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Let 8™ be the set of all real symmetric matrices and S
be the cone of all positive semidefinite matrices in S".

We use X = 0 to indicate X € S¥.

A matrix X € S is called a correlation matrix if its
diagonal elements are all ones.

Trace product:

(P,Q) = Z P;;Q;; = Trace(Q' P).

1,
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Given data: C, Ay,--- , A, € 8™, b e R™.
The semidefinite programming (SDP) problem in the

primal form:
(P) max (C,X)
s.t. AX) =10, X =0,

where A : §" — R™ is the linear map s.t.

AX) = [(ALX), o (A X)]

Assume (P) is feasible.
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Problem dimension:

n = dimension of X;
m = number of linear constraints.

We are interested in SDPs with large m > 10, 000, but
moderate n < 5, 000.
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Examples of SDPs:

The nearest correlation matrix (NCM) problem:

(Given an estimated correlation matrix C', we want to

find a valid correlation matrix X that is nearest to the
data:

mm{ Z‘XZ]—CZ]’ dlag(X):]_, X>‘O}
]

{

_1_ —
> v+ v;

1]

~
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In (NCM), m =n + n(n + 1)/2, which is about a half
million when n = 1, 000.

'The introduction of linear inequality constraints does
no make much difference to our subsequent analysis|

The fact that the estimated matrix ' is not a valid
correlation matrix is due to several situations:

e expert opinions 1n relnsurance

e stress testing regulated by Basel 11
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1.0000
0.9872
0.9485
0.9216

—0.0485
| —0.0424

Partial market data?

0.9872
1.0000
0.9551
0.9272

—0.0754
—0.0612

\_

*RiskMetrics (www.riskmetrics.com/stddownload edu.html)

0.9485
0.9551
1.0000
0.9583

—0.0688
—0.0536

0.9216
0.9272
0.9583
1.0000

—0.1354
—0.1229

—0.0485
—0.0754
—0.0688
—0.1354

1.0000
0.9869

The eigenvalues of C' are: 0.0087,0.0162,0.0347,0.1000,
1.9669, and 3.8736.

~

—0.0424 |
—0.0612
—0.0536
—0.1229
0.9869
1.0000
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Let’s change C' to
ichange C'(1,6) = C(6,1) from —0.0424 to —0.1000]

1.0000  0.9872  0.9485  0.9216 —-0.0485 —0.1000
0.9872  1.0000 09551 09272 —-0.0/54 —0.0612
0.9485  0.9551  1.0000  0.9583 —0.0688 —0.0536
0.9216  0.9272  0.9583  1.0000 —0.1354 —0.1229
—0.0485 —0.0754 —-0.0688 —0.1354  1.0000 0.9869
| —0.1000 —-0.0612 —0.0536 —0.1229  0.9869 1.0000

The eigenvalues of C' are: —0.0216, 0.0305, 0.0441,
0.1078, 1.9609, and 3.8783.
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The maximum stable set problem of a graph:

For a graph G = (V, &),

a stable set S 1s a subset of V such that no
vertices in S are adjacent.

The problem is to find a stable set with maximum
cardinality.

\_ _/
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The standard SDP relaxations of the maximum stable

set problem are:

8(G) = max {{E, X) : X, =0V (i,j) €€
(I,X)=1, X >0}

0. (G) :=n(n + 1)/2 additional constraints X > 0

0(G): number of constraints m = |£] + 1.

0. (G): number of constraints m = |E] + 1+ n(n + 1)/2.

\_ _/
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Esstimating the Covariance Matrix with Sparsity:

1
min { 5\;2—5\1%“2%\%\ T=0}
7]

where S 1s the sample variance matrix and w;; > 0 are
given weights.

Without the positive semidefinite constraint on I, the
estimator is simply a soft thresholding version of 5.
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Recall that

(P) max (C,X)
s.t. AX) =10, X >0,

where A : " — R™ is a linear map.

The dual problem of (P) is
(D) min {bTy Aty — C > o},

where A" : R — S" is the adjoint of A.

\_ _/
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/One obvious choice for solving (P) and (D) is the

research of SDP is largely credited to the discovery of
polynomial time IPMs.

But, we do have one difficulty:
At each iteration, the primal-dual IPMs need to

complement matrix of size m by m. This limits the
problems to be of size m smaller than 5, 000. For the
NCM problem, n must be less than 100.

This means we have to look for other methods because
\in our cases m > 10, 000.

~

interior point method (IPM). Indeed, much progress of

formulate and solve a linear system with a dense Schur
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/Related approaches:

\_

First-order methods (low accuracy): convergence?

Inexact IPM <« compute direction via iterative
solvers |Toh, Kojima

Shifted barrier method [Kocvara-Stingl]:
theoretical? How much different from barrier
methods?

Augmented Lagrangian method for primal SDPs
from relaxation of lift-and-project scheme
'Burer-Vandenbussche|

Boundary-point method: based on augmented
Lagrangian method for (D) [Rendl et al. |

~
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Given a penalty parameter o > 0, the augmented
Lagrangian function for problem (D) is defined as

1
20

where (y, X) € R™ x 8" and for any X € 8", Ils» (X)) is
the unique optimal solution to

Lo(y, X) = b y+ o (|[sy (X — o (A"y = O)I* = [|X[),

1
min 5”2 — X7
st. ZeSt.
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For K = &7,

Convex Cone K [

% %3

Figure 0.1: Metric projection onto closed convex sets

~
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Let X € §" have the following spectral decomposition

X = PAPT

eigenvectors. Then

X, = Psn(X) = PA,P".

~

where A is the diagonal matrix of eigenvalues of X and
P is a corresponding orthogonal matrix of orthonormal
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e Note that computing X, is equivalent to computing
the full eigen-decomposition of X, which in turn needs
In? flops [The divide and conquer method needs 4n?,
which we use]

e For my Dell Laptop, it needs about 1.2 seconds for
n = 1000, about 8.2 seconds for n = 2000, less than 28
seconds for n = 3000, and slightly over 60 seconds for
n = 4000.

e For semidefinite optimization, at each step O(n?) cost
1s not a problem.

\_ _/
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Define

o= {7 :

Write

>\i>0};ﬁ::{i:
A, 0 0
O 0 O

0 0 A,

and P = [Pa Pg PW]'

~

)\Z:O},WZ{Z)\Z<O}
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/Deﬁne (e S

max{)\i, O} e max{)\j, O}

~

Qij =

Al +

1,7 = 1,....n,

Aj |

where 0/0 is defined to

e 1.

[Is» is directionally differentiable with ITg, (X H) being

ogiven by
- PTHP, PTHP; Qa0 PTHP,
P PJHP,  Igu(PjHPj) 0 P
T T
 PTHP, 0 QL 0 0 )
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When |3| = 0, IIs»(-) is continuously differentiable

result of Lowner?:

~

around X and the above formula reduces to the classical

PTHP, Q. o0PTHP,
g, (X)H = P

T T
| PTHP, 0 QI 0

Zeitschrift 38 (1934) 177-216.

\_

aK . LOWNER Uber monotone matrixfunktionen. Mathematische
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Note that (D) can be written as

(D) min{bTy | Ay —C —Z =0, ZEO}.

The augmented Lagrangian function L,(y, X) can then
be obtained in a simple way:

Ly(y, X)

= inf {'y + (X, Z = (Ay = O) + 512 — (A'y = O)|"}
= *

=0Ty + o ([Ms: (X — (A" = O)) " = [ X]1).

\_ _/
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The augmented Lagrangian function is continuously
differentiable. For any given X € S, we have

V,Lo(y, X) = b— Allg: (X — o(A"y — C)).

For given X" € 8", 0y > 0, and p > 1, the augmented
Lagrangian method for solving problem (D) and its dual
(P) generates sequences {y*} C R and {X*} C S" as
follows

\_ _/
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k+1

y"*! & arg min L, (y, X"),
yeR™

~

XA = TIgn (X¥ = o (AT = 0)), £=0,1,2,...

Ok4+1 = POf O Of41 = Ok,
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Why the augmented Lagrangian method?

Consider the nearest correlation matrix problem under
the F-norm:

1

min éHX—GH%

S.t. szl, izl,...,n,
X e S,

where GG € §" is given, but may not be positive
semidefinite.

\_

~
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G’he Lagrangian dual takes the form \

1 ¥
max —0(y) == —= | ls: (G + A"y) |> + Ty,
yeRn 2

where Ils»(-) denotes the metric projection operator
onto S and A* is the adjoint of A:

A*(y) = Diag(y) with A(X) = diag(X),

Vo(y) = Allg: (G + A'y) — e
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The above Lagrangian dual is a SPECIAL case of the
inner problems in the aug. Lagrangian m. for SDPs.

The former can be solved very efficiently by a
semismooth Newton-CG method [H.D. Qi and Sun,
SIMAX 28 (2006) 360-385.]

— For randomly generated problems,
for n = 1000, it takes 9 Secs;

for n = 2000, it takes 78 Secs;

for n = 4000, it takes 595 Secs.

\_
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Rockafellar (1976) made a marvelous achievement on
the augmented Lagrangian method for solving convex
optimization problems.

The augmented Lagrangian method for convex problems
1s a gradient ascent method applied to the
corresponding augmented Lagrangian dual problems

max ¢, (X ) := inf L,(y, X) = L,(y(X), X).
Xesn yeR™
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But, recent studies reveal that under the constraint
nondegenerate conditions for (P) and (D)[LICQs], the
augmented Lagrangian method for solving SDPs is
actually

an approximate semismooth Newton method.

This motivates us to take a closer look at the
augmented lagrangian method.

\_ _/
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A semismooth Newton-CG method for solving inner subproblem

We need to solve
VyLg, (v, Xk) = b — AHS_?(Uk(y)) = 0.

where U*(y) := X* — o, (A*y — C).

The mapping V, L(y, X %) is not differentiable, but is
strongly semismooth. At a current iterate y, we solve a
generalized Newton equation:

H, = JkAH:S_?(Uk(y))A*, H,Ay = —V,L(y, X").

\_ _/




SFU’2009/MATH

Defeng Sun/NUS 31

-

Q:

computation of H,Ay.

\_

Let Uk(y) — PDP! with
M2 >0>2N00>-2>)\,. We have

_ Eaa ch
T
QL0

M. (U*(y))H = P(Qo (P"HP))P".

For a ={1,...,r}andy={r+1,...,n}, we have

The (1,1) and (2,2) blocks in §2 allow for efficient
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The key issue is that H, may be good conditioned while
for IPM, the Schur complement matrix M at a point on
the central path will become more and more 1ill
conditioned when the parameter goes to zero.

Moreover,

The cost for computing H, Ay is
= 8min{r,n — r}n” 4 cost(A(+)) + cost(A*(-))
and the cost for computing MAy is
— 4n° + cost(A(+)) + cost(A*(-)).

\_ _/
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/Practical Newton-CG augmented Lagrangian method |[SDPNAL] \

e Solve H,Ay = rhs by CG with a diagonal

preconditioner.

Stop when relative-residual < 0.01.

e Stop the inner iteration when
IV, L{y*, XP)|| < 0.2[| X — XH|.

e Typically SDPNAL needs 30-50 outer iterations,
and each requires 5 — 30 Newton steps to solve the
inner subproblem.

In contrast, IPM requires about 30-50 iterations
each uses only 2 Newton steps.

_/
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For the boundary-point method of Rendl et al., one step
of modified gradient method is used to solve the inner
subproblem:

yk’ _ yk—l o (O'kAA*)_lvyL(yk_l,Xk).
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Numerical results:

1B Rl (X.2) }< 10-6

want: rel-err = max { L+l THICT THIC X7y

PC: Intel Xeon 3.2GHz with 4G RAM, MATLAB
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parallel IPM | boundary
64 nodes point SDPNAL
2.4GHz PCs | method
f:theta62 20
m = 13390 459s 14s
n = 300
f:theta&2 21
m = 23872 2403s 278
n = 400

~
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boundary
point SDPNAL
method
0:G43 2000 18
m = 9991 3900s 99s
n = 1000 1.5e-5
Rn8m100P3 135 11
m = 100K 2568 1129s
n = 800

~
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boundary
point SDPNAL
method
fap36 2000 17
m = 1.15 x 10° 47h 65.5h
n = 4110 1.4 x 10~
QAP:lipad0a 22
m =1.28 x 10° 21h
n = 1600

~
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boundary
point SDPNAL
method
0, :1zc.2048 11
m = 2.14 x 10° 2.2h
n = 2048
0:2dc.512 27
m = 54896 1936s
n =512 2.4e-5

~
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Summary:

e We have tested SDPNAL on about 400 SDPs from
0,0, FAP, QAP, binary QP.

e When the SDPs are primal-dual nondegenerate,
SDPNAL can efficiently solve large SDPs to rather
high accuarcy:.

e For SDPs with degeneracies, relative primal
infeasibilities can range from 107% to 1073, while
relative dual infeasibilities are < 1079,

\_ _/




