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SDP and SDP+ problems

Sn+ = cone of positive semidefinite matrices. Write X � 0 if X ∈ Sn+.

(SDP) min
{
〈C, X〉 | A(X) = b, X ∈ Sn+

}
where C ∈ Sn, b ∈ Rm are given data; A : Sn → Rm is a linear map.

(SDP+) min
{
〈C, X〉 | A(X) = b, X ∈ Sn+, X ∈ N

}
where N = {X ∈ Sn | L ≤ X ≤ U} and L,U are given bounds
(entries allow to take −∞, ∞ respectively).

Important case: N = {X ∈ Sn | X ≥ 0}, i.e., DNN (doubly nonneg-
ative) SDP.

(SDP) is solvable by powerful interior-point methods if n and m are
not too large, say, n ≤ 2000, m ≤ 10, 000.

m large⇒ m×m dense “Hessian” matrix cannot be stored explicitly.
For m = 105, needs 100GB RAM memory!

Current research interests focus on n ≤ 5000 but m� 10, 000.
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More general SDP+

SDPNAL was developed around 2008/09 for (SDP).

In 2012/13, it was extended to SDPNAL+ for (SDP+) directly with-
out introducing extra equality constraints X = Y to convert X ∈
Sn+ ∩N to X ∈ Sn+ and Y ∈ N .

Now our solver SDPNAL+ can solve general SDP problems:

(genSDP) min
∑N

i=1〈Ci, Xi〉

s.t.
∑N

i=1Ai(Xi) = b (equalities)

l ≤
∑N

i=1 Bi(Xi) ≤ u (inequalities)

Xi ∈ Ki (cone), Xi ∈ Ni (bounds), i = 1 : N

where Ki is either a PSD cone or nonnegative orthant. Currently
extending Ki to other cones such as SOCP.
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Large scale SDP and SDP+: a brief history

Parallel IPM [Benson, Borchers, Fujisawa, ... 03-present]
First-order gradient methods on NLP formulation (low accuracy)
[Burer-Monteiro 03]
Inexact IPM [Kojima, Toh 04]
Gen. Lag. method on barrier-penalized dual [Kocvara-Stingl 03]
ALM on primal SDP from relaxation of lift-and-project scheme
[Burer-Vandenbussche 06]
Boundary-point method: BCD-ALM on dual [Rendl et al. 06]
Reg. methods for SDP ≡ ADMM on dual [Malick-Povh-Rendl
09]
SDPNAL: ADMM+SNCG-ALM on dual [Zhao-Sun-Toh 10]
SDPAD: ADMM on dual [Wen et al. 10] (used SDPNAL tem-
plate)
2EBD: hybrid proximal extra-gradient method on primal [Mon-
teiro et al. 13] (used SDPNAL template)
ADMM+: convergent sGS-ADMM on SDP+ [Sun-Toh-Yang 15]
SDPNAL+: SNCG-ALM on SDP+ [Yang-Sun-Toh 15]
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Correlation matrix and clustering problems

In nearest correlation matrix problem, given data matrix U ∈ Sn, we
want to solve

(NCM) min
X

{1

2
‖H ◦ (X−U)‖1 | Diag(X) = 1, X � 0

}
NCM

where H ∈ Sn has nonnegative entries and “◦” is the Hardamard
product.

In clustering, given data vectors {pi}ni=1, the goal is to cluster them
into k clusters. A possible model [Peng-Wei 07] is:

min
{
〈D, X〉 | 〈I, X〉 = k, X1 = 1, X ∈ Sn+, X ≥ 0

}
Clustering

where Dij = ‖pi − pj‖2.
Note: D can also be other affinity matrix.
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Maximum stable set problem a graph G = (V, E)

A stable set S is subset of V such that no vertices in S are adjacent.
Maximum stable set problem: find S with maximum cardinality. Let

xi =

{
1 if i ∈ S
0 otherwise

⇒ |S| =
n∑
i=1

xi.

A common formulation of the max-stable-set problem:

α(G) := max
{
|S| = 1

|S|
∑

ij xixj | xixj = 0 ∀ (i, j) ∈ E , x ∈ {0, 1}n
}

⇓ X := xxT /|S|

max
{
〈E, X〉 | Xij = 0 ∀ (i, j) ∈ E , 〈I, X〉 = 1

}
SDP relaxation: X = xxT /|S| ⇒ X � 0, get

θ(G) := max
{
〈E, X〉 : Xij = 0 ∀ (i, j) ∈ E , 〈I, X〉 = 1, X � 0

}
θ+(G) := n(n+ 1)/2 additional constraints X ≥ 0 theta
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Quadratic assignment problem (QAP)

Assign n facilities to n locations [Koopmans and Beckmann (1957)]

A = (aij) where aij= flow from facility i to facility j

B = (bkl) where bkl= distance from location k to location l

cost of assignment π =
∑n

i=1

∑n
j=1aijbπ(i)π(j)

min
P

{
〈B ⊗A, vec(P )vec(P )T 〉 | P is n× n permutation matrix

}
SDP+ relaxation [Povh and Rendl, 09]:
relax vec(P )vec(P )T to the n2 × n2 variable X ∈ Sn2

+ and X ≥ 0

(QAP) min
{
〈B ⊗A, X〉 | A(X)− b = 0, X ∈ Sn

2

+ , X ≥ 0
}

where the linear constraints (with m = 3n(n + 1)/2) encode the
condition P TP = In, P ≥ 0.
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A basic user-friendly interface

Consider the NCM problem. NCM

n = 100;

G = randn(n,n);

G = 0.5*(G + G’);

model = ccp_model(’NCM ’);

X = var_sdp(n,n);

model.add_variable(X);

model.minimize(l1_norm(X-G));

model.add_affine_constraint(map_diag(X)== ones(n ,1));

model.solve;
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Consider the θ+ problem of a graph with adjacency matrix G.
theta

n = 200;

G = triu(sprand(n,n,0.5) ,1);

[IE ,JE] = find(G);

n = length(G);

model = ccp_model(’theta ’);

X = var_sdp(n,n);

model.add_variable(X);

model.maximize(sum(X));

model.add_affine_constraint(trace(X) == 1);

model.add_affine_constraint(X(IE ,JE) == 0);

model.add_affine_constraint(X >= 0);

model.solve;
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min trace(X(1)) + trace(X(2)) + sum(X(3))

s.t. −X(1)
12 + 2X

(2)
33 + 2X

(3)
2 = 4 (equalities)

2X
(1)
23 +X

(2)
42 −X

(3)
4 = 3

2 ≤ −X(1)
12 − 2X

(2)
33 + 2X

(3)
2 ≤ 7 (inequalities)

X(1) ∈ S6
+, X

(2) ∈ R5×5, X(3) ∈ R7
+ (cones)

0 ≤ X(1) ≤ 10E6, 0 ≤ X(2) ≤ 8E5 (bounds)

n1 = 6; n2 = 5; n3 = 7;

M = ccp_model(’Example_simple ’);

X1=var_sdp(n1,n1); X2=var_nn(n2,n2); X3=var_nn(n3);

M.add_variable(X1 ,X2 ,X3);

M.minimize(trace(X1) + trace(X2) + sum(X3));

M.add_affine_constraint(-X1(1 ,2)+2*X2(3 ,3)+2*X3 (2)==4);

M.add_affine_constraint (2*X1(2,3)+X2(4,2)-X3(4) == 3);

M.add_affine_constraint (2<=-X1(1,2)-2*X2(3 ,3)+2*X3(2) <=7);

M.add_affine_constraint (0 <= X1 <= 10);

M.add_affine_constraint(X2 <= 8);

M.solve;
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Dual SDP+

For simplicity, consider only N = {X ∈ Sn | X ≥ 0}.
Dual of SDP+ and its augmented Lagrangian function are given by:

(D) min{−〈b, y〉+ δSn+(S) + δN (Z) | A∗y + S + Z = C}

(a linearly constrained convex problem with 3 blocks of variables);

Lσ(y, S, Z;X) = −〈b, y〉+ δSn+(S) + δN (Z)

+〈A∗y + S + Z − C,X〉+
σ

2
‖A∗y + S + Z − C‖2

(quadratic in (y, S, Z) + nonsmooth terms in S, Z)

KKT conditions:

RKKT(y, S, Z;X) :=


AX − b

S −ΠSn+(S −X)

Z −ΠN (Z −X)

A∗y + S + Z − C

 =


0

0

0

0

 .
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A directly extended ADMM for dual SDP+

Input (y0, S0, Z0;X0). For k = 0, 1, . . . , let Ĉk = C − σ−1Xk

(1a) yk+1 = argminy∈RmLσ(y, Sk, Zk;Xk)

(1b) Sk+1 = argminS∈Sn+Lσ(yk+1, S, Zk;Xk) = ΠSn+(Ĉk −A∗yk+1 − Zk)

(2) Zk+1 = argminZ∈NLσ(yk+1, Sk+1, Z;Xk) = ΠN (Ĉk−A∗yk+1−Sk+1)

(3) Xk+1 = Xk + τσ(A∗yk+1 + Sk+1 + Zk+1 − C), where τ ∈ (0, 1+
√
5

2 ) is

the step-length.

Direct extension of 2-block ADMM is not guaranteed to converge
[Chen-He-Ye-Yuan, v155, MP 2016]
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A convergent symmetric Gauss-Seidel (sGS) ADMM for dual SDP+

But sGS-ADMM is guaranteed to converge!

Input (y0, S0, Z0;X0). For k = 0, 1, . . . , let Ĉk = C − σ−1Xk

(1a) ŷk+1 ≈ argminy∈RmLσ(y, Sk, Zk;Xk)

(1b) Sk+1 = argminS∈Sn+Lσ(ŷk+1, S, Zk;Xk) = ΠSn+(Ĉk −A∗ŷk+1 − Zk)

(1c) yk+1 ≈ argminy∈RmLσ(y, Sk+1, Zk;Xk)

(2) Zk+1 = argminZ∈NLσ(yk+1, Sk+1, Z;Xk) = ΠN (Ĉk−A∗yk+1−Sk+1)

(3) Xk+1 = Xk + τσ(A∗yk+1 + Sk+1 + Zk+1 − C)

In Step 1, the AL function Lσ for the block (y, S) has the form:

Lσ(y, S) ≡ δSn+(S) +
σ

2
‖A∗y + S + Zk + Ĉk‖2 − 〈b, y〉

(QP in (y, S) + nonsmooth term in S)

(1a)–(1c) is equivalent to minimizing Lσ(y, S) + sGS proximal term.
The steps are based on an sGS decomposition theorem.
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Global convergence of inexact sGS-ADMM

Theorem Suppose that the KKT conditions of (SDP+) has a so-
lution. Let {(yk, Sk, Zk, Xk)} be the sequence generated by the
inexact sGS-ADMM. Then {Xk} converges to an optimal solution of
(SDP+) and {(yk, Sk, Zk)} converges to an optimal solution of its
dual.

[1] D.F. Sun, K.C. Toh and L.Q. Yang, A convergent 3-block semi-proximal ADMM
for conic programming with 4-type constraints, v25, SIOPT 2015.

[2] X.D. Li, D.F. Sun, K.C. Toh, A Schur complement based semiproximal ADMM
for convex ..., v155, MP 2016. Schur-complement-ADMM

[3] X.D. Li, D.F. Sun, K.C. Toh, QSDPNAL: A two-phase augmented Lagrangian
method for convex quadratic SDP, MPC 2018. Section 2: sGS decomposition
theorem, Schur-complement-ADMM = sGS-ADMM

[4] L. Chen, D.F. Sun, K.C. Toh, An efficient inexact symmetric Gauss-Seidel
based majorized ADMM for ..., v161, MP 2017. inexact sGS-ADMM

[5] X.D. Li, D.F. Sun, K.C. Toh, A block sGS decomposition theorem for convex
composite quadratic programming and its applications, MP 2018. sGS-ADMM =
Schur-complement-ADMM, sSOR-extension
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Local convergence of inexact sGS-ADMM

Theorem [Han-Sun-Zhang, MOR 2018: exact version]
Let ΩKKT 6= ∅ be the KKT solution set. Suppose that an er-
ror bound condition holds for RKKT at an optimal solution u∗ =
(y∗, S∗, Z∗, X∗) that uk = (yk, Sk, Zk, Xk) converges to, i.e, ∃
η, r > 0 s.t.

dist(u,ΩKKT) ≤ η‖RKKT(u)‖ ∀ u ∈ Br(u∗).

Then ∃ µ ∈ (0, 1) depending on η s.t.

dist(uk+1,ΩKKT) ≤ µ dist(uk,ΩKKT) ∀ k sufficiently large.

Inexact version can be established via the analysis in [Chen-Sun-Toh,
MP 2017] and [Han-Sun-Zhang, MOR 2018].
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Detour: block symmetric Gauss-Seidel (sGS) decomposition

Consider a convex composite QP with 3 blocks:

min
{
p(x1) + h(x) | x = (x1; x2, x3) ∈ Rn1 × Rn2 × Rn3

}
Convex quadratic function h(x) := 1

2〈x, Hx〉 − 〈b, x〉
Closed proper convex fun. p : Rn1 → (−∞,+∞], e.g. p(x1) =
‖x1‖∞
Write H = U∗+D+U , D diagonal blocks, U strict upper triangular
part. Assume D invertible.

Define sGS(H) := UD−1U∗ (symmetric Gauss-Seidel decomp)

Given x̄, define

x+ := argminx

{
p(x1) + h(x) +

1

2
‖x− x̄‖2sGS(H)

}
Next theorem: can compute x+ using one sGS cycle!

If p(x1) is absent, we get the classical block sGS iteration.
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Detour: block symmetric Gauss-Seidel (sGS) decomposition

Theorem [Li-Sun-Toh 2015]

It holds that H+ sGS(H) = (D + U)D−1(D + U∗) � 0.

Backward GS: 3→ 2. Compute

x′3 = argmin p(x̄1) + h(x̄1, x̄2, x3) = H−1
33 (b3 −H∗13x̄1 −H∗23x̄2)

x′2 = argmin p(x̄1) + h(x̄1, x2, x
′
3) = H−1

22 (b2 −H∗12x̄1 −H23x̄
′
3)

Forward GS: 1→ 2→ 3. Compute

x+
1 = argmin p(x1) + h(x1, x

′
2, x
′
3) (non-smooth/non-quadratic)

x+
2 = argmin p(x+

1 ) + h(x+
1 , x2, x

′
3) = H−1

22 (b2 −H∗12x
+
1 −H23x

′
3)

x+
3 = argmin p(x+

1 ) + h(x+
1 , x

+
2 , x3) = H−1

33 (b3 −H∗13x
+
1 −H∗23x

+
2 )

Inexact computation is also allowed! So can use PCG to solve large
linear systems.
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Detour: block symmetric Gauss-Seidel (sGS) decomposition

Theorem [Li-Sun-Toh 2015]
Backward GS: For i = s, . . . , 2, compute

x′i = H−1
ii

(
bi + e′i −

∑i−1
j=1H∗jix̄j −

∑s
j=i+1Hijx′j

)
.

Forward GS: For i = 2, . . . , s,

x+
1 = argmin p(x1) + h(x1, x

′
≥2)− 〈e+

1 , x1〉,

x+
i = H−1

ii (bi + e+
i −

∑i−1
j=1H∗jix

+
j −

∑s
j=i+1Hijx′j)

e+, e′ are error vectors. In this case, x+ is the exact solution to a
slightly perturbed proximal problem:

x+ := argminx

{
p(x1) + h(x) +

1

2
‖x− x̄‖2sGS(H) − 〈x, ∆(e′, e+)〉

}
∆(e′, e+) = e+ + UD−1(e+ − e′).
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Phase II: augmented Lagrangian method (ALM)

Adding a large proximal term slows the convergence of sGS-ADMM!

With no proximal term added, we consider the ALM for solving dual
SDP+.

(1) Compute

(yk+1, Sk+1, Zk+1) ≈ argmin
{
Lk(y, S, Z) := Lσk(y, S, Z;Xk)

}
= argmin

{
− 〈b, y〉+

σ

2
‖A∗y + S + Z + Ĉk‖2 + δSn+(S) + δN (Z)

}
(2) Update Xk+1 = Xk + σk(A∗yk+1 + Sk+1 + Zk+1 − C);

update σk+1 ↑ σ∞ ≤ ∞.
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Global convergence of ALM

Define Xk+1 = Xk + σkRD(yk+1, Sk+1, Zk+1),

ek+1 =

 AXk+1 − b
Xk+1 −ΠSn+(Xk+1 − Sk+1)

Xk+1 −ΠNn(Xk+1 − Zk+1)

 .
In Step 1, we use the following easy-to-check stopping conditions:

(A) ‖ek+1‖ ≤
ε2k

1 + ‖(X, y, S, Z)k+1‖
min

{
1
σk
, 1

1+‖Xk+1−Xk‖

}
(B) ‖ek+1‖ ≤

η2
k ‖Xk+1 −Xk‖2

1 + ‖(X, y, S, Z)k+1‖
min

{
1
σk
, 1

1+‖Xk+1−Xk‖

}
where {εk} and {δk} are nonnegative summable sequences.

Theorem [Rockafellar 76] Let ΩP 6= ∅ be the primal optimal solu-
tion set and Slater’s condition holds for primal problem (P). Under
stopping condition (A), we have Xk → X∗ and (yk+1, Sk+1, Zk+1)
converges to a dual optimal solution.
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Local convergence of ALM

Theorem [Cui-Sun-Toh] If in addition, the blue stopping conditions
are added, and the essential primal objective function P obj satisfies
a quadratic growth condition at X∗, i.e., ∃ a neighborhood U of X∗

and κ > 0 s.t.

P obj(X) ≥ P obj(X∗) + κ−1dist2(X,ΩP ) ∀ X ∈ U

Then for k large, we have

dist(Xk+1,ΩP ) ≤ θk dist(Xk,ΩP )

dual feasibility at (yk+1, Sk+1, Zk+1) ≤ τk dist(Xk,ΩP )

dual objective gap at (yk+1, Sk+1, Zk+1) ≤ τ ′k dist(Xk,ΩP )

where θk ≈ κ√
κ2+σ2

k

, τk ≈ 1
σk
, τ ′k ≈

‖Xk‖+‖Xk+1‖
2σk

Larger σk gives faster convergence, but the inner problem is harder
to solve.

22



ALM-subproblem

For simplicity, assume N = Sn and hence the variable Z is absent.

argminy,S

{
Lσ(y, S) ≡ δSn+(S) +

σ

2
‖A∗y + S − Ĉk‖2 − 〈b, y〉

}
≡argminy

{
Φk(y) := −〈b, y〉+

σ

2
‖ΠSn+(A∗y − Ĉk)‖2

}
(project out S)

Optimality condition of unconstrained subproblem in y is:

∇Φk(y) = −b+ σAΠSn+(A∗y − Ĉk) = 0.

Solve for solution yk+1 by the semismooth Newton-CG (SNCG) method.
Then compute Sk+1 = ΠSn+(Ĉk −A∗yk+1).

∇Φk(y) is not differentiable, but is strongly semismooth [Sun-Sun,
2002]. Thus SNCG is expected to have at least superlinear conver-
gence.

23



A semismooth Newton-CG method (SNCG) for ALM-subproblem

Solve ∇Φk(y) = −b+ σAΠSn+(U) = 0, U = A∗y − Ĉk.

At the current iteration, yl, we solve a generalized Newton equation:

H∆y ≈ ∇Φk(yl), where H∆y = σA Π′Sn+(U)[A∗∆y] (1)

From eigenvalue decomp: U = QDQT with d1 ≥ · · · ≥ dr ≥ 0 >
dr+1 ≥ · · · ≥ dn, we choose

Π′Sn+(U)[M ] = Q(Ω ◦ (QTMQ))QT , (2)

Ωij = (d+
i − d

+
j )/(di − dj). Let γ = {1, . . . , r}, γ̄ = {r + 1, . . . , n},

Ω =

[
Eγγ Ωγγ̄

Ωγ̄γ 0

]
.

When problem is primal nondegenerate, cond(H) is bounded:

cond(H) ≤ σΘ(1) cond([AQγ ⊗Qγ , AQγ ⊗Qγ̄ ])2
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Exploiting second-order structured sparsity

The structure in Ω allows for efficient computation of matrix-vector
multiply for CG in solving (1). Direct evaluation of

Y := Π′Sn+(U)[M ] = Q(Ω ◦ (QTMQ))QT

needs 4 matrix-matrix multiplications = 8n3 operations. But with
the structure of Ω, can compute Y as follows:

Y = H +HT , H = Qγ

[1

2
(UQγ)QTγ + (Ωγγ̄ ◦ (UQγ̄))QTγ̄

]
where U = QγM . The cost is at most 6rn2.

If r ≈ n, then use

Y = Q(E ◦ (QTMQ))QT −Q(Ω ◦ (QTMQ))QT

= M −Q(Ω ◦ (QTMQ))QT

where Ω = E −Ω has a similar structure as Ω but with a large block
of 0. The cost is 6(n− r)n2.
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SDPNAL+: a practical implementation of ALM for dual SDP+

Let ADMM+ denote the sGS-ADMM.

1. Generate a good starting point to warm-start SNCG-ALM:
(y0, S0, Z0, X0, σ0)← ADMM+(ȳ0, S̄0, Z̄0, X̄0, σ̄0)

2. For k = 0, 1, . . .

Generate (yk+1, Sk+1, Zk+1) in ALM-subproblem via SNCG

Compute Xk+1 based on (yk+1, Sk+1, Zk+1), update σk+1

If progress of SNCG-ALM is slow,

Rescale data

Let (ȳk, S̄k, Z̄k, X̄k, σ̄k) denote rescaled (yk, Sk, Zk, Xk, σk)
Rescaling is chosen such that ‖X̄k‖ ≈ max{‖S̄k‖, ‖Z̄k‖}
Goto Step 1: Restart with ADMM+(ȳk, S̄k, Z̄k, X̄k, σ̄k)
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Robustness of SDPNAL+

η ≡ ‖RKKT(yk+1, Sk+1, Zk+1, Xk+1)‖
1 + ‖(yk+1, Sk+1, Zk+1, Xk+1)‖

≤ 10−6.

Performance of our SDPNAL+ and ADMM+ versus
SDPAD: the directly extended ADMM implemented in [Wen et al.]
2EBD-HPE [Monteiro et al.]

Numbers of problems which are solved to the accuracy η ≤ 10−6

problem set (No.) SDPNAL+ ADMM+ SDPAD 2EBD

θ (58) 58 56 53 53

θ+ (58) 58 58 58 56

FAP ( 7) 7 7 7 7

QAP (95) 95 39 30 16

BIQ (134) 134 134 134 134

RCP (120) 120 120 114 109

R1TA (55) 55 42 47 18

Total (527) 527 456 443 393
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Performance profile on 527 large SDPs

Performance profiles of SDPNAL+, ADMM+, SDPAD and 2EBD
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Numerical results for SDPNAL+

Implemented the algorithms in Matlab.
Runs perform on PC with (12 cores) Intel Xeon CPU E5-2680 @ 2.50
GHz and 128 GB RAM.

Stop SDPAD and 2EBD after 25000 iterations or 20 hours.

Prob m;n η time (hour:minute)
SDPAD|2EBD|SDPNAL+

1dc.2048 58368+N ; 2048 9.9-7| 9.9-7| 9.9-7 3:56| 2:10| 1:08

fap25 2118+N ; 2118 9.9-7| 9.9-7| 9.5-7 3:26| 0:54| 0:43

nug30 1393+N ; 900 1.1-5| 1.7-5| 9.6-7 2:10| 1:46| 0:09

tai30a 1393+N ; 900 4.6-6| 1.3-5| 9.9-7 2:34| 1:47| 0:10

nsym rd[40,40,40] 672399; 1600 1.5-3| 2.0-3| 8.6-7 2:48| 4:54| 0:04

nonsym(14,4) 1.16M; 2744 1.4-2| 5.2-3| 1.3-7 7:39| 14:01| 0:20

Results show that it is essential to use second-order information
and second-order structured sparsity to solve hard problems!
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Summary and future work

We have tested SDPNAL+ on about 520 SDPs from θ, θ+, QAP,
binary QP, rank-1 tensor approximation, etc

When the problems are primal-dual nondegenerate, SDPNAL+
can efficiently solve large SDPs to high accuracy. SDPAD and
2EDB also performed well, though SDPNAL+ is often much
more efficient.

Many of the tested SDPs are degenerate, but SDPNAL+ can
still solve them accurately with η < 10−6. On the other hand,
SDPAD and 2EDB were not able to solve many such problems.

Currently under development:

1 sparse SDPNAL+ so as to handle larger matrix variable when
the data has conducive sparsity structure

2 a more advanced user-friendly interface
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Thank you for your attention!
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