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Let Sn be the set of all real symmetric matrices and Sn
+

be the cone of all positive semidefinite matrices in Sn.

We use X º 0 to indicate X ∈ Sn
+.

A matrix X ∈ Sn
+ is called a correlation matrix if its

diagonal elements are all ones.

Trace product:

〈P,Q〉 =
∑
i,j

PijQij = Trace(QTP ).
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Given data: C, A1, · · · , Am ∈ Sn, b ∈ <m.

The semidefinite programming (SDP) problem in the
primal form:

(P) max 〈C, X〉
s.t. A(X) = b, X º 0,

where A : Sn → <m is the linear map s.t.

A(X) =
[
〈A1, X〉, . . . , 〈Am, X〉

]T

.

Assume (P) is feasible.
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Problem dimension:

n = dimension of X;

m = number of linear constraints.

We are interested in SDPs with large m ≥ 10, 000, but
moderate n ≤ 5, 000.
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Examples of SDPs:

The nearest correlation matrix (NCM) problem:

Given an estimated correlation matrix C, we want to
find a valid correlation matrix X that is nearest to the
data:

min {
∑
ij

|Xij − Cij| : diag(X) = 1, X º 0 }

⇓
∑
ij

v+
ij + v−ij : Xij − Cij = v+

ij − v−ij

v+
ij ≥ 0, v−ij ≥ 0 .
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In (NCM), m = n + n(n + 1)/2, which is about a half
million when n = 1, 000.

[The introduction of linear inequality constraints does
no make much difference to our subsequent analysis]

The fact that the estimated matrix C is not a valid
correlation matrix is due to several situations:

• expert opinions in reinsurance

• stress testing regulated by Basel II
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Partial market dataa

C =




1.0000 0.9872 0.9485 0.9216 −0.0485 −0.0424

0.9872 1.0000 0.9551 0.9272 −0.0754 −0.0612

0.9485 0.9551 1.0000 0.9583 −0.0688 −0.0536

0.9216 0.9272 0.9583 1.0000 −0.1354 −0.1229

−0.0485 −0.0754 −0.0688 −0.1354 1.0000 0.9869

−0.0424 −0.0612 −0.0536 −0.1229 0.9869 1.0000




The eigenvalues of C are: 0.0087, 0.0162, 0.0347, 0.1000,
1.9669, and 3.8736.

aRiskMetrics (www.riskmetrics.com/stddownload edu.html)
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Let’s change C to

[change C(1, 6) = C(6, 1) from −0.0424 to −0.1000]



1.0000 0.9872 0.9485 0.9216 −0.0485 −0.1000

0.9872 1.0000 0.9551 0.9272 −0.0754 −0.0612

0.9485 0.9551 1.0000 0.9583 −0.0688 −0.0536

0.9216 0.9272 0.9583 1.0000 −0.1354 −0.1229

−0.0485 −0.0754 −0.0688 −0.1354 1.0000 0.9869

−0.1000 −0.0612 −0.0536 −0.1229 0.9869 1.0000




The eigenvalues of C are: −0.0216, 0.0305, 0.0441,
0.1078, 1.9609, and 3.8783.
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The maximum stable set problem of a graph:

For a graph G = (V, E),

a stable set S is a subset of V such that no
vertices in S are adjacent.

The problem is to find a stable set with maximum
cardinality.
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The standard SDP relaxations of the maximum stable
set problem are:

θ(G) := max
{
〈E, X〉 : Xij = 0 ∀ (i, j) ∈ E ,

〈I, X〉 = 1, X º 0 }
and

θ+(G) := n(n + 1)/2 additional constraints X ≥ 0

θ(G): number of constraints m = |E|+ 1.

θ+(G): number of constraints m = |E|+ 1 + n(n + 1)/2.
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Estimating the Covariance Matrix with Sparsity:

min { 1

2
‖Σ− S‖2

F + λ
∑

i6=j

wij|σij| : Σ º 0 } ,

where S is the sample variance matrix and wij > 0 are
given weights.

Without the positive semidefinite constraint on Σ, the
estimator is simply a soft thresholding version of S.



SFU’2009/MATH Defeng Sun/NUS 12'

&

$

%

Recall that

(P) max 〈C, X〉
s.t. A(X) = b, X º 0,

where A : Sn → <m is a linear map.

The dual problem of (P) is

(D) min
{

bTy | A∗y − C º 0
}

,

where A∗ : <m → Sn is the adjoint of A.
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One obvious choice for solving (P) and (D) is the
interior point method (IPM). Indeed, much progress of
research of SDP is largely credited to the discovery of
polynomial time IPMs.

But, we do have one difficulty:

At each iteration, the primal-dual IPMs need to
formulate and solve a linear system with a dense Schur
complement matrix of size m by m. This limits the
problems to be of size m smaller than 5, 000. For the
NCM problem, n must be less than 100.

This means we have to look for other methods because
in our cases m ≥ 10, 000.
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Related approaches:

• First-order methods (low accuracy): convergence?

• Inexact IPM ← compute direction via iterative
solvers [Toh, Kojima]

• Shifted barrier method [Kocvara-Stingl]:
theoretical? How much different from barrier
methods?

• Augmented Lagrangian method for primal SDPs
from relaxation of lift-and-project scheme
[Burer-Vandenbussche]

• Boundary-point method: based on augmented
Lagrangian method for (D) [Rendl et al. ]
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Given a penalty parameter σ > 0, the augmented
Lagrangian function for problem (D) is defined as

Lσ(y, X) = bTy +
1

2σ

(‖ΠSn
+
(X − σ(A∗y−C))‖2−‖X‖2),

where (y, X) ∈ <m × Sn and for any X ∈ Sn, ΠSn
+
(X) is

the unique optimal solution to

min
1

2
‖Z −X‖2

s.t. Z ∈ Sn
+ .
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For K = Sn
+,
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Figure 0.1: Metric projection onto closed convex sets
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Let X ∈ Sn have the following spectral decomposition

X = PΛP T ,

where Λ is the diagonal matrix of eigenvalues of X and
P is a corresponding orthogonal matrix of orthonormal
eigenvectors. Then

X+ := PSn
+
(X) = PΛ+P T .
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• Note that computing X+ is equivalent to computing
the full eigen-decomposition of X, which in turn needs
9n3 flops [The divide and conquer method needs 4n3,
which we use]

• For my Dell Laptop, it needs about 1.2 seconds for
n = 1000, about 8.2 seconds for n = 2000, less than 28
seconds for n = 3000, and slightly over 60 seconds for
n = 4000.

• For semidefinite optimization, at each step O(n3) cost
is not a problem.
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Define

α := {i : λi > 0}, β := {i : λi = 0}, γ := {i : λi < 0}.

Write

Λ =




Λα 0 0

0 0 0

0 0 Λγ


 and P = [ Pα Pβ Pγ ].
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Define Ω ∈ Sn:

Ωij :=
max{λi, 0}+ max{λj, 0}

|λi|+ |λj| , i, j = 1, . . . , n,

where 0/0 is defined to be 1.

ΠSn
+

is directionally differentiable with Π′
Sn

+
(X; H) being

given by

P




P T
α HPα P T

α HPβ Ωαγ ◦ P T
α HPγ

P T
β HPα ΠS |β|+

(P T
β HPβ) 0

P T
γ HPα ◦ ΩT

αγ 0 0


P T .
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When |β| = 0, ΠSn
+
(·) is continuously differentiable

around X and the above formula reduces to the classical
result of Löwnera:

Π′
Sn

+
(X)H = P


 P T

α HPα Ωαγ ◦ P T
α HPγ

P T
γ HPα ◦ ΩT

αγ 0


P T .

aK. Löwner Über monotone matrixfunktionen. Mathematische
Zeitschrift 38 (1934) 177–216.
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Note that (D) can be written as

(D′) min
{

bTy | A∗y − C − Z = 0, Z º 0
}

.

The augmented Lagrangian function Lσ(y, X) can then
be obtained in a simple way:

Lσ(y, X)

= inf
Zº0

{
bTy + 〈X,Z − (A∗y − C)〉+

σ

2
‖Z − (A∗y − C)‖2}

= bTy +
1

2σ

(‖ΠSn
+
(X − σ(A∗y − C))‖2 − ‖X‖2).
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The augmented Lagrangian function is continuously
differentiable. For any given X ∈ Sn

+, we have

∇yLσ(y, X) = b−AΠSn
+
(X − σ(A∗y − C)).

For given X0 ∈ Sn, σ0 > 0, and ρ > 1, the augmented
Lagrangian method for solving problem (D) and its dual
(P) generates sequences {yk} ⊂ <m and {Xk} ⊂ Sn as
follows
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



yk+1 ≈ arg min
y∈<m

Lσk
(y, Xk),

Xk+1 = ΠSn
+
(Xk − σk(A∗yk+1 − C)),

σk+1 = ρσk or σk+1 = σk,

k = 0, 1, 2, . . .
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Why the augmented Lagrangian method?

Consider the nearest correlation matrix problem under
the F -norm:

min
1

2
‖X −G ‖2

F

s.t. Xii = 1, i = 1, . . . , n ,

X ∈ Sn
+ ,

where G ∈ Sn is given, but may not be positive
semidefinite.
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The Lagrangian dual takes the form

max
y∈<n

−θ(y) := −1

2
‖ΠSn

+
(G +A∗y) ‖2 + eTy ,

where ΠSn
+
(·) denotes the metric projection operator

onto Sn
+ and A∗ is the adjoint of A:

A∗(y) = Diag(y) with A(X) = diag(X) ,

∇θ(y) = AΠSn
+
(G +A∗y)− e .
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The above Lagrangian dual is a SPECIAL case of the
inner problems in the aug. Lagrangian m. for SDPs.

The former can be solved very efficiently by a
semismooth Newton-CG method [H.D. Qi and Sun,
SIMAX 28 (2006) 360–385.]

— For randomly generated problems,

for n = 1000, it takes 9 Secs;

for n = 2000, it takes 78 Secs;

for n = 4000, it takes 595 Secs.
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Rockafellar (1976) made a marvelous achievement on
the augmented Lagrangian method for solving convex
optimization problems.

The augmented Lagrangian method for convex problems
is a gradient ascent method applied to the
corresponding augmented Lagrangian dual problems

max
X∈Sn

ψσ(X) := inf
y∈<m

Lσ(y, X) = Lσ(y(X), X) .
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But, recent studies reveal that under the constraint
nondegenerate conditions for (P) and (D)[LICQs], the
augmented Lagrangian method for solving SDPs is
actually

an approximate semismooth Newton method.

This motivates us to take a closer look at the
augmented lagrangian method.



SFU’2009/MATH Defeng Sun/NUS 30'

&

$

%

A semismooth Newton-CG method for solving inner subproblem

We need to solve

∇yLσk
(y, Xk) = b−AΠSn

+
(Uk(y)) = 0 .

where Uk(y) := Xk − σk(A∗y − C).

The mapping ∇yL(y, Xk) is not differentiable, but is
strongly semismooth. At a current iterate y, we solve a
generalized Newton equation:

Hy := σkAΠ′
Sn

+
(Uk(y))A∗, Hy∆y = −∇yL(y, Xk).
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Let Uk(y) = PDP T with
λ1 ≥ · · · ≥ λr > 0 ≥ λr+1 ≥ · · · ≥ λn. We have

Π′
Sn

+
(Uk(y))H = P (Ω ◦ (P THP ))P T .

For α = {1, . . . , r} and γ = {r + 1, . . . , n}, we have

Ω =


 Eαα Ωαγ

ΩT
αγ 0


 .

The (1,1) and (2,2) blocks in Ω allow for efficient
computation of Hy∆y.
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The key issue is that Hy may be good conditioned while
for IPM, the Schur complement matrix M at a point on
the central path will become more and more ill
conditioned when the parameter goes to zero.

Moreover,

The cost for computing Hy∆y is

= 8 min{r, n− r}n2 + cost(A(·)) + cost(A∗(·))
and the cost for computing M∆y is

= 4n3 + cost(A(·)) + cost(A∗(·)).
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Practical Newton-CG augmented Lagrangian method [SDPNAL]

• Solve Hy∆y = rhs by CG with a diagonal
preconditioner.

Stop when relative-residual ≤ 0.01.

• Stop the inner iteration when
‖∇yL(yk, Xk)‖ ≤ 0.2‖Xk+1 −Xk‖.

• Typically SDPNAL needs 30-50 outer iterations,
and each requires 5− 30 Newton steps to solve the
inner subproblem.

In contrast, IPM requires about 30-50 iterations
each uses only 2 Newton steps.
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For the boundary-point method of Rendl et al., one step
of modified gradient method is used to solve the inner
subproblem:

yk = yk−1 − (σkAA∗)−1∇yL(yk−1, Xk).
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Numerical results:

want: rel-err = max
{
‖Rp‖
1+‖b‖ ,

‖Rd‖
1+‖C‖ ,

〈X,Z〉
1+|〈C,X〉|+|bT y|

}
≤ 10−6.

PC: Intel Xeon 3.2GHz with 4G RAM, Matlab
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parallel IPM boundary

64 nodes point SDPNAL

2.4GHz PCs method

θ:theta62 20

m = 13390 459s 14s

n = 300

θ:theta82 21

m = 23872 2403s 27s

n = 400
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boundary

point SDPNAL

method

θ:G43 2000 18

m = 9991 3900s 99s

n = 1000 1.5e-5

Rn8m100P3 135 11

m = 100K 256s 1129s

n = 800
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boundary

point SDPNAL

method

fap36 2000 17

m = 1.15× 106 47h 65.5h

n = 4110 1.4× 10−4

QAP:lipa40a 22

m =1.28× 106 21h

n = 1600



SFU’2009/MATH Defeng Sun/NUS 39'

&

$

%

boundary

point SDPNAL

method

θ+:lzc.2048 11

m = 2.14× 106 2.2h

n = 2048

θ:2dc.512 27

m = 54896 1936s

n = 512 2.4e-5
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Summary:

• We have tested SDPNAL on about 400 SDPs from
θ, θ+, FAP, QAP, binary QP.

• When the SDPs are primal-dual nondegenerate,
SDPNAL can efficiently solve large SDPs to rather
high accuarcy.

• For SDPs with degeneracies, relative primal
infeasibilities can range from 10−6 to 10−3, while
relative dual infeasibilities are < 10−6.


