SDPNAL+: A MATLAB software package for
large-scale SDPs with a user-friendly interface

Defeng Sun

Department of Applied Mathematics, The Hong Kong
Polytechnic University

SIAM ALA Conference 2018

Joint work with: Kim-Chuan Toh, National University of Singapore
Yancheng Yuan (NUS)

Xinyuan Zhao (Beijing U Tech.)

Past contributor: Liugin Yang
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@ Phase Il: An augmented Lagrangian method (ALM) for SDP+

@ A semismooth Newton-CG (SNCG) method for solving ALM sub-
problems

o SDPNAL+: practical implementation of the 2 phase method
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SDP and SDP—+ problems

S’ = cone of positive semidefinite matrices. Write X = 0if X € S%.
(SDP) min{ C, X)| AX)=0b, X € Si}
where C' € S, b € R™ are given data; A : S" — R™ is a linear map.
(SDP+) min {(C, X)|AX)=b, X €S, X € /\/}

where N = {X € S" | L < X < U} and L,U are given bounds
(entries allow to take —oo, oo respectively).

Important case: N ={X € S" | X > 0}, i.e., DNN (doubly nonneg-
ative) SDP.

(SDP) is solvable by powerful interior-point methods if n and m are
not too large, say, n < 2000, m < 10, 000.

m large = m xm dense “Hessian” matrix cannot be stored explicitly.
For m = 10°, needs 100GB RAM memory!

Current research interests focus on n < 5000 but m > 10, 000.
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More general SDP+

SDPNAL was developed around 2008/09 for (SDP).

In 2012/13, it was extended to SDPNAL+ for (SDP+) directly with-
out introducing extra equality constraints X = Y to convert X €
St NN toX eStandY e V.

Now our solver SDPNAL+ can solve general SDP problems:

(genSDP) min 3" (Cy, X;)
s.t. ZfilAi(Xi):b (equalities)

1<V Bi(X;) <u (inequalities)

X; €K; (cone), X; €N; (bounds), i=1:N

where K; is either a PSD cone or nonnegative orthant. Currently
extending K; to other cones such as SOCP.



Large scale SDP and SDP+: a brief history

Parallel IPM [Benson, Borchers, Fujisawa, ... 03-present]
First-order gradient methods on NLP formulation (low accuracy)
[Burer-Monteiro 03]

Inexact IPM [Kojima, Toh 04]

Gen. Lag. method on barrier-penalized dual [Kocvara-Stingl 03]
ALM on primal SDP from relaxation of lift-and-project scheme
[Burer-Vandenbussche 06]

Boundary-point method: BCD-ALM on dual [Rendl et al. 06]
Reg. methods for SDP = ADMM on dual [Malick-Povh-Rend|
09]

SDPNAL: ADMM+SNCG-ALM on dual [Zhao-Sun-Toh 10]
SDPAD: ADMM on dual [Wen et al. 10] (used SDPNAL tem-
plate)

2EBD: hybrid proximal extra-gradient method on primal [Mon-
teiro et al. 13] (used SDPNAL template)

ADMM-+: convergent sGS-ADMM on SDP+ [Sun-Toh-Yang 15]
SDPNAL+: SNCG-ALM on SDP+ [Yang-Sun-Toh 15]



Correlation matrix and clustering problems

In nearest correlation matrix problem, given data matrix U € S™, we
want to solve

1
(NCM)  min { S| o (X ~U)|li | Diag(X) =1, X = 0}

where H € S™ has nonnegative entries and “o" is the Hardamard
product.

In clustering, given data vectors {p;} ;, the goal is to cluster them
into k clusters. A possible model [Peng-Wei 07] is:

min{(D, X) | (I, X) =k X1=1, X €S", XZO}

where Dj; = [|p; — p;|*.
Note: D can also be other affinity matrix.



Maximum stable set problem a graph G = (V, )

A stable set S is subset of V' such that no vertices in S are adjacent.
Maximum stable set problem: find S with maximum cardinality. Let

1 ifiesS -
T = i = |S| = Zi-
! { 0 otherwise 5] z; !
1=
A common formulation of the max-stable-set problem:

a(G@) = max{|S| = ﬁzu rix; | xix; =0V (i,j) € £, 2 € {0,1}"}
I X :=az2"/|8|
max{(E, X) | Xy =0V (i,5) €€, U, X>:1}

SDP relaxation: X =z /|S| = X =0, get
0(G) = max{(E, X): X;;=0Y (i) €€, (I, X)=1, X » 0}

04+(G) := n(n+1)/2 additional constraints X > 0



Quadratic assignment problem (QAP)

Assign n facilities to n locations [Koopmans and Beckmann (1957)]

A = (a;j) where a;j= flow from facility ¢ to facility j

B = (bx;) where by;= distance from location k to location [
cost of assignment m = 37" | > U1 aijbr(i)n(j)

m];n {(B ® A, vec(P)vec(P)T) | Pis n x n permutation matrix}

SDP+ relaxation [Povh and Rendl, 09]:
relax vec(P)vec(P)” to the n? x n? variable X € 7" and X > 0

(QAP) mm{<B®A, X)|AX)-b=0, X eS™", X zo}

where the linear constraints (with m = 3n(n + 1)/2) encode the
condition PTP = I,,, P > 0.



A basic user-friendly interface

Consider the NCM problem.

n = 100;
G randn(n,n);
G 0.5%x(G + G’);

model = ccp_model (’NCM’);
X = var_sdp(n,n);
model.add_variable (X);
model .minimize (11_norm(X-G));
model.add_affine_constraint (map_diag(X)==ones(n,1));
model . solve;



Consider the 6+ problem of a graph with adjacency matrix G.

n =
G =

L[IE,

n =

200;

triu(sprand(n,n,0.5),1);

JE] =

£find (G);

length(G);

model = ccp_model(’theta’);

X
model
model
model
model

var_sdp(n,n);

.add_variable (X);

.maximize (sum(X));
.add_affine_constraint (trace(X) =
.add_affine_constraint (X(IE,JE) =
model .

1);
0);

add_affine_constraint (X >= 0);

model.solve;
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nl

M

min trace(X®) + trace(X®) 4 sum(X®)
st —X9 +2x2 4 2x¥ =4 (equalities)
1 2 3
2xW +x32 - xP =3
2<—xB —2x{? 4 2x{ <7 (inequalities)
XMW est x@ er>>® xG cRT  (cones)
0< XM <10E5, 0<X® <8E;5 (bounds)

= 6; n2 = 5; n3 = 7;
= ccp_model (’Example_simple ’);

X1=var_sdp(nl,nl); X2=var_nn(n2,n2); X3=var_nn(n3);

=

EEEEERER=E

.add_variable (X1,X2,X3);

.minimize (trace(X1) + trace(X2) + sum(X3));
.add_affine_constraint (-X1(1,2)+2*xX2(3,3)+2*%X3(2)==4);
.add_affine_constraint (2*xX1(2,3)+X2(4,2)-X3(4) == 3);
.add_affine_constraint (2<=-X1(1,2)-2%X2(3,3)+2%xX3(2)<=7);
.add_affine_constraint (0 <= X1 <= 10);
.add_affine_constraint (X2 <= 8);

.solve;
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Dual SDP+

For simplicity, consider only N'={X € S" | X > 0}.
Dual of SDP+ and its augmented Lagrangian function are given by:

(D) min{—(b, y) + dsn (S) + o (Z) | A"y + S+ Z = C}
(a linearly constrained convex problem with 3 blocks of variables);
Ls(y,S,2;X) = —(b, y) + dsn.(S) + on(Z)
HAY+ S5+ 2O, X) + 2| Ay +5+2-C
(quadratic in (y, S, Z) + nonsmooth terms in S, Z)
KKT conditions:
AX —b
Rikr(y, S, Z; X) = 2:1:1%((2:;()) =
Ay+S+72-C

o o o o
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A directly extended ADMM for dual SDP+

Input (yo, So, Zo; Xo). For k=0,1,..., let Ck=C—o1X*
(1a) y*+! = argminyeRmﬁg(y,Sk,Zk;Xk)
(1b) S**+! = argming g Lo (y*F, 5, Z%; XF) = TIgy (CF — A*y*H! — ZF)

(2) ZF1 = argming, Lo (yFT, SFFL Z; XF) = Tl (CF—Aryk+1—ghtl)

3) Xkl = XF 4 ro(A*yktl 4 Sk 4 ZE+HL _ ), where T € (0, LEV5) i
Y 2
the step-length.

Direct extension of 2-block ADMM is not guaranteed to converge
[Chen-He-Ye-Yuan, v155, MP 2016]
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A convergent symmetric Gauss-Seidel (sGS) ADMM for dual SDP+

But sGS-ADMM is guaranteed to converge!

Input (o, So, Zo; Xo). For k=0,1,..., let Ck = C — o~ 1 X
(1a) y** ~ argmin, cpm Lo (y, S*, Z%; X*)
(1b) Sk+! = argmingcgn Lo (Y kLS 7k XF) = Hsn( — Aryghtl — ZF)

(Lc) |y +! =~ argmin, e Lo (y, SFT1, 2% XF)

(2) 21 = argmin o\ L, (yF L, SFFL 7 XF) = N( — Axyktl - Gkt
(3) XM = XF 4 7o (AryFt! 4 SFHL 4 ZH — O)

In Step 1, the AL function L, for the block (y,.S) has the form:

Lo(y,5) = b5 (5) + S| Ay + 5 + 2+ CH? = (b, )
(QP in (y,S) + nonsmooth term in S)

(1a)—(1c) is equivalent to minimizing L, (y,S) + sGS proximal term.

The steps are based on an sGS decomposition theorem.
14



Global convergence of inexact sGS-ADMM

Theorem Suppose that the KKT conditions of (SDP+) has a so-
lution. Let {(y*,S*, Z*, X*)} be the sequence generated by the
inexact sGS-ADMM. Then {X*} converges to an optimal solution of
(SDP+) and {(y*, S*, Z¥)} converges to an optimal solution of its
dual.

[1] D.F. Sun, K.C. Toh and L.Q. Yang, A convergent 3-block semi-proximal ADMM
for conic programming with 4-type constraints, v25, SIOPT 2015.

[2] X.D. Li, D.F. Sun, K.C. Toh, A Schur complement based semiproximal ADMM
for convex ..., v155, MP 2016. Schur-complement-ADMM

[3] X.D. Li, D.F. Sun, K.C. Toh, QSDPNAL: A two-phase augmented Lagrangian
method for convex quadratic SDP, MPC 2018. Section 2: sGS decomposition
theorem, Schur-complement-ADMM = sGS-ADMM

[4] L. Chen, D.F. Sun, K.C. Toh, An efficient inexact symmetric Gauss-Seidel
based majorized ADMM for ..., v161, MP 2017. inexact sGS-ADMM

[5] X.D. Li, D.F. Sun, K.C. Toh, A block sGS decomposition theorem for convex

composite quadratic programming and its applications, MP 2018. sGS-ADMM =
Schur-complement-ADMM, sSOR-extension
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Local convergence of inexact sGS-ADMM

Theorem [Han-Sun-Zhang, MOR 2018: exact version]

Let Qgxr # 0 be the KKT solution set. Suppose that an er-
ror bound condition holds for Rkt at an optimal solution u* =
(y*,8*, Z*, X*) that u¥ = (y*, S*, Z* X*) converges to, i.e, 3
n,r >0 s.t.

dist(u, Qxkr) < n||Rxxr(w)| Yu € By(u").
Then 3 p € (0,1) depending on 7 s.t.

dist(ukH, Qkkr) < W dist(uk, Qkkr) Yk sufficiently large.

Inexact version can be established via the analysis in [Chen-Sun-Toh,
MP 2017] and [Han-Sun-Zhang, MOR 2018].
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Detour: block symmetric Gauss-Seidel (sGS) decomposition

Consider a convex composite QP with 3 blocks:
min {p(a:l) +h(x) |z = (z1; z2,23) € R™ x R"™ X R”3}

Convex quadratic function h(z) := 3(z, Hz) — (b, z)

Closed proper convex fun. p : R"™ — (—o0,+o0|, eg. p(z1) =
121 ]loo

Write H = U* +D + U, D diagonal blocks, U strict upper triangular
part. Assume D invertible.

Define sGS(H) :=UD~'U* (symmetric Gauss-Seidel decomp)
Given T, define
. 1 _
o = argmin, {p(azl) + h(x) + §||:£ - tzGS(H)}
Next theorem: can compute ™t using one sGS cycle!

If p(x1) is absent, we get the classical block sGS iteration.
17



Detour: block symmetric Gauss-Seidel (sGS) decomposition
Theorem [Li-Sun-Toh 2015]
It holds that H + sGS(H) = (D +U)D~1(D + U*) = 0.
Backward GS: 3 — 2. Compute

aly = argmin p(Z1) + h(Z1, T, v3) = Hiy (bs — HisT1 — H3s%2)
xy = argmin p(Z1) + h(Z1,x2,25) = Hyy (ba — HipZ1 — HosZh)
Forward GS: 1 — 2 — 3. Compute

x{ = argmin p(z1) + h(x1,2h,2%)  (non-smooth/non-quadratic)

zy = argmin p(a) + h(zy, 22, 25) = Hyy (be — Hiyari — Hasah)

zf = argmin p(zy) + h(zf, @3, 23) = Hy (bs — Hizai — Hizas)

Inexact computation is also allowed! So can use PCG to solve large
linear systems.

18



Detour: block symmetric Gauss-Seidel (sGS) decomposition

Theorem [Li-Sun-Toh 2015]
Backward GS: For i = s,...,2, compute

o = Hy (bt e — X HT — Yoy Higmh).
Forward GS: For i = 2,...,s,

+
1

zf = argminp(z1) + h(z1,7%,) — (ef, 1),

zt = Hp'(bi+e E Hiw] _Z;:Hl Hijrj)

et ¢ are error vectors. In this case, x is the exact solution to a

slightly perturbed proximal problem:

v+ o= argmin, {p(ea) +h(x) + 5 lle — 2l — (. A )}

Ale,et) =et +UD (et —¢).

10



Phase Il: augmented Lagrangian method (ALM)

Adding a large proximal term slows the convergence of sGS-ADMM!

With no proximal term added, we consider the ALM for solving dual
SDP+.

(1) Compute
(yFh, SHH 2R ~ argmin{ﬁk(y, S,7) = Lo, (y, S,Z;X’“)}
= argmin{ — (b, y) + 2| Ay + S + Z + CF|[2 + dgy (S) + on(2) }

(2) Update X*! = X* + oy (A*yktL + SEFL 4 Zk+HL _ Oy,
update g;41 T 000 < 00.
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Global convergence of ALM

Define X**+1 = X* 4 5, Rp(yF+!, Sk+1, Zk+1),

AXk—i—l —b
ek-i-l — Xkt HSi (Xk-H _ Sk-‘rl)
Xk+1 _ H_/\/n (Xk—l—l _ Zk—I—l)

In Step 1, we use the following easy-to-check stopping conditions:

2
k+1 €k 1 1
(A) He H < 1+ H(X’y7 S, Z)k-i—lH mln{ak7 1+||Xk+1_ch||}
2 k+1 _ vk(2
(B) Hek—H” < nk”X X H mi {L kll - }
T 1+ (X, 5, 2)FH 7t I AE XA

where {ex} and {0y} are nonnegative summable sequences.

Theorem [Rockafellar 76] Let Qp # () be the primal optimal solu-
tion set and Slater’s condition holds for primal problem (P). Under
stopping condition (A), we have X* — X* and (yF*+1, Sk+1 Zk+1)

converges to a dual optimal solution. »



Local convergence of ALM

Theorem [Cui-Sun-Toh] If in addition, the blue stopping conditions
are added, and the essential primal objective function P°PI satisfies
a quadratic growth condition at X*, i.e., 3 a neighborhood U/ of X*
and k > 0 s.t.

PoPi(X) > PPI(X*) 4 k7 Mdist?(X,Qp) VX €U
Then for k large, we have
dist(X* Qp) < 6 dist(X*, Qp)
dual feasibility at (y**1, S¥+1 Zk+1) < 7 dist(X*, Qp)
dual objective gap at (y*+!, k1, Zk+1) < 7/ dist(X*, Qp)

K 1 /oy IXFIH XA

T, ~

J2rel B Tk 2o,

Larger oy, gives faster convergence, but the inner problem is harder
to solve.

where 0, ~
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ALM-subproblem

For simplicity, assume N' = S™ and hence the variable Z is absent.
: T s ~
argming, s { £, (y, S) = 05 () + A"y + 5 = |2 = (b, 1) }
_ . k(N o g w, Aky||2 .
_argmlny{tﬁ (y) == —(b, y) + §“H§1("4 y—C%)||* ¢ (project out S)
Optimality condition of unconstrained subproblem in ¥ is:
Vok(y) = —b+ o Allgn (A'y — C*) = 0.

Solve for solution *** by the semismooth Newton-CG (SNCG) method.
Then compute 551 = TIgn (CF — A*y*H1).

V®Fk(y) is not differentiable, but is strongly semismooth [Sun-Sun,
2002]. Thus SNCG is expected to have at least superlinear conver-
gence.

23



A semismooth Newton-CG method (SNCG) for ALM-subproblem

Solve V&' (y) = —b + 0 Allgn (U) =0, U = Ay — C*,
At the current iteration, y;, we solve a generalized Newton equation:
HAy =~ VO*(y), where HAYy = oA Héi(U)[A*Ay] (1)

From eigenvalue decomp: U = QDQ" with d; > --- > d, > 0 >
dpy1 > -+ > dy, we choose

Ty, (U)[M] = Q@0 (QT M), @)
Q; = (d;-"—d;')/(di—dj). Lety={1,...,7r},y={r+1,...,n},

By by
Q0

When problem is primal nondegenerate, cond(#) is bounded:

cond(H) < 0 O(1) cond([AQ-, ® Q-, AQ~ ® Q5])*

24



Exploiting second-order structured sparsity

The structure in Q allows for efficient computation of matrix-vector
multiply for CG in solving (1). Direct evaluation of

Y = I, (U)[M] = Q(Q 0 (QTMQ)Q"

needs 4 matrix-matrix multiplications = 8n? operations. But with
the structure of 2, can compute Y as follows:

1
Y=H+H, H=Q,[5(UQ)Q) + (s 0 UQ)Q]
where U = QM. The cost is at most 6rn°.

If r =~ n, then use

Y = QE0(Q"MQ)Q" - Q(Qe (QTMQ))Q"
= M-Q(Q20(QTMQ))Q"
where Q = E — ) has a similar structure as € but with a large block

of 0. The cost is 6(n — r)n?.

25



SDPNAL+: a practical implementation of ALM for dual SDP+

Let ADMM-+ denote the sGS-ADMM.

1. Generate a good starting point to warm-start SNCG-ALM:
(y°, 89, 2% X9 0¢) < ADMM+(3°, S°, Z°, X© &)
2. Fork=0,1,...
Generate (y**1, Sk+1 Zk+1) in ALM-subproblem via SNCG
Compute X**1 based on (y**1, Sk+1 Zk+1) update o441
If progress of SNCG-ALM is slow,
Rescale data
Let (g%, S*, Z¥, X*, &}) denote rescaled (y*, S*, Z%, X*, o})
Rescaling is chosen such that || X*|| ~ max{||S*||, | Z*||}

Goto Step 1: Restart with ADMM+ (5%, S*. Z%, X* &)

26



Robustness of SDPNAL--

[Rier(uh+, 8441, 2501, XAy
14+ ||(y/€+17‘5’/€+17 Zk+1’Xk+1)H 0"

Ui

Performance of our SDPNAL+ and ADMM+ versus
SDPAD: the directly extended ADMM implemented in [Wen et al.]

2EBD-HPE [Monteiro et al.]

Numbers of problems which are solved to the accuracy n < 1076

problem set (No.) | SDPNAL+ | ADMM+ | SDPAD | 2EBD
6 (58) 58 56 53 53
04 (58) 58 58 58 56
FAP (7) 7 7 7 7
QAP (95) 95 39 30 16
BIQ (134) 134 134 134 | 134
RCP (120) 120 120 114 109
RITA (55) 55 2 a7 18
Total (527) 527 456 443 | 393
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Performance profile on 527 large SDPs

Performance profiles of SDPNAL+, ADMM+, SDPAD and 2EBD

Performance Profile (58 6,58 6, 7 FAP, 95 QAP, 134 BIQ, 120 RCP, 55 R1TA problems) tol = 1e-06

1 T . . : : :
0.9 |
fmmmmmmEmmmEm ===
0.8 __----"'- 1
0.7
) 1
Sos6fs
-] ]
2
a L]
5 0501
2 []
>
80.4'
"
0.3}
¥
o2 s SDPNAL+ B
X = = = ADMM+
oL SDPAD i
T + 2EBD
0 . : L L 1 | | |
1 2 3 4 5 6 7 8 9 10

at most x times of the best
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Numerical results for SDPNAL-+

Implemented the algorithms in MATLAB.
Runs perform on PC with (12 cores) Intel Xeon CPU E5-2680 @ 2.50
GHz and 128 GB RAM.

Stop SDPAD and 2EBD after 25000 iterations or 20 hours.

Prob m;n n time (hour:minute)
SDPAD|2EBD|SDPNAL+

1dc.2048 [58368+\; 2048 | 9.9-7] 9.9-7| 9.0-7 3:56] 2:10] 1:08
fap25 | 2118+ 2118 | 9.9-7] 9.9-7] 9.5-7 3.26] 0:54] 0:43
nug30 | 1393+A; 900 | 1.1-5] 1.7-5] 9.6-7 2:10] 1:46] 0:09
tai30a | 1393+A\ 900 | 4.6-6] 1.3-5 9.9-7 2:34] 1:47] 0:10
nsym_rd[40,40,40] | 672399; 1600 | 1.5-3] 2.0-3] 8.6-7 2:48] 4:54] 0:04
nonsym(14,4) | 1.16M; 2744 | 1.4-2] 5.2-3[ 1.3-7 7:39] 14:01] 0:20

Results show that it is essential to use second-order information
and second-order structured sparsity to solve hard problems!
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Summary and future work

@ We have tested SDPNAL+ on about 520 SDPs from 6,6, QAP,
binary QP, rank-1 tensor approximation, etc

@ When the problems are primal-dual nondegenerate, SDPNAL+
can efficiently solve large SDPs to high accuracy. SDPAD and
2EDB also performed well, though SDPNAL+ is often much
more efficient.

@ Many of the tested SDPs are degenerate, but SDPNAL-+ can
still solve them accurately with 7 < 107%. On the other hand,
SDPAD and 2EDB were not able to solve many such problems.

Currently under development:

@ sparse SDPNAL+ so as to handle larger matrix variable when
the data has conducive sparsity structure
@ a more advanced user-friendly interface
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Thank you for your attention!
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