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Abstract

In this paper, we propose a randomly projected convex clustering model for clustering a
collection of n high dimensional data points in Rd with K hidden clusters. Compared to
the convex clustering model for clustering original data with dimension d, we prove that,
under some mild conditions, the perfect recovery of the cluster membership assignments of
the convex clustering model, if exists, can be preserved by the randomly projected convex
clustering model with embedding dimension m = O(ϵ−2 log(n)), where ϵ > 0 is some
given parameter. We further prove that the embedding dimension can be improved to be
O(ϵ−2 log(K)), which is independent of the number of data points. We also establish the
recovery guarantees of our proposed model with uniform weights for clustering a mixture of
spherical Gaussians. Extensive numerical results demonstrate the robustness and superior
performance of the randomly projected convex clustering model. The numerical results
will also demonstrate that the randomly projected convex clustering model can outperform
other popular clustering models on the dimension-reduced data, including the randomly
projected K-means model.
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1. Introduction

Clustering is a fundamental and important problem in data science. Among many others,
K-means is arguably the most popular algorithm. In practice, the K-means algorithm may
suffer from the nonconvexity of the model and it is sensitive to the initialization. More
critically, the K-means algorithm requires the number of clusters as a prior, which is not
practical in many applications. Recently, researchers have proposed the convex clustering
model, which aims to overcome the aforementioned challenges (Pelckmans et al., 2005;
Hocking et al., 2011; Lindsten et al., 2011).

Given a collection of n data points with d features A = {a1,a2, . . . ,an} ⊆ Rd, the
general weighted convex clustering model (CCM) solves the following convex optimization
problem

min
x1,...,xn∈Rd

1

2

n∑
i=1

∥xi − ai∥2 + γ
∑
i<j

wij ∥xi − xj∥q , (CCM)

where wij = wji ≥ 0 are given weights depending on the input data A, γ > 0 is a tuning
parameter that controls the strength of the fusion penalty, and ∥ · ∥q is the vector q-norm
(q ≥ 1). In this paper, we focus on the convex clustering model with q = 2. We denote ∥ · ∥
as the vector 2-norm.

When applying the convex clustering model (CCM) for a given γ̄, after obtaining the
solution x∗

i (γ̄), i ∈ [n] to the model (CCM), we will assign points ai and aj into the
same cluster if x∗

i (γ̄) = x∗
j (γ̄). As one can realize, when γ = 0, we have x∗

i (0) = ai,
which implies we will have n clusters if the input data points are distinct. As we increase
the value of γ, some x∗

i (γ) will become identical due to the fusion penalty terms in the
model. In practice, we will solve it for a sequence of values for the parameter γ, i.e.,
0 ≤ γ1 < γ2 < · · · < γT < +∞, and obtain a clustering path of the data points. Importantly,
Chi and Lange (2015) have proved that x∗(γ) is a continuous function of γ for γ ≥ 0. While
the theoretical guarantees of the convex clustering model depend on the exact solution to
(CCM) and an exact checking for x∗

i (γ) = x∗
j (γ), only approximate solutions x̃i(γ), i ∈ [n]

can be obtained from iterative algorithms in general. Also, in practice, cluster assignments
based on the inexact checking rule up to a given tolerance ϵclust > 0 are widely adopted, i.e.,
points ai and aj are assigned into the same cluster if and only if ∥x̃i(γ) − x̃j(γ)∥ < ϵclust.
Interested readers can refer to (Jiang and Vavasis, 2021) for more detailed discussions.

A good choice of the weights wij can enhance the performance of the model (CCM). A
direct choice of the weights is setting wij = 1 for all 1 ≤ i < j ≤ n, and the resulting model
is usually called the convex clustering model with uniform weights. In practice, the following
k-nearest neighbors-based weights are popular due to their robustness and computational
efficiency:

wij =

{
exp(−ϕ ∥ai − aj∥2) if (i, j) ∈ EA(k),
0 otherwise,

(1)

where EA(k) = {(i, j) | if ai (or aj) is in aj ’s (or ai’s) k-nearest neighbors, 1 ≤ i ̸= j ≤
n}.

Extensive investigation has been conducted for the convex clustering model in recent
years and impressive progress has been achieved from the perspectives of both the recovery
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properties and efficient numerical algorithms. From the theoretical understanding perspec-
tive, some deterministic and statistical cluster recovery guarantees have been established
(Zhu et al., 2014; Tan and Witten, 2015; Panahi et al., 2017; Radchenko and Mukherjee,
2017; Chiquet et al., 2017; Chi and Steinerberger, 2019; Sun et al., 2021; Chi et al., 2020;
Jiang et al., 2020; Dunlap and Mourrat, 2022). More specifically, under some mild con-
ditions, there exists a nonempty interval of the tuning parameter γ such that the convex
clustering model can perfectly recover the cluster membership of the data (Panahi et al.,
2017; Sun et al., 2021). From the perspective of optimization algorithms, impressive progress
has been achieved in solving the convex clustering model with a large number of data points
but with moderate feature dimensions (say with d ≤ 100 in (CCM)). Along this direction,
Chi and Lange (2015) adopted the alternating direction method of multipliers (ADMM) and
proposed an alternating minimization algorithm (AMA). Later, Yuan et al. (2018) designed
a semismooth Newton based augmented Lagrangian (SSNAL) method that can solve the
convex clustering model efficiently with high accuracy. More recently, by taking advantage
of the structured sparsity of the convex clustering model, Yuan et al. (2022) proposed di-
mension reduction techniques (in the sense of the number of data points) called adaptive
sieving (AS) and enhanced adaptive sieving (EAS), which further accelerate SSNAL (and
other algorithms). Consequently, the existing algorithms can be scalable with respect to the
number of data points. However, it is still very challenging to solve the convex clustering
model when the dimension of the data features is high (i.e., d is large in (CCM)).

In this paper, we will design a dimension reduction technique for overcoming the compu-
tational challenges of the convex clustering model for clustering high dimensional data. Our
approach is inspired by the Johnson-Lindenstrauss (JL) lemma (Johnson and Lindenstrauss,
1984) and the fact that the recovery guarantees of the convex clustering model mainly de-
pend on the pairwise distances among the data points and centroids. In particular, we will
propose a randomly projected (weighted) convex clustering model which clusters the data
with a much smaller dimension obtained by applying a random projection mapping to the
input data. Among other advantages, we want to mention that random projection is a com-
putationally efficient approach to obtaining the embedded data. Importantly, we will prove
that the randomly projected convex clustering model will preserve the recovery guarantees
of the original convex clustering model. In other words, if there exists a nonempty interval
of the parameter γ such that the convex clustering model (CCM) perfectly recovers the
cluster memberships of the input data, so will be the randomly projected model in high
probability. This is a very interesting and inspiring result since we can obtain the clus-
tering results of the original high dimensional data by solving a more tractable randomly
projected convex clustering model with much smaller dimensions. Moreover, we will es-
tablish the cluster recovery guarantees for the randomly projected convex clustering model
where the embedding dimension can be independent of the number of data points. Exten-
sive numerical experiment results will be presented in this paper to justify the theoretical
guarantees and to demonstrate the superior performance and robustness of the proposed
model. To further demonstrate the superior performance of the randomly projected convex
clustering model, we also compare its performance to other popular clustering models on
the embedding data.

We summarize the main contributions of this paper as follows:
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1. We propose a randomly projected convex clustering model that is more computation-
ally tractable than the convex clustering model (CCM).

2. We establish the recovery guarantees of the randomly projected convex clustering
model under mild conditions. We further prove that the embedding dimension can be
independent of the number of data points.

3. Additionally, we establish the recovery guarantees of the randomly projected convex
clustering model with uniform weights for clustering a mixture of spherical Gaussians.

4. We conduct extensive numerical experiments to justify the established theoretical
guarantees and demonstrate the superior performance of the proposed randomly pro-
jected convex clustering model.

The rest of the paper is organized as follows: In Section 2, we introduce some concepts
and notation and then review some necessary preliminary results of the recovery guarantees
of the convex clustering model. In Section 3, we will propose a randomly projected convex
clustering model and prove its theoretical recovery guarantees. In Section 4, we will present
recovery guarantees for clustering a mixture of spherical Gaussians using the randomly
projected convex clustering model with uniform weights. We will then present the numerical
results in Section 5. We will conclude the paper and include some discussion of future
research directions in Section 6.

2. Convex Clustering Model

In this section, we introduce some preliminary results on the convex clustering model, which
are necessary for the discussion of the rest of the paper. In this paper, we focus on the
following problem setting.

General problem setting: Cluster a collection of n given data points A = {a1, . . . ,an} ⊆
Rd with a hidden clustering partition V = {V1, V2, . . . , VK}.

We define some notation in Table 1, which will be commonly used later in this paper.

We summarize the definition of w
(α)
i , w(α,β), w̄(α), and µ

(α)
ij in Table 1. The meanings of

these quantities can be interpreted as follows:

1. w
(α)
i represents the coupling between point ai and the α-th cluster, and w(α,β) repre-

sents the coupling between the α-th cluster and the β-th cluster.

2. w̄(α) measures the total coupling between the α-th cluster and all other K−1 clusters.

3. µ
(α)
ij estimates the total difference in the couplings between two distinct points ai and

aj in the α-th cluster with all other K − 1 clusters.

Following the settings in (Sun et al., 2021), we assume the following assumptions hold
throughout this paper.

Assumption 1 In the general problem setting, the mean vector a(0) and the centroids
a(1), . . . ,a(K) are all distinct.
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Table 1: Some commonly used notation. In this table, we assume by default that 1 ≤ α ̸=
β ≤ K.

Notation Definition

Iα {i | ai ∈ Vα}
nα cardinality of Iα

[m] for a given integer m > 0 [m] := {1, 2, . . . ,m}
a(α) 1

nα

∑
i∈Iα

ai

a(0) 1
n

∑n
i=1 ai

w(α,β) ∑
i∈Iα

∑
j∈Iβ

wij

w̄(α) 1
nα

∑
1≤l≤K,l ̸=α w(α,l)

w
(α)
i (i ∈ [n])

∑
j∈Iα

wij

µ
(α)
ij (i, j ∈ Iα)

∑
1≤l≤K,l ̸=α

∣∣∣w(l)
i − w

(l)
j

∣∣∣
C(n, k) (1 ≤ k ≤ n) n!

k!(n−k)!

Assumption 2 The inequality n≫ K holds, where n is the number of data points and K
is the number of hidden clusters.

Assumption 3 The specified weights wij in the model (CCM) satisfy

wij > 0 and nαwij > µ
(α)
ij , ∀i, j ∈ Iα, 1 ≤ α ≤ K. (2)

The above assumptions are reasonable for the clustering problem. A quick comment is that
Assumption 3 holds automatically for uniform weights. Now, we introduce some definitions
which are necessary for the rest of the paper.

Definition 1 We say that a map ψ : Rd → Rd̄ perfectly recovers V on the data A if
ψ (ai) = ψ (aj) is equivalent to ai and aj belonging to the same Vα for some 1 ≤ α ≤ K.

Definition 2 We call a partition W = {W1, . . . ,WL} of A a coarsening of V if there exists
a partition {α1, . . . , αL} of [K] such that Wl =

⋃
i∈αl

Vi for all 1 ≤ l ≤ L. We call W a
non-trivial coarsening of V if L > 1.

Definition 3 We define {x∗
i (γ)}

n
i=1 as the optimal solution of the convex clustering model

(CCM) at a given γ ≥ 0, and define the map ϕγ (ai) = x∗
i (γ) for all i = 1, . . . , n.

The following theorem (Sun et al., 2021) establishes the recovery guarantees of the convex
clustering model.

Theorem 1 (Sun et al., 2021, Theorem 5) In the general problem setting, consider the model
(CCM). Define

γmin := max1≤α≤K maxi,j∈Iα

{
∥ai−aj∥

nαwij−µ
(α)
ij

}
, γmax := min1≤α<β≤K

{
∥a(α)−a(β)∥
w̄(α)+w̄(β)

}
,

γmax 2 := max1≤α≤K
∥a(0)−a(α)∥

w̄(α) , r := γmax
γmin

, r2 := γmax 2
γmin

.

(3)

Under Assumption 1 and Assumption 3, we have
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1. If r > 1 and γ ∈ [γmin, γmax), then the map ϕγ perfectly recovers V.

2. If r2 > 1 and γ ∈ [γmin, γmax 2), then the map ϕγ recovers a non-trivial coarsening of
V.

Here, we include some remarks for Theorem 1.

1. On the one hand, the lower bound γmin characterizes the maximum weighted distance
between the data points in the same cluster. On the other hand, the upper bound
γmax characterizes the minimum weighted distance between different centroids. Thus,
we can expect perfect recovery to be practically possible for the weighted convex
clustering model if the upper bound is larger than the lower bound. Moreover, it
indicates that the given data is difficult to cluster if γmin > γmax.

2. The theoretical values of γmin, γmax, and γmax 2 depend on the underlying partition
of the given data, which cannot be calculated in advance. However, we want to
emphasize that: 1) these values are well-defined for theoretical analysis; 2) we can
generate a clustering path in practice by taking a sequence of γ although we do not
know the perfect recovery interval. It is a challenging open question to estimate the
values of γmin, γmax, and γmax 2 empirically, which is regarded as a future research
question of this paper.

3. A Randomly Projected Convex Clustering Model

The model (CCM) has promising recovery guarantees. However, solving the model can be
computationally challenging, especially when the feature dimension d is high. In this section,
we will propose a randomly projected convex clustering model with much smaller feature
dimensions. Moreover, we will prove that the recovery guarantees will be preserved with a
high probability for the random projected convex clustering model. More specifically, for
the given collection of data points A = {a1, . . . ,an} ⊆ Rd considered in the general problem
setting, we solve the following projected convex clustering model

min
X̂∈Rm×n

1

2

n∑
i=1

∥x̂i −Πai∥2 + γ
∑
i<j

wij ∥x̂i − x̂j∥ , (RPCCM)

where Π ∈ Rm×d is a given random matrix and m < d is the embedding dimension. In this
paper, we will choose Π according to Johnson-Lindenstraus (DJL) lemma to preserve the
distances between the concerned pairs of points. We call the corresponding model (RPCCM)
a randomly projected convex clustering model. Our model (RPCCM) is essentially the
model (CCM) applied to the embedded data {Πai}ni=1. This allows us to utilize existing
algorithms developed for the model (CCM), thereby enhancing the practical usefulness of
the model (RPCCM).

3.1 Johnson-Lindenstrauss Lemma and the Random Projection

In this section, we introduce the Johnson-Lindenstrauss (JL) lemma (Johnson and Linden-
strauss, 1984), which is a key tool for this paper. Consider a collection of high-dimensional
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data points X = {x1, . . . ,xn} ⊆ Rd, the JL lemma shows the existence of a mapping
f : Rd → Rm such that for all points xi ̸= xj ∈ X, ∥xi−xj∥ are approximately maintained
in a m dimensional space within a distortion tolerance ϵ ∈ (0, 1). More surprisingly, the
required embedding dimension m = O(ϵ−2 log(n)) is independent of d.

We define some notations in Table 2 for further convenience.

Table 2: Some additional notation for random matrices.

Notation Definition

ϵ accuracy parameter in JL lemma, ϵ ∈ (0, 1)

δ confidence parameter in JL lemma, δ ∈ (0, 1
2
)

Dϵ,δ a DJL distribution over Rm×d (m will be specified)

C the absolute constant in the DJL lemma

Π ∼ Dϵ,δ Π ∈ Rm×d is randomly drawn from Dϵ,δ

Rij independent random variables with E [Rij ] = 0,Var [Rij ] = 1 and the same sub-Gaussian norm κ

R R ∈ Rm×d is a sub-Gaussian matrix with entries Rij (m ≤ d)

Π = 1√
m
R Π ∈ Rm×d is randomly drawn from the distribution 1√

m
R (m ≤ d)

sk(Π) k-th largest singular value of Π (k ∈ [m])

C2
κ C2

κ > 0 is a constant only depends on κ

S̄(m, d, t)
√
d+C2

κt√
m

+ C2
κ (t > 0)

S(m, d, t)
√
d−C2

κt√
m

− C2
κ (t > 0)

Lemma 1 (JL lemma (Johnson and Lindenstrauss, 1984, Lemma 1)) For any given col-
lection of n data points X = {x1, . . . ,xn} ⊆ Rd and any ϵ ∈ (0, 1), there exists an ϵ- isometry
embedding f : Rd → Rm with m = O

(
min{d, ϵ−2 log(n)}

)
. This implies ∀ xi,xj ∈ X,

(1− ϵ)∥xi − xj∥ ≤ ∥f(xi)− f(xj)∥ ≤ (1 + ϵ)∥xi − xj∥. (4)

We call a mapping f satisfies (4) an ϵ-JL Transform (or ϵ-JLT in short) on X. The mapping
f can be found in randomized polynomial time (Dasgupta and Gupta, 2003). Moreover,
if the mapping f must be linear, then m = Ω

(
min{d, ϵ−2 log(n)}

)
is optimal (Larsen and

Nelson, 2016). The following Distributional Johnson-Lindenstrauss (DJL) lemma is useful.

Lemma 2 (DJL lemma) For any ϵ ∈ (0, 1), δ ∈ (0, 1/2) and an integer d > 1, there
exists a distribution Dϵ,δ over matrices Π ∈ Rm×d for m ≥ Cϵ−2 log(1/δ), where C > 0 is
an absolute constant, such that for any z ∈ Rd with ∥z∥ = 1,

PΠ∼Dϵ,δ
[|∥Πz∥ − 1| > ϵ] < 2δ. (5)

To be more specific, the distribution Dϵ,δ with m ≥ Cϵ−2 log(1/δ) satisfies:

1. PΠ∼Dϵ,δ
[∥Πz∥ > 1 + ϵ] < δ, for any ϵ > 0.

2. PΠ∼Dϵ,δ
[∥Πz∥ < 1− ϵ] < δ, for any ϵ ∈ (0, 1).

We call a distribution Dϵ,δ that satisfies (5) a DJL distribution, and denote Π ∼ Dϵ,δ if Π
is randomly sampled from a DJL distribution Dϵ,δ.
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Remark 1 The DJL lemma can be generalized to a set X ⊆ Rd of n data points by taking
the union bound over x ∈ X. In particular, if we take δ = 1

np , where p > 2, then the
probability for ensuring an ϵ-isometry property of Π ∼ Dϵ,δ on X is over 1− 2C(n, 2) 1

np >
1− 1

np−2 .

Remark 2 The absolute constant C in the DJL lemma is independent of d, n, ϵ, δ. An
empirical study (Venkatasubramanian and Wang, 2011) suggests that m ≥ ⌈ϵ−2 log(np)⌉
would be sufficient for np data points. As a result, it suffices to set m ≥ ⌈2ϵ−2 log(n)⌉ to
ensure an ϵ-isometry mapping on the given input data A with high probability. We will
follow this setting in experiments.

The choices of Dϵ,δ of the DJL lemma have been extensively explored, including the
sub-Gaussians (Indyk and Motwani, 1998; Achlioptas, 2003; Matoušek, 2008), the Fast JL
Transform (Ailon and Chazelle, 2009; Ailon and Liberty, 2009, 2013), and the Sparse JL
Transform (Dasgupta et al., 2010; Kane and Nelson, 2010, 2014; Cohen et al., 2018). For
simplicity, in this paper, we will follow (Matoušek, 2008, Theorem 3.1) and take the scaled
sub-Gaussian matrix Π = 1√

m
R ∈ Rm×d as the linear random projection, where Rij are

independent random variables with zero mean and a uniform sub-Gaussian tail. Next, we
include a useful lemma to estimate the singular values of the sub-Gaussian matrices, which
is a direct consequence of Theorem 4.6.1 and Lemma 3.4.2 in (Vershynin, 2018).

Lemma 3 (Two-sided bound on sub-Gaussian matrices) Let Π = 1√
m
R ∈ Rm×d

(m ≤ d), where Rij are independent random variables with E [Rij ] = 0,Var [Rij ] = 1 and the
sub-Gaussian norm κ := ∥Rij∥ψ2 := inf{s > 0 | E[exp(R2

ij/s
2)] ≤ 2}. Let sl(Π) be the l-th

largest singular value of Π for l ∈ [m]. For any t ≥ 0, with probability over 1− 2 exp
(
−t2
)
,∣∣∣sl(Π)−√d/m∣∣∣ ≤ C2

κ(1 +
t√
m
), l ∈ [m], (6)

where C2
κ > 0 is an absolute constant that only depends on κ and is independent of d, n,m.

In other words, define

S̄(m, d, t) =

√
d+ C2

κt√
m

+ C2
κ, S(m, d, t) =

√
d− C2

κt√
m

− C2
κ, (7)

then with probability at least 1− 2 exp
(
−t2
)
,

S(m, d, t) ≤ sl(Π) ≤ S̄(m, d, t), l ∈ [m]. (8)

If we further let Π = 1√
m
G ∈ Rm×d be a scaled Gaussian matrix, i.e., Gij are i.i.d.

standard normal variables, the following lemma provides more explicit bounds on the sin-
gular values of Π, which directly follows Theorem II.13 in (Davidson and Szarek, 2001) and
Theorem 2.6 in (Rudelson and Vershynin, 2010).

Lemma 4 (Two-sided bound on gaussian matrices) Let Π = 1√
m
G ∈ Rm×d (m ≤

d), where Gij are independent standard normal variables, then the two-side bounds S̄(m, d, t)
and S(m, d, t) defined in (7) could be

S̄(m, d, t) =

√
d+ t√
m

+ 1, S(m, d, t) =

√
d− t√
m

− 1. (9)
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3.2 Cluster Recovery Guarantees of the Model (RPCCM) for the General
Problem Setting

Next, we will establish the cluster recovery guarantees of the model (RPCCM) for the
general problem setting. For later convenience, we introduce some necessary notation for
the rest of the paper.

Definition 4 We define {x̂∗
i (γ)}

n
i=1 as the optimal solution of the model (RPCCM) with

a randomly sampled projection matrix Π ∈ Rm×d at a given γ ≥ 0, and define the map
ϕ̂γ (ai) = x̂∗

i (γ) for all i = 1, ..., n.

Definition 5 In the general problem setting, consider the model (RPCCM) with some spec-
ified weights wij = wji ≥ 0 (1 ≤ i ̸= j ≤ n) and a randomly sampled projection matrix
Π ∈ Rm×d (for some m ≥ 1). Without explicitly mentioning the dependence on Π, we
define

γ̂min := max1≤α≤K maxi,j∈Iα

{
∥Π(ai−aj)∥
nαwij−µ

(α)
ij

}
, γ̂max := min1≤α<β≤K

{
∥Π(a(α)−a(β))∥
w̄(α)+w̄(β)

}
.

(10)

It follows Theorem 1 that if γ̂min < γ̂max for a specific Π, the model (RPCCM) performs
the perfect cluster recovery in the interval of γ ∈ [γ̂min, γ̂max). This raises a natural question:
Provided γmin < γmax, can we ensure that the condition γ̂min < γ̂max is satisfied with high
probability? A key observation is that the recovery guarantees of the convex clustering
model (e.g., Theorem 1) mainly depend on the distances between data points within the
same cluster (see γmin) and the distances between the centroids of different clusters (see
γmax). Therefore, if these distances can be properly preserved with some sufficiently small
distortions, the recovery guarantees can be inherited by the model (RPCCM).

Let XA = {ai − aj | 1 ≤ i < j ≤ n}, XV(A) = ∪Kα=1{ai − aj | i, j ∈ Iα, i ̸= j}, and
XC(A) =

{
a(α) − a(β) | 1 ≤ α < β ≤ K

}
. The following proposition shows that a random

projection by Π ∈ Rm×d with m = O(ϵ−2 log(n)) can preserve all the norms in XV(A) up
to a multiplicative (1 + ϵ) factor, while simultaneously preserving all the norms in XC(A)

down to a multiplicative (1− ϵ2) factor, where ϵ2 < ϵ will be specified in the proposition.

Proposition 1 In the general problem setting, let p1, p2 > 2, and assume that C12 :=√
log(K)p2
log(n)p1

< 1. For any ϵ ∈ (0, C−1
12 ), let ϵ2 = C12ϵ. Let δ = 1

np1 and Π ∼ Dϵ,δ : Rd → Rm

with m ≥ p1Cϵ
−2 log(n), then with probability over 1− 1

2np1−2 − 1
2Kp2−2 ,

∥Π(ai − aj)∥ ≤ (1 + ϵ)∥ai − aj∥, i, j ∈ Iα, 1 ≤ α ≤ K, (11a)

∥Π(a(α) − a(β))∥ ≥ (1− ϵ2)∥a(α) − a(β)∥, 1 ≤ α ̸= β ≤ K. (11b)

Proof On the one hand, for any ϵ ∈ (0, C−1
12 ) and δ > 0, let Π ∼ Dϵ,δ with m ≥

Cϵ−2 log(1/δ), the failure probability of (11a) is at most |XV(A)|δ. Note that |XV(A)| =∑K
α=1C(nα, 2) < C(n, 2). If we take δ = 1

np1 and m ≥ Cϵ−2 log(1/δ) = p1Cϵ
−2 log(n),

where p1 > 2, the failure probability of (11a) is at most

|XV(A)|δ < C(n, 2)
1

np1
<

1

2np1−2
.
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On the other hand, let δ2 = 1
Kp2 and ϵ2 = C12ϵ, then 0 < ϵ2 < min{ϵ, 1}, and

we have p1Cϵ
−2 log(n) = p2Cϵ

−2
2 log(K) = Cϵ−2

2 log(1/δ2). As a result, if we take m ≥
p1Cϵ

−2 log(n), the probability that (11b) fails is at most

|XC(A)|
1

Kp2
= C(K, 2)

1

Kp2
<

1

2Kp2−2
.

Taking a union bound, the probability that conditions (11) are satisfied is at least

1− |XV(A)|δ − |XC(A)|δ2 > 1− 1

2np1−2
− 1

2Kp2−2
.

The intuition behind Proposition 1 is, for a given m, since |XV(A)| ≫ |XC(A)|, the
distortion ϵ2 in (11b) could be much smaller compared to the distortion ϵ in (11a). We
are motivated by the DJL lemma to estimate ϵ2 with ϵ2 = C12ϵ. Importantly, we re-
strict ϵ ∈ (0, C−1

12 ) to ensure ϵ2 ∈ (0, 1), which guarantees that the projected centroids{
Πa(1), . . . ,Πa(K)

}
are distinct with high probability.

Remark 3 Indeed, under the same conditions in Proposition 1, the following stronger result
holds:

∥Π(ai − aj)∥ ≤ (1 + ϵ)∥ai − aj∥, 1 ≤ i < j ≤ n. (12)

This stronger result improves on (11a), allowing for a practical assessment of the sampled
random projection matrix Π. More discussion will be found in Proposition 2.

Before we present the theoretical recovery guarantees of (RPCCM), we numerically ver-
ify the theoretical bounds obtained in Proposition 1 using a simulated data A0 ∈ R900×1024

with K = 8 clusters. On this sampled data A0, we have that C12 =
√
log(8)/ log(1024) =√

3/10. We conduct numerical tests with ϵ ∈ [0.2 : 0.1 : 1.8] ⊆ (0, 1
C12

) and set m =

⌈2ϵ−2 log(n)⌉. For each pair of (ϵ,m), we randomly sampled 1000 random projection ma-
trices Π for verification. We calculate the average maximum distortion ranges in XA0 and
XV(A0), as well as the average minimum distortion range in XC(A0), respectively. The
bounds are clearly illustrated by the numerical results presented in Figure 1.

(a) Distortion in XA0 (b) Distortion in XV(A0) (c) Distortion in XC(A0)

Figure 1: Verification on a simulated data A0 with d = 900, n = 1024, K = 8.

The next theorem shows the theoretical recovery guarantees of the model (RPCCM).

10
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Theorem 2 Consider the general problem setting and the models (CCM) and (RPCCM)
with the same specified weights wij = wji ≥ 0. Let p1, p2 > 2, and we assume that C12 :=√

log(K)p2
log(n)p1

< 1 and

√
p2C log(K)

d < 1, and thus

√
p1C log(n)

d < 1
C12

. Define

ϵmin =

√
p1C log(n)

d
, ϵsup =

r − 1

C12r + 1
, (13)

where r is as defined in (3). If r > 1+ϵmin
1−C12ϵmin

, then ϵmin < ϵsup. For any (ϵ, γ) such that

ϵ ∈ (ϵmin, ϵsup), γ ∈ [(1 + ϵ)γmin, (1− C12ϵ)γmax) , (14)

let δ = 1
np1 and Π ∼ Dϵ,δ with m ∈ [p1Cϵ

−2 log(n), d), then with probability over 1− 1
2np1−2 −

1
2Kp2−2 , the map ϕ̂γ perfectly recovers V.

Proof It directly follows Proposition 1 that, with probability over 1− 1
2np1−2 − 1

2Kp2−2 , the
following statements hold:

(i) The centroids
{
Πa(1), . . . ,Πa(K)

}
of the embedded data are distinct.

(ii) The parameters γ̂min and γ̂max defined in (10) satisfy the following inequalities:

γ̂min ≤ (1 + ϵ)γmin, (1− C12ϵ)γmax ≤ γ̂max.

The above implies that

[(1 + ϵ)γmin, (1− C12ϵ)γmax) ⊆ [γ̂min, γ̂max) . (15)

Now, we prove the theorem. We claim here that it is sufficient to show: if r > 1+ϵmin
1−C12ϵmin

,
then ϵmin < ϵsup, and for any ϵ ∈ (ϵmin, ϵsup), the interval [(1 + ϵ)γmin, (1− C12ϵ)γmax) is
nonempty. In fact, if [(1 + ϵ)γmin, (1− C12ϵ)γmax) is nonempty, then by the first inclusion
of (15), [γ̂min, γ̂max) is nonempty. Applying Theorem 1 to the embedded data ΠA implies
that for any γ ∈ [γ̂min, γ̂max), the map ϕ̂γ̂ perfectly recovers V.

On the one hand, we have

r > 1+ϵmin
1−C12ϵmin

=⇒ (1− C12ϵmin)r > 1 + ϵmin

=⇒ ϵmin <
r−1

C12r+1 = ϵsup.

This implies that the interval (ϵmin, ϵsup) is nonempty.
On the other hand, we have

ϵ < ϵsup =⇒ ϵ < r−1
C12r+1

=⇒ 1+ϵ
1−C12ϵ

< r

=⇒ 1+ϵ
1−C12ϵ

< γmax

γmin

=⇒ (1 + ϵ)γmin < (1− C12ϵ)γmax.

Thus, we have proved the theorem.

11
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In practice, only pairwise distances between all input data points are checkable after a
random projection matrix Π is sampled (i.e., the condition (12), which covers the condition
(11a)). The condition (11b) is uncheckable due to the lack of the true cluster membership
of data A. The next corollary shows that the condition (11b) can be satisfied in high
probability provided (12) holds.

Proposition 2 In the general problem setting, let p1, p2 > 2, and assume that C12 :=√
log(K)p2
log(n)p1

< 1. For any ϵ ∈ (0, C−1
12 ), let ϵ2 = C12ϵ, then ϵ2 < min{1, ϵ}. Let δ = 1

np1

and Π ∼ Dϵ,δ with m ≥ p1Cϵ
−2 log(n). Let E1 be the event that Π satisfies (12) and E2 be

the event that Π satisfies (11b), respectively. Then, the conditional probability P [E2 | E1]
satisfies

P [E2 | E1] >

(
1− 1

2np1−2
− 1

2Kp2−2

)
/

(
1− 1

2np1−2

)
. (16)

Proof Direct calculation gives that

P [E2 | E1] = 1− P [Ec2 | E1]

= 1− P[E1
⋂
Ec

2]
P[E1]

≥ 1− P[Ec
2]

P[E1]

≥ 1− C(K,2)K−p2

1−C(n,2)n−p1

> 1−
1

2Kp2−2

1− 1

2np1−2

=
(
1− 1

2np1−2 − 1
2Kp2−2

)
/
(
1− 1

2np1−2

)
.

The following corollary is useful in practice and its proof can be found in A.1.

Corollary 1 Let Π ∼ Dϵ,δ be as described in Theorem 2. If the random matrix Π satisfies
(12), then, under the same assumptions, the statements of Theorem 2 hold with probability
at least

(
1− 1

2np1−2 − 1
2Kp2−2

)
/
(
1− 1

2np1−2

)
.

Here, we want to make some remarks on the obtained recovery guarantees of the model
(RPCCM).

1. The embedding dimension m only depends on ϵ, n, and p1, but it is independent of
the data dimension d. Also, m grows very slowly with respect to n (in O(log(n))).

2. We derive the lower bound ϵmin and the upper bound ϵsup of ϵ for perfect recovery of
the model (RPCCM). In particular, the lower bound ϵmin can be very small for high
dimensional data. The upper bound ϵsup depends on the ratio of γmax and γmin, and
it is independent of the scale of the data.

3. The weights used in the models (CCM) and (RPCCM) in Theorem 2 are identical,
which is necessary for the current proof of Theorem 2. In numerical experiments,

12
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we will follow a popular practical setting of weights (1). Our numerical results show
that the performance under this setting of weights is robust, and the time cost of
weight construction is minimal compared to the run-time cost by solving the model
along a sequence of values of γ to generate a clustering path. It is interesting to
explore theoretical guarantees using weights constructed from the embedded data.
The potential changes of edges in the weight graph pose challenges for establishing
theoretical guarantees, and a potential approach is to leverage the effectiveness of
constructing an approximate k-nearest-neighbor graph using random projections. We
would like to take this as a future research direction.

4. Dimension reduction based on the JL lemma has also been investigated for the K-
means model (Cohen et al., 2015). However, for the K-means model, only the cost
(the optimal objective function value of the K-means model) can be preserved up to
a tolerance ϵ > 0. Here, we prove that the perfect recovery guarantee of the model
(CCM) can be inherited. A comparison of the empirical performance between the
randomly projected K-means model and the model (RPCCM) can be found later in
the numerical experiments.

The embedding dimension m in Theorem 2 depends on n of the order O(log(n)). This
arises as a consequence of the requirement to preserve pairwise distances for data points at
the order of n2 (see (11a)). Next, we will further show that m can be O(log(K)), which
is independent of n. The key insights are that the ϵ-JL transform is linear and we can
upper-bound the distortion of the pairwise distances directly by its spectral norm (Lemma
3). The details of the recovery guarantees can be found in the next theorem.

Theorem 3 Consider the general problem setting and the models (CCM) and (RPCCM)

with the same specified weights wij = wji ≥ 0. We assume p2 > 2 and

√
p2C log(K)

d < 1.

Define C0 =
√
d+2C2

κ√
p2C log(K)

and

ϵ̃min =

√
p2C log(K)

d , ϵ̃sup = r−C2
κ

C0+r
, (17)

where r is as defined in (3). If r >
1+C2

κ+
2C2

κ√
d

1−ϵ̃min
, then ϵ̃min < ϵ̃sup. For any (ϵ, γ) such that

ϵ ∈ (ϵ̃min, ϵ̃sup), γ ∈
[
S̄(m, d, 2)γmin, (1− ϵ)γmax

)
, (18)

let δ = 1
Kp2 , and let Π = 1√

m
R ∈ Rm×d and S̄(m, d, 2) be as defined in Lemma 3 with

m ∈
[
p2Cϵ

−2 log(K), d
)
, where ϵ ∈ (

√
p2C log(K)

d , 1), then with probability over 1− 1
2Kp2−2 −

2 exp(−22), the map ϕ̂γ perfectly recovers V.

Proof With probability over 1− 1
2Kp−2 − 2 exp(−22), we have that

∥Π(ai − aj)∥ ≤ S̄(m, d, 2)∥ai − aj∥, i, j ∈ Iα, 1 ≤ α ≤ K, (19a)

∥Π(a(α) − a(β))∥ ≥ (1− ϵ)∥a(α) − a(β)∥, 1 ≤ α ̸= β ≤ K, (19b)

which implies that

13
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(i) The centroids
{
Πa(1), . . . ,Πa(K)

}
of the embedded data are distinct.

(ii) γ̂min and γ̂max as defined in (10) satisfy the following inequalities:

γ̂min ≤ s1(Π)γmin ≤ S̄(m, d, 2)γmin, (1− ϵ)γmax ≤ γ̂max.

The above implies that [
S̄(m, d, 2)γmin, (1− ϵ)γmax

)
⊆ [γ̂min, γ̂max) . (20)

Now, we prove the theorem. We claim here that it is sufficient to show: if r >
1+C2

κ+
2C2

κ√
d

1−ϵ̃min
,

then ϵ̃min < ϵ̃sup, and for any ϵ ∈ (ϵ̃min, ϵ̃sup), the interval
[
S̄(m, d, 2)γmin, (1− ϵ)γmax

)
is

nonempty. In fact, if
[
S̄(m, d, 2)γmin, (1− ϵ)γmax

)
is nonempty, then by the first inclusion

of (20), [γ̂min, γ̂max) is nonempty. Applying Theorem 1 to the embedded data ΠA implies
that for any γ ∈ [γ̂min, γ̂max), the map ϕ̂γ perfectly recovers V.

On the one hand, by definition of ϵ̃min and C0, we have

1√
d
=

ϵ̃min√
p2C log(K)

, C0 = ϵ̃−1
min +

2C2
κ√

p2C log(K)
. (21)

As a result,

r >
1+C2

κ+
2C2

κ√
d

1−ϵ̃min
=⇒ r >

C2
κ+ϵ̃minϵ̃

−1
min+

ϵ̃min2C2
κ√

p2C log(K)√
1−ϵ̃min

=⇒ r >
C2

κ+ϵ̃min

(
ϵ̃−1
min+

2C2
κ√

p2C log(K)

)
1−ϵ̃min

=⇒ r > C2
κ+ϵ̃minC0

1−ϵ̃min

=⇒ C2
κ + ϵ̃minC0 < 1− ϵ̃minr

=⇒ ϵ̃min <
r−C2

κ
C0+r

= ϵ̃sup.

On the other hand, we have

S̄(m, d, 2) =

√
d+ 2C2

κ√
m

+ C2
κ =

√
d+ 2C2

κ√
p2C log(K)

ϵ+ C2
κ = C0ϵ+ C2

κ. (22)

As a result,

ϵ ∈ (ϵ̃min, ϵ̃sup) =⇒ C0ϵ+ C2
κ < (1− ϵ)r

=⇒ S̄(m, d, 2)γmin < (1− ϵ)γmax.

Thus, we have proved the theorem.

Here, we want to make some remarks on the obtained results.

1. The embedding dimension in Theorem 3 is independent of the number of data points
n, which is important for clustering an extremely large number of data points.

14
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2. The results of this theorem and Theorem 2 further demonstrate that the ratio r =
γmax/γmin is a data scale-invariant measure to characterize the difficulty of clustering a
given collection of data. Since the embedding dimension of the JL lemma depends on
O(ϵ−2), the value ϵ̃min (and ϵmin) can be interpreted as the lowest possible dimension
reduction ratio obtained by the JL lemma. It has been known that the JL lemma

is optimal if the ϵ-isometry mapping is linear, thus, the condition r >
1+C2

κ+
2C2

κ√
d

1−ϵ̃min

in Theorem 3 (and r > 1+ϵmin
1−C12ϵmin

in Theorem 2) shows that the dimension reduction
results obtained in this paper are intrinsically depending on the difficulties of clustering
the input data.

3. The choice of t = 2 in S(m, d, t) in Theorem 3 is made for the sake of simplicity in the
analysis. In particular, by taking t = 2, with probability over 1−2 exp

(
−22

)
≈ 0.9632,

the largest singular value s1(Π) is upper bounded by S̄(m, d, 2) =
√

d
m +C2

κ(1+
2√
m
).

4. For the K-means model, Cohen et al. (2015) proved that the cost can be preserved up
to a (9 + ϵ) approximation bounds if the embedding dimension m = O(ϵ−2 log(K)).
This bound has been improved to (1+ ϵ) provided m = O(ϵ−2 log(K/ϵ)) (Makarychev
et al., 2023). However, it is still unknown whether the randomly projected K-means
model can preserve the cluster membership assignments or not.

4. Cluster Recovery Guarantees of the Model (RPCCM) with Uniform
Weights for Recovering a Mixture of Spherical Gaussians

In this section, we shift our interests to the problem setting of clustering data points gen-
erated from a mixture of spherical Gaussians using the model (RPCCM) with uniform
weights. We mainly follow the problem settings in (Jiang et al., 2020).

Mixtures of spherical Gaussians (MSG) problem setting: Cluster a collection of n
data points A = {a1, . . . ,an} that are sampled from a mixture of K spherical Gaussian dis-
tributions Nd(µ1,σ

2
1Id), . . . , Nd(µK ,σ

2
KId) with positive probabilities p1, . . . ,pK summing

to 1. Each observation ai is independently sampled from exactly one of the K Gaussians,
which is selected at random with probability pα. The ground-truth index set associated
with the α-th Gaussian is Iα = {i ∈ [n] | ai is sampled from Nd(µα,σ

2
αId)}.

We assume the following assumptions, which are reasonable for the MSG setting.

Assumption 4 The means µ1, . . . ,µK ∈ Rd are all distinct.

Assumption 5 The number of clusters K satisfies K ≤
√
n.

The MSG setting is very challenging although we assume the covariance matrices are
σ2αI (1 ≤ α ≤ K) for simplicity. As pointed out in (Jiang et al., 2020), when n is sufficiently
large, some samples associated with one Gaussian can be placed arbitrarily near the mean
of another Gaussian. Consequently, it’s too restrictive to expect a perfect recovery of the
Gaussians and a natural idea is to consider the recovery over the following index sets

Ĩα(d, θ) := {i ∈ Iα | ∥ai − µα∥ ≤ θσα} , α ∈ [K], (23)
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which contains indexes of points associated with Nd(µα,σ
2
αId) that are within a constant

positive distance θσα from µα. The following proposition is useful and its proof can be
found in A.2.

Proposition 3 In the MSG problem setting, let θ > 0 be given, and let Ĩα(d, θ) be as
defined in (23). Let F (d, θ) denote the cumulative density function of the d-dimensional
Chi distribution. For any α ∈ [K]:

1. ∥ai − aj∥ ≤ 2θσα, for any i, j ∈ Ĩα(d, θ).

2. E
[
|Ĩα(d, θ)|

]
= F (θ, d)pαn. For any η > 0,

P
[
|Ĩα(d, θ)| ≥ (F (θ, d)− η)pαn

]
≥ 1− exp

(
−2p2

αη
2n
)
. (24)

3. For any nonzero h ∈ Rd and any 1 ≤ ñ ≤ n,

P
[
∃i ∈ Ĩα(d, θ) s.t. (ai − µα)

⊤ h ≥ 0 | |Ĩα(d, θ)| ≥ ñ
]
≥ 1− 2−ñ. (25)

Particularly, for any η > 0,

P
[
|Ĩα(d, θ)| ≥ (F (θ, d)− η)pαn, and ∃i ∈ Ĩα(d, θ) s.t. (ai − µα)

⊤ h ≥ 0
]

≥
(
1− 2−(F (θ,d)−η)pαn

) (
1− exp

(
−2p2

αη
2n
))
.

(26)

4.1 Cluster Recovery Guarantees of the Model (CCM) with Uniform Weights
for the MSG Problem Setting

In this section, we introduce the recovery guarantees of the model (CCM) with uniform
weights for the MSG problem setting established in (Jiang et al., 2020). For later conve-
nience, we first introduce some necessary notation.

Definition 6 We say that a map ψ : Rd → Rd̄ correctly recovers points indexed by L > 1
disjoint index sets Ĩ1, . . . , ĨL, ∪Ll=1Ĩl ⊆ {1, ..., n}, on the data A if for any 1 ≤ α ̸= β ≤ K,
ψ (ai) = ψ (aj) for any i, j ∈ Ĩα, and ψ (ai) ̸= ψ (ai′) for any i ∈ Ĩα, i

′ ∈ Ĩβ.

For later convenience in our theoretical analysis, we introduce the following corollary, which
is a direct consequence of (Jiang et al., 2020, Theorem 6). It states that under mild condi-
tions, points indexed by Ĩα(d, θ), α ∈ [K] can be correctly labeled using the model (CCM)
with uniform weights with high probability.

Corollary 2 In the MSG problem setting, let θ > 0 and η > 0 be arbitrary. Consider the
model (CCM) with uniform weights. Define

γGmin := max1≤α≤K
2θσα

(F (θ,d)−η)pαn
, γGmax := min1≤α<β≤K

∥µα−µβ∥
2(n−1) , rG := γGmax/γ

G
min. (27)

Let PG = −K+
∑

α∈[K]

(
1− exp

(
−2p2

αη
2n
)) (

1− (K − 1)2−(F (θ,d)−η)pαn
)
. If rG > 1, with

probability over 1 − PG, for any γ ∈
[
γGmin, γ

G
max

)
, the map ϕ̂γ correctly recovers points

indexed by Ĩα(d, θ), α ∈ [K].
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The next lemma will be useful.

Lemma 5 (Jiang et al., 2023, Theorem 6) In the general problem setting, let Cα ⊆ Iα,
α ∈ [K]. Consider the model (CCM) with uniform weights. For any 1 ≤ α ̸= β ≤ K,

1. The points indexed by Cα are assigned in the same cluster provided

γ ≥ max
i,j∈Cα

∥ai − aj∥
|Cα|

. (28)

2. Furthermore, if

max
l∈{α,β}

max
i,j∈Cl

∥ai − aj∥
|Cl|

< max
i∈Cα
i′∈Cβ

∥ai − ai′∥
2(n− 1)

, (29)

then for any γ such that

max
l∈{α,β}

max
i,j∈Cl

∥ai − aj∥
|Cl|

≤ γ < max
i∈Cα
i′∈Cβ

∥ai − ai′∥
2(n− 1)

, (30)

the map ϕ̂γ correctly recovers points indexed by Cα and Cβ.

4.2 Cluster Recovery Guarantees of the Model (RPCCM) with Uniform
Weights for the MSG Problem Setting

In this section, we will establish the recovery guarantees of the model (RPCCM) with
uniform weights for the MSG problem setting. We introduce some necessary notation first.

Definition 7 In the MSG problem setting, let Π ∈ Rm×d (for some m ≥ 1) be a randomly
sampled projection matrix. Consider the model (RPCCM) with uniform weights. Without
explicitly mentioning the dependence on Π, we define

γ̂Gmin := max
α∈[K]

max
i,j∈Ĩα(d,θ)

∥Π(ai − µα)∥+ ∥Π(aj − µα)∥
(F (θ, d)− η)pαn

,

γ̂Gmax := min
1≤α<β≤K

∥∥Π (µα − µβ
)∥∥

2(n− 1)
.

(31)

The following proposition is useful. Its proof can be found in A.3.

Proposition 4 In the MSG problem setting, let θ > 0, and let Ĩα(d, θ) be as defined in
(23). Let Π ∈ Rm×d (for some m ≥ 1) be a randomly sampled projection matrix. Assume
that Πµ1, . . . ,ΠµK ∈ Rm are all distinct. For any η > 0, we have that

γ̂Gmin ≥ max
α∈[K]

max
i,j∈Ĩα(d,θ)

∥Π(ai − aj)∥
|Ĩα(d, θ)|

, γ̂Gmax ≤ min
1≤α<β≤K

max
i∈Ĩα(d,θ)

i′∈Ĩβ(d,θ)

∥Π(ai − ai′)∥
2(n− 1)

, (32)

with probability over 1− PG, where

PG := −K +
∑
α∈[K]

(
1− exp

(
−2p2

αη
2n
)) (

1− (K − 1)2−(F (θ,d)−η)pαn
)
. (33)
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The following proposition is a consequence of Lemma 5 and Proposition 4. Its proof can
be found in A.4.

Proposition 5 In the MSG problem setting, let θ > 0, and let Ĩα(d, θ) be as defined in (23).
Let η > 0 be arbitrary. Consider (RPCCM) with uniform weights. Let Π ∈ Rm×d (for some
m ≥ 1) be a randomly sampled projection matrix. Assume that Πµ1, . . . ,ΠµK ∈ Rm are all
distinct. Let PG be as defined in (33). If γ̂Gmin < γ̂Gmax, then with probability over 1 − PG,

for any γ ∈
[
γ̂Gmin, γ̂

G
max

)
, the map ϕ̂γ correctly recovers points indexed by Ĩα(d, θ), α ∈ [K].

It follows Proposition 5 that if γ̂Gmin < γ̂Gmax for a specific Π, the model (RPCCM) with
uniform weights can correctly recover points indexed by Ĩα(d, θ) for all α ∈ [K], provided
γ ∈

[
γ̂Gmin, γ̂

G
max

)
. The definitions of γ̂Gmin and γ̂Gmax inspire us to adapt our analysis on the

model (RPCCM) for the general problem setting to the MSG problem setting. Let

XG :=
{
ai − µα | i ∈ Ĩα(θ, d), α ∈ [K]

}
, Xµ :=

{
µα − µβ | 1 ≤ α < β ≤ K

}
.

The following proposition shows that a random projection Π ∈ Rm×d withm = O(ϵ−2 log(n))
can preserve all the norms in XG up to a multiplicative (1+ ϵ) factor, while simultaneously
preserving all the norms in Xµ down to a multiplicative (1 − ϵ2) factor, where ϵ2 < ϵ will
be specified in the proposition. The proof of Proposition 6 can be found in A.5.

Proposition 6 In the MSG problem setting, let p1 > 1, p2 > 2, and assume that C12 :=√
log(K)p2
log(n)p1

< 1. For any ϵ ∈ (0, 1/C12), let ϵ2 = C12ϵ. Let δ = 1
np1 and Π ∼ Dϵ,δ with

m ≥ p1Cϵ
−2 log(n), then with probability over 1− 1

np1−1 − 1
2Kp2−2 ,

∥Π(ai − µα)∥ ≤ (1 + ϵ)∥ai − µα∥, i ∈ Ĩα(θ, d), 1 ≤ α ≤ K, (34a)

∥Π(µα − µβ)∥ ≥ (1− ϵ2)∥µα − µβ∥, 1 ≤ α ̸= β ≤ K. (34b)

Remark 4 Proposition 1 and Proposition 6 differ due to the substitution of (11) with (34).
In the general problem setting, our focus is on preserving distances within clusters and
between cluster centroids. However, in the MSG problem setting, the emphasis is on pre-
serving distances between points and their associated Gaussian means, as well as distances
between Gaussian means, which reduces the number of distances to be preserved from the
order of n2 to n.

The next theorem shows the theoretical recovery guarantee of the model (RPCCM) with
uniform weights for the MSG problem setting. We include its proof in A.6.

Theorem 4 In the MSG problem setting, let θ > 0, and let Ĩα(d, θ) be as defined in (23).
Let η > 0 be arbitrary. Consider the model (RPCCM) with uniform weights. Let p1 >

1, p2 > 2, and we assume that C12 :=
√

log(K)p2
log(n)p1

< 1 and

√
p2C log(K)

d < 1, and thus√
p1C log(n)

d < 1
C12

. Define

ϵGmin =

√
p1C log(n)

d
, ϵGsup =

rG − 1

C12rG + 1
, (35)
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where rG is as defined in (27). Let PG be as defined in (33). If rG >
1+ϵGmin

1−C12ϵGmin

, then

ϵGmin < ϵGsup. For any (ϵ, γ) such that

ϵ ∈ (ϵGmin, ϵ
G
sup), γ ∈

[
(1 + ϵ)γGmin, (1− C12ϵ)γ

G
max

)
, (36)

let δ = 1
np1 and Π ∼ Dϵ,δ with m ∈ [p1Cϵ

−2 log(n), d), then with probability over 1− 1
np1−1 −

1
2Kp2−2 − PG, the map ϕ̂γ correctly recovers points indexed by Ĩα(d, θ), α ∈ [K].

The embedding dimension m in Theorem 4 depends on n of the order O(log(n)). Next,
we will further show that m can be O(log(K)), which is independent of n. We include its
proof in A.7.

Theorem 5 In the MSG problem setting, let θ > 0, and let Ĩα(d, θ) be as defined in (23).
Let η > 0 be arbitrary. Consider the model (RPCCM) with uniform weights. We assume√

p2C log(K)
d < 1, where p2 > 2. Define C0 =

√
d+2C2

κ√
p2C log(K)

and

ϵ̃Gsup =
rG − C2

κ

C0 + rG
, ϵ̃Gmin =

√
p2C log(K)

d
, (37)

where rG is as defined in (27). Let PG be as defined in (33). If rG >
1+C2

κ+
2C2

κ√
d

1−ϵ̃Gmin

, then

ϵ̃Gmin < ϵ̃Gsup. For any (ϵ, γ) such that

ϵ ∈ (ϵ̃Gmin, ϵ̃
G
sup), γ ∈

[
S̄(m, d, 2)γGmin, (1− ϵ)γGmax

)
, (38)

let δ = 1
Kp2 , and let Π = 1√

m
R ∈ Rm×d and S̄(m, d, 2) be as defined in Lemma 3 with

m ∈
[
p2Cϵ

−2 log(K), d
)
, then with probability over 1− 1

2Kp2−2 − 2 exp(−22)− PG, the map

ϕ̂γ correctly recovers points indexed by Ĩα(d, θ), α ∈ [K].

Remark 5 To state a simpler formulation for rG, following (Jiang et al., 2020), we can
fix some values. For example, we can take θ = θd := 2

√
d and let cd = F (θd, d). It follows

Theorem 3.1.1 in (Vershynin, 2018) that cd ≥ 1 − 2 exp (−cd), where c > 0 is a constant
that does not depend on d, which implies that cd → 1 exponentially as d increases. In this
case, we have that

rG =
min1≤α<β≤K

∥∥µα − µβ
∥∥

max1≤α≤K σα/pα

(cd − η)n

8
√
d(n− 1)

. (39)

If we further let pmin = minα∈[K] pα, σmax = maxα∈[K] σα, and η = cd/2, then we have

rG >
(cdpmin)min1≤α<β≤K

∥∥µα − µβ
∥∥

16
√
dσmax

. (40)

Remark 6 Several approaches (Dasgupta, 1999; Vempala and Wang, 2004; Achlioptas and
McSherry, 2005; Dasgupta and Schulman, 2007) have been investigated for recovering or
learning a mixture of spherical Gaussians. In particular, a spectral projection method (Vem-
pala and Wang, 2004) demonstrated the capacity to maintain the separation between Gaus-
sian means while reducing the radii of Gaussians, facilitating easier Gaussian separation
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compared to random projection approaches. Here, we want to emphasize that the primary
focus of this section is to establish theoretical guarantees for the model (RPCCM) in the
MSG problem setting. To this end, we demonstrate that under mild conditions, if the model
(CCM) can correctly recover the Gaussians, the model (RPCCM) can achieve the same per-
formance. As a consequence, the computational challenge of the model (CCM) for clustering
high-dimensional data can be alleviated by considering the model (RPCCM) instead.

5. Numerical Experiments

In this section, we will present extensive numerical results to demonstrate the robust per-
formance of the model (RPCCM). We will first verify the theoretical recovery guarantees
as established in this paper. Then, we will conduct numerical experiments to show its su-
perior practical performance compared to several other popular clustering algorithms. All
our computational results were obtained using MATLAB on a Windows laptop (Intel Core
i7-8750H @ 2.20GHz RAM 32GB). Before we present the detailed results, we first describe
the settings in our numerical experiments.

Datasets: We perform tests on seven simulated datasets and five real datasets with varying
d, n, and K, whose details will be introduced later. We denote the tested dataset as a d
by n matrix A ∈ Rd×n. We normalize the dataset by dividing the maximum Euclidean
distance between all pairs of data points by default.

Construction of the ϵ-JL Transform: We construct the random projection matrix
Π ∈ Rm×d with a specified embedding dimension m as

Π =
1√
m
G ∈ Rm×d, (41)

where Gij are independently sampled from the standard normal distribution. We obtain
the embedded data ΠA ∈ Rm×d by applying the projection matrix Π to the data A.

Construction of weights: In this paper, we set identical weights for both (RPCCM) and
(CCM). We construct weights based on data A as

wij =

{
exp(−∥ai − aj∥2 /2) if (i, j) ∈ EA,
0 otherwise,

(42)

where EA will be specified later in the experiments.

Clustering implementation: We will solve (CCM) and (RPCCM) with the specified
weights wij for a sequence of γ and generate clustering paths. For simplicity, we choose the
same sequence of γ (i.e. ∞ > γ1 > γ2 > · · · > γT > 0) for both models. The particular
values of γ will be specified in the experiments. Note that (RPCCM) is essentially (CCM)
applied to the embedded data ΠA. Therefore, the same algorithms can be applied to solve
both models.

1. Algorithm: We employ the semismooth Newton-based augmented Lagrangian method
with an adaptive sieving technique (AS-SSNAL) as our optimization solver (Yuan
et al., 2022), which is arguably the most efficient algorithm for solving the model
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(CCM). We adopt the stopping criterion in (Yuan et al., 2022) with a tolerance
ϵtol = 10−7. For more details of the algorithm, one can refer to (Yuan et al., 2022) and
the references therein. We include a computational complexity analysis of AS-SSNAL
for solving (CCM) and (RPCCM) in Appendix A.8.

Figure 2: The overall structure of AS-SSNAL for solving the model (RPCCM).

2. Clustering path: We obtain a clustering path based on the inexact checking rule
up to the tolerance ϵclust = 10−5.

Figure 3: Procedures for implementing the model (RPCCM).

Evaluation criteria for clustering results: We adopt the commonly used Adjusted
Rand Index (ARI) (Hubert and Arabie, 1985) and Adjusted Mutual Information (AMI)
(Vinh et al., 2009, 2010) to quantitatively measure the quality of the obtained clustering
results. Particularly, ARI=1 (AMI=1) indicates a perfect cluster recovery.

We organize our numerical experiment results as follows: In Section 5.1, we verify the
theoretical guarantees of the model (RPCCM) as stated in Theorem 2 and Theorem 3. We
further verify the recovery guarantees for the MSG problem setting as stated in Theorem
4 and Theorem 5 in A.10. In Section 5.2, we test the practical performance of the model
(RPCCM) on simulated and real data and compare its performance with other popular
clustering algorithms on the dimension-reduced data. We further test the performance of
the model (RPCCM) with weights constructed from the embedded data.

5.1 Numerical Verification for the Model (RPCCM)

In this section, we verify the theoretical recovery guarantees in Theorem 2 and Theo-
rem 3, respectively. We conduct tests on seven simulated datasets denoted as A1, · · · , A7.
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Each dataset is generated from a mixture of K spherical Gaussians N (ek, 0.01I900) with
probability pk = 1

K for all k = 1, . . . ,K, where ek ∈ R900 is the k-th column of the
identity matrix I900. Detailed information is listed in Table 3. For each Ai, we denote
XAi = {ai − aj | 1 ≤ i < j ≤ n}, XC(Ai) = {a(α) − a(β) | 1 ≤ α < β ≤ K}, and

XV(Ai) = ∪Kα=1{ai − aj | i, j ∈ Iα, i ̸= j}.
According to Assumption 3, for theoretical verification purposes, we set weights wij as

(42) with EAi(ki,V(Ai)), where ki ≥ 1 and

EAi(ki,V(Ai)) := EAi(ki) ∪Kα=1 {(i, j) | i, j ∈ Iα, i ̸= j}. (43)

We summarize the details of ki in Table 3. With the chosen weights, we can compute
the theoretical range [γmin, γmax) and the ratio r defined in (3). The values summarized in
Table 3 imply that the model (CCM) can perform a perfect cluster recovery on each dataset
provided γ ∈ [γmin, γmax). We can observe that the ratios r for these seven datasets are

Table 3: Data information, selected weights, the theoretical range [γmin, γmax) and the ratio
r for data A1 to A7 using selected weights. A1, A2, A3, and A4 are generated from the same
distribution with K = 8; A1, A5, A6, and A7 have the same data size n = 1024.

Data d n K wij [γmin, γmax) r

A4 900 128 8 EA4(2,V(A4)) [0.0061, 2.7329) 29.9326
A2 900 256 8 EA2(4,V(A2)) [0.0409, 1.4287) 38.3856
A3 900 512 8 EA3(8,V(A3)) [0.0229, 0.7330) 31.9783
A1 900 1024 8 EA1(16,V(A1)) [0.0130, 0.4008) 30.8786

A5 900 1024 4 EA5(48,V(A5)) [0.0056, 0.2445) 43.4597
A6 900 1024 16 EA6(4,V(A6)) [0.0277, 0.7843) 28.3464
A7 900 1024 32 EA7(2,V(A7)) [0.0467, 1.2207) 26.1140

large, which further indicates the feasibility of the perfect recovery of the model (RPCCM)
with a suitable embedding dimension m = ⌈Cϵ−2 log(n)⌉ (or m̃ = ⌈Cϵ−2 log(K)⌉). In this
section, we set C = 2 by default (see Remark 2 for discussion). We conduct the following
numerical experiments for a set of pairs (ϵ,m):

1. Verify the robustness of random projections in preserving the pairwise distances of
the data points under the given distortion tolerance. 1000 projection matrices will be
randomly sampled for verification.

2. Verify the recovery guarantees in Theorem 2 and Theorem 3. We will randomly sample
10 projection matrices for verification. To achieve this goal, we first compute γ̂min and
γ̂max using (10) for each projection matrix. The average value of γ̂min and γ̂max over
the 10 projections will be also computed. Then, we test the probability that (15) in
Theorem 2 (or (20) in Theorem 3) is satisfied. Furthermore, we test the performance
of the model (RPCCM) at some specific γ in the valid perfect recovery interval. The
running time for solving models (CCM) and (RPCCM) will also be presented.

3. The qualities of the clustering paths generated along the sequence of γ ∈ [3 : −0.01 :
0.01] (following the Matlab notation) by models (CCM) and (RPCCM) will be eval-
uated.
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5.1.1 Numerical Verification for Theorem 2 on the Model (RPCCM)

We verify the recovery guarantees of Theorem 2 on the dataset A1 ∈ R900×1024. From Table
3, we can obtain

γmin = 0.0130, γmax = 0.4008, C12 =
√
3/10, r = 30.8786.

The values ϵmin and ϵsup in Theorem 2 are then given by

ϵmin = 0.1241, ϵsup =
√
10/3,

which implies that for any ϵ ∈ [0.1241,
√

10/3), γ ∈ [(1+ ϵ)0.0130, (1−
√

3/10ϵ)0.4008), the
model (RPCCM) with m = ⌈2ϵ−2 log(1024)⌉ can perform a perfect recovery on A1 with
high probability. Inspired by the valid interval of ϵ, we choose ϵ ∈ {0.2, 0.4, 0.6, 0.8, 0.99}
for verification. The corresponding embedding dimensions are m ∈ {347, 87, 39, 22, 15}. We
summarize the numerical results in Table 4, Table 5, Table 6, and Figure 4, respectively.
From the results, we can observe that:

1. The random projections with m = ⌈2ϵ−2 log(1024)⌉ can robustly preserve norms in
the sets XA1 , XV(A1), and XC(A1). Details can be found in Table 4.

2. The model (RPCCM) can robustly perform the perfect cluster recovery on data A1 in
the range [(1 + ϵ)γmin, (1− C12ϵ)γmax) in Theorem 2. Details can be found in Table
5 and Figure 4.

3. To further check the clustering performance and compare the running time, we con-
sider the model (RPCCM) at the value of γ = 0.15 in the valid perfect recovery
interval on data A1. The perfect cluster recovery has been observed and the running
time for solving (RPCCM) is over 50 times faster than it for solving the model (CCM)
at the same γ. Details can be found in Table 6. It is worthwhile mentioning that,
although we compute the weights wij on the original data, the time for constructing
the weights is affordable, compared to the running time for solving the model.

4. We also compare the running time for solving the models on the solution path with
γ ∈ [3 : −0.01 : 0.01], which further demonstrate the computational efficiency of
(RPCCM). Details can be found in Figure 4(d).

5.1.2 Numerical Verification for Theorem 3 on the Model (RPCCM)

In this section, we aim to verify the recovery guarantees in Theorem 3. As mentioned above,
we set m̃ = ⌈2ϵ−2 log(K)⌉ and test on data A1 to A7 with some suitable ϵ ∈ (0, 1), which
will be specified later.

Let’s take data A1 as an example. Using the selected weights in Table 3, we have
γmin = 0.0130, γmax = 0.4008, and r = 30.8786. For any Π ∈ Rm̃×900 (m̃ < 900) defined as
(41), the largest singular value s1(Π) is bounded by

s1(Π) ≤ S̄(m̃, 900, 2) =
30 + 2√

m̃
+ 1 (44)
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Table 4: Performance of random projections on data A1. In the table, pXA1
and pXV(A1)

represent the probability that norms in XA1 and XV(A1) are respectively preserved up to
a (1 + ϵ) factor, and pXC(A1)

represents the probability that norms in XC(A1) are preserved
down to a (1− C12ϵ) factor.

Dimension (distortion) pXA1
pXV(A1)

pXC(A1)

m = 347 (ϵ = 0.20) 935/1000 990/1000 959/1000
m = 87 (ϵ = 0.40) 903/1000 992/1000 956/1000
m = 56 (ϵ = 0.60) 863/1000 981/1000 970/1000
m = 25 (ϵ = 0.80) 848/1000 975/1000 957/1000
m = 15 (ϵ = 0.99) 894/1000 991/1000 974/1000

Table 5: Estimated valid intervals for perfect recovery of the model (RPCCM) on data A1.
In the table, pγ denotes the probability that (15) in Theorem 2 is satisfied. The values of
γ̂min and γ̂max are averaged over 10 projections.

Dimension (distortion) [(1 + ϵ)γmin, (1− C12ϵ)γmax) pγ [γ̂min, γ̂max)

m = 347 (ϵ = 0.20) [0.0156, 0.3569) 10/10 [0.0133, 0.3924)
m = 87 (ϵ = 0.40) [0.0182, 0.3130) 10/10 [0.0145, 0.3792)
m = 56 (ϵ = 0.60) [0.0208, 0.2691) 10/10 [0.0151, 0.3651)
m = 25 (ϵ = 0.80) [0.0234, 0.2252) 10/10 [0.0171, 0.3574)
m = 15 (ϵ = 0.99) [0.0258, 0.1834) 10/10 [0.0182, 0.3337)

Table 6: Performance of models (CCM) and (RPCCM) at γ = 0.15 on data A1. In the
table, Twij denotes the time for constructing the weights, TΠ denotes the time for obtaining
the embedded data, and Tγ denotes the run-time for solving models at a specific γ.

Dimension γ Perfect Recovery at γ Twij TΠ Tγ

d = 900

0.15

1/1

0.2120

/ 21.9280
m = 347 10/10 0.0085 7.6150
m = 87 10/10 0.0040 2.0720
m = 56 10/10 0.0034 1.4750
m = 25 10/10 0.0026 0.6410
m = 15 10/10 0.0021 0.4310
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(a) Number of clusters (b) AMI (c) ARI (d) Run-time

(e) Practical lower bound for perfect recovery (f) Practical upper bound for perfect recovery

Figure 4: Performance of the clustering paths generated by models (CCM) and (RPCCM)
for data A1 along γ ∈ [3 : −0.01 : 0.01]. Notably, the perfect recovery is indicated by
ARI=1 (AMI=1). It is possible to recover the “correct” number of clusters while incorrectly
partitioning the data.

with a probability over 1−2 exp(−22) = 0.9634. Based on the above information, the values
ϵ̃min and ϵ̃sup in Theorem 3 are determined as follows:

ϵ̃min = 0.0680, ϵ̃max = 0.6416.

This implies that for any ϵ ∈ [0.0680, 0.6416), and γ ∈ [S̄(m̃, 900, 2)γmin, (1− ϵ)γmax), the
model (RPCCM) with m̃ = ⌈2ϵ−2 log(8)⌉ can achieve a perfect cluster recovery on data A1

with high probability. For example, if one takes ϵ = 0.6, then the embedding dimension can
be reduced from d = 900 to m̃ = 12 for data A1.

The valid intervals of [ϵ̃min, ϵ̃max) for the model (RPCCM) on data A1 to A7 using our
chosen weights are summarized in Table 7. Based on these valid intervals, we set ϵ = 0.60
for all seven datasets. Recall that data A1, A2, A3, and A4 have K = 8 clusters, while data
A5, A6, and A7 have K = 4, 12, 16 clusters, respectively. In other words, we test the model
(RPCCM) with an identical embedding dimension m̃ = 12 on data A1 to A4, and test with
m̃ = 8, 16, 20 on data A5 to A7, respectively.

We summarize the numerical results in Table 8, Table 9, Table 10, and Figure 5, respec-
tively. From the results, we can observe:

1. The numerical results in Table 8 demonstrate that random projections with m̃ =
⌈2ϵ−2 log(8)⌉ are robust in preserving the norms in XC(A1) and bounding the spectral
norm of the random projection.
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2. The numerical results in Table 9 and Figure 5 show that the model (RPCCM)
can robustly perform a perfect cluster recovery for data A1 to A7 in the range[
S̄(m̃, d, 2)γmin, (1− ϵ)γmax

)
in Theorem 3.

3. Similar to the O(ϵ−2 log(n)) case presented in the previous subsection, the model
(RPCCM) can perform perfect cluster recovery at some specific value of γ in the
valid perfect recovery interval for datasets A1 to A7, and the computational cost is
effectively reduced. Details can be found in Table 10.

4. The running time for solving the models on the solution path with γ ∈ [3 : −0.01 : 0.01]
further demonstrates the computational efficiency of (RPCCM). Details can be found
in Figure 5.

Furthermore, numerical experiments in this section demonstrate that the embedding dimen-
sion of the model (RPCCM) can be O(ϵ−2 log(K)), based on the following observations:

1. For data A1 to A4, where the number of clusters is fixed as K = 8 but the number
of data points varies (n = 1024, 256, 512, 128), the model (RPCCM) with the same
value of m̃ = 12 (m̃ = ⌈2ϵ−2 log(K)⌉ with ϵ = 0.60) achieves favorable performance.
This finding suggests that the embedding dimension can be independent of n.

2. For data A5, A1, A6, and A7, where the number of clusters increases (K = 4, 8, 16, 32)
while the size is fixed as n = 1024, the model (RPCCM) with increasing embedding
dimensions m̃ = 8, 12, 16, 20 (m̃ = ⌈2ϵ−2 log(K)⌉ with ϵ = 0.60) is effective. Thus, the
result aligns with the theoretical claim of a O(log(K)) embedding dimension.

Table 7: Valid ranges [ϵ̃min, ϵ̃max) for the model (RPCCM) on data A1 to A7.

Data [γmin, γmax) r [ϵ̃min, ϵ̃max)

A1 [0.0130, 0.4008) 30.8786 [0.0680,0.6416)
A2 [0.0409, 1.4287) 38.3856 [0.0680,0.6913)
A3 [0.0229, 0.7330) 31.9783 [0.0680,0.6499)
A4 [0.0061, 2.7329) 29.9326 [0.0680,0.6342)

A5 [0.0056, 0.2445) 43.4597 [0.0555,0.6774)
A6 [0.0277, 0.7843) 28.3464 [0.0785,0.6521)
A7 [0.0467, 1.2207) 26.1140 [0.0878,0.6563)

Table 8: Performance of random projections on data A1 to A7. In the table, pS1 represents
the probability that s1(Π) ≤ S̄(m̃, 900, 2), and pXC(Ai)

represents the probability that norms
in XC(Ai) are preserved down to a (1− ϵ) factor for each dataset.

Data Dimension (distortion) pS1 pXC(Ai)

A1

m̃ = 12 (ϵ = 0.60) 1000/1000

993/1000
A2 987/1000
A3 996/1000
A4 991/1000

A5 m̃ = 8 (ϵ = 0.60) 1000/1000 954/1000
A6 m̃ = 16 (ϵ = 0.60) 1000/1000 999/1000
A7 m̃ = 20 (ϵ = 0.60) 1000/1000 1000/1000
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Table 9: Estimated ranges for perfect recovery of the model (RPCCM) for data A1 to A7.
In the table, pγ denotes the probability that (20) in Theorem 3 is satisfied. The values of
γ̂min and γ̂max are averaged over 10 projections.

Data Dimension (distortion)
[
S̄(m̃, 900, 2)γmin, (1− ϵ)γmax

)
pγ [γ̂min, γ̂max)

A1 m̃ = 12 (ϵ = 0.60) [0.1458, 0.1603) 10/10 [0.0196, 0.3111)
A2 m̃ = 12 (ϵ = 0.60) [0.5254, 0.7178) 10/10 [0.0727, 1.5240)
A3 m̃ = 12 (ϵ = 0.60) [0.2576, 0.2932) 10/10 [0.0375, 0.5595)
A4 m̃ = 12 (ϵ = 0.60) [1.0260, 1.0932) 10/10 [0.1345, 2.0504)

A5 m̃ = 8 (ϵ = 0.60) [0.0749, 0.0978) 10/10 [0.0105, 0.1982)
A6 m̃ = 16 (ϵ = 0.60) [0.2767, 0.3137) 10/10 [0.0363, 0.6186)
A7 m̃ = 20 (ϵ = 0.60) [0.4280, 0.4883) 10/10 [0.0659, 0.9292)

Table 10: Performance of models (CCM) and (RPCCM) on data A1 to A7. In the table,
Twij denotes the time for constructing the weights, TΠ denotes the time for obtaining the
embedded data, and Tγ denotes the run-time for solving models at a specific γ.

Data Dimension γ Perfect Recovery at γ Twij TΠ Tγ

A1
d = 900

0.15
1/1

0.2110
/ 21.9280

m̃ = 12 10/10 0.0020 0.3610

A2
d = 900

0.60
1/1

0.0200
/ 1.5560

m̃ = 12 10/10 0.0015 0.0410

A3
d = 900

0.27
1/1

0.0510
/ 5.2880

m̃ = 12 10/10 0.0018 0.1230

A4
d = 900

1.05
1/1

0.0110
/ 0.2480

m̃ = 12 10/10 0.0014 0.0290

A5
d = 900

0.08
1/1

0.2320
/ 42.1100

m̃ = 8 10/10 0.0022 0.4740

A6
d = 900

0.30
1/1

0.2150
/ 10.1740

m̃ = 16 10/10 0.0024 0.2520

A7
d = 900

0.45
1/1

0.1990
/ 5.4460

m̃ = 20 10/10 0.0023 0.1730
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(a) AMI on A1 (b) ARI on A1 (c) Run-time on A1

(d) AMI on A2 (e) ARI on A2 (f) Run-time on A2

(g) AMI on A3 (h) ARI on A3 (i) Run-time on A3

(j) AMI on A4 (k) ARI on A4 (l) Run-time on A4

(m) AMI on A5 (n) ARI on A5 (o) Run-time on A5

(p) AMI on A6 (q) ARI on A6 (r) Run-time on A6

(s) AMI on A7 (t) ARI on A7 (u) Run-time on A7

Figure 5: Performance of the clustering paths generated by models (CCM) and (RPCCM)
for data A1 to A7 along γ ∈ [3 : −0.01 : 0.01].
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5.2 Practical Performance of the Model (RPCCM)

In this section, we demonstrate the robust practical performance of the model (RPCCM).
We first discuss the settings for the model (RPCCM), and then conduct numerical tests on
both simulated and real datasets with varying (d, n,K). Additionally, we provide compar-
isons with other popular clustering algorithms to further demonstrate the superior perfor-
mance of the model (RPCCM). We further test the performance of the model (RPCCM)
with weights constructed from the embedded data.

5.2.1 Practical Settings for the Model (RPCCM)

We have verified the recovery guarantees of (RPCCM) with specified weights according to
the assumptions of the theorems in the previous section. However, it is not practical for
us to construct the weights as (43) since the true cluster assignments are unknown. In
this section, our focus is to test the performance and robustness of the (RPCCM) model
in practice. In particular, we adopt the following settings of the weights and embedding
dimensions:

1. We adopt the popular choice of weights constructed by the Gaussian kernel (42) with
a k-nearest neighbors graph with k = 5 (Chi and Lange, 2015; Yuan et al., 2018; Sun
et al., 2021).

2. Instead of setting the embedding dimensionm based onO(ϵ−2 log(n)) orO(ϵ−2 log(K))
as in the last section, we directly test different scales of embedding dimensions m ∈
{10, 20, 50, 100, 200}1 to demonstrate the robustness of the model.

5.2.2 Practical Performance of the Model (RPCCM) on Simulated Data

First, we evaluate the practical performance of the model (RPCCM) by conducting tests
on simulated data. Since we will also conduct extensive experiments on real datasets, we
only test on the data A1 constructed in the last section for simplicity.

Following the settings in Section 5.2.1 for model weights and embedding dimensions, we
generate clustering paths for models (CCM) and (RPCCM) on A1 with γ ∈ [20 : −0.1 : 0.1].
The results are summarized in Figure 7 and Table 11. The results demonstrate that the
perfect cluster assignments of A1 are contained in the clustering paths for both models in a
notable interval of the parameter γ. Furthermore, as the embedding dimension decreases,
the computational cost can be significantly reduced for (RPCCM) while maintaining satis-
factory clustering performances.

5.2.3 Practical Performance of the Model (RPCCM) on real Data

Next, we test the practical performance of the model (RPCCM) on real datasets.

Datasets: We conduct tests on the following real datasets: LIBRAS and LIBRAS-6 (Dias
et al., 2009a), COIL-20 (Nene et al., 1996), LUNG (Lee et al., 2010), and MNIST (LeCun
et al., 1998). We summarize the key information of the datasets in Table 12 and include
visualization of the datasets in Figure 6.

1. For LIBRAS and LIBRAS-6, since the original dimension is 90, we simply test m ∈ {10, 20, 50}.
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Table 11: Practical performance of models (CCM) and (RPCCM) on data A1 at γ = 1.
The results are averaged over 10 random projections. We use the format “mean ± standard
deviation” to report the results of ARI and AMI.

Model ARI AMI Time

(RP) CCM

d = 900 1.0000 ± 0.0000 1.0000 ± 0.0000 2.3540
m = 200 1.0000 ± 0.0000 1.0000 ± 0.0000 0.5455
m = 100 1.0000 ± 0.0000 1.0000 ± 0.0000 0.3091
m = 50 1.0000 ± 0.0000 1.0000 ± 0.0000 0.1874
m = 20 1.0000 ± 0.0000 1.0000 ± 0.0000 0.1031
m = 10 1.0000 ± 0.0000 1.0000 ± 0.0000 0.0810

Table 12: Key information of the real datasets.

Data Type d n K

LIBRAS-6 time series 90 144 6
LIBRAS time series 90 360 15
MNIST image 784 10000 10
COIL-20 image 1024 1440 20
LUNG gene 12625 56 4

Implementation of models (CCM) and (RPCCM): Using the specified weights and
embedding dimensions in Section 5.2.1, we solve the models (CCM) and (RPCCM) along
a sequence of values of γ as follows.

1. For LUNG, we set γ ∈ [6 : −0.01 : 0.1].

2. For COIL-20, we set γ ∈ [3 : −0.01 : 0.2].

3. For MNIST, we set γ ∈ [2 : −0.01 : 0.5].

4. For LIBRAS, we set γ ∈ [3 : −0.01 : 0.1].

5. For LIBRAS-6, we set γ ∈ [5 : −0.01 : 0.1].

(a) LIBRAS (b) LUNG (c) COIL-20 (d) MNIST

Figure 6: Visualization of the real datasets.

Baselines: We compare the performance of models (CCM) and (RPCCM) with the follow-
ing popular clustering algorithms: K-means++ (KM++) (Vassilvitskii and Arthur, 2006),
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spectral clustering (SC) (Ng et al., 2001; Von Luxburg, 2007), hierarchical complete linkage
(CLINK) (Defays, 1977; Manning and Schutze, 1999), hierarchical density-based spatial
clustering of applications with noise (HDB) (Campello et al., 2013, 2015), and mean shift
(MS) (Fukunaga and Hostetler, 1975; Comaniciu and Meer, 2002). We also compare with
their corresponding randomly projected versions applied to the embedded data (say, RP
KM++, RP SC, RP CLINK, RP HDB, and RP MS). For comparison fairness, we choose
their open-source implementations in MATLAB, and we tune their parameters as follows.

1. (RP) KM++: We use the K-means2 function with ‘Number of clusters’=K, where K
is the ground-truth number of clusters. We set ‘MaxIter’=1000 and ‘Replicates’=30.

2. (RP) SC: We use the spectralcluster3 function with ‘Number of clusters’=K. We set
‘NumNeighbors’=5 and tune ‘KernelScale’ ∈ {2−5, 2−4.5, . . . , 24.5, 25} to construct the
affinity similarity matrix.

3. (RP) CLINK: We use the clusterdata4 function. We set ‘Linkage’=‘complete’ and
‘Maxclust’=K.

4. (RP) HDB: We use the HDBSCAN5 function. We set ‘Minclustsize’=‘Minpts’ follow-
ing (Campello et al., 2015) for simplicity and turn ‘Minpts’ ∈ {2, ..., 100}.

5. (RP) MS:We use the MeanShiftCluster6 function. We set ‘BandWidth’ ∈ {0.01, ..., 0.99}.

Evaluation criteria: We use ARI and AMI as the clustering evaluation criteria. For
comparison fairness, we run each model 10 times on each input data and report their
average performance. For randomly projected (RP) models, we generate 10 independently
sampled random projections Π and take the embedded data ΠA as input data. We also
present the computational time of each model.

Results of models (CCM) and (RPCCM): Table 13 provides a summary of the prac-
tical performance of models (CCM) and (RPCCM) on real data. The table includes the
AMI and ARI achieved by (CCM), along with the best values of AMI and ARI obtained by
(RPCCM) across 10 samples. It also includes the computational time of each model. The
following conclusions can be drawn based on the information presented in Table 13:

1. The performance of (RPCCM) is comparable with (CCM) in terms of ARI and
AMI, even with an embedding dimension m = 10, demonstrating the robustness
of (RPCCM).

2. The computational time for solving (RPCCM) has been substantially reduced com-
pared to the running time for solving (CCM).

2. https://www.mathworks.com/help/stats/k-means-clustering.html
3. https://ww2.mathworks.cn/help/stats/spectralcluster.html
4. https://ww2.mathworks.cn/help/stats/clusterdata.html
5. https://ww2.mathworks.cn/matlabcentral/fileexchange/64864-jorsorokin-HDB
6. https://ww2.mathworks.cn/matlabcentral/fileexchange/10161-mean-shift-clustering
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Table 13: Clustering performance of models (CCM) and (RPCCM). The results are averaged
over 10 random projections. We use the format “mean ± standard deviation” to report the
results of ARI and AMI.

Data Dimension ARI AMI Time

MNIST

d = 784 0.6468 ± 0.0000 0.7054 ± 0.0000 1240.4120
m = 200 0.6125 ± 0.0350 0.7134 ± 0.0249 180.3215
m = 100 0.6118 ± 0.0374 0.7265 ± 0.0315 133.4112
m = 50 0.6207 ± 0.0399 0.7102 ± 0.0232 59.2690
m = 20 0.6116 ± 0.0519 0.7152 ± 0.0416 39.5231
m = 10 0.6042 ± 0.0547 0.7305 ± 0.0242 22.2365

COIL-20

d = 1024 0.8136 ± 0.0000 0.9165 ± 0.0000 36.1010
m = 200 0.8123 ± 0.0031 0.9164 ± 0.0008 7.1021
m = 100 0.8119 ± 0.0035 0.9152 ± 0.0031 3.5995
m = 50 0.8106 ± 0.0053 0.9144 ± 0.0042 2.2270
m = 20 0.8147 ± 0.0025 0.9166 ± 0.0022 1.3453
m = 10 0.8112 ± 0.0073 0.9133 ± 0.0058 0.8810

LUNG

d = 12625 0.9586 ± 0.0000 0.9426 ± 0.0000 3.9890
m = 200 0.9586 ± 0.0000 0.9426 ± 0.0000 0.1521
m = 100 0.9586 ± 0.0000 0.9426 ± 0.0000 0.1115
m = 50 0.9586 ± 0.0000 0.9426 ± 0.0000 0.0863
m = 20 0.9586 ± 0.0000 0.9426 ± 0.0000 0.0693
m = 10 0.9586 ± 0.0000 0.9426 ± 0.0000 0.0588

LIBRAS

d = 90 0.3767 ± 0.0000 0.6119 ± 0.0000 0.3550
m = 50 0.3817 ± 0.0088 0.6158 ± 0.0046 0.2781
m = 20 0.3740 ± 0.0054 0.6125 ± 0.0049 0.2510
m = 10 0.3651 ± 0.0095 0.6093 ± 0.0055 0.1460

LIBRAS-6

d = 90 0.7674± 0.0000 0.8065± 0.0000 0.1120
m = 50 0.7674 ± 0.0000 0.8065 ± 0.0000 0.0715
m = 20 0.7674 ± 0.0000 0.8065 ± 0.0000 0.0710
m = 10 0.7505 ± 0.0218 0.8081 ± 0.0020 0.0650

To better illustrate the performance of models (CCM) and (RPCCM), for each dataset,
we visualize the clustering paths generated by the two models. We also present the perfor-
mance of the models in terms of ARI and AMI along the clustering paths. The computa-
tional time for solving each problem on the path is also presented. We discuss the results
on each dataset as follows:

1. MNIST: (CCM) achieves an AMI value of 0.6468 and an ARI value of 0.7054. It
can be observed from the results in Figure 8 that the performance of (RPCCM) is
comparable to the performance of (CCM) on the clustering paths.

2. COIL-20: (CCM) achieves an AMI value of 0.8136 and an ARI value of 0.9165. Ob-
served from the results from Figure 9, the strong performance of (CCM) is robustly
preserved by (RPCCM).

3. LUNG: (CCM) achieves an AMI value of 0.9586 and an ARI value of 0.9426. As
observed from Figure 10, (CCM) mislabels only one data point from the Carcinoid
cluster. A possible reason is that this wrongly clustered data point is closer to the
SmallCell cluster despite being labeled as belonging to the Carcinoid cluster. The
performance of (RPCCM) on data LUNG remains robust, as depicted in Figure 10.

4. LIBRAS: (CCM) achieves an AMI value of 0.6119 and an ARI value of 0.3767. A
possible reason for the relatively low ARI and AMI is that some clusters in LIBRAS
exhibit similar representations (Dias et al., 2009b), which can be observed from Figure
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11. The model (RPCCM) is stable in preserving the performance of (CCM). It is
worthwhile mentioning that, although these values are relatively low, as shown in
Appendix A.9, the model (CCM) is comparable to the spectral clustering model and
substantially outperforms other baseline models.

5. LIBRAS-6: (CCM) achieves an AMI value of 0.7674 and an ARI value of 0.8065, which
are much higher compared to the values obtained by (CCM) on LIBRAS, because the
six selected classes in LIBRAS-6 are more distinguishable. As depicted in Figure 12,
(CCM) could successfully classify VSwing, ACarc, Carc, and VWavy, while there are
still some overlaps in HLine and HWavy. An explanation is that HLine and HWavy
are both horizontal movements, and some samples in the two classes are similar.
Moreover, (RPCCM) maintains the performance of (CCM).

In summary, the numerical results presented in this section demonstrate the reliable and
efficient clustering performance of the model (RPCCM) compared to the model (CCM),
making it valuable for real applications.

Comparisons with baselines: We further conduct experiments to compare the clustering
performance of the models (CCM) and (RPCCM) with the selected baseline algorithms.
The detailed results can be found in the Appendix A.9. The results demonstrate that the
performance of other algorithms becomes unreliable as the value of the embedding dimension
m decreases. In contrast, the model (RPCCM) exhibits robustness in its performance across
different values of m. This highlights the superiority of the model (RPCCM) over the
baseline algorithms when applied to embedded data with lower dimensions.

5.2.4 Comparison of the Model (RPCCM) with Different Weights: Original
Data Weights v.s. Embedded Data Weights

In this section, we further test the performance of the model (RPCCM) with weights con-
structed from the embedded data. We will then compare the results obtained with those
of the model (RPCCM) with weights wij

7 as discussed in Section 5.2.3. In particular, we
conduct tests on the high-dimensional data LUNG with d = 12625.

Let B denote the embedded data after normalization8. We construct weights ŵij from
data B as

ŵij =

{
exp(−∥B:,i −B:.j∥2 /2) if (i, j) ∈ EB(5),
0 otherwise.

(45)

To ensure fair comparisons, we used the identical random projection matrices, as utilized
in the tests of (RPCCM) with weights wij in Section 5.2.3, to assess the performance of
(RPCCM) with weights ŵij . The results, summarized in Table 14, reveal the following
observations:

1. (RPCCM) with weights ŵij could still achieve remarkable clustering performance with
a modest embedding dimension m, e.g., m ∈ {200, 100, 50}. However, as m decreases,

7. Note that wij are constructed as (42) with a 5-nearest neighbors graph of original data.
8. Note that normalization in this context refers to dividing the dataset by the maximum Euclidean distance

between all pairs of data points.
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the model’s performance degrades. In contrast, the performance of (RPCCM) with
weights wij remains robust, even for an embedding dimension as low as m = 10.

2. The time required for constructing weights wij is minimal compared to the runtime for
solving the model (RPCCM) using these weights. Conversely, although the time for
constructing weights ŵij is significantly reduced, solving the model (RPCCM) with
these weights could take more time compared to using the weights wij , especially in
the case that m is very low.

One possible explanation for these findings is that as the embedding dimension m de-
creases, the distortions in pairwise distances become more noticeable. This leads to signif-
icant changes in the clustering structure of the embedded data. Consequently, the model
(RPCCM) with weights ŵij becomes less stable as m decreases. On the other hand, the
model (RPCCM) with weights wij effectively utilizes the clustering structure inherent in
the original data points. This allows it to maintain good performance even with a low
embedding dimension.

Table 14: Comparison of the model (RPCCM) with weights wij and ŵij on data LUNG.
The results are averaged over 10 random projections. In the table, Tw denotes the time
for constructing the weights, TΠ denotes the time for obtaining the embedded data, and
Tγ denotes the run-time for solving each model at a specific γ, where the best values of
AMI and ARI are achieved. We use the format “mean ± standard deviation” to report the
results of ARI and AMI.

Model ARI AMI Time Tw TΠ Tγ

CCM (wij) d = 12625 0.9586 ± 0.0000 0.9426 ± 0.0000 3.9890 0.0140 / 3.9750

RPCCM (wij)

m = 200 0.9586 ± 0.0000 0.9426 ± 0.0000 0.1521 0.0140 0.0256 0.1125
m = 100 0.9586 ± 0.0000 0.9426 ± 0.0000 0.1115 0.0140 0.0124 0.0851
m = 50 0.9586 ± 0.0000 0.9426 ± 0.0000 0.0863 0.0140 0.0063 0.0660
m = 20 0.9586 ± 0.0000 0.9426 ± 0.0000 0.0693 0.0140 0.0033 0.0520
m = 10 0.9586 ± 0.0000 0.9426 ± 0.0000 0.0588 0.0140 0.0018 0.0430

RPCCM (ŵij)

m = 200 0.9471 ± 0.0555 0.9262 ± 0.0707 0.2319 0.0010 0.0256 0.2053
m = 100 0.9346 ± 0.0670 0.9083 ± 0.0750 0.1322 0.0010 0.0124 0.1188
m = 50 0.9342 ± 0.0658 0.8952 ± 0.0819 0.1402 0.0010 0.0063 0.1329
m = 20 0.8340 ± 0.1025 0.7829 ± 0.0911 0.0893 0.0010 0.0033 0.0850
m = 10 0.7239 ± 0.1337 0.6728 ± 0.1239 0.1176 0.0010 0.0018 0.1148

6. Conclusion and Future Works

In this paper, we proposed a randomly projected convex clustering model (RPCCM) for
clustering high dimensional data. We proved that, under some mild conditions, the per-
fect recovery of the cluster membership assignments of the convex clustering model on the
original data, if exists, can be preserved by the model (RPCCM) with a much smaller
embedding dimension. In particular, we proved that the embedding dimension can be
m = O(ϵ−2 log(n)), where n is the number of data points and ϵ > 0 is some given tol-
erance. We further proved that the embedding dimension can be m = O(ϵ−2 log(K)),
where K is the number of hidden clusters, which is independent of the number of data
points. Furthermore, we also established the recovery guarantees of our proposed model
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(a) d = 900 (b) m = 200 (c) m = 100

(d) m = 50 (e) m = 20 (f) m = 10

(g) True cluster labels of A1

(h) AMI (i) ARI (j) Run-time

Figure 7: Visualization and performance of the clustering paths on data A1.
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(a) d = 784 (b) m = 200 (c) m = 100

(d) m = 50 (e) m = 20 (f) m = 10

(g) True cluster labels of MNIST

(h) AMI (i) ARI (j) Run-time

Figure 8: Visualization and performance of the clustering paths on data MNIST.
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(a) d = 1024 (b) m = 200 (c) m = 100

(d) m = 50 (e) m = 20 (f) m = 10

(g) True cluster labels of COIL-20

(h) AMI (i) ARI (j) Run-time

Figure 9: Visualization and performance of the clustering paths on data COIL-20.
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(a) d = 12625 (b) m = 200 (c) m = 100

(d) m = 50 (e) m = 20 (f) m = 10

(g) True cluster labels of LUNG

(h) AMI (i) ARI (j) Run-time

Figure 10: Visualization and performance of the clustering paths on data LUNG.
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(a) d = 90 (b) m = 50 (c) m = 20 (d) m = 10

(e) True cluster labels of LIBRAS

(f) AMI (g) ARI (h) Run-time

Figure 11: Visualization and performance of the clustering paths on data LIBRAS.

(a) d = 90 (b) m = 50 (c) m = 20 (d) m = 10

(e) True cluster labels of LIBRAS-6

(f) AMI (g) ARI (h) Run-time

Figure 12: Visualization and performance of the clustering paths on data LIBRAS-6.
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with uniform weights for clustering a mixture of spherical Gaussians. Extensive numerical
experiment results were presented in this paper to demonstrate the robustness and superior
performance of the model (RPCCM). The numerical results presented in this paper also
demonstrated that the model (RPCCM) can outperform other popular clustering models
on the dimension-reduced data in practice.

It is worthwhile pointing out that the practical performance of the models (CCM) and
(RPCCM) depends on the quality of the input data features. We regard it as a future re-
search direction to investigate a new technique that can do dimension reduction and feature
representation learning simultaneously. In particular, it is interesting to explore whether
other dimensionality reduction methods, such as spectral projection, could enhance the
clustering recovery performance of the model (CCM) under some specific problem settings,
e.g., the MSG problem setting. Moreover, the choice of the weights wij is a key to the
success of the models (CCM) and (RPCCM). We will further investigate adaptive weights
to improve the practical performance and robustness of the models in the future research.
Another key challenge for practical implementations of the models (CCM) and (RPCCM)
is the tuning of the parameter γ. We regard developing robust tuning strategies for γ as a
future research direction.

Acknowledgments and Disclosure of Funding

The research of Yancheng Yuan is supported in part by The Hong Kong Polytechnic Uni-
versity under grant P0038284. The research of Defeng Sun is supported in part by the Hong
Kong Research Grant Council under grant 15304721.

A. Appendix

A.1 Proof of Corollary 1

Proof Note that the statements of Theorem 2 hold provided events E1 and E2 are satisfied,
where E1 is the event that Π satisfies (12) and E2 is the event that Π satisfies (11b),
respectively. Also note that Proposition 1 implies that

P [E2 | E1] ≥ 1− 1

2Kp2−2

(
1

1− 1
2np1−2

)
. (46)

As a result, under the assumptions in Theorem 2, if we assume that the random projection
Π satisfies (12), the statements of Theorem 2 hold with probability at least

1− 1

2Kp2−2

(
1

1− 1
2np1−2

)
.

A.2 Proof of Proposition 3

Proof Suppose 1 ≤ α ≤ K.
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1. ∥ai − aj∥ ≤ ∥ai − µα∥+ ∥aj − µα∥ ≤ 2θσα, for any i, j ∈ Ĩα(d, θ).

2. By definition of Ĩα(d, θ), for any i ∈ [n], we have

P
[
i ∈ Ĩα(d, θ)

]
= P [∥ai − µα∥ ≤ θσα | i ∈ Iα]P [i ∈ Iα] = F (θ, d)pα.

Therefore, E
[
|Ĩα(d, θ)|

]
= F (θ, d)pαn. For any η > 0, it follows Hoeffding’s inequality

(Hoeffding, 1963) for the binomial distribution that (24) holds.

3. For any nonzero h ∈ Rd, we claim that

Px∼N (µα,σ
2
αId)

[
(x− µα)

⊤h ≤ 0 | ∥x− µα∥ ≤ θσα

]
=Px∼N (µα,σ

2
αId)

[
(x− µα)

⊤h ≥ 0 | ∥x− µα∥ ≤ θσα

]
=1/2.

(47)

In fact, let y := (x−µα)
⊤h, then y ∼ N (0,σ2

α∥h∥2) provided x ∼ N (µα,σ
2
αId). More-

over, let S :=
{
y = (x− µα)

⊤h ∈ R | ∥x− µα∥ ≤ θσα
}
, then S is symmetric w.r.t.

0. Thus, (47) holds by the fact that the density function of a Gaussian distribution
is symmetric around its mean.

Moreover, by the definition of Ĩα(d, θ), we have that

P
[
(ai − µα)

⊤h ≤ 0 | i ∈ Ĩα(d, θ)
]
= P

[
(ai − µα)

⊤h ≥ 0 | i ∈ Ĩα(d, θ)
]
= 1/2.

Taking the union bound over i ∈ Ĩα(d, θ), we have that for any n ≥ ñ ≥ 1,

P
[
∃i ∈ Ĩα(d, θ) s.t. (ai − µα)

⊤ h ≥ 0 | |Ĩα(d, θ)| ≥ ñ
]
≥ 1− 2−ñ.

Particularly, for any η > 0, let ñα := (F (θ, d)− η)pαn, the Bayes’ Theorem tells that

P
[
|Ĩα(d, θ)| ≥ ñα, and ∃i ∈ Ĩα(d, θ) s.t. (ai − µα)

⊤ h ≥ 0
]

≥P
[
∃i ∈ Ĩα(d, θ) s.t. (ai − µα)

⊤ h ≥ 0 | |Ĩα(d, θ)| ≥ ñα

]
P
[
|Ĩα(d, θ)| ≥ ñα

]
≥
(
1− 2−(F (θ,d)−η)pαn

) (
1− exp

(
−2p2

αη
2n
))
.

(48)

A.3 Proof of Proposition 4

Proof Let ñα = (F (θ, d)− η)pαn, α ∈ [K]. We claim here that it suffices to show the
following statement: For any given α ∈ [K], with probability over(

1− (K − 1) 2−ñα
) (

1− exp
(
−2p2

αη
2n
))
,
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we have |Ĩα(d, θ)| ≥ ñα, and for any β ̸= α, there exists i ∈ Ĩα(d, θ) such that

(ai − µα)
⊤Π⊤Π

(
µα − µβ

)
≥ 0.

In fact, if the statement being claimed is true, then by taking the union bound over α ∈ [K],
we have that with probability over 1− PG, for any 1 ≤ α ̸= β ≤ K,

|Ĩα(d, θ)| ≥ ñα, (49)

and there exists i ∈ Ĩα(d, θ), i
′ ∈ Ĩβ(d, θ) such that

(ai − µα)
⊤Π⊤Π

(
µα − µβ

)
≥ 0,(

ai′ − µβ
)⊤

Π⊤Π
(
µβ − µα

)
≥ 0,

which further implies that

∥Π(ai − ai′)∥2 =
∥∥Π (ai − µα − ai′ + µβ + µα − µβ

)∥∥2
=
∥∥Π (ai − µα − ai′ + µβ

)∥∥2 + 2 (ai − µα)
⊤Π⊤Π

(
µα − µβ

)
+ 2

(
ai′ − µβ

)⊤
Π⊤Π

(
µβ − µα

)
+
∥∥Π (µα − µβ

)∥∥2
≥
∥∥Π (µα − µβ

)∥∥2 .
(50)

Combining (49), (50), and the triangular inequality, we have that for any 1 ≤ α ̸= β ≤ K,

max
i,j∈Ĩα(d,θ)

∥Π(ai − µα)∥+ ∥Π(aj − µα)∥
(F (θ, d)− η)pαn

≥ max
i,j∈Ĩα(d,θ)

∥Π(ai − aj)∥
|Ĩα(d, θ)|

,

max
i∈Ĩα(d,θ)

i′∈Ĩβ(d,θ)

∥Π(ai − ai′)∥
2(n− 1)

≥
∥∥Π (µα − µβ

)∥∥
2(n− 1)

,
(51)

which implies (32).
Now, we prove the statement being claimed. Fix any given α ∈ [K]. For any β ∈

[K], β ̸= α, let hα,β := Π⊤Π
(
µα − µβ

)
∈ Rd, and let Eα,β denote the event that ∃i ∈

Ĩα(d, θ) s.t. (ai − µα)
⊤ hα,β ≥ 0. Under the assumption that Πµ1, . . . ,ΠµK ∈ Rm are all

distinct, we have ∥Π(µα−µβ)∥2 = (µα−µβ)
⊤Π⊤Π(µα−µβ) > 0, which implies that hα,β

is nonzero. Therefore, by Proposition (3), we have that

P
[
Eα,β | |Ĩα(d, θ)| ≥ ñα

]
≥ 1− 2−ñα . (52)

Taking the union bound over β ∈ [K], β ̸= α, we have that

P
[
∩β∈[K],β ̸=αEα,β | |Ĩα(d, θ)| ≥ ñα

]
≥ 1− (K − 1)2−ñα . (53)

Thus, it follows the Bayes’ Theorem that with probability over(
1− (K − 1) 2−ñα

) (
1− exp

(
−2p2

αη
2n
))
,

|Ĩα(d, θ)| ≥ ñα, and for any β ̸= α, there exists i ∈ Ĩα(d, θ) such that

(ai − µα)
⊤Π⊤Π

(
µα − µβ

)
≥ 0.
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A.4 Proof of Proposition 5

Proof If γ̂Gmin < γ̂Gmax, by Proposition (4), with probability over 1− PG, we have that

max
α∈[K]

max
i,j∈Ĩα(d,θ)

∥Π(ai − aj)∥
|Ĩα(d, θ)|

≤ γ̂Gmin < γ̂Gmax ≤ min
1≤α<β≤K

max
i∈Ĩα(d,θ)

i′∈Ĩβ(d,θ)

∥Π(ai − ai′)∥
2(n− 1)

, (54)

which implies that for any γ ∈
[
γ̂Gmin, γ̂

G
max

)
, for any 1 ≤ α < β ≤ K,

max
l∈{α,β}

max
i,j∈Ĩl(d,θ)

∥Π(ai − aj)∥
|Ĩl(d, θ)|

≤ γ < max
i∈Ĩα(d,θ)

i′∈Ĩβ(d,θ)

∥Π(ai − ai′)∥
2(n− 1)

.

Applying Lemma 5 to the embedded data ΠA implies that points indexed by Ĩα(d, θ), α ∈
[K] are correctly labeled.

A.5 Proof of Proposition 6

Proof On the one hand, for any ϵ ∈ (0, 1/C12) and δ > 0, let Π ∼ Dϵ,δ with m ≥
Cϵ−2 log(1/δ), the failure probability of (34a) is at most |XG|δ. Note that

|XG| =
K∑
α=1

|Ĩα(θ, d)| ≤ n.

If we take δ = 1
np1 and m ≥ Cϵ−2 log(1/δ) = p1Cϵ

−2 log(n), where p1 > 1, the failure
probability of (34a) is at most

|XG|δ ≤
1

np1−1
.

On the other hand, let δ2 =
1

Kp2 and ϵ2 = C12ϵ, where p2 > 2, then 0 < ϵ2 < min{ϵ, 1},
and we have p1Cϵ

−2 log(n) = p2Cϵ
−2
2 log(K) = Cϵ−2

2 log(1/δ2). As a result, if we take
m ≥ p1Cϵ

−2 log(n), the probability that (34b) fails is at most

|Xµ|
1

Kp2
= C(K, 2)

1

Kp2
<

1

2Kp2−2
.

Taking a union bound, the probability that conditions (34) are satisfied is at least

1− |XG|δ − |Xµ|δ2 > 1− 1

np1−1
− 1

2Kp2−2
.

A.6 Proof of Theorem 4

Proof It follows Proposition 5 and Proposition 6 that, with probability over 1 − 1
np1−1 −

1
2Kp2−2 − PG, the following statements hold:
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(i) The means {Πµ1, . . . ,ΠµK} of the embedded data are distinct.

(ii) γ̂Gmin, γ̂
G
max defined in (31) and γGmin, γ

G
max defined in (27) satisfy

max
α∈[K]

max
i,j∈Ĩα(d,θ)

∥Π(ai − aj)∥
|Ĩα(d, θ)|

≤ γ̂Gmin ≤ (1 + ϵ)γGmin,

(1− C12ϵ)γ
G
max ≤ γ̂Gmax ≤ min

1≤α<β≤K
max

i∈Ĩα(d,θ)

i′∈Ĩβ(d,θ)

∥Π(ai − ai′)∥
2(n− 1)

.
(55)

Now, we prove the theorem. We claim here that it is sufficient to show: if rG >
1+ϵGmin

1−C12ϵGmin

,

then ϵGmin < ϵGsup, and for any ϵ ∈ (ϵGmin, ϵ
G
sup), the interval

[
(1 + ϵ)γGmin, (1− C12ϵ)γ

G
max

)
is

nonempty. In fact, if
[
(1 + ϵ)γGmin, (1− C12ϵ)γ

G
max

)
is nonempty, then by (55),

[
γ̂Gmin, γ̂

G
max

)
is nonempty. It follows Proposition 5 that for any γ̂ ∈

[
γ̂Gmin, γ̂

G
max

)
, the points indexed by

Ĩα(d, θ), α ∈ [K] are correctly labeled by the model.
On the one hand, we have

rG > 1+ϵmin
1−C12ϵmin

=⇒ (1− C12ϵ
G
min)r

G > 1 + ϵGmin

=⇒ ϵGmin <
rG−1

C12rG+1
= ϵGsup.

This implies that the interval (ϵGmin, ϵ
G
sup) is nonempty.

On the other hand, we have

ϵ < ϵGsup =⇒ ϵ < rG−1
C12rG+1

=⇒ 1+ϵ
1−C12ϵ

< rG

=⇒ 1+ϵ
1−C12ϵ

< γGmax

γGmin

=⇒ (1 + ϵ)γGmin < (1− C12ϵ)γ
G
max.

Thus, we have proved the theorem.

A.7 Proof of Theorem 5

Proof With probability over 1− 1
np1−1 − 1

2Kp2−2 − PG, we have:

(i) The means {Πµ1, . . . ,ΠµK} of the embedded data are distinct.

(ii) γ̂Gmin, γ̂
G
max defined in (31) and γGmin, γ

G
max defined in (27) satisfy

max
α∈[K]

max
i,j∈Ĩα(d,θ)

∥Π(ai − aj)∥
|Ĩα(d, θ)|

≤ γ̂Gmin ≤ S̄(m, d, 2)γGmin,

(1− ϵ)γGmax ≤ γ̂Gmax ≤ min
1≤α<β≤K

max
i∈Ĩα(d,θ)

i′∈Ĩβ(d,θ)

∥Π(ai − ai′)∥
2(n− 1)

.
(56)

44



Randomly Projected Convex Clustering Model

Now, we prove the theorem. We claim here that it is sufficient to show: if rG >
1+C2

κ+
2C2

κ√
d

1−ϵ̃Gmin

,

then ϵ̃Gmin < ϵ̃Gsup, and for any ϵ ∈ (ϵ̃Gmin, ϵ̃
G
sup), the interval

[
S̄(m, d, 2)γGmin, (1− ϵ)γGmax

)
is

nonempty. In fact, if
[
S̄(m, d, 2)γGmin, (1− ϵ)γGmax

)
is nonempty, then by (56),

[
γ̂Gmin, γ̂

G
max

)
is nonempty. It follows Proposition 5 that for any γ̂ ∈

[
γ̂Gmin, γ̂

G
max

)
, points indexed by

Ĩα(d, θ), α ∈ [K] are correctly labeled by the model.

On the one hand, by definition of ϵ̃Gmin and C0, we have

1√
d
=

ϵ̃Gmin√
p2C log(K)

, C0 = 1/ϵ̃Gmin +
2C2

κ√
p2C log(K)

. (57)

As a result,

rG >
1+C2

κ+
2C2

κ√
d

1−ϵ̃Gmin

=⇒ rG >
C2

κ+1+
ϵ̃Gmin2C2

κ√
p2C log(K)√

1−ϵ̃Gmin

=⇒ rG >
C2

κ+ϵ̃
G
min

(
1/ϵ̃Gmin+

2C2
κ√

p2C log(K)

)
1−ϵ̃Gmin

=⇒ rG >
C2

κ+ϵ̃
G
minC0

1−ϵ̃Gmin

=⇒ C2
κ + ϵ̃minC0 < 1− ϵ̃Gminr

G

=⇒ ϵ̃Gmin <
rG−C2

κ

C0+rG
= ϵ̃Gsup.

On the other hand, we have

S̄(m, d, 2) =

√
d+ 2C2

κ√
m

+ C2
κ =

√
d+ 2C2

κ√
p2C log(K)

ϵ+ C2
κ = C0ϵ+ C2

κ. (58)

As a result,
ϵ ∈ (ϵ̃Gmin, ϵ̃

G
sup) =⇒ C0ϵ+ C2

κ < (1− ϵ)rG

=⇒ S̄(m, d, 2)γGmin < (1− ϵ)γGmax.

Thus, we have proved the theorem.

A.8 Computational Complexity Analysis for Implementing (RPCCM)

In this section, we will discuss the computational complexity for the implementation of
the model (RPCCM). Let A ∈ Rd×n the input data and k be a given positive integer
(e.g., k = 5). From the paradigm Figure 3, we can summarize the main steps in our
implementations as follows:

Step 1 : Construct Gaussian kernel weights wij according to (1).

Step 2 : Sample a random projection matrix Π ∈ Rm×d with a given embedding dimension
m < d and obtain the embedded data ΠA ∈ Rm×n.
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Step 3 : Apply the AS-SSNAL algorithm to solve the model (RPCCM) along a sequence of
the given regularization parameters ∞ > γ1 > γ2 > · · · > γT > 0 and obtain the
clustering path.

For simplicity, we focus on discussing the computational complexity for a fixed γ > 0.
The computational complexities for Step 1 and Step 2 can be easily calculated, which are
summarized in Table 15.

Table 15: Computational complexity for constructing weights and embedded data.

Step 1 Step 2
Construct E(k) Compute wij Construct Π Construct ΠA

Complexity O(n2d+ n2 min{log(n), k}) O(dnk) O(dm) O(nmd)

Now, we discuss the computational complexity for Step 3 in detail. Although it is
difficult to obtain the overall computational complexity bounds of the AS-SSNAL algorithm,
we will discuss the computational complexity for each of its main steps. From an illustrative
paradigm in Figure 2, we can summarize the main computational components of the AS-
SSNAL algorithm for solving (RPCCM) as follows:

Step 3.1 Apply the adaptive sieving (AS) strategy developed in (Yuan et al., 2022) to reduce
the dimension in terms of n. This is motivated by the fact that the solution {x∗i }
corresponding to the same identified cluster by the model (CCM) will be identical.
In short, with the AS technique, we can obtain a solution to (RPCCM) by solving a
sequence of reduced subproblems.

Step 3.2 Apply the augmented Lagrangian method (ALM) to solve the reduced subproblems
generated by the AS technique.

Step 3.3 Apply the semismooth Newton (SSN) method to solve the subproblems of ALM.

Step 3.4 Apply the conjugate gradient (CG) method to solve the linear systems and obtain the
Newton directions.

First of all, according to (Yuan et al., 2022, Theorem 2.6), the AS technique is guaranteed
to converge in a finite number of iterations. As reported in (Yuan et al., 2022), for solving the
convex clustering problem (CCM), it typically requires less than 3 AS iterations to obtain
a solution to the model (CCM). The key step for constructing the reduced subproblem is to
identify the connected components of the subgraph generated by n nodes and some given
edge set Ē ⊆ E(k) (Yuan et al., 2022, Section 3.1). The computational complexity for this
step is bound by O(nk). The AS technique will reduce n to n̄, where n̄ is the number
of connected components. Here, an isolated node will also be regarded as a connected
component. Therefore, the computational complexity of SSNAL for solving the reduced
subproblems of (RPCCM) can also be obtained after we analyze the SSNAL algorithm for
solving (RPCCM).

Now, we move on to discuss the convergence rate for the ALM algorithm in Step 3.2.
It has been known that the (inexact) ALM enjoys an asymptotically superlinear conver-
gence rate for solving convex programming problems under mild error-bound conditions
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(Rockafellar, 1976a,b; Cui et al., 2019). Due to the close connection between the proximal
point algorithm (PPA) and the ALM (Rockafellar, 1976b), it follows from the results for
PPA in (Güler, 1991) that the convergence rate in terms of objective function value for the
exact ALM for solving (RPCCM) is at least O(1/k). On the other hand, since (RPCCM)
is strongly convex, it follows from (Xu, 2021) that it requires O(τ−1/2| log(τ)|) to obtain an
τ -solution to (RPCCM) in terms of objective function value. In practice, we can usually
obtain a solution to (RPCCM) to the required accuracy within 30 iterations of inexact ALM
in our numerical experiments.

For Step 3.3, the locally superlinear (quadratic) convergence rate of the SSN method for
solving the subproblems of ALM has been shown in (Sun et al., 2021) for (CCM). However,
as far as we know, the iteration complexity of the SSN method remains open. We plan
to investigate this challenging research question in the future. Regarding the numerical
performance of the SSN method, we have observed that it usually terminates within 3
iterations for most of the examples we tested for (RPCCM).

Lastly, we discuss the computational complexity of the CG method for obtaining the
Newton direction in the SSN method. It is well known that the convergence rate of the CG
method depends critically on the condition number of the coefficient matrix in the Newton
system. Fortunately, as discussed in (Sun et al., 2021, Section 5.4), the condition number
ρ ≤ (1 + σλmax(LE(k))), where σ is the penalty parameter in the augmented Lagrangian
function and λmax(LE(k)) is the largest eigenvalue of the Laplacian matrix of the graph by
E(k). Moreover, it follows from (Sun et al., 2021) that the per-iteration computational cost
for CG is O(m|E(k)|).

A.9 Comparisons with Baseline Algorithms

Here, we include the numerical results of the clustering algorithms on the real datasets.
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Table 16: Comparisons with baselines on data LIBRAS. The results are averaged over 10
random projections. We use the format “mean ± standard deviation” to report the results
of ARI and AMI.

Model ARI AMI Time

(RP) CCM

d = 90 0.3767 ± 0.0000 0.6119 ± 0.0000 0.3550
m = 50 0.3817 ± 0.0088 0.6158 ± 0.0046 0.2781
m = 20 0.3740 ± 0.0054 0.6125 ± 0.0049 0.2510
m = 10 0.3651 ± 0.0095 0.6093 ± 0.0055 0.1460

(RP) KM++

d = 90 0.3049 ± 0.0130 0.5259 ± 0.0124 0.1159
m = 50 0.3054 ± 0.0221 0.5206 ± 0.0191 0.0770
m = 20 0.2680 ± 0.0274 0.4733 ± 0.0282 0.0755
m = 10 0.2286 ± 0.0218 0.4317 ± 0.0168 0.0774

(RP) SC

d = 90 0.3956 ± 0.0000 0.6026 ± 0.0000 0.0318
m = 50 0.3790 ± 0.0173 0.5895 ± 0.0148 0.0383
m = 20 0.3414 ± 0.0222 0.5522 ± 0.0190 0.0382
m = 10 0.2906 ± 0.0222 0.4906 ± 0.0190 0.0365

(RP) CLINK

d = 90 0.2275 ± 0.0000 0.4565 ± 0.0000 0.0039
m = 50 0.2518 ± 0.0237 0.4591 ± 0.0275 0.0022
m = 20 0.2253 ± 0.0244 0.4257 ± 0.0288 0.0019
m = 10 0.1875 ± 0.0256 0.3805 ± 0.0349 0.0017

(RP) HDB

d = 90 0.0546 ± 0.0000 0.3237 ± 0.0000 0.0353
m = 50 0.0779 ± 0.0229 0.3565 ± 0.0358 0.0357
m = 20 0.0842 ± 0.0239 0.3470 ± 0.0408 0.0360
m = 10 0.0598 ± 0.0214 0.3055 ± 0.0454 0.0388

(RP) MS

d = 90 0.3026 ± 0.0214 0.4996 ± 0.0454 0.0171
m = 50 0.2927 ± 0.0224 0.4940 ± 0.0329 0.0118
m = 20 0.2768 ± 0.0316 0.4598 ± 0.0405 0.0063
m = 10 0.1944 ± 0.0664 0.3955 ± 0.0955 0.0057

Table 17: Comparisons with baselines on data LIBRAS-6. The results are averaged over 10
random projections. We use the format “mean ± standard deviation” to report the results
of ARI and AMI.

Model ARI AMI Time

(RP) CCM

d = 90 0.7674 ± 0.0000 0.8065 ± 0.0000 0.1120
m = 50 0.7674 ± 0.0000 0.8065 ± 0.0000 0.0715
m = 20 0.7674 ± 0.0000 0.8065 ± 0.0000 0.0710
m = 10 0.7505 ± 0.0218 0.8081 ± 0.0020 0.0650

(RP) KM++

d = 90 0.5119 ± 0.0075 0.6162 ± 0.0102 0.0417
m = 50 0.5268 ± 0.0614 0.6281 ± 0.0518 0.0348
m = 20 0.4695 ± 0.0868 0.5795 ± 0.0784 0.0372
m = 10 0.4025 ± 0.1024 0.5140 ± 0.0969 0.0377

(RP) SC

d = 90 0.7255 ± 0.0017 0.8057 ± 0.0011 0.0146
m = 50 0.6846 ± 0.0429 0.7729 ± 0.0394 0.0169
m = 20 0.6400 ± 0.0795 0.7393 ± 0.0604 0.0148
m = 10 0.5721 ± 0.0996 0.6736 ± 0.0776 0.0124

(RP) CLINK

d = 90 0.4003 ± 0.0000 0.5269 ± 0.0000 0.0023
m = 50 0.3985 ± 0.0734 0.5333 ± 0.0703 0.0014
m = 20 0.3575 ± 0.1124 0.4856 ± 0.1037 0.0014
m = 10 0.3468 ± 0.0802 0.4755 ± 0.0822 0.0011

(RP) HDB

d = 90 0.4781 ± 0.0000 0.6425 ± 0.0000 0.0153
m = 50 0.4428 ± 0.0820 0.5984 ± 0.0604 0.0134
m = 20 0.4227 ± 0.1134 0.5867 ± 0.0790 0.0136
m = 10 0.3131 ± 0.1013 0.5030 ± 0.0743 0.0140

(RP) MS

d = 90 0.6507 ± 0.0135 0.7484 ± 0.0221 0.0035
m = 50 0.5977 ± 0.0600 0.7014 ± 0.0514 0.0021
m = 20 0.5374 ± 0.0665 0.6444 ± 0.0683 0.0016
m = 10 0.4760 ± 0.0821 0.5717 ± 0.0919 0.0013
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Table 18: Comparisons with baselines on data COIL-20. The results are averaged over 10
random projections. We use the format “mean ± standard deviation” to report the results
of ARI and AMI.

Model ARI AMI Time

(RP) CCM

d = 1024 0.8136 ± 0.0000 0.9165 ± 0.0000 36.1010
m = 200 0.8123 ± 0.0031 0.9164 ± 0.0008 7.1021
m = 100 0.8119 ± 0.0035 0.9152 ± 0.0031 3.5995
m = 50 0.8106 ± 0.0053 0.9144 ± 0.0042 2.2270
m = 20 0.8147 ± 0.0025 0.9166 ± 0.0002 1.3453
m = 10 0.8112 ± 0.0073 0.9133 ± 0.0058 0.8810

(RP) KM++

d = 1024 0.5937 ± 0.0250 0.7603 ± 0.0135 2.7407
m = 200 0.5730 ± 0.0333 0.7493 ± 0.0175 1.3477
m = 100 0.5622 ± 0.0323 0.7352 ± 0.0201 0.3493
m = 50 0.5484 ± 0.0265 0.7230 ± 0.0175 0.2461
m = 20 0.4908 ± 0.0230 0.6689 ± 0.0159 0.2047
m = 10 0.4443 ± 0.0227 0.6233 ± 0.0179 0.2081

(RP) SC

d = 1024 0.8251 ± 0.0052 0.9234 ± 0.0054 0.4472
m = 200 0.8265 ± 0.0048 0.9258 ± 0.0030 0.2327
m = 100 0.8022 ± 0.0158 0.9109 ± 0.0087 0.0863
m = 50 0.7921 ± 0.0095 0.9032 ± 0.0055 0.0656
m = 20 0.7132 ± 0.0388 0.8505 ± 0.0198 0.0680
m = 10 0.5186 ± 0.0580 0.7156 ± 0.0343 0.0708

(RP) CLINK

d = 1024 0.3538 ± 0.0000 0.5846 ± 0.0000 0.2086
m = 200 0.3483 ± 0.0294 0.5808 ± 0.0221 0.0520
m = 100 0.3814 ± 0.0342 0.6061 ± 0.0250 0.0234
m = 50 0.3601 ± 0.0365 0.5879 ± 0.0264 0.0155
m = 20 0.3708 ± 0.0399 0.5829 ± 0.0267 0.0110
m = 10 0.3376 ± 0.0319 0.5705 ± 0.0328 0.0161

(RP) HDB

d = 1024 0.7703 ± 0.0000 0.8801 ± 0.0000 0.3163
m = 200 0.7303 ± 0.0297 0.8569 ± 0.0154 0.3337
m = 100 0.7259 ± 0.0304 0.8580 ± 0.0127 0.2909
m = 50 0.6806 ± 0.0266 0.8410 ± 0.0114 0.2893
m = 20 0.4924 ± 0.0757 0.7501 ± 0.0462 0.3133
m = 10 0.2132 ± 0.0386 0.6084 ± 0.0330 0.2991

(RP) MS

d = 1024 0.5830 ± 0.0074 0.6597 ± 0.0100 2.5359
m = 200 0.5806 ± 0.0099 0.6651 ± 0.0093 1.2775
m = 100 0.5745 ± 0.0335 0.6627 ± 0.0395 0.2845
m = 50 0.5458 ± 0.0350 0.6392 ± 0.0406 0.0714
m = 20 0.4955 ± 0.0572 0.6040 ± 0.0353 0.0517
m = 10 0.3549 ± 0.0959 0.5738 ± 0.0693 0.0415
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Table 19: Comparisons with baselines on data LUNG. The results are averaged over 10
random projections. We use the format “mean ± standard deviation” to report the results
of ARI and AMI.

Model ARI AMI Time

(RP) CCM

d = 12625 0.9586 ± 0.0000 0.9426 ± 0.0000 3.9890
m = 200 0.9586 ± 0.0000 0.9426 ± 0.0000 0.1521
m = 100 0.9586 ± 0.0000 0.9426 ± 0.0000 0.1115
m = 50 0.9586 ± 0.0000 0.9426 ± 0.0000 0.0863
m = 20 0.9586 ± 0.0000 0.9426 ± 0.0000 0.0693
m = 10 0.9586 ± 0.0000 0.9426 ± 0.0000 0.0588

(RP) KM++

d = 12625 0.9586 ± 0.0000 0.9426 ± 0.0000 0.2670
m = 200 0.9378 ± 0.0815 0.9312 ± 0.0592 0.0264
m = 100 0.9052 ± 0.1076 0.9013 ± 0.0937 0.0189
m = 50 0.8543 ± 0.1337 0.8694 ± 0.0991 0.0198
m = 20 0.8032 ± 0.1473 0.8060 ± 0.1204 0.0207
m = 10 0.7058 ± 0.1666 0.7258 ± 0.1298 0.0192

(RP) SC

d = 12625 0.7998 ± 0.0000 0.7951 ± 0.0000 0.0221
m = 200 0.7979 ± 0.0739 0.8197 ± 0.0677 0.0138
m = 100 0.8587 ± 0.1161 0.8549 ± 0.1072 0.0127
m = 50 0.7832 ± 0.0572 0.8007 ± 0.0301 0.0112
m = 20 0.7202 ± 0.1051 0.7485 ± 0.0823 0.0116
m = 10 0.7229 ± 0.1262 0.7283 ± 0.1096 0.0120

(RP) CLINK

d = 12625 1.0000 ± 0.0000 1.0000 ± 0.0000 0.0100
m = 200 0.8364 ± 0.1237 0.8114 ± 0.1222 0.0011
m = 100 0.8282 ± 0.1099 0.8117 ± 0.1084 0.0010
m = 50 0.7589 ± 0.1811 0.7751 ± 0.1292 0.0012
m = 20 0.7110 ± 0.1811 0.6997 ± 0.1292 0.0010
m = 10 0.5664 ± 0.2204 0.5647 ± 0.1977 0.0009

(RP) HDB

d = 12625 0.4891 ± 0.0000 0.5490 ± 0.0000 0.0094
m = 200 0.4669 ± 0.0479 0.4325 ± 0.0669 0.0058
m = 100 0.4297 ± 0.0828 0.4254 ± 0.1043 0.0067
m = 50 0.4104 ± 0.1423 0.4212 ± 0.1303 0.0064
m = 20 0.3126 ± 0.1587 0.4024 ± 0.1387 0.0065
m = 10 0.3669 ± 0.1095 0.4282 ± 0.1130 0.0063

(RP) MS

d = 12625 0.8999 ± 0.0654 0.8452 ± 0.0322 0.0419
m = 200 0.8431 ± 0.0748 0.7618 ± 0.0885 0.0012
m = 100 0.8481 ± 0.0637 0.7624 ± 0.1043 0.0007
m = 50 0.7923 ± 0.1105 0.7321 ± 0.1213 0.0006
m = 20 0.6979 ± 0.1649 0.6297 ± 0.1577 0.0006
m = 10 0.6542 ± 0.1466 0.5943 ± 0.1554 0.0009
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Table 20: Comparisons with baselines on data MNIST. The results are averaged over 10
random projections. We use the format “mean ± standard deviation” to report the results
of ARI and AMI.

Model ARI AMI Time

(RP) CCM

d = 784 0.6468 ± 0.0000 0.7054 ± 0.0000 1240.4120
m = 200 0.6125 ± 0.0350 0.7134 ± 0.0249 180.3215
m = 100 0.6118 ± 0.0374 0.7265 ± 0.0315 133.4112
m = 50 0.6207 ± 0.0399 0.7102 ± 0.0232 59.2690
m = 20 0.6116 ± 0.0519 0.7152 ± 0.0416 39.5231
m = 10 0.6042 ± 0.0547 0.7305 ± 0.0242 22.2365

(RP) KM++

d = 784 0.3813 ± 0.0026 0.4991 ± 0.0015 60.3587
m = 200 0.3550 ± 0.0201 0.4738 ± 0.0130 18.3064
m = 100 0.3368 ± 0.0164 0.4509 ± 0.0124 8.0586
m = 50 0.2959 ± 0.0291 0.4041 ± 0.0229 4.6307
m = 20 0.2052 ± 0.0198 0.3046 ± 0.0179 2.9046
m = 10 0.1613 ± 0.0288 0.2439 ± 0.0365 2.1792

(RP) SC

d = 784 0.6101 ± 0.0000 0.7196 ± 0.0000 15.2337
m = 200 0.5840 ± 0.0129 0.6898 ± 0.0092 4.5842
m = 100 0.5678 ± 0.0163 0.6745 ± 0.0105 2.8558
m = 50 0.4705 ± 0.0489 0.6061 ± 0.0310 2.0994
m = 20 0.2263 ± 0.0669 0.3953 ± 0.0424 2.2416
m = 10 0.1390 ± 0.0190 0.2548 ± 0.0230 2.3545

(RP) CLINK

d = 784 0.1879 ± 0.0000 0.3227 ± 0.0000 10.7043
m = 200 0.1542 ± 0.0329 0.2891 ± 0.0236 2.9764
m = 100 0.1549 ± 0.0258 0.2914 ± 0.0303 1.9668
m = 50 0.1374 ± 0.0278 0.2573 ± 0.0323 1.5220
m = 20 0.1041 ± 0.0306 0.1963 ± 0.0325 1.3127
m = 10 0.0972 ± 0.0255 0.1572 ± 0.0363 1.2151

(RP) MS

d = 784 0.5830 ± 0.0074 0.6597 ± 0.0100 2.5359
m = 200 0.3849 ± 0.0298 0.3861 ± 0.0413 67.6404
m = 100 0.3396 ± 0.0411 0.3513 ± 0.0421 38.5571
m = 50 0.2776 ± 0.0655 0.3258 ± 0.0815 30.9492
m = 20 0.1244 ± 0.0718 0.3102 ± 0.0833 17.3379
m = 10 0.0037 ± 0.0097 0.0552 ± 0.0571 2.9932
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A.10 Numerical Verification for the Model (RPCCM) with Uniform Weights
for the MSG Problem Setting

In this section, we will verify the recovery guarantees of the model (RPCCM) with uniform
weights for the MSG problem setting, as stated in Theorem 4 and Theorem 5. Since the
robustness of random projections and the computational efficiency of the model (RPCCM)
have been verified in Section 5, we will only test with a specific mixture of K = 4 Gaussians
N (eα, 0.01

2I100) with pα = 1
4 , for α = 1, . . . , 4. We will generate 10 datasets for verification,

each containing 10000 points that are independently drawn from this distribution9.

To simplify the analysis, we will fix the parameters θ =
√
2d = 10

√
2 and η = 0.1. Based

on these values, we can compute that F (θ, d) > 0.9999, and 1 − exp
(
−2p2

αη
2n
)
> 0.9999.

This implies that, with a probability higher than 0.9999, |Ĩα(d, θ)| ≥ 2250, α = 1, . . . , 4.
Using the above information, we can determine the values of γGmin, γ

G
max, and r

G defined in
(27), which are

γGmin = 1.2570 · 10−6, γGmax = 7.0717 · 10−5, rG = 56.2585. (59)

These values indicate that the model (CCM) could correctly recover the points indexed
by Ĩα(d, θ) for all α = 1, . . . , 4, provided that γ is in the range

[
γGmin, γ

G
max

)
. Additionally,

the large ratio rG indicates the feasibility of correct recovery for the model (RPCCM) using
an appropriate embedding dimension. In this section, we will set m = ⌈ϵ−2 log(n)⌉ (or m̃ =
⌈2ϵ−2 log(K)⌉). The valid distortion range (ϵGmin, ϵ

G
sup) as defined in (35) (or (ϵ̃Gmin, ϵ̃

G
sup) in

(37)), along with the tested values of distortions and embedding dimensions, are summarized
in Table 21.

Table 21: Valid distortion range and tested values of distortions and embedding dimensions.

Embedding dimension Valid distortion range Tested values of (ϵ,m) (or (ϵ, m̃))

m = ⌈ϵ−2 log(n)⌉ [0.3035,1.7340) (0.5, 37), (1.0, 10), (1.5, 5)
m̃ = ⌈2ϵ−2 log(K)⌉ [0.1665, 0.8706) (0.4, 18), (0.6, 8), (0.8, 5)

For each pair of (ϵ,m) (or (ϵ, m̃)), we will randomly sample 10 projection matrices for
verification. We will compute γ̂Gmin and γ̂Gmax by (10) using each projection matrix for each
dataset. Then, we will test the probability that (55) in Theorem 4 (or (56) in Theorem 5)
is satisfied. The results of these tests are summarized in Table 22.

Table 22: Numerical verification for the correct recovery of the model (RPCCM) for 10
datasets generated from the same MSG setting. In the table, the value pĨα(d,θ) denotes the

probability that (55) in Theorem 4 (or (56) in Theorem 5) is satisfied.

Case 1: m = ⌈ϵ−2 log(n)⌉ Case 2: m̃ = ⌈ϵ−2 log(K)⌉
(ϵ,m) (0.5, 37) (1.0, 10) (1.5, 5) (ϵ, m̃) (0.4, 18) (0.6, 8) (0.8, 5)

pĨα(d,θ) 100/100 100/100 100/100 pĨα(d,θ) 100/100 100/100 100/100

9. We want to remind that interested readers can refer to (Jiang et al., 2020) for detailed numerical results
concerning the model (CCM) with uniform weights for the MSG problem setting.
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From the results, we can observe that for all the tested distortions and embedding
dimensions, the successful probability pĨα(d,θ) is 100/100, which implies that for all the 10

datasets, the model (RPCCM) could correctly recover the points indexed by Ĩα(d, θ) for all
α = 1, . . . , 4, provided γ is in the range of (36) in Theorem 4 (or (38) in Theorem 5). Since
the 10 datasets are generated from the same mixture of Gaussians, the above results verify
the usefulness of our recovery guarantees for the MSG problem setting.
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Jǐŕı Matoušek. On variants of the Johnson-Lindenstrauss lemma. Random Structures &
Algorithms, 33(2):142–156, 2008.

Sameer A Nene, Shree K Nayar, and Hiroshi Murase. Columbia object image library (coil-
20). Technical Report CUCS-005-96, 1996.

Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an
algorithm. Advances in Neural Information Processing Systems, 14, 2001.

Ashkan Panahi, Devdatt Dubhashi, Fredrik D Johansson, and Chiranjib Bhattacharyya.
Clustering by sum of norms: Stochastic incremental algorithm, convergence and cluster
recovery. In 34th International Conference on Machine Learning, pages 2769–2777, 2017.

Kristiaan Pelckmans, Joseph De Brabanter, Johan AK Suykens, and B De Moor. Convex
clustering shrinkage. In PASCAL Workshop on Statistics and Optimization of Clustering
Workshop, 2005.

Peter Radchenko and Gourab Mukherjee. Convex clustering via l1 fusion penalization.
Journal of the Royal Statistical Society. Series B (Statistical Methodology), 79(5):1527–
1546, 2017.

R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal
on Control and Optimization, 14(5):877–898, 1976a.

R Tyrrell Rockafellar. Augmented Lagrangians and applications of the proximal point
algorithm in convex programming. Mathematics of Operations Research, 1:97–116, 1976b.

Mark Rudelson and Roman Vershynin. Non-asymptotic theory of random matrices: Ex-
treme singular values. In Proceedings of the International Congress of Mathematicians
2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV:
Invited Lectures, pages 1576–1602, 2010.

Defeng Sun, Kim-Chuan Toh, and Yancheng Yuan. Convex clustering: Model, theoretical
guarantee and efficient algorithm. Journal of Machine Learning Research, 22(9):1–32,
2021.

Kean Ming Tan and Daniela Witten. Statistical properties of convex clustering. Electronic
Journal of Statistics, 9(2):2324–2347, 2015.

Sergei Vassilvitskii and David Arthur. k-means++: The advantages of careful seeding.
In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 1027–1035, 2006.

Santosh Vempala and Grant Wang. A spectral algorithm for learning mixture models.
Journal of Computer and System Sciences, 68(4):841–860, 2004.

56



Randomly Projected Convex Clustering Model

Suresh Venkatasubramanian and Qiushi Wang. The Johnson–Lindenstrauss transform: an
empirical study. In 2011 Proceedings of the Thirteenth Workshop on Algorithm Engineer-
ing and Experiments (ALENEX), pages 164–173. SIAM, 2011.

Roman Vershynin. High-dimensional probability: An introduction with applications in data
science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Uni-
versity Press, 2018.

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for
clusterings comparison: Is a correction for chance necessary? In Proceedings of the 26th
Annual International Conference on Machine Learning, pages 1073–1080, 2009.

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for
clusterings comparison: Variants, properties, normalization and correction for chance.
Journal of Machine Learning Research, 11(95):2837–2854, 2010.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17:395–
416, 2007.

Yangyang Xu. Iteration complexity of inexact augmented lagrangian methods for con-
strained convex programming. Mathematical Programming, 185:199–244, 2021.

Yancheng Yuan, Defeng Sun, and Kim-Chuan Toh. An efficient semismooth Newton based
algorithm for convex clustering. In 35th International Conference on Machine Learning,
pages 5718–5726, 2018.

Yancheng Yuan, Tsung-Hui Chang, Defeng Sun, and Kim-Chuan Toh. A dimension reduc-
tion technique for large-scale structured sparse optimization problems with application
to convex clustering. SIAM Journal on Optimization, 32(3):2294–2318, 2022.

Changbo Zhu, Huan Xu, Chenlei Leng, and Shuicheng Yan. Convex optimization procedure
for clustering: Theoretical revisit. Advances in Neural Information Processing Systems,
27:1619–1627, 2014.

57


	Introduction
	Convex Clustering Model
	A Randomly Projected Convex Clustering Model
	Johnson-Lindenstrauss Lemma and the Random Projection
	Cluster Recovery Guarantees of the Model (RPCCM) for the General Problem Setting

	Cluster Recovery Guarantees of the Model (RPCCM) with Uniform Weights for Recovering a Mixture of Spherical Gaussians
	Cluster Recovery Guarantees of the Model (CCM) with Uniform Weights for the MSG Problem Setting
	Cluster Recovery Guarantees of the Model (RPCCM) with Uniform Weights for the MSG Problem Setting

	Numerical Experiments
	Numerical Verification for the Model (RPCCM)
	Numerical Verification for Theorem 2 on the Model (RPCCM)
	Numerical Verification for Theorem 3 on the Model (RPCCM)

	Practical Performance of the Model (RPCCM)
	Practical Settings for the Model (RPCCM)
	Practical Performance of the Model (RPCCM) on Simulated Data
	Practical Performance of the Model (RPCCM) on real Data
	Comparison of the Model (RPCCM) with Different Weights: Original Data Weights v.s. Embedded Data Weights


	Conclusion and Future Works
	Appendix
	Proof of Corollary 1
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Theorem 4
	Proof of Theorem 5
	Computational Complexity Analysis for Implementing (RPCCM)
	Comparisons with Baseline Algorithms
	Numerical Verification for the Model (RPCCM) with Uniform Weights for the MSG Problem Setting


