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called the D-gap function, though is differentiable, is not twice differentiable and its gen-
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some cases. This paper introduces a computable generalized Hessian (CGH) for the D-gap
function in the case that the closed convex set for the VIP is defined by several twice con-
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function and its CGH, is presented.
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1. Introduction

Let F : <n → <n be a continuously differentiable mapping and S be a nonempty closed convex
set in <n. The variational inequality problem (VIP) is to find a vector x ∈ S such that

〈F (x), y − x〉 ≥ 0 for all y ∈ S,

where 〈·, ·〉 denotes the inner product in <n. In the special case where S = <n
+, the VIP reduces

to the complementarity problem. A comprehensive survey of the VIP is given in [13].
In the last several years, much effort has been made to derive merit functions for the VIP,

thereby reformulating the VIP as an equivalent optimization problem with certain desirable
properties. Recent developments of such approaches are summarized in [10]. Early merit func-
tions such as the regularized gap function [9] are intended to reformulate the VIP as a con-
strained differentiable optimization problem. Recently, Peng [24] showed that the difference of
two regularized gap functions constitutes an unconstrained differentiable optimization problem
equivalent to the VIP. Later, Yamashita, Taji and Fukushima [31] extended the idea of Peng
[24] and investigated some important properties related to this merit function. Specifically, the
latter authors considered the function gαβ : <n → < defined by

gαβ(x) = fα(x) − fβ(x), (1.1)

where α and β are arbitrary positive parameters such that α < β and fα is the regularized gap
function

fα(x) = max
y∈S

{
〈F (x), x − y〉 − α

2
‖x − y‖2

}
. (1.2)

(The function fβ is defined similarly with α replaced by β.) In the special case β = 1/α and
α < 1 in (1.1), the function gαβ reduces to the merit function studied by Peng [24]. We call
the function gαβ the D-gap function, where D stands for the word “difference”. Note that, in
[31], the quadratic term in the definition (1.1) of gαβ is replaced by a more general function.
In the present paper, however, we restrict ourselves to the quadratic case, because it makes the
analysis significantly simpler.

As shown in [24, 31], the function gαβ has a number of interesting properties. Among other
things, gαβ(x) is nonnegative for all x ∈ <n, and gαβ(x) = 0 if and only if x is a solution of the
VIP. Thus we may say that the VIP is equivalent to the unconstrained minimization problem

minimizex∈<n gαβ(x), (1.3)

whenever the VIP has a solution. Moreover, it is easy to see that the function gαβ is continuously
differentiable whenever so is F , and its gradient is given by

∇gαβ(x) = ∇fα(x) −∇fβ(x), (1.4)

in which
∇fα(x) = F (x) + (∇F (x) − αI)(x − yα(x)), (1.5)

where yα(x) is the unique maximizer of the right-hand side of the definition (1.2) of fα. ∇fβ(x)
and yβ(x) are similarly defined.

Although the function gαβ is in general nonconvex, its stationary point becomes a global
minimum, provided that the mapping involved in the VIP has positive definite Jacobian [31].
Therefore it is quite natural to attempt to solve the minimization problem (1.3) by a rapidly
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convergent iterative algorithm. One thing one should keep in mind is, however, that the function
gαβ is once continuously differentiable but not twice differentiable even if F is twice continuously
differentiable. More specifically, (1.4) reveals that ∇gαβ(x) is represented in terms of yα(x) and
yβ(x). Since yα(x) may alternatively be written as

yα(x) = ΠS(x − α−1F (x)), (1.6)

where ΠS denotes the projection operator on the set S, the function yα(·) is in general nondiffer-
entiable. Nevertheless, it is often verified that the projection operator enjoys the property called
semismoothness, under appropriate assumptions on the set S. Therefore we may still expect to
have a rapidly convergent algorithm for minimizing gαβ by utilizing the idea from the recently
developed theory for superlinear convergence of generalized Newton methods that relies on the
semismoothness of the gradient mapping [5, 15, 21, 22, 26, 27, 28].

In the remainder of the paper, we suppose that the parameters α and β are fixed in the
definition (1.1) of gαβ. Thus, to simplify the notation, we shall write g for gαβ. Moreover, we
shall often denote the gradient mapping ∇g as G.

A key ingredient for a rapidly convergent algorithm for minimizing g is to calculate some
generalized Hessian of g at an iterative point. To do this, we focus our attention to some special
convex set S. We assume that

S = {y ∈ <n | hi(y) ≤ 0, i = 1, · · ·,m}, (1.7)

where each hi is twice continuously differentiable and convex. However, even if S is defined by
(1.7), it is still very difficult to calculate a generalized Hessian of g at a given point x. The
difficulty arises from three aspects:

i) generalized Jacobians of ΠS at x− α−1F (x) and x− β−1F (x) are needed but not easy to
compute.

ii) from existing definitions of generalized Jacobians of a vector function, it is unavoidable
to compute the second-derivative of F or the generalized Jacobian of ∇F . This is not practical
in computation even if ∇2F exists. If F is only continuously differentiable but ∇F is not locally
Lipschitz continuous, then the generalized Jacobian of ∇F with existing definitions does not
exist.

iii) the difference of generalized Hessians of fα and fβ is not necessarily a generalized Hessian
of g with existing definitions.

There are two existing definitions of generalized Jacobians of a locally Lipschitz continuous
function H : <n → <n. By Rademacher’s theorem, H is differentiable almost everywhere and
the B-differential of H at x is given by

∂BH(x) = {V ∈ <n×n |V = lim
xk→x

∇H(xk)T , xk ∈ ΩH},

where ΩH = {x ∈ <n |H is differentiable atx} [26]. For any x ∈ <n, ∂BH(x) is a nonempty
compact set consisting of n× n matrices. On the other hand, the Clarke Jacobian of H [2] at x
is defined by

∂H(x) = conv ∂BH(x).

The above three difficulties occur for both the B-differential and the Clarke Jacobian.
If ∇F is not locally Lipschitz continuous, then G may also not be locally Lipschitz continuous.

In this case, neither ∂G nor ∂BG exists. For example, let S = <1, α = 1
2 , β = 1 and F (x) =
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∫ x
0 p(t)dt, where

p(t) =


√
|t| sin 1

t
+ |t| + 1 if t 6= 0

1 otherwise.

Then ∇F (x) = p(x), g(x) = 1
2F (x)2 and G(x) = ∇F (x)F (x) = p(x)F (x). Note that ∇F is

everywhere continuous but fails to be Lipschitz continuous around x = 0. Since F (0) = 0 and
∇F (0) = 1, we have, for all |x| sufficiently small,

F (|x|) = F (0) + ∇F (0)|x| + o(|x|) ≥ 1
2
|x|.

By taking xk = 1
2kπ+π

2
and yk = 1

2kπ+ 3
2
π
, where k = 0, 1, 2, · · · , we have

|G(xk) − G(yk)|
|xk − yk|

=
|∇F (xk)(F (xk) − F (yk)) + (∇F (xk) −∇F (yk))F (yk)|

|xk − yk|

≥ |(∇F (xk) −∇F (yk))F (yk)|
|xk − yk|

− |∇F (xk)(F (xk) − F (yk))|
|xk − yk|

≥ (
√

xk +
√

yk)|F (yk)|
|xk − yk|

− |F (yk)| − O(1)

≥ 1
2

(
√

xk +
√

yk)yk

|xk − yk|
− O(1)

=
1
2

(√
1

2kπ+π
2

+
√

1
2kπ+ 3π

2

)
1

2kπ+ 3π
2

1
2kπ+π

2
− 1

2kπ+ 3π
2

− O(1)

= O(
√

k) − O(1)

for k sufficiently large. So, G is not Lipschitz continuous around x = 0. In this case, neither
∂G(0) nor ∂BG(0) is defined at all.

The above example indicates that the conventional generalized Hessians of g may not be
defined by ∂G or ∂BG, when F is only continuously differentiable. In this paper, we aim to
define a generalized Hessian of g which covers such unfavorable cases and is also computable in
practice.

In Section 2, we propose a computable generalized Jacobian (CGJ) at a given point for the
projection operator ΠS with S defined by (1.7). We denote it by ∂CΠS(·), where C stands for
the word “computable”. Based on ∂CΠS(·), in Section 3 we discuss a way to define a computable
generalized Hessian (CGH) of fα at x by using only the first-order information of F at a given
point. We denote it by H̃Cfα(x) and define a CGH for g at x by

HCg(x) = H̃Cfα(x) − H̃Cfβ(x).

The CGH of g may not coincide with the Hessian of g even if the latter exists, but it plays a role
of the Hessian matrix of g in our generalized Newton method. Using the CGH of g, we establish
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local superlinear convergence of a generalized Newton method for minimizing g in Section 4.
We propose a trust region algorithm in Section 5 and prove its global convergence in Section
6. In Section 7, based upon the theory developed in Section 4, we establish local superlinear
convergence of the trust region algorithm.

It is noted that globally convergent Newton methods for the VIP have already been proposed
by several authors [17, 30]. Those algorithms, however, require the solution of a linearized
variational inequality problem at each iteration. In contrast with them, the algorithm proposed
in this paper solves at each iteration a quadratic minimization problem with a bound constraint
on the variables. For the inequality constrained VIP, people also consider merit functions for its
Karush-Kuhn-Tucker (KKT) system [1, 6, 7].

2. A computable generalized Jacobian for the projection oper-
ator

In this section, we show how to compute a CGJ of ΠS(·), where S is defined by (1.7). Let
ȳ = ΠS(x). Then it is the unique solution of the following nonlinear programming problem in
y :

min
1
2
‖y − x‖2

s.t. hi(y) ≤ 0, i = 1, · · · ,m.

(2.1)

Let M(x) denote the (possibly empty) set of multipliers λ ∈ <m that satisfy KKT optimality
conditions for (2.1) at ȳ:

ȳ − x +
∑m

i=1 λi∇hi(ȳ) = 0,

λi ≥ 0, hi(ȳ) ≤ 0, λihi(ȳ) = 0, i = 1, · · · ,m.
(2.2)

For any y ∈ <n, we will denote the active set by

I(y) = {i | hi(y) = 0}.

In order to ensure the nonemptiness of M(x), we need some constraint qualifications. Here we
will use the so-called constant rank constraint qualification (CRCQ), which was used by Janin
[14] for studying the stability of nonlinear programming and recently used by Pang and Ralph
[23] to investigate conditions for piecewise smoothness of ΠS(·). The CRCQ is said to hold at
ȳ = ΠS(x), if there exists a neighborhood N(ȳ) of ȳ such that for every set J ⊆ I(ȳ), the family
of gradient vectors

{∇hi(y) | i ∈ J}

has the same rank (which depends on J) for all vectors y ∈ N(ȳ). The CRCQ is weaker than
the linear independence constraint qualification (LICQ), i.e., the family of vectors

{∇hi(ȳ) | i ∈ I(ȳ)}

are linearly independent, and will hold automatically on the whole space <n if S is a convex
polyhedral set. It is known that if the CRCQ holds at ȳ, then M(x) is nonempty [14]. For a
nonnegative vector d ∈ <m, we let supp(d), called the support of d, be the subset of {1, · · · ,m}
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consisting of the indices i for which di > 0. Let B(x) be a family of subsets of {1, · · · , m} defined
as follows: J ∈ B(x) if and only if supp(λ) ⊆ J ⊆ I(ȳ) for some λ ∈ M(x) and the vectors

{∇hi(ȳ) | i ∈ J}

are linearly independent. Here we allow the empty index set to be a member of B(x). So if
I(ȳ) = ∅, B(x) = {∅}. When I(ȳ) 6= ∅, ∅ ∈ B(x) if and only if 0 ∈ M(x). In particular, when
I(ȳ) 6= ∅, B(x) = {∅} if and only if all ∇hi(ȳ), i ∈ I(ȳ), are zero vectors. From the CRCQ, the
latter implies that B(z) = {∅} for each z in a neighborhood of x.

The following lemma is proved by Pang and Ralph [23] for the case x /∈ S. By considering
the above observations, the results of this lemma also hold for x ∈ S.

Lemma 2.1 [23] If the CRCQ holds at ȳ = ΠS(x), then there exists a neighborhood N(x) of x
such that for all z ∈ N(x),
(i) the CRCQ holds at ΠS(z);
(ii) B(z) ⊆ B(x).

Now suppose that the CRCQ holds at ȳ = ΠS(x). By definition, for each J ∈ B(x), there
exists λ ∈ M(x) such that

supp(λ) ⊆ J ⊆ I(ȳ). (2.3)

Consider the following system of nonlinear equations:

H(y, µ, z; J) ≡


y − z +

∑m
i=1 µi∇hi(y)

hJ(y)

µJ̄

 = 0, (2.4)

where (y, µ) ∈ <n × <m are variables, z ∈ <n are parameters and J̄ is the complement of J in
{1, · · · ,m}, i.e., J̄ = {1, · · · ,m}\J . For any partition J ∪ J̄ = {1, · · · ,m}, we write µ = (µJ , µJ̄)
and h(y) = (hJ(y), hJ̄(y)).

For the vectors ȳ = ΠS(x), µ̄ = λ and z̄ = x, it follows from the KKT conditions (2.2) and
the inclusions (2.3) that

H(ȳ, µ̄, z̄; J) = 0.

The partial derivative of H(·, ·, ·; J) with respect to (y, µ) is given by

A(y, µ) ≡ ∇y,µH(y, µ, z; J)T =


I +

∑m
i=1 µi∇2hi(y) ∇hJ(y) ∇hJ̄(y)

∇hJ(y)T 0 0

0 0 I

 .

It is easy to check that, by the CRCQ, A(ȳ, µ̄) is nonsingular when hi is twice continuously
differentiable and convex. So the implicit function theorem [18] ensures that there exist open
neighborhoods N(z̄; J) of z̄(= x) and N(ȳ, µ̄; J) of (ȳ, µ̄) such that H(y, µ, z;J) = 0 has a unique
solution (y(z; J), µ(z; J)) ∈ cl N(ȳ, µ̄; J) whenever z ∈ cl N(z̄;J). Moreover (y(z; J), µ(z; J)) is
continuously differentiable in z. After easy computations, we have

∇y(z; J) = C−1 − C−1D
(
DT C−1D

)−1
DT C−1, (2.5)
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where

C ≡ C(z; J) ≡ I +
m∑

i=1

µi(z; J)∇2hi(y(z; J)), D ≡ D(z; J) ≡ ∇hJ(y(z; J)). (2.6)

Notice that
y(z; ∅) ≡ z

and
∇y(z; ∅) ≡ I.

Lemma 2.2 The matrix ∇y(x;J) is symmetric positive semidefinite and ‖∇y(x; J)‖ ≤ 1.

Proof. Let C and D, respectively, denote C(z; J) and D(z;J) evaluated at z = x. It is clear
from (2.5) and (2.6) that ∇y(x; J) is symmetric and C is symmetric positive definite. Let

B = C− 1
2 D

(
(C− 1

2 D)T (C− 1
2 D)

)−1
(C− 1

2 D)T .

It is easy to check that BT = B, B2 = B, ‖B‖ ≤ 1 and ‖I − B‖ ≤ 1. So for any d ∈ <n, we
have

〈d,∇y(x; J)d〉 = 〈d,C−1d〉 − 〈C− 1
2 d, BC− 1

2 d〉

≥ 〈d,C−1d〉 − 〈C− 1
2 d, C− 1

2 d〉

= 0,

which means that ∇y(x;J) is positive semidefinite and

‖∇y(x; J)‖ = ‖C− 1
2 (I − B)C− 1

2 ‖ ≤ ‖C− 1
2 ‖2‖I − B‖ ≤ 1.

This completes the proof. 2

From Lemma 2.1, if the CRCQ holds at ΠS(x), then there exists a neighborhood N(x) of x
such that the CRCQ holds at Π(z) and B(z) ⊆ B(x) whenever z ∈ N(x). So by the definition
of y(z̄; J), J ∈ B(x), we have

ΠS(x) = y(z̄; J), J ∈ B(x). (2.7)

Based on these observations, we define the CGJ of ΠS(x) as follows:

∂CΠS(x) = {∇y(x; J) | J ∈ B(x)}. (2.8)

Note that, when S is a polyhedral set, we have ∇2hi(y) = 0 for all y ∈ <n. Han and Sun [12]
used the set ∂CΠS(x) to construct Newton and quasi-Newton methods for solving variational
inequalities with a polyhedral set.

From the definition of ∂CΠS(x), to find one element P ∈ ∂CΠS(x) is equivalent to find an
index set J ∈ B(x). This is often not difficult after we have the value of ΠS(x). For instance, if
the LICQ holds at ΠS(x), we can choose J = I(ȳ). In fact, any λ ∈ M(x) with minimal support
gives an index set J = supp(λ) ∈ B(x) no matter whether or not the LICQ holds. A multiplier
λ ∈ M(x) with minimal supp(λ) can be obtained easily if we have some element of M(x). But
such an element of M(x) is often a by-product of computing ΠS(x). In particular, if S is a
polyhedral set and the LICQ holds at ΠS(x), the work to find a P ∈ ∂CΠS(x) is approximately
equal to the work to calculate inverses of some matrices (see (2.5) and (2.8)).

The proof of the following lemma is stimulated by the arguments in [23].
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Lemma 2.3 Suppose that the CRCQ holds at ȳ = ΠS(x). Let (y(z;J), µ(z; J)) be the solution
of (2.4) for given z and J satisfying (2.3). Then there exists a neighborhood U(x) of x such that
for each z ∈ U(x),
(i) ΠS(z) = y(z; J), J ∈ B(z);
(ii) ∂CΠS(z) = {∇y(z; J) | J ∈ B(z)}.

Remark. Note that (i) and (ii) in Lemma 2.3 does not follow immediately from (2.7) and
(2.8), because y(z; J) is related to the equation (2.4) with J determined from the point x rather
than z (see (2.3)).

Proof of Lemma 2.3. From Lemma 2.1, there exists a neighborhood N(x) of x such that for
any z ∈ N(x), the CRCQ holds at ΠS(z) and B(z) ⊆ B(x).

Let
U(x) ⊆

∩
J∈B(x)

N(z̄; J) ∩ N(x)

be an open neighborhood of x(= z̄) such that for any z ∈ U(x), any λz ∈ M(z) and J ∈ B(z)
satisfying supp(λz) ⊆ J ⊆ I(ΠS(z)),

(ΠS(z), λz) ∈ N(ȳ, µ̄; J).

Such U(x) can be chosen because there are only finitely many J ’s and, as z → x, we have
J ∈ B(z)(⊆ B(x)),

ΠS(z) → ΠS(x) = ȳ = y(z̄; J)

and
λz = (λz

J , λz
J̄
) = (Ψ(z)(z − ΠS(z)), 0)

→ (Ψ(x)(x − ΠS(x)), 0)

= (λJ , 0) = λ = µ̄ = µ(z̄; J)

with λ ∈ M(x) satisfying supp(λ) ⊆ J ⊆ I(ȳ), where Ψ(v) is the matrix defined for any
v ∈ N(x; J) by

Ψ(v) =
(
∇hJ(ΠS(v))T∇hJ(ΠS(v))

)−1
∇hJ(ΠS(v))T .

For J ∈ B(x), let
U(x; J) = {z | z ∈ U(x), J ∈ B(z)}.

Then
U(x) =

∪
J∈B(x)

U(x; J).

For any z ∈ U(x; J),
H(ΠS(z), λz, z; J) = 0

and
(ΠS(z), λz) ∈ N(ȳ, µ̄; J).

Thus we obtain
(ΠS(z), λz) = (y(z;J), µ(z; J)),

since the solution of H(y, µ, v; J) = 0 is unique in cl N(ȳ, µ̄; J) for each v ∈ N(z̄; J). So (i)
follows.
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Next we prove (ii). From the definition of ∂CΠS(z), for each λz ∈ M(z) and J ∈ B(z)
satisfying supp(λz) ⊆ J ⊆ I(ΠS(z)), there exist two open neighborhoods N(z; J) (⊆ N(z̄; J))
of z and N(ΠS(z), λz; J) of (ΠS(z), λz) such that H(y, µ, v; J) = 0 has a unique continuously
differentiable solution (yz(v; J), µz(v; J)) ∈ cl N(ΠS(z), λz; J) whenever v ∈ cl N(z;J). So

∂CΠS(z) = {∇yz(z;J) | J ∈ B(z)}.

Since
(yz(z; J), µz(z; J)) = (ΠS(z), λz) ∈ N(ȳ, µ̄; J)

and N(ȳ, µ̄; J) is an open set, we can assume N(z; J) sufficiently small so that for any v ∈
cl N(z; J)

(yz(v; J), µz(v; J)) ∈ N(ȳ, µ̄; J).

Then from the uniqueness of the solution of H(y, µ, v; J) = 0 in cl N(ȳ, µ̄; J) for each v ∈
cl N(z̄; J), it follows that for any v ∈ N(z;J) ⊆ N(z̄; J)

(yz(v; J), µz(v; J)) = (y(v; J), µ(v; J)).

So we have
∇yz(z; J) = ∇y(z;J), J ∈ B(z),

and hence,
∂CΠS(z) = {∇y(z; J) | J ∈ B(z)}.

This completes the proof. 2

From Lemmas 2.1 and 2.3, if the CRCQ holds at ΠS(x), there exists a neighborhood N(x)
of x such that for any z ∈ N(x),

ΠS(z) ∈ {y(z; J) | J ∈ B(x)}.

So we have
∂BΠS(x) ⊆ {∇y(x;J) | J ∈ B(x)} = ∂CΠS(x).

If the LICQ holds at ΠS(x), then we have

∂BΠS(x) = ∂CΠS(x)

according to Theorem 3.2 and Corollary 3.2.2 of [20]. In [19, 20] the generalized Jacobian
has been discussed for more general parametric VIP under the LICQ assumption. When the
LICQ does not hold but the CRCQ holds, the above equality does not hold in general. A
counterexample is given in [12].

3. A computable generalized Hessian for the D-gap function

Now let us define the CGH of fα at x as

H̃Cfα(x) = {V ∈ <n×n | V = ∇F (x)T + (∇F (x) − αI)(I − Pα(I − α−1∇F (x))T ),
Pα ∈ ∂CΠS(x − α−1F (x))}

and define H̃Cfβ(x) similarly. Using these sets, we define the CGH of g at x as

HCg(x) = H̃Cfα(x) − H̃Cfβ(x).
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By rearrangements, we have

HCg(x) = {V ∈ <n×n | V = (β − α)I − Vβ + Vα,
Vβ ∈ β−1(βI −∇F (x))∂CΠS(x − β−1F (x))(βI −∇F (x))T ,
Vα ∈ α−1(αI −∇F (x))∂CΠS(x − α−1F (x))(αI −∇F (x))T }.

The reason that we use HCg(x) here is that an element V ∈ HCg(x) is often easier to compute
than V ∈ ∂BG(x) but it still leads to superlinear (and quadratic) convergence of generalized
Newton methods. The above set HCg(x) is, in general, not equal to the generalized Jacobian
∂BG(x). In fact, when S = <n and F ∈ C2, we have

HCg(x) = {(α−1 − β−1)∇F (x)∇F (x)T } (3.1)

and

∂BG(x) = {∇G(x)} = {(α−1 − β−1)∇F (x)∇F (x)T + (α−1 − β−1)∇2F (x)F (x)}. (3.2)

It is generally difficult to establish a relation between ∂BG and HCg since the second-order
derivative is not used in HCg. But, if F is affine, i.e., F (x) = Mx + c with M ∈ <n×n and
c ∈ <n, we have

Lemma 3.1 If F (x) = Mx + c and the CRCQ holds at yα(x) and yβ(x), then

∂BG(x) ⊆ HCg(x).

Proof. From Lemmas 2.1 and 2.3, there exists a neighborhood N(x) of x such that for any
z ∈ N(x),

yα(z) = ΠS(z − α−1F (z)) ∈ {y(z − α−1F (z);L) | L ∈ B(x − α−1F (x))}

and
yβ(z) = ΠS(z − β−1F (z)) ∈ {y(z − β−1F (z);J) | J ∈ B(x − β−1F (x))}.

So for each z ∈ N(x),

G(z) ∈ {GLJ(z) | L ∈ B(x − α−1F (x)), J ∈ B(x − β−1F (x))},

where

GLJ(z) ≡ MT (y(z − β−1F (z);J) − y(z − α−1F (z);L)) + β(z − y(z − β−1F (z);J))

−α(z − y(z − α−1F (z);L)).

Then,
∂BG(x) ⊆ {∇GLJ(x) | L ∈ B(x − α−1F (x)), J ∈ B(x − β−1F (x))}

= HCg(x).

This completes the proof. 2

In the above lemma, the equality does not hold in general. For example, let F (x) = x,
S = <1

+ and 0 < α < 1 < β. Then

∂BG(0) = {2 − α − β−1, β + α−1 − 2}

⊂ {2 − α − β−1, β + α−1 − 2, β − α, α−1 − β−1} = HCg(0).
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Notice that for solving nonlinear equations, the classical Gauss-Newton method uses (3.1)
instead of (3.2) (with α−1 − β−1 = 1) to avoid computing ∇2F (x). Now the question is:
Can we still obtain local superlinear convergence even if one only uses V ∈ HCg(x) instead
of V ∈ ∂BG(x)? The answer is “yes”. In the next section, we will show that it retains local
superlinear (and quadratic) convergence.

In order to prove superlinear convergence, we need that all members of HCg(x∗) are positive
definite for a solution x∗ of the VIP.

Theorem 3.1 Let x ∈ <n be given. Suppose that the CRCQ holds at yα(x) and yβ(x), and
that ∇F (x) is positive definite. If λmin(∇F (x) +∇F (x)T ) > α + β−1‖∇F (x)‖2, where λmin(A)
denotes the smallest eigenvalue of a symmetric matrix A, then all V ∈ HCg(x) are positive
definite.

Proof. For any V ∈ HCg(x), there exist two positive semidefinite matrices Pβ ∈ ∂CΠS(x −
β−1F (x)) and Pα ∈ ∂CΠS(x − α−1F (x)) such that

V = (β − α)I − Vβ + Vα,

where
Vβ = β−1(βI −∇F (x))Pβ(βI −∇F (x))T

and
Vα = α−1(αI −∇F (x))Pα(αI −∇F (x))T .

Since, from Lemma 2.2, Pα is symmetric positive semidefinite and ‖Pβ‖ ≤ 1, we have for any
0 6= d ∈ <n,

〈d, V d〉 = (β − α)〈d, d〉 − 〈d, Vβd〉 + 〈d, Vαd〉

≥ (β − α)〈d, d〉 − β−1‖(βI −∇F (x))T d‖2

= 〈d, (∇F (x) + ∇F (x)T )d〉 − α〈d, d〉 − β−1〈d,∇F (x)∇F (x)T d〉. (3.3)

Then from the assumption and (3.3), it follows that V is positive definite. 2

Note that, for each x, the condition λmin(∇F (x)+∇F (x)T ) > α +β−1‖∇F (x)‖2 is satisfied
if we choose β sufficiently large and α sufficiently small.

Remark. If x = x∗, then we have x∗ = yγ(x∗) for all γ > 0. So, in this case, the CRCQ at x∗

means that it holds at yγ(x∗) for each γ > 0.

When F is affine, i.e., F (x) = Mx + c with M ∈ <n×n and c ∈ <n, we have the following
result:

Corollary 3.1 Suppose that F (x) = Mx + c and M is positive definite. If the CRCQ holds
everywhere, in particular if S is polyhedral, and λmin(M + MT ) > α + β−1‖M‖2, then matrices
V ∈ HCg(x), x ∈ <n, are uniformly positive definite, and hence g is strongly convex.

Proof. By (3.3) in the proof of Theorem 3.1, V ∈ HCg(x) are uniformly positive definite. The
strong convexity of g follows from Lemma 3.1 and the positive definiteness of V ∈ HCg(x). 2
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4. Local superlinear convergence of a generalized Newton method

In this section, we will consider the local convergence properties of the following generalized
Newton method:

xk+1 = xk − V −1
k G(xk), k = 0, 1, · · · , (4.1)

where Vk ∈ HCg(xk).
To prove the superlinear convergence of (4.1), we need the following lemma.

Lemma 4.1 Let x∗ be a solution of the VIP. Suppose that all hi are twice continuously differ-
entiable and convex. If the CRCQ holds at x∗, then for any V ∈ HCg(x), we have

G(x) − G(x∗) − V (x − x∗) = o(‖x − x∗‖). (4.2)

Furthermore if ∇F and all ∇2hi are Lipschitz continuous at x∗, then

G(x) − G(x∗) − V (x − x∗) = O(‖x − x∗‖2). (4.3)

Proof. Recall that x∗ = ΠS(x∗ − α−1F (x∗)) = ΠS(x∗ − β−1F (x∗)). By the assumption that
the CRCQ holds at x∗, it follows from Lemma 2.1 that there exists a neighborhood N(x∗) of x∗

such that, for each x ∈ N(x∗),

B(x − β−1F (x)) ⊆ B(x∗ − β−1F (x∗))

and
B(x − α−1F (x)) ⊆ B(x∗ − α−1F (x∗)).

For any V ∈ HCg(x), there exist Pβ ∈ ∂CΠS(x − β−1F (x)) and Pα ∈ ∂CΠS(x − α−1F (x)) such
that

V = (β − α)I − Vβ + Vα,

where
Vβ = β−1(βI −∇F (x))Pβ(βI −∇F (x))T

and
Vα = α−1(αI −∇F (x))Pα(αI −∇F (x))T .

So we can write
G(x) − G(x∗) − V (x − x∗) = T1 + T2 + T3,

where
T1 = ∇F (x)(yβ(x) − yα(x)) −∇F (x∗)(yβ(x∗) − yα(x∗))

−∇F (x)
(
Pβ(I − β−1∇F (x))T − Pα(I − α−1∇F (x))T

)
(x − x∗),

T2 = −β
(
yβ(x) − yβ(x∗) − Pβ(I − β−1∇F (x))T (x − x∗)

)
and

T3 = α
(
yα(x) − yα(x∗) − Pα(I − β−1∇F (x))T (x − x∗)

)
.
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From Lemma 2.3, we can assume that N(x∗) is sufficiently small so that, for each x ∈ N(x∗),
there exists J ∈ B(x∗ − β−1F (x∗)) (J may be the empty index set) such that

yβ(x) = y(x − β−1F (x);J)

and
Pβ = ∇y(x − β−1F (x);J).

Therefore, we have

yβ(x) − yβ(x∗) − Pβ(I − β−1∇F (x))T (x − x∗)

= y(x − β−1F (x);J) − y(x∗ − β−1F (x∗);J)

−∇y(x − β−1F (x);J)(I − β−1∇F (x))T (x − x∗)

= y(x − β−1F (x);J) − y(x∗ − β−1F (x∗);J)

−∇y(x − β−1F (x);J)(x − β−1F (x) − (x∗ − β−1F (x∗)))

−β−1∇y(x − β−1F (x);J)(F (x) − F (x∗) −∇F (x)T (x − x∗))

= o(‖x − β−1F (x) − (x∗ − β−1F (x∗))‖) + o(‖x − x∗‖)

= o(‖x − x∗‖). (4.4)

Since there are only finitely many J ’s, it follows from (4.4) that T2 = o(‖x − x∗‖). Similarly
we have T3 = o(‖x − x∗‖). To prove (4.2), it remains to show T1 = o(‖x − x∗‖). Since
yβ(x∗) − yα(x∗) = x∗ − x∗ = 0, we can write T1 = −∇F (x)(β−1T2 + α−1T3). Hence T1 =
o(‖x− x∗‖) follows from T2 = o(‖x− x∗‖) and T3 = o(‖x− x∗‖). Thus we obtain (4.2). Finally,
when ∇F and all ∇2hi are Lipschitz continuous, we can easily modify the above arguments to
get (4.3). 2

Theorem 4.1 Let x∗ be a solution of the VIP. Suppose that all hi are twice continuously dif-
ferentiable and convex. If the CRCQ holds at x∗ and all V ∈ HCg(x∗) are positive definite, then
there exists a neighborhood N(x∗) of x∗ such that when the initial point x0 is chosen in N(x∗),
the sequence generated by (4.1) is well defined and converges to x∗ Q-superlinearly. Furthermore,
if ∇F and all ∇2hi are Lipschitz continuous, then the convergence rate is Q-quadratic.

Proof. From Lemma 2.3 and the definition of HCg(·), it is easy to see that HCg(x∗) is compact,
and HCg(·) is upper-semicontinuous at x∗, i.e., for any ε > 0, there exists a positive number δ
such that for all x ∈ {y ∈ <n|‖y − x∗‖ ≤ δ} we have

HCg(x) ⊆ HCg(x∗) + εB,

where B is the unit ball of <n. Then from the given assumptions, there exists a neighborhood
N(x∗) such that for any x ∈ N(x∗), all V ∈ HCg(x) are uniformly positive definite. So for
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k = 0, (4.1) is well defined. From Lemma 4.1 and (4.1), we have

‖xk+1 − x∗‖ = ‖xk − x∗ − V −1
k G(xk)‖

= ‖V −1
k (G(xk) − G(x∗) − Vk(xk − x∗))‖

= o(‖xk − x∗‖).

This proves the Q-superlinear convergence of {xk}. If ∇F and all ∇2hi are Lipschitz continuous,
by modifying the above arguments, we have the Q-quadratic convergence of {xk}. 2

Remark. Notice that for the superlinear convergence of the generalized Newton method
(4.1), we only require F to be continuously differentiable. It is easy to see that the function F
in the example in Section 1 satisfies the superlinear convergence conditions of Theorem 4.1.

The above method (4.1) only has a local convergence property. There are many ways to
globalize such a method. In the next section we will provide a trust region algorithm to globalize
it.

5. A trust region algorithm

The k-th iteration of the trust region algorithm for solving the unconstrained minimization
problem

minimizex∈<n g(x)

is stated as follows: Given xk ∈ <n and ∆k > 0, solve the minimization problem

minimize gk(d) ≡ g(xk) + 〈G(xk), d〉 + 1
2〈d, Vkd〉

subject to ‖d‖ ≤ ∆k,
(5.1)

where Vk is an element of HCg(xk) or some approximation to it. Let dk denote an optimal
solution of subproblem (5.1). If dk = 0, then we terminate the iteration. Otherwise, compute
the ratio

ρk =
g(xk) − g(xk + dk)

g(xk) − gk(dk)
(5.2)

and determine xk+1 and ∆k+1, respectively, by

xk+1 =

{
xk + dk if ρk > η1,
xk if ρk ≤ η1,

(5.3)

∆k+1 =


γ1∆k if ρk ≤ η1,
∆k if η1 < ρk ≤ η2,
γ2∆k if ρk > η2,

(5.4)

where η1, η2, γ1, γ2 are predetermined constants such that 0 < η1 < η2 < 1 and 0 < γ1 < 1 < γ2.
Note that if Vk is positive definite, and the constraint ‖d‖ ≤ ∆k is inactive at the solution dk

of (5.1), and ρk > η1, then the iteration xk+1 = xk + dk reduces to the Newton iteration (4.1).
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6. Global convergence of the trust region algorithm

The global convergence of trust region algorithms for unconstrained differentiable optimization
problems has been studied quite extensively [25, 29, 8]. For example, Powell [25] showed that
the trust region algorithm as described in the previous section generates a sequence {xk} such
that

lim inf
k→∞

‖G(xk)‖ = 0, (6.1)

if the following conditions are satisfied:

(a) g(x) is bounded below;

(b) G(x) is uniformly continuous;

(c) {Vk} satisfies either

‖Vk‖ ≤ c1 + c2

k∑
i=1

∆i for all k (6.2)

or
‖Vk‖ ≤ c1 + c2k for all k, (6.3)

where c1 and c2 are some positive constants.

In the present case where g is the D-gap function defined by (1.1), condition (a) is automatically
satisfied, since g(x) ≥ 0 for all x ∈ <n. For condition (b), we have the following lemma. This
lemma has essentially been proved in [11], but we give the proof here for completeness.

Lemma 6.1 Suppose that ∇F : <n → <n×n is uniformly continuous and bounded. Then the
gradient mapping G = ∇g is uniformly continuous.

Proof. First we show that F is also uniformly continuous. From the mean-value theorem [18],
we have

F (x) − F (y) =
∫ 1

0
∇F (x + t(y − x))T (y − x)dt

=
∫ 1

0
[∇F (x + t(y − x)) −∇F (x)]T (y − x)dt + ∇F (x)T (y − x).

Then it is not difficult to deduce the uniform continuity of F from the uniform continuity and
the boundedness of ∇F . Now since the gradient mapping G = ∇g is given by

G(x) = ∇F (x)(yβ(x) − yα(x)) + β(x − yβ(x)) − α(x − yα(x)),

(see (1.4) and (1.5)), and since yα and yβ are both composite functions of F and the projection
operator ΠS (see (1.6)), the uniform continuity of G follows from the uniform continuity of F
and ∇F and the boundedness of ∇F . 2

From the above results, the following global convergence theorem is readily established.

Theorem 6.1 Suppose that ∇F : <n → <n×n is uniformly continuous and bounded. Then the
sequence {xk} generated by the trust region algorithm satisfies (6.1), provided that the sequence
of matrices {Vk} satisfies either of the conditions (6.2) and (6.3).
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Proof. As mentioned just before Lemma 6.1, the function g is bounded below. By Lemma 6.1,
G is uniformly continuous. Consequently, it follows from the result established by Powell [25]
that (6.1) is satisfied. 2

It has been shown [31] that if F is strongly monotone and if either F is Lipschitz continuous
or S is compact, then the function g has bounded level sets. So when these conditions are
satisfied, the descent property of the trust region algorithm ensures the boundedness of the
generated sequence {xk}. Moreover, if {∆k} is bounded, which is usually the case in the trust
region algorithm, the uniform continuity condition on G, i.e., condition (b), may be replaced
by the weaker condition that G is uniformly continuous on a bounded set containing {xk} and
{xk + dk}. The latter condition is particularly satisfied under the present standing assumption
of continuous differentiability of F . Thus, in this case, we need not require ∇F to be uniformly
continuous and bounded. To summarize, we obtain the next theorem.

Theorem 6.2 Suppose that F is strongly monotone and that either F is Lipschitz continuous
or S is compact. Suppose also that {Vk} satisfies either (6.2) or (6.3) and that {∆k} is bounded.
Then the sequence {xk} generated by the trust region algorithm contains a subsequence whose
limit point x∗ is the unique solution of the VIP.

Proof. As mentioned in the paragraph preceding the theorem, the boundedness of the generated
sequence {xk} is guaranteed under the given hypotheses and the same conclusion as that of
Theorem 6.1 remains true. Hence, there is a subsequence {xk}k∈K such that

lim
k→∞
k∈K

G(xk) = 0.

Therefore, by the continuity of G, we may deduce that there exists a subsequence whose limit
point x∗ satisfies the stationarity condition G(x∗) = 0. Moreover, the strong monotonicity of
F ensures not only the existence of a unique solution of the VIP but also the fact that any
stationary point of g solves the VIP [31]. This completes the proof. 2

When the generated sequence {xk} is not bounded, we cannot say much about its asymptotic
behavior. In fact, the above-mentioned result by Powell [25] only says that there exists a
subsequence {xk}k∈K which is a stationary sequence for g in the sense that

lim
k→∞
k∈K

G(xk) = 0.

In general, this does not imply that {xk}k∈K is a minimizing sequence for g in the sense that

lim
k→∞
k∈K

g(xk) = inf
x∈<n

g(x),

unless some additional conditions are met [11].

7. Superlinear convergence of the trust region algorithm

In this section, we establish local superlinear convergence of the algorithm. In order to do this,
we need the following lemma.
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Lemma 7.1 Let x∗ be a solution of the VIP. Suppose that all hi are twice continuously differ-
entiable and convex. If the CRCQ holds at x∗, then for any V ∈ HCg(x), we have

g(x) − g(x∗) − 〈G(x∗), x − x∗〉 − 1
2
〈x − x∗, V (x − x∗)〉 = o(‖x − x∗‖2). (7.1)

Proof. Let N(x∗) be a neighborhood of x∗ such that for any x ∈ N(x∗),

B(x − α−1F (x)) ⊆ B(x∗ − α−1F (x∗)),

B(x − β−1F (x)) ⊆ B(x∗ − β−1F (x∗)),

and
yα(x) = y(x − α−1F (x);L),

yβ(x) = y(x − β−1F (x);J)

for any L ∈ B(x − α−1F (x)) and J ∈ B(x − β−1F (x)), respectively. The existence of N(x∗)
follows from Lemmas 2.1 and 2.3. Let us define

SL = {y ∈ <n | hi(y) ≤ 0, i ∈ L}

and
fL

γ (z) = max
y∈SL

{
〈F (z), z − y〉 − γ

2
‖z − y‖2

}
,

where γ = α or β. It is known [9] that fL
γ is continuously differentiable and

∇fL
γ (z) = F (z) + ∇F (z)(z − yL

γ (z)) − γ(z − yL
γ (z)),

where yL
γ (z) = ΠSL(z − γ−1F (z)).

Let gLJ : <n → < be defined by

gLJ(z) = fL
α (z) − fJ

β (z).

Since all hi are twice continuously differentiable and convex, it follows from Lemma 3 of [23]
that for any z and any L ∈ B(z) we have

ΠSL(z) = ΠS(z).

Then, for any L ∈ B(x − α−1F (x)) and J ∈ B(x − β−1F (x)), we have

gLJ(x) = fL
α (x) − fJ

β (z)

=
[
〈F (x), (x − yL

α(x))〉 − α

2
‖x − yL

α(x)‖2
]
−

[
〈F (x), (x − yJ

β (x))〉 − β

2
‖x − yJ

β (x)‖2
]

=
[
〈F (x), (x − yα(x))〉 − α

2
‖x − yα(x)‖2

]
−

[
〈F (x), (x − yβ(x))〉 − β

2
‖x − yβ(x)‖2

]

= fα(x) − fβ(x)
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and
∇gLJ(x) = ∇fL

α (x) −∇fJ
β (x)

=
[
F (x) + ∇F (x)(x − yL

α(x)) − α(x − yL
α(x))

]
−

[
F (x) + ∇F (x)(x − yJ

β (x)) − β(x − yJ
β (x))

]
= ∇F (x)(yJ

β (x) − yL
α(x)) + β(x − yJ

β (x)) − α(x − yL
α(x))

= ∇F (x)(yβ(x) − yα(x)) + β(x − yβ(x)) − α(x − yα(x))

= ∇g(x) = G(x).

For any V ∈ HCg(x), there exist L ∈ B(x − α−1F (x)) and J ∈ B(x − β−1F (x)) such that

V = (β − α)I − Vβ + Vα, (7.2)

where
Vβ = β−1(βI −∇F (x))∇y(x − β−1F (x);J)(βI −∇F (x))T

and
Vα = α−1(αI −∇F (x))∇y(x − α−1F (x);L)(αI −∇F (x))T .

Let xt = x + t(x − x∗), t ∈ [0, 1] and consider

δLJ(x) ≡ gLJ(x) − gLJ(x∗) − 〈∇gLJ(x∗), x − x∗〉 − 1
2
〈x − x∗, V (x − x∗)〉

=
∫ 1

0
〈∇gLJ(xt) −∇gLJ(x∗), x − x∗〉dt − 1

2
〈x − x∗, V (x − x∗)〉

= T4 + T5 + T6 −
1
2
〈x − x∗, V (x − x∗)〉,

where, by the definitions of ∇gLJ ,

T4 =
∫ 1

0
(β − α)〈xt − x∗, x − x∗〉dt =

1
2
(β − α)〈x − x∗, x − x∗〉,

T5 =
∫ 1

0
〈∇F (xt)y(xt − β−1F (xt);J) −∇F (x∗)y(x∗ − β−1F (x∗);J), x − x∗〉dt

−
∫ 1

0
〈∇F (xt)y(xt − α−1F (xt);L) −∇F (x∗)y(x∗ − α−1F (x∗);L), x − x∗〉dt

and

T6 = −β

∫ 1

0
〈y(xt − β−1F (xt);J) − y(x∗ − β−1F (x∗);J), x − x∗〉dt

+ α

∫ 1

0
〈y(xt − α−1F (xt);L) − y(x∗ − α−1F (x∗);L), x − x∗〉dt.
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By noting
y(x∗ − α−1F (x∗);L) = y(x∗ − β−1F (x∗);J) = x∗,

we have

T5 =
∫ 1

0
〈∇F (x∗)∇y(x∗ − β−1F (x∗);J)(I − β−1∇F (x∗))T (xt − x∗), x − x∗〉dt

−
∫ 1

0
〈∇F (x∗)∇y(x∗ − α−1F (x∗);L)(I − α−1∇F (x∗))T (xt − x∗), x − x∗〉dt

+
∫ 1

0
o(‖xt − x∗‖‖x − x∗‖)dt

=
1
2
〈∇F (x∗)∇y(x∗ − β−1F (x∗);J)(I − β−1∇F (x∗))T (x − x∗), x − x∗〉

−1
2
〈∇F (x∗)∇y(x∗ − α−1F (x∗);L)(I − α−1∇F (x∗))T (x − x∗), x − x∗〉

+ o(‖x − x∗‖2)

and

T6 = −β

∫ 1

0
〈∇y(x∗ − β−1F (x∗);J)(I − β−1∇F (x∗))T (xt − x∗), x − x∗〉dt

+ α

∫ 1

0
〈∇y(x∗ − α−1F (x∗);L)(I − α−1∇F (x∗))T (xt − x∗), x − x∗〉dt

+
∫ 1

0
o(‖xt − x∗‖‖x − x∗‖)dt

= −β

2
〈∇y(x∗ − β−1F (x∗);J)(I − β−1∇F (x∗))T (x − x∗), x − x∗〉

+
α

2
〈∇y(x∗ − α−1F (x∗);L)(I − α−1∇F (x∗))T (x − x∗), x − x∗〉

+ o(‖x − x∗‖2).

Now let
V ∗ = (β − α)I − V ∗

β + V ∗
α ,

where
V ∗

β = β−1(βI −∇F (x∗))∇y(x∗ − β−1F (x∗);J)(βI −∇F (x∗))T

and
V ∗

α = α−1(αI −∇F (x∗))∇y(x∗ − α−1F (x∗);L)(αI −∇F (x∗))T .

Then we have
T4 + T5 + T6 =

1
2
〈x − x∗, V ∗(x − x∗)〉 + o(‖x − x∗‖2).

So it follows that

δLJ(x) =
1
2
〈x − x∗, (V ∗ − V )(x − x∗)〉 + o(‖x − x∗‖2).
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In view of (7.2), we get ‖V − V ∗‖ → 0 as x → x∗. Therefore,

δLJ(x) = o(‖x − x∗‖2).

Since there are only finitely many L’s and J ’s, we have

g(x) − g(x∗) − 〈G(x∗), x − x∗〉 − 1
2
〈x − x∗, V (x − x∗)〉

= gLJ(x) − gLJ(x∗) − 〈∇gLJ(x∗), x − x∗〉 − 1
2
〈x − x∗, V (x − x∗)〉

= δLJ(x)

= o(‖x − x∗‖2),

which proves (7.1). 2

Now we can establish a superlinear convergence result of the trust region algorithm.

Theorem 7.1 Let x∗ be a solution of the VIP. Suppose that the CRCQ holds at x∗ and all V ∈
HCg(x∗) are positive definite. Suppose also that the sequence {xk} generated by the trust region
algorithm converges to x∗ and Vk ∈ HCg(xk) for all k. If the bound constraint in subproblem (5.1)
is inactive for all sufficiently large k, then the sequence {xk} converges to x∗ Q-superlinearly.
Furthermore, if ∇F and all ∇2hi are Lipschitz continuous, the convergence is Q-quadratic.

Proof. From the proof of Theorem 4.1, there exists a neighborhood N(x∗) of x∗ such that when
x ∈ N(x∗), all W ∈ HCg(x) are uniformly positive definite. Because the bound constraint is
inactive for all sufficiently large k, we have

dk = −V −1
k G(xk)

when k is sufficiently large. From Theorem 4.1,

‖xk + dk − x∗‖ = o(‖xk − x∗‖),

which means that
‖dk‖ = ‖xk − x∗‖ + o(‖xk − x∗‖).

So from Lemma 7.1, for all Wk ∈ HCg(xk + dk) we have

g(xk + dk) = g(x∗) + 〈G(x∗), xk + dk − x∗〉

+
1
2
〈xk + dk − x∗,Wk(xk + dk − x∗)〉 + o(‖xk + dk − x∗‖2)

= o(‖xk − x∗‖2) = o(‖dk‖2)

and

g(xk) = g(x∗) + 〈G(x∗), xk − x∗〉 +
1
2
〈xk − x∗, Vk(xk − x∗)〉 + o(‖xk − x∗‖2)

=
1
2
〈dk, Vkd

k〉 + o(‖dk‖2)

= −1
2
〈G(xk), dk〉 + o(‖dk‖2).
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Therefore, for any η′ ∈ (η1, 1), we have

g(xk + dk) − g(xk) − η′

2
〈G(xk), dk〉 =

1 − η′

2
〈G(xk), dk〉 + o(‖dk‖2)

= −1 − η′

2
〈dk, V −1

k dk〉 + o(‖dk‖2)

< 0,

when k is sufficiently large. From this inequality, we can deduce that, for all k sufficiently large,

ρk =
g(xk) − g(xk + dk)

g(xk) − gk(dk)
> η1,

which means
xk+1 = xk + dk.

So the superlinear (and quadratic) convergence of {xk} follows from Theorem 4.1. 2.

Remark 7.1. Theorem 7.1 assumes that the bound constraint in subproblem (5.1) becomes
inactive eventually. However, G is not continuously differentiable in general, and it does not
seem possible to show that this assumption always holds, as in the smooth case. A possible
remedy for this shortcoming is to use a hybrid technique: In the k-th iteration of the trust
region algorithm, if Vk is positive definite, then let dk := −V −1

k G(xk) and compute ρk as in
(5.2). If

ρk > η1 (7.3)

and
−〈G(xk), dk〉 > ρ‖G(xk)‖2+ε (7.4)

for given constants ρ, ε ∈ (0,∞), let xk+1 = xk + dk and ∆k+1 = ∆k. Otherwise, solve (5.1)
for dk and continue the trust region algorithm as described in Section 5. Note that condition
(7.4) was used in [3] for solving nonlinear complementarity problems, and will hold if xk is close
enough to a solution x∗ and all V ∈ HCg(x∗) are positive definite. So superlinear convergence
for such a hybrid method can be obtained. Also we may expect (6.1) to hold, because conditions
(7.3) and (7.4) still guarantee a sufficient decrease in the objective value at every iteration such
that xk+1 6= xk. Such a hybrid technique may be avoided if we adopt a line search strategy to
globalize the Newton method, because we can always check the unit step size (Newton step)
first. In this case, however, it may be necessary to modify matrix Vk in such a way that it
becomes positive definite, thereby yielding a descent direction for the function g.

Remark 7.2. Very recently, Kanzow and Fukushima [16] refined the properties of the D-
gap function for box constrained variational inequalities and presented a Gauss-Newton type
algorithm with a line search strategy for minimizing the D-gap function. They tested the whole
set of problems in the MCPLIB test problems with MATLAB version, see [4]. The numerical
results reported in [16] show that most problems in [4] can be solved successfully. In [7], good
numerical results for a similar iterative method with another merit function are also reported for
variational inequalities with box constraints. The advantage of the approach adopted here may
exist in that we handle the problem directly without increasing the dimension of the problem,
while the approach presented in [7] is based on the KKT system involving Lagrange multipliers
associated with the constraints of the problem.
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