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CHARACTERIZATION OF THE ROBUST ISOLATED CALMNESS
FOR A CLASS OF CONIC PROGRAMMING PROBLEMS*
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Abstract. This paper is devoted to studying the robust isolated calmness of the Karush—
Kuhn-Tucker (KKT) solution mapping for a large class of interesting conic programming problems
(including most commonly known ones arising from applications) at a locally optimal solution. Under
the Robinson constraint qualification, we show that the KKT solution mapping is robustly isolated
calm if and only if both the strict Robinson constraint qualification and the second order sufficient
condition hold. This implies, among others, that at a locally optimal solution the second order
sufficient condition is needed for the KKT solution mapping to have the Aubin property.
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1. Introduction. Let X and ) be two finite dimensional real Euclidean spaces
each equipped with an inner product (,-) and its induced norm || - ||. Consider the
following canonically perturbed optimization problem:

" min f(2) - {a2)
st. Gx)+bek,

where f : X - R and G : X — Y are twice continuously differentiable functions,
K C Y is a nonempty closed convex set, and (a,b) € X x ) is the perturbation
parameter.

For each given (a,b) € X x ), we use X(a,b) to denote the set of all locally
optimal solutions of problem (1). A point x € X (a,b) is said to be isolated if there
exists an open neighborhood V of x such that X (a,b) NV = {z}. Let ®(a,b) be the
set of all feasible points of problem (1) with a given (a,b), i.e.,

(2) ®(a,b) ={reX|Gx)+beK}, (a,b)eXx).
Let L: X x Y — R be the Lagrangian function of problem (1) defined by
(3) L(z;y) := f(z) + (y,G(x)), (z,y) € X x V.
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For any y € Y, denote the derivative of L(-;y) at z € X by L (x;y) and denote
the adjoint of L, (z;y) by V.L(x;y). For a given perturbation parameter (a,b), the
Karush-Kuhn—Tucker (KKT) optimality condition for problem (1) takes the following
form:

@ { a=V,L(z;y), { a=V,L(z;y),

be —G(x)+ 9o(y,K) y € Ni(G(z) + b),

where o(y,K) := sup{(y,z) | z € K} is the support function of K, do(y,K) is the
subdifferential of o(-,K) at y, and Ny (z) is the normal cone of K at z € K in the
context of convex analysis [33]. For a given (a,b) € X x Y, the set of all solutions
(z,y) to the KKT system (4) is denoted by Skkr(a,b). We use Xgkr(a,b) to denote
the set of all stationary points of problem (1) with (a,b), i.e.,

Xkkr(a,b) :={z € X | there exists y € Y such that (4) holds at (z,y)}.
The set of Lagrange multipliers associated with (z,a,b) is defined by
(5) M(z,a,b) :={y € Y| (z,y) € Skkr(a,b)}.

For each given (a,b) € X x ), we say that the Robinson constraint qualification
(RCQ) for problem (1) holds at a feasible point = € ®(a,b) if

(6) G ()X +Te(G(Z)) =Y,

where for any subset 2 in a finite dimensional Euclidean space &£, the tangent cone
[34, Definition 6.1] to Q at z € Q is defined by

To(z) :=={d € &| 32" — 2 with 2¥ € Q and t¥ | 0 such that (zF — 2)/tF — d} .

For each given (a,b), it is well known (cf., e.g., [7, Theorem 3.9 and Proposition 3.17])
that the RCQ holds at a locally optimal solution x € X" if and only if M(x,a,b) is a
nonempty, convex, and compact subset of ).

In this paper, we mainly focus on an important property in perturbation theory for
problem (1) at a locally optimal solution: the KKT solution mapping Skkr is locally
nonempty valued and isolated calm (see Definition 2 in section 2). This property will
be referred as the robust isolated calmness in this paper. When the set K in problem
(1) is polyhedral, the theory on the robust isolated calmness is fairly complete even
under a more general perturbation framework, e.g., the functions f and G in problem
(1) have the parametric forms f(z,¢) and G(x,c), where ¢ € Z is another parameter
in a finite dimensional real Euclidean space Z [32, 10, 18]. One natural question that
one may ask is to what extent one can generalize the results from the polyhedral case
to the nonpolyhedral case. For example, Dontchev and Rockafellar [10] show that for
the parametric nonlinear programming problem at a locally optimal solution, Sk is
robustly isolated calm if and only if both the strict Mangasarian—Fromovitz constraint
qualification (MFCQ) and the second order sufficient condition (SOSC) hold. Does
this result still hold in the nonpolyhedral setting? In particular, for the case K = S¥,
the cone of n by n symmetric and positive semidefinite matrices in ™ (PSD cone in
short), the Euclidean space of n by n symmetric matrices.

Before answering the above question, let us first consider the following convex
quadratic semidefinite programming (SDP) example constructed by Bonnans and
Shapiro.
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Ezample 1. Bonnans and Shapiro [7, Example 4.54]:

min 1 + 22 + 23

7
¢ st. Diag(z) +ed € 83,

where © = (21,72) € R?, Diag(z) is the 2 x 2 diagonal matrix whose ith diagonal
element is x;, i = 1,2, A is a nondiagonal matrix in S?, and ¢ is a scalar parameter.
It is clear that the Slater condition holds. When ¢ = 0, the optimization problem
(7) has the unique optimal solution & = (0,0) with the unique Lagrange multiplier
Y = [’01 8]. It is easy to see that for any given € > 0, problem (7) has a unique
optimal solution X (¢) = (Z(¢), Z2(€)) with Z5(e) of order £2/3 as ¢ — 0.

Example 1 demonstrates that the KKT solution mapping SkkTt of a convex
quadratic SDP problem with a strongly convex objective function and with the Slater
condition being satisfied can still fail to be calm. This is completely different from
the polyhedral set case [32], where Robinson shows that if K is a polyhedral cone,
the KKT solution mapping SkkT always possesses the calmness property if both the
MFCQ and one strong form of the SOSC hold. Therefore, caution must be taken when
extensions are made from the polyhedral to the nonpolyhedral case. One may argue
that the unperturbed problem (7) in Example 1 is not a natural SDP problem as the
unperturbed problem reduces to a nonlinear programming problem. However, it is
not difficult to construct a nonlifted SDP example of similar behaviors (see Example 3
in section 4). This also indicates the following fact: under the general non-polyhedral
set setting, the uniqueness of Lagrange multipliers and the SOSC even in the strong
form do not imply the calmness, let alone the isolated calmness, of Sxxr. Of course,
for nonlinear programming problems at a locally optimal solution, since the strict
MFCQ is equivalent to the uniqueness of Lagrange multipliers [21, Proposition 1.1],
the aforementioned result of Dontchev and Rockafellar says that Skt is robustly
isolated calm if and only if the uniqueness of Lagrange multipliers and the SOSC
hold.

The literature on perturbation analysis of general optimization problems is enor-
mous, and even a short summary about the most important results achieved would
be far beyond our reach. For recent works covering many topics in perturbation
analysis, one may refer to [6, 7, 11, 13, 19, 25, 34] and references therein. Here, we
only touch those results that are mostly relevant to the research conducted in this
paper. When the nonpolyhedral set K is the second order cone (SOC) or the PSD
cone, the characterizations of the strong regularity of the KKT point (see Robinson
[31] for the definition) are established in [5] and [36], respectively. In [5], Bonnans
and Ramirez C. show that for a locally optimal solution of the nonlinear SOC pro-
gramming problem, under the RCQ, the KKT solution mapping is strongly regular
if and only if the strong SOSC and the constraint nondegeneracy hold. In [36], Sun
shows that for a locally optimal solution of the nonlinear SDP problem, the strong
SOSC and the constraint nondegeneracy, the nonsingularity of Clarke’s Jacobian of
the KKT system and the strong regularity are all equivalent under the RCQ. The
strong regularity always implies the robust isolated calmness, but not vice versa. So,
in order to characterize the robust isolated calmness, we need weaker conditions than
the strong SOSC and the constraint nondegeneracy.

From King and Rockafellar [17] and Levy [22], we know that the isolated calmness
of Skxr for problem (1) with the nonpolyhedral set K can be characterized by the
nonsingularity of its graphical derivative. Under the assumption that the constraint
nondegeneracy (see (12) for the definition) holds at a stationary point, not necessarily
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a locally optimal solution, to problem (1), Mordukhovich, Outrata, and Ramirez C.
[26, 27] establish an explicit formula for the graphical derivative of Skt and thus
a characterization of the isolated calmness of Skkr in terms of the nonsingularity of
its graphical derivative. The constraint nondegeneracy assumption is crucial for the
analysis conducted in [26, 27], in particular, [26, Lemma 3.1] and [27, Proposition
3.1].

In general, the nonsingularity of the graphical derivative of Skxr may be difficult
to verify. However, recently there has been good progress in addressing this non-
singularity issue if the concerned point is a locally optimal solution. In [37], Zhang
and Zhang show that the strict RCQ (SRCQ) (see (11) for the definition) and the
SOSC condition imply the nonsingularity of the graphical derivative of Skkr for the
nonlinear SDP problem at a locally optimal solution. Han, Sun, and Zhang [16]
show that for the nonlinear SDP problem, the isolated calmness of SkkT implies the
SRCQ. Moreover, complete characterizations of the isolated calmness of SxkT are
provided for convex composite quadratic SDP problems [16, Theorem 5.1]. In [23],
Liu and Pan extend several results in [16] and [37] to the matrix optimization problem
constrained by the epigraph cone of the Ky Fan matrix k-norm. For the nonlinear
SOC programming problem at a locally optimal solution, Zhang, Zhing, and Wu [38]
show that the isolated calmness of Sk is equivalent to the SRCQ and the SOSC.

In this paper, assuming that the set K in problem (1) belongs to the class of C%-
cone reducible sets (Definition 6), we study the continuity of Xxxr and the robust
isolated calmness of Sxkr. It is worth mentioning that the class of C2-cone reducible
sets is rich. It includes notably all the polyhedral convex sets and many nonpolyhedral
sets such as the SOC, the PSD cone [35, 7], and the epigraph cone of the Ky Fan
matrix k-norm [8]. Moreover, the Cartesian product of C2-cone reducible sets is also
C?-cone reducible (see, e.g., [7, 35]). Under the C-cone reducibility assumption, we
will provide a sufficient condition for the stationary mapping Xkgr of the canonically
perturbed problem (1) to be continuous and isolated. Furthermore, for the C2-cone
reducible case, under the RCQ, we present a complete characterization of the robust
isolated calmness of the KKT solution mapping SkkT, namely, the robust isolated
calmness of Sk holds at a locally optimal solution if and only if the corresponding
SRCQ and SOSC hold. Additionally, we construct an example (Example 4) to show
that our conditions for characterizing the robust isolated calmness of SkkT studied
in this paper are strictly weaker than those for characterizing the Aubin property
(see Definition 3 in section 2) of the KKT system (4). Thus, by combining with
[20, Theorem 1] established recently by Klatte and Kummer, we conclude that under
the C2-cone reducible assumption, at a locally optimal solution to problem (1), the
constraint nondegeneracy and the SOSC are both necessary for Skxkrt to have the
Aubin property.

The remaining parts of this paper are organized as follows. In section 2, we
introduce some definitions and preliminary results on variational analysis. In section
3, we study the continuity and the isolatedness of the stationary mapping Xxkr of
problem (1). The characterization of the robust isolated calmness of the KKT solution
mapping SkkT and its implication for the Aubin property are provided in section 4.
We conclude our paper in section 5.

2. Preliminaries. First, let us recall some common notions and definitions re-
lated to set-valued mappings. Let £ be a finite dimensional real Euclidean space.
Let £ and F be two finite dimensional real Euclidean spaces and ¥ : £ = F be a
set-valued mapping with (p, ) € gph ¥, i.e., ¢ € ¥(p), where gph ¥ denotes the graph
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of U. Let Bx be the unit ball in F. The set-valued mapping ¥ is said to be lower
semicontinuous at p for q if for any open neighborhood V of ¢ there exists an open
neighborhood U of p such that

DA£T(P)NY Vpel.

The mapping ¥ is said to be upper semicontinuous (in Berge’s sense [2]) at p if
for any open set O D ¥(p) there exists an open neighborhood U such that for any
p € U, ¥(p) C O. Furthermore, if ¥ is lower semicontinuous at (p,q) and is upper
semicontinuous at p, then ¥ is said to be continuous at (p,q) € gph V.

For the set-valued mapping ¥, we are interested in the following three Lipschitz-
like properties: the calmness, isolated calmness, and Aubin property.

DEFINITION 1. The set-valued mapping ¥ : £ = F is said to be calm at p if there
exist a constant kK > 0 and an open neighborhood U of p such that

U(p) C ¥(p) +kllp—pIBr Vpel.

DEFINITION 2. The set-valued mapping V : £ = F is said to be isolated calm at
D for q if there exist a constant k > 0 and open neighborhoods U of p and V of q such
that

(8) U(p)nV C{q} +rllp—plBr Vpel.

Moreover, W is said to be robustly isolated calm! at p for q if (8) holds and for each
peU, ¥(p)NY #0.

DEFINITION 3. The set-valued mapping ¥ : £ = F has the Aubin property at p
for @ if there exist a constant k > 0 and open neighborhoods U of p and V of § such
that

U(p)NY CU(p)+xlp—pBr Vpp' el

The calmness for the set-valued mapping ¥ given in Definition 1 comes from [34,
Equation 9(30)] and it was called “upper Lipschitzian” by Robinson [30]. The isolated
calmness for the set-valued mapping ¥ was referred to differently in the literature,
e.g., the local upper Lipschitz continuity in [10, 22], to distinguish it from Robinson’s
definition of upper Lipschitz continuity [30]. The property defined by Definition 3
was designated “pseudo-Lipschitzian” by Aubin [1].

Remark 1. It is worth noting that the set-valued mapping WV is isolated calm at p
for g does not imply W is robust isolated calm at p for g, in general (see, for instance,
[27, Example 6.4]). However, if ¥ is lower semicontinuous at (p,q), then it follows
from the definition that the robust isolated calmness of ¥ also holds.

The graphical derivative [34, Definition 8.33] of ¥ at p for G is a set-valued map-
ping DU (p|q) : £ = F defined by
D¥(plg)(u) :={v e F | (u,v) € Tepnw(p, 7)},

which is a convenient tool for investigating the isolated calmness property. In fact,
we have the following basic characterization of the isolated calmness of the set-valued
mapping ¥ at p for g.

1f ¥ = ©~1 is the inverse of a given set-valued mapping © : ) = X, then the robust isolated
calmness of ¥ at p for g is equivalent to the upper regularity [19] of © at § for p.
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LEMMA 4 (King and Rockafellar [17], Levy [22]). Let (p,q) € gphW. Then U is
isolated calm at p for q if and only if {0} = D¥(p|7)(0).

In order to study the relationship between the isolated calmness and the Aubin
property of the set-valued mappings, we need the following result.

LEMMA 5 (Fusek [14]). Suppose that F' : € — £ is locally Lipschitz continuous
near ¢ € € and that F is directionally differentiable at q. If F~' has the Aubin
property at p := F(q) for q, then there exists an open neighborhood V of q such that
F=i(p)ny ={q}.

It then follows from Lemma 5 that for a function F' : £ — & satisfying the
assumptions in this lemma, the Aubin property of F~! implies the isolated calmness
of F~1

Suppose that Z is a feasible solution to problem (1) with (a,b) = (0,0). The
critical cone C(Z) of (1) with (a,b) = (0,0) at Z is defined by

d € Te(G()), f'(z)d <0}

9) C(z) :={de X |G'(x)
If Z is a stationary point of problem (1) with (a,b) = (0,0) and § € M(Z,0,0), then

(7)

)

C(7) = {de X | G'(7)d € Te(G (7)), f/(z)d =0}
={de X |G (z)d € Cx(G(2),9)},

where for any A € K, Cc(A4, B) is the critical cone of K at A with respect to B €
Ni(A) defined by

(10) Cic(A,B) == Ti(A)N B

and for any s € Y, st := {z € Y | (2,s) = 0}. Since K is convex, it is clear that for
each § € M(Z,0,0), the critical cone Cx(G(Z), %) is indeed a closed convex cone.

The SRCQ is said to hold for problem (1) with (a,b) = (0,0) at T with respect
to § € M(Z,0,0) # 0 if

(11) G'(2)X + T (G@) Nyt = .

It follows from [7, Proposition 4.50] that the set of Lagrange multipliers M (Z,0,0) is a
singleton if the SRCQ holds. The constraint nondegeneracy, introduced by Robinson
[31], is said to hold at T if

(12) G'(2)X +1in (T (G(7))) =V,

where lin (Tic(G(Z))) is the lineality space of T (G(Z)), i.e., the largest linear space
in Tx(G(Z)). It is well known (cf. [7, Proposition 4.73]) that the constraint non-
degeneracy is stronger than the SRCQ since lin (Tx(G(Z))) C T (G(Z)) Ng+.

Through the whole paper, we always assume that the set K has the following
C?-cone reducibility.

DEFINITION 6 (see [7, Definition 3.135]). The closed convex set K is said to be
C?-cone reducible at A € K, if there exist an open neighborhood W C Y of A, a pointed
closed convexr cone Q (a cone is said to be pointed if and only if its lineality space is
the origin) in a finite dimensional space Z, and a twice continuously differentiable
mapping = : W — Z such that: (i) 2(A) = 0 € Z, (ii) the derivative mapping
E'(A): Y — Z is onto, and (iil) KNW = {A € W | Z(A) € Q}. We say that K is
C?-cone reducible if KK is C%-cone reducible at every A € K.
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Let Z be a closed set in ). Recall that the inner and outer second order tangent
sets [7, (3.49) and (3.50)] to the given closed set Z in the direction h € Y can be
defined, respectively, by

; 1
72’2(z7h) = {w € Y| dist (z +th+ §t2w, Z) =o(t?), t > O}

and
TZ(z,h) :={w € Y| 3t} | 0 such that dist(z + txh + 3t3w, Z) = o(t})},

where for any s € ), dist(s,Z) := inf{||s—z| | z€ Z}. Note that, in general,
’7'1’ (2,h) # T2(z,h) even if Z is convex ([7, section 3.3]). However, it follows from
[7 Proposition 3.136] that if Z is a C%-cone reducible convex set, then the equality
always holds. In this case, T2 (z, h) will be simply called the second order tangent set
to Z at z € Z in the direction h € ).

For the C2-cone reducible set K, we have the following “no gap” second order
conditions for problem (1) with (a,b) = (0,0) (see [4, Theorems 3.1 and 4.1]).

THEOREM 7. Suppose that T is a locally optimal solution to problem (1) with
(a,b) = (0,0) and the RCQ holds at T. Then the following second order necessary
condition holds:

(13) sup {{d, V2, L(z;y)d) — o (y, TE(G(z),G'(z)d))} >0 VdeC(z),
yEM(2,0,0)

where for any y € Y, V2, L(Z;y) is the Hessian of L(-;y) at Z. Conversely, suppose
Z is a stationary point of problem (1) with (a,b) = (0,0) and the RCQ holds at Z.
Then the following SOSC

(14)  sup  {(d,Vi,L(z;:9)d) — 0 (y. TE(G(2),G'(2)d)) } >0 VdeC(z)\ {0}

y€M (%,0,0)

is necessary and sufficient for the quadratic growth condition at the point T for problem
(1) with respect to (a,b) = (0,0).

Next, we list some results that are needed for our subsequent discussions from the
standard reduction approach. For more details on the reduction approach, one may
refer to [7, section 3.4.4]. The following results on the representations of the normal
cone and the “sigma term” of the C%-cone reducible set K are stated in [7, (3.266)
and (3.274)].

LEMMA 8. Let A € K be given. Then, there exist an open neighborhood W C Y of
A, a pointed closed convex cone Q in a finite dimensional space Z, and a twice contin-
wously differentiable function E: W — Z satisfying conditions (1)—(iii) in Definition
6 such that for all A € W sufficiently close to A,

(15) Nic(A4) =E'(A)" No(E(4)),

is a unique element u in Ng(2(A)) such that B = Z'(A)*u, denoted by (Z'(A)*)~*
Furthermore, we have for any D € Cx(A, B),

where =/ (A)* : Z — Y is the adjoint of Z'(A). In particular, for any B € Nx(A), there

(16) o(B, TE(A,D)) = —((E'(A)")~'B,E"(A)(D, D).
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For a feasible solution Z to problem (1) with (a,b) = (0,0), let W, Q, and =
be the open neighborhood of G(Z), the pointed closed convex cone, and the twice
continuously differentiable function defined in Lemma 8, respectively, with respect to
G(Z) € K. Since G is continuous, we know that there exist open neighborhoods U of
the origin in X x Y and V of Z such that G(z) + b € W for any (x,a,b) € V x U.
Consequently, problem (1) is locally equivalent to the following reduced problem:

min f(z) — {(a,x)

(17 st G(x,b) € Q,

where G(x,b) := Z(G(z) + b) for each (x,a,b) € V x U, in the sense that the sets
of optimal solutions to (1) and (17) restricted to V are the same. Moreover, for
(a,b) = (0,0), it is known from [7, section 3.4.4] that the RCQ for problem (1) holds
at the feasible point Z if and only if the RCQ for problem (17) holds at .

Next, we shall present some useful results about the directional derivative of the
metric projection operator over the C?-cone reducible set /C. Suppose that B €
Ni(A). Let C := A+ B. Then we have A = [Ic(C), where [T : ) — Y is the metric
projection operator over K, i.e., for any C' € Y,

1
Ik (C) := argmin{QY —CP|Y € IC}.

Since K is C2-cone reducible, we know from [3, Theorem 7.2] that IIx is directionally
differentiable at C' and the directional derivative II)-(C; H) for any direction H € )
is the unique optimal solution to the following strongly convex optimization problem

(18) min {|[D — H|* - o(B,T&(4,D)) | D € Cx(4, B)} ,

where C.(A, B) is the critical cone of K at A with respect to B defined by (10). It
follows from (16) in Lemma 8 that there exists a self-adjoint linear operator H : ) — Y
such that

(19) Y(D) = (D,H(D)) = —o(B,T¢(A,D)) >0 VD eCx(ADB),

which means that # is copositive on the cone Cic (A, B). However, this does not mean
that H is positive semidefinite on the whole space ). To overcome this difficulty, let
us define h : Y — (—o0, 0] by

(20) (D) :=T(D) +6¢, 1 3(D), D€,

where d;, 5 5 (-) is the indicator function of the critical cone Cx(4, B).

PROPOSITION 9. The function h : Y — (—o0,00] defined by (20) is a closed
proper convex function and the subdifferential Oh(D) of h at any D € Cx (A, B) is
given by

Oh(D) =VY(D) + NCK(Z,E)(D)-

Proof. First, by using (19) and (20), we know that
(D) = —o(B,T¢(4, D)) + o, x5)/(D) YDEDY.

Since ¢, z5)(D) = 0 for any D € Cx (A, B) and the function —o(B,T2(4,")) is
a closed proper convex function [4, Lemma 4.1], it follows that h(-) is also a closed
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proper convex function on ). Moreover, we know from [34, Proposition 8.12] (or [25,
Theorem 1.93]) that Oh(D) = 9L h(D) for any D € Cx(A, B), where dph(D) is the
limiting subdifferential of h at D (cf. e.g., [25, Definition 1.77]). Thus, it follows from
the sum rule [25, Proposition 1.107(ii)] that

Oh(D) = 0rLh(D) = VY(D) +NC;<(K,§)(D) VD € Cx (A, B).
This completes the proof of this proposition. 0

For any given nonempty convex cone K C ), we use K° to denote the polar
of K, ie, K°:={z €)Y | (z,s) <0Vs e K}. The following simple lemma is a
generalization of [16, Lemmas 4.1 and 4.3].

LEMMA 10. Let C € Y, A=1Ix(C), and B =C — A.
(i) Let AA, ABe Y. NA —-TI}.(C; AA+ AB) =0 if and only if
AA € Ce(A,B),
(21) AB — 1VY(AA) € [Cc(4, B))°,
(NA,AB) = —0(B, T2(A,AA)),

where Y(-) is the quadratic function defined by (19).
(ii) Let A: X — Y be a linear operator. Then, the following two statements are

equivalent:
(a) AB €Y is a solution to the following system of equations
A*AB =0,
I (C; AB) = 0;

(b) AB € AX+T,C(Z)m§lr.
G

Proof. We first prove part (i). Let h : } — (—o0,00] be defined by (20). From
Proposition 9 we know that h(-) is a closed proper convex function and D € Cx (A, B)
is the unique optimal solution to problem (18) with H = AA + AB if and only if D
is the unique optimal solution to the following strongly convex optimization problem

min {|D — (AA+ AB)? + h(D)}
or, equivalently,
0c€2(D—(AA+AB))+VY(D) JrNc;c(Z,E) (D).

Therefore, by using the fact that Cx(A, B) is a closed convex cone, we can see that
AA =TI (C; AA + AB) if and only if
NA € Cx(A,B),
AB — %VY(AA) € [Cx (4, B))°,
(AA,AB - LVY(LA) =0,
which, together with the fact that for each AA € Cx(A, B),
(AA,VY(AA)) = 2T (AA) = —20(B, TE(A, AA)),

show that (21) holds.
By noting 0 € Cx(A, B) and taking AA = 0 in part (i), we obtain part (ii)
immediately. 0
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3. The continuity and isolatedness of Xkkt. Let x € X be a feasible
solution to problem (1) with (a,b) = (0,0), i.e., z € ®(0,0). It is well known (cf., e.g.,
[7, Theorem 2.87] and [34, Theorem 9.43]) that the feasible point mapping ® defined
by (2) has the Aubin property at (0,0) for = if the RCQ (6) holds at z. Therefore,
the following result on the existence of local minimizers of problem (1) extends [10,
Lemma 2.5] for nonlinear programming.

LEMMA 11. Suppose that T is an isolated locally optimal solution of problem (1)
with (a,b) = (0,0). If the RCQ (6) holds at T, then the locally optimal solution
mapping X is lower semicontinuous at (0,0,Z) € gph X.

Proof. Since the feasible solution mapping ® has the Aubin property at (0, 0) for
Z, we know that there exist £; > 0, e3 > 0, and s > 0 such that for any ||(a,d)|| < €1,
[[(a", )] <e1,

(22) D(a,b)N{z e X |||z —z| <e2} C ®(d,b)+ k| (a,b) — (a',0)|By.

Let V be an arbitrary open neighborhood of Z. Since Z is an isolated locally optimal
solution of problem (1) with (a, b) = (0, 0), we are able to choose T € (0, e3) sufficiently
small such that {z € X | ||t — Z|| < 7} C V and Z is the unique minimizer of (1) with
(a,b) = (0,0) in {x € X | ||z — Z|| < 7}. For the fixed 7 and for any ||(a,d)|| < &1,
define the following set-valued mapping

D (a,b) :=P(a,b)N{z e X |||z —Z|| <7+ E&|(a,b)||}.

Note that the graph of @, is closed, which means that ®, is closed. Also, for any
[(a,d)|| < e1, ®-(a,b) belongs to the compact subset {x € X | ||z — Z|| < €2 + ke }.
Therefore, we know (cf., e.g., [7, Lemma 4.3(i)]) that ®, is upper semicontinuous at
any |[(a,b)]] < e1.

On the other hand, for any = € ©,(0,0) = ®(0,0) N{x € X | ||z — Z|| < 7}, we
know from (22) that if (a,b) is sufficiently close to (0,0), there exists & € ®,(a,b)
such that ||z — &|| < k||(a,b)|]. Therefore, we have

1# — 2| < [|& = l| + [z — Z|| < &ll(a,b)|] + 7,

which implies & € ®..(a,b). By noting that & — z as (a,b) — (0,0), we conclude that
the set-valued mapping @, is also lower semicontinuous at (0, 0).

Next, for any (a, b) sufficiently close to (0,0), consider the following optimization
problem

min  f(x) — {(a,x)

(23) st. x€®.(a,b).

It follows from the Berge theorem (cf. [12, Chapter 9, Theorem 3]) that the solution
mapping X, of (23) is nonempty around (0,0) and upper semicontinuous at (0,0).
Thus, by noting that X (0,0) = X(0,0) = {Z}, we have for any given 0 < €}, < 7 there
exists 0 < ] < &1 such that for any ||(a,d)|| < €}, X-(a,b) C{x € X | ||z — Z| < &4},
and for any solution z € X, (a,b) of (23),

e — 2|l < &5 <7+ &ll(a, D).

Therefore, for any ||(a,b)|| < &), the constraint ||z — Z|| < 7 + kl|(a, )| of (23) is
inactive at any solution point z € X, (a,b), which implies that

0% X,(a,b) C X(a,b)N{z € X |||z — || <)} C X(a,b)NV.
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Thus, we know that X is lower semicontinuous at (0,0,Z) € gph X. The proof is
completed. 0

For any given open set O C X, we use Xgkr N O to denote the set-valued
mapping Xxxr N O : X x Y = X defined by (Xxxr N O)(a,b) = Xxkr(a,b) N O
for all (a,b) € X x Y. By using the reduction approach, we can extend Robinson’s
classical result [32, Theorem 2.3] to problem (1) easily. Note that we are not able
to apply [32, Theorem 2.3] to problem (1) directly, since the closed convex set K in
problem (1) may not be a cone.

LEMMA 12. Suppose that T is a feasible solution to problem (1) with (a,b) =
(0,0). If the RCQ holds at T, then there exist an open neighborhood U of the origin
and an open neighborhood of V of T such that the Lagrange multipliers mapping M
(defined by (5)) is upper semicontinuous on V x U and Xxxr NV is upper semi-
continuous on U.

Proof. By the C%-cone reducibility assumption, we know that there exist an open
neighborhood U of the origin and an open neighborhood of V of Z such that problem
(1) is locally equivalent to its reduced problem (17). By shrinking & and V if necessary,
we know from (15) of Lemma 8 that for each (z,a,b) € V x U,

Nic(G(z) +b) = E(G(x) + )" No(G(x, ).

Thus, for each given (a,b) € U, the sets of stationary points of problems (1) and (17)
restricted to V coincide. Also, we have for each (z,a,b) € V x U,

(24) M(z,a,b) = Z(G(z) + b)*M(z,a,b),

where M(z,a,b) is the set of Lagrange multipliers of problem (17) associated with
(z,a,b). Since for (a,b) = (0,0) the RCQ for problem (1) holds at the feasible point
Z if and only if the RCQ for problem (17) holds at Z, we know from [32, Theorem 2.3]
that M is upper semicontinuous on V xU and XgxgrNV is upper semicontinuous on .

Since =’ is continuous on W, we know from (24) that M is also upper semicontinuous
onV xU. O

By combining Lemmas 11 and 12, we are able to derive the following result on
the continuity of the stationary point mapping Xkkr, immediately.

COROLLARY 13. Suppose that T is an isolated locally optimal solution of prob-
lem (1) with (a,b) = (0,0). If the RCQ (6) holds at T, then the stationary point
mapping Xkt is lower semicontinuous at (0,0,%) € gph Xkt and there exists an
open neighborhood V of T such that the set-valued mapping Xkt NV is continuous
at (0,0,7).

Proof. By Lemma 11, we know that for any open neighborhood V of & there exists
an open neighborhood U of the origin such that for any (a,b) € U, § # X(a,b)NV. By
shrinking V and U if necessary, we know that the RCQ holds at any € X (a,b) NV
for any (a,b) € U (cf., e.g., [7, Remark 2.88]), which implies that § # X (a,b) NV C
Xkxr(a,b) NV. Therefore, we know that Xkt is lower semicontinuous at (0,0, Z).
Finally, it follows from Lemma 12 that there exists an open neighborhood V such that
XggT NV is upper semicontinuous at (0,0). Therefore, we conclude that Xxgr NV
is continuous at (0,0, ). d

By Corollary 13 and Lemma 12, we obtain the following result on the lower
semicontinuity of Skkr.



78 CHAO DING, DEFENG SUN, AND LIWEI ZHANG

PROPOSITION 14. Suppose that T is an isolated locally optimal solution of problem
(1) with (a,b) = (0,0) and the corresponding set of Lagrange multipliers M (z,0,0) #
(0. If the SRCQ (11) holds at T with respect to § € M(Z,0,0), then the KKT solution
mapping Sk is lower semicontinuous at (0,0,Z,7) € gph SKkkT.

Proof. Since the SRCQ holds at & with respect to y, we know that the RCQ
holds at & with respect to (a,b) = (0,0). By Corollary 13, we know that Xxxr is
lower semicontinuous at (0,0,Z) € gph Xkkr, i.e., for any open neighborhood V; of
Z, there exists an open neighborhood U of the origin such that for every (a,b) € U,
Xkkr(a,b)NV; # 0. Furthermore, by Lemma 12, we know that M is locally bounded
at (z,0,0), i.e., there exists a bounded set B C ) such that for any (z,a,b) € V; XU,
M(z,a,b) C B.

Next, we shall show that for any open neighborhood V; of Z, the open neighbor-
hood U of the origin (shrinking if necessary) satisfies that for any open neighborhood
Vo of gin Y, M(x,a,b)N Vs # () for every (z,a,b) € V4 XxU. Assume, on the contrary,
that there exist an open neighborhood Vs of § and the sequence {(z*,a* b*)} with
(ak,b%) = (0,0) and Xgkr(ak,b%) 5 2% — & such that M(z*,a*,bF) NV, = 0, ie.,
y ¢ 92 for any y € M(x*,a*,b*). Thus, we know that there exists a positive number
n > 0 such that for all (z*,a¥,b*),

ly—gll =n Yye M(* a" ok).

Since M is locally bounded at (,0,0), we may take a bounded sequence {y*} with
y* € M (2%, a*,b*) for each k, which has an accumulation point § # 7. Since the
support function o (-, ) of K is a closed proper convex function, it follows from [33,
Theorem 24.4] that the graph of do(+,K) is a closed subset in ) x ). Therefore,
by taking the limit with k in the KKT system (4), we know that § € M(Z,0,0),
which contradicts with the fact that M(Z,0,0) is a singleton. Thus, for any open
neighborhood V = V; x Vs, of (Z, §), there exists an open neighborhood U of the origin
such that for any (a,b) € U, Skkr(a,b) NV # (). This completes the proof. O

By using [32, Theorem 2.4] and the reduction approach, we are able to derive the
following proposition, in which a sufficient condition for a locally optimal solution Z
to be isolated is established.

PROPOSITION 15. Suppose that the RCQ holds at a locally optimal solution T of
problem (1) with (a,b) = (0,0) and that Robinson’s SOSC

(5) _inf (V% L) - o (3. TAGE).C@)D)} >0 vdec@)\ {0}

holds at . Then, there exists an open neighborhood V of T such that Xxkr(0,0)NY =
{z}, which implies that T is an isolated locally optimal solution of problem (1) with

(a,b) = (0,0).

Proof. By the C?-cone reducibility assumption, we know that there exists an open
neighborhood V of Z such that problem (1) with (a,b) = (0,0) is locally equivalent
to its reduced problem (17). For (a,b) = (0,0), the RCQ for problem (1) holds at
Z if and only if the RCQ for problem (17) holds at z. Let M(Z,0,0) be the set of
Lagrange multipliers of problem (17) associated with Z and (a,b) = (0,0). It follows
from Lemma 8 that for any y € M(Z,0,0), there is a unique u € M(Z,0,0) such
that y = Z/(G(Z))*u, i.e., Z'(G(Z))* is a bijection between M(Z,0,0) and M(z,0,0).
By [7, (3.271)], we know that the corresponding critical cone of problem (17) with
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(a,b) = (0,0) coincides with the critical cone C(Z) of problem (1) defined by (9).
Thus, we know from [32, Theorem 2.4] that if
(26) s (V3 L)) > 0 Vd e C@)\ (o)

then Z is the unique stationary point of problem (17) with (a,b) = (0,0) in V, where
L(x;u) : V x Z — RN is the Lagrangian function of problem (17) defined by

L(z;u) := f(z) + (v, 2(G(2))), (z,u) eV X Z.

By shrinking V if necessary, we know from (15) of Lemma 8 that the sets of stationary
points of problems (1) and (17) with (a,b) = (0,0) restricted to V are the same. Thus,
we know that Xxxr(0,0) NV = {Z}. Note that by the chain rule, we have for any
u € M(Z,0,0) and d € C(Z),

(d,V2,L(z;u)d) = (d, V2, L(z;y)d) + {(u,2"(G(2))(G'(z)d, G'(2)d)).

Thus, it follows from (15) of Lemma 8 that the conditions (25) and (26) are equivalent.
This completes the proof.

Remark 2. The quadratic growth condition at Z for problem (1) with (a,b) =
(0,0), which implies that Z is a strict locally optimal solution, may not guarantee
that T is an isolated local minimizer. For instance, consider the following example
32]

min  22/2
st.  28sin(1/z) =0,

where z € R and sin(1/0) := 0. It is clear that the quadratic growth condition
holds at the strict locally optimal solution & = 0. However, each element of the set
{(nm)~1 | n =+1,%2,...} is a locally optimal solution and Z = 0 is its cluster point,
which implies that £ = 0 is not an isolated locally optimal solution.

By combining Proposition 15 and Corollary 13, we obtain the following result on
the continuity of Xk, immediately.

THEOREM 16. Suppose that the RCQ holds at a locally optimal solution T of prob-
lem (1) with (a,b) = (0,0) and Robinson’s SOSC (25) holds at . Then there exists
an open neighborhood V of T such that the set-valued mapping Xkt NV is continuous
at (0,0,z).

Note that if the set of Lagrange multipliers with respect to a locally optimal
solution is a singleton, then Robinson’s SOSC (25) coincides with the SOSC defined by
(14). Next, we shall provide an example to illustrate that the uniqueness of Lagrange
multipliers is not a necessary condition for the continuity of Xxkr.

Ezxample 2. Consider the following convex quadratic SDP problem:

(P) min 122 —-z+¢
(27) st. tA—al €83,
t>0,

and its dual
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(D) max —L((I,Y)-1)?

(28) st. (AY) <1,
Y es?,
where z,t € R, A = [ 1, 7%], and I is the 2 x 2 identity matrix. We know that

(z,t) = (0,0) is the unique optimal solution to the primal problem (27), and the RCQ
holds at (Z,%). Since the critical cone of problem (27) at (,t) is C(z,t) = {0}, we
know that Robinson’s SOSC holds at (z,f). Thus, by Theorem 16, we know that
XkxT NV is continuous at (0,0, Z,t). Note that the solution set to the dual problem
(28) is given by

{yest|(A4Y)<1, (I,Y)=1}.

This implies that the Lagrange multipliers of problem (27) are not unique.

Since the SRCQ implies the uniqueness of Lagrange multipliers, by combining
Propositions 14 and 15, we obtain the following result, directly.

THEOREM 17. Let T be a feasible solution of problem (1) with (a,b) = (0,0).
Suppose that the SRCQ holds at T with respect to §j € M(z,0,0) # 0 and the SOSC
(14) holds at T for problem (1) with respect to (a,b) = (0,0). Then the set-valued
mapping Skkr s lower semicontinuous at (0,0,Z,y) € gph Skkr.

4. The robust isolated calmness of SkkT. For each given (a,b) € X x ),
it is well known (e.g., [13, Proposition 1.5.9]) that the set of solutions of the KKT
system (4) can be rewritten as

(29) Skkr(a,b) = {(:L',z —Ik(2) € X x Y | ¥(x, 2) = (a, fb)},
where ¥ : X x ) — & x ) is Robinson’s normal mapping defined by

/ *
(30) Yooy = | VOTE@EIGC) | vy
G(x) — Ik (2)

Let (Z,7) be a solution to the KKT system (4) with (a,b) = (0,0). Denote
z := G(Z)+ 7. Then, since I is globally Lipschitz continuous (with modulus 1) and
G is locally Lipschitz continuous, it is an easy exercise to see that the KKT solution
mapping Skt is isolated calm (robustly isolated calm, respectively) at the origin for
(z,7) if and only if the set-valued mapping ¥~ is isolated calm (robustly isolated
calm, respectively) at the origin for (z, z). Moreover, Skkt has the Aubin property
at the origin for (#,%) if and only if ¥~! has the Aubin property at the origin for
(z, 2).

When (a,b) = (0,0), the KKT system (4) is equivalent to the following system of
nonsmooth equations:

(31) F(z,y) =0,
where F': X x ) — & x )Y is the natural mapping defined by

V(@) + G (x)y

e T ) e vy |

(z,y) € X x ).

It is clear that (0,0,7%,%) € gph Skkr if and only if (0,0,%,%) € gph F~1. The
following simple observation can be derived from the definition of the isolated calmness
without assuming that & is C2-cone reducible.
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LEMMA 18. Let (0,0,Z,3) € gph Skxr. The set-valued mapping Skt is isolated
calm at the origin for (Z,y) if and only if the set-valued mapping F~! is isolated calm
at the origin for (Z,7).

Proof. First, suppose that Skkr is isolated calm at the origin for (Z,g). Then,
we know that there exist k > 0, £1 > 0, and €2 > 0 such that for any (a,b) € X x Y
satisfying ||(a, b)|| < €1,

(33) Skxr(a,b)N{(z,y) € XXV [|(z,y)= (7,9l <e2} € {(Z,9)}+5l(a,b)[[Brxy.

By noting that G is continuously differentiable, we know that there exists a constant
g3 > 0 such that ||G'(z)|| < e3 for any (z,y) satisfying ||(z,y) — (Z,7)|| < 2. Choose

0 < m < min{e;/\/26242,65/2} and 0 < 1y < €2/2. For any (a,b) € X x Y

satistying [|(,0)| < m, let (2,9) € F~(a,b) N {(z,y) | |(z,y) = (@,9)|| < 12} be
arbitrarily given. Therefore, it follows from (31) that

V(@) +G(2)) = a,
G(2) —b—Tc(G(&) —b+b+7) =0,
which is equivalent to

{ V(z)+G( b) = a+ G'(2)*b,
g+be N (@ (:c)flAJ).

>
N
*
A
T
>

Thus, by (4), we have (2,4 + b) € Skkr(a + G'(&)*b, —b). Moreover, since we have
then [[(2.9) — (z.5)]| < 7.

s n Ly d - - ; - €2
12,9 +0) = (@9 < [I(2.9) = @ Pl + bl <nz2 + 1@ b)[| < - +m <ez,

kit (@+G'(@)"h, —b) N {(z,y) | [|(z,y) = (2, 9)|| < e2}.
b)|| < /263 + 2||(a,b)|| < &1, we know from (33) that

which implies that (&, J+ Z;) €S
By noting that ||(¢ + G'(Z)*b, —

(&, +b) — (@, 9)]l < 5y/253 + 2] (&, b)].

Thus, we have
L= 1, 5 N = . P
12 = 21* + 19 = gl* = ll* < 1|2 = 2% + 1§ — 5+ b|I* < w*(225 + 2| @, D).

Hence, |2 — Z|| + ||§ — 7]|% < 4(k%(e2 4+ 1) + 1)]|(a, b)|?. Since (Z,) is arbitrary, we
obtain that for any ||(a,b)|| < n1,

(34)  F a0 n{(z,y) | @y - @9l <ne} € {(@9)} +7](@)|Baxy,

where 7 = 24/k2(¢3 + 1) + 1 > 0. Thus, F~! is isolated calm at the origin for (z, 7).

Conversely, assume that F'~! is isolated calm at the origin for (Z,#). Then, there
exist 7 > 0, 7, > 0, and 7, > 0 such that for any ||(a,b)|| < 71, (34) holds. Again,
by the continuity of G’(z), we know that there exists a constant 13 > 0 such that for

any ||(z,y) — (2,9)] < n2, |G'(x)|| < n3. Choose 0 < 1 < min{m/\/2n5 +2,72/2}
and 0 < g2 < m2/2. For any (a,b) € X x Y satisfying ||(a,b)|| < €1, let (Z,9) €
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Skkr(a,b) N {(z,y) | |(x,y) — (Z,7)|| < e2} be arbitrarily given. We know from (4)
that

V(@) +G(2)"(§+b) =a+ G'(T)*D,

G(z) — Uk (G(Z) + b+ g) = —b.

Thus, we know from (31) that (z,7 +b) € F~'(a + G'(Z)*b,—b). Moreover, since
I(Z,9) — (Z,9)|| < €2, we obtain that

~ =~ = = - = = 2
H(xuy—"_b) - ($7y)|| < ||(‘T7y) - (1',3/)” + ||bH <&+ ||(a7b)H < ? +e1 <12,

which implies that (%, +b) € F~(a+G'(2)*b, =b) N {(z,y) | [(z,y) — (2, 9)|| < n2}-
Again, by noting that ||(a + G'(2)*b, —b)|| < /213 + 2||(a,b)|| < 7, we know from
(34) that

R 1, _ - _
17 = 2|* + Sl = 7l* = blI* < 117 = 2[” + 17 = 5+ b]* < 7205 + 2)ll(a, B)]*

Therefore, || — 2|2 +||7—7|> < 4(r%(n2 +1)+1)|/(a, b)||>. Since (Z, ) is arbitrary, we
obtain that for any ||(a,b)| < €1, (33) holds with k = 2/72(n + 1) + 1 > 0. Thus,
SkkT is isolated calm at the origin for (Z, 7). This completes the proof. 0

Under the assumption that K is C?-cone reducible and F is locally Lipschitz
continuous around (Z,y) and is directionally differentiable at (Z,y) € X x Y, the
following result of the basic characterization on the isolated calmness of F~! follows
from Lemma 4 and [34, Equation 8(19)], directly.

LEMMA 19. Let T be a stationary point of problem (1) with (a,b) = (0,0). Suppose
that §j € M(z,0,0). Then, the set-valued mapping F~1 is isolated calm at the origin
for (Z,3) if and only if F'((Z,7); (Az, Ay)) = 0 implies (Ax, Ny) =0, i.e.,

V2 L(z;9) Az + G'(2)* Ay = 0,
(35) s L(E )0z + C(@) Ly = —  (Az,Ay) =0,
G(z)Ax — ) (G(Z) + §; G' () Az + Ay) =0

Remark 3. Note that both the normal mapping (30) and the natural mapping
(32) are locally Lipschitz continuous and directionally differentiable under the as-
sumption that K is C?-cone reducible. It is easy to check that (35) is equivalent
to ¥'((z,2); (Az,Az)) = 0 implies (Az,Az) = 0, i.e., U1 is isolated calmness at
the origin for (z,%), where z = G(%) + . Therefore, under the C?-cone reducibility
assumption, one may derive Lemma 18 by employing Lemma 19 directly.

Remark 4. Recently, under the assumption that the constraint non-degeneracy
(see (12) for the definition) holds at a stationary point, Mordukhovich, Outrata,
and Ramirez C. [26, 27| established a characterization on the isolated calmness of
the solution map of the parameter-dependent generalized equation. Moreover, when
applied to the canonically perturbed problem (1), the characterization proposed in
[26, 27] becomes (35). However, the constraint nondegeneracy assumption seems to
be crucial for the analysis conducted in [26, 27], in particular, [26, Lemma 3.1] and
[27, Proposition 3.1].

It is known from Klatte and Kummer [20], generalizing a result of Fusek [15] on
the nonlinear SDP problem, that for problem (1) (K does not need to be C?-cone
reducible) with (a,b) = (0,0), if Skkr has the Aubin property at the origin for (Z, 7),
then the constraint nondegeneracy condition (12) holds at z. Therefore, by using the
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fact that for a C%-cone reducible convex set /C, IIx is directionally differentiable at
any point y € Y [3, Theorem 7.2], we obtain from Lemma 5 the following result on
the relationship between the Aubin property? of F~! and the isolated calmness of
FL

PROPOSITION 20. Let T be a stationary point for problem (1) with (a,b) = (0,0).
Suppose that F~* has the Aubin property at the origin for (z,%) withy € M(%,0,0) #
0, then the constraint nondegeneracy condition (12) holds at T and F~1 is isolated
calm at the origin for (Z,7).

Next, under the assumption that K is C?-cone reducible, by employing Lemma
10 we are able to extend the result in [16, Theorem 4.1(i)] on the isolated calmness
of F~1,

PROPOSITION 21. Let T be a stationary point for problem (1) with (a,b) = (0,0).
If the SOSC (14) for problem (1) holds at T with respect to (a,b) = (0,0) and the
SRCQ (11) holds at T with respect to ij € M(z,0,0), then F~! is isolated calm at the

origin for (Z,y).

Proof. Let (Azx,Ay) € X x Y be arbitrarily chosen such that

V2 L(z;9) Az + G(z)* Ay =0,
(36) { L L@ 9) 00+ G (@) Dy

G'(z)Ax — ) (G(Z) + 5; G (Z) Az + Ay) = 0.
By part (i) of Lemma 10, we know from the second equation of (36) that
G'(z)Ar € C(G(Z),5) and (G (z)Ax, Ay) = —o (3, TE(G(Z), G (z)Ax)).

Thus, we have Az € C(z). By taking the inner product between Az and both sides
of the first equation of (36), respectively, we obtain that
0= (Az,V2,L(x;5)Az) + (G'(2) Az, Ay)
= (L2, V3, L(z;:9)0z) — (5, TE(G(2), G (2) Ax)).

Hence, it follows from the SOSC (14) for problem (1) with respect to (a,b) = (0,0)
that Az = 0. Therefore, (36) is reduced to

G'(z)* Ay =0,
i (G(2) + y; Ay) = 0.

By part (ii) of Lemma 10, we have
Ay € [G'(@)X + Te(G@) ngt]”.

Thus, we know from the SRCQ (11) that Ay = 0. Therefore, the only (Az, Ay) €
X x Y satisfying (36) is (Ax, Ay) = 0. By Lemma 19, we know that F~! is isolated
calm at the origin for (Z, 7). This completes the proof. O

In the following, we shall study the converse implication of Proposition 21. First,
we introduce the following result.

2The above-mentioned result of Klatte and Kummer [20] on the constraint nondegeneracy con-
dition can be easily applied to F~1 if K is a C2-cone reducible convex set.



84 CHAO DING, DEFENG SUN, AND LIWEI ZHANG

LEMMA 22. Suppose that T is a stationary point to problem (1) with (a,b) = (0,0)
and the SRCQ (11) holds at T with respect to §j € M(%,0,0). Suppose that F~1 is
isolated calm at the origin for (Z,y) and that there exists Ax € C(z) \ {0} such that

(37) (Nx, V2, L(Z;9)Az) + Y(G'(2)Az) =0,

where Y (-) is the quadratic function defined by (19). Then there exists d € C(z) such
that

(38) (V2,L(z;9) Az, d) + %(G’(i)*VT(G’(f)Am),J} <0.

Proof. Suppose that for every d € C(z), the inequality (38) fails to hold. By (37)
and noting that (VY (G'(Z)Az), G (Z)Az) = 2T (G'(z)Ax), we know that Az is an
optimal solution to the following linear conic programming problem
min (V2 L(z;§) Az, d) + 1(G'(2)*VY(G'(z2)Az),d)

(39) st. G'(z)d € C(G(Z), 7).

It is clear that the RCQ of problem (39) holds at Az, since the SRCQ (11) holds at
Z with respect to g. Therefore, we know that there exists An € ) such that

VI, L(z;9) Az + 3G (2)*VY (G (z)Ax) + G'(2)*An = 0,
(40) G'(z) Az € Cx(G(2), 1),

An € NCK(G(;E)7Q) (G'(z)Ax).

Denote Ay := An+ $VY(G/(z)Az). By noting that Az € C(z) and
(G'(2) Az, VY (G'(z)Az)) = 2T (G (z) Ax),
we obtain that
(G (@) B, D) = (G (2)57) = —o (7, TAG(), G'(5) ).
Therefore, it follows from part (i) of Lemma 10 that
G'(z)Ax — i (G(z) + 35 G' () A + Ay) = 0,

which, together with the first equations of (40), implies that 0 # (Ax, Ay) satisfies
the equations in (35). This contradicts the isolated calmness of F~! at the origin for
(Z,9). This contradiction completes the proof. d

By using Lemma 22, we show in the following proposition that the converse
implication of Proposition 21 also holds.

PROPOSITION 23. Suppose that T is a locally optimal solution to problem (1) with
(a,b) = (0,0) and the RCQ holds at Z. If F~" is isolated calm at the origin for (Z,y),
then

(i) the SRCQ (11) holds at T with respect to §;

(ii) the SOSC (14) for problem (1) with (a,b) = (0,0) holds at Z.

Proof. We first prove part (i). Assume, on the contrary, that the SRCQ (11) does
not hold at z with respect to §. Then, there exists 0 # Ay € Y such that

Ay e [G'(@)X + Te(G(@) ngt]°.
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Thus, we know from part (ii) of Lemma 10 that

G'(z)* Ay = 0,
e (G(2) +5; Ay) = 0,

which implies that F'((Z,%); (0, Ay)) = 0. Since F~! is isolated calm at the origin
for (Z,7y), we know from Lemma 19 that Ay = 0. This contradiction shows that the
SRCQ (11) holds at & with respect to .

Next, we shall prove part (ii). Since Z is a locally optimal solution to problem (1)
with (a,b) = (0,0) and the SRCQ holds at Z, we know from Theorem 7 that

(41) (d,V2,L(z;5)d) + T(G'(2)d) >0 VdeC(z),

where Y(-) is the quadratic function defined by (19). Therefore, if we assume that
the SOSC (14) does not hold at Z, then there exists Az € C(z) \ {0} such that (37)
holds. Thus, we know from Lemma 22 that there exists d € C(z) such that (38) holds.
Hence, for any 7 > 0, we have

((Az+7d), V2, L(Z;9)(Az + 7d)) + Y(G'(2)(Az + 7d))
= (Ax, V2, L(x;9) Ax) + (G (z) Az) + 72 ((d, V2, L(T;

. 9)d) + Y (G (2)d))
+27 (<VixL(a_c;y)Ax,0?>+2< "(Z)*VY(G (z)Ax) J>>

Since C(¥) is a convex cone, it follows from (38) that for 7 > 0 sufficiently small,
Az +1d € C(z) and

(A +7d), V2, L(# 9)(Dw + md)) + T(G' (@) (Az + 7d)) <0,

which is in contradiction with the second order necessary condition (41). This com-
pletes the proof. 0

By combining Propositions 21 and 23, Lemmas 18 and 22, and Theorem 17, we
obtain the following result on the characterization of the (robust) isolated calmness
of SKKT~

THEOREM 24. Let T be a feasible solution to problem (1) with (a,b) = (0,0).
Suppose that the RCQ holds at T. Let § € M(Z,0,0) # 0. Then the following
statements are equivalent:
(i) the SRCQ (11) holds at T with respect to § and the SOSC (14) holds at T for
problem (1) with (a,b) = (0,0);

(ii) Z is a locally optimal solution to problem (1) with (a,b) = (0,0) and Skkr is
robustly isolated calm at the origin for (Z,y);

(iii) Z is a locally optimal solution to problem (1) with (a,b) = (0,0) and Skkr is
isolated calm at the origin for (Z,7);

(iv) Z is a locally optimal solution to problem (1) with (a,b) = (0,0) and F~*
isolated calm at the origin for (Z,7).

Remark 5. The isolated calmness of the mapping F~! at the origin for (z,%) im-
plies the following error bound result: there exist a constant x > 0 and a neighborhood
V of (z,7) in X x Y such that
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Below, we provide a nontrivial SDP example, which is modified from the example
proposed by Zhou and So [39] for miminizing an unconstrained convex optimization
problem penalized by the nuclear norm function, to illustrate that under the RCQ,
the SOSC and the uniqueness of the Lagrange multipliers alone do not guarantee the
calmness property of SkxT at the origin for (Z, 7).

Ezample 3. Let B = [*2 2?] and b = B~1/2[*/2]. Consider the following convex
quadratic SDP problem:

(P) min gllz+b]*+¢
st. Az +tE+1+6¢e83,
t>0,

and its dual

(D) max —3AY —b|> = (I +4,Y)
st. (E,Y) <1,
Y es?,

with AY = B'/2diag(Y) for all Y € S?, A*z = Diag(B'/?z) for all 2 € R2, and
d=1[7 g] with € > 0, where E is the 2 X 2 symmetric matrix whose elements are
all one, diag(Y') denotes the column vector consisting of all the diagonal entries of
Y. The KKT system of the above convex quadratic SDP problem takes the following
form:

AY (§) — b= z(9),

<E,Y((5)> -1= S(5>7

0<t(6) L s(6) <0,

S 3Y(6) L (A*x(6) +t(0)E+1+0) e ST,
whose solution set consists of #(§) = B™Y/2[~1T¢] ¢(§) = 0, and Y () = [1'225 E} with
€] < Ve +2¢2. When ¢ = 0, it is clear that # = B~Y/2[Z1] and # = 0 is the unique
optimal solution to the unperturbed problem and (V,5) € 8% x ® with Y = [} ]
and § = 0 is the unique Lagrange multiplier. Moreover, it is easy to verify that the
SRCQ for the dual problem holds at Y with respect to its unique Lagrange multiplier
(0,0) € R x S2. Thus, we know from [16, Proposition 5.3] that the SOSC for the
primal problem holds at (z,t). Clearly, the calmness of Skkr does not hold at the
origin for (Z,t,Y, 5), since £ is on the order of e'/2. In fact, it can be checked easily
that the SRCQ for the primal problem does not hold at (z,) with respect to (Y, 5).

Next, we provide an example to demonstrate that the conditions for ensuring the
robust isolated calmness of Skt at the origin for a solution (Z,y) € Skkr(0,0) are
strictly weaker than the conditions for guaranteeing the Aubin property.

Example 4. Consider the following convex quadratic SDP problem:
min (X1 — 1) + 5(X22 — 2X12)?
(42) st. (E,X) <1,
X e &3,

We know that X = [} 9] is the unique optimal solution to problem (42) and (5,Y) =
(0,0) € R x S? is the unique corresponding Lagrange multiplier. Note that H €
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lin (7s2 (X)) if and only if H = [j} 742] with Hy; € R and Hyp € R. Thus, for any
(t,5) € R x 8%, we have

<E75€> =1,
X+H=S8,

where H = [ ~F{E:5) 0] ¢ lin (Ts2 (X)) and X = S — H € 82, which implies that the
constraint nondegeneracy (12) holds at X. Note that the SOSC (14) of problem (42)

at X takes the following form:
(d, V% L(X;5,Y)d) = d?, + (dy — 2d12)*> >0 VdeC(X)\ {0},

where C(X) = {d € §? | (E,d) <0, dz2 > 0}. Therefore, we know that for any d €
C(X),
di, + (dog —2d12)* =0 = d=0,

which implies that the SOSC holds at X. Thus, since the constraint nondegeneracy
(12) implies the SRCQ (11), we know from Theorem 24 that Skxr is robustly isolated

calm at the origin for (X,3,Y). Note that for any d € S? with dy; = 0 and 2d;5 =

daz # 0, o
(d,VixL(X;5,Y)d) = df; + (da2 — 2d12)* = 0.

Since the affine space aff{C(X)} of C(X) satisfies aff{C(X)} = S2, we know that the
strong SOSC defined in [36, Definition 3.2] does not hold at X. This implies the KKT
point (X, 3,Y) is not a strongly regular solution of the KKT system (cf. [36, Theorem
4.1]).

Note that since the quadratic SDP problem (42) is convex, we know from [9,
Proposition 5.1] (see also [24, Proposition 3.12]) that (X,5,Y) is a strongly regular
solution of the KKT system if and only if the set-valued mapping SkkT has the Aubin
property at the origin for (X,5,Y). Thus, this example also demonstrates that the
robust isolated calmness of Skxr at the origin for (X,5,Y) is a property that is
strictly weaker than the Aubin property.

It is clear from the definition that the strong regularity of the KKT solution
mapping Skt implies both the robust isolated calmness and the Aubin property of
Skkr- Furthermore, by using Proposition 20 and Theorem 24, we can provide the
following results relating to the strong regularity, the Aubin property, and the robust
isolated calmness of SkkT.

COROLLARY 25. Suppose that T is a locally optimal solution to problem (1) with
(a,b) = (0,0) and the RCQ holds at T. Let §j € M(Z,0,0) # 0 and z = G(T) + .
Consider the following statements:
(i) The KKT point (Z,y) is a strongly reqular solution to the KKT system (4)
with (a,b) = (0,0);

(ii) the mapping ¥~ has the Aubin property at the origin for (z,Zz);

(iii) the KKT solution mapping Skxt has the Aubin property at the origin for
(7.7);

(iv) the constraint nondegeneracy (12) holds at T and the SOSC (14) holds at T
for problem (1) with (a,b) = (0,0);

(v) the SRCQ (11) holds at T with respect to § and the SOSC (14) holds at Z for
problem (1) with (a,b) = (0,0);

(vi) the KKT solution mapping Skt s robustly isolated calm at the origin for
(:i" g);
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(vil) The mapping F~ is isolated calm at the origin for (Z,y).
Then it holds that

(1) = (i1) <= (1it) = (iv) = (v) <= (vi) < (vii).

As mentioned in the introduction, when the nonpolyhedral set X is the SOC or the
PSD cone, under the RCQ at a locally optimal solution Z, the KKT solution mapping
is strongly regular if and only if the constraint nondegeneracy and the strong SOSC
hold [5, 36]. This, together with Example 4 and Corollary 25, implies that in order for
the KKT solution mapping SkkT to have the Aubin property at the origin for (Z,7)
one must at least have both the constraint nondegeneracy (12) and a second order
optimality condition that is stronger than the SOSC (14) but weaker (not necessarily
strictly weaker) than the strong SOSC as being studied in [5, 36] for the nonlinear
SOC programming and SDP problems.?

5. Conclusions. In this paper, for a large class of canonically perturbed conic
programming problems, we establish a complete characterization of the robust iso-
lated calmness of the KKT solution mapping SkkT, namely, under the RCQ at a
locally optimal solution, the KKT solution mapping is robustly isolated calm if and
only if both the SRCQ and the SOSC hold. This extension from the polyhedral
sets to the case of nonpolyhedral but C?-cone reducible convex sets is quite satis-
factory. Nevertheless, there are many other unresolved stability issues in conic opti-
mization even if K is C?-cone reducible. For example, the relationship between the
strong regularity and the Aubin property of Skxr is one important stability issue for
the general nonconvex optimization problems with nonpolyhedral cone constraints.
For problem (1) with a C2-cone reducible convex set, at a locally optimal solution
both the constraint nondegeneracy and the SOSC must hold in order to have the
Aubin property. This means, at a locally optimal solution, if for the nonconvex op-
timization problem (1) with & being the SOC cone or the PSD cone or something
similar, the Aubin property holds for the corresponding KKT solution mapping but
not the strong regularity, then a second order optimality condition weaker than the
strong SOSC but stronger than the SOSC must hold. It would be interesting to
know if one can apply Mordukhovich’s excellent coderivative criterion on the Aubin
property of Skt [34, Theorem 9.40] to derive an exact form of the second order
optimality condition to be sought, together with the constraint nondegeneracy, to
characterize the non-singularity of the coderivative of Robinson’s normal map ¥ for
understanding the Aubin property for the nonconvex problem (1) with a nonpolyhe-
dral set. Also, another important unresolved issue is to provide conditions ensuring
the calmness property of Skt for problem (1) without the uniqueness of the KKT
solutions.
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3In [29], the authors proved the equivalence between the Aubin property and the strong regularity
for the nonlinear SOC programming problem at a locally optimal solution. There was a gap in the
original proof of [29, Theorem 21] on the last case (the 6th case). However, fortunately, this gap has
recently been fixed in [28].
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