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1 Introduction

Let Mp,q be the linear space of p × q real matrices. We denote the ijth entry of A ∈ Mp,q by Aij .

For any two matrices A and B in Mp,q, we write

A • B : =
p

∑

i=1

q
∑

j=1

AijBij = tr(ABT )

for the Frobenius inner product between A and B, where “tr” denotes the trace of a matrix. The

Frobenius norm induced by the above inner product on Mp,q is defined as ‖A ‖F : =
√

A • A. The

identity matrix in Mp,p is denoted by I.

Let Sp be the linear space of p×p real symmetric matrices; let Sp
+ denote the cone of p×p symmetric

positive semidefinite matrices. For any vector y ∈ <p, let diag(y1, . . . , yp) denote the p× p diagonal

matrix with its ith diagonal entry being yi. We write X � 0 to mean that X is a symmetric positive

semidefinite matrix. Throughout this paper, we let X+ denote the (Frobenius) projection of X ∈ Sp

onto Sp
+. The projection X+ has an explicit representation; namely, if

X = PΛ(X)P T , (1)

where Λ(X) := diag (λ1, ..., λp) is the diagonal matrix of eigenvalues of X and P is the correspond-

ing orthogonal matrix of orthonormal eigenvectors, then X+ = PΛ(X)+P T , where Λ(X)+ :=

diag (max(λ1, 0), ...,max(λp, 0)) . If X ∈ Sp
+, then we use

√
X : = P

√

Λ(X) P T to denote the

square root of X, where X has the spectral decomposition (1) and
√

Λ(X) := diag (
√

λ1, ...,
√

λp).

For X ∈ Sp, we let |X| : =
√

X2 .

A function Φsdc : Sp × Sp → Sp is called a semidefinite cone (SDC) complementarity function if

Φsdc(X,Y ) = 0 ⇐⇒ Sp
+ 3 X ⊥ Y ∈ Sp

+ , (2)

where the symbol ⊥ means “perpendicular under the Frobenius matrix inner product”; i.e., X ⊥
Y ⇔ X • Y = 0 for any two matrices X and Y in Sp. Of particular interest are two SDC

complementarity functions

Φsdc
min(X,Y ) := X − (X − Y )+ (3)

and

Φsdc
FB(X,Y ) := X + Y −

√

X2 + Y 2 . (4)

The function Φsdc
min is called the matrix-valued min-function. It is known that Φsdc

min is globally

Lipschitz continuous, directionally differentiable [1], and strongly semismooth [15] (see [14] for the

definition of strong semismoothness). Strong semismoothness plays a fundamental role in the analy-

sis of the quadratic convergence of Newton’s method for solving systems of nonsmooth equations

[13, 14]. Newton-type methods for solving the semidefinite programming and the semidefinite com-

plementarity problem based on a smoothed form of Φsdc
min are discussed in [4, 5, 12, 17].
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The function Φsdc
FB is called the matrix-valued Fischer-Burmeister function. When p = 1, Φsdc

FB

reduces to the scalar-valued Fischer-Burmeister function φFB(a, b) := a + b −
√

a2 + b2 , a, b ∈ < ,

which is introduced by Fischer [8]. In [18], Tseng proves that Φsdc
FB satisfies (2). Borwein and

Lewis also suggest a proof in their recent book [2, Exercise 5.2.11]. A desirable property of Φsdc
FB

is its continuous differentiability [18]. For other properties of SDC complementarity functions, see

[18, 19].

The primary motivation of this paper is to prove that Φsdc
FB is globally Lipschitz continuous, di-

rectionally differentiable, and strongly semismooth. This goal is achieved in Section 2 by using a

relationship between the singular value decomposition of a nonsymmetric matrix and the spectral

decomposition of a symmetric matrix in higher dimension and by using the same properties of

the function |Y |, Y ∈ Sp, obtained in [15]. We then proceed to study similar properties of the

vector-valued complementarity functions associated with the second order cone (SOC) in Section 3.

2 Strong Semismoothness of Φ
sdc
FB

Let A ∈ Mn,m and assume n ≤ m. Then there exist orthogonal matrices U ∈ Mn,n and V ∈ Mm,m

such that A has the following singular value decomposition (SVD)

UT AV = [Σ(A) 0], (5)

where Σ(A) = diag(σ1(A), . . . , σn(A)) and σ1(A) ≥ σ2(A) ≥ . . . ≥ σn(A) ≥ 0 are singular values of

A [11, Chapter 2]. Write V ∈ Mm,m in the form V = [V1 V2] , where V1 ∈ Mm,n and V2 ∈ Mm,m−n.

We define the orthogonal matrix Q ∈ Mn+m,n+m by

Q : =
1√
2

[

U U 0

V1 −V1

√
2V2

]

. (6)

Define the following matrix valued function Gmat : Mn,m → Sn by

Gmat(A) :=
√

AAT = Udiag(σ1(A), . . . , σn(A))UT , (7)

where A ∈ Mn,m has the SVD as in (5). Define two linear operators Ξ : Mn,m → Sn+m and

π : Sn+m → Sn by

Ξ(B) :=

[

0 B

BT 0

]

, B ∈ Mn,m (8)

and

(π(W ))ij : = Wij , i , j = 1, . . . , n , W ∈ Sn+m, (9)

respectively. Then, by [11, Section 8.6], when A ∈ Mn,m has an SVD as in (5) and Q is defined in

(6), the matrix Ξ(A) has the following spectral decomposition:

Ξ(A) = Q









Σ(A) 0 0

0 −Σ(A) 0

0 0 0









QT , (10)
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i.e., the eigenvalues of Ξ(A) are ±σi(A), i = 1, . . . , n, and 0 of multiplicity m − n. Thus, σi(A) =

λi(Ξ(A)), i = 1 , . . . , n, where λi(Ξ(A)) is the ith largest eigenvalue of Ξ(A). This, together with

the linearity of Ξ(·) and Theorem 4.7 in [16] on the strong semismoothness of eigenvalue functions

of symmetric matrices, shows that σ1(·), . . . , σn(·) are strongly semismooth everywhere in Mn,m.

In a similar way to [16], the strong semismoothness of the singular value functions can be used to

study the quadratic convergence of generalized Newton methods for solving inverse singular value

problems. For a survey on inverse eigenvalue and singular value problems, see [7].

Proposition 2.1 Suppose that A ∈ Mn,m has an SVD as in (5). Then it holds that

Gmat(A) = π(|Ξ(A)|) . (11)

Proof. By (6) and (10), we have

|Ξ(A)| =
1

2

[

U U 0

V1 −V1

√
2V2

]









|Σ(A)| 0 0

0 | − Σ(A)| 0

0 0 |0|

















UT V T
1

UT −V T
1

0
√

2V T
2









=





UΣ(A)UT 0

0 V1Σ(A)V T
1



 .

Thus, π(|Ξ(A)|) = UΣ(A)UT = Gmat(A). 2

The next theorem is our main result of this section.

Theorem 2.2 The function Gmat : Mn,m → Sn defined by (7) is globally Lipschitz continuous, con-

tinuously differentiable around any A ∈ Mn,m of full row rank, and strongly semismooth everywhere

in Mn,m.

Proof. First, by Proposition 2.1, for any A,B ∈ Mn,m, we have

∥

∥ Gmat(A) − Gmat(B)
∥

∥

F
= ‖π (|Ξ(A)| − |Ξ(B)|) ‖

F
≤

√

2‖A − B ‖2
F

,

which proves that Gmat is globally Lipschitz continuous.

Second, the continuous differentiability of Gmat around any A ∈ Mn,m of full row rank can be

obtained easily by using [5, Lemma 4], the definition of Gmat, and the fact that AAT is positive

definite when A is of full row rank. The details are omitted here.

Finally, it is known that |Y |, Y ∈ Sn+m is strongly semismooth everywhere [15, Theorem 4.12].

Then Proposition 2.1 and the linearity of Ξ(·) imply that Gmat is strongly semismooth at any

A ∈ Mn,m. 2

Let the matrix valued Fischer-Burmeister function Φsdc
FB : Sp × Sp → Sp be defined as in (4). By

noting the fact that for any (X,Y ) ∈ Sp × Sp, Φsdc
FB(X,Y ) = X + Y − Gmat([X Y ]), we obtain

from Theorem 2.2 the following corollary.
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Corollary 2.3 The matrix valued Fischer-Burmeister function Φsdc
FB : Sp × Sp → Sp is globally

Lipschitz continuous, continuously differentiable around any (X,Y ) ∈ Sp × Sp if [X Y ] is of full

row rank, and strongly semismooth everywhere in Sp × Sp.

3 The FB Function Associated with the SOC

The second order cone (SOC) in <n (n ≥ 2), also called the Lorentz cone or the ice-cream cone, is

defined as Kn := {(x1, x
T
2 )T | x1 ∈ <, x2 ∈ <n−1 and x1 ≥ ‖x2‖} . Here and below, ‖ · ‖ denotes

the l2-norm in <n and, for convenience, we write x = (x1, x2) instead of x = (x1, x
T
2 )T . For any

x = (x1, x2), y = (y1, y2) ∈ < × <n−1, we define their Jordan product as

x · y : =

[

xT y

y1x2 + x1y2

]

. (12)

Denote e = (1, 0, . . . , 0)T ∈ <n . Let x+ be the orthogonal projection of x ∈ <n onto Kn. Denote

x2 := x · x and |x| :=
√

x2, where for any y ∈ Kn,
√

y is the unique vector in Kn such that

y =
√

y · √y. Then, by [10], we know that x+ = (x + |x|)/2.

A function φsoc : <n ×<n → <n is called an SOC complementarity function if

φsoc(x, y) = 0 ⇐⇒ Kn 3 x ⊥ y ∈ Kn , (13)

where x ⊥ y ⇔ x · y = 0. By [10], both the vector-valued min-function

φsoc
min(x, y) := x − (x − y)+ (14)

and the vector valued Fischer-Burmeister function

φsoc
FB(x, y) := x + y −

√

x2 + y2 (15)

are SOC complementarity functions. The strong semismoothness of φsoc
min can be checked directly

and has been done in [3, 6]. In this section, we shall prove that φsoc
FB is strongly semismooth.

For any x = (x1, x2) ∈ < × <n−1, let L(x),M(x) ∈ Sn be defined by

L(x) :=

[

x1 xT
2

x2 x1I

]

and M(x) :=

[

0 0T

0 N(x2)

]

, (16)

respectively, where for any z ∈ <n−1, N(z) ∈ Sn−1 denotes

N(z) := ‖ z ‖ (I − zzT /‖ z ‖2) = ‖ z ‖ I − zzT /‖ z ‖ (17)

and the convention “0
0 = 0” is adopted. A direct calculation shows that

L(x2) = (L(x))2 + (M(x))2 , ∀x = (x1, x2) ∈ < × <n−1. (18)
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Lemma 3.1 The operator N(·) is globally Lipschitz continuous, twice continuously differentiable

around any 0 6= z ∈ <n−1, and strongly semismooth everywhere in <n−1.

Proof. Suppose that z(1), z(2) are two arbitrary points in <n−1. If the line segment [z(1), z(2)]

connecting z(1) and z(2) contains the origin 0, then

‖N(z(1)) − N(z(2)) ‖F ≤
√

n − 2‖ z(1) ‖ +
√

n − 2‖ z(2) ‖ =
√

n − 2‖ z(1) − z(2) ‖ .

If the line segment [z(1), z(2)] does not contain the origin 0, then by the mean value theorem we have

‖N(z(1)) − N(z(2)) ‖F ≤
∫ 1

0
‖N ′(z(1) + t[z(2) − z(1)])(z(2) − z(1)) ‖Fdt ,

which, together with the fact that for any z 6= 0, N is differentiable at z with

N ′(z)(∆z) =
(∆z)T z

‖ z ‖ [I + zzT /‖ z ‖2] − 1

‖ z ‖ [z(∆z)T + (∆z)zT ] (19)

and

‖N ′(z)(∆z) ‖F ≤
√

n − 2‖∆z ‖ ∀ ∆z ∈ <n−1 ,

implies that

‖N(z(1)) − N(z(2)) ‖F ≤
√

n − 2‖ z(1) − z(2) ‖ .

Therefore, N is globally Lipschitz continuous.

By equation (19), we know that N is at least twice continuously differentiable around any z 6= 0,

and so strongly semismooth at any 0 6= z ∈ <n−1. Now it suffices to show that N is strongly

semismooth at z∗ := 0.

Note that N is a positive homogeneous mapping, i.e., for any t ≥ 0 and z ∈ <n−1, N(tz) = tN(z) .

Hence, N is directionally differentiable at 0 and for any 0 6= z ∈ <n−1, N ′(0; z) = N(z). By (19),

for any 0 6= z ∈ <n−1,

N(z∗ + z) − N(z∗) − N ′(z∗ + z)(z) = N(z) − N(0) − N ′(z)(z) = 0 ,

which, together with [15, Theorem 3.7], the Lipschitz continuity, and the directional differentiability

of N , shows that N is strongly semismooth at z∗ = 0. 2

Suppose that the operators L and M are defined by (16). For any a1, . . . , ap ∈ <n, let

χ(a1, . . . , ap) :=

√

√

√

√

p
∑

i=1

(ai)2 (20)

and

Γ(a1, . . . , ap) := [L(a1) . . . L(ap) M(a1) . . . M(ap)] . (21)
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By [3, Lemma 4.1]1, for any x ∈ <n we have
√

|x| =
(

√

L(|x|)
)

e. This, together with the fact that

v :=
∑p

i=1(a
i)2 ∈ Kn and (18), implies

χ(a1, . . . , ap) =
√

v =

(

√

L(v)

)

e =

(
√

Γ(a1, . . . , ap) (Γ(a1, . . . , ap))T

)

e . (22)

Therefore, by (22), for any a1, . . . , ap ∈ <n, we have

χ(a1, . . . , ap) = Gmat(Γ(a1, . . . , ap)) e , (23)

where Gmat is defined by (7)

Theorem 3.2 For any a1, . . . , ap ∈ <n, let χ(a1, . . . , ap) be defined by (20). Then χ is globally

Lipschitz continuous, continuously differentiable around any (a1, . . . , ap) if v1 6= ‖ v2‖, where v =

(v1, v2) ∈ < × <n−1 and v :=
p

∑

i=1

(ai)2 , and strongly semismooth everywhere.

Proof. First, the global Lipschitz continuity of χ can be obtained directly by Theorem 2.2, Lemma

3.1, and equation (23).

Second, let ai ∈ <n , i = 1, . . . , p be such that v1 6= ‖ v2‖, where v = (v1, v2) ∈ < × <n−1 and v =
p

∑

i=1

(a(i))2 . Then, from (23), Theorem 2.2, and the fact that Γ(a(1), . . . , a(m))
(

Γ(a(1), . . . , a(m))
)T

=

L(v) (cf. (18)) is positive definite when v1 6= ‖ v2‖, we know that χ is continuously differentiable

around (a1, . . . , ap).

Finally, we know from [9] that the composite of two strongly semismooth functions is strongly

semismooth. Hence, by (23), Theorem 2.2, and the fact that the mapping Γ is strongly semismooth

(cf. Lemma 3.1), we can draw the conclusion that χ is strongly semismooth everywhere. 2

Theorem 3.2 generalizes the results discussed in [6] from the absolute value function |x| to the

function χ. By Theorems 2.2 and 3.2, we have the following results, which do not require a proof.

Corollary 3.3 The vector-valued Fischer-Burmeister function φsoc
FB : <n × <n → <n is globally

Lipschitz continuous, continuously differentiable around any (x, y) ∈ <n × <n if v1 6= ‖ v2 ‖, where

v := x2 + y2, and strongly semismooth.

Corollary 3.4 The smoothed version of Φsdc
FB,

Φ̄sdc
FB : Sp × Sp ×< → Sp, Φ̄sdc

FB(X,Y, ε) := X + Y −
√

X2 + Y 2 + ε2I

and the smoothed version of φsoc
FB,

φ̄soc
FB : <n ×<n ×< → IRn, φ̄soc

FB(x, y, ε) := x + y −
√

x2 + y2 + ε2e

are strongly semismooth.

1P. Tseng presented this result in “The Third International Conference on Complementarity Problems”, held in

Cambridge University, United Kingdom, July 29 -August 1, 2002.
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