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SPECTRAL OPERATORS OF MATRICES: SEMISMOOTHNESS AND
CHARACTERIZATIONS OF THE GENERALIZED JACOBIAN∗
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Abstract. Spectral operators of matrices proposed recently in [C. Ding, D. F. Sun, J. Sun,
and K. C. Toh, Math. Program., 168 (2018), pp. 509–531] are a class of matrix-valued functions,
which map matrices to matrices by applying a vector-to-vector function to all eigenvalues/singular
values of the underlying matrices. Spectral operators play a crucial role in the study of various
applications involving matrices such as matrix optimization problems that include semidefinite pro-
gramming as one of most important example classes. In this paper, we will study more fundamental
first- and second-order properties of spectral operators, including the Lipschitz continuity, ρ-order
B(ouligand)-differentiability (0 < ρ ≤ 1), ρ-order G-semismoothness (0 < ρ ≤ 1), and characteriza-
tion of generalized Jacobians.
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1. Introduction. Spectral operators of matrices introduced recently in [23] are
a class of matrix-valued functions defined on a given real Euclidean vector space X
of real/complex matrices over the scalar field of real numbers R. Unlike the well-
studied classical matrix functions [34, Chapter 9], [39, Chapter 6], [2, 38, 37], which
are Löwner’s operators generated by applying a single-variable function to each of
the eigenvalues/singular values of the underlying matrices, the spectral operators
introduced in [23] generate matrix-valued functions by applying a vector-to-vector
function to all eigenvalues/singular values of the underlying matrices (see Definition
2.2 for details).

In addition to its intrinsic theoretical interest in linear algebra, spectral operators
play a crucial role in the study of a class of optimization problems known as matrix
optimization problems (MOPs), which include many important problems such as ma-
trix norm approximation, matrix completion, rank minimization, graph theory, and
machine learning [35, 82, 83, 72, 46, 8, 9, 10, 12, 88, 14, 57, 26, 42, 32, 58, 59, 93, 54].
In particular, for a given unitarily invariant proper closed convex function f : X →
(−∞,∞], the spectral operator that is closely related to MOPs is the proximal map-
ping [74] of f at X, which is defined by
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SPECTRAL OPERATORS OF MATRICES 631

Pf (X) := argminY ∈X

{
f(Y ) +

1

2
‖Y −X‖2

}
, X ∈ X ,(1.1)

where X is either the real vector subspace Sm of m ×m real symmetric or complex
Hermitian matrices, or the real vector subspace Vm×n of m × n (assume m ≤ n)
real/complex matrices. Among different MOP applications, semidefinite program-
ming (SDP) [81] is undoubtedly one of the most influential classes of problems and
its importance has been well recognized by researchers even beyond the optimization
community. Recent exciting progress has been made both in the design of efficient
numerical methods for solving large-scale SDPs [92, 89] and in the study of second-
order variational analysis of SDP problems [25, 77, 11, 62], in which the first- and
second-order properties of the special spectral operator, the projection operator over
the positive semidefinite matrix cone [78, 80], have played an essential role. However,
for the general MOPs arising recently from different fields, the classical theory devel-
oped for Löwner’s operators has become inadequate to cope with the new theoretical
developments and needs. Beyond the spectral operators of matrices arising from prox-
imal mappings, more general spectral operators indeed have played a pivotal role in
many other MOP applications [60]. Therefore, the study of the general spectral op-
erators will provide the necessary foundations for both computational and theoretical
study of the general MOPs. In particular, the first- and second-order properties of
spectral operators obtained in [23] including the well-definedness, continuity, direc-
tional differentiability, and Fréchet-differentiability are of fundamental importance in
the study of MOPs [22, 55, 13, 18].

In this paper, we will follow the path set in [23] to conduct extensive theoretical
studies on spectral operators. A natural question one may want to ask is whether
the first- and second-order properties can be transferred from a vector-valued mixed
symmetric mapping g (see Definition 2.1) to the corresponding spectral operator G
and vice versa. It is known that properties such as convexity, prox-regularity, prox-
imal smoothness, and others follow the so-called transfer principle for scalar-valued
spectral functions [33] (see [45, 19, 20, 21, 27, 30] for more details). However, for
spectral operators, this question has not been well answered yet. More first- and
second-order properties of spectral operators need to be discussed in depth. These
include Lipschitz continuity, ρ-order B(ouligand)-differentiability (0 < ρ ≤ 1), ρ-order
G-semismoothness (0 < ρ ≤ 1), and characterization of generalized Jacobians. In
particular, we will study the semismoothness [61, 70] of spectral operators, which
is one of the most important properties for both algorithmic design and theoretical
study of the general MOPs.

Historically, the semismoothness of vector-valued functions had played a crucial
role in constructing nonsmooth and smoothing Newton methods for nonlinear equa-
tions and related problems. In fact, it is shown in [70, 69, 67] that the (strong) semi-
smoothness is the key property for the local (quadratic) superlinear convergence of
the Newton method. The semismooth Newton method has became one of the most
important techniques in optimization [41, 85, 92, 89, 51, 52, 91]. In particular, the
several semismooth Newton based methods have been proposed for solving various
large-scale optimization problems in machine learning applications such as the lasso,
fused lasso, and convex clustering problems, and they have significantly outperformed
a number of state-of-the-art solvers in terms of efficiency and robustness [51, 52, 91].
For MOPs, the semismoothness of the special spectral operator—the projection oper-
ator over the SDP cone—has played a key role in the development of the semismooth
Newton based augmented Lagrangian method implemented in the software package
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632 C. DING, D. SUN, J. SUN, AND K.-C. TOH

SDPNAL [92] and its enhanced version SDPNAL+ [89] for solving large-scale SDP
problems. Therefore, based on this recent progress, we believe that the results on
the semismoothness of spectral operators obtained in this paper will lay a foundation
for the research on general MOPs. For the proximal mapping (1.1), one can obtain
its semismooth property by employing the recently developed semialgebraic geometry
results [3, 17]. It is shown in [4, 40] that locally Lipschitz continuous tame functions
(e.g., the proximal mapping (1.1)) are semismooth. For more recent developments on
semialgebraic geometry in optimization, see [1, 28, 29, 15, 50, 6, 5] and the references
therein. It is worth noting that unlike our approach, by just employing its tameness,
one may not able to obtain the explicit formulas of the directional derivative and,
more importantly, the strong semismoothness of the proximal mapping (see section 5
for details).

Another fundamental property, which we will study, is the characterization of the
Clarke generalized Jacobians [16] of the locally Lipschitz continuous spectral opera-
tors. This is an important theoretical topic in the second-order variational analysis,
which is crucial for the study of many perturbation properties of MOPs such as the
strong regularity [68, 77, 11] and full and tilt stability [62, 63]. In addition, for the
software packages SDPNAL and SDPNAL+, due to the explicit characterization of
the Clarke generalized Jacobian of the projection operator over the positive semidefi-
nite matrix cone, it becomes possible to exploit the second-order sparsity of the SDP
problems inherited from the sparse structure of the generalized Jacobian of the refor-
mulated semismooth equations. The second-order sparsity can substantially reduce
the computational cost of solving the resulting linear systems associated with the
semismooth Newton directions. Indeed the efficient computation of the semismooth
Newton directions is one of the biggest computational challenges in designing efficient
second-order numerical methods for solving large-scale problems. To summarize, we
believe that the fundamental results obtained in this paper, especially the second-
order properties such as the semismoothness and the Clarke generalized Jacobian of
spectral operators, are of importance in both the computational and theoretical study
of general MOPs.

The remaining parts of this paper are organized as follows. In section 2, we
briefly review several preliminary properties of spectral operators of matrices. We
study the Lipschitz continuity and Bouligand-differentiability of spectral operators
defined on a single matrix space Vm×n in sections 3 and 4, respectively. Then, the G-
semismoothness and characterization of the Clarke generalized Jacobians of spectral
operators are presented in sections 5 and 6, respectively. In section 7, we extend the
corresponding results to spectral operators defined on the Cartesian product of several
matrix spaces and the smoothing spectral operators. We make some final remarks in
section 8.

Below are some common notation and symbols to be used later in the paper:
• For any X ∈ Vm×n, we denote by Xij the (i, j)th entry of X and xj the jth

column of X. Let I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} be two index sets. We
use XJ to denote the submatrix of X obtained by removing all the columns
of X not in J and XIJ to denote the |I| × |J | submatrix of X obtained by
removing all the rows of X not in I and all the columns of X not in J .

• For X ∈ Vm×m, diag(X) denotes the column vector consisting of all the
diagonal entries of X being arranged from the first to the last. For x ∈ Rm,
Diag(x) denotes the m×m diagonal matrix whose i-th diagonal entry is xi,
i = 1, . . . ,m.
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SPECTRAL OPERATORS OF MATRICES 633

• We use “ ◦ ” to denote the usual Hadamard product between two matrices,
i.e., for any two matrices A and B in Vm×n the (i, j)’th entry of Z := A◦B ∈
Vm×n is Zij = AijBij .

• For any X ∈ Sm, we use λ : Sm → Rm to denote the mapping of the ordered
eigenvalues of a Hermitian matrix X satisfying λ1(X) ≥ λ2(X) ≥ · · · ≥
λm(X). For any X ∈ Vm×n, we use σ : Vm×n → Rm to denote the map-
ping of the ordered singular values of X satisfying σ1(X) ≥ σ2(X) ≥ · · · ≥
σm(X) ≥ 0.

• Let Op (p = m,n) be the set of p × p orthogonal/unitary matrices. We
denote Pp and ±Pp to be the sets of all p × p permutation matrices and
signed permutation matrices, respectively. For any Y ∈ Sm and Z ∈ Vm×n,
we use Om(Y ) to denote the set of all orthogonal matrices whose columns
form an orthonormal basis of eigenvectors of Y , and we use Om,n(Z) to denote
the set of all pairs of orthogonal matrices (U, V ), where the columns of U and
V form a compatible set of orthonormal left and right singular vectors for Z,
respectively.

2. Spectral operators of matrices. The general spectral operators of matrices
introduced by [23] are defined on the Cartesian product of several real or complex
matrix spaces. Let us first summarize the properties of spectral operators obtained
by [23], which are needed in the subsequent analysis.

For notational simplicity, we introduce the definitions and notation for the special
case that X ≡ Sm1 ×Vm2×n2 , where m1, m2, and n2 are given positive integers. The
corresponding generalizations can be found in [23].

Without loss of generality, we assume that m2 ≤ n2. For any X = (X1, X2) ∈ X ,
we have X1 ∈ Sm1 and X2 ∈ Vm2×n2 . Denote Y := Rm1 × Rm2 . For any X ∈ X ,
define κ(X) ∈ Y by κ(X) := (λ(X1), σ(X2)). Define the set P by

P := {(Q1, Q2) | Q1 ∈ Pm1 and Q2 ∈ ±Pm2} .
Let g : Y → Y be a given mapping. For any x = (x1, x2) ∈ Y with xk ∈ Rmk for
k = 1, 2, we write g(x) ∈ Y in the form g(x) = (g1(x), g2(x)) with gk(x) ∈ Rmk for
k = 1, 2.

Definition 2.1. The given mapping g : Y → Y is said to be mixed symmetric,
with respect to P, at x = (x1, x2) ∈ Y with xk ∈ Rmk for k = 1, 2, if

g(Q1x1, Q2x2) = (Q1g1(x), Q2g2(x)) ∀ (Q1, Q2) ∈ P.(2.1)

The mapping g is said to be mixed symmetric, with respect to P, over a set D ⊆ Y if
(2.1) holds for every x ∈ D.

Note that the function values gk(x) ∈ Rmk , k = 1, 2, are dependent on all x1, x2.
When there is no danger of confusion, in later discussions we often drop the phrase
“with respect to P” from Definition 2.1. Let N be a given nonempty set in X . Define
κN := {κ(X) ∈ Y | X ∈ N}. The following definition of the spectral operator with
respect to a mixed symmetric mapping g is given by [23, Definition 1].

Definition 2.2. Suppose that g : Y → Y is mixed symmetric on κN . The spectral
operator G : N → X with respect to g is defined as G(X) := (G1(X), G2(X)) for
X = (X1, X2) ∈ N such that{

G1(X) := P1Diag
(
g1(κ(X))

)
PT

1 ,

G2(X) := U2

[
Diag

(
g2(κ(X))

)
0
]
V T

2 ,

where P1 ∈ Om1(X1) and (U2, V2) ∈ Om2,n2(X2).

D
ow

nl
oa

de
d 

02
/2

5/
20

 to
 1

58
.1

32
.1

75
.3

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

634 C. DING, D. SUN, J. SUN, AND K.-C. TOH

For the well-definedness, continuity, and F(réchet)-differentiability of spectral op-
erators, one may refer to [23] for details. It is worth mentioning that for the case
that X ≡ Sm (or Vm×n) and g has the form g(y) = (h(y1), . . . , h(ym)) ∈ Rm with
yi ∈ R for some given scalar-valued function h : R → R, the corresponding spectral
operator G is just the Löwner operator coined in [80] in recognition of Löwner’s orig-
inal contribution on this topic in [56] (or the Löwner non-Hermitian operator [90] if
h(0) = 0). In [90], Yang studied several important first- and second-order properties
of the Löwner non-Hermitian operator, including its F-differentiability and the ex-
plicit derivative formula (the equivalent form also can be found in [64]). Furthermore,
for the case that X ≡ Sm (or Vm×n) and g : Rm → Rm is a given vector-valued
function, the related spectral operator G covers the matrix-valued functions studied
in [44, 47, 48, 49] as special cases.

Next, for further simplifying the notation, we will focus on the study of spectral
operators for the case that X ≡ Vm×n. The corresponding extensions for the spectral
operators defined on the general Cartesian product of several matrix spaces will be
presented in section 7.

Let N be a given nonempty open set in Vm×n. Suppose that g : Rm → Rm is
mixed symmetric with respect to P ≡ ±Pm (i.e., absolutely symmetric), on an open
set σ̂N in Rm containing σN := {σ(X) | X ∈ N}. The spectral operator G : N →
Vm×n with respect to g defined in Definition 2.2 then takes the form of

G(X) = U [Diag(g(σ(X))) 0]V T, X ∈ N ,

where (U, V ) ∈ Om,n(X). For a given X ∈ N , consider the singular value decompo-
sition (SVD) of X, i.e.,

X = U
[
Σ(X) 0

]
V

T
,(2.2)

where Σ(X) is an m×m diagonal matrix whose ith diagonal entry is σi(X), U ∈ Om,
and V =

[
V 1 V 2

]
∈ On with V 1 ∈ Vn×m and V 2 ∈ Vn×(n−m).

We end this section by further introducing some necessary notation and results,
which are used in later discussions. Let σ := σ(X) ∈ Rm. We use ν1 > ν2 > · · · >
νr > 0 to denote the nonzero distinct singular values of X. Let al, l = 1, . . . , r, a, b,
and c be the index sets defined by

al := {i | σi(X) = νl, 1 ≤ i ≤ m}, l = 1, . . . , r, a := {i | σi(X) > 0, 1 ≤ i ≤ m},
(2.3)

b := {i | σi(X) = 0, 1 ≤ i ≤ m} and c := {m+ 1, . . . , n}.

Denote ā := {1, . . . , n} \ a. For each i ∈ {1, . . . ,m}, we also define li(X) to be the
number of singular values which are equal to σi(X) but are ranked before i (including
i) and l̃i(X) to be the number of singular values which are equal to σi(X) but are
ranked after i (excluding i), i.e., define li(X) and l̃i(X) such that

σ1(X) ≥ · · · ≥ σi−li(X)(X) > σi−li(X)+1(X) = · · · = σi(X) = · · · = σi+l̃i(X)(X)

> σi+l̃i(X)+1(X) ≥ · · · ≥ σm(X).(2.4)

In later discussions, when the dependence of li and l̃i on X is clear from the context,
we often drop X from the notation for convenience. We define two linear matrix
operators S : Vp×p → Sp, T : Vp×p → Vp×p by
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SPECTRAL OPERATORS OF MATRICES 635

S(Y ) :=
1

2

(
Y + Y T) , T (Y ) :=

1

2

(
Y − Y T) , Y ∈ Vp×p.(2.5)

For any given X ∈ N , let σ = σ(X). For the mapping g, we define three matrices
E0

1 (σ), E0
2 (σ) ∈ Rm×m and F0(σ) ∈ Rm×(n−m) (depending on X ∈ N ) by

(E0
1 (σ))ij :=

{
(gi(σ)− gj(σ))/(σi − σj) if σi 6= σj ,

0 otherwise,
i, j ∈ {1, . . . ,m},(2.6)

(E0
2 (σ))ij :=

{
(gi(σ) + gj(σ))/(σi + σj) if σi + σj 6= 0,

0 otherwise,
i, j ∈ {1, . . . ,m},(2.7)

(F0(σ))ij :=

{
gi(σ)/σi if σi 6= 0,

0 otherwise,
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n−m}.(2.8)

When the dependence of E0
1 (σ), E0

2 (σ), and F0(σ) on σ is clear from the context,

we often drop σ from the notation. In particular, let E0

1, E0

2 ∈ Vm×m, and F0 ∈
Vm×(n−m) be the matrices defined by (2.6)–(2.8) with respect to σ = σ(X). Since
g is absolutely symmetric at σ, we know from [23, Proposition 1] that for all i ∈ al,
1 ≤ l ≤ r, the function values gi(σ) are the same (denoted by ḡl). Therefore, for any
X ∈ N , we are able to decompose G into two parts, i.e.,

GS(X) :=

r∑
l=1

ḡlUl(X) and GR(X) := G(X)−GS(X),(2.9)

where Ul(X) :=
∑
i∈al uiv

T
i with Om,n(X). It follows from [23, Lemma 1] that there

exists an open neighborhood B of X in N such that GS is twice continuously differ-
entiable on B, and for any Vm×n 3 H → 0,

GS(X +H)−GS(X) = G′S(X)H +O(‖H‖2)(2.10)

with

G′S(X)H = U
[
E0

1 ◦ S
(
U

T
HV 1

)
+ E0

2 ◦ T
(
U

T
HV 1

)
F0 ◦

(
U

T
HV 2

)]
V

T
.(2.11)

In other words, in an open neighborhood of X, GS can be regarded as a “smooth
part” of G and GR can be regarded as the remaining “nonsmooth part” of G. As
we will see in later developments, this decomposition (2.9) can simplify many of our
proofs.

3. Lipschitz continuity. In this section, we analyze the local Lipschitz conti-
nuity of the spectral operator G defined on a nonempty open set N . Let X ∈ N
be given. Assume that g is locally Lipschitz continuous near σ = σ(X) with module
L > 0. Therefore, there exists a positive constant δ0 > 0 such that

‖g(σ)− g(σ′)‖ ≤ L‖σ − σ′‖ ∀σ, σ′ ∈ B(σ, δ0) := {y ∈ σ̂N | ‖y − σ‖ ≤ δ0} .

By using the absolutely symmetric property of g on σ̂N , we obtain the following simple
observation.
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Proposition 3.1. There exists a positive constant δ > 0 such that for any σ ∈
B(σ, δ),

|gi(σ)− gj(σ)| ≤ L|σi − σj | ∀ i, j ∈ {1, . . . ,m}, i 6= j, σi 6= σj ,(3.1)

|gi(σ) + gj(σ)| ≤ L|σi + σj | ∀ i, j ∈ {1, . . . ,m}, σi + σj > 0,(3.2)

|gi(σ)| ≤ L|σi| ∀ i ∈ {1, . . . ,m}, σi > 0,(3.3)

where L := max{(2Lδ + τ)/δ,
√

2L} with τ := maxi,j{|gi(σ) − gj(σ)|, |gi(σ) + gj(σ)
|gi(σ)|} ≥ 0.

Proof. It is easy to check that there exists a positive constant δ1 > 0 such that
for any σ ∈ B(σ, δ1),

|σi − σj | ≥ δ1 > 0 ∀ i, j ∈ {1, . . . ,m}, i 6= j, σi 6= σj ,(3.4)

|σi + σj | ≥ δ1 > 0 ∀ i, j ∈ {1, . . . ,m}, σi + σj > 0,(3.5)

|σi| ≥ δ1 > 0 ∀ i ∈ {1, . . . ,m}, σi > 0.(3.6)

Let δ := min{δ0, δ1} > 0. Denote L1 := (2Lδ+ τ)/δ. Then, L := max{L1,
√

2L}. Let
σ be any fixed vector in B(σ, δ).

First, we consider the case that i, j ∈ {1, . . . ,m}, i 6= j, and σi 6= σj . If σi 6= σj ,
then by the local Lipschitz continuity of g near σ, we know from (3.4) that

|gi(σ)− gj(σ)| = |gi(σ)− gi(σ) + gi(σ)− gj(σ) + gj(σ)− gj(σ)|

≤ 2‖g(σ)− g(σ)‖+ τ≤ (2‖g(σ)− g(σ)‖+ τ)
|σi − σj |

δ

≤ 2Lδ + τ

δ
|σi − σj | = L1|σi − σj |.(3.7)

If σi = σj , define t ∈ Rm by

tp :=


σp if p 6= i, j,

σj if p = i,

σi if p = j,

p = 1, . . . ,m.

Then, we have ‖t− σ‖ = ‖σ − σ‖ ≤ δ. Moreover, since g is absolutely symmetric on
σ̂N , we have gi(t) = gj(σ). Therefore

|gi(σ)− gj(σ)| = |gi(σ)− gi(t)| ≤ ‖g(σ)− g(t)‖ ≤ L‖σ − t‖ =
√

2L|σi − σj |.(3.8)

Thus, the inequality (3.1) follows from (3.7) and (3.8) immediately.
Second, consider the case i, j ∈ {1, . . . ,m} and σi + σj > 0. If σi + σj > 0, it

follows from (3.5) and the local Lipschitz continuity of g near σ that

|gi(σ) + gj(σ)| = |gi(σ)− gi(σ) + gi(σ) + gj(σ)− gj(σ) + gj(σ)|

≤ 2‖g(σ)− g(σ)‖+ τ≤ (2‖g(σ)− g(σ)‖+ τ)
|σi + σj |

δ

≤ 2Lδ + τ

δ
|σi + σj | = L1|σi + σj |.(3.9)

If σi + σj = 0, i.e., σi = σj = 0, define the vector t̂ ∈ Rm by

t̂p :=

 σp if p 6= i, j,
−σj if p = i,
−σi if p = j,

p = 1, . . . ,m.
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By noting that σi = σj = 0, we obtain that ‖t̂− σ‖ = ‖σ − σ‖ ≤ δ. Again, since g is
absolutely symmetric on σ̂N , we have gi(t̂) = −gj(σ). Therefore,

|gi(σ) + gj(σ)| = |gi(σ)− gi(t̂)| ≤ ‖g(σ)− g(t̂)‖ ≤ L‖σ − t̂‖ =
√

2L|σi + σj |.(3.10)

Thus the inequality (3.2) follows from (3.9) and (3.10).
Finally, we consider the case that i ∈ {1, . . . ,m} and σi > 0. If σi > 0, then we

know from (3.6) and by the local Lipschitz continuity of g near σ that

|gi(σ)| = |gi(σ)− gi(σ) + gi(σ)| ≤ |gi(σ)− gi(σ)|+ |gi(σ)|

≤ ‖g(σ)− g(σ)‖+ τ≤ (‖g(σ)− g(σ)‖+ τ)
|σi|
δ
≤ 2Lδ + τ

δ
|σi| ≤ L1|σi|.(3.11)

If σi = 0, define s ∈ Rm by

sp :=

{
σp if p 6= i,
0 if p = i,

p = 1, . . . ,m.

Then, since σi > 0, we know that ‖s − σ‖ < ‖σ − σ‖ ≤ δ. Moreover, since g is
absolutely symmetric on σ̂N , we know that gi(s) = 0. Therefore, we have

|gi(σ)| = |gi(σ)− gi(s)| ≤ ‖g(σ)− g(s)‖ ≤ L‖σ − s‖ ≤ L|σi|.(3.12)

Thus, the inequality (3.1) follows from (3.11) and (3.12) immediately. This completes
the proof.

For any fixed 0 < ω ≤ δ0/
√
m and y ∈ B(σ, δ0/(2

√
m)) := {‖y − σ‖∞ ≤

δ0/(2
√
m)}, the function g is (vector-valued) integrable on B(y, ω/2) = {z ∈ Rm |

‖y − z‖∞ ≤ ω/2} (in the sense of Lebesgue). Therefore, we know that the function

g(ω, y) :=
1

ωm

∫
B(y,ω/2)

g(z)dz(3.13)

is well defined on (0, δ0/
√
m ]×B(σ, δ0/(2

√
m)) and is said to be the Steklov averaged

function [76] of g. For the sake of convenience, we define g(0, y) = g(y). Since
g is absolutely symmetric on σ̂N , it is easy to check that for any fixed 0 < ω ≤
δ0/
√
m, the function g(ω, ·) is also absolutely symmetric onB(σ, δ0/(2

√
m)). It follows

from the definition (3.13) that g(·, ·) is locally Lipschitz continuous on (0, δ0/
√
m ]×

B(σ, δ0/(2
√
m)) with module L. Meanwhile, by elementary calculations, we know

that g(·, ·) is continuously differentiable on (0, δ0/
√
m ]×B(σ, δ0/(2

√
m)) and for any

fixed ω ∈ (0, δ0/
√
m ] and y ∈ B(σ, δ0/(2

√
m)), ‖g′y(ω, y)‖ ≤ L. Moreover, it is

well known (cf., e.g., [36, Lemma 1]) that g(ω, ·) converges to g uniformly on the
compact set B(σ, δ0/(2

√
m)) as ω ↓ 0. By using the derivative formula of spectral

operators obtained in [23, Theorem 4, (38)] and Proposition 3.1, we can obtain a
uniform approximation to a locally Lipschitz spectral operator through the Steklov
averaged function (3.13) from [23, Theorem 4], directly. For simplicity, we omit the
detailed proof here.

Proposition 3.2. Suppose that g is locally Lipschitz continuous near σ with mod-
ule L. Let g(·, ·) be the corresponding Steklov averaged function defined in (3.13).
Then, for any given ω ∈ (0, δ0/

√
m ], the spectral operator G(ω, ·) with respect to

g(ω, ·) is continuously differentiable on B(X, δ0/(2
√
m)) := {X ∈ X | ‖σ(X)−σ‖∞ ≤

δ0/(2
√
m)}, and there exists a positive constant δ2 > 0 such that
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‖G′(ω,X)‖ ≤ L ∀ 0 < ω ≤ min{δ0/
√
m, δ2} and X ∈ B(X, δ0/(2

√
m)),(3.14)

where L > 0 is the positive constant defined in Proposition 3.1. Moreover, G(ω, ·)
converges to G uniformly in the compact set B(X, δ0/(2

√
m)) as ω ↓ 0.

Proposition 3.2 allows us to derive the following result on the local Lipschitz
continuity of spectral operators.

Theorem 3.3. Suppose that X has the SVD (2.2). If g is locally Lipschitz con-
tinuous near σ = σ(X) with modulus L > 0, then the spectral operator G is locally
Lipschitz continuous near X with modulus L > 0, where L > 0 is the positive con-
stant defined in Proposition 3.1. Conversely, if G is locally Lipschitz continuous near
X with modulus L > 0, then g is locally Lipschitz continuous near σ with the same
modulus.

Proof. Suppose that g is locally Lipschitz continuous near σ = σ(X) with modulus
L > 0, i.e., there exists a positive constant δ0 > 0 such that

‖g(σ)− g(σ′)‖ ≤ L‖σ − σ′‖ ∀σ, σ′ ∈ B(σ, δ0).

By Proposition 3.2, for any ω ∈ (0, δ0/
√
m ], the spectral operator G(ω, ·) defined with

respect to the Steklov averaged function g(ω, ·) is continuously differentiable. Since
G(ω, ·) converges to G uniformly in the compact set B(X, δ0/(2

√
m)) as ω ↓ 0, we

know that for any ε > 0, there exists a constant δ2 > 0 such that for any 0 < ω ≤ δ2,

‖G(ω,X)−G(X)‖ ≤ ε ∀X ∈ B(X, δ0/(2
√
m)).

Fix any X,X ′ ∈ B(X, δ0/(2
√
m)) with X 6= X ′. By Proposition 3.2, we know that

there exists δ1 > 0 such that (3.14) holds. Let δ̄ := min{δ1, δ2, δ0/
√
m}. Then, by the

mean value theorem, we know that

‖G(X)−G(X ′)‖ = ‖G(X)−G(ω,X) +G(ω,X)−G(ω,X ′) +G(ω,X ′)−G(X ′)‖

≤
∥∥∥∥∫ 1

0

G′(ω,X+t(X −X ′))dt‖+2ε ≤ L
∥∥∥∥X−X ′‖+2ε ∀ 0 < ω < δ̄,

where L > 0 is the positive constant defined in Proposition 3.1. Since X,X ′ ∈
B(X, δ0/(2

√
m)) and ε > 0 are arbitrary, by letting ε ↓ 0, we obtain that

‖G(X)−G(X ′)‖ ≤ L‖X −X ′‖ ∀X,X ′ ∈ B(X, δ0/(2
√
m)).

Thus G is locally Lipschitz continuous near X.
Conversely, suppose that G is locally Lipschitz continuous near X with modulus

L > 0, i.e., there exists an open neighborhood B of X in N such that for any X,X ′ ∈
B,

‖G(X)−G(X ′)‖ ≤ L‖X −X ′‖.

Let (U, V ) ∈ Om×n(X) be fixed. For any y ∈ σ̂N , we define Y := U [Diag(y) 0]V
T
.

Then, we know from [23, Proposition 3] that G(Y ) = U [Diag(g(y)) 0]V
T
. There-

fore, we obtain that there exists an open neighborhood Bσ of σ in σ̂N such that

‖g(y)− g(y′)‖ = ‖G(Y )−G(Y ′)‖ ≤ L‖Y − Y ′‖ = L‖y − y′‖ ∀ y, y′ ∈ Bσ.

This completes the proof.
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It seems that the smoothing function approach employed above may not be ex-
tended to the Hölder continuity of the general spectral operator, since we may not
be able to find a uniform approximation to a Hölder continuous function through
some smoothing functions (see [86, p. 144] and [7, Theorem 2] for counterexamples).
However, if X ≡ Sm (or Vm×n), then the Hölder continuity with exponent 0 < q < 1
of the Löwner operator with respect to the scalar-valued function is studied in [87,
Theorem 1.1].

4. Bouligand-differentiability. In this section, we shall study the ρ-order
Bouligand-differentiability of spectral operators with 0 < ρ ≤ 1, which is a slightly
stronger property than the directional differentiability studied in [23, Theorem 3].

Let Z be a finite dimensional real Euclidean space equipped with an inner product
〈·, ·〉 and its induced norm ‖ · ‖. Let O be an open set in Z and let Z ′ be another
finite dimensional real Euclidean space. The function F : O ⊆ Z → Z ′ is said to be
B(ouligand)-differentiable [73] (see also [65, 31, 66] for more details) at z ∈ O if for
any h ∈ Z with h→ 0,

F (z + h)− F (z)− F ′(z;h) = o(‖h‖).

It is well known (cf. [75]) that if F is locally Lipschitz continuous, then F is B-
differentiable at z ∈ O if and only if F is directionally differentiable at z. If the
spectral operator G is directionally differentiable, then the corresponding directional
derivative formula is presented in [23, Theorem 3, (21)]. More precisely, since g
is absolutely symmetric on the nonempty open set σ̂N , it is easy to see that the
directional derivative φ := g′(σ; ·) : Rm → Rm satisfies

g′(σ;Qh) = Qg′(σ;h) ∀Q ∈ ±Pmσ and ∀h ∈ Rm ,(4.1)

where ±Pmσ is the subset defined with respect to σ by ±Pmσ := {Q ∈ ±Pm |σ = Qσ}.
Thus, we know that the function φ is a mixed symmetric mapping, with respect to
P|a1|×· · ·×P|ar|×±P|b|, over V := R|a1|×· · ·×R|ar|×R|b|. Let Ψ := G′(X; ·) : Vm×n →
Vm×n be the directional derivative of G at X. LetW := S|a1|×· · ·×S|ar|×V|b|×(n−|a|).
We know from [23, (21) Theorem 3] that for any H ∈ Vm×n,

Ψ(H) = G′(X;H) = U
[
E0

1 ◦ S
(
U

T
HV 1

)
+ E0

2 ◦ T
(
U

T
HV 1

)
F0 ◦ UT

HV 2

]
V

T

+U Φ̂(D(H))V
T

= G′S(X;H) + U Φ̂(D(H))V
T
,(4.2)

where D(H) = (S(H̃a1a1), . . . , S(H̃arar ), H̃bā) ∈ W, H̃ = U
T
HV , Φ : W → W is the

spectral operator defined with respect to the mixed symmetric mapping φ = g′(σ; ·),
and Φ̂ :W → Vm×n is defined by

Φ̂(W ) :=

[
Diag (Φ1(W ), . . . ,Φr(W )) 0

0 Φr+1(W )

]
∀W ∈ W.(4.3)

A stronger notion than B-differentiability is ρ-order B-differentiability with ρ > 0.
The function F : O ⊆ Z → Z ′ is said to be ρ-order B-differentiable at z ∈ O if for
any h ∈ Z with h→ 0,

F (z + h)− F (z)− F ′(z;h) = O(‖h‖1+ρ).

LetX∈Vm×n be given. We have the following results on the ρ-order B-differentiability
of spectral operators.
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Theorem 4.1. Suppose that X ∈ N has the SVD (2.2). Let 0 < ρ ≤ 1 be given.
(i) If g is locally Lipschitz continuous near σ(X) and ρ-order B-differentiable at

σ(X), then G is ρ-order B-differentiable at X.
(ii) If G is ρ-order B-differentiable at X, then g is ρ-order B-differentiable at

σ(X).

Proof. Without loss of generality, we only prove the results for the case that ρ = 1.
(i) For any H ∈ Vm×n, denote X = X + H. Let U ∈ Om and V ∈ On be such

that

X = U [Σ(X) 0]V T.(4.4)

Denote σ = σ(X). Let GS(X) and GR(X) be defined by (2.9). Therefore, by (2.10),
we know that for any H → 0,

GS(X)−GS(X) = G′S(X)H +O(‖H‖2),(4.5)

where G′S(X)H is given by (2.11). For H ∈ Vm×n sufficiently small, we have Ul(X) =∑
i∈aluiv

T
i , l = 1, . . . , r. Therefore, we know that

GR(X) = G(X)−GS(X) =

r+1∑
l=1

∆l(H),(4.6)

where

∆l(H) =
∑
i∈al

(gi(σ)− gi(σ))uiv
T
i , l = 1, . . . , r, and ∆r+1(H) =

∑
i∈b

gi(σ)uiv
T
i .

(a) We first consider the case that X = [Σ(X) 0]. Then, we know from the
directional differentiability of single values (cf., e.g., [43, Theorem 7], [84, Proposition
1.4], and [49, section 5.1]) that for any H sufficiently small,

σ = σ + σ′(X;H) +O(‖H‖2),(4.7)

where σ′(X;H) = (λ(S(Ha1a1)), . . . , λ(S(Harar )), σ([Hbb Hbc])) ∈ Rm. Denote h :=
σ′(X;H). Since g is locally Lipschitz continuous near σ and 1-order B-differentiable
at σ, we know that for any H sufficiently small,

g(σ)− g(σ) = g(σ + h+O(‖H‖2))− g(σ) = g(σ + h)− g(σ) +O(‖H‖2)

= g′(σ;h) +O(‖H‖2).

Let φ = g′(σ; ·). Since uiv
T
i , i = 1, . . . ,m, are uniformly bounded, we obtain that for

H sufficiently small,

∆l(H) = UalDiag(φl(h))V T
al

+O(‖H‖2), l = 1, . . . , r,

∆r+1(H) = UbDiag(φr+1(h))V T
b +O(‖H‖2).

Again, we know from [24, Proposition 7] that there exist Ql ∈ O|al|, M ∈ O|b|, and
N = [N1 N2] ∈ On−|a| with N1 ∈ V(n−|a|)×|b| and N2 ∈ V(n−|a|)×(n−m) (depending
on H) such that

Ual =

 O(‖H‖)
Ql +O(‖H‖)
O(‖H‖)

 , Val =

 O(‖H‖)
Ql +O(‖H‖)
O(‖H‖)

 , l = 1, . . . , r,

Ub =

[
O(‖H‖)

M +O(‖H‖)

]
, [Vb Vc] =

[
O(‖H‖)

N +O(‖H‖)

]
.

D
ow

nl
oa

de
d 

02
/2

5/
20

 to
 1

58
.1

32
.1

75
.3

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPECTRAL OPERATORS OF MATRICES 641

Since g is locally Lipschitz continuous near σ and directionally differentiable at σ,
we know from [73, Theorem A.2] or [70, Lemma 2.2] that the directional derivative
φ is globally Lipschitz continuous on Rm. Thus, for H sufficiently small, we have
‖φ(h)‖ = O(‖H‖). Therefore, we obtain that

∆l(H) =

 0 0 0

0 QlDiag(φl(h))QT
l 0

0 0 0

+O(‖H‖2), l = 1, . . . , r,(4.8)

∆r+1(H) =

[
0 0

0 MDiag(φr+1(h))NT
1

]
+O(‖H‖2).(4.9)

Again, it follows from [24, Proposition 7] that

S(Halal) = Ql(Σ(X)alal − νlI|al|)Q
T
l +O(‖H‖2), l = 1, . . . , r,(4.10)

[Hbb Hbc] = M(Σ(X)bb − νr+1I|b|)N
T
1 +O(‖H‖2).(4.11)

Since g is locally Lipschitz continuous near σ = σ(X), we know from Theorem 3.3
that the spectral operator G is locally Lipschitz continuous near X. Therefore, we
know from [23, Theorem 3 and Remark 1] that G is directionally differentiable at X.
Thus, from [73, Theorem A.2] or [70, Lemma 2.2], we know that G′(X, ·) is globally
Lipschitz continuous on Vm×n. Moreover, from the definition of directional derivative
and the absolute symmetry of g on the nonempty open set σ̂N , it is easy to see that
the directional derivative φ := g′(σ; ·) is actually a mixed symmetric mapping over the
space V := R|a1| × · · · ×R|ar| ×R|b|. Let W := S|a1| × · · · × S|ar| ×V|b|×(n−|a|). Thus,
the corresponding spectral operator Φ defined with respect to φ is globally Lipschitz
continuous on the space W. Hence, we know from (4.6) that for H sufficiently small,

GR(X) = Φ̂(D(H)) +O(‖H‖2),(4.12)

where D(H) = (S(Ha1a1), . . . , S(Harar ), Hbā) ∈ W and Φ̂ is defined by (4.3)
(b) Next, consider the general case that X ∈ Vm×n. For any H ∈ Vm×n,

we rewrite (4.4) by using the SVD of X as follows: X̃ :=[Σ(X) 0] + U
T
HV =

U
T
U [Σ(X) 0]V TV . Then, since U and V are unitary matrices, we know from (4.12)

that

GR(X) = UGR(X̃)V
T

=U Φ̂(D(H))V
T

+O(‖H‖2),(4.13)

where D(H) = (S(H̃a1a1), . . . , S(H̃arar ), H̃bā) and H̃ = U
T
HV . Thus, by combining

(4.2), (4.5), and (4.13) and noting that G(X) = GS(X), we obtain that for any
H ∈ Vm×n sufficiently close to 0,

G(X)−G(X)−G′(X;H)

= GR(X) +GS(X)−GS(X)−G′(X;H)

= GR(X)− U Φ̂(D(H))V
T

+O(‖H‖2) = O(‖H‖2),

where the directional derivative G′(X;H) of G at X along H is given by (4.2). This
implies that G is 1-order B-differentiable at X.
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(ii) Suppose that G is 1-order B-differentiable at X. Let (U, V ) ∈ Om×n(X) be

fixed. For any h ∈ Rm, let H = U [Diag(h) 0]V
T ∈ Vm×n. We know from [23,

Proposition 3] that for all h sufficiently close to 0, G(X +H) = UDiag(g(σ + h))V
T
1 .

Therefore, we know from the assumption that

Diag(g(σ + h)− g(σ)) = U
T (
G(X +H)−G(X)

)
V 1 = U

T
G′(X;H)V 1 +O(‖H‖2).

This shows that g is 1-order B-differentiable at σ. The proof is completed.

5. G-semismoothness. Let Z and Z ′ be two finite dimensional real Euclidean
spaces and O be an open set in Z. Suppose that F : O ⊆ Z → Z ′ is a locally Lipschitz
continuous function on O. Then, according to Rademacher’s theorem, F is almost
everywhere differentiable (in the sense of Fréchet) in O. Let DF be the set of points
in O where F is differentiable. Let F ′(z) be the derivative of F at z ∈ DF . Then the
B(ouligand)-subdifferential of F at z ∈ O is denoted by [69],

∂BF (z) :=

{
lim

DF3zk→z
F ′(zk)

}
,

and the Clarke generalized Jacobian of F at z ∈ O [16] takes the form

∂F (z) = conv{∂BF (z)},

where “conv” stands for the convex hull in the usual sense of convex analysis [74].
The function F is said to be G-semismooth at a point z ∈ O if for any y → z and
V ∈ ∂F (y),

F (y)− F (z)− V (y − z) = o(‖y − z‖).

A stronger notion than G-semismoothness is ρ-order G-semismoothness with ρ > 0.
The function F is said to be ρ-order G-semismooth at z if for any y → z and V ∈
∂F (y),

F (y)− F (z)− V (y − z) = O(‖y − z‖1+ρ).

In particular, the function F is said to be strongly G-semismooth at z if F is 1-order
G-semismooth at z. Furthermore, the function F is said to be (ρ-order, strongly)
semismooth at z ∈ O if (i) the directional derivative of F at z along any direction
d ∈ Z, denoted by F ′(z; d), exists; and (ii) F is (ρ-order, strongly) G-semismooth.

The following result taken from [78, Theorem 3.7] provides a convenient tool for
proving the G-semismoothness of Lipschitz functions.

Lemma 5.1. Let F : O ⊆ Z → Z ′ be a locally Lipschitz continuous function
on the open set O, and let ρ > 0 be a constant. F is ρ-order G-semismooth (G-
semismooth) at z if and only if for any DF 3 y → z,

F (y)− F (z)− F ′(y)(y − z) = O(‖y − z‖1+ρ)
(

= o(‖y − z‖)
)
.(5.1)

LetX ∈ N be given. Assume that g is locally Lipschitz continuous near σ = σ(X).
Then from Theorem 3.3 we know that the corresponding spectral operator G is locally
Lipschitz continuous near X. The following theorem is on the G-semismoothness of
the spectral operator G.

Theorem 5.2. Suppose that X ∈ N has the SVD (2.2). Let 0 < ρ ≤ 1 be given.
G is ρ-order G-semismooth at X if and only if g is ρ-order G-semismooth at σ.
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Proof. Without loss of generality, we only prove the result for the case that ρ = 1.
“ ⇐= ” For any H ∈ Vm×n, denote X = X + H. Let U ∈ Om and V ∈ On be

such that

X = U [Σ(X) 0]V T.(5.2)

Denote σ = σ(X). Recall the mappings GS and GR defined in (2.9). We know from
[24, Proposition 8] that there exists an open neighborhood B ⊆ N of X such that GS
twice continuously differentiable on B and

GS(X)−GS(X) =

r∑
l=1

ḡl U ′l (X)H +O(‖H‖2)

=

r∑
l=1

ḡl
{
U [Γl(X) ◦ S(UTHV1) + Ξl(X) ◦ T (UTHV1)]V T

1

+U(Υl(X) ◦ UTHV2)V T
2

}
+O(‖H‖2),(5.3)

where for each l ∈ {1, . . . , r}, Γl(X), Ξl(X) and Υl(X) are given by [24, (40)–(42)],
respectively. By taking a smaller B if necessary, we may assume that for any X ∈ B
and l, l′ ∈ {1, . . . , r},

σi(X) > 0, σi(X) 6= σj(X) ∀ i ∈ al, j ∈ al′ and l 6= l′.(5.4)

Since g is locally Lipschitz continuous near σ, we know that for any H sufficiently
small,

ḡl = gi(σ) +O(‖H‖) ∀ i ∈ al, l = 1, . . . , r.(5.5)

By noting that U ∈ Om and V ∈ On are uniformly bounded, we know from (5.3) and
(5.5) that for any X ∈ B (shrinking B if necessary),

GS(X)−GS(X) = U
[
E0

1 ◦ S
(
UTHV1

)
+ E0

2 ◦ T
(
UTHV1

)
F0 ◦ UTHV2

]
V T(5.6)

+O(‖H‖2),

where E0
1 , E0

2 , and F0 are the corresponding real matrices defined in (2.6)–(2.8) (de-
pending on X), respectively.

Let X ∈ DG ∩ B, where DG is the set of points in Vm×n for which G is
(F-)differentiable. Define the corresponding index sets in {1, . . . ,m} for X by a′ :=
{i | σi(X) > 0} and b′ := {i | σi(X) = 0}. By (5.4), we have

a′ ⊇ a and b′ ⊆ b.(5.7)

We know from [23, Theorem 4] that

G′(X)H = U
[
E1 ◦ S

(
UTHV1

)
+ E2 ◦ T

(
UTHV1

)
+ Diag

(
Cdiag

(
S(UTHV1)

))
,

(5.8)

F ◦ UTHV2

]
V T,

where η, E1, E2, F , and C are defined by [23, (33)–(36)] with respect to σ, respectively.
Denote ∆(H) := G′(X)H − (GS(X) − GS(X)). Moreover, since there exists an
integer j ∈ {0, . . . , |b|} such that |a′| = |a| + j, we can define two index sets b1 :=
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{|a| + 1, . . . , |a| + j} and b2 := {|a| + j + 1, . . . , |a| + |b|} such that a′ = a ∪ b1 and
b′ = b2. From (5.6) and (5.8), we obtain that

∆(H) = UR̂(H)V T +O(‖H‖2),(5.9)

where R̂(H) ∈ Vm×n is defined by

R̂(H) :=

[
Diag (R1(H), . . . , Rr(H)) 0

0 Rr+1(H)

]
,

Rl(H) = (E1)alal ◦ S
(
UT
al
HVal

)
+ Diag

(
(Cdiag

(
S(UTHV1)

)
)alal

)
, l = 1, . . . , r,

(5.10)

(5.11)

Rr+1(H)

=

[
(E1)b1b1 ◦ S(UT

b1
HVb1)+Diag

(
(Cdiag(S(UTHV1)))b1b1

)
0 0

0 γUT
b2
HVb2 γU

T
b2
HV2

]
,

and γ := (g′(σ))ii for any i ∈ b2. By (2.2), we obtain from (5.2) that[
Σ(X) 0

]
+ U

T
HV = U

T
U [Σ(X) 0]V TV .

Let Ĥ := U
T
HV , Û := U

T
U , and V̂ := V

T
V . Then, UTHV = ÛTU

T
HV V̂ = ÛTĤV̂ .

We know from [24, Proposition 7, (31)] that there exist Ql ∈ O|al|, l = 1, . . . , r, and
M ∈ O|b|, N ∈ On−|a| such that

UT
al
HVal = ÛT

al
ĤV̂al = QT

l ĤalalQl +O(‖H‖2), l = 1, . . . , r,[
UT
b HVb UT

b HV2

]
=
[
ÛT
b ĤV̂b ÛT

b ĤV̂2

]
= MT

[
Ĥbb Ĥbc

]
N +O(‖H‖2).

Moreover, from [24, Proposition 7, (32)–(33)], we obtain that

S(UT
al
HVal) = QT

l S(Ĥalal)Ql +O(‖H‖2)

= Σ(X)alal − Σ(X)alal +O(‖H‖2), l = 1, . . . , r,[
UT
b HVb UT

b HV2

]
= MT

[
Ĥbb Ĥbc

]
N =

[
Σ(X)bb − Σ(X)bb 0

]
+O(‖H‖2).

Denote h = σ′(X;H) ∈ Rm. Since the singular value functions are strongly semi-
smooth [79], we know that

S(UT
al
HVal) = Diag(hal) +O(‖H‖2), l = 1, . . . , r,

S(UT
b1HVb1) = Diag(hb1) +O(‖H‖2),[

UT
b2HVb2 UT

b2HV2

]
= [Diag(hb2) 0] +O(‖H‖2).

Therefore, since C = g′(σ)−Diag(η), by (5.10) and (5.11), we obtain from (5.9) that

∆(H) = U [Diag (g′(σ)h) 0]V T +O(‖H‖2).(5.12)

On the other hand, for X sufficiently close to X, we have Ul(X) =
∑
i∈aluiv

T
i ,

l = 1, . . . , r. Therefore,

GR(X) = G(X)−GS(X) =

r∑
l=1

∑
i∈al

[gi(σ)− gi(σ)]uiv
T
i +

∑
i∈b

gi(σ)uiv
T
i .(5.13)
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Note that by definition, GR(X) = 0. We know from [23, Theorem 4] that G is differ-
entiable at X if and only if g is differentiable at σ. Since g is 1-order G-semismooth
at σ and σ(·) is strongly semismooth, we obtain that for any X ∈ DG ∩ B (shrinking
B if necessary),

g(σ)− g(σ) = g′(σ)(σ − σ) +O(‖H‖2) = g′(σ)(h+O(‖H‖2)) +O(‖H‖2)

= g′(σ)h+O(‖H‖2).

Then, since U ∈ Om and U ∈ On are uniformly bounded, we obtain from (5.13) that

GR(X) = U [Diag (g′(σ)h) 0]V T +O(‖H‖2).

Thus, from (5.12), we obtain that ∆(H) = GR(X) + O(‖H‖2). That is, for any
X ∈ DG converging to X,

G(X)−G(X)−G′(X)H = GR(X) +GS(X)−GS(X)−G′(X)H

= GR(X)−∆(H) = O(‖H‖2).

“ =⇒ ” Suppose that G is 1-order G-semismooth at X. Let (U, V ) ∈ Om×n(X)
be fixed. Assume that σ = σ + h ∈ Dg and h ∈ Rm is sufficiently small. Let

X = U [Diag(σ) 0]V
T

and H = U [Diag(h) 0]V
T
. Then, X ∈ DG and converges

to X if h goes to zero. We know from [23, Proposition 3] that for all h sufficiently

close to 0, G(X) = UDiag(g(σ))V
T
1 . Therefore, for any h sufficiently close to 0,

Diag(g(σ + h)− g(σ)) = U
T (
G(X)−G(X)

)
V 1 = U

T
G′(X)HV 1 +O(‖H‖2).

Hence, since obviously Diag(g′(σ)h) = U
T
G′(X)HV 1, we know that for h sufficiently

small, g(σ + h)− g(σ) = g′(σ)h+O(‖h‖2). Thus, g is 1-order G-semismooth at σ.

It is worth mentioning that for MOPs, we are able to obtain the semismoothness
of the proximal point mapping Pf defined by (1.1) by employing the corresponding
results on tame functions. We first recall the following concept on the o(rder)-minimal
structure (cf. [17, Definition 1.4]).

Definition 5.3. An o-minimal structure of Rn is a sequenceM = {Mi}∞i=1 such
that for each i ≥ 1, Mi is a collection of subsets of Ri satisfying the following axioms:

(i) For every i, Mi is closed under Boolean operators (finite unions, intersec-
tions, and complement).

(ii) If A ∈Mi and B ∈Mi′ , then A×B belongs to Mi+i′ .
(iii) Mi contains all the subsets of the form {x ∈ Ri | p(x) = 0}, where p : Ri → R

is a polynomial function.
(iv) Let Π : Ri+1 → Ri be the projection on the first i coordinates. If A ∈ Mi+1,

then Π(A) ∈Mi.
(v) The elements of M1 are exactly the finite union of points and intervals.

The elements of o-minimal structure are called definable sets. A map F : A ⊆ Rn →
Rm is called definable if its graph is a definable subset of Rn+m.

A set of Rn is called tame with respect to an o-minimal structure if its intersection
with the interval [−r, r]n for every r > 0 is definable in this structure, i.e., the element
of this structure. A mapping is tame if its graph is tame. One most frequently
used o-minimal structure is the class of semialgebraic subsets of Rn. A set in Rn is
semialgebraic if it is a finite union of sets of the form

{x ∈ Rn | pi(x) > 0, qj(x) = 0, i = 1, . . . , a, j = 1, . . . , b} ,
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where pi : Rn → R, i = 1, . . . , a, and qj : Rn → R, j = 1, . . . , b, are polynomials. A
mapping is semialgebraic if its graph is semialgebraic.

For tame functions, we have the following proposition of the semismoothness
[4, 40].

Proposition 5.4. Let ξ : Rn → Rm be a locally Lipschitz continuous mapping.
(i) If ξ is tame, then ξ is semismooth.

(ii) If ξ is semialgebraic, then ξ is γ-order semismooth with some γ > 0.

Let Z be a finite dimensional Euclidean space. If the closed proper convex
function f : Z → (−∞,∞] is semialgebraic, then the Moreau–Yosida regulariza-
tion ψf (x) := minz∈Z

{
f(z) + 1

2‖z − x‖
2
}

, x ∈ Z, of f is semialgebraic. Moreover,
since the graph of the corresponding proximal point mapping Pf is of the form

gphPf =

{
(x, z) ∈ Z × Z | f(z) +

1

2
‖z − x‖2 = ψf (x)

}
,

we know that Pf is also semialgebraic (cf. [40]). Since Pf is globally Lipschitz
continuous, according to Proposition 5.4(ii), it yields that Pf is γ-order semismooth
with some γ > 0. On the other hand, most unitarily invariant closed proper convex
functions f : X → (−∞,∞] in MOPs are semialgebraic. For example, it is easy to
verify that the indicator function δSn+(·) of the positive semidefinite matrix cone and

the matrix Ky Fan k-norm ‖·‖(k) (the sum of k-largest singular values of matrices) are
all semialgebraic. Therefore, we know that the corresponding proximal point mapping
Pf defined by (1.1) for MOPs are γ-order semismooth with some γ > 0. However,
since γ is not known explicitly, by this approach, we may not be able to show the
strong semismoothness of the spectral operator G = Pf even if the corresponding
symmetric mapping g is strongly semismooth. However, the order ρ is very important
for both algorithmic design and theoretical study of large-scale MOPs. For instance,
it is well known (cf., e.g., [70, Theorem 3.2]) that the semismooth Newton method has
a ρ+1-order local convergence rate for ρ-order semismooth functions. In contrast, the
tame function approach does not quantify the order ρ even if one knows the order of
semismoothness for the mixed symmetric function. Moreover, the explicit formulas of
the derivatives obtained via the spectral operator framework are vital for applications.

6. Characterization of Clarke’s generalized Jacobian. Let X ∈ N be
given. In this section, we assume that g is locally Lipschitz continuous near σ = σ(X)
and directionally differentiable at σ. Therefore, from Theorem 3.3 and [23, Theo-
rem 3 and Remark 1], we know that the corresponding spectral operator G is locally
Lipschitz continuous near X and directionally differentiable at X. Furthermore, we
define the function d : Rm → Rm by

d(h) := g(σ + h)− g(σ)− g′(σ;h), h ∈ Rm.(6.1)

Consequently, we know that the function d is also a mixed symmetric mapping, with
respect to P|a1| × · · · × P|ar| ×±P|b|, over V = R|a1| × · · · × R|ar| × R|b|. Again, since
g is locally Lipschitz continuous near σ and directionally differentiable at σ, we know
from [75] that g is B-differentiable at σ. Thus, d is differentiable at zero with the
derivative d′(0) = 0. Furthermore, if we assume that the function d is also strictly
differentiable at zero, then we have

lim
w,w′→0
w 6=w′

d(w)− d(w′)

‖w − w′‖
= 0.(6.2)

D
ow

nl
oa

de
d 

02
/2

5/
20

 to
 1

58
.1

32
.1

75
.3

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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By using the mixed symmetric property of d, one can easily obtain the following
results. We omit the details of the proof here.

Lemma 6.1. Let d : Rm → Rm be the function given by (6.1). Suppose that d is
strictly differentiable at zero. Let {wk} be a given sequence in Rm converging to zero.
Then, if there exist i, j ∈ al for some l ∈ {1, . . . , r} or i, j ∈ b such that wki 6= wkj for
all k sufficiently large, then

lim
k→∞

di(w
k)− dj(wk)

wki − wkj
= 0;(6.3)

if there exist i, j ∈ b such that wki + wkj 6= 0 for all k sufficiently large, then

lim
k→∞

di(w
k) + dj(w

k)

wki + wkj
= 0;(6.4)

and if there exists i ∈ b such that wki 6= 0 for all k sufficiently large, then

lim
k→∞

di(w
k)

wki
= 0.(6.5)

Again, since the spectral operator G is locally Lipschitz continuous near X, we
know that Ψ = G′(X; ·) is globally Lipschitz continuous (cf. [73, Theorem A.2] or [70,
Lemma 2.2]). Therefore, ∂BΨ(0) and ∂Ψ(0) are well defined. Furthermore, we have
the following characterization of the B-subdifferential and Clarke’s subdifferential of
the spectral operator G at X in terms of those of Ψ at 0, whose detailed proof can
be found in the appendix. It is worth mentioning that these characterizations play
essential roles for the study of the inverse function theorem for semismooth functions
(cf., e.g., [68, Theorem 6]) and provide necessary theoretical foundation for designing
semismooth Newton algorithms for solving MOPs (cf., e.g., [92, 89, 53]).

Theorem 6.2. Suppose that the given X ∈ N has the decomposition (2.2). Sup-
pose that there exists an open neighborhood B ⊆ Rm of σ in σ̂N such that g is differ-
entiable at σ ∈ B if and only if g′(σ; ·) is differentiable at σ− σ. Assume further that
the function d : Rm → Rm defined by (6.1) is strictly differentiable at zero. Then, we
have

∂BG(X) = ∂BΨ(0) and ∂G(X) = ∂Ψ(0).

7. Extensions. In this section, we consider the extensions of the related results
obtained in previous sections for the case that X ≡ Vm×n to the general spectral
operators defined on the Cartesian product of several real or complex matrices.

Let s be a positive integer and 0 ≤ s0 ≤ s be a nonnegative integer. For given
positive integers m1, . . . ,ms and ns0+1, . . . , ns, define the real vector space X by

X := Sm1 × · · · × Sms0 × Vms0+1×ns0+1 × · · · × Vms×ns .(7.1)

Without loss of generality, we assume that mk ≤ nk, k = s0 + 1, . . . , s. For any
X = (X1, . . . , Xs) ∈ X , we have for 1 ≤ k ≤ s0, Xk ∈ Smk and s0 + 1 ≤ k ≤ s,
Xk ∈ Vmk×nk . Denote

Y := Rm1 × · · · × Rms0 × Rms0 × · · · × Rms .(7.2)

For any X∈X , define κ(X)∈Y by κ(X) := (λ(X1), . . . , λ(Xs0), σ(Xs0+1), . . . , σ(Xs)).
Define the set P by

P := {(Q1, . . . , Qs) | Qk ∈ Pmk , 1 ≤ k ≤ s0, and Qk ∈ ±Pmk , s0 + 1 ≤ k ≤ s} .
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Let g : Y → Y be a given mapping. For any x = (x1, . . . , xs) ∈ Y with xk ∈ Rmk , we
write g(x) ∈ Y in the form g(x) = (g1(x), . . . , gs(x)) with gk(x) ∈ Rmk for 1 ≤ k ≤ s.
The following definition of the mixed symmetric property and the general spectral
operator is taken from [23, Definition 1].

Definition 7.1. The given mapping g : Y → Y is said to be mixed symmetric,
with respect to P, at x = (x1, . . . , xs) ∈ Y with xk ∈ Rmk , if

g(Q1x1, . . . , Qsxs) = (Q1g1(x), . . . , Qsgs(x)) ∀ (Q1, . . . , Qs) ∈ P.(7.3)

The mapping g is said to be mixed symmetric, with respect to P, over a set D ⊆ Y if
(7.3) holds for every x ∈ D.

Let N be a given nonempty set in X . Define κN := {κ(X) ∈ Y | X ∈ N}. The
following definition of the spectral operator with respect to a mixed symmetric map-
ping g is given by [23, Definition 2].

Definition 7.2. Suppose that g : Y → Y is mixed symmetric on κN . The spectral
operator G : N → X with respect to g is defined as G(X) := (G1(X), . . . , Gs(X)) for
X = (X1, . . . , Xs) ∈ N such that

Gk(X) :=

{
PkDiag

(
gk(κ(X))

)
PT
k if 1 ≤ k ≤ s0,

Uk
[
Diag

(
gk(κ(X))

)
0
]
V T
k if s0 + 1 ≤ k ≤ s,

where Pk ∈ Omk(Xk), 1 ≤ k ≤ s0, (Uk, Vk) ∈ Omk,nk(Xk), s0 + 1 ≤ k ≤ s.

7.1. The spectral operators defined on the general matrix spaces. In
fact, the corresponding properties of the general spectral operators defined on the
vector space X given by (7.1), including locally Lipschitzian continuity, ρ-order B-
differentiability, ρ-order G-semismoothness, and the characterization of the Clarke
generalized Jacobian, can be studied in the same fashion as those in sections 4–6. For
simplicity, we omit the proofs here. For readers who are interested in seeking the
details, we refer to [22].

Let X and Y be the vector spaces defined by (7.1) and (7.2), respectively. Suppose
that N is a given nonempty open set in X . Let G : X → X be the spectral operator
defined in Definition 7.2 with respect to g : Y → Y, which is mixed symmetric on
an open set κ̂N in Y containing κN := {κ(X) | X ∈ N}. For the given X =
(X1, . . . , Xs0 , Xs0+1, . . . , Xs) ∈ X , recall that κ(X) = (λ(X1), . . . , λ(Xs0), σ(Xs0+1),
. . . , σ(Xs)) ∈ Y. We first consider the locally Lipschitzian continuity of spectral
operators of matrices.

Theorem 7.3. Let X ∈ N be given. The spectral operator G is locally Lipschitz
continuous near X if and only if the corresponding mixed symmetric function g is
locally Lipschitz continuous near κ(X).

For the ρ-order B(ouligand)-differentiability (0 < ρ ≤ 1) of the general spectral
operators, we have the following theorem.

Theorem 7.4. Let X ∈ N and 0 < ρ ≤ 1 be given. Then, we have the following
results:

(i) If g is locally Lipschitz continuous near κ(X) and ρ-order B-differentiable at
κ(X), then G is ρ-order B-differentiable at X.

(ii) If G is ρ-order B-differentiable at X, then g is ρ-order B-differentiable at
κ(X).
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SPECTRAL OPERATORS OF MATRICES 649

Suppose that g is locally Lipschitz continuous near κ(X). Then we know from
Theorem 7.3 that the corresponding spectral operator G is also locally Lipschitz con-
tinuous near X. We have the following theorem on the G-semismoothness of spectral
operators.

Theorem 7.5. Let X ∈ N be given. Suppose that 0 < ρ ≤ 1. Then, the spectral
operator G is ρ-order G-semismooth at X if and only if g is ρ-order G-semismooth at
κ(X).

Finally, we assume that g is locally Lipschitz continuous near κ = κ(X) and
directionally differentiable at κ. From Theorem 7.3 and [23, Theorem 6 and Remark
1], the spectral operator G is also locally Lipschitz continuous near X and directionally
differentiable at X. Then, we have the following results on the characterization of the
Clarke generalized Jacobian of G.

Theorem 7.6. Let X ∈ N be given. Suppose that there exists an open neighbor-
hood B ⊆ Y of κ in κ̂N such that g is differentiable at κ ∈ B if and only if φ = g′(κ; ·)
is differentiable at κ− κ. Assume that the function d : Y → Y defined by

d(h) = g(κ+ h)− g(κ)− g′(κ;h), h ∈ Y,

is strictly differentiable at zero. Then, we have

∂BG(X) = ∂BΨ(0) and ∂G(X) = ∂Ψ(0),

where Ψ := G′(X; ·) : X → X is the directional derivative of G at X.

7.2. The smoothing spectral operators. In this subsection, we consider the
smoothing spectral operators of matrices. The corresponding properties obtained here
are important and useful for designing globally convergent smoothing Newton methods
for solving MOPs, which can often be solved via nonsmooth equations involving the
nonsmooth spectral operators. Note that semismooth Newton methods usually only
converge locally. For globalized nonsmooth Newton methods, one needs smoothing
functions as demonstrated in [71]. For simplicity, we mainly focus on the case X ≡
R×Vm×n. The corresponding results can be obtained as special cases for the spectral
operators defined on the general matrix space X given by (7.1).

Let N be a given nonempty open set in Vm×n. Suppose that g : Rm → Rm is
mixed symmetric with respect to P ≡ ±Pm on an open set σ̂N in Rm containing
σN = {σ(X) | X ∈ N}. Let X ∈ N be given. Assume that g is Lipschitz continuous
near σ = σ(X). Suppose there exists a mapping θ : R++ × σ̂N → Rm such that for
any x ∈ σ̂N and (ω, z) ∈ R++ × σ̂N close to (0, x), θ is continuously differentiable
around (ω, z) unless ω = 0 and θ(ω, z)→ g(x) as (ω, z)→ (0, x). For convenience, for
any x ∈ σ̂N , we always define θ(0, x) = g(x) and θ(ω, x) = θ(−ω, x) for any ω < 0.
Furthermore, we assume that for any fixed ω close to 0, θ(ω, ·) is also mixed symmetric
on σ̂N . Then, the mapping θ is said to be a smoothing approximation of g on σ̂N . For a
given mixed symmetric mapping g, there are many ways to construct such a smoothing
approximation. For example, as mentioned in section 3, the Steklov averaged function
defined by (3.13) is a smoothing approximation of the mixed symmetric mapping g.

Define π : R× σ̂N → R×Rm by π(ω, x) = (ω, θ(ω, x)), (ω, x) ∈ R× σ̂N . Then, it
is easy to verify that π is mixed symmetric (Definition 2.1) over R×Rm with respect
to ±P1 × ±Pm. Note that R ≡ V1×1. The spectral operator Π : V1×1 × Vm×n →
V1×1 × Vm×n defined with respect to π takes the form

Π(ω,X) = (ω,Θ(ω,X)), (ω,X) ∈ V1×1 ×N ,
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where Θ(ω,X) := U
[
Diag

(
θ(ω, σ(X))

)
0
]
V T and (U, V ) ∈ Om,n(X). We call Θ :

V1×1 × N → Vm×n the smoothing spectral operator of G with respect to θ. It
follows from [23, Theorem 1] that Θ is well defined. Moreover, since θ is continuously
differentiable at any (ω, z) ∈ R× σ̂N with ω close to 0, we know from [23, Theorem 7]
that Θ is also continuously differentiable at any (ω,X) ∈ R×N , and the corresponding
derivative formula can be found in [23, Theorem 7]. For the case ω = 0, the continuity
and Hadamard directional differentiability of Θ follow directly from [23, Theorem 6].
Next, we study the locally Lipschitz continuity, ρ-order B-differentiable (0 < ρ ≤ 1),
ρ-order G-semismooth (0 < ρ ≤ 1), and the characterization of the Clarke generalized
Jacobian of Θ at (0, X). The first property we consider is the local Lipschitzian
continuity of Θ near (0, X).

Theorem 7.7. Let X ∈ N be given. Suppose that the smoothing approximation θ
of g is locally Lipschitz continuous near (0, σ). Then, the smoothing spectral operator
Θ with respect to θ is locally Lipschitz continuous near (0, X).

The following theorem is on the ρ-order B-differentiability (0 < ρ ≤ 1) of the
smoothing spectral operator Θ at (0, X).

Theorem 7.8. Let X ∈ N and 0 < ρ ≤ 1 be given. If the smoothing approxima-
tion θ of g is locally Lipschitz continuous near (0, σ) and ρ-order B-differentiable at
(0, σ), then the smoothing spectral operator Θ is ρ-order B-differentiable at (0, X).

Suppose that the smoothing approximation θ of g is locally Lipschitz continuous
near (0, σ(X)). Then, by Theorem 7.7, the smoothing spectral operator Θ is also
locally Lipschitz continuous near X. Moreover, we have the following results on the
G-semismoothness of the smoothing spectral operator Θ at (0, X).

Theorem 7.9. Let X ∈ N be given. Suppose that the smoothing approximation
θ of g is ρ-order G-semismooth (0 < ρ ≤ 1) at (0, σ(X)). Then, the corresponding
smoothing spectral operator Θ is ρ-order G-semismooth at (0, X).

Finally, suppose that the smoothing approximation θ of g is locally Lipschitz
continuous near (0, σ) and directionally differentiable at (0, σ). It then follows from
Theorem 7.7 and [23, Theorem 3] that the smoothing spectral operator Θ is also locally
Lipschitz continuous near (0, X) and directionally differentiable at (0, X). Further-
more, we have the following results on the characterization of the Clarke generalized
Jacobian of Θ at (0, X).

Theorem 7.10. Let X ∈ N be given. Suppose that there exists an open neigh-
borhood B ⊆ R× σ̂N of (0, σ) such that θ is differentiable at (τ, σ) ∈ B if and only if
θ′((0, σ); (·, ·)) is differentiable at (τ, σ − σ). Assume that the function d : R× Rm →
Rm defined by

d(τ, h) := θ(τ, σ + h)− θ(0, σ)− θ′((0, σ); τ, h), (τ, h) ∈ R× Rm,

is strictly differentiable at zero. Then, we have

∂BΘ(0, X) = ∂BΨ(0, 0) and ∂Θ(0, X) = ∂Ψ(0, 0),

where Ψ := Θ′((0, X); (·, ·)) is the directional derivative of Θ at (0, X).

8. Conclusions. We conduct extensive studies on spectral operators initiated in
[23]. Several fundamental first- and second-order properties of spectral operators, in-
cluding locally Lipschitz continuity, ρ-order B(ouligand)-differentiability (0 < ρ ≤ 1),
ρ-order G-semismooth (0 < ρ ≤ 1), and the characterization of Clarke’s generalized
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Jacobian, are systematically studied. These results, together with the results obtained
in [23], provide the necessary theoretical foundations for both the computational and
theoretical aspects of many applications. In particular, based on the recent exciting
progress made in solving large-scale SDP problems, we believe that the properties of
the spectral operators studied here, such as the semismoothness and the characteriza-
tion of Clarke’s generalized Jacobian, constitute the backbone for future developments
on both designing some efficient numerical methods for solving large-scale MOPs and
conducting second-order variational analysis of the general MOPs. The work done on
spectral operators of matrices is by no means complete. Due to the rapid advances in
the applications of matrix optimization in different fields, spectral operators of matri-
ces will become even more important and many other properties of spectral operators
are waiting to be explored.

Appendix A.

Proof of Theorem 6.2. We only need to prove the result for the B-subdifferentials.
Let V be any element of ∂BG(X). Then, there exists a sequence {Xk} in DG con-
verging to X such that V = limk→∞G

′(Xk). Now we present two preparatory steps
before proving that V ∈ ∂BΨ(0).

(a) For each Xk, let Uk ∈ Om and V k ∈ On be the matrices such that

Xk = Uk[Σ(Xk) 0](V k)T.

For each Xk, denote σk = σ(Xk). Then, we know from [23, Theorem 4] that for each
k, σk ∈ Dg. For k sufficiently large, we know from [23, Lemma 1] that for each k, GS
is twice continuously differentiable at X. Thus, limk→∞G

′
S(Xk) = G′S(X). Hence,

we have for any H ∈ Vm×n,

lim
k→∞

G′S(Xk)H = G′S(X)H

(A.1)

= U
[
E0

1 ◦ S
(
U

T
HV 1

)
+ E0

2 ◦ T
(
U

T
HV 1

)
F0 ◦ UT

HV 2

]
V

T
.

Moreover, we know that the mapping GR = G−GS is also differentiable at each Xk

for k sufficiently large. Therefore, we have

V = lim
k→∞

G′(Xk) = G′S(X) + lim
k→∞

G′R(Xk).(A.2)

From the continuity of the singular value function σ(·), by taking a subsequence if
necessary, we assume that for each Xk and l, l′ ∈ {1, . . . , r}, σi(Xk) > 0, σi(X

k) 6=
σj(X

k) for any i ∈ al, j ∈ al′ , and l 6= l′. Since {Uk} and {V k} are uniformly bounded,
by taking subsequences if necessary, we may also assume that {Uk} and {V k} converge
and denote the limits by U∞ ∈ Om and V∞ ∈ On, respectively. It is clear that
(U∞, V∞) ∈ Om,n(X). Therefore, we know from [24, Proposition 5] that there exist
Ql ∈ O|al|, l = 1, . . . , r, Q′ ∈ O|b|, and Q′′ ∈ On−|a| such that U∞ = UM and
V∞ = V N , where M = Diag(Q1, . . . , Qr, Q

′) ∈ Om and N = Diag(Q1, . . . , Qr, Q
′′) ∈

On. Let H ∈ Vm×n be arbitrarily given. For each k, denote H̃k := (Uk)THV k.
Since {(Uk, V k)} ∈ Om,n(Xk) converges to (U∞, V∞) ∈ Om,n(X), we know that

limk→∞H̃
k = (U∞)THV∞. For notational simplicity, we denote H̃ := U

T
HV and

Ĥ := (U∞)THV∞.
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For k sufficiently large, we know from [24, Proposition 8] and [23, Theorem 4,
(38)] that for any H ∈ Vm×n, G′R(Xk)H = Uk∆k(V k)T with

∆k :=

[
Diag

(
∆k

1 , . . . ,∆
k
r

)
0

0 ∆k
r+1

]
∈ Vm×n,

where for each k, ∆k
l = (E1(σk))alal ◦ S(H̃k

alal
) + Diag((C(σ)diag(S(H̃k)))al), l =

1, . . . , r,

∆k
r+1 =

[
(E1(σk))bb ◦ S(H̃k

bb) + Diag((C(σk)diag(S(H̃k)))b)

+(E2(σk))bb ◦ T (H̃k
bb) (F(σk))bc ◦ H̃k

bc

]
and E1(σk), E2(σk), F(σk), and C(σk) are defined for σk by [23, (34)–(36)], respec-
tively. Again, since {Uk} and {V k} are uniformly bounded, we know that

lim
k→∞

G′R(Xk)H = U∞
(

lim
k→∞

∆k

)
(V∞)T = UM

(
lim
k→∞

∆k

)
NTV

T
.(A.3)

(b) For each k, denote wk := σk − σ ∈ Rm. Moreover, for each k, we can define
W k
l := QlDiag(wkal)Q

T
l ∈ S|al|, l = 1, . . . , r, and W k

r+1 := Q′[Diag(wkb ) 0]Q′′T ∈
V|b|×(n−|a|). Therefore, it is clear that for each k, W k := (W k

1 , . . . ,W
k
l ,W

k
r+1) ∈ W

and κ(W k) = wk, where W = S|a1| × · · · × S|ar| × V|b|×(n−|a|). Moreover, since
limk→∞σ

k = σ, we know that limk→∞W
k = 0 in W. From the assumption, we know

that φ = g′(σ; ·) and d(·) are differentiable at each wk and φ′(wk) = g′(σk)− d′(wk)
for all wk. Since d is strictly differentiable at zero, it can be checked easily that
limk→∞ d′(wk) = d′(0) = 0. By taking a subsequence if necessary, we may assume
that limk→∞ g′(σk) exists. Therefore, we have

lim
k→∞

φ′(wk) = lim
k→∞

g′(σk).(A.4)

Since Φ is the spectral operator with respect to the mixed symmetric mapping φ,
from [23, Theorem 7] we know that Φ is differentiable at W ∈ W if and only if φ is

differentiable at κ(W ). Recall that Φ̂ : W → Vm×n is defined by (4.3). Then, for

k sufficiently large, Φ̂ is differentiable at W k. Moreover, for each k, we define the
matrix Ck ∈ Vm×n by

Ck = U

[
Diag

(
W k

1 , . . . ,W
k
r

)
0

0 W k
r+1

]
V

T
.

Then, we know that for k sufficiently large, Ψ is differentiable at Ck and limk→∞C
k =

0 in Vm×n. Thus, we know from (4.2) that for each k,

Ψ′(Ck)H = G′S(X)H + U
[
Φ̂′(W k)D(H)

]
V

T ∀ H ∈ Vm×n,

where D(H) = (S(H̃a1a1), . . . , S(H̃arar ), H̃bā) with H̃ = U
T
HV and Φ̂′(W k)D(H)

can be derived from [23, Theorem 7]. By comparing with (A.2) and (A.3), we know
that V ∈ ∂BΨ(0) if we can show that

lim
k→∞

∆k = lim
k→∞

MTΦ̂′(W k)D(H)N.(A.5)
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To show that (A.5) holds, for any (i, j) ∈ {1, . . . ,m} × {1, . . . , n}, consider the
following cases.

Case 1: i = j. It is easy to check that for each k,

(∆k)ii = (g′(σk)hk)i and
(
MTΦ̂′(W k)D(H)N

)
ii

= (φ′(wk)ĥ)i,

where hk = (diag(S(H̃k
aa)),diag(H̃k

bb)) and ĥ = (diag(S(Ĥaa)),diag(Ĥbb)). Therefore,
we know from (A.4) that

lim
k→∞

(∆k)ii = lim
k→∞

(g′(σk)hk)i = lim
k→∞

(φ′(wk)ĥ)i = lim
k→∞

(
MTΦ̂′(W k)D(H)N

)
ii
.

Case 2: i, j ∈ al for some l ∈ {1, . . . , r}, i 6= j, and σki 6= σkj for k sufficiently
large. We obtain that for k sufficiently large,

(∆k)ij =
gi(σ

k)− gj(σk)

σki − σkj
(S(H̃k

alal
))ij ,(

MTΦ̂′(W k)D(H)N
)
ij

=
φi(w

k)− φj(wk)

wki − wkj
(S(Ĥalal))ij .

Since σi = σj and gi(σ) = gj(σ), we know that for k sufficiently large,

gi(σ
k)−gj(σk)

σki − σkj
=
gi(σ + wk)−gj(σ + wk)

wki − wkj
=
gi(σ + wk)−gi(σ) + gj(σ)− gj(σ + wk)

wki − wkj

=
di(w

k)− dj(wk)

wki − wkj
+
φi(w

k)− φj(wk)

wki − wkj
.(A.6)

Therefore, we know from (6.3) that

lim
k→∞

gi(σ
k)− gj(σk)

σki − σkj
(S(H̃k

alal
))ij = lim

k→∞

φi(w
k)− φj(wk)

wki − wkj
(S(Ĥalal))ij ,

which implies limk→∞(∆k)ij = limk→∞(MTΦ̂′(W k)D(H)N)ij .
Case 3: i, j ∈ al for some l ∈ {1, . . . , r}, i 6= j, and σki = σkj for k sufficiently

large. We have for k sufficiently large,

(∆k)ij =
(
(g′(σk))ii − (g′(σk))ij

)
(S(H̃k

alal
))ij ,(

MTΦ̂′(W k)D(H)N
)
ij

=
(
(φ′(wk))ii − (φ′(wk))ij

)
(S(Ĥalal))ij .

Therefore, we obtain from (A.4) that

lim
k→∞

(
(g′(σk))ii−(g′(σk))ij

)
(S(H̃k

alal
))ij = lim

k→∞

(
(φ′(wk))ii−(φ′(wk))ij

)
(S(Ĥalal))ij .

Thus, we have limk→∞(∆k)ij = limk→∞(MTΦ̂′(W k)D(H)N)ij .
Case 4: i, j ∈ b, i 6= j, and σki = σkj > 0 for k sufficiently large. We have for k

large,
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(∆k)ij =
(
(g′(σk))ii − (g′(σk))ij

)
(S(H̃k

bb))ij

+
gi(σ

k) + gj(σ
k)

σki + σkj
(T (H̃k

bb))ij ,(
MTΦ̂′(W k)D(H)N

)
ij

=
(
(φ′(wk))ii − (φ′(wk))ij

)
(S(Ĥbb))ij

+
φi(w

k) + φj(w
k)

wki + wkj
(T (Ĥbb))ij .

Since σi = σj = 0 and gi(σ) = gj(σ) = 0, we get

gi(σ
k) + gj(σ

k)

σki + σkj
=
di(w

k) + dj(w
k)

wki + wkj
+
φi(w

k) + φj(w
k)

wki + wkj
.(A.7)

Therefore, we know from (6.4) and (A.4) that limk→∞(∆k)ij = limk→∞(MTΦ̂′(W k)
D(H)N)ij .

Case 5: i, j ∈ b, i 6= j, and σki 6= σkj for k sufficiently large. For large k, we have

(∆k)ij =
gi(σ

k)− gj(σk)

σki − σkj
(S(H̃k

bb))ij +
gi(σ

k) + gj(σ
k)

σki + σkj
(T (H̃k

bb))ij ,(
MTΦ̂′(W k)D(H)N

)
ij

=
φi(w

k)− φj(wk)

wki − wkj
(S(Ĥbb))ij +

φi(w
k) + φj(w

k)

wki + wkj
(T (Ĥbb))ij .

Thus, by (A.6) and (A.7), we know from (6.3) and (6.4) that limk→∞(∆k)ij =

limk→∞(MTΦ̂′(W k)D(H)N)ij .
Case 6: i, j ∈ b, i 6= j, and σki = σkj = 0 for k sufficiently large. We know that for

k sufficiently large,

(∆k)ij =
(
(g′(σk))ii − (g′(σk))ij

)
(S(H̃k

bb))ij + (g′(σk))ii(T (H̃k
bb))ij ,(

MTΦ̂′(W k)D(H)N
)
ij

=
(
(φ′(wk))ii − (φ′(wk))ij

)
(S(Ĥbb))ij + (φ′(wk))ii(T (Ĥbb))ij .

Again, we obtain from (A.4) that limk→∞(∆k)ij = limk→∞(MTΦ̂′(W k)D(H)N)ij .
Case 7: i ∈ b, j ∈ c, and σki > 0 for k sufficiently large. We have for k sufficiently

large,

(∆k)ij =
gi(σ

k)

σki
(H̃k

bc)ij ,
(
MTΦ̂′(W k)D(H)N

)
ij

=
φi(w

k)

wki
(Ĥbc)ij .

Since σi = 0 and gi(σ) = 0, we get

gi(σ
k)

σki
=
gi(σ + wk)− gi(σ)

wki
=
di(w

k)

wki
+
φi(w

k)

wki
.

Therefore, by (6.5), we obtain that limk→∞(∆k)ij = limk→∞(MTΦ̂′(W k)D(H)N)ij .
Case 8: i ∈ b, j ∈ c, and σki = 0 for k sufficiently large. We have for k sufficiently

large,

(∆k)ij = (g′(σk))ii(H̃
k
bc)ij ,

(
MTΦ̂′(W k)D(H)N

)
ij

= (φ′(wk))ii(Ĥbc)ij .

Therefore, by (A.4), we obtain that limk→∞(∆k)ij = limk→∞(MTΦ̂′(W k)D(H)N)ij .
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Thus, we know that (A.5) holds. Therefore, by (A.2) and (A.3), we obtain that
V ∈ ∂BΨ(0).

Conversely, suppose that V ∈ ∂BΨ(0) is arbitrarily chosen. Then, from the
definition of ∂BΨ(0), we know that there exists a sequence {Ck} ⊆ Vm×n converging
to zero such that Ψ is differentiable at each Ck and V = limk→∞Ψ′(Ck). For each k,
we know from (4.2) that Ψ is differentiable at Ck if and only if the spectral operator

Φ : W → W is differentiable at W k := D(Ck) = (S(C̃ka1a1), . . . , S(C̃karar ), C̃kbā) ∈
W, where for each k, C̃k = U

T
CkV . Moreover, for each k, we have the following

decompositions:

S(C̃kalal) = Qkl Λ(S(C̃kalal))(Q
k
l )T, l = 1, . . . , r, C̃kbā = Q′

k
[
Σ(C̃kbā) 0

]
(Q′′

k
)T,

where Qkl ∈ O|al|, Q′k ∈ O|b|, and Q′′
k ∈ On−|a|. For each k, let

wk :=
(
λ(S(C̃ka1a1)), . . . , λ(S(C̃karar )), σ(C̃kbā)

)
∈ Rm,

Mk := Diag
(
Qk1 , . . . , Q

k
r , Q

′k
)
∈ Om, Nk := Diag

(
Qk1 , . . . , Q

k
r , Q

′′k
)
∈ On.

Since {Mk} and {Nk} are uniformly bounded, by taking subsequences if necessary,
we know that there exist Ql ∈ O|al|, Q′ ∈ O|b|, and Q′′ ∈ On−|b| such that

lim
k→∞

Mk = M := Diag
(
Q1, . . . , Qr, Q

′
)
, lim

k→∞
Nk = N := Diag

(
Q1, . . . , Qr, Q

′′
)
.

For each k, by [23, Theorem 7], we know that for any H ∈ Vm×n,

Ψ′(Ck)H = U
[
E0

1 ◦ S
(
U

T
HV 1

)
+ E0

2 ◦ T
(
U

T
HV 1

)
F0 ◦ UT

HV 2

]
V

T
(A.8)

+ U
[
Φ̂′(W k)D(H)

]
V

T
,

where D(H) = (S(H̃a1a1), . . . , S(H̃arar ), H̃bā) with H̃ = U
T
HV . Let Rk := Φ′k(W k)

D(H), k = 1, . . . , r + 1.
For each k, define σk := σ + wk ∈ Rm. Since limk→∞w

k = 0 and for each k,
wki ≥ 0 for all i ∈ b, we have σk ≥ 0 for k sufficiently large. Therefore, for k sufficiently
large, we are able to define

Xk := UM [Diag(σk) 0]NTV
T ∈ Vm×n.

For simplicity, denote U = UM ∈ Om and V = V N ∈ On. It is clear that the
sequence {Xk} converges to X. From the assumption, we know that g is differentiable
at each σk and d is differentiable at each wk with g′(σk) = φ′(wk) + d′(wk) for all σk.
Therefore, by [23, Theorem 4], we know that G is differentiable at each Xk. By taking
subsequences if necessary, we may assume that limk→∞ φ′(wk) exists. Thus, since d is
strictly differentiable at zero, we know that (A.4) holds. Since the derivative formula
(2.11) is independent of (U, V ) ∈ Om,n(X), we know from [23, (38) in Theorem 4]
that for any H ∈ Vm×n,

G′(Xk)H = U
[
E0

1 ◦ S(U
T
HV 1) + E0

2 ◦ T (U
T
HV 1) F0 ◦ UT

HV 2

]
V

T

+ U

[
Diag

(
Q1Ωk1Q

T
1 , . . . , QrΩ

k
rQ

T
r

)
0

0 Q′Ωkr+1Q
′′T

]
V

T
,(A.9)
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where for each k, Ωkl = (El(σk))alal ◦ S(Ĥalal) + Diag((C(σk)diag(S(Ĥ)))al), l =
1, . . . , r, and

Ωkr+1 =
[
(E1(σk))bb ◦ S(Ĥbb) + Diag((C(σk)diag(S(Ĥ)))b)

+(E2(σk))bb ◦ T (Ĥbb) (F2(σk))bc ◦ Ĥbc

]
,

E1(σk), E2(σk), and F(σk) are defined by [23, (34)–(36)], respectively, and Ĥ :=

MTU
T
HVN = MTH̃N . Therefore, by comparing (A.8) and (A.9), we know that the

inclusion V ∈ ∂BG(X) follows if we can show that

lim
k→∞

(
Rk1 , . . . , R

k
r , R

k
r+1

)
= lim
k→∞

(
Q1Ωk1Q

T
1 , . . . , QrΩ

k
rQ

T
r , Q

′Ωkr+1Q
′′T) .(A.10)

Similar to the proofs for Cases 1–8 in the first part, by using (A.4) and (6.3)–(6.5) in
Lemma 6.1, we can show that (A.10) holds. For simplicity, we omit the details here.
Therefore, we obtain that ∂BG(X) = ∂BΨ(0). This completes the proof.
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[64] V. Noferini, A formula for the Fréchet derivative of a generalized matrix function, SIAM J.

Matrix Anal. Appl., 38 (2017), pp. 434–457.
[65] J. S. Pang, Newton’s method for B-differentiable equations, Math. Oper. Res., 15 (1990),

pp. 311–341.
[66] J. S. Pang, A B-differentiable equation-based, globally and locally quadratically convergent

algorithm for nonlinear programs, complementarity and variational inequality problems,
Math. Program., 51 (1991), pp. 101–131.

[67] J. S. Pang and L. Q. Qi, Nonsmooth equations: Motivation and algorithms, SIAM J. Optim.,
3 (1993), pp. 443–465.

[68] J. S. Pang, D. F. Sun, and J. Sun, Semismooth homeomorphisms and strong stability of
semidefinite and Lorentz complementarity problems, Math. Oper. Res., 28 (2002), pp. 39–
63.

[69] L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper.
Res., 18 (1993), pp. 227–244.

[70] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Math. Program., 58 (1993),
pp. 353–367.

[71] L. Qi, D. F. Sun, and G. Zhou, A new look at smoothing Newton methods for nonlinear
complementarity problems and box constrained variational inequalities, Math. Program.,
87 (2000), pp. 1–35.

[72] B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed minimum rank solutions to linear
matrix equations via nuclear norm minimization, SIAM Rev., 52 (2010), pp. 471–501.

[73] S. M. Robinson, Local structure of feasible sets in nonlinear programming, Part III: Stability
and sensitivity, Math. Program. Study, 30 (1987), pp. 45–66.

[74] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[75] A. Shapiro, On concepts of directional differentiability, J. Optim. Theory Appl., 66 (1990),

pp. 477–487.

D
ow

nl
oa

de
d 

02
/2

5/
20

 to
 1

58
.1

32
.1

75
.3

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPECTRAL OPERATORS OF MATRICES 659

[76] V. A. Steklov, On the asymptotic representation of certain functions defined by a linear
differential equation of the second order, and their application to the problem of expanding
an arbitrary function into a series of these functions, Kharkov, 1957 (in Russian).

[77] D. F. Sun, The strong second order sufficient condition and constraint nondegeneracy in
nonlinear semidefinite programming and their implications, Math. Oper. Res., 31 (2006),
pp. 761–776.

[78] D. F. Sun and J. Sun, Semismooth matrix-valued functions, Math. Oper. Res., 27 (2002),
pp. 150–169.

[79] D. F. Sun and J. Sun, Strong semismoothness of eigenvalues of symmetric matrices and
its applications in inverse eigenvalue problems, SIAM J. Numer. Anal., 40 (2003), pp.
2352–2367.
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