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ABSTRACT
Sdpnal+ is aMATLAB software package that implements an augmented
Lagrangian basedmethod to solve large scale semidefinite program-
ming problems with bound constraints. The implementation was
initially based on a majorized semismooth Newton-CG augmented
Lagrangianmethod, herewedesigned itwithin an inexact symmetric
Gauss-Seidel based semi-proximalADMM/ALM (alternatingdirection
method of multipliers/augmented Lagrangian method) framework
for the purpose of deriving simpler stopping conditions and closing
the gap between the practical implementation of the algorithm and
the theoretical algorithm. The basic code is written in MATLAB, but
some subroutines in C language are incorporated via Mex files. We
also design a convenient interface for users to input their SDP mod-
els into the solver. Numerous problems arising from combinatorial
optimization and binary integer quadratic programming problems
have been tested to evaluate the performance of the solver. Exten-
sive numerical experiments conducted in [L.Q. Yang, D.F. Sun, and
K.C. Toh, SDPNAL+: A majorized semismooth Newton-CG augmented
Lagrangian method for semidefinite programming with nonnegative
constraints, Math. Program. Comput. 7 (2015), pp. 331–366] show
that the proposed method is quite efficient and robust, in that it is
able to solve 98.9% of the 745 test instances of SDP problems arising
from various applications to the accuracy of 10−6 in the relative KKT
residual.
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1. Introduction

Let Sn be the space of n × n real symmetric matrices and S
n+ be the cone of positive

semidefinite matrices in Sn. For any X ∈ Sn, we may sometimes write X � 0 to indicate
thatX ∈ S

n+. LetP = {X ∈ Sn : L ≤ X ≤ U}, where L,U are given n × n symmetricmatri-
ces whose elements are allowed to take the values−∞ and+∞, respectively. Consider the
semidefinite programming (SDP) problem:

(SDP) min
{〈C,X〉 | A(X) = b, l ≤ B(X) ≤ u, X ∈ S

n
+, X ∈ P} ,
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where b ∈ Rm, and C ∈ Sn are given data,A : Sn → Rm and B : Sn → Rp are two given
linear maps whose adjoints are denoted as A∗ and B∗, respectively. The vectors l,u are
given p-dimensional vectors whose elements are allowed to take the values −∞ and ∞,
respectively. Note that P = Sn is allowed, in which case there are no additional bound
constraints imposed onX.We assume that them × m symmetricmatrixAA∗ is invertible,
i.e.A is surjective.

Note that (SDP) is equivalent to

(P) min
{〈C,X〉 | A(X) = b, B(X) − s = 0, X ∈ S

n
+, X ∈ P , s ∈ Q} ,

where Q = {s ∈ Rp : l ≤ s ≤ u}. The dual of (P), ignoring the minus sign in front of the
minimization, is given by

(D) min
{
δ∗
P(−Z) + δ∗

Q(−v) + 〈−b, y
〉

∣∣∣∣ A∗(y) + B∗(ȳ) + S + Z = C, −ȳ + v = 0,
S ∈ S

n+, Z ∈ Sn, y ∈ Rm, ȳ ∈ Rp, v ∈ Rp

}
,

where for any Z ∈ Sn, δ∗
P(−Z) is defined by

δ∗
P(−Z) = sup{〈−Z,W〉 | W ∈ P}

and δ∗
Q(·) is defined similarly.We note that our solver is designed based on the assumption

that (P) and (D) are feasible.
While we have presented the problem (SDP) with a single variable block X, our solver

is capable of solving the following more general problem with N blocks of variables:

min
N∑
j=1

〈
C(j),X(j)

〉

s.t.
N∑
j=1

A(j)(X(j)) = b, l ≤
N∑
j=1

B(j)(X(j)) ≤ u,

X(j) ∈ K(j), X(j) ∈ P (j), j = 1, . . . ,N,

(1)

where A(j) : X (j) → Rm, and B(j) : X (j) → Rp are given linear maps, P (j) := {X(j) ∈
X (j) | L(j) ≤ X(j) ≤ U(j)} and L(j),U(j) ∈ X (j) are given symmetric matrices where the ele-
ments are allowed to take the values −∞ and ∞, respectively. Here X (j) = S

nj (Rnj),
and K(j) = X (j) or K(j) = S

nj
+ (Rnj

+). For later expositions, we should note that when
X (j) = S

nj , the linear mapA(j) : Snj → Rm can be expressed in the form of

A(j)(X(j)) =
[ 〈

A(j)
1 ,X(j)

〉
, . . . ,

〈
A(j)
m ,X(j)

〉 ]T
, (2)

where A(j)
1 , . . . ,A(j)

m ∈ S
nj are given constraint matrices. The corresponding adjoint

(A(j))∗ : Rm → S
nj is then given by

(A(j))∗y =
m∑
k=1

ykA
(j)
k .

In this paper, we introduce our MATLAB software package Sdpnal+ for solving (SDP)
or more generally (1), where the maximum matrix dimension is assumed to be moderate
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(say less than 5000) but the number of linear constraintsm+p can be large (saymore than a
million). One of ourmain contributions here is that the current algorithmhas substantially
extended the capability of Sdpnal+ to solve the general problem (1) compared to the orig-
inal version in [24], wherein the algorithm is designed to solve a problem with only linear
equality constraints andP = {X ∈ Sn | X ≥ 0} orP = Sn. Moreover, the implementation
in [24] was based on amajorized semismoothNewton-CG augmented Lagrangianmethod
developed in that paper. Here, for the purpose of deriving simpler stopping conditions,
we redesign the algorithm by employing an inexact semi-proximal alternating direction
method ofmultipliers (sPADMM) (or the semi-proximal augmented Lagrangian (sPALM)
if the bound constraints are absent) framework developed in [2] for multi-block convex
composite conic programming problems. Currently, the algorithm which we have imple-
mented is a 2-phase algorithm based on the augmented Lagrangian function for (D). In the
first phase, we employ the inexact symmetric Gauss-Seidel based sPADMM to solve the
problem to a modest level of accuracy. Note that while the main purpose of the first phase
algorithm is to generate a good initial point to warm-start the second phase algorithm, it
can be used on its own to solve a problem. The algorithm we have implemented in the
second phase is an inexact sPADMM for which the main subproblem in each iteration is
solved by a semismooth Newton-CG method.

The development of Sdpnal+ in [24], which is built on the earlier work on Sdpnal
in [25], has in fact spurred much of the recent progresses in designing efficient conver-
gent ADMM-type algorithms for solving multi-block convex composite conic program-
ming, such as [2,7,16]. Those works in turn shaped the recent algorithmic design of
Sdpnal+. Indeed, the algorithm in the first phase of Sdpnal+ is the same as the con-
vergent ADMM-type method developed in [16] when the subproblems in each iteration
are solved analytically. For the algorithm in the second phase, it is an economical variant of
the majorized semismooth Newton-CG (SNCG) augmented Lagrangianmethod designed
in [24] to solve (D) for which only one SNCG subproblem is solved in each iteration.

Another contribution of this paper is our development of a basic interface for the users to
input their SDPmodels into the Sdpnal+ solver.While there are currently two well devel-
oped MATLAB based user interfaces for SDP problems, namely, CVX [4] and YALMIP
[8], there are strong motivations for us to develop our own interface here. A new interface
is necessary to facilitate the modelling of an SDP problem for Sdpnal+ because of latter’s
flexibility to directly accept inequality constraints of the form ‘l ≤ B(X) ≤ u’, and bound
constraints of the form ‘L ≤ X ≤ U’. The flexibility can significantly simplify the genera-
tion of the data in the Sdpnal+ format as compared to what need to be done in CVX or
YALMIP to reformulate them as equality constraints through introducing extra variables.
In addition, the final number of equality constraints present in the data input to Sdpnal+
can also be substantially fewer than those present in CVX or YALMIP. It is important to
note here that the number of equality constraints present in the generated problemdata can
greatly affect the computational efficiency of the solvers, especially for interior-point based
solvers. An illustration of the benefits just mentioned will be given at the end of Section 5.

Our Sdpnal+ solver is designed for solving feasible problems of the form presented in
(P) and (D). It is capable of solving large scale SDPs with m or p up to a few millions but
n is assumed to be moderate (up to a few thousands). Extensive numerical experiments
conducted in [24] show that a variety of large scale SDPs can be solved by Sdpnal+ much
more efficiently than the best alternative methods [10,21].
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The Sdpnal+ package can be downloaded from the following website:
http://www.math.nus.edu.sg/ mattohkc/SDPNALplus.html
Installation and general information such as citations, can be found at the above link.

The test instances which we have used to evaluate the performance of our solver can also
be found at the above website.

We have evaluated the performance of Sdpnal+ on various classes of large scale SDP
problems arising from the relaxation of combinatorial problems such as maximum sta-
ble set problems, quadratic assignment problems, frequency assignment problems, and
binary integer quadratic programming problems. The solver has also been tested on large
SDP problems arising from robust clustering problems, rank-one tensor approximation
problems, as well as electronic structure calculations in quantum chemistry. The detailed
numerical results can be found at the above website. Based on the numerical evaluation of
Sdpnal+ on 745 SDP problems, we can observe that the solver is fairly robust (in the sense
that it is able to solve most of the tested problems to the accuracy of 10−6 in the relative
KKT residual) and highly efficient in solving the tested classes of problems.

The remaining parts of this paper are organized as follows. In the next section, we
describe the installation and present some general information on our software. Section 2
gives some details on themain solver functionsdpnalplus.m. In Section 3, we describe
the algorithm implemented in Sdpnal+ and discuss some implementation issues. In
Section 4, we present a basic interface for the users to input their SDP models into the
Sdpnal+ solver. In Section 5, we present a few SDP examples to illustrate the usage of our
software, and how to input the SDPmodels into our interface. Section 6 gives a summary of
the numerical results obtained by Sdpnal+ in solving 745 test instances of SDP problems
arising from various sources. Finally, we conclude the paper in Section 7.

2. Data structure andmain solver

Sdpnal+ is an enhanced version of the Sdpnal solver developed by Zhao, Sun and Toh
[25]. The internal implementation of Sdpnal+ thus follows the data structures and design
framework of Sdpnal. A casual user need not understand the internal implementation of
Sdpnal+.

2.1. Themain function: sdpnalplus.m

In the Sdpnal+ solver, the main routine is sdpnalplus.m, whose calling syntax is as
follows:

[obj,X,s,y,S,Z,ybar,v,info,runhist] = ...
sdpnalplus(blk,At,C,b,L,U,Bt,l,u,OPTIONS,X,s,y,S,Z,ybar,v);

Input arguments.

• blk: a cell array describing the conic block structure of the SDP problem.
• At, C, b, L, U, Bt, l, u: data of the problem (SDP).

If L ≤ X but X is unbounded above, one can set U=inf or U=[]. Similarly, if the
linear map B is not present, one can set Bt=[], l=[], u=[].
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• OPTIONS: a structure array of parameters (optional).
• X, s, y, S, Z, ybar, v: an initial iterate (optional).

Output arguments. The names chosen for the output arguments explain their contents.
The argument X is a solution to (P) which satisfies the constraints X ∈ S

n+ and X ∈ P
approximately up to the desired accuracy tolerance. The argument info is a structure
array which records various performance measures of the solver. For example

info.etaRp, info.etaRd, info.etaK1, info.etaK2

correspond to the measures ηP, ηD, ηK, ηP defined later in (4), respectively. The argu-
ment runhist is a structure array which records the history of various performance
measures during the course of running sdpnalplus.m. For example,

runhist.primobj, runhist.dualobj, runhist.relgap
runhist.primfeasorg, runhist.dualfeasorg

record the primal and dual objective values, complementarity gap, primal and dual
infeasibilities at each iteration, respectively.

2.2. Generation of starting point by admmplus.m

If an initial point (X,s,y,S,Z,ybar,v) is not provided for sdpnalplus.m, we call
the function admmplus.m, which implements a convergent 3-block ADMMproposed in
[16], to generate a starting point. The routine admmplus.m has a similar calling syntax
as sdpnalplus.m given as follows:

[obj,X,s,y,S,Z,ybar,v,info,runhist] = ...
admmplus(blk,At,C,b,L,U,Bt,l,u,OPTIONS,X,s,y,S,Z,ybar,v);

Note that if an initial point(X,s,y,S,Z,ybar,v) is not supplied toadmmplus.m,
the default initial point is (0,0,0,0,0,0,0).

We should mention that although we use admmplus.m for the purpose of warm-
starting sdpnalplus.m, the user has the freedom to use admmplus.m alone to solve
the problem (SDP).

2.3. Arrays of input data

The format of the input data in Sdpnal+ is similar to those in SDPT3 [18,20]. For each SDP
problem, the conic block structure of the problem data is described by a cell array named
blk. If the kth block X{k} of the variable X is a nonnegative vector block with dimension
nk, then we set

blk{k,1} = ’l’, blk{k,2} = nk,
At{k} = [nk × m sparse], Bt{k} = [nk × p sparse],
C{k}, L{k}, U{k}, X{k}, S{k}, Z{k} = [nk × 1 double or sparse].

If the jth block X{j} of the variable X is a semidefinite block consisting of a single block
of size sj, then the content of the jth block is given as follows:
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blk{j,1} = ’s’, blk{j,2} = sj,
At{j} = [s̄j × m sparse], Bt{k} = [s̄j × p sparse],
C{j}, L{j}, U{j}, X{j}, S{j}, Z{j} = [sj × sj double or sparse],

where s̄j = sj(sj + 1)/2. By default, the contents of the cell arrays L and U are set to be
empty arrays. But if X{j} ≥ 0 is required, then one can set

L{j} = 0, U{j} = [].

One can also set L=0 to indicate that X{j} ≥ 0 for all j = 1, . . . ,N in (1).
We should mention that for the sake of computational efficiency, we store all the con-

straint matrices associated with the jth semidefinite block in vectorized form as a single
s̄j × mmatrixAt{j}, where the kth columnof thismatrix corresponds to the kth constraint
matrix A(j)

k , i.e.

At{j} = [svec(A(j)
1 ), . . . , svec(A(j)

m )],

and svec : S sj → R
s̄j is the vectorization operator on symmetric matrices defined by

svec(X) = [X11,
√
2X12,X22, . . . ,

√
2X1,sj , . . . ,

√
2Xsj−1,sj ,Xsj,sj]

T . (3)

We store Bt in the same format as At. The function svec.m provided in Sdpnal+ can
easily convert a symmetric matrix into the vector storage scheme described in (3). Note
that while we store the constraint matrices in vectorized form, the semidefinite blocks in
the variables X, S and Z are stored either as matrices or in vectorized forms according to
the storage scheme of the input data C.

Other than inputting the data (At,b,C,L,U) of an SDP problem individually,
Sdpnal+ also provides the functions read_sdpa.m and read_sedumi.m to con-
vert problem data stored in the SDPA [23] and SeDuMi [15] format into our cell-array
data format just described. For example, for the problem theta62.dat-s in the folder
/datafiles, the user can call them-fileread_sdpa.m to load the SDPdata as follows:

>> [blk,At,C,b] = read_sdpa(’./datafiles/theta62.dat-s’);
>> OPTIONS.tol = 1e-6;
>> [obj,X,s,y,S,Z,ybar,v,info,runhist] =
sdpnalplus(blk,At,C,b, [],[],[],[],[],OPTIONS);

2.4. The structure array OPTIONS for parameters

Various parameters used in our solver sdpnalplus.m are set in the structure array
OPTIONS. For details, see SDPNALplus_parameters.m. The important parameters
which the user is likely to reset are described next.

(1) OPTIONS.tol: accuracy tolerance to terminate the algorithm, default is 10−6.
(2) OPTIONS.maxiter: maximum number of iterations allowed, default is 20000.
(3) OPTIONS.maxtime: maximum time (in seconds) allowed, default is 10000.
(4) OPTIONS.tolADM: accuracy tolerance to use for admmplus.m when generating

a starting point for the algorithm in the second phase of sdpnalplus.m (default
= 10−4).
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(5) OPTIONS.maxiterADM: maximum number of ADMM iterations allowed for gen-
erating a starting point. When there are no bound constraints on X (P = Sn) and no
linear inequality constraints corresponding to B(X) (henceQ = ∅), the default value
is roughly equal to 200; otherwise, the default value is 2000.

(6) OPTIONS.printlevel: different levels of details to print the intermediate infor-
mation during the run. It can be the integers 0,1,2, with 1 being the default. Setting to
the highest value 2 will result in printing the complete details.

(7) OPTIONS.stopoption: options to stop the solver. The default is OPTIONS.
stopoption=1, for which the solvermay be stopped prematurelywhen stagnation
occurs. To prevent the solver from stopping prematurely before the required accuracy
is attained, set OPTONS.stopoption=0.

(8) OPTIONS.AATsolve.method: options to solve a linear system involving
the coefficient matrix AA∗, withOPTIONS.AATsolve.method=’direct’
(default) or ’iterative’. For the former option, a linear system of the
form AA∗y = h is solved by the sparse Cholesky factorization, while for the latter
option, it is solved by a diagonally preconditioned PSQMR iterative solver.

2.5. Stopping criteria

In Sdpnal+, wemeasure the accuracy of an approximate optimal solution (X, s, y, ȳ, S,Z, v)

for (P) and (D) by using the following relative residual based on the KKT optimality
conditions:

η = max{ηP, ηD, ηK, ηP}, (4)

whereK = S
n+,

ηP = max
{‖A(X) − b‖

1 + ‖b‖ ,
‖B(X) − s‖
1 + ‖s‖

}
,

ηD = max
{‖A∗(y) + B∗(ȳ) + S + Z − C‖

1 + ‖C‖ ,
‖ȳ − v‖
1 + ‖v‖

}
,

ηK = 1
5

‖X − �K(X − S)‖
1 + ‖X‖ + ‖S‖ , ηP = 1

5
max

{‖X − �P(X − Z)‖
1 + ‖X‖ + ‖Z‖ ,

‖s − �Q(s − v)‖
1 + ‖s‖ + ‖v‖

}
.

Additionally, we compute the relative gap by

ηg = |pobj− dobj|
1 + |pobj| + |dobj| . (5)

For a given accuracy tolerance specified in OPTIONS.tol, we terminate both
sdpnalplus.m and admmplus.m when

η ≤ OPTIONS.tol. (6)

2.6. Caveats

There are a few points which we should emphasize on our solver.
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• It is important to note that Sdpnal+ is a research software. It is not intended nor
designed to be a general purpose software at the moment. The solver is designed based
on the assumption that the primal and dual SDP problems (P) and (D) are feasible, and
that Slater’s constraint qualification holds. The solver is expected to be robust if the pri-
mal and dual SDP problems are both non-degenerate at the optimal solutions. However,
if either one of them, particularly if the primal problem, is degenerate or if the Slater’s
condition fails, then the solver may not be able to solve the problems to high accuracy.

• Another point to note is that our solver is designedwith the emphasis on handling prob-
lems with positive semidefinite variables efficiently. Little attention has been paid on
optimizing the solver to handle linear programming problems.

• While in theory our solver can easily be extended to solve problems with second-order
cone constraints, it is not capable of solving such problems at the moment although we
plan to extend our solver to handle second-order cone programming problems in the
future.

3. Algorithmic design and implementation

For simplicity, we will describe the algorithmic design for the problem (D) instead of the
dual of the more general problem (1). Our algorithm is developed based on the augmented
Lagrangian function for (D), which is defined as follows: given a penalty parameter σ > 0,
for (Z, v, y, ȳ) ∈ Sn × Rp × ×Rm × Rp, and (X, s) ∈ Sn × Rp,

Lσ (Z, v, S, y, ȳ;X, s)

=
⎧⎨
⎩δ∗

P(−Z) + δ∗
Q(−v) + 〈−b, y

〉+ δS
n+(S) − 1

2σ
‖X‖2 − 1

2σ
‖s‖2

+σ

2
‖A∗(y) + B∗(ȳ) + S + Z − C + σ−1X‖2 + σ

2
‖v − ȳ + σ−1s‖2.

As mentioned in the Introduction, the algorithm implemented in Sdpnal+ is a 2-phase
algorithmwhere the first phase is a convergent inexact sGS-sPADMMalgorithm [2] whose
template is described next.
First-phase algorithm. Given an initial iteration (Z0, v0, S0, y0, ȳ0,X0, s0), perform the
following steps in each iteration.
Step 1. Let Rk1 = A∗(yk) + B∗(ȳk) + Sk + Zk − C + σ−1Xk and Rk2 = vk − ȳk + σ−1sk.
Compute (Zk+1, vk+1) = argmin Lσ (Z, v, Sk, yk, ȳk;Xk, sk) as follows:

Zk+1 = argmin
{
δ∗
P(−Z) + σ

2
‖Z − Zk + Rk1‖2

}
= σ−1�P(σ (Rk1 − Zk)) − (Rk1 − Zk),

vk+1 = argmin
{
δ∗
Q(−v) + σ

2
‖v − vk + Rk2‖2

}
= σ−1�Q(σ (Rk2 − vk)) − (Rk2 − vk).

Step 2a. Compute

(yk+1
tmp , ȳ

k+1
tmp ) ≈ argmin

{
Lσ (Zk+1, vk+1, Sk, y, ȳ;Xk, sk)

}
.

[AA∗ AB∗
BA∗ BB∗ + I

]
︸ ︷︷ ︸

M

[
y
ȳ

]
=
[

h1 := σ−1b − A(Sk + Zk+1 − C + σ−1Xk)

h2 := vk+1 + σ−1sk − B(Sk + Zk+1 − C + σ−1Xk)

]
. (7)
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In our implementation, we solve the linear system via the sparse Cholesky factorization
of M if it can be computed at a moderate cost. Otherwise, we use a preconditioned CG
method to solve (7) approximately so that the residual norm satisfies the following accuracy
condition:

√
σ‖[h1; h2] − M[yk+1

tmp ; ȳ
k+1
tmp ]‖ ≤ εk,

where {εk} is a predefined summable sequence of nonnegative numbers. In [24], the lin-
ear system corresponding toM isAA∗y = h1, and it is solved by a direct method based
on sparse Cholesky factorization. Here, the inexact sGS-ADMM framework [2] we have
employed gives us the flexibility to solve the linear system approximately by an itera-
tive solver such as the preconditioned conjugate gradient method, while not affecting the
convergence of the algorithm. Such a flexibility is obviously critical to the computational
efficiency of the algorithm when the sparse Cholesky factorization of M is impossible to
compute for a very large linear system. Step 2b. Let Rk+1

1 = A∗(yk+1
tmp ) + B∗(ȳk+1

tmp ) + Sk +
Zk+1 − C + σ−1Xk. Compute

Sk+1 = argmin
{
δS

n+(S) + σ

2
‖S − Sk + Rk+1

1 ‖2
}

= �S
n+(Sk − Rk+1

1 ).

Step 2c. Let hnew1 := h1 − A(Sk+1 − Sk), and hnew2 := h2 − B(Sk+1 − Sk). Set (yk+1, ȳk+1)

= (yk+1
tmp , ȳ

k+1
tmp ) if

√
σ

∥∥∥[hnew1 ; hnew2 ] − M[yk+1
tmp ; ȳ

k+1
tmp ]

∥∥∥ ≤ 10εk;

otherwise solve (7) with the vector h1 replaced by hnew1 and h2 replaced by hnew2 , and the
approximate solution (yk+1, ȳk+1) should satisfy the above accuracy condition.
Step 3. Let Rk+1

D,1 = A∗(yk+1) + B∗(ȳk+1) + Sk+1 + Zk+1 − C and Rk+1
D,2 = vk+1 − ȳk+1.

Compute

Xk+1 = Xk + τσRk+1
D,1 , sk+1 = sk + τσRk+1

D,2 ,

where τ ∈ (0, (1 + √
5)/2) is the steplength which is typically chosen to be 1.618.

We note that by [2], the computation in Step 2a–2c is equivalent to solving the
subproblem:

(Sk+1, yk+1, ȳk+1) = argmin

{
Lσ (Zk+1, vk+1, S, y, ȳ;Xk, sk)

+σ

2
‖(S; y; ȳ) − (Sk; yk; ȳk)‖2H

}
,

whereH is the symmetric Gauss-Seidel decomposition linear operator associated with the
linear operator (I ;A;B)(I ,A∗,B∗) + diag(0, 0,I), i.e.,

H =
⎡
⎣(A∗, B∗)D−1(A;B) 0 0

0 0 0
0 0 0

⎤
⎦ with D =

[AA∗ AB∗
BA∗ BB∗ + I

]
.

There are numerous implementation issues which are addressed in Sdpnal+ to make the
above skeletal algorithm practically efficient and robust. A detailed description of how the
issues are addressed is beyond the scope of this paper. Hence we shall only briefly mention
the most crucial ones.
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(1) Dynamic adjustment of the penalty parameter σ , which is equivalent to restarting the
algorithm with a new parameter by using the most recent iterate as the initial starting
point.

(2) Initial scaling of the data, and dynamic scaling of the data.
(3) The efficient implementation of the PCGmethod to compute an approximate solution

for (7).
(4) Efficient computation of the iterate Sk+1 by using partial eigenvalue decomposition

whenever it is expected to be more economical than a full eigenvalue decomposition.
(5) Efficient evaluation of the residual measure η defined in (4).

The algorithm in the second phase of Sdpnal+ is designed based on the following con-
vergent inexact sPADMM algorithm (or the sPALM algorithm if the bound constraints
are absent). After presenting the algorithm, we will explain the changes we made in this
algorithm compared to that developed in [24].
Second-phase algorithm.Given an initial iterate (Z0, v0, S0, y0, ȳ0,X0, s0) generated in the
first phase, perform the following steps in each iteration.
Step 1. Compute (Zk+1, vk+1) as in Step 1 of the first-phase algorithm.
Step 2. Compute

(yk+1, ȳk+1, Sk+1) ≈ argmin Lσ (Zk+1, vk+1, S, y, ȳ;Xk, sk)

by using the semismooth Newton-CG (SNCG)method which has been described in detail
in [25] such that the following accuracy condition is met:

√
σ max{‖b − A�S

n+(Wk+1)‖, ‖B�S
n+(Wk+1) − sk + σ(ȳk+1 − vk+1)‖} ≤ εk,

where Wk+1 := A∗yk+1 + B∗ȳk+1 + Sk + Zk+1 − C + σ−1Xk, and {εk} is a predefined
summable sequence of nonnegative numbers.
Step 3. Compute (Xk+1, sk+1) as in Step 3 of the first-phase algorithm.

As one may observe, the difference between the first-phase and the second-phase algo-
rithms lies in the construction of (yk+1, ȳk+1, Sk+1) in Step 2 of the algorithms. In the
first phase, the iterate is generated by adding the semi-proximal term (σ/2)‖(S; y; ȳ) −
(Sk; yk; ȳk)‖2H to the augmented Lagrangian function Lσ (Zk+1, vk+1, S, y, ȳ;Xk, sk). For the
second phase, no such a semi-proximal term is required though one may still add a small
semi-proximal term to the augmented Lagrangian function to ensure that the subprob-
lems are well defined. As our goal is to minimize the augmented Lagrangian function
Lσ (Z, v, S, y, ȳ;Xk, sk) for each pair of given (Xk, sk), it is thus clear that Step 2 of the second-
phase algorithm is closer to that goal compared to Step 2 of the first-phase algorithm. Of
course, the price to pay is that the subproblem in Step 2 of the second-phase algorithm is
more complicated to solve.

Now we highlight the differences between the above inexact sPADMM algorithm and
the majorized semismooth Newton-CG (MSNCG) augmented Lagrangian method devel-
oped in [24]. First, the algorithm in [24] is designed to solve (SDP) with only linear equality
constraints while the algorithm here is for the general problem with additional linear
inequality constraints. Even when we specialize the algorithm here to the problem with
only linear equality constraints, our algorithm here is also different from the one in [24]
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which we will now explain. For the case when only linear equality constraints are present,
the augmented Lagrangian function associated with the dual of that problem is given by

Lσ (Z, S, y;X) = δ∗
P(−Z) + 〈−b, y

〉+ δS
n+(S) + σ

2
‖A∗y + S + Z − C

+ σ−1X‖2 − 1
2σ

‖X‖2.

At the kth iteration of theMSNCG augmented Lagrangianmethod, the following subprob-
lem must be solved:

min
y,S,Z

{
Lσ (Z, S, y;Xk)

}
,

and theoretically it is solved by the MSNCG method until a certain stopping condition is
satisfied. However, in the practical implementation, only one step of the MSNCG method
is applied to solve the subproblem and the stopping condition is not strictly enforced. Thus
there is a gap between the theoretical algorithmand the practical algorithm implemented in
[24]. But for the convergent inexact sPADMMalgorithm employed in this paper, its practi-
cal implementation follows closely the steps described in the second-phase algorithm. Thus
the practical algorithm presented in this paper is based on rigorous stopping conditions in
each iteration to guarantee its overall convergence.

4. Interface

In this section, we will present a basic interface for our Sdpnal+ solver. First, we show
how to use it via a small SDP example given as follows:

min trace(X(1)) + trace(X(2)) + sum(X(3))

s.t. − X(1)
12 + 2X(2)

33 + 2X(3)
2 = 4,

2X(1)
23 + X(2)

42 − X(3)
4 = 3,

2 ≤ −X(1)
12 − 2X(2)

33 + 2X(3)
2 ≤ 7,

X(1) ∈ S
6
+, X

(2) ∈ R
5×5, X(3) ∈ R

7
+,

0 ≤ X(1) ≤ 10E6, 0 ≤ X(2) ≤ 8E5,

(8)

where En denotes the n × nmatrix of all ones. In the notation of (1), the problem (8) has
three blocks of variables X(1), X(2), X(3). The first linear mapA(1) contains two constraint
matrices A(1)

1 ,A(1)
2 ∈ S6 whose nonzero elements are given by

(A(1)
1 )12 = (A(1)

1 )21 = −0.5, (A(1)
2 )23 = (A(1)

2 )32 = 1.

With the above constraint matrices, we get 〈A(1)
1 ,X(1)〉 = −X(1)

12 and 〈A(1)
2 ,X(1)〉 = 2X(1)

23 .
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The second linear mapA(2) contains two constraint matrices A(2)
1 ,A(2)

2 ∈ R5×5 whose
nonzero elements are given by

(A(2)
1 )33 = 2, (A(2)

2 )42 = 1.

Since the third variable X(3) is a vector, the third linear map A(3) is a constraint matrix
A(3) ∈ R2×7 whose nonzero elements are given by

(A(3))12 = 2, (A(3))24 = −1.

In a similar fashion, one can identify the matrices for the linear maps B(1),B(2), and B(3).
The example (8) can be coded using our interface as follows:

Listing 1. Example (8).
1 n1 = 6; n2 = 5; n3 = 7;
2 mymodel = ccp_model(’Example_simple’);
3 X1 = var_sdp(n1,n1);
4 X2 = var_nn(n2,n2);
5 X3 = var_nn(n3);
6 mymodel.add_variable(X1,X2,X3);
7 mymodel.minimize(trace(X1) + trace(X2) + sum(X3));
8 mymodel.add_affine_constraint(-X1(1,2)+2*X2(3,3)+2*X3(2) == 4);
9 mymodel.add_affine_constraint(2*X1(2,3)+X2(4,2)-X3(4) == 3);
10 mymodel.add_affine_constraint(2<=-X1(1,2)-2*X2(3,3)+2*X3(2)<=7);
11 mymodel.add_affine_constraint(0 <= X1 <= 10);
12 mymodel.add_affine_constraint(X2 <= 8);
13 mymodel.solve;

Note that although the commands

mymodel.add_affine_constraint(-X1(1,2)+2*X2(3,3)+2*X3(2)==4);
mymodel.add_affine_constraint(2*X1(2,3)+X2(4,2)-X3(4)==3);

are convenient to use for a small example, it may become tedious if there are many such
constraints. In general, it ismore economical to encode numerous such constraints by using
the constraint matrices of the linear mapsA(1),A(2),A(3), which we illustrate below:

Listing 2. Example (8) with constraints specified via linear maps as cell arrays.
1 A1 = {sparse(n1,n1); sparse(n1,n1)}; A2 = {sparse(n2,n2); sparse(n2,n2)};
2 A3 = sparse(2,n3);
3 A1{1}(1,2) = -1; A2{1}(3,3) = 2; A3(1,2) = 2;
4 A1{2}(2,3) = 2; A2{2}(4,2) = 1; A3(2,4) = -1;
5 b = [4;3];
6 mymodel.add_affine_constraint(A1*X1 + A2*X2 + A3*X3 == b);

As the reader may have noticed, in constructing the matrix A1{1} corresponding to the
constraintmatrixA(1)

1 , we setA1{1}(1,2) = -1 instead of A1{1}(1,2) = -0.5;
A1{1}(2,1) = -0.5. Bothways of inputingA1{1} are acceptable as internally, wewill
symmetrize the matrix A1{1}.

In following subsections, we will discuss the details of the interface.

4.1. Creating a ccpmodel

Before declaring variables, constraints and setting parameters, we need to
create a ccp_model class first. This is done via the command:
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mymodel = ccp_model(model_name);

The string model_name is the name of the created ccp_model. If no model name is
specified, the default name is ‘Default’.

After solving the created mymodel, we save all the relevant information in the file
‘model_name.mat’. It contains two structure arrays, input_data and solution,
which store all the input data and solution information, respectively.

4.2. Delcaring variables

Variables in Sdpnal+ can be real vectors or matrices. Currently, our interface supports
four types of variables: free variables, variables in SDP cones, nonnegative variables and
variables which are symmetric matrices. Next, we introduce them in details.

(1) Free variables. One can declare a free variable X ∈ Rm×n via the command:

X = var_free(m,n);

where the parameters m and n specify the dimensions of X. One can also declare a
column vector variable Y ∈ Rn simply via the command:

Y = var_free(n);

(2) Variables in SDP cones. A variable X ∈ S
n+ can be declared via the command:

X = var_sdp(n,n);

In this case, the variable must be a square matrix, so X = var_sdp(m,n) with m �= n is
invalid.

(3) Variables in nonnegative orthants. To declare a nonnegative variable X ∈ R
m×n
+ , one

can use the command:

X = var_nn(m,n);

We can also use Y = var_nn(n) to declare a vector variable Y ∈ R
n+.

(4) Variables which are symmetricmatrices.To declare a symmetricmatrix variableX ∈
Sn, one can use the command:

X = var_symm(n,n);

In this case, the variable must be a square matrix.
(5) Adding declared variables into amodel. Before one can start to specify the objective

function and constraints in a model, the variables, say X and Y, that we have declared
must be added to the ccp_model class mymodel that we have created before. This
step is simply done via the command:

mymodel.add_variable(X,Y);

Here mymodel is a class object and add_variable is a method in the class.
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Table 1. Supported functions for specifying the objective function in a model.

Function Description

inprod(C, X) The inner product of a constant vector or matrix C and variable X of the same dimension.
trace(X) The trace of a square matrix variable X.
sum(X) The sum of all elements of a vector or matrix variable X.
l1_norm(X) The �1 norm of a variable X.
l1_norm(A∗X+ b) The �1 norm of an affine expression. For the exact meaning of the expression “A∗X”, the

reader can refer to (10).

4.3. Declaring the objective function

After creating themodelmymodel, declaring variables (sayX andY) and adding them into
mymodel, we can proceed to specify the objective function. Declaring an objective func-
tion requires the use of the functions (methods) minimize or maximize. There must be
one and only one objective function in amodel specification. In general, the objective func-
tion is specified through the sumor difference of the inprod function (inner product of two
vectors or two matrices) which must have two input arguments in the form: inprod(C,X)
where X must be a declared variable, and C must be a constant vector or matrix which is
already available in the workspace and having the same dimension as X. The input C can
also be a constant vector or matrix generated by someMATLAB built-in functions such as
speye(n,n).

Although we encourage users to specify an optimization problem in the standard form
given in (1), as a user-friendly interface, we also provide some extra functions to help users
to specify the objective function in a more natural way.We summarize these functions and
their usages in Table 1.

For the class mymodel created in Listing 1, we can see that the objective function of (8)
is specified via the command:

mymodel.minimize(trace(X1) + trace(X2) + sum(X3));

4.4. Adding affine constraints into themodel

Affine constraints can be specified and added into mymodel after the relevant variables
have beendeclared. This is done via the function (method)add_affine_constraint.
The following constraint types are supported in the interface:

• Equality constraints = =
• Less-or-equal inequality constraints < =
• Greater-or-equal inequality constraints > =

where the expressions on both the left and right-hand sides of the operands must be
affine expressions. Strict inequalities < and > are not accepted. Inequality and equality
constraints are applied in an elementwise fashion, matching the behaviour of MATLAB
itself. For instance, if U and X are m × n matrices, then X < = U is interpreted as mn
(scalar) inequalitiesX(i,j) < = U(i,j) for all i = 1, . . . ,m, j = 1, . . . , n.When one
side is a scalar and the other side is a variable, that value is replicated; for instance, X > =
0 is interpreted as X(i,j) > = 0 for all i = 1, . . . ,m, j = 1, . . . , n.
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In general, affine constraints have the following form

A1 ∗ X1 + A2 ∗ X2 + · · · + Ak ∗ Xk <= (>= or ==) b, (9)

where X1,X2, . . . ,Xk are declared variables, b is a constant matrix or vector, and
A1,A2, . . . ,Ak are linear maps whose descriptions will be given shortly.

Next, we illustrate how to add affine constraints into the model object mymodel in
detail.

4.4.1. General affine constraints
In this section, we show users how to initialize the linear mapsA1,A2, . . . ,Ak in (9).

• IfAi = ai, is a scalar, then ai ∗ Xi has the same dimension as the variable Xi.
• If Xi is an n-dimensional vector, thenAi must be a p × n constant matrix, andAi ∗ Xi

is in Rp.
• If Xi is anm × n (n>1) matrix, thenAi ∗ Xi is interpreted as a linear map such that

Ai ∗ Xi =

⎡
⎢⎢⎢⎣
〈
A(i)
1 ,Xi

〉
...〈

A(i)
p ,Xi

〉
⎤
⎥⎥⎥⎦ ∈ R

p, (10)

where A(i)
1 , . . . ,A(i)

p are given m × n constant matrices. In this case, Ai is a p × 1
constant cell array such that

Ai{j} = A(i)
j , j = 1, . . . , p.

4.4.2. Coordinate-wise affine constraints
Although users can model coordinate-wise affine constraints in the general form given
in (9), we allow users to declare them in a more direct way as follows:

a1 ∗ X1(i1, j1) + a2 ∗ X2(i2, j2) + · · · + ak ∗ Xk(ik, jk) <= (>= or ==) b, (11)

where a1, a2, . . . , ak, b are scalars and X1,X2, . . . ,Xk are declared variables. The
index pairs (i1, j1), (i2, j2), . . . , (ik, jk) extract the corresponding elements in the vari-
ables. From Listing 1, we can see how a constraint of the form (11) is added, i.e.
mymodel.add_affine_constraint(2 ∗ X1(2, 3) + X2(4, 2) − X3(4) == 3)

Our interface also allows users to handle multiple index pairs. For example, if we have
a declared variable X ∈ Rm×n and two index arrays

I = [i1, i2, . . . , ik], J = [j1, j2, . . . , jk],

where max{i1, i2, . . . , ik} ≤ m and max{j1, j2, . . . , jk} ≤ n, then X(I, J) is interpreted as

X(I, J) =

⎡
⎢⎢⎢⎣
X(i1, j1)
X(i2, j2)

...
X(ik, jk)

⎤
⎥⎥⎥⎦ ∈ R

k.

An example of such a usage can be found in Listing 9.
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Table 2. Supported predefined maps.

Function Description Dimension

inprod(C, X) The inner product of a constant vector or matrix C and a variable X of the same
dimension.

1 × 1

trace(X) The trace of a square matrix variable X. 1 × 1
sum(X) The sum of all elements of a vector or matrix variable X. 1 × 1
l1_norm(X) The �1 norm of a variable X. 1 × 1
l1_norm(A*X+ b) The �1 norm of an affine expression. 1 × 1
map_diag(X) Extract the main diagonal of an n × nmatrix variable X. n × 1
map_svec(X) For an n × n symmetric variable X, it returns the corresponding symmetric

vectorization of X, as defined in (3).

n(n+1)
2 × 1

map_vec(X) For am × nmatrix variable X, it returns the vectorization of X. mn × 1

4.4.3. Element-wisemultiplication
In our interface, we also support element-wise multiplication (·∗) between a declared
variable X and a constant matrix A with the same dimension. Suppose

X =

⎡
⎢⎣
X11 · · · X1n
...

. . .
...

Xm1 · · · Xmn

⎤
⎥⎦ , A =

⎡
⎢⎣
A11 · · · A1n
...

. . .
...

Am1 · · · Amn

⎤
⎥⎦ .

Then A · ∗X is interpreted as

A · ∗X =

⎡
⎢⎣
A11 ∗ X11 · · · A1n ∗ X1n

...
. . .

...
A11 ∗ Xm1 · · · Amn ∗ Xmn

⎤
⎥⎦ .

4.4.4. Specifying affine constraints using predefinedmaps
For convenience, we also provide some predefinedmaps to help users to specify constraints
in a more direct way. We summarize these maps and their usages in Table 2.

4.4.5. Chained constraints
In our interface, one can add chained inequalities into the createdccp_modelmymodel.
In general, chained affine constraints have the form

L <= A1 ∗ X1 + A2 ∗ X2 + · · · + Ak ∗ Xk <= U,

where L and U are scalars or constant matrices with having the same dimensions as the
affine expression in the middle. As an example, one can add bound constraints for a
declared variable X via the command:

mymodel.add_affine_constraint(L < = X < = U);

It is important to note that in chained inequality constraints, the affine expression in the
middle should only contain declared variables but not constants.

4.5. Adding positive semidefinite constraints into themodel

Positive semidefinite constraints can be added into a previously created object mymodel
using the function (method) add_psd_constraint. Such a constraint is valid only
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for a declared symmetric variable or positive semidefinite variable. In general, a positive
semidefinite constraint has the form

a1 ∗ X1 + a2 ∗ X2 + · · · + ak ∗ Xk � G, (12)

where a1, a2, . . . , ak are scalars, and X1,X2, . . . ,Xk are declared variables in symmetric
matrix spaces or PSD cones, and G is a constant symmetric matrix. Note that one can also
have the version ‘�’ in (12). We can add (12) into mymodel as follows:

mymodel.add_psd_constraint(a1 ∗ X1 + · · · + ak ∗ Xk > = G)

Specially,

• For a variable X ∈ Sn, one can use mymodel.add_psd_constraint(X> =0) to
specify the constraint X � 0 or X ∈ S

n+.
• For a variable X ∈ Sn and a constantmatrix G ∈ Sn. One can use mymodel.add_psd
_constraint(X > = G) and mymodel.add_psd_constraint(X < =
G) to specify the constraint X � G and X � G, respectively.

Similar to affine constraints, one can also use chained positive semidefinite constraints
together. For example, for a variable X ∈ Sn and two constant matrices G1,G2 ∈ Sn (G1 �
G2), one can specify G1 � X � G2 as
mymodel.add_psd_constraint(G1 < = X < = G2);

4.6. Setting parameters for SDPNAL+
As described in Section 2.4, there are mainly nine parameters in the parameter structure
array OPTIONS. To allow users to set these parameters freely, we provide the func-
tion (method) setparameter for such a purpose. Parameters which are not specified
are set to be the default values described in Section 2.4. Now, we describe the usage of
setparameter in details.

Assume that we have created a ccp_model class called mymodel. Since set
parameter is a method in the ccp_model class, so the usage of setparameter
is simply

mymodel.setparameter(‘para_name’,value)

In Table 3, we summarize the parameters which can be set in setparameter. Note
that users can set more than one parameters at a time. For example, one can use

mymodel.setparameter(‘tol’, 1e-4, ‘maxiter’, 2000);
to set the parameters tol = 1e-4 and maxiter = 2000.

4.7. Solving amodel and extracting solutions

After creating and initializing the class mymodel, one can call the method solve to solve
the model as follow:

mymodel.solve
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Table 3. Usage of setparameter.

Parameter Name Usage Default Value

tol mymodel.setparameter(‘tol’, value) 1e−6
maxiter mymodel.setparameter(‘maxiter’, value) 20000
maxtime mymodel.setparameter(‘maxtime’, value) 10000
tolADM mymodel.setparameter(‘tolADM’, value) 1e−4
maxiterADM mymodel.setparameter(‘maxiterADM’, value) 200
printlevel mymodel.setparameter(‘printlevel’, value) 1
stopoption mymodel.setparameter(‘stopoption’, value) 1
AATsolve.method mymodel.setparameter(‘AATsolve.method’, value) ‘direct’
BBTsolve.method mymodel.setparameter(‘BBTsolve.method’, value) ‘iterative’

After solving the SDP problem, one can extract the optimal solutions using the function
get_value. For example, if X1 is a declared variable, then one can extract the optimal value
of X1 by setting

get_value(X1)
Note that the input of the function get_value should be a declared variable.

4.8. Further remarks on the interface

Here we give some remarks to help users to input an SDP problem into our interface more
efficiently.

• If a variablemust satisfy a conic constraint, it would bemore efficient to specify the conic
constraint when declaring the variable rather than declaring the variable and impos-
ing the constraint separately. For example, it is better to use X = var_nn(m,n) to
indicate that the variable X ∈ Rm×n must be in the cone R

m×n
+ rather than separately

declaring X = var_free(m,n) followed by setting
mymodel.add_affine_constraint(X > = 0);
Similarly, if a square matrix variable Y ∈ Sn must satisfy the conic constraint that
Y ∈ S

n+, then it is better to declare it as Y = var_sdp(n,n) rather than separately
declaring Y = var_free(n,n) followed by setting
mymodel.add_psd_constraint(Y > = 0);
The latter option is not preferred because we have to introduce extra constraints.

• When there is a large number of affine constraints, specifying them using a loop in
MATLAB is generally time consuming. To make the task more efficient, if possible,
always try to model the problem using our predefined functions

5. Examples on building SDPmodels using our interface

To solve SDP problems using Sdpnal+, the user must input the problem data correspond-
ing to the form in (P). The fileSDPNALplusDemo.m contains a few examples to illustrate
how to generate the data of an SDP problem in the required format. Here we will present a
few of those examples in detail. Note that the user can also store the problem data in either
the SDPA or SeDuMi format, and then use the m-files to read sdpa.m or sedumi.m to
convert the data for Sdpnal+.
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We also illustrate how the SDP problems can be coded using our basic interface.

5.1. SDPs arsing from the nearest correlationmatrix problems

To obtain a valid nearest correlationmatrix (NCM) from a given incomplete sample corre-
lationmatrixG ∈ Sn, one version of the NCMproblem is to consider solving the following
SDP:

(NCM) min
{‖H ◦ (X − G)‖1 | diag(X) = e, X ∈ S

n
+
}
,

where H ∈ Sn is a nonnegative weight matrix and ‘°’ denotes the elementwise product.
Here for anyM ∈ Sn, ‖M‖1 = ∑n

i,j=1 |Mij|.
In order to express (NCM) in the form given in (P), we first write

svec(X) − svec(G) = x+ − x−,

where x+ and x− are two nonnegative vectors in Rn̄ (n̄ = n(n + 1)/2). Then (NCM) can
be reformulated as the following SDP withm = n + n̄ equality constraints:

min 〈svec(H), x+〉 + 〈svec(H), x−〉
s.t. diag(X) = e,

svec(X) − x+ + x− = svec(G), X ∈ S
n
+, x+, x− ∈ R

n̄
+.

(13)

GivenG,H ∈ Sn, the SDPdata for the above problem can be coded for Sdpnal+ as follows.

Listing 3. Generating the Sdpnal data for the NCM problem (13).
1 blk{1,1} = ’s’; blk{1,2} = n;
2 n2 = n*(n+1)/2;
3 II = speye(n2); hh = svec(blk(1,:),H);
4
5 for k=1:n; Acell{k} = spconvert([k,k,1;n,n,0]); end
6 Atmp = svec(blk(1,:),Acell,1);
7 At{1,1} = [Atmp{1}, II];
8 At{2,1} = [sparse(n,n2), sparse(n,n2); -II, II]’;
9
10 b = [ones(n,1); svec(blk(1,:),G)];
11 C{1,1} = sparse(n,n); C{2,1} = [hh; hh];

For more details, see the m-file NCM.m in the subdirectory /util.
Next, we show how to use our interface to solve the nearest correlation matrix problem

(NCM). Given a data matrixG ∈ Sn, we can solve the corresponding NCM problem using
our interface as follows.
Listing 4. Solving a NCM problem with our interface.
1 n = 100;
2 G = randn(n,n); G = 0.5*(G + G’);
3 H = rand(n); H = 0.5*(H+H’);
4 model = ccp_model(’Example_NCM’);
5 X = var_sdp(n,n);
6 model.add_variable(X);
7 model.minimize(l1_norm(H.*X - H.*G));
8 model.add_affine_constraint(map_diag(X) == ones(n,1));
9 model.setparameter(’tol’, 1e-6, ’maxiter’, 2000);
10 model.solve;
11 Xval = get_value(X);
12 dualinfo = get_dualinfo(model);
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The last two lines in Listing 4 illustrate how we can extract the numerical value of the
variable X and also the corresponding dual variables. Observe that with the help of our
interface, users can input the problem into our solver very easily; see Example_NCM.m
for more details.

5.2. SDP relaxations of themaximum stable set problems

Let G be an undirected graph with n nodes and edge set E . Its stability number, α(G), is
the cardinality of a maximal stable set of G, and it can be expressed as

α(G) := max{eTx : xixj = 0, (i, j) ∈ E , x ∈ {0, 1}n},

where e ∈ Rn is the vector of all ones. It is known that computing α(G) is NP-hard. But an
upper bound θ(G), known as the Lovász theta number [9], can be computed as the optimal
value of the following SDP problem:

θ(G) := max
{〈
eeT ,X

〉 ∣∣∣ 〈Eij,X〉 = 0 ∀ (i, j) ∈ E , 〈I,X〉 = 1, X ∈ S
n
+
}
, (14)

where Eij = eieTj + ejeTi and ei denotes the ith standard unit vector of Rn. One can further
tighten the upper bound to get α(G) ≤ θ+(G) ≤ θ(G), where

θ+(G) := max
{〈
eeT ,X

〉 ∣∣∣ 〈Eij,X〉 = 0 ∀ (i, j) ∈ E , 〈I,X〉 = 1, X ∈ S
n
+, X ≥ 0

}
. (15)

In the subdirectory /datafiles of Sdpnal+, we provide a few SDP problems with
data stored in the in SDPA or SeDuMi format, arising from computing θ(G) for a few
graph instances. The segment below illustrates how one can solve the SDP problem,
theta8.dat-s, to compute θ+(G):

>> [blk,At,C,b] = read_sdpa(’theta8.dat-s’);
>> L = 0;
>> [obj,X,s,y,S,Z,ybar,v,info,runhist]
= sdpnalplus(blk,At,C,b,L);

To compute θ(G), one can simply set L = [] to indicate that there is no lower
bound constraint on X. In Listing 5, we illustrate how to use our interface to solve the
θ+ problem (15).

Listing 5. Solving the θ+ problem (15) using our interface.
1 load theta6.mat
2 [IE,JE] = find(triu(G,1));
3 n = length(G);
4 model = ccp_model(’Example_theta’);
5 X = var_sdp(n,n);
6 model.add_variable(X);
7 model.maximize(sum(X));
8 model.add_affine_constraint(trace(X) == 1);
9 model.add_affine_constraint(X(IE,JE) == 0);
10 model.add_affine_constraint(X >= 0);
11 model.solve;
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5.3. SDPs arising from the frequency assignment problems

Given a network represented by a graph G with n nodes and an edge set E together with
an edge-weight matrix W, a certain type of frequency assignment problem on G can be
relaxed into the following SDP (see [1, equation (5)]):

(FAP) max
〈(

k − 1
2k

)
L(G,W) − 1

2
Diag(We),X

〉
s.t. diag(X) = e, X ∈ S

n
+,〈−Eij,X

〉 = 2/(k − 1) ∀ (i, j) ∈ U ⊆ E ,〈−Eij,X
〉 ≤ 2/(k − 1) ∀ (i, j) ∈ E \ U ,

(16)

where k>1 is a given integer, U is a given subset of E , L((G,W) := Diag(We) − W is the
Laplacian matrix, Eij = eieTj + ejeTi . Note that (16) is equivalent to

max
〈(

k − 1
2k

)
L(G,W) − 1

2
Diag(We),X

〉
s.t. diag(X) = e, X ∈ S

n
+, L ≤ X ≤ U,

(17)

where

Lij =
⎧⎨
⎩− 1

k − 1
∀(i, j) ∈ E ,

−∞ otherwise,
Uij =

⎧⎨
⎩− 1

k − 1
∀(i, j) ∈ U ,

∞ otherwise.

Next, we show how to use our interface to solve the SDP problem (16). Assume that
we have already computed the constant matrix C := ((k − 1)/2k)L(G,W) − 1

2Diag(We)
and saved it as C in the current workspace. Suppose IU, JU are two single column arrays
storing the index pairs (i, j) corresponding to U , and IE, JE are two single column arrays
storing the index pairs (i, j) corresponding to E . Assume that IU, JU, IE, JE, n, kpara
are already stored in the current workspace. We can build the ccp_model for (16) using
our interface as follows. More details can be seen in Example_FAP.m.

Listing 6. Solving the FAP (16) using our interface.
1 model = ccp_model(’Example_FAP’);
2 X = var_sdp(n,n);
3 model.add_variable(X);
4 model.maximize(inprod(C,X));
5 model.add_affine_constraint(map_diag(X) == ones(n,1));
6 const = -1/(kpara-1);
7 model.add_affine_constraint(X(IU,JU) == const);
8 model.add_affine_constraint(X(IE,JE) >= const);
9 model.solve;

One can also solve (FAP) using the equivalent formulation specified in (17). Assume that
the matrices L, U, C and n have been computed in the current workspace, we can input the
SDP problem (17) into our interface based on the above equivalent form as follows.
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Listing 7. Solving the reformulated FAP (17).
1 model = sdp_model(’Example_FAP2’);
2 X = var_sdp(n,n);
3 model.add_variable(X);
4 model.maximize(inprod(C,X));
5 model.add_affine_constraint(map_diag(X) == ones(n,1));
6 model.add_affine_constraint(L <= X <= U);
7 model.solve;

5.4. SDPs arising from Euclidean distancematrix problems

Consider a given undirected graph G with n nodes and edge set E . LetD = (dij) ∈ Sn be a
matrix whose elements are such that dij > 0 if (i, j) ∈ E , and dij = 0 if (i, j) �∈ E . We seek
points x1, x2, . . . , xn in Rd such that ‖xi − xj‖ is as close as possible to dij for all (i, j) ∈ E .
In particular, one may consider minimizing the L1-error as follows:

min

⎧⎨
⎩ ∑

(i,j)∈E
|d2ij − ‖xi − xj‖2| − α

2n

n∑
i,j=1

‖xi − xj‖2
∣∣∣∣ n∑

i=1
xi = 0, x1, . . . , xn ∈ R

d

⎫⎬
⎭ ,

where the equality constraint is introduced to put the centre of mass of the points at the
origin. The second term in the objective function is introduced to achieve the effect of
spreading out the points instead of crowding together, and α is a given nonnegative param-
eter. Let X = [x1, . . . , xn] ∈ Rd×n. Then ‖xi − xj‖2 = eTij X

TXeij, where eij = ei − ej. The
above nonconvex problem can be rewritten as (for more details, see [6]):

min

⎧⎨
⎩ ∑

(i,j)∈E
|d2ij −

〈
eijeTij ,Y

〉
| − α 〈I,Y〉

∣∣∣∣ 〈E,Y〉 = 0, Y = XTX, X ∈ R
d×n

⎫⎬
⎭ .

By relaxing the nonconvex constraint Y = XTX to Y ∈ S
n+, we obtain the following SDP

problem:

min
∑

(i,j)∈E
x+
ij + x−

ij − α 〈I,Y〉

s.t.
〈
eijeTij ,Y

〉
− x+

ij + x−
ij = d2ij ∀ (i, j) ∈ E ,

〈E,Y〉 = 0,

Y ∈ S
n
+, x

+
ij , x

−
ij ≥ 0 ∀ (i, j) ∈ E .

(18)

Note that the number of the equality constraints in (18) is |E | + 1, and that the problem
does not satisfy the Slater’s condition because of the constraint 〈E,Y〉 = 0. The prob-
lem (18) is typically highly degenerate and the optimal solution is not unique, which may
result in high sensitivity to small perturbations in the data matrix D. Hence, the prob-
lem (18) can usually only be solved by Sdpnal+ to a moderate accuracy tolerance, say
OPTIONS.tol = 10−4. Given the data matrix D ∈ Sn, and let m = |E |, the SDP data
for (18) can be coded as follows:
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Listing 8. Generating the Sdpnal data for the EDM problem (18).
1 blk{1,1} = ’s’; blk{1,2} = n;
2 Acell = cell(1,m+1); b = zeros(m+1,1); cnt = 0;
3 for i = 1:n
4 for j = 1:n
5 if (D(i,j) ~= 0)
6 cnt = cnt + 1;
7 Acell{cnt} = spconvert([i,i,1; i,j,-1; j,i,-1; j,j,1; n,n,0]);
8 b(cnt) = D(i,j)^2;
9 end
10 end
11 end
12 Acell{m+1} = ones(n);
13 At(1) = svec(blk(1,:),Acell); C{1,1} = -alpha*speye(n,n);
14 blk{2,1} = ’l’; blk{2,2} = 2*m;
15 At{2,1} = [-speye(m), speye(m); sparse(1,2*m)]’; C{2,1} = ones(2*m,1);

Next, we show how to solve the EDM problem (18) using our interface. Assume that we
have generated the data matrix D ∈ Sn such that Dij = dij for all (i, j) ∈ E , and stored it in
data_randEDM.mat together with a given α. As mentioned above, we set the accuracy
tolerance to solve the problem as 1e-4. Now we can input the SDP problem into our
interface as follows.

Listing 9. Solving the EDM problem (18) using our interface.
1 load data_randEDM;
2 [ID, JD, val] = find(D);
3 dd = val.^2;
4 n1 = length(D);
5 n2 = length(ID);
6
7 model = ccp_model(’Example_EDM’);
8 X1 = var_nn(n2,1);
9 X2 = var_nn(n2,1);
10 Y = var_sdp(n1,n1);
11 model.add_variable(X1,X2,Y);
12 model.minimize(sum(X1) + sum(X2) - alpha*trace(Y));
13 model.add_affine_constraint(Y(ID,ID)+Y(JD,JD)-Y(ID,JD)-Y(JD,ID) -X1 +X2

== dd);
14 model.add_affine_constraint(sum(Y) == 0);
15 model.setparameter(’tol’, 1e-4, ’maxiter’, 2000);
16 model.solve;

5.5. SDPs arising from quadratic assignment problems

Let� be the set ofn × n permutationmatrices. GivenmatricesA,B ∈ Rn×n, the associated
quadratic assignment problem (QAP) is given by

v∗
QAP := min{〈X,AXB〉 : X ∈ �}. (19)

For a matrix X = [x1, . . . , xn] ∈ Rn×n, we will identify it with the n2-dimensional vector
x = [x1; . . . ; xn]. For a matrix Y ∈ Rn2×n2 , we let Yij be the n × n block corresponding to
xixTj in the matrix xxT . It is shown in [13] that v∗

QAP is bounded below by the following
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number:
v := min 〈B ⊗ A,Y〉

s.t.
n∑

i=1
Yii = I,

〈
I,Yij〉 = δij ∀ 1 ≤ i ≤ j ≤ n,

〈
E,Yij〉 = 1, ∀ 1 ≤ i ≤ j ≤ n,

Y � 0, Y ≥ 0,

(20)

where E is the matrix of ones, and δij = 1 if i= j, and 0 otherwise. Note that there are
3n(n + 1)/2 equality constraints in (20). But two of them are actually redundant, and we
remove them when solving the standard SDP generated from (20).

Now, we show an example of solving the SDP relaxation of the QAP problem
’chr12a’ via our interface.

Listing 10. Solving the SDP relaxation of a QAP with our interface.
1 problem_name = ’chr12a’;
2 [A, B] = qapread(strcat(problem_name, ’.dat’));
3 %% Construct C
4 Ascale = max(1, norm(A, ’fro’));
5 Bscale = max(1, norm(B, ’fro’));
6 A = A/Ascale; B = B/Bscale;
7 C = kron(B, A); C = 0.5*(C + C’);
8 nn = length(C);
9 n = length(A);
10
11 model = ccp_model(problem_name);
12 Y = var_sdp(nn, nn);
13 model.add_variable(Y);
14 model.minimize(inprod(C, Y));
15 model.add_affine_constraint(Y >= 0);
16 II = speye(n); EE = ones(n);
17 for i = 1:n-1
18 for j = i:n
19 Eij = sparse(i,j,1,n,n);
20 if (i==j) const = 1; else, const = 0; end
21 model.add_affine_constraint(inprod(kron(II,Eij), Y) == const);
22 model.add_affine_constraint(inprod(kron(Eij,II), Y) == const);
23 model.add_affine_constraint(inprod(kron(Eij,EE), Y) == 1);
24 end
25 end
26 model.add_affine_constraint(inprod(kron(II,sparse(n,n,1,n,n)), Y) == 1)

;
27 model.setparameter(’maxiter’, 5000);
28 model.solve;

5.6. Comparison of our basic interface with CVX and YALMIP

As mentioned in the Introduction, our new interface is motivated by the need to facilitate
the modelling of an SDP problem for Sdpnal+ to directly accept inequality constraints of
the form ‘l ≤ B(X) ≤ u’, and bound constraints of the form ‘L ≤ X ≤ U’ in addition to
equality constraints of the form ‘A(X) = b’.

For the interfaces CVX [4] and YALMIP [8], one will need to first reformulate a problem
with the above mentioned inequality constraints into the standard primal SDP form (for
interior-point solvers) by converting the inequality constraints into equality constraints
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Table 4. Time taken (in seconds) to generate the SDP data (and the corresponding problem sizes) by
various interfaces for theQAPproblem (20)withmatricesA,Bofdimensionn × n. Herem is thefinal num-
ber of equality constraints in the generated SDP data, sblk is the dimension of the positive semidefinite
matrix block, lblk is the dimension of the nonnegative vector, ublk is the dimension of the unrestricted
vector.

n CVX YALMIP Sdpnal+
10 9.22 2.55 0.49

m = 5213
sblk = 100,
lblk = 5050

m = 10100
sblk = 100
lblk = 5050
ublk = 10163

m = 163
sblk = 100,
lblk = 5050

15 448 3.52 0.67

m = 25783
sblk = 225,
lblk = 25425

m = 50850
sblk = 225
lblk = 25425
ublk = 50983

m = 358
sblk = 225
lblk = 25425

20 9.86 0.73

took too long to run

m = 160400
sblk = 400
lblk = 80200
ublk = 160628

m = 628
sblk = 400
lblk = 80200

through introducing extra nonnegative variables as follows:

B(X) − s(1) = l,B(X) + s(2) = u, X − X(1) = L, X + X(2) = U,

s(1) ≥ 0, s(2) ≥ 0, X(1) ≥ 0, X(2) ≥ 0.

The above conversion not only will add significant overheads when generating the SDP
data in CVX or YALMIP, a much more serious computational issue is that it has created
a large number of additional equality constraints in the formulation which would cause
huge computational inefficiency when solving the problem. Moreover, the large number
of additional equality constraints introduced will likely make the SDP solver to encounter
various numerical difficulties when solving the resulting SDP problem.

In Table 4, we present the relevant information for the SDP data generated by various
interfaces for the QAP problem (20) with matrices A,B of dimensions n × n. As one can
observe, CVX took an exceeding long time to generate the data compared to YALMIP and
Sdpnal+. When the problem dimension n becomes larger, the ratio of the times taken by
YALMIP and Sdpnal+ to generate the data also grows larger, and the ratio is more than
13 for n=20. More alarmingly, the number of equality constraints generated by CVX or
YALMIP is exceedingly large. For n=20, the ratio of the number of equality constraints
generated by YALMIP and Sdpnal+ is more than 255 (≈ 160400/628) times. Such a huge
number of equality constraints generated byCVXorYALMIP is fatal for the computational
efficiency of interior-point solvers, and also disadvantageous for Sdpnal+.

6. Summary of the numerical performance of SDPNAL+
We have tested our solver Sdpnal+ on 745 SDP instances arising from various sources,
namely,
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Figure 1. Time T taken to solve 707 SDP instances versus the times estimated based on regression Trg =
0.00274 (m + p)0.220 n1.357.

(1) 65 instances ofDNN (doubly nonnegative) relaxation ofmaximumstable set problems
from [14,17,19];

(2) 14 instances of SDP relaxation of frequency assignment problems (FAPs) [3];
(3) 94 instances of DNN relaxation of quadratic assignment problems (QAPs) [5];
(4) 165 instances of DNN relaxation of binary quadratic integer programming (BIQ)

problems [22];
(5) 120 instances of DNN relaxation of clustering problems [12];
(6) 165 instances of DNN relaxation of BIQ problems with additional valid inequalities

[16];
(7) 65 instances of SDP relaxation of maximum stable set problems from [14,17,19];
(8) 57 instances of SDP relaxation of best rank-one tensor approximation problems [11].

In total there are 623 SDP problems with simple polyhedral bound constraints on the
matrix variable in addition to other linear constraints, and 122 standard SDP problems.
The complete numerical results are available at

http://www.math.nus.edu.sg/ mattohkc/papers/SDPNALPtable-2017-Dec-18.pdf
Note that the results are obtained on a desktop computer having the following specifi-

cation: Intel Xeon CPU E5-2680v3 @2.50 GHz with 12 cores, and 128GB of RAM. The
extensive numerical experiments show that our Sdpnal+ solver is quite efficient and
robust, in that it is able to solve 98.9% of the 745 instances of SDP problems arising from
various applications listed above to the accuracy of less than 1.5 × 10−6 in the relative KKT
residual η defined in (4).

In Figure 1, we plot the time T taken to solve a subset of 707 tested instances (with com-
putation time of over one second each) versus the estimated times Trg = 0.00274 (m +
p)0.220 n1.357, obtained based on the regression log10(T) ≈ log10(κ) + α log10(m + p) +
β log10(n). From the graph, one can observe that Trg can estimate the actual time taken
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Table 5. Summary of numerical results obtained by Sdpnal+ in solving 707 SDP problems (each with
the computation time of more than one second). In each cell, the first number is the number of prob-
lems solved, and the second number is the average time taken to solve the problems. Here K means a
thousand.

m+p ≤ 1K (1K , 4K] (4K , 16K] (16K , 64K] (64K , 256K] (256K , 1024K] > 1024K

n ≤ 100
36
2.04

16
2.16

11
8.74

100 < n ≤ 200
101
6.29

4
9.48

43
25.67

43
61.57

200 < n ≤ 400
127
29.17

8
14.07

15
3.88

40
95.25

20
269.95

400 < n ≤ 800
44

134.97
14

603.19
8

55.52
16

34.75
14

22.62
15

2067.98

800 < n ≤ 1600
10

168.62
56

871.80
22

496.73
7

115.58
10

250.14
5

172.92

1600 < n ≤ 3200
1

2672.64
8

2867.77
1

439.11
5

2291.35
1

966.32

n> 3200
1

12817.94
5

11512.53

to within a factor of about 20 for a given (m + p, n). If we contrast the dependent of Trg
on (m + p, n) with the O((m + p)2n2) + O((m + p)n3) + O((m + p)3) time complexity
in an interior-point method such as those implemented in SDPT3 or SeDuMi, then we
can immediately observe that the time complexity of Sdpnal+ is much better. In partic-
ular, the dependence on the number of linear constraints is only (m + p)0.22 for a given
matrix dimension n. This also explains why our solver can be so efficient in solving an SDP
problem with a large number of linear constraints.

InTable 5, we give a summary of the numerical results obtained for the subset of 707 SDP
problems mentioned in the last paragraph. Note that in the table,m+p is the total number
of linear constraints as specified byA and B. The simple polyhedral bound constraints on
thematrix variable are not counted inm+p. Thus even ifm+p is a modest number, say less
than 1000, the number of actual polyhedral constraints in the problem can still be large.
Observe that across each row in the table, the average time taken to solve the problemswith
different number of linear constraints does not depend strongly onm+p. However, across
each column in the table, the dependence of the average time taken to solve the problems
on the matrix dimension n is more significant, but it is still much weaker than the cubic
exponent dependent on the matrix dimension.

7. Conclusion and future works

Sdpnal+ is designed to be a general purpose software for solving large scale SDP prob-
lems with bound constraints as well as having a large number of equality and/or inequality
constraints. The solver has been demonstrated to be fairly robust and highly efficient in
solving various classes of SDP problems arising from the relaxation of combinatorial opti-
mization problems such as maximum stable set problems, quadratic assignment problems,
frequency assignment problems, binary quadratic integer programming problems. It has
also worked well on SDP problems arising from the relaxation of robust clustering prob-
lems, rank-one tensor approximation problems, as well as problems arising from electronic
structure calculations in quantum chemistry.
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Our solver is expected to work well on nondegenerate well-posed SDP problems, but
muchmore future workmust be done tomake the solver toworkwell on degenerate and/or
ill-posed problems. Currently our solver is not catered to problems with SOCP or expo-
nential cone constraints. As an obvious extension, we are currently extending the solver to
handle problems with the aforementioned cone constraints.

We have also designed a basic user friendly interface for the user to input their SDP
model into the solver. One of our future works is to expand the flexibility and capability of
the interface such as the ability to handle Hermitian matrices.
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