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1 Introduction

Let Mp,q be the linear space of p× q real matrices. We denote the ijth entry of A ∈Mp,q by

Aij . For any two matrices A and B in Mp,q, we write

A • B : =
p∑
i=1

q∑
j=1

AijBij = tr(ABT )

for the Frobenius inner product between A and B, where “tr” denotes the trace of a matrix.

The Frobenius norm on Mp,q is the norm induced by the above inner product:

‖A ‖F : =
√
A • A =

√√√√ p∑
i=1

q∑
j=1

A2
ij .

The identity matrix in Mp,p is denoted by I.

Let Sp be the linear space of p × p real symmetric matrices; let Sp+ denote the cone of p × p
symmetric positive semidefinite matrices. For any vector y ∈ <p, let diag(y1, . . . , yp) denote

the p× p diagonal matrix with its ith diagonal entry yi. We write X � 0 to mean that X is a

symmetric positive semidefinite matrix. Under the Frobenius norm, the projection ΠSp+(X) of

a matrix X ∈ Sp onto the cone Sp+ is the unique minimizer of the following convex program

in the matrix variable Y :
minimize ‖Y −X ‖F
subject to Y ∈ Sp+ .

Throughout this paper, we let X+ denote the (Frobenius) projection of X ∈ Sp onto Sp+. The

projection X+ has an explicit representation. Namely, if

X = PΛ(X)P T , (1)

where Λ(X) is the diagonal matrix of eigenvalues of X and P is a corresponding orthogonal

matrix of orthonormal eigenvectors, then

X+ = PΛ(X)+P
T ,

where Λ(X)+ is the diagonal matrix whose diagonal entries are the nonnegative parts of the

respective diagonal entries of Λ(X). If X ∈ Sp+, then we use

√
X : = P

√
Λ(X)P T

to denote the square root of X, where X has the spectral decomposition as in (1) and
√

Λ(X) is

the diagonal matrix whose diagonal entries are the square root of the (nonnegative) eigenvalues

of X.
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A function Φsdc : Sp × Sp → Sp is called a semidefinite cone complementarity function (SDC

C-function for short) if

Φsdc(X,Y ) = 0 ⇐⇒ Sp+ 3 X ⊥ Y ∈ Sp+ , (2)

where the ⊥ notation means “perpendicular under the above matrix inner product”; i.e.,

X ⊥ Y ⇔ X • Y = 0 for any two matrices X and Y in Sp. Of particular interest are two SDC

C-functions

Φsdc
min(X,Y ) : = X − (X − Y )+ (3)

and

Φsdc
FB(X,Y ) : = X + Y −

√
X2 + Y 2 . (4)

The SDC C-function Φsdc
min defined by (3) is called the matrix valued min function. It is well

known that Φsdc
min is globally Lipschitz continuous [42, 40]. However, Φsdc

min is in general not

continuously differentiable. A result of Bonnans, Cominetti, and Shapiro [2] on the direc-

tional differentiability of ΠSp+ implies that Φsdc
min is directionally differentiable. More recently,

it is proved in [36] that Φsdc
min is actually strongly semismooth (see [30] and Section 2 for

the definition of strong semismoothness.) This property plays a fundamental role in proving

the quadratic convergence of Newton’s method for solving systems of nonsmooth equations

[26, 28, 30]. Newton-type methods for solving the semidefinite programming and the semidef-

inite complementarity problem (SDCP) based on the smoothed form of Φsdc
min are discussed in

[5, 6, 21, 38]. Semismooth homeomorphisms for the SDCP are established in [27].

The SDC C-function (4) is called the matrix valued Fischer-Burmeister function due to the

fact that when p = 1, Φsdc
FB reduces to the scalar valued Fischer-Burmeister function

φFB(a, b) := a+ b−
√
a2 + b2 , a, b ∈ < ,

which is first introduced by Fischer [14]. In [40], Tseng proves that Φsdc
FB satisfies (2). In a

recent book [3], Borwein and Lewis also suggest a proof on this in Exercise 11 of Section 5.2.

A desirable property of Φsdc
FB is that ‖Φsdc

FB ‖2F is continuously differentiable [40]. While the

strong semismoothness of the scalar valued Fischer-Burmeister function φFB can be checked

easily by the definition [11, 12, 29], the strong semismoothness of its counter part Φsdc
FB in the

matrix form has not been proved yet. For other properties related to SDC C-functions, see

[40, 41, 18].

The primary motivation of this paper is to prove that Φsdc
FB is globally Lipschitz continuous, di-

rectionally differentiable and strongly semismooth. In order to achieve these, we first introduce

a matrix valued function defined by singular values of a real matrix, which is in general neither

symmetric nor square, and then relate its properties to those studied for the symmetric matrix

valued functions defined by eigenvalues of a symmetric matrix [5, 6, 36]. We then proceed to

study important properties of vector valued C-functions associated with the second order cone

(SOC). Finally, we discuss the inverse singular value problem.
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2 Basic Concepts and Properties

2.1 Semismoothness

Let θ : <s → <q [we regard the r × r (respectively, symmetric) matrix space as a special case

of <s with (respectively, s = r(r+ 1)/2) s = r2. Hence the discussions of this subsection apply

to matrix variable and/or matrix valued functions as well.] Let ‖ · ‖ denote the l2 norm in

finite dimensional Euclidean spaces. Recall that θ is said to be locally Lipschitz continuous

around x ∈ <s if there exist a constant κ and an open neighborhood N of x such that

‖ θ(y)− θ(z) ‖ ≤ κ‖ y − z ‖ ∀ y, z ∈ N .

We call θ a locally Lipschitz function if it is locally Lipschitz continuous around every point of

<s. Moreover, if the above inequality holds for N = <s, then θ is said to be globally Lipschitz

continuous with Lipschitz constant κ.

The function θ is said to be directionally differentiable at x if the directional derivative

θ′(x;h) : = lim
t↓0

θ(x+ th)− θ(x)
t

exists in every direction h ∈ <s. θ is said to be differentiable (in the sense of Fréchet) at x ∈ <s

with a (Fréchet) derivative θ′(x) ∈Mq,s if

θ(x+ h)− θ(x)− θ′(x)(h) = o(‖h ‖) .

Assume that θ : <s → <q is locally Lipschitz continuous around x ∈ <s. Then, according to

Rademacher’s Theorem, θ is differentiable almost everywhere in an open set N containing x.

Let Dθ be the set of differentiable points of θ on N . Denote

∂Bθ(x) : = {V ∈Mq,s |V = lim
xk→x

θ′(xk), xk ∈ Dθ} .

Then Clarke’s generalized Jacobian [10] of θ at x is

∂θ(x) = conv{∂Bθ(x)} , (5)

where “conv” stands for the convex hull in the usual sense of convex analysis [31].

Extending Mifflin’s definition for a scalar function [25], Qi and Sun [30] introduced the semis-

moothness property for a vector valued function.

Definition 2.1 Suppose that θ : <s → <q is locally Lipschitz continuous around x ∈ <s. θ is

said to be semismooth at x if θ is directionally differentiable at x and for any V ∈ ∂θ(x+ ∆x),

θ(x+ ∆x)− θ(x)− V (∆x) = o(‖∆x ‖) .
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θ is said to be γ−order (0 < γ <∞) semismooth at x if θ is semismooth at x and

θ(x+ ∆x)− θ(x)− V (∆x) = O(‖∆x ‖1+γ) .

In particular, θ is said to be strongly semismooth at x if θ is 1-order semismooth at x.

A function θ : <s → <q is said to be a semismooth (respectively, γ-order semismooth) function

if it is semismooth (respectively, γ-order semismooth) everywhere in <s. Semismooth functions

include smooth functions, piecewise smooth functions, and convex and concave functions.

It is also true that the composition of (strongly) semismooth functions is still a (strongly)

semismooth function (see [25, 15]). A similar result also holds for γ-order semismoothness.

These results are summarized in the next proposition.

Proposition 2.2 Let γ ∈ (0,∞). Suppose that ξ : <τ → <q is semismooth (respectively, γ-

order semismooth) at x ∈ <s and θ : <s → <τ is semismooth (respectively, γ-order semismooth)

at ξ(x). Then, the composite function θ ◦ ξ is semismooth (γ-order semismooth) at x.

The next result provides a convenient tool for proving the semismoothness and γ-order semis-

moothness of θ. Its proof follows virtually from [36, Thm. 3.7], where the γ-order semismooth-

ness is discussed under the assumption that θ is directionally differentiable in a neighborhood of

x ∈ <s. A closer look at the proof of [36, Thm. 3.7] reveals that the directional differentiability

of θ in a neighborhood of x ∈ <s is not needed.

Proposition 2.3 Suppose that θ : <s → <q is locally Lipschitz continuous around x ∈ <s.
Then for any γ ∈ (0,∞), the following two statements are equivalent:

(i) for any V ∈ ∂θ(x+ ∆x),

θ(x+ ∆x)− θ(x)− V (∆x) = o(‖∆x ‖) (respectively, O(‖∆x ‖1+γ)) ; (6)

(ii) for any x+ ∆x ∈ Dθ,

θ(x+ ∆x)− θ(x)− θ′(x+ ∆x)(∆x) = o(‖∆x ‖) (respectively, O(‖∆x ‖1+γ)) . (7)

2.2 Strong semismoothness of eigenvalues of a symmetric matrix

For a symmetric matrix X ∈ Sp, let λ1(X) ≥ . . . ≥ λp(X) be the p eigenvalues of X arranged

in the decreasing order. Let ωk(X) be the sum of the k largest eigenvalues of X ∈ Sp. Then,

Fan’s maximum principle [13] says that for each i = 1, · · · , p, ωi(·) is a convex function on Sp.
This result implies that
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• λ1(·) is a convex function and λp(·) is a concave function;

• For i = 2, · · · , p− 1, λi(·) is the difference of two convex functions.

Since convex and concave functions are semismooth and the difference of two semismooth

functions is still a semismooth function [25], Fan’s result shows that λ1(·), · · · , λp(·) are all

semismooth functions. Sun and Sun [37] further prove that all these functions are strongly

semismooth.

Proposition 2.4 The functions ω1(·), . . . , ωp(·) and λ1(·), . . . , λp(·) are strongly semismooth

functions on Sp.

The proof of the above proposition uses an upper Lipschitz continuous property of (normalized)

eigenvectors of symmetric matrices. This Lipschitz property is obtained by Chen and Tseng

[6, Lemma 3] based on a so called “sin(Θ)” theorem in [35, Thm. 3.4] and is also implied

in [36, Lemma 4.12] in the proof of strong semismoothness for the matrix valued function√
X2, X ∈ Sp. Very recently, based on an earlier result of Shapiro and Fan [34], Shapiro

[33], among others, provides a different proof to Proposition 2.4. Second order directional

derivatives of eigenvalue functions λ1(·), . . . , λp(·) are discussed in [24, 32, 39]. For a survey

on general nonsmooth analysis involving eigenvalues of symmetric matrices, see Lewis [22] and

Lewis and Overton [23].

2.3 Properties of matrix functions over symmetric matrices

In this subsection, we shall list several useful properties of matrix valued functions over symmet-

ric matrices. Let f : < → < be a scalar function. The matrix valued function Fmat : Sp → Sp

can be defined as

Fmat(X) : = Pdiag(f(λ1(X)), . . . , f(λp(X)))P T = P


f(λ1(X))

. . .

f(λp(X))

P T ,
(8)

where for each X ∈ Sp, X has the spectral decomposition as in (1) and λ1(X), . . . , λp(X) are

eigenvalues of X. It is well known that Fmat is well defined independent of the ordering of

λ1(X), . . . , λp(X) and the choice of P , see [1, Chapter V] and [20, Section 6.2].

The matrix function Fmat inherits many properties from the scalar function f . Here we

summarize those properties needed in the discussion of this paper in the next proposition.

Part (i) of Proposition 2.5 can be found in [20, p. 433] and [5, Prop. 4.1]; part (ii) is shown

in [5, Prop. 4.3] and is also implied in [24, Thm. 3.3] for the case that f = h′ for some
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differentiable function h : < → <; the “if” part of (iii) is proved in [6, Lemma 4] while the

“only if” part is shown in [5, Prop. 4.4]; parts (iv)-(vii) are proved in Propositions 4.6, 4.2,

and 4.10 of [5], respectively; and part (viii), which generalizes the strong semismoothness of

Fmat for cases f(t) = |t| and f(t) = max{0, t} derived in [36], follows directly from the proof

of [5, Prop. 4.10], and Proposition 2.3.

Proposition 2.5 For any function f : < → <, the following results hold:

(i) Fmat is continuous at X ∈ Sp with eigenvalues λ1(X), . . . , λp(X) if and only if f is

continuous at every λi(X), i = 1, . . . , p;

(ii) Fmat is differentiable at X ∈ Sp with eigenvalues λ1(X), . . . , λp(X) if and only if f is

differentiable at every λi(X), i = 1, . . . , p;

(iii) Fmat is continuously differentiable at X ∈ Sp with eigenvalues λ1(X), . . . , λp(X) if and

only if f is continuously differentiable at every λi(X), i = 1, . . . , p;

(iv) Fmat is locally Lipschitz continuous around X ∈ Sp with eigenvalues λ1(X), . . . , λp(X)

if and only if f is locally Lipschitz continuous around every λi(X), i = 1, . . . , p;

(v) Fmat is globally Lipschitz continuous (with respect to ‖ · ‖F ) with Lipschitz constant κ if

and only if f is Lipschitz continuous with Lipschitz constant κ;

(vi) Fmat is directionally differentiable at X ∈ Sp with eigenvalues λ1(X), . . . , λp(X) if and

only if f is directionally differentiable at every λi(X), i = 1, . . . , p;

(vii) Fmat is semismooth at X ∈ Sp with eigenvalues λ1(X), . . . , λp(X) if and only if f is

semismooth at every λi(X), i = 1, . . . , p;

(viii) Fmat is min{1, γ}-order semismooth at X ∈ Sp with eigenvalues λ1(X), . . . , λp(X) if f

is γ-order semismooth (0 < γ <∞) at every λi(X), i = 1, . . . , p.

It is noted that although Fmat inherits many properties from f , it does not inherit all of them.

For instance, even if f is a piecewise linear function, i.e., f is a continuous selection of a finite

number of linear functions, Fmat may not be piecewise smooth unless p = 1 (taking f(t) = |t|
for a counter example.)

3 Matrix Functions over Nonsymmetric Matrices

The matrix valued function Fmat defined by (8) needs X to be symmetric. To study the

strong semismoothness of Φsdc
FB and beyond, we need to define a matrix valued function over

nonsymmetric matrices.

6



Let g : < → < be a scalar function satisfying the property that g(t) = g(−t) ∀ t ∈ <, i.e., g is

an even function. Let A ∈Mn,m and n ≤ m [there is no loss of generality by assuming n ≤ m
because the case n ≥ m can be discussed similarly.] Then there exist orthogonal matrices

U ∈Mn,n and V ∈Mm,m such that A has the following singular value decomposition (SVD)

UTAV = [Σ(A) 0] (9)

where Σ(A) = diag(σ1(A), . . . , σn(A)) and σ1(A) ≥ σ2(A) ≥ . . . ≥ σn(A) ≥ 0 are singular

values of A [19, Chapter 2]. It is then natural to define the following matrix valued function

Gmat :Mn,m → Sn by

Gmat(A) : = Udiag(g(σ1(A)), . . . , g(σn(A)))UT = U


g(σ1(A))

. . .

g(σn(A))

UT . (10)

Based on the well known relationships between the SVD of A and the spectral decompositions

of the symmetric matrices AAT , ATA, and

[
0 A
AT 0

]
[19, Section 8.6], we shall study some

important properties of the matrix function Gmat. In particular, we shall prove that when

g(t) = |t|, Gmat is strongly semismooth everywhere. This implies that
√
X2 + Y 2 is strongly

semismooth at any (X,Y ) ∈ Sn×Sn by taking A = [X Y ]. The strong semismoothness of the

matrix valued Fischer-Burmeister function Φsdc
FB then follows easily (see Corollary 3.5 below).

First, by noting the fact that
√
AAT =

√
UΣ2(A)UT = Udiag(σ1(A), . . . , σn(A))UT ,

we know that by taking f(t) = g(t),

Gmat(A) = Udiag(g(σ1(A)), . . . , g(σn(A)))UT

= Udiag(f(σ1(A)), . . . , f(σn(A)))UT

= Udiag
(
f(
√
λ1(AAT )), . . . , f(

√
λn(AAT ))

)
UT

= Fmat(
√
AAT ) , (11)

where λ1(AAT ) ≥ . . . ≥ λn(AAT ) are eigenvalues of AAT arranged in the decreasing order.

This, together with the well definedness of Fmat, implies that (10) is well defined. In particular,

when f(t) = g(t) = |t|, (11) becomes

Gmat(A) = Udiag(σ1(A), . . . , σn(A))UT

= Udiag
(√

λ1(AAT ), . . . ,
√
λn(AAT )

)
UT

= Fmat(
√
AAT )

=
√
AAT . (12)
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Note that the strong semismoothness of the matrix valued Fischer-Burmeister function Φsdc
FB

does not follow from (12) directly because
√
|t| is not locally Lipschitz continuous around t = 0,

let alone strongly semismooth at t = 0.

For any W ∈ Sn+m, we define

Λ(W ) : = diag(λ1(W ), . . . , λn(W ), λn+m(W ), . . . , λn+1(W )) ,

where λ1(W ) ≥ . . . ≥ λn+m(W ) are eigenvalues of W arranged in the decreasing order. Note

that the first n diagonal entries of Λ(W ), which are the n largest eigenvalues of W , are arranged

in the decreasing order and the last m diagonal entries of Λ(W ), which are the m smallest

eigenvalues of W , are arranged in the increasing order. We shall see shortly that this special

arrangement has its convenience.

Define the linear operator Ξ :Mn,m → Sn+m by

Ξ(B) : =

[
0 B

BT 0

]
, B ∈Mn,m . (13)

Write V ∈Mm,m in the form

V = [V1 V2] ,

where V1 ∈Mm,n and V2 ∈Mm,m−n. We define the orthogonal matrix Q ∈Mn+m,n+m by

Q : =
1√
2

[
U U 0

V1 −V1

√
2V2

]
.

Then, by [19, Section 8.6], we have the following result.

Proposition 3.1 Suppose that A ∈ Mn,m has an SVD as in (9). Then the matrix Ξ(A) has

the following spectral decomposition:

Ξ(A) = Q(Λ(Ξ(A)))QT = Q


Σ(A) 0 0

0 −Σ(A) 0

0 0 0

QT ,
i.e., the eigenvalues of Ξ(A) are ±σi(A), i = 1, . . . , n, and 0 of multiplicity m− n.

The next result shows that the singular value functions are strongly semismooth everywhere.

Proposition 3.2 The singular value functions σ1(·), . . . , σn(·) are strongly semismooth every-

where in Mn,m.
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Proof. By Proposition 3.1, we know that

σi(A) = λi(Ξ(A)), i = 1 , . . . , n .

This, together with Propositions 2.4 and 2.2, shows that σ1(·), . . . , σn(·) are strongly semis-

mooth everywhere in Mn,m. Q.E.D.

We define another linear operator π : Sn+m → Sn by

(π(W ))ij : = Wij , i , j = 1, . . . , n , W ∈ Sn+m,

i.e., for any W ∈ Sn+m, π(W ) denotes the top left corner n × n submatrix of W . The next

result establishes the relationship between Gmat(A) and π(Fmat(Ξ(A))).

Proposition 3.3 If f(t) = g(t), t ∈ <, then it holds that

Fmat(Ξ(A)) =

 UΣg(A)UT 0

0 V1Σg(A)V T
1 + g(0)V2V

T
2

 (14)

and

Gmat(A) = UΣg(A)UT = π(Fmat(Ξ(A))) , (15)

where Σg(A) : = diag(g(σ1(A)), . . . , g(σn(A))).

Proof. By Proposition 3.1, the definition of Fmat, and the assumption that f(t) = g(t), we

have

Fmat(Ξ(A)) = Q


Σg(A) 0 0

0 Σg(A) 0

0 0 g(0)I

QT

=
1
2

[
U U 0

V1 −V1

√
2V2

]
Σg(A) 0 0

0 Σg(A) 0

0 0 g(0)I



UT V T

1

UT −V T
1

0
√

2V T
2


=

 UΣg(A)UT 0

0 V1Σg(A)V T
1 + g(0)V2V

T
2

 ,
which, completes the proof of the proposition. Q.E.D.

The next theorem is our main result of this paper.

Theorem 3.4 Let g : < → < be an even function. Define another even function ḡ : < → < by

ḡ(t) := g(
√
|t| ) , t ∈ < . (16)

Then for any A ∈Mn,m with singular values σ1(A) ≥ . . . ≥ σn(A), the following results hold:

9



(i) Gmat is continuous at A ∈Mn,m if and only if g is continuous at every σi(A), i = 1, . . . , n;

(ii) If either g is differentiable at every σi(A), i = 1, . . . , n, and 0 or ḡ is differentiable at

every σ2
i (A), i = 1, . . . , n, then Gmat is differentiable at A ∈Mn,m;

(iii) If either g is continuously differentiable at every σi(A), i = 1, . . . , n, and 0 or ḡ is contin-

uously differentiable at every σ2
i (A), i = 1, . . . , n, then Gmat is continuously differentiable

at A ∈Mn,m;

(iv) If either g is locally Lipschitz continuous around every σi(A), i = 1, . . . , n, and 0 or

ḡ is locally Lipschitz continuous around every σ2
i (A), i = 1, . . . , n, then Gmat is locally

Lipschitz continuous around A ∈Mn,m;

(v) If g is globally Lipschitz continuous with Lipschitz constant κ, then Gmat is globally

Lipschitz continuous (with respect to ‖ · ‖F ) with Lipschitz constant
√

2κ;

(vi) If g is directionally differentiable at every σi(A), i = 1, . . . , n, and 0, then Gmat is direc-

tionally differentiable at A ∈Mn,m with directional derivative given by

(Gmat)′(A;H) = π[(Fmat)′(Ξ(A); Ξ(H))] ∀H ∈ Mn,m;

(vii) If g is semismooth at every σi(A), i = 1, . . . , n, and 0, then Gmat is semismooth at

A ∈Mn,m;

(viii) If g is γ-order semismooth at every σi(A), i = 1, . . . , n, and 0, then G is min{1, γ}-order

semismooth at A ∈Mn,m, where γ ∈ (0,∞).

Proof. In the proof of this theorem, we always assume that f(t) = g(t), t ∈ <. Then, by

Proposition 3.1, the eigenvalues of W := Ξ(A) are ±σi(A) , i = 1, . . . , n, and 0 of multiplicity

m− n.

(i) This result follows directly from the proof of [5, Prop. 4. 1] and Proposition 3.3.

(ii)-(iv) The conclusions follow directly from (15) in Proposition 3.3, the fact that

Gmat(A) = Udiag(ḡ(σ1(A)2), . . . , ḡ(σn(A)2))UT

= Udiag(ḡ(λ1(AAT )), . . . , ḡ(λn(AAT )))UT ,

and parts (ii)-(iv) of Proposition 2.5, respectively.

(v) If g is globally Lipschitz continuous with Lipschitz constant κ, then by part (v) of Propo-

10



sition 2.5, and Proposition 3.3 , for any A,B ∈Mn,m, we have

‖Gmat(A)−Gmat(B) ‖F = ‖π[Fmat(Ξ(A))− Fmat(Ξ(B))] ‖F
≤ ‖Fmat(Ξ(A))− Fmat(Ξ(B)) ‖F
≤ κ‖Ξ(A)− Ξ(B) ‖F

= κ
√

2‖A−B ‖2F
=
√

2κ‖A−B ‖F ,

which, proves that Gmat is globally Lipschitz continuous with Lipschitz constant
√

2κ;

(vi) By part (vi) of Proposition 2.5, Fmat is directionally differentiable at Ξ(A). Hence, by

Proposition 3.3, the conclusion follows.

(vii) This follows directly from part (vii) of Proposition 2.5, and Propositions 2.2 and 3.3.

(viii) By part (viii) of Proposition 2.5, Fmat is min{1, γ}-order semismooth at Ξ(A). Hence,

by using the fact that linear mappings are γ-order semismooth, and Propositions 2.2 and 3.3,

we know that then G(·) = π(F (E(·))) is min{1, γ}-order semismooth at A ∈Mn,m. Q.E.D.

Let the matrix valued Fischer-Burmeister function Φsdc
FB : Sp × Sp → Sp be defined as in (4).

Corollary 3.5 The matrix valued Fischer-Burmeister function Φsdc
FB : Sp × Sp → Sp has the

following properties:

(i) Φsdc
FB is globally Lipschitz continuous with Lipschitz constant 2

√
2;

(ii) Φsdc
FB is continuously differentiable at any (X,Y ) ∈ Sp × Sp if [X Y ] is of full row rank;

(iii) Φsdc
FB is directionally differentiable at any (X,Y ) ∈ Sp × Sp;

(iv) Φsdc
FB is a strongly semismooth function.

Proof. Define two linear mappings Φ1 : Sp × Sp → Sp by

Φ1(X,Y ) : = X + Y

and Φ2 : Sp × Sp →Mp,2p by

Φ2(X,Y ) : = [X Y ] ,

respectively, where (X,Y ) ∈ Sp × Sp. Let g(t) = |t|, t ∈ < and let Gmat be defined as in (12).

We then obtain for any (X,Y ) ∈ Sp × Sp that

Φsdc
FB(X,Y ) = Φ1(X,Y ) − Gmat(Φ2(X,Y )) . (17)

(i) This follows from equation (17) and part (v) of Theorem 3.4.

11



(ii) This is a consequence of part (iii) of Theorem 3.4 and the fact that all singular values of

Φ2(X,Y ) are positive numbers under the assumption that [X Y ] is of full row rank.

(iii) The directional differentiability of Φsdc
FB follows directly from equation (17) and part (vi)

of Theorem 3.4.

(iv) The strong semismoothness of Φsdc
FB is a direct application of part (viii) of Theorem 3.4,

and Proposition 2.2 to equation (17). Q.E.D.

A smoothed version of Φsdc
FB is defined as

Ψsdc
FB(ε,X, Y ) : = X + Y −

√
ε2I + X2 + Y 2 , (ε,X, Y ) ∈ < × Sp × Sp . (18)

Smoothing Newton-type methods based on Ψsdc
FB are discussed in [6, 21]. The following result

can be proved similarly to that of Corollary 3.5. We omit the details here.

Corollary 3.6 The smoothed matrix valued Fischer-Burmeister function Ψsdc
FB : <×Sp×Sp →

Sp has the following properties:

(i) Ψsdc
FB is globally Lipschitz continuous with Lipschitz constant

√
2(1 +

√
n);

(ii) Ψsdc
FB is continuously differentiable at (ε,X, Y ) ∈ <× Sp ×Sp if [εI X Y ] is of full row

rank, in particular, if ε 6= 0;

(iii) Ψsdc
FB is directionally differentiable at any (ε,X, Y ) ∈ < × Sp × Sp;

(iv) Ψsdc
FB is a strongly semismooth function.

4 Vector Functions Associated with the Second Order Cone

The second order cone (SOC) in <n (n ≥ 2), also called the Lorentz cone or ice-cream cone, is

defined by

Kn = {(x1, x
T
2 )T | x1 ∈ <, x2 ∈ <n−1 and x1 ≥ ‖x2‖} . (19)

Here and below, ‖ · ‖ denotes the l2-norm in <n. If there is no ambiguity, for convenience, we

write x = (x1, x2) instead of x = (x1, x
T
2 )T .

For any x = (x1, x2), y = (y1, y2) ∈ < × <n−1, we define the Jordan product as

x · y : =

[
xT y

y1x2 + x1y2

]
. (20)

Denote

e = (1, 0, . . . , 0)T ∈ <n .

12



Any x = (x1, x2) ∈ < × <n−1 has the following spectral decomposition [17]:

x = λ1(x)u(1) + λ2(x)u(2) , (21)

where λ1(x), λ2(x) and u(1), u(2) are the spectral values and the associated spectral vectors of

x, with respect to Kn, given by

λi(x) = x1 + (−1)i‖x2 ‖ (22)

and

u(i) =


1
2

(
1, (−1)i

x2

‖x2 ‖

)
, if x2 6= 0,

1
2

(
1, (−1)i

w

‖w ‖

)
, otherwise,

(23)

where i = 1, 2 and w is any vector in <n−1 satisfying ‖w ‖ = 1. In [17], for any scalar function

f : < → <, the following vector valued function associated with the SOC is introduced

f soc(x) : = f(λ1(x))u(1) + f(λ2(x))u(2) . (24)

For convenience of discussion, we denote

x+ : = (λ1(x))+u
(1) + (λ2(x))+u

(2)

and

|x| : = |λ1(x)|u(1) + |λ2(x)|u(2),

where for any scalar α ∈ <, α+ = max{0, α}. That is, x+ and |x| are equal to f soc(x) with

f(t) = t+ and f(t) = |t|, t ∈ <, respectively. For any x ∈ Kn, since λ1(x) and λ2(x) are

nonnegative, we define

√
x = x1/2 : = (λ1(x))1/2u(1) + (λ2(x))1/2u(2) .

For x ∈ <n, let x2 = x · x. It has been shown in [17] that the following results hold.

Proposition 4.1 Suppose that x ∈ <n has the spectral decomposition as in (21). Then

(i) |x| = (x2)1/2;

(ii) x2 = (λ1(x))2u(1) + (λ2(x))2u(2);

(iii) x+ is the orthogonal projection of x onto Kn and x+ = (x+ |x|)/2;

(iv) x, y ∈ Kn and xT y = 0 ⇐⇒ x, y ∈ Kn and x · y = 0 ⇐⇒ x− (x− y)+ = 0 .
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A function φsoc : <n ×<n → <n is called an SOC C-function if

φsoc(x, y) = 0 ⇐⇒ Kn 3 x ⊥ y ∈ Kn , (25)

where the ⊥ notation means “perpendicular under the above Jordan product”, i.e., x ⊥ y ⇔
x · y = 0 for any two vectors x and y in <n. Part (iv) of Proposition 4.1 shows that the

following function

φsoc
min(x, y) : = x− (x− y)+ (26)

is an SOC C-function. In [17], it is shown that the following vector valued Fischer-Burmeister

function

φsoc
FB(x, y) : = x+ y −

√
x2 + y2 (27)

is also an SOC C-function. Smoothed forms of φsoc
min and φsoc

FB are defined by

ψsoc
min(ε, x, y) : =

1
2

(x+ y −
√
ε2e+ (x− y)2 ) , (ε, x, y) ∈ < × <n ×<n (28)

and

ψsoc
FB(ε, x, y) : = x+ y −

√
ε2e+ x2 + y2 , (ε, x, y) ∈ < × <n ×<n (29)

in [17], respectively. It is shown in [7] that both φsoc
min and ψsoc

min are strongly semismooth func-

tions. By making use of a relationship between the vector function f soc and the corresponding

matrix function Fmat, Chen, Chen and Tseng [4], among others, provide a shorter (indirect)

proof to the above result. Luo, Fukushima and Tseng [17] have discussed many properties of

φsoc
FB and ψsoc

FB including the continuous differentiability of ψsoc
FB at any (ε, x, y) ∈ < × <n × <n

for ε 6= 0. In this section, we shall prove that φsoc
FB and ψsoc

FB are globally Lipschitz continuous,

directionally differentiable and strongly semismooth everywhere.

For any x = (x1, x2) ∈ < × <n−1, let L(x),M(x) ∈ Sn be defined by

L(x) : =

[
x1 xT2

x2 x1I

]
(30)

and

M(x) : =

[
0 0T

0 N(x2)

]
, (31)

where for any z ∈ <n−1, N(z) ∈ Sn−1 denotes

N(z) : = ‖ z ‖ (I − zzT /‖ z ‖2) = ‖ z ‖ I − zzT /‖ z ‖ (32)

and the convention “0
0 = 0” is adopted.

The next lemma presents some useful properties about the operators L and M.

Lemma 4.2 For any x = (x1, x2) ∈ < × <n−1, the following results hold:

14



(i) L(x2) = (L(x))2 + (M(x))2 ;

(ii) M is globally Lipschitz continuous with Lipschitz constant
√
n− 2;

(iii) M is at least twice continuously differentiable at x if x2 6= 0;

(iv) M is directionally differentiable everywhere in <n;

(v) M is strongly semismooth everywhere in <n.

Proof. (i) By a direct calculation, we have

L(x2) = (L(x))2 +

[
0 0T

0 ‖x2 ‖2 − x2x
T
2 I

]

which, together with the fact that

(M(x))2 =

[
0 0T

0 ‖x2 ‖2 − x2x
T
2 I

]
,

implies that

L(x2) = (L(x))2 + (M(x))2 .

(ii) By noting the fact that for any x = (x1, x2) ∈ < × <n−1 and y = (y1, y2) ∈ < × <n−1,

‖M(x)−M(y) ‖F = ‖N(x2)−N(y2) ‖F ,

we only need to show that that N is globally Lipschitz continuous with Lipschitz constant
√
n− 2.

Suppose that z(1), z(2) are two arbitrary points in <n−1. If the line segment [z(1), z(2)] connect-

ing z(1) and z(2) contains the origin 0, then

‖N(z(1))−N(z(2)) ‖F

≤ ‖N(z(1))−N(0) ‖F + ‖N(z(2))−N(0) ‖F

= ‖ z(1) ‖‖ [I − z(1)z(1)T /‖ z(1) ‖2] ‖F + ‖ z(2) ‖‖ [I − z(2)z(2)T /‖ z(2) ‖2] ‖F

≤
√
n− 2‖ z(1) ‖+

√
n− 2‖ z(2) ‖ =

√
n− 2‖ z(1) − z(2) ‖ .

If the line segment [z(1), z(2)] does not contain the origin 0, then by the mean value theorem

we have
‖N(z(1))−N(z(2)) ‖F

=
∥∥∥∥ ∫ 1

0
N ′(z(1) + t[z(2) − z(1)])(z(2) − z(1))dt

∥∥∥∥
F

≤
∫ 1

0
‖N ′(z(1) + t[z(2) − z(1)])(z(2) − z(1)) ‖Fdt ,
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which, together with the fact that for any z 6= 0, N is differentiable at z with

N ′(z)(∆z) =
(∆z)T z
‖ z ‖

[I + zzT /‖ z ‖2]− 1
‖ z ‖

[z(∆z)T + (∆z)zT ] (33)

and

‖N ′(z)(∆z) ‖F ≤
√
n− 2‖∆z ‖ ∀ ∆z ∈ <n−1 ,

implies that

‖N(z(1))−N(z(2)) ‖F ≤
√
n− 2‖ z(1) − z(2) ‖ .

Therefore, N is globally Lipschitz continuous with Lipschitz constant
√
n− 2.

(iii) By equation (33), we know that N is at least twice continuously differentiable at any

z 6= 0. Therefore, M is at least twice continuously differentiable at x if x2 6= 0.

(iv) By part (iii), we only need to show that M is directionally differentiable at x with x2 = 0.

This can be achieved by showing that N is directionally differentiable at x2 = 0. Note that N

is a positive homogeneous mapping, i.e., for any t ≥ 0 and z ∈ <n−1,

N(tz) = tN(z) .

Hence, N is directionally differentiable at x2 = 0 and for any z ∈ <n−1,

N ′(x2; z) = N(z) .

(v) By part (iii), we only need to show that M is strongly semismooth at x with x2 = 0. This

can be done by showing that N is strongly semismooth at x2 = 0. For any 0 6= z ∈ <n−1, by

the positive homogeneity of N , we have

N ′(z)(z) = N(z) .

Actually, the above result can also be derived directly by (33). Therefore, for any 0 6= z ∈ <n−1,

N(x2 + z)−N(0)−N ′(x2 + z)(z)

= N(z)−N(0)−N ′(z)(z)

= 0 ,

which, together with Proposition 2.3, the Lipschitz continuity and the directional differentia-

bility of N , shows that N is strongly semismooth at x2 = 0. Q.E.D.

The following lemma, which relates f soc to Fmat, is obtained recently by Chen, Chen and

Tseng [4, Lemma 4.1]1.
1P. Tseng first presented this result in “The Third International Conference on Complementarity Problems”,

held in Cambridge University, United Kingdom, July 29 -August 1, 2002.
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Lemma 4.3 For any x = (x1, x2) ∈ < × <n−1, let λ1(x), λ2(x) be its spectral values given in

(22). The following results hold:

(i) For any t ∈ <, the matrix L(x) + tL̃(x2) has eigenvalues λ1(x), λ2(x), and x1 + t of

multiplicity n− 2, where

L̃(x2) : =

[
0 0

0 I − x2x
T
2 /‖x2‖2

]
;

(ii) For any f : < → < and any t ∈ <, we have

f soc(x) = Fmat(L(x) + tL̃(x2)) e ,

where Fmat is defined by (8).

For any a(1), . . . , a(p) ∈ <n, we write

χ(a(1), . . . , a(p)) : =

√√√√ p∑
i=1

(a(i))2 (34)

and

Γ(a(1), . . . , a(p)) : = [L(a(1)) . . . L(a(p)) M(a(1)) . . . M(a(p))] , (35)

where the operators L and M are defined by (30) and (31), respectively. The relationship

between χ and Γ is revealed in the next result.

Lemma 4.4 For any a(1), . . . , a(p) ∈ <n,

L(v) = Γ(a(1), . . . , a(p))(Γ(a(1), . . . , a(p)))T

and

χ(a(1), . . . , a(p)) =
(√

Γ(a(1), . . . , a(p))
(
Γ(a(1), . . . , a(p))

)T)
e ,

where v :=
p∑
i=1

(a(i))2.

Proof. By part (i) of Lemma 4.2, we obtain that

L(v) = L

( p∑
i=1

(a(i))2

)
=

p∑
i=1

L((a(i))2) =
p∑
i=1

[(
L(a(i))

)2
+
(
M(a(i))

)2
]

=
p∑
i=1

(
L(a(i))

)2
+

p∑
i=1

(
M(a(i))

)2
= Γ(a(1), . . . , a(p))

(
Γ(a(1), . . . , a(p))

)T
.

By taking f(t) =
√
|t|, t ∈ < in part (ii) of Lemma 4.3, for any x ∈ <n we have√

|x| = f soc(x) = Fmat(L(|x|))e =
(√

L(|x|)
)
e ,
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which, together with the fact that v ∈ Kn, implies

χ(a(1), . . . , a(p)) =
√
v =

(√
L(v)

)
e =

(√
Γ(a(1), . . . , a(p))

(
Γ(a(1), . . . , a(p))

)T)
e .

This completes the proof. Q.E.D.

For the rest of this section, let g : < → < be defined by g(t) = |t|, t ∈ <; let the corresponding

matrix function Gmat be defined by (10). Then, by Lemma 4.4 and equation (12), for any

a(1), . . . , a(p) ∈ <n we have

χ(a(1), . . . , a(p)) = Gmat(Γ(a(1), . . . , a(p))) e . (36)

Theorem 4.5 For any a(1), . . . , a(p) ∈ <n, let χ(a(1), . . . , a(p)) be defined by (34). Then the

following results hold:

(i) χ is globally Lipschitz continuous with Lipschitz constant 2
√
n− 1;

(ii) χ is at least once continuously differentiable at any (a(1), . . . , a(p)) with a(i) ∈ <n , i =

1, . . . , p if v1 6= ‖ v2‖, where v = (v1, v2) ∈ < × <n−1 and v :=
p∑
i=1

(a(i))2 ;

(iii) χ is directionally differentiable at any (a(1), . . . , a(p)) with a(i) ∈ <n , i = 1, . . . , p;

(iv) χ is a strongly semismooth function.

Proof. (i) For any (a(1), . . . , a(p)) ∈ <n × . . . × <n and (b(1), . . . , b(p)) ∈ <n × . . . × <n, by

equation (36), part (v) of Theorem 3.4, and Lemma 4.2, we have

‖χ(a(1), . . . , a(p))− χ(b(1), . . . , b(p)) ‖

= ‖ [Gmat(Γ(a(1), . . . , a(p)))−Gmat(Γ(b(1), . . . , b(p)))]e ‖

≤ ‖Gmat(Γ(a(1), . . . , a(p)))−Gmat(Γ(b(1), . . . , b(p))) ‖F‖ e ‖

≤
√

2‖Γ(a(1), . . . , a(p))− Γ(b(1), . . . , b(p)) ‖F

=
√

2

√√√√ p∑
i=1

‖L(a(i))− L(b(i)) ‖2F +
p∑
i=1

‖M(a(i))−M(b(i)) ‖2F

≤
√

2

√√√√ p∑
i=1

n‖ a(i) − b(i) ‖2 +
p∑
i=1

(n− 2)‖ a(i) − b(i) ‖2

= 2
√
n− 1

√√√√ p∑
i=1

‖ a(i) − b(i) ‖2 ,

which, proves that χ is globally Lipschitz continuous with Lipschitz constant 2
√
n− 1.
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(ii) This result follows directly from (36), Lemma 4.4, part (iii) of Theorem 3.4, and the fact

that

Γ(a(1), . . . , a(m))
(
Γ(a(1), . . . , a(m))

)T
= L(v)

is positive definite when v1 6= ‖ v2‖.

(iii) It follows directly from (36), part (iv) of Lemma 4.2, and part (vi) of Theorem 3.4.

(iv) This property follows from (36), part (viii) of Theorem 3.4, Proposition 2.2, and the fact

that the mapping Γ is strongly semismooth by part (v) of Lemma 4.2. Q.E.D.

Theorem 4.5 generalizes the results discussed in [7] from the absolute value function |x| to the

function χ. By noting the fact that for any ε ∈ < and (x, y) ∈ <n ×<n,

φsoc
FB(x, y) = x+ y − χ(x, y)

and

ψsoc
FB(ε, x, y) = x+ y − χ(εe, x, y) ,

we have the following results, which do not need a proof.

Corollary 4.6 The vector valued Fischer-Burmeister function φsoc
FB : <n × <n → <n has the

following properties:

(i) φsoc
FB is globally Lipschitz continuous with Lipschitz constant

√
2 + 2

√
n− 1;

(ii) φsoc
FB is at least once continuously differentiable at any (x, y) ∈ <n × <n if v1 6= ‖ v2 ‖,

where v := x2 + y2;

(iii) φsoc
FB is directionally differentiable at any (x, y) ∈ <n ×<n;

(iv) φsoc
FB is a strongly semismooth function.

Corollary 4.7 The smoothed vector valued Fischer-Burmeister function ψsoc
FB : <×<n×<n →

<n has the following properties:

(i) ψsoc
FB is globally Lipschitz continuous with Lipschitz constant

√
2 + 2

√
n− 1;

(ii) ψsoc
FB is at least once continuously differentiable at any (ε, x, y) ∈ <×<n×<n if ε 6= 0 or

v1 6= ‖ v2 ‖, where v := x2 + y2;

(iii) ψsoc
FB is directionally differentiable at any (ε, x, y) ∈ < × <n ×<n;

(iv) ψsoc
FB is a strongly semismooth function.
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5 Inverse Singular Value Problems

Given a family of matrices D(c) ∈ Mn,m (n ≤ m) with c ∈ <n and nonnegative real numbers

λ∗1 ≥ . . . ≥ λ∗n ≥ 0 arranged in the decreasing order, the inverse singular value problem (ISVP)

is to find a parameter c∗ ∈ <n such that

σi(D(c∗)) = λ∗i , i = 1, . . . , n ,

where for any A ∈Mn,m, σ1(A) ≥ . . . ≥ σn(A) are the singular values of A. See Chu [9] for a

comprehensive survey on the inverse eigenvalue problems, which include the ISVP.

Define θ : <n → <n by

θ(c) : =


σ1(D(c))− λ∗1

...

σn(D(c))− λ∗n

 . (37)

Then the ISVP is equivalent to finding c∗ ∈ <n such that θ(c∗) = 0. In general, the function θ is

not continuously differentiable. So classical Newton’s method for solving smooth equations can

not be applied directly to solve θ(c) = 0. However, the recent research reveals that quadratic

convergence of generalized Newton’s method for solving nonsmooth equations does not need

the continuous differentiability of the function involved [30, 28]. What is needed is the strong

semismoothness property. Next, we show that θ has such a property.

Theorem 5.1 Suppose that D : <n → Mn,m is twice continuously differentiable. Let θ :

<n → <n be defined by (37). Then θ is a strongly semismooth function.

Proof. Since D is twice continuously differentiable, D is strongly semismooth everywhere.

Then, from Propositions 2.2 and 3.2, we know that θ is strongly semismooth everywhere.

Q.E.D.

In [37], based on the strong semismoothness of eigenvalues of symmetric matrices, we estab-

lished the quadratic convergence of generalized Newton’s method for solving the (generalized)

inverse eigenvalue problem for symmetric matrices. This approach, which is different from

the one given in [16], relys on the convergent theory of generalized Newton’s method for solv-

ing nonsmooth equations [30, 28]. Analogously, by using Theorem 5.1, we can establish the

quadratic convergence of generalized Newton’s method for solving the ISVP. Again, this ap-

proach is different from the one given in [8] for the ISVP, where D is assumed to be a linear

mapping and the convergence analysis is based on [16]. Here, we omit the details because it can

be worked out similarly as in [37] for the inverse eigenvalue problem for symmetric matrices.
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6 Conclusions

In this paper, based on the singular values of nonsymmetric matrices, we defined a matrix

valued function Gmat over nonsymmetric matrices. We showed that Gmat inherits many prop-

erties from its base scalar valued function g. In particular, we showed that the (smoothed)

matrix valued Fischer-Burmeister function is strongly semismooth everywhere. By using a

recent result of Chen, Chen and Tseng [4], we also established the strong semismoothness of

the (smoothed) vector valued Fischer-Burmeister function associated with the second order

cone. Finally, we briefly mentioned the quadratic convergence of generalized Newton’s method

for solving the inverse singular value problem.
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