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1 Introduction

Let Sn be the linear space of all n × n real symmetric matrices equipped with the usual
Frobenius inner product 〈·, ·〉. Let Sn+ (Sn−) be the closed convex cone of all n× n positive
(negative) semidefinite matrices in Sn. In this paper we study first order necessary opti-
mality conditions for the mathematical program with (semidefinite) cone complementarity
constraints (MPSCCC or SDCMPCC):

(SDCMPCC) min f(z)

s.t. h(z) = 0 ,

g(z) ≤ 0 ,

Sn+ 3 G(z) ⊥ H(z) ∈ Sn− , (1)

where Z is a finite dimensional space, f : Z → <, G : Z → Sn, H : Z → Sn, h : Z → <p,
g : Z → <q are continuously differentiable mappings, and “G(z) ⊥ H(z)” means that the
matrices G(z) and H(z) are perpendicular to each other, i.e., 〈G(z), H(z)〉 = 0.

SDCMPCC can be considered as a matrix analogue of the mathematical program with
(vector) complementarity constraints (MPCC) since when the semidefinite cone compleme-
natrity constraint (1) is replaced by the vector complementarity constraint <n+ 3 G(z) ⊥
H(z) ∈ <n−, it becomes a MPCC. MPCC is a class of very important problems since they
arise frequently in applications where the constraints come from equilibrium systems and
hence is also known as the mathematical program with equilibrium constraints (MPEC);
see [15, 21] for references. One of the main sources of MPCCs comes from bilevel program-
ming problems which have numerous applications; see [6]. For simplicity in this paper we
include only one semidefinite cone complementarity constraint. However all results can be
generalized to the case of more than one semidefinite cone complementarity constraints in a
straightforward manner. Therefore we may consider MPCC as a special case of SDCMPCC
with the following n semidefinite cone complementarity constraints:

<+ 3 Gi(z) ⊥ Hi(z) ∈ <−, i = 1, . . . , n .

The generalization from MPCC to SDCMPCC has very important applications. In
practice it is more realistic to assume that an optimization problem involves uncertainty.
A recent approach to optimization under uncertainty is robust optimization. For example,
it makes sense to consider a robust bilevel programming problem where for a fixed upper
level decision variable x, the lower level problem is replaced by its robust counterpart:

Px : min
y
{f(x, y, ζ) : g(x, y, ζ) ≤ 0 ∀ ζ ∈ U} ,

where U is some “uncertainty set” in the space of the data. It is well-known (see [1])
that if the uncertainty set U is given by a system of linear matrix inequalities, then the
deterministic counterpart of the problem Px is a semidefinite program. If this semidefinite
program can be equivalently replaced by its Karush-Kuhn-Tucker (KKT) condition, then
it yields a SDCMPCC.

MPCC is notoriously known as a difficult class of optimization problems since Man-
gasarian Fromovitz constraint qualification (MFCQ) fails to hold at each feasible point
of the feasible region; see [41, Proposition 1.1]. One of the implications of the failure
of MFCQ is that the classical KKT condition may not hold at a local optimizer. The
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classical KKT condition for MPCC is known to be equivalent to Strong (S-) stationary
condition. Consequently weaker stationary conditions such as Mordukhovich stationary
condition (M-stationary condition) and Clarke stationary condition (C-stationary condi-
tion) have been proposed and the constraint qualifications under which a local minimizer is
a M-(C-)stationary point have been studied; see e.g. [39, 30] for a detailed discussion. For
SDCMPCC, the usual constraint qualification is Robinson’s CQ. In this paper we show that
Robinson’s CQ fails to hold at each feasible point of the SDCMPCC. Hence SDCMPCC
is also a difficult class of optimization problems. One of the implications of the failure of
Robinson’s CQ is that the classical KKT condition may not hold at a local optimizer. In this
paper we introduce the concepts of S-, M- and C-stationary conditions for SDCMPCC and
derive exact expressions for S-, M- and C-stationary conditions. Under certain constraint
qualifications we show that a local minimizer of SDCMPCC is a S-, M- and C-stationary
point.

To the best of our knowledge, this is the first time explicit expressions for S-, M- and C-
stationary conditions for SDCMPCC are given. In [36], a smoothing algorithm is given for
mathematical program with symmetric cone complementarity constraints and the conver-
gence to C-stationary points is shown. Although the problem studied in [36] may include
our problem as a special case, there is no explicit expression for C-stationary condition
given.

We organize our paper as following. In §2 we introduce the preliminaries and prelimi-
nary results on the background in variational analysis, first order conditions for a general
problem and background in variational analysis in matrix spaces. In §3, we give the precise
expressions for the proximal and limiting normal cones of the graph of the normal cone NSn+ .
In §4, we show that the Robinson’s CQ fails at every feasible solution of SDCMPCC and de-
rive the classical KKT condition under the Clarke calmness condition. Explicit expressions
for S-stationary conditions are given in §5 where it is also shown that the classical KKT
condition implies the S-stationary condition. Explicit expressions for M- and C-stationary
conditions are given in §6 and §7 respectively.

2 Preliminaries and Preliminary Results

2.1 Background in variational analysis

In this subsection we summarize some background materials on variational analysis which
will be used throughout the paper. Detailed discussions on these subjects can be found in
[4, 5, 18, 19, 29]. In this subsection X is a finite dimensional space.

Definition 2.1 (see e.g. [5, Proposition 1.5(a)] or [29, page 213]) Let Ω be a nonempty
subset of X. Given x̄ ∈ cl Ω, the closure of set Ω, the following convex cone

Nπ
Ω(x̄) := {ζ ∈ X : ∃M > 0, such that 〈ζ, x− x̄〉 ≤M‖x− x̄‖2 ∀x ∈ Ω} (2)

is called the proximal normal cone to set Ω at point x̄.

Definition 2.2 (see e.g. [5, page 62 and Theorem 6.1(b)]) Let Ω be a nonempty subset of
X. Given x̄ ∈ cl Ω, the following closed cone

NΩ(x̄) := { lim
i→∞

ζi : ζi ∈ Nπ
Ω(xi), xi → x̄, xi ∈ Ω} (3)
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is called the limiting normal cone (also known as Mordukhovich normal cone or basic normal
cone) to set Ω at point x̄ and the closed convex hull of the limiting normal cone

N c
Ω(x̄) := clcoNΩ(x̄) ,

where clcoC denotes the closure of the convex hull of set C, is the Clarke normal cone ([4])
to set Ω at point x̄.

Alternatively in a finite dimensional space, the limiting normal cone can be also defined by
the Fréchet (also called regular) normal cone instead of the proximal normal cone, see [18,
Definition 1.1 (ii)]. In the case when Ω is convex, the proximal normal cone, the limiting
normal cone and the Clarke normal cone coincide with the normal cone in the sense of the
convex analysis [28], i.e.,

NΩ(x̄) := {ζ ∈ X : 〈ζ, x− x̄〉 ≤ 0 ∀x ∈ Ω} .

Definition 2.3 Let f : X → < ∪ {+∞} be a lower semicontinuous function and finite at
x̄ ∈ X. The proximal subdifferential ([29, Definition 8.45]) of f at x̄ is defined as

∂πf(x̄) := {ζ ∈ X : ∃σ > 0, δ > 0 such that f(x) ≥ f(x̄) + 〈ζ, x− x̄〉 − σ‖x− x̄‖2

∀x ∈ B(x̄, δ)}

and the limiting (Mordukhovich or basic [18]) subdifferential of f at x̄ is defined as

∂f(x̄) := { lim
k→∞

ζk : ξk ∈ ∂πf(xk), xk → x̄, f(xk)→ f(x̄)} .

When f is Lipschitz continuous near x̄,

∂cf(x̄) := co ∂f(x̄)

is the Clarke subdifferential [4] of f at x̄.

Note that in a finite dimensional space, alternatively the limiting subgradient can be also
constructed via Fréchet subgradients (also known as regular subgradients), see [18, Theo-
rem 1.89]. The equivalence of the two definitions is well-known, see the commentary by
Rockafellar and Wets [29, page 345]. In the case when f is convex and locally Lipschitz,
the proximal subdifferential, the limiting subdifferential and the Clarke subdifferential co-
incide with the subdifferential in the sense of convex analysis [28]. In the case when f is
strictly differentiable, the limiting subdifferenial and the Clarke subdifferential reduce to
the classical derivative f ′(x̄), i.e., ∂cf(x̄) = ∂f(x̄) = {f ′(x̄)}.

2.2 First order optimality conditions for a general problem

In this subsection we discuss constraint qualifications and first order necessary optimality
conditions for the following general optimization problem:

(GP ) min f(z)

s.t. h(z) = 0 ,

g(z) ≤ 0 ,

G(z) ∈ K ,
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where Y,Z are finite dimensional spaces, K is a closed subset of Y , f : Z → <, h : Z → <p,
g : Z → <q and G : Z → K are locally Lipschitz mappings.

We denote the set of feasible solutions for (GP) by F and the perturbed feasible region
by

F(r, s, P ) := {z ∈ Z : h(z) + r = 0, g(z) + s ≤ 0, G(z) + P ∈ K} .

Then F(0, 0, 0) = F . The following definition is the Clarke calmness [4] adapted to our
setting.

Definition 2.4 (Clarke calmness) We say that problem (GP) is (Clarke) calm at a local
optimal solution z̄ if there exist positive ε and µ such that, for all (r, s, P ) in εB, for all
z ∈ (z̄ + εB) ∩ F(r, s, P ), one has

f(z)− f(z̄) + µ‖(r, s, P )‖ ≥ 0 .

The following equivalence is obvious.

Proposition 2.1 Problem (GP) is Clarke calm at a local optimal solution z̄ if and only if
(z̄, G(z̄)) is a local optimal solution to the penalized problem for some µ > 0:

(GP)µ min
z,X

f(z) + µ(‖h(z)‖+ ‖max{g(z), 0}‖+ ‖G(z)−X‖)

s.t. X ∈ K .

Theorem 2.1 Let z̄ be a local optimal solution of (GP). Suppose that (GP) is Clarke calm
at z̄. Then there exist λh ∈ <p, λg ∈ <q and ΩG ∈ Sn such that

0 ∈ ∂f(z̄) + ∂〈h, λh〉(z̄) + ∂g(z̄)∗λg + ∂〈G,ΩG〉(z̄) ,

λg ≥ 0, 〈g(z̄), λg〉 = 0 ,

ΩG ∈ NK(G(z̄)) .

Proof. The results follow from applying the limiting subdifferential version of the gener-
alized Lagarange multiplier rule (see e.g. [19, Proposition 5.3]), calculus rules for limiting
subdifferentials in particular the chain rule in [20, Proposition 2.5 and Corollary 6.3]).

The calmness condition involves both the constraint functions and the objective func-
tion. It is therefore not a constraint qualification in classical sense. Indeed it is a sufficient
condition under which KKT type necessary optimality conditions hold. The calmness con-
dition may hold even when the weakest constraint qualification does not hold. In practice
one often uses some verifiable constraint qualifications sufficient to the calmness condition.

Definition 2.5 (Calmness of a set-valued map) A set-valued map Φ : X ⇒ Y is said to be
calm at a point (z̄, v̄) ∈ gph Φ if there exist a constant M > 0 and a neighborhood U of z̄,
a neighborhood V of v̄ such that

Φ(z) ∩ V ⊆ Φ(z̄) +M‖z − z̄‖B ∀ z ∈ U .

Although the term “calmness” was coined in [29], the concept of calmness of a set-valued
mapp was first introduced by Ye and Ye in [40] under the term “pseudo upper-Lipschitz
continuity” which comes from the fact that it is a combination of Aubin’s pseudo Lipschitz
continuity [13] and Robinson’s upper-Lipschitz continuity [24, 25]. For recent discussion
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on the properties and the criterion of calmness of a set-valued mapping, see Henrion and
Outrata ([11, 12]). In what follows, we consider the calmness of the perturbed feasible
region F(r, s, P ) at (r, s, P ) = (0, 0, 0) to establish the Clarke calmness of the problem.

The proposition below is an easy consequence of Clarke’s exact penalty principle [4,
Proposition 2.4.3] and the calmness of the perturbed feasible region of the problem. See
[38, Proposition 4.2] for a proof.

Proposition 2.2 If the objective function of (GP) is Lipschitz near z̄ ∈ Z and the perturbed
feasible region of the constraint system F(r, s, P ) defined as in (2.2) is calm at (0, 0, 0, z̄),
then the problem (GP) is Clarke calm at z̄.

From the definition it is easy to verify that the set-valued mapping F(r, s, P ) is calm
at (0, 0, 0, z̄) if and only if there exists a constant M > 0 and U , a neighborhood of z̄, such
that

dist (z,F) ≤M‖(r, s, P )‖ ∀ z ∈ U ∩ F(r, s, P ) .

The above property is also referred to the existence of a local error bound for the feasible
region F . Hence any results on the existence of a local error bound of the constraint system
may be used as a sufficient condition for calmness of the perturbed feasible region (see e.g.
Wu and Ye [35] for such sufficient conditions).

By virtue of Proposition 2.2, the following four constraint qualifications are stronger
than the Clarke calmness of (GP) at a local minimizer when the objective function of the
problem (GP) is Lipschitz continuous.

Proposition 2.3 Let F(r, s, P ) be defined as in (2.2) and z̄ ∈ Z. Then the set-valued map
F(r, s, P ) is calm at (0, 0, 0, z̄) under one of the following constraint qualifications:

(i) There is no singular Lagrange multimplier for problem (GP) at z̄:

0 ∈ ∂〈h, λh〉(z̄)+∂g(z̄)∗λg+∂〈G,ΩG〉(z̄), ΩG ∈ NK(G(z̄)) =⇒ (λh, λg,ΩG) = 0 ,

where A∗ denotes the adjoint of a linear operator A.

(ii) Robinson’s CQ ([26]) holds at z̄: h, g and G are continuously differentiable at z̄. K is
a closed convex cone with a nonempty interior. The gradients ∇hi(z̄) := h′i(z̄)

∗ (i =
1, . . . , p) are linearly independent and there exists a vector d ∈ Z such that

h′i(z̄)d = 0, i = 1, . . . , p ,

g′i(z̄)d < 0, i ∈ Ig(z̄) ,

G(z̄) +G′(z̄)d ∈ intK ,

where Ig(z̄) := {i : gi(z̄) = 0} is the index of active inequality constraints.

(iii) Linear Independence Constraint Qualification (LICQ) holds at z̄:

0 ∈ ∂〈h, λh〉(z̄) + ∂g(z̄)∗λg + ∂〈G,ΩG〉(z̄) =⇒ (λh, λg,ΩG) = 0 .

(iv) h, g and G are affine mapping and the set K is a union of finitely many polyhedral
convex sets.
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Proof. It is obvious that (iii) implies (i). By [3, Propositions 3.16 (ii) and 3.19 (iii)],
Robinson’s CQ (ii) is equivalent to (i) when all functions h, g,G are continuously differen-
tiable and K is a closed convex cone with a nonempty interior. By Mordukhovich’s criteria
for pseudo-Lipschitz continuity, (i) implies that the set-valued map F(r, s, P ) is pseudo-
Lipschitz continuous around (r, s, P ) = (0, 0, 0) (see e.g. [20, Theorem 6.1]) and hence
calm. By Robinson [27], (iv) implies the upper-Lipschitz continuity and hence the calmness
of the set-valued map F(r, s, P ) at (0, 0, 0, z̄).

Combining Theorem 2.1 and Proposition 2.3, we have the following KKT conditions.

Theorem 2.2 Let z̄ be a local optimal solution of (GP). Suppose either the problem is
Clarke calm at z̄ or one of the constraint qualifications in Proposition 2.3 holds. Then the
KKT condition in Theorem 2.1 holds at z̄.

2.3 Background in variational analysis in matrix spaces

Let A ∈ Sn be given. We use λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A) to denote the real eigenval-
ues of A (counting multiplicity) being arranged in non-increasing order. Denote λ(A) :=
(λ1(A), λ2(A), . . . , λn(A))T ∈ <n and Λ(A) := diag(λ(A)), where for any x ∈ <n, diag(x)
denotes the diagonal matrix whose i-th diagonal entry is xi, i = 1, . . . , n. Let On be the set
of all n× n orthogonal matrices. Let P ∈ On be such that

A = PΛ(A)P
T
. (4)

We denote the set of all such matrices P in the eigenvalue decomposition (4) by On(A).
Define the three index sets of positive, zero, and negative eigenvalues of A, respectively, by

α := {i : λi(A) > 0}, β := {i : λi(A) = 0} and γ := {i : λi(A) < 0} . (5)

For any matrix P ∈ On(A), we use pj to represent the jth column of P , j = 1, . . . , n. Let
J ⊆ {1, . . . , n} be an index set. We use PJ to denote the sub-matrix of P obtained by
removing all columns of P not in J . So for each j, we have P{j} = pj . Let X ∈ Sn and
I,J ⊆ {1, . . . , n} be index sets. We use XIJ to denote the sub-matrix of X obtained by
removing all the rows of X not in I and all columns of X not in J . For any Z ∈ Sn, we
use Z � 0 and Z � 0 to denote Z ∈ Sn+ and Z ∈ Sn−, respectively.

Proposition 2.4 (see e.g., [9, Theorem 2.1]) For any X ∈ Sn+ and Y ∈ Sn−,

NSn+(X) = {X∗ ∈ Sn− : 〈X,X∗〉 = 0} = {X∗ ∈ Sn− : XX∗ = 0} ,

NSn−(Y ) = {Y ∗ ∈ Sn+ : 〈Y, Y ∗〉 = 0} = {Y ∗ ∈ Sn+ : Y Y ∗ = 0} .

We say that X,Y ∈ Sn have a simultaneous ordered eigenvalue decomposition provided
that there exists P ∈ On such that X = PΛ(X)P T and Y = PΛ(Y )P T . The following
theorem is well-known and can be found in e.g. [13].

Theorem 2.3 [von Neumann-Theobald] Any matrices X and Y in Sn satisfy the inequality

〈X,Y 〉 ≤ λ(X)>λ(Y ) ;

the equality holds if and only if X and Y admit a simultaneous ordered eigenvalue decom-
position.
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Proposition 2.5 The graph of the set-valued map NSn+ can be written as

gphNSn+ = {(X,Y ) ∈ Sn+ × Sn− : ΠSn+(X + Y ) = X,ΠSn−(X + Y ) = Y } (6)

= {(X,Y ) ∈ Sn+ × Sn− : XY = Y X = 〈X,Y 〉 = 0} , (7)

where for any closed convex set K ⊆ Sn, ΠK(·) denotes the metric projector operator over
K.

Proof. Equation (6) is well-known (see [7]). Let X ∈ Sn+. Since NSn+(X) = ∂δSn+(X), where
δC is the indicate function of a set C, by [13, Theorem 3], since the function δSn+(X) is an
eigenvalue function, for any Y ∈ NSn+(X), X and Y commute. Equation (7) then follows
from the expression for the normal cone in Proposition 2.4.

From [32, Theorem 4.7] we know that the metric projection operator ΠSn+(·) is direc-
tionally differentiable at any A ∈ Sn and the directional derivative of ΠSn+(·) at A along
direction H ∈ Sn is given by

Π′Sn+(A;H) = P

 H̃αα H̃αβ Σαγ ◦ H̃αγ

H̃T
αβ ΠS|β|+

(H̃ββ) 0

ΣT
αγ ◦ H̃T

αγ 0 0

P T , (8)

where H̃ := P
T
HP and

Σij :=
max{λi(A), 0} −max{λj(A), 0}

λi(A)− λj(A)
, i, j = 1, . . . , n , (9)

where 0/0 is defined to be 1. Since ΠSn+(·) is global Lipschitz continuous on Sn, it is well-
known that ΠSn+(·) is B(ouligand)-differentiable (c.f. [8, Definition 3.1.2]) on Sn. In the
following proposition, we will show that ΠSn+(·) is also calmly B(ouligand)-differentiable on
Sn. This result is not only of its own interest, but also is crucial for the study of the
proximal and limiting normal cone of the normal cone mapping NSn+ in the next section.

Proposition 2.6 The metric projection operator ΠSn+(·) is calmly B-differentiable for any
given A ∈ Sn, i.e., for Sn 3 H → 0,

ΠSn+(A+H)−ΠSn+(A)−Π′Sn+(A;H) = O(‖H‖2) . (10)

Proof. See the Appendix.

3 Expression of the proximal and limiting normal cones

In order to characterize the S-stationary and M-stationary conditions, we need to give the
precise expressions for the proximal and limiting normal cones of the graph of the normal
cone mapping NSn+

at any given point (X,Y ) ∈ gphNSn+ . The purpose of this section is to
provide such formulas. The result is also of independent interest.
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3.1 Expression of the proximal normal cone

By using the directional derivative formula (8), Qi and Fusek [23] characterized the Fréchet
normal cone of gphNSn+

. In this subsection, we will establish the representation of the
desired proximal normal cone by using the same formula and the just proved calmly B-
differentiability of the metric projection operator. The proximal normal cone is in general
smaller than the Fréchet normal cone. For the set gphN<n+ , however, it is well-known that
the Fréchet normal cone coincides with the proximal normal cone. The natural question to
ask is that whether this statement remains true for the set gphNSn+

. Our computations in
this section give an affirmative answer, that is, the expression for the proximal normal cone
coincides with the one for the Fréchet normal cone derived by Qi and Fusek in [23].

From Proposition 2.6, we know that for any given X∗ ∈ Sn and any fixed X ∈ Sn there
exist M1,M2 > 0 (depending on X and X∗ only) such that for any X ′ ∈ Sn sufficiently
close to X,

〈X∗,ΠSn+(X ′)−ΠSn+(X)〉 ≤ 〈X∗,Π′Sn+(X;X ′ −X)〉+M1‖X ′ −X‖2 , (11)

〈X∗,ΠSn−(X ′)−ΠSn−(X)〉 ≤ 〈X∗,Π′Sn−(X;X ′ −X)〉+M2‖X ′ −X‖2 . (12)

Proposition 3.1 For any given (X,Y ) ∈ gphNSn+, (X∗, Y ∗) ∈ Nπ
gphNSn+

(X,Y ) if and only

if (X∗, Y ∗) ∈ Sn × Sn satisfies

〈X∗,Π′Sn+(X + Y ;H)〉+ 〈Y ∗,Π′Sn−(X + Y ;H)〉 ≤ 0 ∀H ∈ Sn. (13)

Proof. “⇐= ” Suppose that (X∗, Y ∗) ∈ Sn × Sn is given and satisfies the condition (13).
Denote the set in the right-hand side by C. By Proposition 2.5, (11) and (12), we know that

there exist a constant δ > 0 and a constant M̃ > 0 such that for any (X ′, Y ′) ∈ gphNSn+
and ‖(X ′, Y ′)− (X,Y )‖ ≤ δ,

〈(X∗, Y ∗), (X ′, Y ′)− (X,Y )〉

= 〈(X∗, Y ∗), (ΠSn+(X ′ + Y ′),ΠSn−(X ′ + Y ′))− (ΠSn+(X + Y ),ΠSn−(X + Y ))〉

≤ M̃‖(X ′, Y ′)− (X,Y )‖2 .

By taking M = max
{
M̃, ‖(X∗, Y ∗)‖/δ

}
, we know that for any (X ′, Y ′) ∈ gphNSn+ ,

〈(X∗, Y ∗), (X ′, Y ′)− (X,Y )〉 ≤M‖(X ′, Y ′)− (X,Y )‖2 ,

which implies, by the definition of the proximal normal cone, that (X∗, Y ∗) ∈ Nπ
gphNSn+

(X,Y ).

“ =⇒ ” Let (X∗, Y ∗) ∈ Nπ
gphNSn+

(X,Y ) be given. Then there exists M > 0 such that

for any (X ′, Y ′) ∈ gphNSn+ ,

〈(X∗, Y ∗), (X ′, Y ′)− (X,Y )〉 ≤M‖(X ′, Y ′)− (X,Y )‖2 . (14)

Let H ∈ Sn be arbitrary but fixed. For any t ↓ 0, let

X ′t = ΠSn+(X + Y + tH) and Y ′t = ΠSn−(X + Y + tH) .
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By noting that (X ′t, Y
′
t ) ∈ gphNSn+ (c.f., (6) in Proposition 2.5) and ΠSn+(·) and ΠSn−(·) are

globally Lipschitz continuous with modulus 1, we obtain from (14) that

〈X∗,Π′Sn+(X + Y ;H)〉+ 〈Y ∗,Π′Sn−(X + Y ;H)〉

≤ M lim
t↓0

1

t
(‖X ′t −X‖2 + ‖Y ′t − Y ‖2) ≤M lim

t↓0

1

t
(2t2‖H‖2) = 0 .

Therefore, we know that (X∗, Y ∗) ∈ Sn × Sn satisfies the condition (13). The proof is
completed.

For any given (X,Y ) ∈ gphNSn+ , let A = X +Y have the eigenvalue decomposition (4).
From (6), we know that X = ΠSn+(A) and Y = ΠSn−(A). It follows from the directional
derivative formula (8) that for any H ∈ Sn,

Π′Sn−(A;H) = P

 0 0 (Eαγ − Σαγ) ◦ H̃αγ

0 ΠS|β|−
(H̃ββ) H̃βγ

H̃T
αγ ◦ (Eαγ − Σαγ)T H̃βγ H̃γγ

P T , (15)

where E is a n× n matrix whose entries are all ones. Denote

Θ1 :=

 Eαα Eαβ Σαγ

ETαβ 0 0

ΣT
αγ 0 0

 and Θ2 :=

 0 0 Eαγ − Σαγ

0 0 Eβγ
(Eαγ − Σαγ)T ETβγ Eγγ

 . (16)

We are now in a position to derive the precise expression of the proximal normal cone to
gphNSn+ .

Proposition 3.2 For any (X,Y ) ∈ gphNSn+ , let A = X +Y have the eigenvalue decompo-
sition (4). Then

Nπ
gphNSn+

(X,Y ) =
{

(X∗, Y ∗) ∈ Sn × Sn : Θ1 ◦ X̃∗ + Θ2 ◦ Ỹ ∗ = 0, X̃∗ββ � 0 and Ỹ∗ββ � 0
}
,

where X̃∗ := P
T
X∗P and Ỹ ∗ := P

T
Y ∗P .

Proof. By Proposition 3.1, (X∗, Y ∗) ∈ Nπ
gphNSn+

(X,Y ) if and only if

〈X∗,Π′Sn+(A;H)〉+ 〈Y ∗,Π′Sn−(A;H)〉 ≤ 0 ∀ H ∈ Sn ,

which, together with the directional derivative formulas (8) and (15) implies that (X∗, Y ∗) ∈
Nπ

gphNSn+
(X,Y ) if and only if

〈Θ1 ◦ X̃∗, H̃〉+ 〈Θ2 ◦ Ỹ ∗, H̃〉+ 〈X̃∗ββ ,ΠS|β|+

(H̃ββ)〉+ 〈Ỹ ∗ββ ,ΠS|β|−
(H̃ββ)〉 ≤ 0 ∀H ∈ Sn.

The conclusion of the proposition holds.
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3.2 Expression of the limiting normal cone

In this subsection, we will use the formula of the proximal normal cone Nπ
gphNSn+

(X,Y )

obtained in Proposition 3.2 to characterize the limiting normal cone NgphNSn+
(X,Y ).

For any given (X,Y ) ∈ gphNSn+ , let A = X + Y have the eigenvalue decomposition
(4). Firstly, we will characterize NgphN

S|β|+

(0, 0) for the case that β 6= ∅. Denote the set of

all partitions of the index set β by P(β). Let <|β|& be the set of all vectors in <|β| whose
components being arranged in non-increasing order, i.e.,

<|β|& :=
{
z ∈ <|β| : z1 ≥ . . . ≥ z|β|

}
.

For any z ∈ <|β|& , let D(z) represent the generalized first divided difference matrix for

f(t) = max{t, 0} at z, i.e.,

(D(z))ij =


max{zi, 0} −max{zj , 0}

zi − zj
∈ [0, 1] if zi 6= zj ,

1 if zi = zj > 0 ,
0 if zi = zj ≤ 0 ,

i, j = 1, . . . , |β| . (17)

Denote
U|β| := {Ω ∈ S |β| : Ω = lim

k→∞
D(zk), zk → 0, zk ∈ <|β|& } . (18)

Let Ξ1 ∈ U|β|. Then, from (17), it is easy to see that there exists a partition π(β) :=
(β+, β0, β−) ∈P(β) such that

Ξ1 =

 Eβ+β+ Eβ+β0 (Ξ1)β+β−

ETβ+β0
0 0

(Ξ1)Tβ+β−
0 0

 , (19)

where each element of (Ξ1)β+β− belongs to [0, 1]. Let

Ξ2 :=

 0 0 Eβ+β− − (Ξ1)β+β−

0 0 Eβ0β−

(Eβ+β− − (Ξ1)β+β−)T ETβ0β−
Eβ−β−

 . (20)

Proposition 3.3 The limiting norm cone to the graph of the normal cone mapping NS|β|+

at (0, 0) is given by

NgphN
S|β|+

(0, 0) =
⋃
Q ∈ O|β|

Ξ1 ∈ U|β|

{
(U∗, V ∗) : Ξ1 ◦QTU∗Q+ Ξ2 ◦QTV ∗Q = 0,

QTβ0
U∗Qβ0 � 0, QTβ0

V ∗Qβ0 � 0

}
. (21)

Proof. See the Appendix.

We characterize the limiting normal cone NgphNSn+
(X,Y ) for any (X,Y ) ∈ gphNSn+ in

the following theorem.
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Theorem 3.1 For any (X,Y ) ∈ gphNSn+, let A = X+Y have the eigenvalue decomposition
(4). Then, (X∗, Y ∗) ∈ NgphNSn+

(X,Y ) if and only if

X∗ = P

 0 0 X̃∗αγ
0 X̃∗ββ X̃∗βγ

X̃∗γα X̃∗γβ X̃∗γγ

P T and Y ∗ = P

 Ỹ ∗αα Ỹ ∗αβ Ỹ ∗αγ
Ỹ ∗βα Ỹ ∗ββ 0

Ỹ ∗γα 0 0

P T (22)

with
(X̃∗ββ , Ỹ

∗
ββ) ∈ NgphN

S|β|+

(0, 0) and Σαγ ◦ X̃∗αγ + (Eαγ − Σαγ) ◦ Ỹ ∗αγ = 0 , (23)

where Σ is given by (9), X̃∗ = P
T
X∗P and Ỹ ∗ = P

T
Y ∗P .

Proof. See the Appendix.

Remark 3.1 For any given (X,Y ) ∈ gphNSn+, the (Mordukhovich) coderivative D∗NSn+(X,Y )
of the normal cone to the set Sn+ can be calculated by using Theorem 3.1 and the definition
of coderivative, i.e., for given Y ∗ ∈ Sn,

X∗ ∈ D∗NSn+(X,Y )(Y ∗) ⇐⇒ (X∗,−Y ∗) ∈ NgphNSn+
(X,Y ) .

Furthermore, by (6) in Proposition 2.5, we know that

gphNSn+ = {(X,Y ) ∈ Sn × Sn : L(X,Y ) ∈ gph ΠSn+
} ,

where L : Sn × Sn → Sn × Sn is a linear function defined by

L(X,Y ) := (X + Y,X), (X,Y ) ∈ Sn × Sn .

By noting that the derivative of L is nonsingular and self-adjoint, we know from [17, The-
orem 6.10] that for any given (X,Y ) ∈ gphNSn+ and Y ∗ ∈ Sn,

D∗NSn+(X,Y )(−Y ∗) = {X∗ ∈ Sn : (X∗, Y ∗) ∈ L′(X,Y )Ngph ΠSn+
(X + Y,X)} .

Thus, for any given U∗ ∈ Sn, V ∗ ∈ D∗ΠSn+(X+Y )(U∗) if and only if there exists (X∗, Y ∗) ∈
NgphNSn+

(X,Y ) such that (X∗, Y ∗) = L(V ∗,−U∗), that is,

X∗ = V ∗ − U∗ and Y ∗ = V ∗ .

Note that for any given Z ∈ Sn, there exists a unique element (X,Y ) ∈ gphNSn+ such that
Z = X + Y . Hence, the coderivative of the metric projector operator ΠSn+(·) at any Z ∈ Sn
can also be computed by Theorem 3.1.

4 Failure of Robinson’s CQ

Since for any (G(z), H(z)) ∈ Sn+ × Sn−, by the von Neumann-Theobald theorem (Theorem
2.3), one always has

〈G(z), H(z)〉 ≤ λ(G(z))Tλ(H(z)) ≤ 0 .
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Consequently one can rewrite the problem SDCMPCC in the following form:

(CP − SDCMPCC) min f(z)

s.t. h(z) = 0 ,

g(z) ≤ 0 ,

〈G(z), H(z)〉 ≥ 0 ,

(G(z), H(z)) ∈ Sn+ × Sn− .

The above problem belongs to the class of general optimization problems with a cone con-
straint (GP) with K = Sn+ × Sn− as discussed in §2.2 and hence the necessary optimality
condition stated in §2.2 can be applied to obtain the following classical KKT condition.

Definition 4.1 Let z̄ be a feasible solution of SDCMPCC. We call z̄ a classical KKT point.
If there exists (λh, λg, λe,ΩG,ΩH) ∈ <p × <q × < × Sn × Sn with λg ≥ 0, λe ≤ 0, ΩG � 0
and ΩH � 0 such that

0 = ∇f(z̄) + h′(z̄)∗λh + g′(z̄)∗λg + λe[H ′(z̄)∗G(z̄) +G′(z̄)∗H(z̄)] +G′(z̄)∗ΩG +H ′(z̄)∗ΩH ,

〈g(z̄), λg〉 = 0, G(z̄)ΩG = 0, H(z̄)ΩH = 0 .

Theorem 4.1 Let z̄ be a feasible solution of SDCMPCC. Suppose the problem CP-SDCMPCC
is Clarke calm at z̄. Then z̄ is a classical KKT point.

Proof. By Theorem 2.2, there exists a Lagrange multiplier (λh, λg, λe,ΓG,ΓH) ∈ <p×<q×
<× Sn × Sn with λg ≥ 0, λe ≤ 0 such that

0 = ∇f(z̄) + h′(z̄)∗λh + g′(z̄)∗λg + λe[H ′(z̄)∗G(z̄) +G′(z̄)∗H(z̄)] +G′(z̄)∗ΓG +H ′(z̄)∗ΓH ,

〈g(z̄), λg〉 = 0, (ΓG,ΓH) ∈ NSn+×Sn−(G(z̄), H(z̄)) .

The desired result follows from the normal cone expressions in Proposition 2.4.

Definition 4.2 We say that (λh, λg, λe,ΩG,ΩH) ∈ <p×<q×<×Sn×Sn with λg ≥ 0, λe ≤
0,ΩG � 0,ΩH � 0 is a singular Lagrange multiplier for CP-SDCMPCC if it is not equal to
zero and

0 = h′(z̄)∗λh + g′(z̄)∗λg + λe[H ′(z̄)∗G(z̄) +G′(z̄)∗H(z̄)] +G′(z̄)∗ΩG +H ′(z̄)∗ΩH ,

〈g(z̄), λg〉 = 0, G(z̄)ΩG = 0, H(z̄)ΩH = 0 .

For a general optimization problem with a cone constraint such as CP-SDCMPCC, the
following Robinson’s CQ is considered to be a usual constraint qualification:

h′(z̄) is onto ( equivalently h′i(z̄)(i = 1, . . . , p) are linear independent) ,

∃ d such that



h′i(z̄)d = 0, i = 1, . . . , p ,

g′i(z̄)d < 0, i ∈ Ig(z̄) ,
(H ′(z̄)∗G(z̄) +G′(z̄)∗H(z̄))d > 0 ,

G(z̄) +G′(z̄)d ∈ int Sn+ ,
H(z̄) +H ′(z̄)d ∈ int Sn− .

It is well-known that the MFCQ never holds for MPCCs. We now show that Robinson’s
CQ will never hold for CP-SDCMPCC.
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Proposition 4.1 For CP-SDCMPCC, Robinson’s constraint qualification fails to hold at
every feasible solution of SDCMPCC.

Proof. By the von Neumann-Theobald theorem, G(z) � 0, H(z) � 0 implies that 〈G(z), H(z)〉 ≤
0. Hence any feasible solution z̄ of SDCMPCC must be a solution to the following nonlinear
semidefinite program:

min −〈G(z), H(z)〉

s.t. G(z) � 0, H(z) � 0 .

Since for this problem, f(z) = −〈G(z), H(z)〉, we have ∇f(z) = −H ′(z)∗G(z) −
G′(z)∗H(z). By the first order necessary optimality condition, there exist λe = 1,ΩG �
0,ΩH � 0 such that

0 = −λe[H ′(z̄)∗G(z̄) +G′(z̄)∗H(z̄)] +G′(z̄)∗ΩG +H ′(z̄)∗ΩH ,

G(z̄)ΩG = 0, H(z̄)ΩH = 0 .

Since (−λe,ΩG,ΩH) 6= 0, it is clear that (0, 0, 0,−λe,ΩG,ΩH) is a singular Lagrange mul-
tiplier of CP-SDCMPCC. By [3, Propositions 3.16 (ii) and 3.19(iii)]), a singular Lagrange
multiplier exists if and only if Robinson’s CQ does not hold. Therefore we conclude that
the Robinson’s CQ does not hold at z̄ for CP-SDCMPCC.

5 S-stationary conditions

In the MPCC literature it is well-known that S-stationary condition is equivalent to the
classical KKT condition; see e.g. [10]. In this section we introduce the concept of S-
stationary condition and show that the classical KKT condition implies the S-stationary
condition.

For MPCC, the S-stationary condition is shown to be equivalent to the necessary op-
timality condition of a reformulated problem involving the proximal normal cone to the
graph of the normal cone operator (see [37, Theorem 3.2]). Motivated by this fact and the
precise expression for the proximal normal cone formula in Proposition 3.2, we introduce
the concept of a S-stationary point for SDCMPCC.

Definition 5.1 Let z̄ be a feasible solution of SDCMPCC. Let A := G(z̄) +H(z̄) have the
eigenvalue decomposition (4). We say that z̄ is a S-stationary point of SDCMPCC if there
exists (λh, λg,ΓG,ΓH) ∈ <p ×<q × Sn × Sn such that

0 = ∇f(z̄) + h′(z̄)∗λh + g′(z̄)∗λg +G′(z̄)∗ΓG +H ′(z̄)∗ΓH , (24)

λg ≥ 0, 〈λg, g(z̄)〉 = 0 , (25)

Γ̃Gαα = 0, Γ̃Gαβ = 0, Γ̃Gβα = 0 , (26)

Γ̃Hγγ = 0, Γ̃Hβγ = 0, Γ̃Hγβ = 0 , (27)

Σαγ ◦ Γ̃Gαγ + (Eαγ − Σαγ) ◦ Γ̃Hαγ = 0 , (28)

Γ̃Gββ � 0, Γ̃Hββ � 0 , (29)

where E is a n × n matrix whose entries are all ones and Σ ∈ Sn is defined by (9), and

Γ̃G = P
T

ΓGP and Γ̃H = P
T

ΓHP .
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To see that the S-stationary condition for SDCMPCC coincides with the S-stationary con-
dition in the MPCC case we consider the case when n = 1. In this case, λ(A) = A, P = 1
and Γ̃G = ΓG, Γ̃H = ΓH . In this case SDCMPCC is a MPCC where there is only one
complementarity constraint. If G(z̄) > 0, H(z̄) = 0. Then β = γ = ∅. So from (26), we
know that ΓG = 0 and ΓH free. Similarly if G(z̄) = 0, H(z̄) < 0 we have ΓH = 0 and ΓG

free. If G(z̄) = H(z̄) = 0. Then we have α = γ = ∅. Consequently from (29), we know that
ΓG ≤ 0 and ΓH ≥ 0.

It turns out that we can show that the classical KKT condition implies the S-stationary
condition. However we are not able to show that the S-stationary condition implies the
KKT condition for a general SDCMPCC unless it is a MPCC.

Proposition 5.1 Let z̄ be a feasible solution of SDCMPCC. If z̄ is a classic KKT point,
i.e., there exists a classical Lagrange multiplier (λh, λg, λe,ΩG,ΩH) ∈ <p×<q×<×Sn×Sn
with λg ≥ 0, λe ≤ 0, ΩG � 0 and ΩH � 0 such that

0 = ∇f(z̄) + h′(z̄)∗λh + g′(z̄)∗λg + λe[H ′(z̄)∗G(z̄) +G′(z̄)∗H(z̄)] +G′(z̄)∗ΩG +H ′(z̄)∗ΩH ,

〈λg, g(z̄)〉 = 0, G(z̄)ΩG = 0, H(z̄)ΩH = 0 ,

then it is also a S-stationary point.

Proof. Denote Λ := Λ(A). Define ΓG := ΩG+λeH(z̄) and ΓH := ΩH +λeG(z̄). Then (24)
and (25) hold. It remains to show (26)-(29). By the assumption we have

Sn+ 3 G(z̄) ⊥ ΩG ∈ Sn− and Sn− 3 H(z̄) ⊥ ΩH ∈ Sn+ .

By Theorem 2.3, we know that G(z̄) and ΩG (H(z̄) and ΩH) admit a simultaneous ordered
eigenvalue decomposition, i.e., there exist two orthogonal matrices P̃ , P̂ ∈ On such that

ΩG = P̃

[
0 0
0 Λ(ΩG)γ′γ′

]
P̃ T , G(z̄) = P̃

 Λαα 0 0
0 0 0
0 0 0

 P̃ T
and

ΩH = P̂

[
Λ(ΩH)α′α′ 0

0 0

]
P̂ T , H(z̄) = P̂

 0 0 0
0 0 0

0 0 Λγγ

 P̂ T ,
where α′ := {i |λi(ΩH) > 0} and γ′ := {i |λi(ΩG) < 0}. Moreover, we have

γ′ ⊆ ᾱ and α′ ⊆ γ̄. (30)

On the other hand, we know that

G(z̄) = ΠSn+(A) = P

 Λαα 0 0
0 0 0
0 0 0

P T and H(z̄) = ΠSn−(A) = P

 0 0 0
0 0 0

0 0 Λγγ

P T .
Therefore, it is easy to check that there exist two orthogonal matrices S, T ∈ On such that

P = P̃S and P = P̂ T ,

with

S =

[
Sαα 0

0 Sᾱᾱ

]
and T =

[
Tγ̄γ̄ 0
0 Tγγ

]
,
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where ᾱ := β ∪ γ, γ̄ := α ∪ β and Sαα ∈ O|α|, Sᾱᾱ ∈ O|ᾱ| and Tγ̄γ̄ ∈ O|γ̄|, Tγγ ∈ O|γ|.
Denote

Sᾱᾱ = [S1 S2] and Tγ̄γ̄ = [T1 T2]

with S1 ∈ <|ᾱ|×|β|, S2 ∈ <|ᾱ|×|γ| and T1 ∈ <|γ̄|×|α| and T2 ∈ <|γ̄|×|β|. Then, we have

Γ̃G = P
T

(ΩG + λeH(z̄))P = ST P̃ TΩGP̃S + λe

 0 0 0
0 0 0

0 0 Λγγ


=

[
STαα 0

0 STᾱᾱ

] [
0 0
0 Λ(ΩG)ᾱᾱ

] [
Sαα 0

0 Sᾱᾱ

]
+ λe

 0 0 0
0 0 0

0 0 Λγγ


=

 0 0 0
0 ST1 Λ(ΩG)ᾱᾱS1 ST1 Λ(ΩG)ᾱᾱS2

0 ST2 Λ(ΩG)ᾱᾱS1 ST2 Λ(ΩG)ᾱᾱS2 + λeΛγγ


and

Γ̃H = P
T

(ΩH + λeG(z̄))P = T T P̃ TΩH P̃ T + λe

 Λαα 0 0
0 0 0
0 0 0


=

[
T Tγ̄γ̄ 0

0 T Tγγ

] [
Λ(ΩH)γ̄γ̄ 0

0 0

] [
Tγ̄γ̄ 0
0 Tγγ

]
+ λe

 Λαα 0 0
0 0 0
0 0 0


=

 T T1 Λ(ΩH)γ̄γ̄T1 + λeΛαα T T1 Λ(ΩH)γ̄γ̄T2 0
T T2 Λ(ΩH)γ̄γ̄T1 T T2 Λ(ΩH)γ̄γ̄T2 0

0 0 0

 .
Therefore it is easy to see that (26)-(28) hold. Since Λ(ΩG)ᾱᾱ � 0, Λ(ΩH)γ̄γ̄ � 0 and Sᾱᾱ,
Tγ̄γ̄ are orthogonal, we know that

STᾱᾱΛ(ΩG)ᾱᾱSᾱᾱ � 0 and T Tγ̄γ̄Λ(ΩH)γ̄γ̄Tγ̄γ̄ � 0 .

Hence, we have

Γ̃Gββ = ST1 Λ(ΩG)ᾱᾱS1 � 0 and Γ̃Hββ = T T2 Λ(ΩH)γ̄γ̄T2 � 0 ,

which implies (29). Therefore z̄ is also a S-stationary point.

Combining Theorem 4.1 and Proposition 5.1 we have the following necessary optimality
condition in terms of S-stationary conditions.

Theorem 5.1 Let z̄ be a feasible solution of SDCMPCC. Suppose the problem CP-SDCMPCC
is Clarke calm at z̄. Then z̄ is a S-stationary point.
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6 M-stationary conditions

In this section we study the M-stationary conditon for SDCMPCC. For this purpose rewrite
the SDCMPCC as an optimization problem with a cone constraint:

(GP-SDCMPCC) min f(z)

s.t. h(z) = 0 ,

g(z) ≤ 0 ,

(G(z), H(z)) ∈ gphNSn+ .

Definition 6.1 Let z̄ be a feasible solution of SDCMPCC. Let A = G(z̄) +H(z̄) have the
eigenvalue decomposition (4). We say that z̄ is a M-stationary point of SDCMPCC if there
exists (λh, λg,ΓG,ΓH) ∈ <p×<q×Sn×Sn such that (24)-(28) hold and there exist Q ∈ O|β|
and Ξ1 ∈ U|β| (with a partition π(β) = (β+, β0, β−) of β and the form (19)) such that

Ξ1 ◦QT Γ̃GQ+ Ξ2 ◦QT Γ̃HQ = 0 , (31)

QTβ0
Γ̃GββQβ0 � 0, QTβ0

Γ̃HββQβ0 � 0 , (32)

where Γ̃G = P
T

ΓGP , Γ̃H = P
T

ΓHP and

Ξ2 =

 0 0 Eβ+β− − (Ξ1)β+β−

0 0 Eβ0β−

(Eβ+β− − (Ξ1)β+β−)T ETβ0β−
Eβ−β−

 .
We say that (λh, λg,ΓG,ΓH) ∈ <p×<q×Sn×Sn is a singular M-multiplier for SDCMPCC
if it is not equal to zero and all conditions above hold except the term ∇f(z̄) vanishes in
(24).

To see that the M-stationary condition for SDCMPCC coincides with the M-stationary
condition in the MPCC case we consider the case when n = 1. In this case λ(A) = A,
P = 1 and Γ̃G = ΓG, Γ̃H = ΓH . We only need to consider the case G(z̄) = H(z̄) = 0 since
the other cases are the same as the S-stationary condition. Then we have α = γ = ∅. Let
π(β) = (β+, β0, β−) be a partition of β. We know that there are only three cases:

• Case 1: β = β+ 6= ∅. From (31), we know that ΓG = 0.

• Case 2: β = β− 6= ∅. From (31), we know that ΓH = 0.

• Case 3: β = β0 6= ∅. From (32), we know that ΓG ≤ 0 and ΓH ≥ 0 .

Therefore, we may conclude that if G(z̄) = H(z̄) = 0, either ΓG < 0, ΓH > 0 or ΓGΓH = 0.

Theorem 6.1 Let z̄ be a local optimal solution of SDCMPCC. Suppose that either the
problem GP-SDCMPCC is Clarke calm at z̄ or one of the following constraint qualifications
holds. Then z̄ is a M-stationary point of SDCMPCC.

(i) There is no singular M-multiplier for problem SDCMPCC at z̄.
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(ii) SDCMPCC LICQ holds at z̄: there is no nonzero (λh, λg,ΓG,ΓH) ∈ <p×<q×Sn×Sn
such that

h′(z̄)∗λh + g′(z̄)∗λg +G′(z̄)∗ΓG +H ′(z̄)∗ΓH = 0 , (33)

Γ̃Gαα = 0, Γ̃Gαβ = 0, Γ̃Gβα = 0 ,

Γ̃Hγγ = 0, Γ̃Hβγ = 0, Γ̃Hγβ = 0 ,

Σαγ ◦ Γ̃Gαγ + (Eαγ − Σαγ) ◦ Γ̃Hαγ = 0 .

(iii) Assume that there is no inequality constraint g(z) ≤ 0. Assume also that Z = X×Sn
where X is a finite dimensional space and G(x, u) = u. The following generalized
equation is strongly regular in the sense of Robinson:

0 ∈ −F (x, u) +N<q×Sn+(x, u) ,

where F (x, u) = (h(x, u), H(x, u)).

(iv) Assume that there is no inequality constraint g(z) ≤ 0. Assume also that Z = X×Sn,
G(z) = u and F (x, u) = (h(x, u), H(x, u)). −F is locally strongly monotone in u
uniformly in x with modulus δ > 0, i.e., there exist neighborhood U1 of x̄ and U2 of ū
such that

〈−F (x, u) + F (x, v), u− v〉 ≥ δ‖u− v‖2 ∀u ∈ U2 ∩ Sn+, v ∈ Sn+, x ∈ U1 .

Proof. Condition (ii) is obviously stronger than Part (i). Condition (i) is a necessary and
sufficient condition for the perturbed feasible region of the constraint system to be pseudo
Lipschitz continuous. See [38, Theorem 4.7] for the proof of the implication of (iii) to (i).
(iv) is a sufficient condition for (iii) and the direct proof can be found in [40, Theorem
3.2(b)]. The desired result follows from Theorem 2.2 and the expression of the limiting
normal cone in Theorem 3.1.

Remark 6.1 SDCMPCC LICQ is the analogue of the well-known MPCC LICQ (also called
MPEC LICQ). To see this we consider the case of SDCMPCC with n = 1. Suppose that
G(z̄) = H(z̄) = 0. Then we have α = γ = ∅ and SDCMPCC LICQ means that (33) implies
that λh = 0, λg = 0, ΓG = 0, ΓH = 0. The other two cases G(z̄) > 0, H(z̄) = 0 and
G(z̄) = 0, H(z̄) < 0 are also easy to see. We would like to remark that unlike in MPCC
case, we can only show that SDCMPCC LICQ is a constraint qualification for M-stationary
condition instead of S-stationary condition.

7 C-stationary conditions

In this section, we consider the C-stationary condition by reformulating SDCMPCC as a
nonsmooth problem:

(NS− SDCMPCC) min f(z)

s.t. h(z) = 0,

g(z) ≤ 0,

G(z)−ΠSn+(G(z) +H(z)) = 0 .
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From (6), we know that the reformulation NS-SDCMPCC is equivalent to SDCMPCC. As in
the MPCC case, C-stationary condition introdued below is the nonsmooth KKT condition
of NS-SDCMPCC by using the Clarke subdifferential.

Definition 7.1 Let z̄ be a feasible solution of SDCMPCC. Let A = G(z̄) +H(z̄) have the
eigenvalue decomposition (4). We say that z̄ is a C-stationary point of SDCMPCC if there
exists (λh, λg,ΓG,ΓH) ∈ <p ×<q × Sn × Sn such that (24)-(28) hold and

〈Γ̃Gββ , Γ̃Hββ〉 ≤ 0 , (34)

where Γ̃G = P
T

ΓGP and Γ̃H = P
T

ΓHP . We say that (λh, λg,ΓG,ΓH) ∈ <p×<q×Sn×Sn
is a singular C-multiplier for SDCMPCC if it is not equal to zero and all conditions above
hold except the term ∇f(z̄) vanishes in (24).

It is easy to see that as in MPCC case,

S-stationary condition =⇒ M-stationary condition =⇒ C-stationary condition.

Also, we know that the C-stationary condition coincides with the C-stationary condition
in the MPCC case. To show this we consider the case n = 1. We only need to consider
the case G(z̄) = H(z̄) = 0 since the other cases are the same as the S- and M-stationary
conditions. In this case we know from (34) that ΓGΓH ≤ 0.

Theorem 7.1 Let z̄ be a local optimal solution of SDCMPCC. Suppose that the problem
SDCMPCC is Clarke calm at z̄ or there is no singular C-multiplier for problem SDCMPCC
at z̄. Then z̄ is a C-stationary point of SDCMPCC.

Proof. By Theorem 2.1 with K = {0}, we know that there exist λh ∈ <p, λg ∈ <q and
Γ ∈ Sn such that

0 ∈ ∂ cz L(z̄, λh, λg,Γ), λg ≥ 0 and 〈λg, g(z̄)〉 = 0 , (35)

where L(z, λh, λg,Γ) := f(z) + 〈λh, h(z)〉+ 〈λg, g(z)〉+ 〈Γ, G(z)−ΠSn+(G(z) +H(z))〉.
Consider the Clarke subdifferential of the nonsmooth part S(z) := 〈Γ,ΠSn+(G(z)+H(z))〉

of L. By the chain rule [4, Corollary pp.75], for any v ∈ Z, we have

∂ cS(z̄)v = 〈Γ, ∂ cΠSn+(A)(G′(z̄)v +H ′(z̄)v)〉 .

Therefore, since V is self-adjoint (see e.g., [16, Proposition 1(a)]), we know from (35) that
there exists V ∈ ∂ cΠSn+(A) such that

∇f(z̄) + h′(z̄)∗λh + g′(z̄)∗λg +G′(z̄)∗Γ− (G′(z̄)∗ +H ′(z̄)∗)V (Γ) = 0 . (36)

Define ΓG := Γ − V (Γ) and ΓH := −V (Γ). Then (24)-(25) follow from (35) and (36)
immediately. By [31, Proposition 2.2], we know that there exists a W ∈ ∂ cΠS|β|+

(0) such

that

V (Γ) = P

 Γ̃αα Γ̃αβ Σαγ ◦ Γ̃αγ
Γ̃Tαβ W (Γ̃ββ) 0

Γ̃Tαγ ◦ ΣT
αγ 0 0

P T ,
where Σ ∈ Sn is defined by (9). Therefore, it is easy to see that (26)-(28) hold. Moreover,
from [16, Proposition 1(c)], we know that

〈W (Γ̃ββ) , Γ̃ββ −W (Γ̃ββ)〉 ≥ 0 ,

which implies 〈Γ̃Gββ , Γ̃Hββ〉 ≤ 0. Hence, we know z̄ is a C-stationary point of SDCMPCC.
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Appendix

Proof of Proposition 2.6: Firstly, we will show that (10) holds for the case thatA = Λ(A).
For any H ∈ Sn, denote Y := A+H. Let P ∈ On (depending on H) be such that

Λ(A) +H = PΛ(Y )P T . (37)

Let δ > 0 be any fixed number such that 0 < δ <
λ|α|

2 if α 6= ∅ and be any fixed positive
number otherwise. Then, define the following continuous scalar function

f(t) :=


t if t > δ ,

2t− δ if δ
2 < t < δ ,

0 if t < δ
2 .

Therefore, we have

{λ1(A), . . . , λ|α|(A)} ∈ (δ,+∞) and {λ|α|+1(A), . . . , λn(A)} ∈ (−∞, δ
2

) .

For the scalar function f , let F : Sn → Sn be the corresponding Löwner’s operator [14],
i.e.,

F (Z) :=

n∑
i=1

f(λi(Z))uiu
T
i ∀Z ∈ Sn , (38)
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where U ∈ On(Z). Since f is real analytic on the open set (−∞, δ2) ∪ (δ,+∞), we know
from [34, Theorem 3.1] that F is analytic at A. Therefore, it is well-known (see e.g., [2,
Theorem V.3.3]) that for H sufficiently close to zero,

F (A+H)− F (A)− F ′(A)H = O(‖H‖2) (39)

and

F ′(A)H =

 Hαα Hαβ Σαγ ◦Hαγ

HT
αβ 0 0

ΣT
αγ ◦HT

αγ 0 0

 ,
where Σ ∈ Sn is given by (9) . Let R(·) := ΠSn+(·)− F (·). By the definition of f , we know
that F (A) = A+ := ΠSn+(A), which implies that R(A) = 0. Meanwhile, it is clear that the
matrix valued function R is directionally differentiable at A, and from (8), the directional
derivative of R for any given direction H ∈ Sn, is given by

R′(A;H) = Π′Sn+(A;H)− F ′(A)H =

 0 0 0
0 ΠS|β|+

(Hββ) 0

0 0 0

 . (40)

By the Lipschitz continuity of λ(·), we know that for H sufficiently close to zero,

{λ1(Y ), . . . , λ|α|(Y )} ∈ (δ,+∞), {λ|α|+1(Y ), . . . , λ|β|(Y )} ∈ (−∞, δ
2

)

and
{λ|β|+1(Y ), . . . , λn(Y )} ∈ (−∞, 0) .

Therefore, by the definition of F , we know that for H sufficiently close to zero,

R(A+H) = ΠSn+(A+H)− F (A+H) = P

 0 0 0
0 (Λ(Y )ββ)+ 0
0 0 0

P T . (41)

Since P satisfies (37), we know that for any Sn 3 H → 0, there exists an orthogonal matrix
Q ∈ O|β| such that

Pβ =

 O(‖H‖)
Pββ

O(‖H‖)

 and Pββ = Q+O(‖H‖2) , (42)

which was stated in [33] and was essentially proved in the derivation of Lemma 4.12 in [32].
Therefore, by noting that (Λ(Y )ββ)+ = O(‖H‖), we obtain from (40), (41) and (42) that

R(A+H)−R(A)−R′(A;H) =

 O(‖H‖3) O(‖H‖2) O(‖H‖3)
O(‖H‖2) Pββ(Λ(Y )ββ)+P

T
ββ −ΠS|β|+

(Hββ) O(‖H‖2)

O(‖H‖3) O(‖H‖2) O(‖H‖3)



=

 0 0 0
0 Q(Λ(Y )ββ)+Q

T −ΠS|β|+

(Hββ) 0

0 0 0

+O(‖H‖2) .
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By (37) and (42), we know that

Λ(Y )ββ = P Tβ Λ(A)Pβ + P Tβ HPβ = P TββHββPββ +O(‖H‖2) = QTHββQ+O(‖H‖2) .

Since Q ∈ O|β|, we have
Hββ = QΛ(Y )ββQ

T +O(‖H‖2) .

By noting that ΠS|β|+

(·) is globally Lipschitz continuous, we obtain that

Q(Λ(Y )ββ)+Q
T−ΠS|β|+

(Hββ) = Q(Λ(Y )ββ)+Q
T−ΠS|β|+

(QΛ(Y )ββQ
T )+O(‖H‖2) = O(‖H‖2) .

Therefore,
R(A+H)−R(A)−R′(A;H) = O(‖H‖2) . (43)

By combining (39) and (43), we know that for any Sn 3 H → 0,

ΠSn+(Λ(A) +H)−ΠSn+(Λ(A))−Π′Sn+(Λ(A);H) = O(‖H‖2) . (44)

Next, consider the case that A = P
T

Λ(A)P . Re-write (37) as

Λ(A) + P
T
HP = P

T
PΛ(Y )P TP .

Let H̃ := P
T
HP . Then, we have

ΠSn+(A+H) = P ΠSn+(Λ(A) + H̃)P
T
.

Therefore, since P ∈ On, we know from (44) and (8) that for any Sn 3 H → 0, (10) holds.

Proof of Proposition 3.3: Denote the set in the righthand side of (21) byN . We first show
that NgphN

S|β|+

(0, 0) ⊆ N . By the definition of the limiting normal cone in (3), we know that

(U∗, V ∗) ∈ NgphN
S|β|+

(0, 0) if and only if there exist two sequences {(Uk∗, V k∗)} converging

to (U∗, V ∗) and {(Uk, V k)} converging to (0, 0) with (Uk
∗
, V k∗) ∈ Nπ

gphN
S|β|+

(Uk, V k) and

(Uk, V k) ∈ gphNS|β|+

for each k.

For each k, denote Ak := Uk + V k ∈ S |β| and let Ak = P kΛ(Ak)(P k)T with P k ∈ O|β|
be the eigenvalue decomposition of Ak. Then for any i ∈ {1, · · · , |β|}, we have

lim
k→∞

λi(A
k) = 0.

Since {P k}∞k=1 is uniformly bounded, by taking a subsequence if necessary, we may assume

that {P k}∞k=1 converges to an orthogonal matrix Q := lim
k→∞

P k ∈ O|β|. For each k, we know

that the vector λ(Ak) is an element of <|β|& . By taking a subsequence if necessary, we may

assume that for each k, Λ(Ak) has the same form, i.e.,

Λ(Ak) =

 Λ(Ak)β+β+ 0 0
0 Λ(Ak)β0β0 0
0 0 Λ(Ak)β−β−

 ,
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where β+, β0 and β− are the three index sets defined by

β+ := {i : λi(A
k) > 0}, β0 := {i : λi(A

k) = 0} and β− := {i : λi(A
k) < 0} .

Since (Uk
∗
, V k∗) ∈ Nπ

gphN
S|β|+

(Uk, V k), we know from Proposition 3.2 that for each k, there

exist

Θk
1 =

 Eβ+β+ Eβ+β0 Σk
β+β−

ETβ+β0
0 0

(Σk
β+β−

)T 0 0


and

Θk
2 =

 0 0 Eβ+β− − Σk
β+β−

0 0 Eβ0β−

(Eβ+β− − Σk
β+β−

)T (Eβ0β−)T Eβ−β−


such that

Θk
1 ◦ Ũ∗

k
+ Θk

2 ◦ Ṽ k
∗

= 0, Ũk
∗
β0β0
� 0 and Ṽ k

∗
β0β0
� 0 , (45)

where Ũk
∗

= (P k)TUk
∗
P k, Ṽ k

∗
= (P k)TV k∗P k and

(Σk)i,j =
max{λi(Ak), 0} −max{λj(Ak), 0}

λi(Ak)− λj(Ak)
∀ (i, j) ∈ β+ × β− . (46)

Since for each k, each element of Σk
β+β−

belongs to the interval [0, 1], by further taking a

subsequence if necessary, we may assume that the limit of {Σk
β+β−

}∞k=1 exists. Therefore,
by the definition of U|β| in (18), we know that

lim
k→∞

Θk
1 = Ξ1 ∈ U|β| and lim

k→∞
Θk

2 = Ξ2 ,

where Ξ1 and Ξ2 are given by (20). Therefore, we obtain from (45) that (U∗, V ∗) ∈ N .
Conversely, let (U∗, V ∗) ∈ N . By the definition of N , we know that there exist Ξ1 ∈ U|β|

(with a partition π(β) = (β+, β0, β−) ∈P(β) ) and Q ∈ O|β| such that

Ξ1 ◦QTU∗Q+ Ξ2 ◦QTV ∗Q = 0, QTβ0
U∗Qβ0 � 0 and QTβ0

V ∗Qβ0 � 0 . (47)

Since Ξ1 ∈ U|β|, there exists a sequence {zk} ∈ <|β|& , zk → 0 such that Ξ1 = lim
k→∞

D(zk).

Without loss of generality, we can assume that for all k sufficiently large,

zki > 0 ∀ i ∈ β+, zki = 0 ∀ i ∈ β0 and zki < 0 ∀ i ∈ β− .

For each k, define

Uk := Q

 zkβ+
0 0

0 0 0
0 0 0

QT , V k := Q

 0 0 0
0 0 0
0 0 zkβ−

QT and Ak := Qdiag(zk)QT .

From Proposition 2.5, it is clear that for each k, (Uk, V k) ∈ gphNS|β|+

and Uk + V k = Ak.

Since zk → 0 as k →∞, we know that

Ak → 0 and (Uk, V k)→ (0, 0) as k →∞ .
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For each k, define

Θk
1 :=

 Eβ+β+ Eβ+β0 Σk
β+β−

ETβ+β0
0 0

(Σk
β+β−

)T 0 0


and

Θk
2 :=

 0 0 Eβ+β− − Σk
β+β−

0 0 Eβ0β−

(Eβ+β− − Σk
β+β−

)T (Eβ0β−)T Eβ−β−

 ,
where Σk

β+β−
= (D(zk))β+β− .

Next, we define a sequence {(Uk∗, V k∗)}∞k=1 such that for each k,

(Uk
∗
, V k∗) ∈ Nπ

gphN
S|β|+

(Uk, V k) and (U∗, V ∗) = lim
k→∞

(Uk
∗
, V k∗) .

Let i, j ∈ {1, . . . , |β|}. If (i, j) and (j, i) /∈ β+ × β−, then by observing that

(Θk
1)i,j = (Ξ1)i,j and (Θk

2)i,j = (Ξ2)i,j ,

we define
Ũk
∗
i,j ≡ Ũ∗i,j and Ṽ k

∗
i,j ≡ Ṽ ∗i,j , k = 1, 2, . . . . (48)

Now, suppose that (i, j) or (j, i) ∈ β+ × β−. For each k, denote ck := (Σk
β+β−

)i,j . Then,
from (46), we have

ck ∈ (0, 1) ∀ k and ck → c := (Ξ1)i,j ∈ [0, 1] as k →∞ .

Consider the following two cases:
Case 1: c 6= 1. Since ck 6= 1 for all k, we define

Ũk
∗
i,j ≡ Ũ∗i,j and Ṽ k

∗
i,j =

ck

ck − 1
Ũk
∗
i,j , k = 1, 2, . . . . (49)

By (47), we know that cŨ∗i,j + (1 − c)Ṽ ∗i,j = 0, which implies Ṽ ∗i,j =
c

c− 1
Ũ∗i,j = lim

k→∞
Ṽ k
∗
i,j .

Therefore, we obtain that

ckŨk
∗
i,j + (1− ck)Ṽ k

∗
i,j = 0 ∀ k and (Ũk

∗
i,j , Ṽ

k
∗
i,j)→ (Ũ∗i,j , Ṽ

∗
i,j) as k →∞ .

Case 2: c = 1. Since ck 6= 0 for all k, in this case we define

Ṽ k
∗
i,j ≡ Ṽ ∗i,j and Ũk

∗
i,j =

ck − 1

ck
Ṽ k
∗
i,j , k = 1, 2, . . . . (50)

Again, by (47), we know that Ũ∗i,j =
c− 1

c
Ṽ ∗i,j = lim

k→∞
Ũk
∗
i,j . Therefore, we have

ckŨk
∗
i,j + (1− ck)Ṽ k

∗
i,j = 0 ∀ k and (Ũk

∗
i,j , Ṽ

k
∗
i,j)→ (Ũ∗i,j , Ṽ

∗
i,j) as k →∞ .

Finally, by (47), we know that the sequence {(Uk∗, V k∗)}∞k=1 defined by (48), (49) and (50)
satisfies

Θk
1 ◦ Ũk

∗
+ Θk

2 ◦ Ṽ k
∗

= 0, Ũk
∗
β0β0

= Ũ∗β0β0
� 0 and Ṽ k

∗
β0β0

= Ṽ ∗β0β0
� 0 .
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This implies that for each k, (Uk
∗
, V k∗) ∈ Nπ

gphN
S|β|+

(Uk, V k) and

(U∗, V ∗) = lim
k→∞

(Uk
∗
, V k∗) .

Therefore, (U∗, V ∗) ∈ NgphN
S|β|+

(0, 0). Hence, the assertion of the proposition follows.

Proof of Theorem 3.1: “ =⇒ ” Suppose that (X∗, Y ∗) ∈ NgphNSn+
(X,Y ). By the

definition of the limiting normal cone in (3), we know that (X∗, Y ∗) = lim
k→∞

(Xk∗, Y k∗) with

(Xk∗, Y k∗) ∈ Nπ
gphNSn+

(Xk, Y k) k = 1, 2, . . . ,

where (Xk, Y k)→ (X,Y ) and (Xk, Y k) ∈ gphNSn+ . For each k, denote Ak := Xk +Y k and

let Ak = P kΛ(Ak)(P k)T be the eigenvalue decomposition of Ak. Since Λ(A) = lim
k→∞

Λ(Ak),

we know that Λ(Ak)αα � 0, Λ(Ak)γγ ≺ 0 for k sufficiently large and lim
k→∞

Λ(Ak)ββ = 0. Since

{P k}∞k=1 is uniformly bounded, by taking a subsequence if necessary, we may assume that

{P k}∞k=1 converges to an orthogonal matrix P̂ ∈ On(A). We can write P̂ =
[
Pα P βQ P γ

]
,

where Q ∈ O|β| can be any |β| × |β| orthogonal matrix. By further taking a subsequence if
necessary, we may also assume that there exists a partition π(β) = (β+, β0, β−) of β such
that for each k,

λi(A
k) > 0 ∀ i ∈ β+, λi(A

k) = 0 ∀ i ∈ β0 and λi(A
k) < 0 ∀ i ∈ β− .

This implies that for each k,

{i : λi(A
k) > 0} = α ∪ β+, {i : λi(A

k) = 0} = β0 and {i : λi(A
k) < 0} = β− ∪ γ .

Then, for each k, since (Xk∗, Y k∗) ∈ Nπ
gphNSn+

(Xk, Y k), we know from Proposition 3.2 that

there exist

Θk
1 =


Eαα Eαβ+ Eαβ0 Σk

αβ−
Σk
αγ

ETαβ+
Eβ+β+ Eβ+β0 Σk

β+β−
Σk
β+γ

ETαβ0
ETβ+β0

0 0 0

Σk
αβ−

T
Σk
β+β−

T
0 0 0

Σk
αγ
T

Σk
β+γ

T
0 0 0


and

Θk
2 =


0 0 0 Eαβ− − Σk

αβ−
Eαγ − Σk

αγ

0 0 0 Eβ+β− − Σk
β+β−

Eβ+γ − Σk
β+γ

0 0 0 Eβ0β− Eβ0γ

(Eαβ− − Σk
αβ−

)T (Eβ+β− − Σk
β+β−

)T ETβ0β−
Eβ−β− Eβ−γ

(Eαγ − Σk
αγ)T (Eβ+γ − Σk

β+γ
)T ETβ0γ

ETβ−γ Eγγ


such that

Θk
1 ◦ X̃k

∗
+ Θk

2 ◦ Ỹ k
∗

= 0, X̃k
∗
β0β0
� 0 and Ỹ k

∗
β0β0
� 0 , (51)

where X̃k
∗

= (P k)TXk∗P k, Ỹ k
∗

= (P k)TY k∗P k and

(Σk)i,j =
max{λi(Ak), 0} −max{λj(Ak), 0}

λi(Ak)− λj(Ak)
∀ (i, j) ∈ (α ∪ β+)× (β− ∪ γ) . (52)
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By taking limits as k →∞, we obtain that

X̃k
∗
→ P̂ TX∗P̂ =

 X̃∗αα X̃∗αβQ X̃∗αγ
(X̃∗αβQ)T QT X̃∗ββQ QT X̃∗βγ
(X̃∗αγ)T (QT X̃∗βγ)T X̃γγ


and

Ỹ k
∗
→ P̂ TY ∗P̂ =

 Ỹ ∗αα Ỹ ∗αβQ Ỹ ∗αγ
(Ỹ ∗αβQ)T QT Ỹ ∗ββQ QT Ỹ ∗βγ
(Ỹ ∗αγ)T (QT Ỹ ∗βγ)T Ỹγγ

 .
By simple calculations, we obtain from (52) that

lim
k→∞

Σk
αβ− = Eαβ− , lim

k→∞
Σk
β+γ = 0 and lim

k→∞
Σk
αγ = Σαγ .

This, together with the definition of U|β|, shows that there exist Ξ1 ∈ U|β| and the corre-
sponding Ξ2 such that

lim
k→∞

Θk
1 =

 Eαα Eαβ Σαγ

Eβα Ξ1 0
ΣT
αγ 0 0

 = Θ1 +

 0 0 0
0 Ξ1 0
0 0 0


and

lim
k→∞

Θk
2 =

 0 0 Eαγ − Σαγ

0 Ξ2 Eβγ
(Eαγ − Σαγ)T Eγβ Eγγ

 = Θ2 +

 0 0 0
0 Ξ2 0
0 0 0

 ,
where Θ1 and Θ2 are given by (16). Meanwhile, since Q ∈ O|β|, by taking limits in (51) as
k →∞, we obtain that

Θ1 ◦ X̃∗ + Θ2 ◦ Ỹ ∗ = 0, Ξ1 ◦QT X̃∗ββQ+ Ξ2 ◦QT Ỹ ∗ββQ = 0 (53)

and
QTβ0

X̃∗ββQβ0 � 0 and QTβ0
Ỹ ∗ββQβ0 � 0 .

Hence, by Proposition 3.3, we conclude that (X̃∗ββ , Ỹ
∗
ββ) ∈ NgphN

S|β|+

(0, 0). From (53), it is

easy to check that (X∗, Y ∗) satisfies the conditions (22) and (23).
“⇐= ” Let (X∗, Y ∗) satisfies (22) and (23). We shall show that there exist two sequences

{(Xk, Y k)} converging to (X,Y ) and {(Xk∗, Y k∗)} converging to (X∗, Y ∗) with (Xk, Y k) ∈
gphNSn+ and (Xk∗, Y k∗) ∈ Nπ

gphNSn+
(Xk, Y k) for each k.

Since (X̃∗ββ , Ỹ
∗
ββ) ∈ NgphN

S|β|+

(0, 0), by Proposition 3.3, we know that there exist an

orthogonal matrix Q ∈ O|β| and Ξ1 ∈ U|β| such that

Ξ1 ◦QT X̃∗ββQ+ Ξ2 ◦QT Ỹ ∗ββQ = 0, QTβ0
X̃∗ββQβ0 � 0 and QTβ0

Ỹ ∗ββQβ0 � 0 . (54)

Since Ξ1 ∈ U|β|, we know that there exists a sequence {zk} ∈ <|β|& converging to 0 such that

Ξ1 = lim
k→∞

D(zk). Without loss of generality, we can assume that there exists a partition

π(β) = (β+, β0, β−) ∈P(β) such that for all k,

zki > 0 ∀ i ∈ β+, zki = 0 ∀ i ∈ β0 and zki < 0 ∀ i ∈ β− .
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For each k, let

Xk = P̂


Λ(A)αα 0 0 0 0

0 (zk)+ 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 P̂ T and Y k = P̂


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 (zk)− 0
0 0 0 0 Λ(A)γγ

 P̂ T ,

where P̂ =
[
Pα P βQ P γ

]
∈ On(A). Then, it is clear that {(Xk, Y k)} ∈ gphNSn+ converg-

ing to (X,Y ). For each k, denote

Ak = Xk + Y k, Θk
1 =


Eαα Eαβ+ Eαβ0 Σk

αβ−
Σαγ

ETαβ+
Eβ+β+ Eβ+β0 Σk

β+β−
Σk
β+γ

ETαβ0
ETβ+β0

0 0 0

(Σk
αβ−

)T (Σk
β+β−

)T 0 0 0

(Σαγ)T (Σk
β+γ)T 0 0 0


and

Θk
2 =


0 0 0 Eαβ− − Σk

αβ−
Eαγ − Σαγ

0 0 0 Eβ+β− − Σk
β+β−

Eβ+γ − Σk
β+γ

0 0 0 Eβ0β− Eβ0γ

(Eαβ− − Σk
αβ−

)T (Eβ+β− − Σk
β+β−

)T ETβ0β−
Eβ−β− Eβ−γ

(Eαγ − Σαγ)T (Eβ+γ − Σk
β+γ

)T ETβ0γ
ETβ−γ Eγγ

 ,

where

(Σk)i,j =
max{λi(Ak)), 0} −max{λj(Ak)), 0}

λi(Ak)− λj(Ak)
∀ (i, j) ∈ (α ∪ β+)× (β− ∪ γ) .

Next, for each k, we define two matrices X̂k
∗
, Ŷ k

∗
∈ Sn. Let i, j ∈ {1, . . . , n}. If (i, j)

and (j, i) /∈ (α× β−) ∪ (β+ × γ) ∪ (β × β). We define

X̂k
∗
i,j ≡ X̃∗i,j , Ŷ k

∗
i,j ≡ Ỹ ∗i,j , k = 1, 2, . . . . (55)

Otherwise, denote ck := (Σk)i,j , k = 1, 2, . . .. We consider the following four cases.

Case 1: (i, j) or (j, i) ∈ α × β−. In this case, we know from (22) that X̃∗i,j = 0. Since

ck 6= 0 for all k and ck → 1 as k →∞, we define

Ŷ k
∗
i,j ≡ Ỹ ∗i,j and X̂k

∗
i,j =

ck − 1

ck
Ŷ k
∗
i,j , k = 1, 2, . . . . (56)

Then, we have

ckX̂k
∗
i,j + (1− ck)Ŷ k

∗
i,j = 0 ∀ k and (X̂k

∗
i,j , Ŷ

k
∗
i,j)→ (X̃∗i,j , Ỹ

∗
i,j) as k →∞ .

Case 2: (i, j) or (j, i) ∈ β+ × γ. In this case, we know from (22) that Ỹ ∗i,j = 0. Since

ck 6= 1 for all k and ck → 0 as k →∞, we define

X̂k
∗
i,j ≡ X̃∗i,j and Ŷ k

∗
i,j =

ck

ck − 1
X̂k
∗
i,j , k = 1, 2, . . . . (57)
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Then, we know that

ckX̂k
∗
i,j + (1− ck)Ŷ k

∗
i,j = 0 ∀ k and (X̂k

∗
i,j , Ŷ

k
∗
i,j)→ (X̃∗i,j , Ỹ

∗
i,j) as k →∞ .

Case 3: (i, j) or (j, i) ∈ (β × β) \ (β+ × β−). In this case, we define

X̂k
∗
i,j ≡ qTi X̃∗ββqj , Ŷ k

∗
i,j ≡ qTi Ỹ ∗ββqj , k = 1, 2, . . . . (58)

Case 4: (i, j) or (j, i) ∈ β+ × β−. Since c ∈ [0, 1], we consider the following two
sub-cases:

Case 4.1: c 6= 1. Since ck 6= 1 for all k, we define

X̂k
∗
i,j ≡ qTi X̃∗ββqj and Ŷ k

∗
i,j =

ck

ck − 1
X̂k
∗
i,j , k = 1, 2, . . . . (59)

Then, from (54), we know that

Ŷ k
∗
i,j →

c

c− 1
qTi X̃

∗
ββqj = qTi Ỹ

∗
ββqj as k →∞ .

Case 4.2: c = 1. Since ck 6= 0 for all k, we define

Ŷ k
∗
i,j ≡ qTi Ỹ ∗ββqj and X̂k

∗
i,j =

ck − 1

ck
Ŷ k
∗
i,j , k = 1, 2, . . . . (60)

Then, again from (54), we know that

X̂k
∗
i,j →

c− 1

c
qTi Ỹ

∗
ββqj = qTi X̃

∗
ββqj as k →∞ .

For each k, define Xk∗ = P̂ X̂k
∗
P̂ T and Y k∗ = P̂ Ŷ k

∗
P̂ T . Then, from (55)-(60) we

obtain that
Θk

1 ◦ P̂ TXk∗P̂ + Θk
2 ◦ P̂ TY k∗P̂ = 0, k = 1, 2, . . . .

and
(P̂ TXk∗P̂ , P̂ TY k∗P̂ )→ (P̂ TX∗P̂ , P̂ TY ∗P̂ ) as k →∞ . (61)

Moreover, from (58) and (54), we have

QTβ0
X̃k
∗
ββQβ0 ≡ QTβ0

X̃∗ββQβ0 � 0 and QTβ0
Ỹ k
∗
ββQβ0 ≡ QTβ0

Ỹ ∗ββQβ0 � 0, k = 1, 2, . . . .

From Proposition 3.2 and (61), we know that

(Xk∗, Y k∗) ∈ Nπ
gphNSn+

(Xk, Y k) and (X∗, Y ∗) = lim
k→∞

(Xk∗, Y k∗) .

Hence, the assertion of the theorem follows.
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