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Abstract. We show that the Fischer-Burmeister complementarity functions, associated to the semidefinite
cone (SDC) and the second order cone (SOC), respectively, are strongly semismooth everywhere. Interestingly
enough, the proof stems in a relationship between the singular value decomposition of a nonsymmetric matrix
and the spectral decomposition of a symmetric matrix.
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1 Introduction

Let M,, , be the linear space of p x ¢ real matrices. We denote the ijth entry of A € M, , by 4;;.

For any two matrices A and B in M,, ,, we write

P q
- ZZ Az’jBij = tI‘(ABT)
i=17=1

for the Frobenius inner product between A and B, where “tr” denotes the trace of a matrix. The
Frobenius norm induced by the above inner product on M, , is defined as || A||r := VA e A. The
identity matrix in M, is denoted by I.

Let SP be the linear space of p X p real symmetric matrices; let S§ denote the cone of p x p symmetric
positive semidefinite matrices. For any vector y € P, let diag(yi, ..., yp) denote the p x p diagonal
matrix with its ¢th diagonal entry being y;. We write X > 0 to mean that X is a symmetric positive
semidefinite matrix. Throughout this paper, we let X denote the (Frobenius) projection of X € SP

onto 8. The projection X has an explicit representation; namely, if
X = PA(X)PT, (1)

where A(X) := diag (A1,..., Ap) is the diagonal matrix of eigenvalues of X and P is the correspond-
ing orthogonal matrix of orthonormal eigenvectors, then X, = PA(X);PT, where A(X), :=
diag (max(\1,0),...,max(\y,0)). If X € S? then we use VX := P/A(X)P? to denote the
square root of X, where X has the spectral decomposition (1) and /A(X) := diag (VA1 ..., v/ Ap)-
For X € SP, we let |X|:= VX2,

A function ®%¢: SP x SP — SP is called a semidefinite cone (SDC) complementarity function if
PUXY)=0+= S, 23X LY €8, (2)

where the symbol | means “perpendicular under the Frobenius matrix inner product”; i.e., X L
Y & X eY = 0 for any two matrices X and Y in SP. Of particular interest are two SDC
complementarity functions

B (X,Y) 1= X — (X~ V), (3)

min

and

PBE(XY):i= X +Y —VX24+Y2, (4)

The function ®$I¢ is called the matrix-valued min-function. It is known that ®% is globally
Lipschitz continuous, directionally differentiable [1], and strongly semismooth [15] (see [14] for the
definition of strong semismoothness). Strong semismoothness plays a fundamental role in the analy-
sis of the quadratic convergence of Newton’s method for solving systems of nonsmooth equations
[13, 14]. Newton-type methods for solving the semidefinite programming and the semidefinite com-

plementarity problem based on a smoothed form of ®4¢ are discussed in [4, 5, 12, 17].



The function @%dg is called the matrix-valued Fischer-Burmeister function. When p = 1, @%dg
reduces to the scalar-valued Fischer-Burmeister function ¢rp(a,b) :== a +b — Va2 +b2, a,be R,
which is introduced by Fischer [8]. In [18], Tseng proves that ®{ satisfies (2). Borwein and
Lewis also suggest a proof in their recent book [2, Exercise 5.2.11]. A desirable property of @%d]g
is its continuous differentiability [18]. For other properties of SDC complementarity functions, see
18, 19].

The primary motivation of this paper is to prove that @Spd]§ is globally Lipschitz continuous, di-

rectionally differentiable, and strongly semismooth. This goal is achieved in Section 2 by using a
relationship between the singular value decomposition of a nonsymmetric matrix and the spectral
decomposition of a symmetric matrix in higher dimension and by using the same properties of
the function |Y|, Y € SP, obtained in [15]. We then proceed to study similar properties of the

vector-valued complementarity functions associated with the second order cone (SOC) in Section 3.

2 Strong Semismoothness of ®§¥

Let A € M, ,, and assume n < m. Then there exist orthogonal matrices U € M,, , and V' € M, ,
such that A has the following singular value decomposition (SVD)
UTAV = [3(4) 0], (5)

where 3 (A) = diag(o1(A),...,0n(A)) and 01(A) > 02(A) > ... > 0,(A) > 0 are singular values of
A [11, Chapter 2]. Write V € M, , inthe form V' = [V} V;], where Vi € M, ,, and Vo € Moy 1.
We define the orthogonal matrix @ € M 4m ntm by

1 U U 0 6
Q'_ﬁl% -V \/§V2]' (6)

Define the following matrix valued function G™?* : M,, ., — 8" by
G (A) : = VAAT = Udiag(o1(A),...,0,(A)UT, (7)

where A € M,,,, has the SVD as in (5). Define two linear operators E : M,,,, — 8"t and
T S S by

_ 0 B
Z(B):= [BT . ] , Be M, (8)
and
(T(W))ij:= Wij,i,j =1,...,n, W eS8, (9)

respectively. Then, by [11, Section 8.6], when A € M,, ,,, has an SVD as in (5) and @ is defined in
(6), the matrix Z(A) has the following spectral decomposition:
54 00
=4 =@| 0 -x(4) o|QT, (10)
0 0 0



i.e., the eigenvalues of Z(A) are +o;(A),i = 1,...,n, and 0 of multiplicity m — n. Thus, ¢;(A) =
Ai(E(A)), i = 1,..., n, where \;(E(A)) is the ith largest eigenvalue of Z(A). This, together with
the linearity of =(-) and Theorem 4.7 in [16] on the strong semismoothness of eigenvalue functions
of symmetric matrices, shows that o1(-),...,0,(-) are strongly semismooth everywhere in M,, ,.
In a similar way to [16], the strong semismoothness of the singular value functions can be used to
study the quadratic convergence of generalized Newton methods for solving inverse singular value

problems. For a survey on inverse eigenvalue and singular value problems, see [7].

Proposition 2.1 Suppose that A € My, y, has an SVD as in (5). Then it holds that

Gm(A) = w([E(A))). (11)
Proof. By (6) and (10), we have
|2(A)] 0 0 vt vt
1 U U 0
= = 5 0 [=X(A) 0 uto-v
2l v -1 V21,
0 0] 0 V2
us(AUT 0
- 0 Vis(A)VT
Thus, 7(|2(A)]) = US(A)UT = G™at(A). m

The next theorem is our main result of this section.

Theorem 2.2 The function G™ : M, ., — S™ defined by (7) is globally Lipschitz continuous, con-
tinuously differentiable around any A € My, p, of full row rank, and strongly semismooth everywhere

in My m.

Proof. First, by Proposition 2.1, for any A, B € M,, ,,, we have

|Gmat(A) — G (B) || = = (EA)]| - EB))IF < /21 A-Bl%,

which proves that G™a% is globally Lipschitz continuous.

Second, the continuous differentiability of G™*' around any A € M, ,,, of full row rank can be
obtained easily by using [5, Lemma 4], the definition of G™', and the fact that AA” is positive

definite when A is of full row rank. The details are omitted here.

Finally, it is known that |Y|, Y € 8"*™ is strongly semismooth everywhere [15, Theorem 4.12].
Then Proposition 2.1 and the linearity of Z(-) imply that G™?' is strongly semismooth at any
Aec My . 0

Let the matrix valued Fischer-Burmeister function ®§4$ : SP x SP — SP be defined as in (4). By
noting the fact that for any (X,Y) € S? x SP, B3E(X,Y) = X + Y — G™([X Y]), we obtain

from Theorem 2.2 the following corollary.



Corollary 2.3 The matriz valued Fischer-Burmeister function @%d]g : SP x 8P — SP s globally
Lipschitz continuous, continuously differentiable around any (X,Y) € SP x 8P if [X Y] is of full

row rank, and strongly semismooth everywhere in SP x SP.

3 The FB Function Associated with the SOC

The second order cone (SOC) in " (n > 2), also called the Lorentz cone or the ice-cream cone, is

defined as K" := {(z1,23)" | 21 € R, 22 € R" ! and x1 > ||x2||}. Here and below, || - || denotes

the lp-norm in R" and, for convenience, we write z = (1, 73) instead of x = (x1,z3)?. For any

= (21,72),y = (y1,92) € R x "1, we define their Jordan product as
T
ry
Ty = [ 1 . (12)
Y122 + £1Y2

Denote e = (1,0,...,0)7 € ®". Let 2, be the orthogonal projection of € R" onto K". Denote
2? := x -z and |z| := Va2, where for any y € K", V¥ is the unique vector in K™ such that
y = /Y- +/y. Then, by [10], we know that z; = (z + |z])/2.

A function ¢%°°¢: R" x R — R" is called an SOC complementarity function if
P*(z,y) =0 <= K">52z LyeKk", (13)

where x L y < x -y = 0. By [10], both the vector-valued min-function

SOC

min(T,Y) 1= 2 — (. —y)+ (14)

and the vector valued Fischer-Burmeister function

B(T,y) = oty — /22 + 532 (15)

are SOC complementarity functions. The strong semismoothness of ¢$°¢ can be checked directly

min

and has been done in [3, 6]. In this section, we shall prove that ¢% is strongly semismooth.

For any x = (71, 22) € R x R" L, let L(x), M(z) € S™ be defined by

r xl 0o of
L(x) := and M(x):= , (16)
To w11 0 N($2)
respectively, where for any z € 771 N(z) € S"~! denotes
N(z):= [zl = 2"/l 21%) = 21T = 22" /|| 2| (17)
and the convention “% = 07 is adopted. A direct calculation shows that
L(2?) = (L(x))* + (M(2))*, Va=(x1,72) € R x R"L. (18)



Lemma 3.1 The operator N(-) is globally Lipschitz continuous, twice continuously differentiable

around any 0 # z € R"~1, and strongly semismooth everywhere in R"~1.

Proof. Suppose that z(), 22 are two arbitrary points in ®*~'. If the line segment [z(1), 2(?)]

connecting z(") and 2 contains the origin 0, then
I NED) = NGO) lr < V=220 |+ Va2 2 | = Va2 20 2.
If the line segment [z(l), z(2)] does not contain the origin 0, then by the mean value theorem we have
I N(z(l)) _ N(z(z)) IF < /01 [ N’(z(l) + t[z(2) _ z(l)])(z(z) _ Z(l)) | Fdt

which, together with the fact that for any z # 0, IV is differentiable at z with

(Az)T2
12l

14 227l 27 = o [=(A2)T + (A2)27] (19)

Ni(2)(az) = H

and
| N (2)(A2) |5 < V=2 Az|| ¥ Az e R,

implies that
INED) = NED)|F < V=220 3.

Therefore, N is globally Lipschitz continuous.

By equation (19), we know that N is at least twice continuously differentiable around any z # 0,
and so strongly semismooth at any 0 # z € R"~!. Now it suffices to show that N is strongly

semismooth at z* := 0.

Note that N is a positive homogeneous mapping, i.e., for any ¢t > 0 and z € R*~ !, N(tz) = tN(z).
Hence, N is directionally differentiable at 0 and for any 0 # z € R*~1, N’(0;2) = N(z). By (19),
for any 0 # z € R 1,

N(z*42z) = N(z*) = N'(z*+ z)(2) = N(2) — N(0) = N'(2)(2) = 0,

which, together with [15, Theorem 3.7], the Lipschitz continuity, and the directional differentiability
of N, shows that IV is strongly semismooth at z* = 0. a

Suppose that the operators L and M are defined by (16). For any a',...,a? € R, let

and



By [3, Lemma 4.1]!, for any x € " we have /|z] = ( L(|x|)) e. This, together with the fact that
vi=>3"% (a)? € K" and (18), implies

@, aP) = o = (@) e — (\/F(al,...,ap) (F(al,...,ap))T) ‘. (22)

Therefore, by (22), for any a',..., a? € R, we have

x(al,...,aP) = G™*(T'(a,...,dP))e, (23)

where G™? is defined by (7)

Theorem 3.2 For any a',...,a? € R", let x(a',...,aP) be defined by (20). Then x is globally

Lipschitz continuous, continuously differentiable around any (a',...,aP) if vi # || va||, where v =
P

(v1,v2) € R x R and v == Z(az)z, and strongly semismooth everywhere.
i=1

Proof. First, the global Lipschitz continuity of x can be obtained directly by Theorem 2.2, Lemma
3.1, and equation (23).

Second, let a* € " ,i = 1,...,p be such that v; # || va||, where v = (v1,v2) € R x R ! and v =
P T
z:(a(z))2 . Then, from (23), Theorem 2.2, and the fact that T'(a(), ..., a(™) (F(a(l), . ,a(m))) =
i=1

L(v) (cf. (18)) is positive definite when vy # || v2||, we know that x is continuously differentiable

around (a', ..., aP).

Finally, we know from [9] that the composite of two strongly semismooth functions is strongly
semismooth. Hence, by (23), Theorem 2.2, and the fact that the mapping I is strongly semismooth

(cf. Lemma 3.1), we can draw the conclusion that x is strongly semismooth everywhere. a

Theorem 3.2 generalizes the results discussed in [6] from the absolute value function |z| to the

function x. By Theorems 2.2 and 3.2, we have the following results, which do not require a proof.

Corollary 3.3 The vector-valued Fischer-Burmeister function ¢ig @ R™ x R* — R™ is globally
Lipschitz continuous, continuously differentiable around any (z,y) € K" x R™ if vy # ||ve ||, where

v:= 2% + 9%, and strongly semismooth.

Corollary 3.4 The smoothed version of ®3%,

B S x SP xR — S, DX,V e) = X +Y — VX2 V21 2]

and the smoothed version of ¢35,

PSR X R xR — R, 5% (x,y,8) = +y— /o2 +y? +e2e

are strongly semismooth.

1P, Tseng presented this result in “The Third International Conference on Complementarity Problems”, held in
Cambridge University, United Kingdom, July 29 -August 1, 2002.
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