⎡

⎢⎣
1r×r 1r×(m−r)

1(m−r)×r

∞α2α2 
∞α2α3

(
∞α2α3)
T 0

⎤

⎥⎦ ◦ T (H̃1)

with H̃1 ∈ �m×m, H̃2 ∈ �m×(n−m), [H̃1 H̃2] = (U∞)T H V∞ and H̃11 is the
matrix extracted from the first N columns and rows of H̃1, and SN is the subset
of �(N−r)×(m−N ) ×�(N−r)×(N−r) ×�(N−r)×(m−N ) ×�N−r defined by

SN :=
{

lim
LN�Y j→Y

(
�(σ(Y j ))α2α3 , 
(σ (Y j ))α2α2 , 
(σ (Y j ))α2α3 , ϒ(σ (Y j ))α2

)}

with LN = {Z | Z ∈ D
B , ‖Z‖∗ > 1, k1(σ (Z)) = N }.
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(iii) If ‖Y‖∗ > 1, for V ∈ ∂B
B(Y ), there exist an integer N ∈ [k1(σ ), k2(σ )],
�∞β2β3 ∈ SN and singular vector matrices U∞, V∞ of Y such that for any
H ∈ �m×n,

VH = U∞
[

W∞ − Tr(H̃11)

N

[
IN 0
0 0

]
, Diag

[
ϒγ1

0

]
H̃2

]
(V∞)T , (34)

where the matrix W∞ ∈ �m×m is defined by

W∞ :=

⎡

⎢⎢⎢⎣

1N×N
�β1β3
�∞β2β3

�γ1β4

(�β1β3 )
T (�∞β2β3 )

T

(�γ1β4 )
T 0

⎤

⎥⎥⎥⎦ ◦ S(H̃1)+
[


γ1γ1 
γ1γ2
(
γ1γ2 )

T 0

]
◦ T (H̃1),

here, H̃1 ∈ �m×m, H̃2 ∈ �m×(n−m), [H̃1 H̃2] = (U∞)T H V∞ and H̃11 is the
matrix extracted from the first N columns and rows of H̃1, and SN is the subset
of �(N−k1(σ ))×(k2(σ )−N ) defined by

SN :=
{

lim
LN�Y j→Y

�(σ(Y j ))β2β3

}

with LN = {Z | Z ∈ D
B , k1(σ (Z)) = N }.
Proof See the “Appendix”. ��

The characterization of ∂
Q∗(·) at z ∈ �n1+n2 is very simple given the special
structure of the polyhedral cone Q∗ = �n1 ×�n2+ . Define the following index sets:

J1 := {i : zi > 0, n1 + 1 ≤ i ≤ n1 + n2} ∪ {1, 2, . . . , n1},
J2 := {i : zi = 0, n1 + 1 ≤ i ≤ n1 + n2},
J3 := {i : zi < 0, n1 + 1 ≤ i ≤ n1 + n2}.

For any given z ∈ �n1+n2 , direct computation shows that


Q∗(z) =
{

zi , i ∈ {1, 2, . . . , n1},
max(zi , 0), i ∈ {n1 + 1, n1 + 2, . . . , n1 + n2}. (35)

For any given ξ ∈ �, the subdifferential of max(ξ, 0) is given as follows:

∂ max(ξ, 0) =
⎧
⎨

⎩

{1}, ξ > 0,
{0}, ξ < 0,
[0, 1], ξ = 0.

(36)

By combining (35), (36) and the definitions of Ji , i = 1, 2, 3, we have that V is an
element of ∂
Q∗(z) if and only if there exists a vector a ∈ [0, 1]|J2| such that
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Vh =
⎡

⎣
hJ1

a ◦ hJ2

0

⎤

⎦ , ∀ h ∈ �n1+n2 . (37)

Remark 4.1 In the implementation of our semismooth Newton-CG method, we need
to select an element V0

1 ∈ ∂
B(Y ) and an element V0
2 ∈ ∂
Q∗(z). If ‖Y‖∗ ≤ 1, V0

1
is chosen as the identity operator from �m×n to �m×n . For the case that ‖Y‖∗ > 1,
we take U∞ = U, V∞ = V and N = k1(σ ) in (34). Thus β2 = ∅ and for any
H ∈ �m×n ,

V0
1 H = U∞

[
W∞ − Tr(H̃11)

N

[
IN 0
0 0

]
, Diag

[
ϒγ1

0

]
H̃2

]
(V∞)T , (38)

where the matrix W∞ ∈ �m×m is defined by

W∞ :=
[

1N×N �γ1γ2

(�γ1γ2)
T 0

]
◦ S(H̃1)+

[

γ1γ1 
γ1γ2

(
γ1γ2)
T 0

]
◦ T (H̃1)

with H̃1 ∈ �m×m, H̃2 ∈ �m×(n−m), [H̃1 H̃2] = U T H V and H̃11 being the matrix
extracted from the first N columns and rows of H̃1. As to the selection of V0

2 , we take
a = 0 in (37) and then

V0
2h =

[
hJ1

0

]
, ∀ h ∈ �n1+n2 . (39)

4.2 Constraint nondegeneracy

For the convergence analysis of the semismooth Newton-CG method, we need the
concept of constraint nondegeneracy which is originally introduced by Robinson [32]
and extended by Bonnans and Shapiro [1]. Let X and Y be two finite dimensional
spaces,� : X → Y be a continuously differentiable function and C be a closed convex
set. We use TC(x) and lin(TC(x)) to denote the tangent cone of C at x and its linearity
space, respectively. A feasible point x̄ to the feasibility problem {�(x) ∈ C, x ∈ X }
is said to be constraint nondegenerate if

�′(x̄)X + lin(TC(�(x̄))) = Y .

Thus the constraint nondegeneracy condition associated with the minimizer (Ẑ , ŵ) of
(21) has the form

⎡

⎣
A BT

I 0
0 I

⎤

⎦
( �m×n

�n1+n2

)
+

⎡

⎣
{0}p

lin(TB(Ẑ))

lin(TQ∗(ŵ))

⎤

⎦ =
⎡

⎣
�p

�m×n

�n1+n2

⎤

⎦ , (40)

or equivalently,
Alin(TB(Ẑ))+ BT lin(TQ∗(ŵ)) = �p. (41)
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Proposition 4.2 Let (Ẑ , ŵ) be the unique solution pair of (21). Let Ẑ have the fol-
lowing SVD:

Ẑ = U [Diag(σ (Ẑ)) 0]V T = [U1 U2][Diag(σ (Ẑ)) 0][V1 V2]T ,

where σ1(Ẑ) ≥ · · · ≥ σr (Ẑ) > 0 = σr+1(Ẑ) = · · · = σm(Ẑ), and U1 ∈ �m×r , U2 ∈
�m×(m−r), V1 ∈ �n×r , V2 ∈ �n×(n−r). Define the following two index sets κ1 and κ2
by

κ1 := {1, 2, . . . , n1} ∪ {i | ŵi > 0, n1 + 1 ≤ i ≤ n1 + n2},
κ2 := {i | ŵi = 0, n1 + 1 ≤ i ≤ n1 + n2}.

Then it holds that:

(i) if ‖Ẑ‖∗ < 1, the constraint nondegeneracy holds at (Ẑ , ŵ) if and only if

Bκ1 y = 0, A∗y = 0 �⇒ y = 0. (42)

(ii) if ‖Ẑ‖∗ = 1, the constraint nondegeneracy holds at (Ẑ , ŵ) if and only if, for any
given k ∈ �,

{
Bκ1 y = 0, (U1)

T (A∗y)V1 = k Ir ,

(U1)
T (A∗y)V2 = 0, (U2)

T (A∗y)V1 = 0
�⇒ y = 0. (43)

Proof (i) Under the condition that ‖Ẑ‖∗ < 1, it is easy to see that

lin(TB(Ẑ)) = �m×n and lin(TQ∗(ŵ)) =
[�|κ1|
{0}|κ2|

]
.

Thus the constraint nondegeneracy condition (41) is reduced to

A�m×n + BT
κ1
�|κ1| = �p, (44)

which is equivalent to (42).
(ii) Since

lin(TQ∗(ŵ)) =
[�|κ1|
{0}|κ2|

]
,

the constraint nondegeneracy condition (41) is reduced to

Alin(TB(Ẑ))+ BT
κ1
�|κ1| = �p, (45)

which is equivalent to

Bκ1 y = 0, A∗y ∈ lin(TB(Ẑ))⊥ �⇒ y = 0. (46)
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From [6, Proposition 2.3.6 and Theorem 2.4.9], we have that

TB(Ẑ) = {H ∈ �m×n| ‖ · ‖′∗(Ẑ; H) ≤ 0},

where ‖·‖′∗(Ẑ; H) is the directional derivative of the nuclear norm function at Ẑ along
the direction H . Moreover, by [21, p. 61], it holds that

‖ · ‖′∗(Ẑ; H) = Tr((U1)
T H V1)+ ‖(U2)

T H V2‖∗
and then we have

TB(Ẑ) = {H ∈ �m×n|Tr((U1)
T H V1)+ ‖(U2)

T H V2‖∗ ≤ 0}.

It therefore holds that

lin(TB(Ẑ)) = TB(Ẑ) ∩ (− TB(Ẑ)
)

= {H ∈ �m×n|Tr((U1)
T H V1) = 0, (U2)

T H V2 = 0}
= {H ∈ �m×n| H V1 ∈ (U1)

⊥, (U2)
T H V2 = 0}.

Note that for any Y ∈ lin(TB(Ẑ))⊥ if and only if

〈U T Y V, U T H V 〉 = 〈Y, H〉 = 0,

for any H satisfies the conditions H V1 ∈ (U1)
⊥ and (U2)

T H V2 = 0. Then, we know

lin(TB(Ẑ))⊥ = {Y ∈ �m×n| ∃k ∈ �, (U1)
T Y V1

= k Ir , (U1)
T Y V2 = 0, (U2)

T Y V1 = 0},

which, together with (46), completes the proof. ��
With the above proposition, we next establish a result which exploits the close

relationship between the constraint nondegeneracy of the optimal solution of (21) and
the negative definiteness of the elements of ∂̂2θk .

Proposition 4.3 Suppose that the problem (21) satisfies the Slater condition (20).
Let (Ẑ , ŵ) and ŷ denote respectively the optimal solutions of (21) and (22), and
Ŷ := Zk − λk(A∗ ŷ − A0). Then the following conditions are equivalent:

(i) The constraint nondegeneracy condition (41) holds at (Ẑ , ŵ).
(ii) Every element in ∂̂2θk(ŷ) is symmetric and negative definite.
(iii) The operator

V0 = −λk

(
AV1

1A∗ + BTV0
2 B

)

is symmetric and negative definite, where V1
1 is the same as V0

1 in (38) except
when in the case of ‖Ŷ‖∗ = 1, the operator is defined by (33) with N = rank(Ŷ ).
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Proof Assume the SVD of Ẑ and the index sets κ1, κ2 are given in Proposition 4.2.
“(i)⇒ (ii)”. Let V be an arbitrary element of ∂̂2θk(ŷ). Then there exist V1 and V2

in ∂
B(Ŷ ) and ∂
Q∗ [wk − λk(B ŷ − b)], respectively, such that

V = −λk[AV1A∗ + BTV2B].

Recall [29, Proposition 1]: for any x ∈ X and V ∈ ∂
C (x), V is self-adjoint and it
holds

〈V d, d − V d〉 ≥ 0, ∀ d ∈ X , (47)

where C ⊂ X is a closed convex set. Therefore, V1 and V2 are self-adjoint, and so is
V . Moreover, we know from (47) that for any h ∈ �p,

〈h, Vh〉 = −λk〈h, AV1A∗h〉 − λk〈h, BTV2Bh〉
= −λk〈A∗h, V1A∗h〉 − λk〈Bh, V2Bh〉
≤ −λk〈V1A∗h, V1A∗h〉 − λk〈V2Bh, V2Bh〉 ≤ 0,

which implies that V is negative semidefinite. To proceed the proof of this part, we
next show that V is negative definite for any V1 ∈ ∂B
B(Ŷ ) and V2 ∈ ∂
Q∗ [wk −
λk(B ŷ − b)]. Consider the following linear system

Vh = 0, or equivalently, V1A∗h = 0, V2Bh = 0. (48)

To prove h = 0, we consider the following two cases.

Case 1: ‖Ŷ‖∗ < 1. In this case, since Ẑ = 
B(Ŷ ), we have ‖Ẑ‖∗ < 1 and V1 = I.
Then, it follows from (48) that

A∗h = 0, Bκ1h = 0, (49)

which, together with the constraint nondegeneracy assumption (42), implies h = 0.

Case 2: ‖Ŷ‖∗ ≥ 1 and thus ‖Ẑ‖∗ = 1. We first show the nonsingularity of V for the
choice that V1 = I. In this situation, (49) still holds and hence by taking k = 0 in (43),
we know that V is nonsingular and hence negative definite. Next, we turn to the case
in which V1 is another element selected from ∂B
B(Ŷ ). We consider two sub-cases.

Case 2.1: ‖Ŷ‖∗ = 1. Let H = A∗h. In view of the analysis in the previous
subsection, we know from V1H = 0 that

0 = U∞
⎡

⎣

⎡

⎣ 1N×N
1r×(m−N )

�∞α2α3
1(m−N )×r (�∞α2α3)

T 0

⎤

⎦ ◦ S(H̃1)

⎡

⎣
1r×(n−m)

ϒ∞α2 1
T
n−m

0

⎤

⎦ ◦ H̃2

⎤

⎦ (V∞)T

+U∞
⎛

⎝

⎡

⎣
1r×r 1r×(m−r)

1(m−r)×r

∞α2α2 
∞α2α3

(
∞α2α3)
T 0

⎤

⎦ ◦ T (H̃1)− Tr(H̃11)

N

[
IN 0
0 0

]⎞

⎠(
V∞1

)T
,
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where V∞1 ∈ �m×m, V∞2 ∈ �m×(n−m) and V∞ := [V∞1 V∞2 ], the index sets
α1, α2, α3 and α4 are defined as in (32). This implies that

(U∞α1 )T (H)V∞α1 =
Tr(H̃11)

N
Ir , (U∞α1 )T (H)V∞α2∪α3∪α4 = 0, (U∞α2∪α3)

T (H)V∞α1 =0.

(50)
By Proposition 2.4, there exist orthogonal matrices Q ∈ �r×r , Q′ ∈ �(m−r)×(m−r)

and Q′′ ∈ �(n−r)×(n−r) such that

U∞α1 = Uα1 Q, U∞α2∪α3 = Uα2∪α3 Q′, V∞α1 = QVα1 , V∞α2∪α3∪α4 = Q′′Vα2∪α3∪α4 .
(51)

Moreover, we know from V2h = 0 that

Bκ1h = 0. (52)

Combining (43), (50), (51) with (52), we deduce h = 0 and hence V is nonsingular
and hence negative definite.

Case 2.2: ‖Ŷ‖∗ > 1. The proof of the negative definiteness of V is similar to that
of Case 2.1, with the equality (34) replacing (33).

By taking the convex hull of ∂B
B(Ŷ ), we complete the proof of the first part.
“(ii)⇒ (iii)”. This is trivial since V0 ∈ ∂̂2θk(ŷ).
“(iii) ⇒ (i)”. Assume the contrary that the constraint nondegeneracy condition

fails to hold at (Ẑ , ŵ). Again, we consider two cases.

Case 1: ‖Ŷ‖∗ < 1 and hence ‖Ẑ‖∗ < 1. By assumption, there exists a z 
= 0 such
that

A∗z = 0, Bκ1 z = 0.

This means that V0 is singular, which contradicts to (iii).

Case 2: ‖Ŷ‖∗ ≥ 1 and hence ‖Ẑ‖∗ = 1. By assumption, there exist k ∈ � and z 
= 0
such that

Bκ1 z = 0, (U1)
T (A∗z)V1 = k Ir , (U1)

T (A∗z)V2 = 0, (U2)
T (A∗z)V1 = 0.

(53)
Substituting the equalities above into (38) and (39), we deduce that V0z = 0. This
contradicts to the statement (iii). The proof is completed. ��

4.3 A semismooth Newton-CG algorithm

In this subsection, we briefly describe the semismooth Newton-CG algorithm for
solving (22). The basic template of the algorithm is given as follows. For simplicity,
we drop the outer iteration index k.
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Algorithm 4.1 (A Semismooth Newton-CG Method)

Step 0. Given ς ∈ (0, 0.5), δ1, δ2, η̄, ρ ∈ (0, 1) and τ ∈ (0, 1]. Choose y0 ∈
�p.

Step 1. For j = 0, 1, 2, . . .,
Step 1.1. Apply the preconditioned conjugate gradient (PCG) method to

find an approximation solution d j to

(V j − ε j I )d = −∇θk(y j ) (54)

satisfying the residual condition

‖(V j − ε j I )d j + ∇θk(y j )‖ ≤ η j := min{η̄, ‖∇θk(y j )‖1+τ }. (55)

Here, V j is an element of ∂̂2θk(y j ) and ε j =
δ1 min{δ2, ‖∇θk(y j )‖}.

Step 1.2. Let l j be the smallest nonnegative integer l satisfying

θk(y j + ρld j )− θk(y j ) ≥ ςρl〈∇θk(y j ), d j 〉.

Set α j := ρl j and y j+1 := y j + α j d j .

From the structures of V0
1 and V0

2 , we know that V j is always negative semidefinite.
HenceV j−ε j I is always negative definite as long as∇yθk(y j ) 
= 0. So, it is reasonable
for us to apply the PCG method to solve (54). Furthermore, by noting the strong
semismoothness of 
B(·) and 
Q∗(·), and using the proof similar to [47, Theorem
3.4], we can easily derive the following convergence results for Algorithm 4.1.

Theorem 4.1 Suppose that the Slater condition holds for (21). Then the semismooth
Newton-CG algorithm 4.1 is well defined and any accumulation point ŷ of {y j } gen-
erated by Algorithm 4.1 is an optimal solution to the inner subproblem (22).

Theorem 4.2 Assume that the Slater condition holds for (21). Let ŷ be an accumu-
lation point of the infinite sequence {y j } generated by the semismooth Newton-CG
algorithm for solving (22). Suppose that at each step j ≥ 0, the residual condition
(55) is satisfied. Assume that the constraint nondegeneracy condition (41) holds at
(Ẑ , ŵ), where Ẑ := 
B(Zk − λk(A∗(ŷ)− A0)) and ŵ := 
Q∗(wk − λk(B ŷ − b)).
Then the whole sequence {y j } converges to ŷ and

‖y j+1 − ŷ‖ = O
(
‖y j − ŷ‖1+τ

)
.

4.4 Numerical issues

In applying the semismooth Newton-CG method to solve the inner problem (22),
the most expensive step is to compute the Newton direction from the linear equation
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involving the operator V j in (54). As is well known, the basic operation in implement-
ing the PCGmethod is to calculate the multiplication V j y for any given y ∈ �p. From
the analysis in Sect. 4.1, the computation appears to require the full SVD of an m × n
matrix. For a problem in which m is moderate but n is large, the full SVD computation
would be expensive and huge memory space is also needed to store the large and
dense matrix V . To alleviate this difficulty, the authors in [21] suggested computing
the full SVD indirectly via a reduced SVD and a QR factorization by Householder
transformations. But in fact, we can completely avoid the computation of V2 by care-

fully analyzing the structure of (38) as shown next. The part Diag

[
ϒγ1

0

]
H̃2V T

2 in

(38) is given as follows:

Diag

[
ϒγ1

0

]
H̃2V T

2 =
[
Diag(ϒγ1)U

T
γ1

H(V2V T
2 )

0

]
(56)

=
[
Diag(ϒγ1)U

T
γ1

H(I − V1V T
1 )

0

]
.

From (56), it is clear that V2 can be avoided when evaluating V1
0 H in (38). Given

the economical SVD of Zk − λk(A∗y − A0), we can compute V1
0 H in at most

k1(σ )(18mn+4m2) flops for any given H ∈ �m×n . The above complexity shows that
our algorithm is able to utilize any low rank or flat rectangular structure of a matrix to
reduce the computational cost.

Next, we introduce two diagonal preconditioners which may help to accelerate the
convergence of the CG method applied to solve the linear system (54). Let A and V
be the matrix representations of the linear mappingsA and V0

1 , respectively. Then the
coefficient matrix in (54) has the following form

W = −λAVAT − λBT
J1

BJ1 − ε I.

Note that we have omitted the iteration index for brevity. Let the standard basis in
�m×n be {Ei j ∈ �m×n : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, where Ei j is the matrix whose
(i, j)-th entry is one and zero otherwise. The diagonal element of V0

1 with respect to
the standard basis is given by

V(i, j),(i, j) =
(
(U ◦U )�∞(V T ◦ V T )

)
i j −

1

k1(σ )

(
(U ′1V ′T1 ) ◦ (U ′1V ′T1 )

)
i j

+ 1

2

〈
Hi j ◦ H T

i j , �∞ − 
∞
〉
, (57)

where

�∞ =
[
1

2
(�∞ + 
∞)

(
ϒ∞1T

)
k1(σ )×(n−m)

0(m−k1(σ ))×(n−m)

]
, Hi j = U T Ei j V1 ∈ �m×m

and U ′1 and V ′1 are the matrices formed by the first k1(σ ) columns of U and V ,
respectively. To avoid excessive computational cost, one would naturally drop the last
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term in (57). However, it turns out that the first two terms often do not provide a good
approximation of V(i, j),(i, j). In practice, we find that replacing �∞ by �̂∞ (which
is the same as �∞ with 
∞ replaced by �∞) in the first term often gives a better
approximation, i.e., we consider

D(i, j),(i, j) =
(
(U ◦U )�̂∞

(
V T ◦ V T

))

i j
− 1

k1(σ )

((
U ′1V ′T1

)
◦
(

U ′1V ′T1
))

i j
(58)

as an approximation of (57). Thus we propose the following diagonal preconditioner
for the coefficient matrix:

M = λDiag
(
ADAT + BT

J1
BJ1

)
+ ε I. (59)

Clearly, to use the preconditioner above, we need the explicit form of V , which may
lead to memory difficulty when n is large. Thus when n is too large for V to be stored
explicitly, we just use the following simple diagonal preconditioner

M ′ = λDiag(AAT + BT
J1

BJ1)+ ε I. (60)

5 Numerical results

In this section, we will apply our algorithm SNDPPA (semismooth Newton-CG based
dual PPA) to solve four different types of the MNA problems. For the purpose of
numerical comparison, we will also report the performance of an alternating direction
method of multipliers (ADMM) for solving the same set of problems. All the codes are
written in Matlab 7.11 and run an Intel Xeon 2.80GHz (quadcore) PC with 24GB
memory.

The ADMM was first introduced in [12,14]. Since then a number of variants have
been studied theoretically and employed in many applications due to its great simplic-
ity, see, e.g., [4,10,13,17,45]. Here we shall employ the classical ADMM [12,14] to
solve the MNA problems. Note that problem (1) can be expressed in the following
equivalent form:

min
{
‖X‖2 | A∗y + X = A0, By − b = z, z ∈ Q

}
. (61)

The augmented Lagrangian function associated with (61) is given by

Lβ(y, X, z; Z , w) := ‖X‖2 − 〈Z ,A∗y + X − A0〉 − 〈w, By − b − z〉
+ β

2
‖A∗y + X − A0‖2 + β

2
‖By − b − z‖2, (62)

where Z and w are Lagrangian multipliers, and β > 0 is the penalty parameter. Given
X0, Z0 ∈ �m×n , z0, w0 ∈ �n1+n2 , and β0 > 0, the k-th iteration of the ADMM for

123



460 C. Chen et al.

(61) is given as follows:

yk+1 = argmin{Lβk (y, Xk, zk; Zk, wk) | y ∈ �p},
(Xk+1, zk+1) = argmin{Lβk (yk+1, X, z; Zk, wk) | (X, z) ∈ �m×n ×Q},

Zk+1 = Zk − �βk(A∗yk+1 + Xk+1 − A0),

wk+1 = wk − �βk(Byk+1 − b − zk+1),

where � ∈ (0, 1+√5
2 ). It is easy to see that the minimizer yk+1 is the solution of the

following linear system of equations:

(AA∗ + BT B)yk+1 = A(A0 − Xk + Zk/βk)+ BT (b + zk + wk/βk). (63)

SinceLβk (yk+1, X, z; Zk, wk) is separable in X and z, simple algebraicmanipulations
then give

Xk+1 = A0 −A∗yk+1 + Zk/βk −
B1/βk
(A0 −A∗yk+1 + Zk/βk),

zk+1 = 
Q(Byk − b − wk/βk).

As analyzed before, Xk+1 can be computed analytically, and zk+1 is just a simple
projection over Q.

We use Rp, Rd and gap to denote, respectively, the primal infeasibility, dual infea-
sibility and primal-dual relative gap, namely

Rp = ‖[A
∗y + X − A0;
Q∗(b − By)]‖

1+ ‖[A0; b]‖ , Rd = ‖AZ + BT w‖
1+ ‖[A; BT ]‖ ,

gap = |pobj− dobj|
1+ |pobj| + |dobj| ,

where pobj and dobj are the primal and dual objective values, respectively.
In our numerical experiments, we start theADMMfrom the point (X, y, z, Z , w) =

(0, 0, 0, 0, 0) and terminate it when

max{Rp, Rd} ≤ 10−6 (64)

or the maximum number of iterations exceeds 2,000. The penalty parameter β in the
ADMM is adjusted dynamically: starting from the initial value of 10, we adjust β at
every fifth step as follows such that βk cannot go to extremely large or small, and the
primal and dual infeasibilities are well balanced:

βk+1 =
⎧
⎨

⎩

min(103, 2βk), if Rk
p/Rk

d > 10,
max(10−2, 0.5βk), if Rk

p/Rk
d < 0.1,

βk, otherwise.
(65)

For the SNDPPA, we use the ADMM to generate an initial point which satisfies that
max{Rp, Rd} ≤ 5×10−3. The total number of the ADMM steps for this initialization
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is capped at 50. We terminate the SNDPPA when the condition (64) is met. For
each PPA iteration, we cap the number of Newton-CG iterations for solving an inner
subproblem to 40. In solving the linear system associated with the Newton direction,
the maximal number of PCG steps is set as 500. As the parameter λ plays a critical role
in the convergence speed of a PPA-based algorithm, we need to handle it with care.
In our implementation, the parameter λ is initialized as 10 and increased according to
the following empirical rule in order to accelerate the convergence of the outer loop
of the PPA and also balance the primal and dual infeasibilities:

λk+1 =
⎧
⎨

⎩

3λk, Rk+1
p /Rk

p > 0.5 and Rk+1
p > 10−4,

2λk, Rk+1
p /Rk

p > 0.5 and Rk+1
p < 10−4,

λk, otherwise,
(66)

where λk denotes the penalty parameter value at the kth PPA iteration.

5.1 Random matrix norm approximation

We first consider randomly generated MNA problems with/without constraints. In
the experiments, the matrices A0, A1, . . . , Ap are generated independently from the
multivariate uniform distribution on [0, 1]m×n .

In Table 1, we report the numerical performance of the SNDPPA and the ADMM
for solving different random matrix approximation instances without constraints. The
number of outer iterations (iter), primal infeasibility (Rp), dual infeasibility (Rd ),
primal objective value (pobj), relative gap (gap), and the CPU time (time) taken are
listed in the table. To better understand the performance of the SNDPPA, we also
report the number of Newton systems solved (itersub) and the average number PCG
steps (pcg) taken to solve each of the systems.

Table 1 Results for unconstrained random matrix norm approximation problems

p |m | n Algo. it (itersub|pcg) pobj|gap Rp | Rd Time

300|300|300 PPA 14 (15|4.1) 9.44515934 0|2.8–6 4.4–7|3.2–8 8.3

ADMM 300 9.44520938 0|4.2–6 9.7–7|2.5–7 26.0

500|500|500 PPA 17 (18|4.2) 1.22905150 1|3.7–6 4.3–7|2.3–8 42.4

ADMM 619 1.22905586 1|1.9–5 6.8–7|9.9–7 232.4

100|100|3,000 PPA 16 (18|4.0) 1.83807818 1|8.3–6 9.4–7|4.1–8 13.1

ADMM 821 1.83807914 1|6.5–6 9.9–7|1.7–7 100.5

100|100|5,000 PPA 16 (17|4.0) 2.31039070 1|5.6–6 9.3–7|4.0–8 20.8

ADMM 443 2.31040515 1|3.2–6 9.9–7|9.7–7 93.1

100|100|10,000 PPA 18 (19|4.0) 3.16771120 1|2.8–6 5.4–7|1.1–7 46.2

ADMM 740 3.16774836 1|7.4–6 9.5–7|9.9–7 300.3

100|100|20,000 PPA 16 (17|4.0) 4.37704442 1|1.2–7 7.3–7|2.7–9 97.7

ADMM 654 4.37704413 1|9.9–6 4.6–7|9.9–7 668.2
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As can be observed in Table 1, both the ADMM and the SNDPPA are able to solve
the unconstrained randommatrix approximation problems to relatively high accuracy.
The SNDPPA substantially outperforms the ADMM in terms of the CPU time taken
to solve the problems. For example, the ADMM takes about 35min to solve the last
instance while our SNDPPA solves it in 4.5min and with a better accuracy in dual
infeasibility and objective gap. Note that the random matrix approximation problems
can also be solved by the interior point package SDPT3 [38] via the SDP reformulation
(6). However, the interior solvermay encounter computational andmemory difficulties
when solving large problems. For example, SDPT3 takes about 5min to solve the
problem with (m, n, p) = (300, 300, 300) while our SNDPPA solves it in only 8 s.
For the larger instance with (m, n, p) = (100, 5,000, 100), SDPT3 is not able to solve
the problem due to excessive computer memory required. It is worth noting that for
the instances with (p, m) = (100, 100), the CPU time taken by each iteration of the
SNDPPA and the ADMM increases almost linearly with n. But for a solver (say the
algorithm in [47]) that attempts to solve (1) via the SDP reformulation (6), the cost
per iteration would grow at least quadratically in n. This observation is consistent with
the fact mentioned in the previous section that our SNDPPA is capable of exploiting
the flat rectangular structure of the matrices involved.

Next, we test our SNDPPA on the MNA problems with constraints. A simple
example is to find a convex combination of given matrices A0, A1, . . . , Ap having
the minimal spectral norm, i.e.,

min
{
‖A0 −A∗y‖2 |

∑p

i=1 yi = 1, y ≥ 0
}
. (67)

In what follows, we investigate the performance of the SNDPPA and the ADMM
applied to (67) where the matrices A1, . . . , Ap are randomly generated as before.
Table 2 lists the numerical results obtained by the SNDPPA and the ADMM. For this
collection of problems, we can easily see the superiority of the SNDPPA over the
first order algorithm ADMM. While our SNDPPA solves all the tested instances to
the accuracy of 10−6 within 36 semismooth Newton-CG iterations, the ADMM fails
to achieve the required accuracy even after 2,000 iterations. For the instance with
(m, n, p) = (100, 2,0000, 100), the ADMM fails to achieve the accuracy of 10−6
after running for 35min while our SNDPPA is able to solve the problem in about
2min. As one may deduce from the results in Table 2, the ADMMmay encounter both
computational and accuracy difficulties even only simple constraints are imposed on y.

5.2 Chebyshev polynomials of matrices

In this subsection, we apply the proposed SNDPPA to compute the Chebyshev poly-
nomials of a given matrix A ∈ �n×n . Since the power basis I, A, . . . , At is usually
highly ill conditioned, in [40] the authors suggested replacing this basis by a better-
conditioned alternative Q1, Q2, . . . , Qt+1 and consider the resulting problem

min
y∈�t
‖Qt+1 −

∑t

i=1 yi Qi‖2. (68)
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Table 2 Results for the matrix norm approximation problem (67)

p |m | n Algo. it (itersub |pcg) pobj |gap Rp | Rd Time

300|300|300 PPA 17 (31|12.8) 9.59410207 0|2.6–5 7.7–7|3.6–8 21.8

ADMM 2,000 9.59309978 0|3.8–6 4.2–6|6.8–6 175.5

500|500|500 PPA 19 (36|14.8) 1.24537522 1|5.4–5 7.6–7|7.2–7 131.7

ADMM 2,000 1.24556416 1|1.2–4 1.1–5|1.1–5 777.9

100|100|3,000 PPA 20 (27|5.0) 1.83873278 1|3.7–6 5.4–7|2.6–8 19.5

ADMM 2,000 1.83863304 1|1.6–4 7.1–6|6.7–6 246.7

100|100|5,000 PPA 18 (24|5.3) 2.31091411 1|3.5–6 4.2–7|2.1–8 29.2

ADMM 2,000 2.31077010 1|1.0–4 8.3–6|2.8–6 423.4

100|100|10,000 PPA 19 (25|4.9) 3.16803834 1|6.1–6 8.7–7|2.7–8 59.4

ADMM 2,000 3.16798808 1|1.0–5 3.0–6|9.9–7 885.2

100|100|20,000 PPA 21 (25|4.0) 4.37736739 1|2.3–5 7.8–7|6.6–7 125.2

ADMM 2,000 4.37716525 1|6.2–5 4.5–6|2.1–6 2,139.9

From the solution of (68), one can easily compute the coefficients of the Chebyshev
polynomials via Theorem 2 in [40]. In our experiments, the test examples are taken
from Section 6 in [40] and Q1, Q2, . . . , Qt+1 is the orthogonal basis corresponding
to the power basis of A.

Table 3 shows that for most of the test instances, both the SNDPPA and the ADMM
are capable of achieving the accuracy of less than 10−6. However, for examples such
as Bidiag (n = 1,000) and Diag (n = 500), the ADMM fails to solve them within
2,000 iterations while the SNDPPA succeeds in achieving the required accuracy for
all the instances. This illustrates that our SNDPPA performs much more robustly than
the ADMM.Moreover, the SNDPPA is much more efficient than the ADMM in terms
of computing time. Specifically, the former is about 5–10 times faster than the latter.
Also, the performance of our SNDPPA is superior to the interior-point solver SDPT3
[38] applied to the SDP reformulation in terms of CPU time. For example, SDPT3
takes about 2min to achieve a solution with an accuracy of 10−6 for the problemRand
(n = 500, t = 50) while our SNDPPA solves it in 13 s. This is not surprising since for
most instances, the SNDPPA takes less than 20 semismooth Newton-CG iterations to
generate a highly accurate solution and the average number of PCG steps needed to
solve each of the Newton systems is less than 10.

5.3 FMMC/FDLA

In this subsection, we investigate the numerical performance of the two algorithms
for solving the FMMC problem (4) and the FDLA problem (5). The tested graphs are
taken from the sparse matrix collection [7] but some are slightly modified to make
them connected. The data set is available at http://www2.research.att.com/~gyifanhu/
GALLERY/GRAPHS/search.html.

123

http://www2.research.att.com/~gyifanhu/GALLERY/GRAPHS/search.html
http://www2.research.att.com/~gyifanhu/GALLERY/GRAPHS/search.html


464 C. Chen et al.

Table 3 Chebyshev polynomials of matrices

Problem Algo. n | t it (itersub |pcg) pobj |gap Rp | Rd Time

Rand PPA 500|50 16 (18|7.9) 2.19977218-1|3.7–7 3.5–7|1.8–7 12.4

1,000|100 14 (15|9.2) 1.84595016-1|1.5–7 2.5–7|1.6–7 72.0

ADMM 500|50 354 2.19977287-1|6.2–8 3.0–7|8.7–7 45.6

1,000|100 661 1.84594835-1|3.1–7 1.1–7|9.1–7 518.8

Randtri PPA 500|50 6 (9|9.5) 4.14987261-1|3.4–7 2.2–7|1.6–7 8.2

1,000|100 9 (11|12.8) 3.56509526-1|1.5–7 1.8–7|3.6–7 60.9

ADMM 500|50 663 4.14987166-1|1.4–6 7.1–8|8.8–7 85.1

1,000|100 786 3.56509344-1|1.1–6 7.3–8|9.1–7 585.9

Diag PPA 500|50 15 (26|8.9) 7.20405153-2|5.8–7 3.0–8|5.3–7 9.1

1,000|100 13 (24|10.3) 4.85094484-2|5.1–7 3.1–7|1.3–7 49.1

ADMM 500|50 2,000 7.20772064-2|3.0–4 3.0–5|3.6–4 94.2

1,000|100 396 4.85093725-2|2.7–7 4.6–7|8.7–7 108.3

Bidiag PPA 500|50 11 (41|20.8) 1.90877129-1|2.5–7 2.5–7|2.1–7 30.1

1,000|100 17 (79|36.9) 1.38036272-1|1.3–6 4.5–7|7.6–7 386.1

ADMM 500|50 1,482 1.90877146-1|2.2–7 2.0–7|8.8–7 162.8

1,000|100 2,000 1.38036596-1|5.4–7 1.0–6|9.1–7 1,231.5

Ellipse PPA 500|50 9 (14|4.1) 5.51257423-2|5.1-10 1.5–7|1.9–9 6.2

1,000|100 13 (21|4.8) 3.90141290-2|4.2–9 3.7–7|1.2–7 53.8

ADMM 500|50 269 5.51257424-2|4.4–7 4.7–7|8.7–7 28.3

1,000|100 370 3.90141292-2|3.6–7 4.8–7|5.5–7 219.4

Grcar PPA 500|50 17 (42|10.1) 7.19041068-2|2.8–7 3.8–7|2.0–7 24.5

1,000|100 11 (25|9.6) 5.07326772-2|2.0–7 4.0–7|4.0–7 94.8

ADMM 500|50 2,000 7.19051700-2|2.2–6 2.4–6|7.3–7 276.5

1,000|100 865 5.07326793-2|9.0–7 2.6–7|9.1–7 656.5

Lemniscate2 PPA 500|50 17 (65|8.7) 8.09230480-2|1.7–6 2.0–7|7.3–7 37.8

1,000|100 20 (78|19.9) 3.33334342-2|3.3–6 3.5–7|2.5–7 357.9

ADMM 500|50 1,104 8.09229960-2|3.1–8 2.1–7|8.7–7 145.7

1,000|100 1,154 3.33337454-2|1.8–6 4.9–7|8.6–7 818.9

Wilkinson PPA 500|50 14 (25|5.2) 2.02888114-1|4.4–6 1.0–7|6.8–7 12.0

1,000|100 13 (30|6.9) 1.92544544-1|7.5–7 1.6–7|2.3–7 63.8

ADMM 500|50 859 2.02888114-1|1.2–6 5.0–7|8.5–7 85.9

1,000|100 1,723 1.92544547-1|9.2–8 5.8–8|9.1–7 986.5

Chebyshev PPA 500|50 9 (14|5.1) 2.24960561-1|3.5–7 2.0–7|8.1–8 8.4

1,000|100 12 (22|6.4) 2.06618495-1|5.6–9 2.1–7|2.9–8 92.8

ADMM 500|50 788 2.24960549-1|1.3–6 3.4–7|8.7–7 84.6

1,000|100 2,000 2.06629894-1|2.7–4 4.8–6|2.4–5 1,142.7

Table 4 shows that our SNDPPA is able to achieve the required accuracy of less than
10−6 for all the test examples. However, by comparing the results for FMMC/FDLA
with those for the randommatrix approximation andChebyshev polynomial problems,
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Table 4 Performance of the SNDPPA and the ADMM for FMMC/FDLA problems on connected graphs

Problem p | n Algo. it (itersub |pcg) pobj |gap Rp | Rd Time

FDLA-Cage 2562|366 PPA 9 (11|2.0) 4.58547216-1|2.8–6 5.5–7|1.0–9 3.5

ADMM 2,000 4.75216058-1|3.4-1 1.1–3|1.3–3 92.2

FMMC-Cage 2562|366 PPA 5 (6|2.6) 4.58545022-1|5.7–7 4.1–8|7.6-10 2.1

ADMM 2,000 5.87384195-1|4.1-1 7.0–5|1.5–3 95.8

FDLA-Erdos981 1381|485 PPA 6 (6|3.2) 1.00000000 0|2.9-14 0.0–8|0.0-16 2.9

ADMM 20 1.00000000 0|3.7–5 7.1–7|3.0–8 2.2

FMMC-Erdos981 1381|485 PPA 7 (10|6.0) 1.00000000 0|4.1-14 0.0–9|1.5–7 4.6

ADMM 23 1.00000000 0|7.5–6 7.4–7|1.5–7 2.5

FDLA-G3 19176|800 PPA 11 (17|31.7) 2.40597954-1|1.6–4 6.3–7|4.3–7 48.0

ADMM 2,000 2.41026286-1|3.9–4 1.1–4|5.3–6 756.8

FMMC-G3 19176|800 PPA 17 (27|37.8) 2.40914549-1|4.9–8 3.6–7|1.7–9 85.7

ADMM 2,000 2.41009134-1|8.7–4 5.4–6|3.0–5 769.5

FDLA-
NotreDame_yeast

2203|2114 PPA 12 (17|4.6) 1.00000000 0|6.1-12 0.0–9|0.0-16 408.4

ADMM 97 1.00000000 0|1.9-11 5.8–7|1.3–8 653.7

FMMC-
NotreDame_yeast

2203|2114 PPA 8 (8|3.4) 1.00000000 0|3.1-13 0.0–8|0.0-16 209.1

ADMM 26 1.00000000 0|3.7–6 8.1–7|2.0–8 147.1

FDLA-G46 9990|1,000 PPA 11 (32|33.4) 4.17339208-1|7.8–6 1.9–7|1.8–7 111.6

ADMM 2,000 4.17421122-1|3.4–4 4.5–6|1.8–5 1,307.0

FMMC-G46 9990|1,000 PPA 11 (24|26.8) 4.19936658-1|3.0–7 8.6–7|4.2–8 78.3

ADMM 2,000 4.21142429-1|9.8–4 1.2–4|6.2–5 1,310.2

FDLA-G15 4661|800 PPA 13 (57|50.5) 7.31899971-1|7.9–6 4.5–7|1.9–7 138.9

ADMM 1,122 7.31899758-1|4.1–4 3.7–7|9.9–7 426.4

FMMC-G15 4661|800 PPA 12 (57|72.7) 7.85243183-1|6.5–5 3.0–7|3.4–7 159.7

ADMM 2,000 7.85529701-1|2.9–3 1.3–6|5.7–6 749.8

FDLA-G54 5916|1,000 PPA 15 (49|50.6) 7.32247725-1|2.7–4 6.2–7|5.3–7 191.8

ADMM 2,000 7.33611791-1|2.0–4 7.8–5|2.9–5 1,424.3

FMMC-G54 5916|1,000 PPA 14 (73|91.4) 7.86519818-1|4.5–6 8.9–7|1.2–7 404.3

ADMM 2,000 7.88923019-1|1.7–3 4.2–6|3.5–5 1,413.3

FDLA-G43 9990|1,000 PPA 12 (41|29.6) 4.21305462-1|7.9–6 5.3–7|8.8–8 133.5

ADMM 2,000 4.21415022-1|5.7–4 2.3–6|2.3–5 1,333.3

FMMC-G43 9990|1,000 PPA 18 (48|48.7) 4.25983862-1|1.3–5 7.3–7|3.2–8 198.6

ADMM 2,000 4.26209610-1|8.5–4 6.3–6|3.3–5 1,325.2

we see that the SNDPPA is slower for the former cases. This behavior is understandable
because for FMMC/FDLA problems, the average PCG steps taken to compute the
Newton directions and the total number of semismooth Newton-CG iterations are
significantly larger. It is also not surprising that the ADMM fails to obtain solutions
with the desired accuracy after 2,000 iterations for most of the instances. In fact, the
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ADMM can only obtain an approximate solution with the primal-dual accuracy in the
order 10−4–10−5 for about 50% of the instances and the objective gapmore than 10−4
for about 80% of the instances. The performance of the ADMM is especially poor for
the problems FDLA-Cage and FMMC-Cage.

6 Conclusion

In this paper, we proposed a semismooth Newton-CG based dual proximal point algo-
rithm (SNDPPA) to solve large scale matrix spectral norm approximation problems.
In each iteration, the dual PPA solves the subproblems by a semismooth Newton-CG
method and the Newton direction is computed inexactly by a PCG solver. Theoretical
results to guarantee the global convergence and local superlinear convergence of the
dual PPA are established based on the classical analysis of proximal point algorithms.
Capitalizing on the recent advances on nonseparable spectral operators [8] and related
perturbation analysis, we also characterize the nonsingularity of the semismooth New-
ton systems. The latter property is an important condition for the fast convergence of
the semismooth Newton-CG method. Extensive numerical experiments on problems
arising from different areas are conducted to evaluate the performance of the SNDPPA
against the ADMM. The numerical results show that the SNDPPA, which is warm-
started with an initial point obtained from the ADMM, is very efficient and robust,
and it substantially outperforms the pure ADMM.

Appendix: Proof of Proposition 4.1

Let {Y i }i≥1 be a sequence converging to Y such that every element Y i ∈ D
B . This,
by Proposition 2.3(i), implies that ‖Y i‖∗ 
= 1 for each i ≥ 1. Let the SVD of Y i be
Y i = Ui [Diag(σ i ) 0](V i )T . We consider the following three cases.

(i) ‖Y‖∗ < 1. In this case, 
B(·) is continuously differentiable at Y and its gener-
alized Jacobian is a singleton consisting of the identity operator from �m×n to
itself.

(ii) ‖Y‖∗ = 1. Since Y can be approximated by a sequence in the interior of B,
it follows that the identity operator I is always an element of ∂B
B(Y ). To
obtain the remaining elements, we consider the case in which {Y i } has an infinite
subsequence outside B. Without loss of generality, we assume that ‖Y i‖∗ > 1
for all i . By passing to a subsequence if necessary, we know that there exists a
positive integer N ∈ [r, m] such that N = k1(σ i ) for each i . Therefore, one has

gi
k := (
B(σ i ))k =

{
σ i

k − 1
N

(∑N
j=1 σ i

j − 1
)
, 1 ≤ k ≤ N ,

0, otherwise

and


′
B
(σ i ) =

[
IN 0
0 0

]
− 1

N

[
1N×N 0
0 0

]
.
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For each i , it holds that

(
�(σ i )

)
k j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if k, j ∈ α1 ∪ α2,
gi

k

σ i
k−σ i

j
, if k ∈ α1 ∪ α2, j ∈ α3,

gi
j

σ i
j−σ i

k
, if k ∈ α3, j ∈ α1 ∪ α2,

0, if k, j ∈ α3,

(

(σ i )

)
k j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

gi
k+g j

k

σ i
k+σ i

j
, if k, j ∈ α1 ∪ α2,

gi
k

σ i
k+σ i

j
, if k ∈ α1 ∪ α2, j ∈ α3,

gi
j

σ i
k+σ i

j
, if k ∈ α3, j ∈ α1 ∪ α2,

0, if k, j ∈ α3

and

(
F(σ i )

)
k j =

{− 1
N , if k, j ∈ α1 ∪ α2,

0, otherwise,

(
ϒ(σ i )

)
k =

{
gi

k

σ i
k
, if k ∈ α1 ∪ α2,

0, if k ∈ α3.

Now from Proposition 2.3(i), we know that for any given H ∈ �m×n ,


′B(Y i )H = Ui

[
W i − Tr(H̃ i

11)

N

[
IN 0
0 0

]
, Diag

(
ϒ(σ i )

)
H̃ i
2

]
(V i )T , (69)

where the matrix W i ∈ �m×m is defined by

W i = �(σ i ) ◦ S(H̃ i
1)+ 
(σ i ) ◦ T (H̃ i

1)

with H̃ i
1 ∈ �m×m, H̃ i

2 ∈ �m×(n−m), [H̃ i
1 H̃ i

2] = (Ui )T H V i and H̃ i
11 being the

matrix extracted from the first N columns and rows of H̃ i
1. By simple algebraic

computations, we have

lim
i→∞

(
�(σ i )

)
α1α3
= lim

i→∞
(
�(σ i )

)T
α3α1
= 1r×(m−N ),

lim
i→∞

(

(σ i )

)
α1(α1∪α2∪α3) =

(

(σ i )

)T
(α1∪α2∪α3)α1 = 1r×m,

lim
i→∞

(
ϒ(σ i )

)
α1
= 1r .

Note that
{((

�(σ i )
)
α2α3

,
(

(σ i )

)
α2α2

,
(

(σ i )

)
α2α3

,
(
ϒ(σ i )

)
α2

)}

i≥1 is

bounded and SN is the set of cluster points associated with the sequence.
By taking limits on both sides of (69), we are able to establish the conclu-
sion that for any V( 
= I) ∈ ∂B
B(Y ), there exist an integer N ∈ [r, m],
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(�∞α2α3 , 

∞
α2α2

, 
∞α2α3 , ϒ
∞
α2

) ∈ SN and singular vector matrices U∞, V∞ of Y
such that for any H ∈ �m×n , (33) is valid.

(iii) ‖Y‖∗ > 1. Taking a subsequence if necessary,we know that there exists a positive
integer N ∈ [k1(σ ), k2(σ )] such that N = k1(σ i ) for each i . Therefore,

gi
k := (
B(σ i )k =

{
σ i

k − 1
N

(∑N
j=1 σ i

j − 1
)
, 1 ≤ k ≤ N ,

0, otherwise

and


′
B
(σ i ) =

[
IN 0
0 0

]
− 1

N

[
1N×N 0
0 0

]
.

For each i , it holds that

(
�(σ i )

)
k j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if k, j ∈ γ1,
gi

k

σ i
k−σ i

j
, if k ∈ γ1, j ∈ γ2,

gi
j

σ i
j−σ i

k
, if k ∈ γ2, j ∈ γ1,

0 if k, j ∈ γ2,

(

(σ i )

)
k j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

gi
k+gi

j

σ i
k+σ i

j
, if k, j ∈ γ1,

gi
k

σ i
k+σ i

j
, if k ∈ γ1, j ∈ γ2,

gi
j

σ i
k+σ i

j
, if k ∈ γ2, j ∈ γ1,

0, if k, j ∈ γ2

and

(
F(σ i )

)
k j =

{− 1
N , if k, j ∈ γ1,

0, otherwise,

(
ϒ(σ i )

)
k =

{
gi

k

σ i
k
, if k ∈ γ1,

0, otherwise.

Then the equality (69) is also valid. Simple calculations show that

lim
i→∞

(
�(σ i )

)
β1γ2
= lim

i→∞
(
�(σ i )

)T
γ2β1
= �β1γ2 ,

lim
i→∞

(
�(σ i )

)
β2β4
= lim

i→∞
(
�(σ i )

)T
β4β2
= �β2β4 ,

lim
i→∞

(

(σ i )

)
γ1(γ1∪γ2) = lim

i→∞
(

(σ i )

)T
(γ1∪γ2)γ1 = 
γ1(γ1∪γ2),

lim
i→∞

(
ϒ(σ i )

)
γ1
= ϒγ1 .

Note that
{(

�(σ i )
)
β2β3

}
is bounded andSN is the set of cluster points associated

with the sequence. By taking limits on both sides of (69), we have the conclusion
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that for any V ∈ ∂B
B(Y ), there exist an integer N ∈ [k1(σ ), k2(σ )], �∞β2β3 ∈
SN and singular vector matrices U∞, V∞ of Y such that for any H ∈ �m×n ,
(34) holds. This completes the proof.
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