
SOLVING KARUSH–KUHN–TUCKER SYSTEMS VIA THE
TRUST REGION AND THE CONJUGATE GRADIENT METHODS∗

HOUDUO QI† , LIQUN QI‡ , AND DEFENG SUN§

SIAM J. OPTIM. c© 2003 Society for Industrial and Applied Mathematics
Vol. 14, No. 2, pp. 439–463

Abstract. A popular approach to solving the Karush–Kuhn–Tucker (KKT) system, mainly
arising from the variational inequality problem, is to reformulate it as a constrained minimization
problem with simple bounds. In this paper, we propose a trust region method for solving the
reformulation problem with the trust region subproblems being solved by the truncated conjugate
gradient (CG) method, which is cost effective. Other advantages of the proposed method over
existing ones include the fact that a good approximated solution to the trust region subproblem can
be found by the truncated CG method and is judged in a simple way; also, the working matrix in
each iteration is H, instead of the condensed HTH, where H is a matrix element of the generalized
Jacobian of the function used in the reformulation. As a matter of fact, the matrix used is of reduced
dimension. We pay extra attention to ensure the success of the truncated CG method as well as the
feasibility of the iterates with respect to the simple constraints. Another feature of the proposed
method is that we allow the merit function value to be increased at some iterations to speed up the
convergence. Global and superlinear/quadratic convergence is shown under standard assumptions.
Numerical results are reported on a subset of problems from the MCPLIB collection [S. P. Dirkse
and M. C. Ferris, Optim. Methods Softw., 5 (1995), pp. 319–345].

Key words. variational inequality problem, constrained optimization, semismooth equation,
trust region method, truncated conjugate gradient method, global and superlinear convergence

AMS subject classifications. 65H10, 90C30, 90C33

DOI. 10.1137/S105262340038256X

1. Introduction. Given a continuously differentiable function F : R
n → R

n

and twice continuously differentiable functions h : R
n → R

p and g : R
n → R

m, we
consider the following Karush–Kuhn–Tucker (KKT) system in (x, y, z):

L(x, y, z) = 0
h(x) = 0

g(x) ≥ 0, z ≥ 0, zT g(x) = 0


 ,(1)

where L is called the Lagrangian of the functions F, g, and h and is defined by

L(x, y, z) := F (x) +∇h(x)y −∇g(x)z.

Due to its close relationship with the variational inequality problem (VIP) and
the nonlinear constrained optimization problem (NLP) (in both cases, the functions
h and g define the corresponding equality and inequality constraints, respectively),
there is a growing interest in constructing efficient algorithms for (1); for the latest
references, see [30, 11, 19]. In particular, Qi and Jiang [30] reformulate (1) to various

∗Received by the editors December 15, 2000; accepted for publication (in revised form) April 30,
2003; published electronically October 14, 2003.

http://www.siam.org/journals/siopt/14-2/38256.html
†School of Mathematics, The University of New South Wales, Sydney 2052, Australia (hdqi@

maths.unsw.edu.au). The research of this author was supported by the Australian Research Council.
‡Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom,

Kowloon, Hong Kong (maqilq@polyu.edu.hk). The research of this author was supported by the
Hong Kong Research Grant Council and the Australian Research Council.

§Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore
117543, Republic of Singapore (matsundf@nus.edu.sg). The research of this author was supported
by grant R146-000-035-101 of the National University of Singapore.

439

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

440 HOUDUO QI, LIQUN QI, AND DEFENG SUN

semismooth equations, and local semismooth Newton methods are studied for these
semismooth equations. One of these semismooth equations is based on the Fischer–
Burmeister function [12]: ϕ : R

2 → R defined by ϕ(a, b) := (a + b) − √
a2 + b2. An

interesting property of ϕα is that ϕ(a, b) = 0 if and only if a, b ≥ 0, ab = 0. Define

φ(g(x), z) := (ϕ(g1(x), z1), . . . , ϕ(gm(x), zm))T ∈ R
m,

and let Φ : R
n × R

p × R
m → R

n × R
p × R

m be the equation operator

Φ(w) := Φ(x, y, z) :=


 L(x, y, z)

h(x)
φ(g(x), z)


 .

Then w∗ = (x∗, y∗, z∗) ∈ R
n ×R

p ×R
m is a solution of (1) if and only if it solves the

system of nonlinear equations Φ(w) = 0. In other words, solving (1) is equivalent to
finding a global solution of the problem

min Ψ(w),(2)

where

Ψ(w) :=
1

2
Φ(w)TΦ(w) =

1

2
‖Φ(w)‖2

denotes the natural merit function of the equation operator Φ. This unconstrained
optimization approach has been used in [8, 9, 30] to develop some Newton-type meth-
ods for the solution of (1). Despite their strong theoretical and numerical properties,
these methods may fail to find the unique solution of (1) arising from strongly mono-
tone variational inequalities because the variable z is not forced to be nonnegative in
[8, 9, 30]. For such an example, see [26, 11]. This, together with the fact that the
variable z has to be nonnegative at a solution of (1), motivates Facchinei et al. [11]
to investigate a quadratic programming (QP) based method for the solution of the
constrained minimization problem

min Ψ(w) subject to (s.t.) z ≥ 0.(3)

The subproblem in d = (dx, dy, dz) ∈ R
n × R

p × R
m solved at the current iteration

wk = (xk, yk, zk) (given zk ≥ 0) is of the type

min ∇Ψ(wk)T d +
1

2
dT (HT

k Hk + ρkI)d

s.t. zk + dz ≥ 0,
(4)

where ρk > 0, Hk ∈ ∂Φ(wk), and ∂Φ(wk) is the set of the generalized Jacobian of
Φ at wk in the sense of Clarke [4]. An inexact version of this QP-based method was
provided by Kanzow [17] for the nonlinear complementarity problem (NCP) with an
inexact solution of the QP subproblem being calculated by an interior-point method
and the inexactness being measured in a similar way as described by Gabriel and
Pang [14]. We emphasize that it is the interior-point method that guarantees the
constraints to be nonviolated. Using an active-set strategy, Kanzow and Qi [19]
proposed a QP-free method, which requires solving one system of linear equations
rather than a QP problem per iteration and enjoys the favorable property that all
iterates remain feasible with respect to (3). These two properties are also shared in a
feasible equation-based method recently proposed by Kanzow [18]. We note that all of
these methods are of the line-search type, and the superlinear/quadratic convergence

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

SOLVING KARUSH–KUHN–TUCKER SYSTEMS 441

of these methods when applied to (3) requires that all the elements in ∂Φ(w∗) be
nonsingular, where w∗ is a solution of (1). Such a solution is usually called a strongly
regular solution of (1).

There are several semismooth equation-based trust region methods which can be
used to solve (1). The unconstrained trust region methods in [16, 20] are applicable
to (2), while the box-constrained trust region method in [37] can be adapted to solve
(3). Each of these methods requires at each iteration either an exact solution of the
trust region subproblem [16]; a solution restricted to a (very small) subspace [20];
or an inexact solution which should satisfy some prescribed accuracy [37]. To be
more precise, for global convergence only, the subspace in [20] can be as small as
one-dimensional (i.e., spanned by the gradient direction), while for Ulbrich’s method,
any inexact solution satisfying the fraction of Cauchy decrease condition is enough
(i.e., the affinely scaled gradient is a candidate). For local convergence, [20] requires
that the subspace contain the generalized Newton direction, whereas [37] requires
one to use the inexact generalized Newton direction. The use of iterative methods
such as the conjugate gradient (CG) method is attractive because, on the one hand,
first direction used in the CG method is the gradient direction, and quite often (e.g.,
when the trust region radius is larger than the length of the generalized Newton
direction) the CG method yields an inexact generalized Newton direction and hence
often speeds up the convergence process; on the other hand, when the number of
variables is large, it is cost effective by the CG method to solve the trust region
subproblem approximately. The key issue of efficiently implementing the CG method
is the preconditioning. Although it is understood that no single preconditioning is
“best” for all conceivable types of matrices, we will use the symmetric successive
overrelaxation (SSOR) preconditioner in our numerical experiments. We will discuss
it more in our numerical implementations.

In this paper we study how to apply the truncated CG method to a trust region
subproblem of (3) so as to keep the computational cost at a reasonable level, and we
show how to merge the truncated CG method with the semismooth Newton method
as the iterates of our trust region method approach a minimizer, so that the use of the
truncated CG method does not slow down the fast convergence of the proposed trust
region method. Another favorable consequence of using the truncated CG method is
that, although the quadratic term in the subproblem is constructed with dTHT

k Hkd,
the calculation process of an approximation to the solution of the subproblem works
directly on the matrix Hk, not on the usually condensed matrix HT

k Hk. In addi-
tion, all iterates of our method remain feasible with respect to the simple bounds
in (3), and the trust region subproblem is in a reduced form. This latter property
is essential for the success of the truncated CG method and is guaranteed by incor-
porating an active-set strategy into the proposed trust region method. Finally, the
superlinear/quadratic convergence of the proposed method is established under the
assumption of nonsingularity.

The truncated CG method was first used by Toint [36] and Steihaug [33] to solve
the trust region subproblem for unconstrained optimization problems and is shown
to be efficient, especially in large scale optimization. Let f : R

n → R be continu-
ously differentiable. Then the usual trust region subproblem for the unconstrained
optimization problem minx∈Rn f(x) is

min φ(d) = gT d +
1

2
dTBd

s.t. ‖d‖ ≤ ∆,
(5)

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

442 HOUDUO QI, LIQUN QI, AND DEFENG SUN

where ∆ > 0 is a trust region bound, g ∈ R
n is the gradient of the objective function

f at the current iterate, and B ∈ R
n×n is symmetric and is an approximation to the

Hessian of f(x). Although the truncated CG method is widely used in practice, it
was only recently proved that it indeed provides a sufficient decrease in the objective
function for the case of strict convexity. In fact, when B is positive definite, Yuan1

proved in [38] that the reduction in the objective function by the truncated CGmethod
is at least half of the reduction by the global minimizer in the trust region. However,
this result may be invalid when the bound constraint x + d ≥ 0 is preserved. This
can be shown by the following example. Consider the strictly convex problem in R

2:
minx≥0 x1+ .5x2

1−x2+ .5x2
2. Obviously, (0, 1) is the unique solution. The trust region

subproblem at x = (ε, ε) is

min (1 + ε)d1 + (−1 + ε)d2 +
1

2
d2
1 +

1

2
d2
2

s.t. ‖d‖ ≤ ∆, x + d ≥ 0.

The truncated CG method for solving this subproblem first generates a direction by
ignoring the bound constraint and then takes a small enough step along this direction
to ensure feasibility. Hence, the next iterate is x1 = (0, 2ε/(1 + ε)) (∆ = 1 and
ε ∈ (0, 1)). We continue to build the trust region subproblem around x1; this time,
the truncated CG method results in a direction which immediately goes infeasible,
leading to the zero steplength. In other words, the truncated CG method fails to
solve the strictly convex problem. The reason is that very small components of x may
result in a very small (even zero) steplength. One way to avoid the collapse of the
steplength is to build the trust region subproblem only around those components of
the current iterate which are relatively large enough, while paying a special attention
to the smaller ones.

The paper realizes the above ideas with a trust region method, which is solved
by a truncated CG method. The paper is organized as follows. Some background is
summarized in the next section. The subproblem is derived in section 3. A truncated
CG method for this subproblem is introduced in section 4. Our algorithm is presented
in section 5. Global and local convergence results are established in sections 6 and 7,
respectively. Numerical results on a subset of problems from the MCPLIB collection
[7] are presented in section 8. Finally, some conclusions are drawn in section 9.

2. Mathematical background.

2.1. Notation. A function G : R
t → R

t is called a Ck function if it is k times
continuously differentiable, and an LCk function if it is a Ck function and its kth
derivative is locally Lipschitz continuous everywhere. The Jacobian of a C1 function
G at a point w ∈ R

t is denoted by G′(w), whereas ∇G(w) is the transposed Jacobian.
This notation is consistent with our notation of a gradient vector ∇g(w) for a real-
valued function g : R

t → R since we view ∇g(w) as a column vector.
If M ∈ R

t×t, M = (mij), is any given matrix and I, J ⊆ {1, . . . , t} are two
subsets, then MIJ denotes the |I| × |J | submatrix with elements mij , i ∈ I, j ∈ J .
Similarly, M.J indicates the submatrix with elements mij , i ∈ {1, . . . , t}, j ∈ J ; i.e.,
we obtain M.J from M by removing all columns with indices j �∈ J . Similar notation
is used for subvectors. If w = (xT , yT , zT)T ∈ R

n × R
p × R

m, we often simplify our

1Yuan attributes to P. Tseng a slightly weaker result that the reduction of the objective function
by the truncated CG method is at least 1/3 (instead of 1/2) of the reduction by the global minimizer.
And Yuan’s result for the positive definite case is generalized to the positive semidefinite case in [6].

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

SOLVING KARUSH–KUHN–TUCKER SYSTEMS 443

notation and write w = (x, y, z). All vector norms used in this paper are Euclidean
norms, and matrix norms are the 2-norms of the matrices. For a given symmetric
positive definite matrix C, a norm induced by C is defined by ‖x‖C :=

√
xTCx.

2.2. Properties of the reformulation. Our analysis will make frequent use of
some properties on the generalized Jacobian ∂Φ(w) (in the sense of Clarke [4]). An
explicit formula of calculating an element from ∂Φ(w) is given in [9]. We will discuss
more about it in the section of numerical experiments. Although Φ itself is not
continuously differentiable in general, its square norm Ψ is continuously differentiable
and

∇Ψ(w) = HTΦ(w) ∀ H ∈ ∂Φ(w).(6)

Another favorable property of the equation operator Φ is that the nonsingularity of
its generalized Jacobian is ensured by Robinson’s strong regularity condition. We for-
mally state this result as the following. For the precise definition, some further char-
acterizations, and sufficient conditions for the strong regularity, we refer the reader
to Robinson [32] as well as to Liu [22].

Proposition 2.1 (see [9]). A point w∗ = (x∗, y∗, z∗) ∈ R
n × R

p × R
m is a

strongly regular solution of (1) if and only if all elements in the generalized Jacobian
∂Φ(w∗) are nonsingular.

The next property follows from the fact that Φ is a (strongly) semismooth operator
under certain smoothness assumptions for F, h, and g; see, e.g., [29, 31, 25, 13].

Proposition 2.2. For any w = (x, y, z) ∈ R
n × R

p × R
m, we have

‖Φ(w + d)− Φ(w)− Hd‖ = o(‖d‖) for d → 0 and H ∈ ∂Φ(w + d).

If F is an LC1 mapping, and h and g are LC2 mappings, then

‖Φ(w + d)− Φ(w)− Hd‖ = O(‖d‖2) for d → 0 and H ∈ ∂Φ(w + d).

An immediate consequence of the strong regularity of w∗ and the semismoothness
of Φ is that the function value ‖Φ(w)‖ provides a local error bound near w∗; see, e.g.,
[29, 25].

Proposition 2.3. Assume that w∗ is a strongly regular solution of (1). Then
there are constants c1 > 0 and δ1 > 0 such that

‖Φ(w)‖ ≥ c1‖w − w∗‖

for all w with ‖w − w∗‖ ≤ δ1.

3. Subproblem. Given a current iterate wk = (xk, yk, zk) ∈ R
n×R

p×R
m with

zk ≥ 0, a traditional choice of the trust region subproblem for (3) is

min ∇Ψ(wk)T d +
1

2
dTHT

k Hkd

s.t. ‖d‖ ≤ ∆k, zk + dz ≥ 0,

where Hk ∈ ∂Φ(wk) and ∆k is the current trust region radius. In order to make
the truncated CG method successful with this subproblem, small components, as we
observed in the introduction, should be detected and not involved in this subproblem,
and the matrix HT

k Hk should be regularized to be positive definite in order for our
algorithm to be well defined.

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

444 HOUDUO QI, LIQUN QI, AND DEFENG SUN

To make the idea precise, we introduce three index sets,

I := {1, . . . , n},
P := {n + 1, . . . , n + p},
J := {n + p + 1, . . . , n + p + m},

where I denotes the index set for the variables x, P is the index set for the equality
constraints and the variables y, and J is the index set for the inequality constraints
and the variables z. For example, if w = (x, y, z) ∈ R

n×R
p×R

m is any given vector,
then wI = x, wP = y, and wJ = z. We also stress that if j ∈ J or J ⊆ J , then wj is
a component of the z-part of the vector w and wJ is a subvector of the z-part of w.

To detect the small components of zk, we introduce at each iteration an indicator
δk > 0 and the index set

Jk := {j ∈ J | wk
j ≤ δk},(7)

which contains all indices whose corresponding components in zk are thought to be
small. We shall give it special attention in our algorithm since the truncated CG
method may fail depending on it. Let

J̄k := I ∪ P ∪ (J \ Jk).(8)

In order to make the matrix HT
k Hk positive definite, we need a continuous function

ρ : R → R with the following properties: (i) ρ(s) ≥ 0 for all s ∈ R, and (ii) ρ(s) = 0
if and only if s = 0. Such a function is usually called a forcing function.

From now on, we will often abbreviate the gradient vector ∇Ψ(wk) by gk (in
contrast to g(xk), which denotes the function value of the inequality constraints at
the current point xk, so there should be no ambiguity). Partition Hk = (Hk

.Jk
, Hk

.J̄k
).

We build our trust region subproblem only around the components of wk
J̄k
; that is,

min (gk
J̄k
)T dJ̄k

+
1

2
dTJ̄k

(
(Hk

.J̄k
)THk

.J̄k
+ ρ(Ψ(wk))I

)
dJ̄k

s.t. ‖dJ̄k
‖ ≤ ∆k, wk

J\Jk
+ dJ\Jk

≥ 0.
(9)

It is clear that the above subproblem is a strictly convex quadratic problem if Ψ(wk) �=
0.

4. Truncated CG method. In this section, we adapt the truncated precondi-
tioned conjugate gradient (PCG) method described in [33] to our subproblem, which
is a q := (n + p + m − |Jk|)-dimensional convex problem.

Suppose a symmetric positive definite matrix C ∈ R
q×q is given with decom-

position property C = PTP , where P is nonsingular. For simplicity we denote the
variable dJ̄k

by s. Consider the preconditioned version of (9):

mins∈Rq mk(s) := sT b +
1

2
sTBks

s.t. ‖s‖C ≤ ∆k, wk
J\Jk

+ sJ\Jk
≥ 0,

(10)

where b := gk
J̄k
, A := Hk

.J̄k
, σ := ρ(Ψ(wk)), and Bk := ATA+σI. Taking into consider-

ation the special structure of Bk and the decomposition property of the preconditioner
C, we arrive at the following truncated PCG method for problem (10).

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

SOLVING KARUSH–KUHN–TUCKER SYSTEMS 445

Algorithm 4.1 (truncated PCG method).
(S.0) Let s0 = 0, r0 = b, r̃0 = P−T r0, p0 = −r̃0, i := 0.
(S.1) If ‖∇mk(s

i)‖ = 0, then set s∗ = si and go to (S.4). Otherwise calculate

ti = P−1pi, qi = Ati, and αi = ‖r̃i‖2/(‖qi‖2 + σ‖ti‖2).

(S.2) If ‖si + αit
i‖C ≥ ∆k, then go to (S.3). Otherwise set

si+1 := si + αit
i, ri+1 := ri + αi(σti + AT qi),

r̃i+1 := P−T ri+1, βi := ‖r̃i+1‖2/‖r̃i‖2, pi+1 := −r̃i+1 + βip
i.

Set i := i + 1, and go to (S.1).
(S.3) Calculate α∗

i ≥ 0 satisfying ‖si + α∗
i t

i‖C = ∆k; set s∗ := si + α∗
i t

i.
(S.4) Compute the largest τk ≥ 0 satisfying wk

J\Jk
+ τs∗J\Jk

≥ 0 for all τ ∈ (0, τk].

(S.5) Output the approximate solution to (10): dk
J̄k

= min{1, τk}s∗.
Remarks. First, we note that the computation of s∗ above is exactly Steihaug’s

algorithm [33]. Second, in each iteration of the PCG method, there are two matrix-
vector multiplications involving A (to get Ati and AT (Ati)) and two matrix-inverse
multiplications involving P (to get P−T ri and P−1(P−T ri)). If we choose C to be
the SSOR preconditioner, we shall see in section 8 by referring to several specific
references that the usually condensed matrix Bk is not involved in the calculation.
In fact, only nonzero elements in A come to be used. Third, the termination rule in
(S.1) is only for theoretical purposes. We shall use a more practical criterion in our
implementation.

The vector s∗ generated above has a close relation to the exact solution of the
following problem:

min mk(dJ̄k
) s.t. ‖dJ̄k

‖C ≤ ∆k.(11)

This relation follows from a recent result of Yuan [38, Thm. 2].
Proposition 4.2. Suppose that Bk is positive definite. Let d∗̄

Jk
be the exact

solution of (11) and s∗ be generated by Algorithm 4.1. Then we have

mk(s
∗) ≤ 1

2
mk(d

∗̄
Jk
).

Moreover, if ‖d∗̄
Jk
‖C < ∆k, then s∗ = d∗̄

Jk
.

Proof. As remarked above, the calculation of s∗ in Algorithm 4.1 is actually
Steihaug’s algorithm applied to the subproblem (11). Let y = Ps and y∗ = Ps∗.
Then y∗ is the point obtained by applying the truncated CG method to the following
trust region problem:

miny∈Rq m̃k(y) := yT (P−T b) +
1

2
yT (P−TBkP

−1)y

s.t. ‖y‖ ≤ ∆k.
(12)

Let ỹ∗ be the unique solution of (12). According to a result of Yuan [38, Thm. 2], it
holds that m̃k(y

∗) ≤ 1
2m̃k(ỹ

∗) and y∗ = ỹ∗ if ‖ỹ∗‖ < ∆k. We note that m̃k(y
∗) =

mk(s
∗) and m̃k(ỹ

∗) = mk(d
∗̄
Jk
). Then the inequality relation in the proposition fol-

lows. Moreover, s∗ = d∗̄
Jk

if ‖d∗̄
Jk
‖C < ∆k.

In the following as well as in our convergence analysis, we assume that Ck = I for
simplicity, where Ck is the preconditioner in (10) at each iteration. However, to keep

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

446 HOUDUO QI, LIQUN QI, AND DEFENG SUN

all convergence results in sections 6 and 7 valid, we need more assumptions on the
preconditioner sequence {Ck}; namely, there exist two constants κ and κ̄ such that,
for all k,

‖C−1
k ‖ ≤ κ and ‖Ck‖ ≤ κ̄.(13)

This condition implies that Ck has a condition number that is bounded independent
of the iterate. The latter condition has been singled out in [21, p. 1120] to emphasize
its theoretical importance in a trust region method. We note that the two conditions
are equivalent under boundedness of the whole iterate sequence {wk}. Standard
convergence proofs involving condition (13) (in the special case that Ck is diagonal)
can be found in [5] (proofs leading up to Theorem 11 there). We also note that we
use the Hessian matrix Hk in building up Bk, implying that the standard condition
restricted on Bk in trust region methods is fulfilled automatically in our setting.
Proposition 4.2 allows us to put a bound on the predicted decrease mk(d

k
J̄k
). Two

bounds are given in the following result. The first corresponds to the case where
τk ≥ 1 so that dk

J̄k
= s∗; the second corresponds to the case where τk < 1 so that

dk
J̄k

�= s∗.
Proposition 4.3. Let dk

J̄k
and s∗ be generated by Algorithm 4.1 applied to (9),

and define

Ωk := {j ∈ J \ Jk| − s∗j > wk
j }.

Then the following statements hold:
(i) If Ωk is empty (in particular if δk ≥ ∆k), then we have

mk(d
k
J̄k
) ≤ −1

4
‖gkJ̄k

‖min

{
∆k,

‖gkJ̄k
‖

‖Bk‖

}
.

(ii) If Ωk �= ∅, then

mk(d
k
J̄k
) ≤ − δk

4∆k
‖gkJ̄k

‖min

{
∆k,

‖gkJ̄k
‖

‖Bk‖

}
.

Proof. (i) Let d∗ be the unique solution to (9). Then it follows from [27, Thm. 4]
that

mk(d
∗) ≤ −1

2
‖gkJ̄k

‖min

{
∆k,

‖gkJ̄k
‖

‖Bk‖

}
.(14)

Also by simple calculation we have τk ≥ 1 if Ωk = ∅. This is also true in particular
if δk ≥ ∆k. Hence dk

J̄k
= s∗ is also generated by Yuan’s truncated CG method [38]

applied to (9) with the simple constraints not being violated. Therefore, Proposition
4.2 implies

mk(d
k
J̄k
) = mk(s

∗) ≤ 1

2
mk(d

∗).(15)

The combination of (15) and (14) gives the result in (i).
(ii) Let j ∈ Ωk. Then τk < 1 and

∆k ≥ −s∗j > wk
j > δk.

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

SOLVING KARUSH–KUHN–TUCKER SYSTEMS 447

Hence

dkJ̄k
= τks

∗ and τk ≥ δk/∆k.

Now we consider the one-dimensional function

M(t) := mk(ts
∗) = t(gkJ̄k

)T s∗ +
1

2
t2(s∗)TBks

∗.

Let

τ∗ =
−(gkJ̄k

)T s∗

(s∗)TBks
∗ .

It follows from the fact that M(1) = mk(s
∗) ≤ 0 that 2τ∗ ≥ 1. Now we consider two

cases. First if τk ≤ τ∗, the convexity of M implies that

mk(d
k
J̄k
) = M(τk) ≤ M(δk/∆k)

=
δk
∆k

(gkJ̄k
)T s∗ +

1

2

(
δk
∆k

)2

(s∗)TBks
∗

≤ δk
∆k

M(1) =
δk
∆k

mk(s
∗).(16)

If τk ≥ τ∗, then it is easy to see from the convexity of M again that

mk(d
k
J̄k
) = M(τk) ≤ M(1) = mk(s

∗).(17)

Now the result in (ii) follows from (14), (16), (17), and Proposition 4.2.

5. Algorithm. Suppose ∆k, w
k, Jk, J̄k, and the function mk(·) are given as in

the last section, and a search direction d̃k is partitioned as

d̃k =

(
d̃kJk

d̃k
J̄k

)
.

Let the ratio between the actual decrease and the predicted decrease associated with
the direction d̃k be calculated by

rk :=
(
Ψ(wk)−Ψ(wk + d̃k)

)
/Predk,(18)

where

Predk := −(gkJk
)T d̃kJk

− mk(d̃
k
J̄k
).

The update rule used in our trust region algorithm is as follows:

wk+1 :=

{
wk if rk < ρ1,

wk + d̃k if rk ≥ ρ1,
∆k+1 :=




σ1∆k if rk < ρ1,
max{∆min,∆k} if rk ∈ [ρ1, ρ2),
max{∆min, σ2∆k} if rk ≥ ρ2,

(19)
where ∆min > 0 is a prescribed constant. The proposed trust region algorithm is then
formally stated below.

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

448 HOUDUO QI, LIQUN QI, AND DEFENG SUN

Algorithm 5.1 (trust region algorithm).
(S.0) Choose w0 = (x0, y0, z0) ∈ R

n × R
p × R

m with z0 ≥ 0, ∆0 > 0, 0 < ρ1 <
ρ2 < 1, 0 < σ1 < 1 < σ2, ∆min > 0, γ ∈ (0, 1), c > 0, δ > 0, ε > 0, ind0 := 0,
β0 = 0, and set k := 0.

(S.1) Let

δk := min

{
δ, c
√

‖Φ(wk)‖
}

and define the set Jk and J̄k by (7) and (8), respectively.
(S.2) Let

vk :=

(
vkJk

vk
J̄k

)
,

where

vkJk
= min{wk

Jk
, gkJk

} and vkJ̄k
= gkJ̄k

.

If ‖vk‖ ≤ ε, stop.
(S.3) Choose preconditioner Ck and let dk

J̄k
be the final iterate of Algorithm 4.1 for

the trust region subproblem (10).
(S.4) Compute the search directions

dk :=

(−wk
Jk

dk
J̄k

)
and d̃k :=

(−min{1,∆k}vkJk

dk
J̄k

)
.

(S.5) (i) If indk = 0, check if the following rule holds:

Ψ(wk + dk) ≤ γ
√
‖Φ(wk)‖.(20)

If test (20) is successful, then let

wk+1 := wk + dk, ∆k+1 := max{∆min, σ2∆k}, γk+1 :=
Ψ(wk+1)

Ψ(wk)

and

γ̄ := γk+1 if γk+1 ≥ γ, βk+1 :=

{
Ψ(wk+1) if γk+1 ≥ γ,
βk if γk+1 < γ,

indk+1 :=

{
1 if γk+1 ≥ γ,
0 if γk+1 < γ.

If test (20) is not successful, then calculate rk by (18), update wk+1 and ∆k+1

according to rule (19), and let βk+1 := βk, indk+1 := 0.
(ii) If indk = 1, check if the following holds:

Ψ(wk + dk) ≤ γ

γ̄
βk.(21)

If test (21) is successful, let

wk+1 := wk + dk, ∆k+1 := max{∆min, σ2∆k}, βk+1 := βk, indk+1 := 0.

If test (21) is not successful, then calculate rk by (18), update wk+1 and ∆k+1

according to the rule (19), and let βk+1 := βk, indk+1 := 1.
(S.6) Set k := k + 1 and go to (S.1).

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

SOLVING KARUSH–KUHN–TUCKER SYSTEMS 449

More explanation on Algorithm 5.1 is as follows. The indicator δk defined in (S.1)
was also used in [19, 18] to identify the actual active set under the nonsingularity
assumption. A result due to Kanzow and Qi [19] justifies the termination rule in
(S.2). We will present this result in a lemma below. The direction dk

J̄k
in (S.3) has

been extensively discussed in the last section. The crucial parts of Algorithm 5.1
are (S.4) and (S.5). In (S.4) two directions are defined. The direction d̃k (which we
call safe step below) is always a descent direction of the function Ψ(·) at wk if ∆k

is sufficiently small; while direction dk (fast step) will yield a superlinear decrease in
the function value of Ψ(·) when wk is sufficiently close to a strongly regular solution
w∗. The task in (S.5) is then to decide which step we should take. Fast steps are
accepted in a nonmonotone fashion, so that it can happen that an accepted fast step
increases the value of Ψ. To keep control over those possible increases, a flag ind is
used to distinguish between two states of the algorithm: If ind = 0 (which is the case
at the very beginning), the fast step dk is accepted if test (20) is successful. Now, if
Ψ(wk + dk) ≥ γΨ(wk), the flag ind is set to 1 (and remains raised until it is cleared
again) to signal that dk did not achieve sufficient decrease. Now consider any iteration
k that is entered with ind = 1, indicating that the most recent accepted fast step
dl (l < k) did not achieve sufficient decrease. In this situation, the fast step dk is
accepted only if test (21) is successful. If this occurs, ind is set to 0 again. In all
iterations where the fast step is not accepted, the safe step is used as the trial step of
the trust region method with a standard reduction-ratio-based acceptance test. We
stress that both γ̄ and βk are used to record the cases where (20) is successful and
γk+1 ≥ γ, i.e., to record the cases where the function values are possibly increased.

From now on we assume that ε = 0. The following result from [19, Lem. 1]
justifies the termination criterion used in our trust region algorithm. We recall that a
point w∗ = (x∗, y∗, z∗) ∈ R

n × R
p × R

m with z∗ ≥ 0 is a stationary point of problem
(3) if ∇xΨ(w∗) = 0, ∇yΨ(w∗) = 0, and

z∗i > 0 =⇒ ∂Ψ(w∗)
∂zi

= 0, z∗i = 0 =⇒ ∂Ψ(w∗)
∂zi

≥ 0.

Lemma 5.2. Let wk = (xk, yk, zk) ∈ R
n × R

p × R
m be any given point with

zk ≥ 0. Then the following holds:

wk is a stationary point of (3) ⇐⇒ vk = 0 ⇐⇒ (gk)T vk = 0.

The following result shows that the iterates {wk} generated by Algorithm 5.1 stay
feasible with respect to the simple bounds in (3).

Lemma 5.3. Let wk = (xk, yk, zk) ∈ R
n × R

p × R
m be any given point with

zk ≥ 0, and assume that wk is not a stationary point of (3). Then the next iterate
wk+1 can be computed by Algorithm 5.1 and it holds that zk+1 ≥ 0.

Proof. Let wk be given as in Lemma 5.3. We have no problem running steps
(S.1)–(S.4) of Algorithm 5.1. Hence, for Algorithm 5.1 to be well defined, we need to
show that (S.5) is well defined

Since wk is not a stationary point of (3), Ψ(wk) > 0 so that γ̄ in (S.5)(i) is well
defined if (20) is successful. If (20) does not hold, we need only to show Predk �= 0 so
that rk is well defined. It follows from Proposition 4.3 that

mk(d
k
J̄k
) ≤ 0 and mk(d

k
J̄k
) = 0 ⇐⇒ gkJ̄k

= 0.

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

450 HOUDUO QI, LIQUN QI, AND DEFENG SUN

On the other hand we have, for j ∈ Jk,

gkj vkj =

{
(gkj)

2 if gkj ≤ wk
j ,

gkj wk
j if gkj > wk

j .

Noting that wk
j ≥ 0 for j ∈ Jk, we obtain

(gkJk
)T vkJk

≥ 0.

Hence Predk = min{1,∆k}(gkJk
)T vkJk

− mk(d
k
J̄k
) ≥ 0, and if Predk = 0, we must have

both (gkJk
)T vkJk

= 0 and gk
J̄k

= 0, which means that (gk)T vk = (gkJk
)T vkJk

+‖gk
J̄k
‖2 = 0.

By Lemma 5.2, wk must be a stationary point of (3), contradicting the assumption
of this lemma. Hence Predk > 0, and consequently rk is well defined and wk+1 is
obtained.

Now we prove zk+1 ≥ 0. There are three possible ways to determine wk+1,
namely, wk+1 = wk, wk+1 = wk + dk, or wk+1 = wk + d̃k. The first case is trivial, so
we consider the remaining two cases. We note that the components wk+1

j , j ∈ J \Jk,
are updated by

wk+1
j = wk

j + (dkJ̄k
)j = wk

j +min{1, τk}s∗j ≥
{

wk
j if s∗j ≥ 0,

wk
j + τks

∗
j if s∗j < 0,

where s∗ is computed by Algorithm 4.1. It follows from (S.4) of Algorithm 4.1 that
wk+1

j ≥ 0. For the components j belonging to Jk, if wk+1 = wk + dk, then wk+1
j =

wk
j − wk

j = 0; if wk+1 = wk + d̃k, then

wk+1
j = wk

j −min{1,∆k}min{wk
j , gkj }

≥
{

wk
j ≥ 0 if min{wk

j , gkj } ≤ 0,

wk
j − wk

j = 0 if min{wk
j , gkj } > 0.

This proves that wk+1
j ≥ 0 for all j ∈ J .

We note that as long as wk is not a global minimizer of (3), Algorithm 4.1 is
always successful for subproblem (9), and the estimation in Proposition 4.3 always
holds since Bk is always positive definite. So we can apply an induction argument by
invoking Lemma 5.3 and then obtain the following result.

Theorem 5.4. Algorithm 5.1 is well defined and generates a sequence {wk} =
{(xk, yk, zk)} with zk ≥ 0 for all k.

6. Global convergence. From now on we assume that Algorithm 5.1 generates
an infinite sequence {wk}. Let K contain all the indices at which the function value
is possibly increased; that is,

K :=

{
k ∈ {0, 1, 2, . . .} | indk = 0, Ψ(wk + dk) ≤ γ

√
‖Φ(wk)‖ and γk+1 ≥ γ

}
.(22)

Then we have the following convergence result.
Lemma 6.1. Suppose that K contains infinitely many iterations. Then

lim
k→∞

Ψ(wk) = 0.

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

SOLVING KARUSH–KUHN–TUCKER SYSTEMS 451

Hence, every limit point of {wk} is a solution of (1) and therefore a stationary point
of (3).

Proof. Let us denote K by

K = {k0, k1, k2, . . .}.
In the following we want to prove

(a) the sequence {Ψ(wk)}k∈K converges to zero, i.e., liml→∞ Ψ(wkl) = 0;
(b) the sequence {Ψ(wk)}(k−1)∈K converges to zero, i.e., liml→∞ Ψ(wkl+1) = 0;

and
(c) for any k such that kl + 1 < k ≤ kl+1 for some l ∈ {0, 1, . . .}, we have

Ψ(wk) ≤ Ψ(wkl+1).(23)

It is easy to see that (b) follows directly from (a) since Ψ(wkl+1) ≤ γ
√
‖Φ(wkl)‖. (b)

and (c) together yield

lim
k∈(kl+1,kl+1]

k→∞
Ψ(wk) = 0.

We observe that every iterate wk must belong to k ∈ K, or (k − 1) ∈ K, or kl + 1 <
k ≤ kl+1 for some l ∈ {0, 1, 2, . . .}. Hence we must have limk→∞ Ψ(wk) = 0 if (a), (b),
and (c) are true. Consequently, every limit of {wk} is a solution of (1) and therefore
a stationary point of (3).

Now we prove (a) and (c) together. First, for any k between 0 and k0, i.e.,
0 ≤ k < k0, we have indk = 0. This means Algorithm 5.1 uses (S.5)(i) to find the
next iterate. If (20) is successful at k, then we must have γk+1 < γ (otherwise k
would belong to K, resulting in k0 ≤ k, a contradiction). Hence it follows from the
definition of γk+1 that

Ψ(wk+1) = γk+1Ψ(wk) < γΨ(wk) < Ψ(wk).(24)

If (20) is not successful at k, then wk+1 is obtained by rule (19). In this case, it is
obvious that

Ψ(wk+1) ≤ Ψ(wk).(25)

By the induction argument on k between 0 and k0, relations (24) and (25) give us
that

Ψ(wk0) ≤ Ψ(wk0−1) ≤ · · · ≤ Ψ(w1) ≤ Ψ(w0).(26)

Now we take a look at how Algorithm 5.1 runs at iterations between kl and kl+1. Our
first observation is that

βkl+1
= βkl+1−1 = · · · = βkl+1 = Ψ(wkl+1).(27)

For any kl ∈ K, according to (S.5)(i)

Ψ(wkl+1) = γ̄Ψ(wkl), indkl+1 = 1 (since γkl+1 ≥ γ).(28)

Then Algorithm 5.1 uses (S.5)(ii) (since indkl+1 = 1) to generate the next iterate
wkl+2. The algorithm will repeat (S.5)(ii) until (21) is successful at some iterate, say

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

452 HOUDUO QI, LIQUN QI, AND DEFENG SUN

wk̄, putting indk̄+1 back to zero so that the algorithm uses (S.5)(i) to find the next
iterate until k reaches kl+1. Hence, there is exactly one such k̄ satisfying kl + 1 ≤
k̄ < kl+1. At iteration k, where kl + 1 ≤ k < k̄, the algorithm always uses rule (19)
to generate the next iterate, which means that

Ψ(wkl+1) ≥ Ψ(wkl+2) ≥ · · · ≥ Ψ(wk̄).(29)

At this stage, γ̄ remains unchanged; i.e., γ̄ = Ψ(wkl+1)/Ψ(wkl) for all k ∈ [kl + 1, k̄].
Since (21) is successful at k̄, we have

Ψ(wk̄+1) ≤ γ

γ̄
βk̄ =

γ

γ̄
Ψ(wkl+1) (using (27))

≤ γ
Ψ(wkl)

Ψ(wkl+1)
Ψ(wkl+1) (using γ̄ = Ψ(wkl+1)/Ψ(wkl))

= γΨ(wkl).(30)

On the other hand, at iteration k, where k̄ + 1 ≤ k < kl+1, the algorithm uses either
rule (19) or (20) to generate the next iterate. If the algorithm uses (19), then it
is obvious that Ψ(wk+1) ≤ Ψ(wk). If the algorithm uses (20), then we must have
γk+1 < γ, which also yields Ψ(wk+1) < Ψ(wk). Hence, we have

Ψ(wk̄+1) ≥ Ψ(wk̄+2) ≥ · · · ≥ Ψ(wkl+1).(31)

Putting (30) and (31) together, we obtain by an induction argument

Ψ(wkl+1) ≤ γΨ(wkl) ≤ γ2Ψ(wkl−1) ≤ · · · ≤ γl+1Ψ(w0).

The last inequality uses (26). Taking the limit in the above inequalities gives (a).
Finally, it follows from (30) that

Ψ(wk̄+1) ≤ γΨ(wkl) ≤ γkl+1Ψ(wkl) = Ψ(wkl+1).

This together with (29) and (31) implies (23).
We now consider the case that K contains only finitely many elements, say

K = {k0, k1, . . . , kl}.

Lemma 6.2. Suppose that K contains finitely many elements. Then the following
hold:

(i) The sequence {Ψ(wk)}k≥kl+1 is monotonically decreasing.
(ii) If test (20) holds infinitely many times, then

lim
k→∞

Ψ(wk) = 0.

In this case, every limit of {wk} is a solution of (1).
Proof. Since kl is the last element in K, we have by the definition of K that

indkl+1 = 1, γ̄ = Ψ(wkl+1)/Ψ(wkl), and γ̄ remains unchanged from kl+1 and onward.
(i) Since indkl+1 = 1, the algorithm uses (S.5)(ii) to generate the iterate wkl+2.

We note that test (21) could possibly hold only once after the iteration kl + 1 since
once (21) holds the algorithm puts indk back to zero and will never use (S.5)(ii)
thereafter. Suppose that (21) holds at iteration k̄ (k̄ ≥ kl + 1). For iterations k

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

SOLVING KARUSH–KUHN–TUCKER SYSTEMS 453

satisfying kl + 1 ≤ k < k̄, indk = 1 and hence the algorithm uses rule (19) to update
wk. Therefore, we have

Ψ(wk+1) ≤ Ψ(wk) ∀ k ∈ [kl + 1, k̄).

At iteration k̄, we have, from γ̄ ≥ γ,

Ψ(wk̄+1) ≤ γ

γ̄
Ψ(wk̄) ≤ Ψ(wk̄)

and indk̄+1 = 0. So from iteration k̄+1 onward, the algorithm uses (S.5)(i) to update
wk. Let k ≥ k̄ + 1 be given. If (20) is successful at k, then we must have γk+1 < γ
(otherwise k ∈ K, resulting in k ≤ kl, a contradiction of k ≥ k̄ + 1 ≥ kl + 2). Then

Ψ(wk+1) = γk+1Ψ(wk) < γΨ(wk).(32)

If (20) is not successful at k, the algorithm uses rule (19) to update wk, giving
Ψ(wk+1) ≤ Ψ(wk). If (21) never holds from kl + 1 onward, then the algorithm uses
rule (19) to generate wk+1 for all k ≥ kl + 1. We then have Ψ(wk+1) ≤ Ψ(wk) for all
k ≥ kl + 1. All in all, we have proved the statement in (i).

(ii) Suppose that test (20) holds infinitely many times, which means that there
exists k̄ ≥ kl + 1 such that (21) holds at k̄. The algorithm uses (S.1)(i) to update
wk from k̄ + 1 onward, and (20) holds infinitely many times after k̄ + 1. Hence the
relation (32) holds infinitely many times after k̄ + 1. Noting that {Ψ(wk)}k≥kl+1 is
monotonically decreasing, we certainly have (ii) from (32).

The goal we want to achieve in this section is that any limit of the sequence {wk}
is a stationary point of (3), which under reasonable conditions [11, Thm. 3.1] is already
a solution of (1). Because of Lemmas 6.1 and 6.2, we need only consider the case that
K contains finitely many elements and test (20) holds only finitely many times. In
other words, we need only consider the case that Algorithm 5.1, after finitely many
iterations, uses only rule (19) to update wk. Without loss of generality we assume
from now on that the whole sequence {wk} is generated according to the trust region
rule (19). The convergence analysis for this part is quite standard from the trust
region point of view.

Lemma 6.3. Suppose that the whole sequence {wk} was generated according to
rule (19), and that w∗ is the limit of a subsequence {wk}K̃ . If w∗ is not a stationary
point of (3), then

lim
k→∞

inf
k∈K̃

∆k > 0.

Proof. It is obvious that the function value sequence {Ψ(wk)}k≥1 is monotonically
decreasing, and so is the sequence {δk}. Moreover,

lim
k→∞

δk = δ∗ := min{δ, c
√

‖Φ(w∗)‖} > 0;

the last inequality uses the fact Ψ(w∗) > 0 as w∗ is not a stationary point of (3). Now
define the index set

K̄ := {k − 1| k ∈ K̃}.
Then the subsequence {wk+1}k∈K̄ converges to w∗. Suppose that the result of this
lemma does not hold. Subsequencing if necessary we can assume that

lim
k→∞,k∈K̄

∆k+1 = 0.(33)

In view of the updating rule for the trust region radius (note that the lower bound

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

454 HOUDUO QI, LIQUN QI, AND DEFENG SUN

∆min > 0 plays an important role here), (33) implies that for all iterations k ∈ K̄
sufficiently large, we have

rk < ρ1, wk = wk+1, ∆k+1 = σ1∆k.(34)

Hence

{wk}K̄ → w∗ and lim
k→∞,k∈K̄

∆k = 0.(35)

Because of the continuity of ∇Ψ(·), the first convergence in (35) implies the bounded-
ness of {‖gkJk

‖}K̄ . Taking into account the boundedness of {wk
Jk
}∞1 (since 0 ≤ wk

j ≤ δk
for all j ∈ Jk and all k) we obtain the boundedness of {‖vkJk

‖}K̄ .
Due to the upper semicontinuity of the generalized Jacobian, the sequence

{‖HT
k Hk‖} is bounded for all k ∈ K̄; hence the norm of its submatrix {‖(Hk

.J̄k
)THk

.J̄k
‖}

is also bounded for k ∈ K̄. The fact

lim
k→∞

ρ(Ψ(wk)) = ρ(Ψ(w∗))

implies that there is a constant κ1 > 0 such that

‖Bk‖ ≤ κ1(36)

for all k ∈ K̄. We recall from the proof of Lemma 5.3 that (gk)T vk = (gkJk
)T vkJk

+

‖gk
J̄k
‖2 and (gkJk

)T vkJk
≥ 0 for all k. Since w∗ is not a stationary point of (3), in view

of Lemma 5.2 there exists a constant κ2 > 0 such that

max{(gkJk
)T vkJk

, ‖gkJ̄k
‖} ≥ κ2(37)

for all k ∈ K̄. By (35) and δ∗ > 0, we have δk ≥ ∆k for all k ∈ K̄ sufficiently
large. This implies that the estimate in Proposition 4.3(i) holds for all sufficiently
large k ∈ K̄. Hence we have, for all k ∈ K̄ sufficiently large,

Predk ≥ ∆k(g
k
Jk
)T vkJk

+
1

4
‖gkJ̄k

‖min

{
∆k,

‖gkJ̄k
‖

‖Bk‖

}
≥ 1

4
γ2∆k,(38)

‖d̃k‖ ≤ min{1,∆k}‖vkJk
‖+ ‖dkJ̄k

‖ ≤ (1 + ‖vkJk
‖)∆k,

where the last inequality in (38) uses the bounds (36)–(37) and the limit (35). Then
{d̃k}k∈K̄ → 0 because of the boundedness of {‖vkJk

‖}k∈K̄ and (35). By the mean
value theorem, we have

Ψ(wk + d̃k) = Ψ(wk) +∇Ψ(ξk)T d̃k for some ξk = wk + θkd̃
k, θk ∈ (0, 1).

Obviously, we have {ξk}k∈K̄ → w∗ as {d̃k}k∈K̄ → 0. Then we obtain for k ∈ K̄
sufficiently large

|rk − 1| =
∣∣∣∣∣Ψ(wk)−Ψ(wk + d̃k)

Predk
− 1

∣∣∣∣∣
=

1

Predk

∣∣∣∣∆k

(
(∇Ψ(ξk)−∇Ψ(wk))Jk

)T
vkJk

+
(
(∇Ψ(wk)−∇Ψ(ξk))J̄k

)T
dkJ̄k

+
1

2
(dkJ̄k

)TBkd
k
J̄k

∣∣∣∣ (by (35) and the definition of d̃k)

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

SOLVING KARUSH–KUHN–TUCKER SYSTEMS 455

≤ 4

γ2∆k

(
∆k

∥∥(∇Ψ(ξk)−∇Ψ(wk))Jk

∥∥ ‖vkJk
‖+ ∥∥(∇Ψ(wk)−∇Ψ(ξk))J̄k

∥∥ ‖dkJ̄k
‖

+
1

2
‖Bk‖‖dkJ̄k

‖2

)
(by the Cauchy–Schwarz inequality and (38))

≤ 4

γ2

(
(1 + ‖vkJk

‖)‖∇Ψ(wk)−∇Ψ(ξk)‖+ 1

2
‖Bk‖∆k‖

)
(by ∆k ≥ ‖dkJ̄k

‖)

→ 0 (by the boundedness of {‖vkJk
‖}K̄ and (35)).

Hence the subsequence {rk}k∈K̄ converges to 1, which is a contradiction to rk ≤ ρ1

in (34).
With the help of Lemma 6.3, we are able to prove the following global convergence

result. Its proof is quite standard and is omitted here. One can mimic the proof of
[20, Thm. 3.1] to prepare one.

Lemma 6.4. Suppose that the whole sequence {wk} was generated according to
rule (19). Then any accumulation point of {wk} is a stationary point of (3).

Combining the results of Lemmas 6.1, 6.2, and 6.4, we have our main result in
this section.

Theorem 6.5. Let {wk} be generated by Algorithm 5.1, with the subproblem (9)
being solved by the truncated CG Algorithm 4.1. Then any accumulation point of {wk}
is a stationary point of (3).

7. Local convergence. Let {wk} be a sequence generated by Algorithm 5.1,
and let w∗ be a strongly regular solution of (1). Our main result in this section is
that if w∗ is an accumulation point of {wk}, then the whole sequence converges to w∗

superlinearly/quadratically. The proof is based on a number of lemmas. The proof
techniques of some of those lemmas are borrowed from [19]. Therefore, we will omit
most of proofs in this section, but we would like to indicate their connections to [19]
and refer to [28] for fully worked out proofs.

The two results of the following lemma are simple consequences of the strong
regularity. The first one is about the active set J∗ at w∗ defined by

J∗ := {i ∈ J | z∗j = 0}.

Since our algorithm makes use of an active-set strategy, we hope that the set Jk is
capable of identifying J∗ correctly whenever wk is close to w∗. This can be shown by
using a recently proposed identification technique by Facchinei, Fischer, and Kanzow
[10]. The second is the uniform nonsingularity of a matrix sequence [19, Lem. 5].

Lemma 7.1. Suppose that {wk} is a sequence generated by Algorithm 5.1 and w∗

is a strongly regular solution of (1). If w∗ is an accumulation point of {wk}, then the
following hold:

(i) Jk = J∗ for all wk in a sufficiently small ball around w∗.
(ii) There is a constant c2 > 0 such that the matrices (Hk

.J̄k
)THk

.J̄k
are nonsingular

and ∥∥∥∥((Hk
.J̄k

)THk
.J̄k

)−1
∥∥∥∥ ≤ c2

for all wk in a sufficiently small ball around w∗.
Suppose w∗ is a solution of Φ(w) = 0. Then ‖Φ(w)‖ = o(

√‖Φ(w)‖) whenever w
is close enough to w∗. Using this fact, Proposition 4.3, (6), and Lemma 7.1(ii), we

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

456 HOUDUO QI, LIQUN QI, AND DEFENG SUN

can obtain the following bound on dk by using a proof technique similar to that of
[19, Lem. 6].

Lemma 7.2. Suppose that {wk} is a sequence generated by Algorithm 5.1, and
w∗ is a strongly regular solution of (1). If w∗ is an accumulation point of {wk}, then
there exists a constant c3 > 0 such that

‖dk‖ ≤ c3

√
‖Φ(wk)‖

for all wk sufficiently close to w∗, where dk denotes the vector computed in step (S.4)
of Algorithm 5.1.

Using Lemma 7.2, we are now able to show the convergence of the whole sequence
{wk} (see [19, Lem. 8] for a proof.)

Lemma 7.3. Let {wk} be generated by Algorithm 5.1, and let w∗ be a strongly
regular solution of (1). If w∗ is an accumulation point of {wk}, then the whole sequence
{wk} converges to w∗.

The results developed so far allow us to establish one more technical result, which
in turn implies that the iterates are eventually generated by wk+dk. The third result
of the next lemma can be proved similarly to the proof of [19, Lem. 11].

Lemma 7.4. Let {wk} be generated by Algorithm 5.1, and let w∗ be a strongly reg-
ular solution of (1) and an accumulation point of {wk}. Let {dk} denote the directions
computed in step (S.4) of Algorithm 5.1. Then the following hold:

(i) For all k sufficiently large, it holds that

Ψ(wk + dk) ≤ γ
√
‖Φ(wk)‖.

(ii) There are infinitely many iterates wk at which indk = 0.
(iii) It holds that indk = 0 for all k sufficiently large.
Proof. Under the assumed conditions, it is proved in Lemma 7.3 that the whole

sequence {wk} converges to w∗ with Φ(w∗) = 0. Then Lemma 7.2 implies that there
exists c3 > 0 such that

‖dk‖ ≤ c3

√
‖Φ(wk)‖

for all k sufficiently large. So the sequence {wk + dk} also converges to w∗. Then for
all k sufficiently large we have


‖Φ(wk + dk)‖ ≤ L‖wk + dk − w∗‖,
‖Φ(wk)‖ ≥ c1‖wk − w∗‖, ‖Hk‖ ≤ κ3,√
‖Φ(wk)‖ ≤ min{γ/(2L2c2

3), c1c3},
(39)

where L is the Lipschitz constant of Φ(·) in a small ball around w∗, c1 is the constant
used in Proposition 2.3, and κ3 is the constant used in the proof of Lemma 7.2. It
also follows from Proposition 2.2 and Lemma 7.1 that for all k sufficiently large

‖Φ(wk)− Φ(w∗)− Hk(w
k − w∗)‖ = o(‖wk − w∗‖)(40)

and

Jk = J∗.(41)

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

SOLVING KARUSH–KUHN–TUCKER SYSTEMS 457

(i) The inequalities in (39) yield (i) as follows for all k sufficiently large:

Ψ(wk + dk) =
1

2
‖Φ(wk + dk)‖2

≤ L2

2
‖wk + dk − w∗‖2 ≤ L2

2

(‖wk − w∗‖+ ‖dk‖)2
≤ L2

2

(
‖Φ(wk)‖/c1 + c3

√
‖Φ(wk)‖

)2

≤ L2

2c2
1

‖Φ(wk)‖
(

c1c3 +
√
‖Φ(wk)‖

)2

≤ 2(Lc3)
2‖Φ(wk)‖ ≤ γ

√
‖Φ(wk)‖.

(ii) Suppose to the contrary that there is a k̄ such that indk = 1 for all k ≥ k̄.
We again let K be defined as (22). Then K contains finitely many indices, which we
denote by

K := {k0, k1, . . . , kl}
for some integer l. By the update rule for βk, we have

βk = βkl+1 = Ψ(wkl+1) ∀ k > kl + 1,

and there is no new update for γ̄ after kl + 1, i.e.,

γ̄ = γkl+1 =
Ψ(wkl+1)

Ψ(wkl)
∀ k > kl + 1.

Since {wk + dk} converges to w∗, Ψ(wk + dk) converges to Ψ(w∗) = 0. Hence for all
k sufficiently large

Ψ(wk + dk) ≤ γΨ(wkl) ≤ γ

γ̄
Ψ(wkl+1) =

γ

γ̄
βk;

that is, test (21) is successful for all k sufficiently large. Since indk = 1 for k large
enough, Algorithm 5.1 (S.5)(ii) assigns indk+1 = 0, which contradicts our assumption.
This establishes (ii). (iii) can be proved similarly to the proof of [19, Lem. 11] by
noticing Proposition 4.2.

We are now at the position to state the main local convergence result.
Theorem 7.5. Let {wk} be a sequence generated by Algorithm 5.1, and let w∗

be a strongly regular solution of (1) and an accumulation point of {wk}. Then the
following statements hold:

(a) The whole sequence {wk} converges to w∗.
(b) The rate of convergence is Q-superlinear.
(c) The rate of convergence is Q-quadratic if, in addition, F is an LC1 function

and h, g are LC2 functions and ρ(Ψ(wk)) = O(
√
Ψ(wk)).

Proof. Statement (a) follows immediately from Lemma 7.3. We have proved in
Lemma 7.4 that indk = 0 and test (20) holds for all k sufficiently large. Hence, there
exists k̄ > 0 such that for all k ≥ k̄

wk+1 := wk + dk.

Then by an argument similar to the proof of [19, Lem. 11], we can prove

‖wk+1 − w∗‖ = o(‖wk − w∗‖),
and under the condition in (c) and with Proposition 2.2, we can prove

‖wk+1 − w∗‖ = O(‖wk − w∗‖2).

This proves (b) and (c).

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

458 HOUDUO QI, LIQUN QI, AND DEFENG SUN

8. Numerical results. In this section, we present some numerical experiments
on a subset of problems from the MCPLIB collection [7]. The details about the
implementation are described as follows.

(a) The penalized Fischer–Burmeister function. Instead of using the Fischer–
Burmeister function ϕ, we use its penalized version ϕα : R

2 → R defined by

ϕα(a, b) := αϕ(a, b) + (1− α)a+b+, α ∈ (0, 1],

where a+ = max{0, a} for any a ∈ R. Numerical tests indicate that the penalized
Fischer–Burmeister function usually leads to better numerical performance than the
Fischer–Burmeister function [3, 34]. In our implementation, α = 0.7, as recommended
by Ulbrich [37].

(b) SSOR preconditioner. As we pointed out in the introduction, the key issue
of efficient implementation of CG-type methods is the preconditioning. Steihaug’s
CG method with preconditioner C can be found in [33]. Although there is no single
preconditioning that is “best” for all conceivable types of matrices, we choose C to
be the SSOR preconditioner of the following type of linear equations:

(ATA + ρI)x = b,(42)

where A, b have compatible dimension and ρ is a small positive number. This type of
equation is exactly what we try to solve at each iteration. Then the SSOR precondi-
tioner corresponds to taking

C = PTP and P = D
−1/2
A (DA + ωLT

A), 0 ≤ ω < 2,(43)

with the standard splitting ATA + ρI = LA + DA + LT
A, where LA is strictly lower

triangular. The cost of matrix-vector product for each of the SSOR PCG iterations
including the matrix-vector product with ATA is in fact only 4nnz(A), and ATA is
not formed explicitly, where nnz is (Matlab) notation of the number of nonzero ele-
ments. See [15, Table 1], [1, p. 284], and [2] for more information about the counting.
According to [15], SSOR-CG and TMRES (transformed minimal residual algorithm)
are the two most efficient methods for solving linear equations of type (42) compared
with several other (iterative) methods. Theory and numerical experiments indicate
that ω = 1 is often close to the optimum choice of ω [1]. In our implementation,
ω = 1.

(c) Nonmonotone calculation of the reduction-ratio rk. In calculating rk in (18),
we used its nonmonotone version,

rk =
(
Wk −Ψ(wk + d̃k)

)
/Predk,

where Wk := max{Ψ(wj)| j = k + 1 − =, . . . , k} denotes the maximal function value
of Ψ over the last = iterations. The nonmonotone version often gives an overall bet-
ter performance than its monotone version. For more discussion, see [37]. In our
implementation, = = 4.

(d) Test problems. The test problems we used are selected from the MCPLIB
collection [7] and have at most one bound per variable, i.e., ui − li = +∞ for all
i. The collection itself is updated from time to time. As of the initial point of
those problems, we follow a suggestion of Ulbrich [37] that interior starting points
enable constrained algorithms to identify the correct active constraints more efficiently
than starting points close to the boundary. Let x̂0 be the initial point returned by
the initialization routine mcpinit. Then the initial point chosen is given by x0 =
max{l + 0.1,min{u − 0.1, x̂0}}.

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

SOLVING KARUSH–KUHN–TUCKER SYSTEMS 459

The algorithm was implemented in Matlab and run on a SUN Solaris (CDE
Version 1.2) workstation. The parameters used are ∆0 = min{0.1‖g0‖, 30√10n},
∆min = 1, ρ1 = 10−4, ρ2 = 0.75, σ1 = 0.1, σ2 = 10, c = 1, γ = 0.9, δ = 10−4, and
tol = 10−10. The algorithm was terminated if one of the following conditions was
met:

max{Ψ(wk), ‖∇Φ(wk)‖, ‖vk‖} ≤ tol or it outer ≥ 100,

where it outer denotes the (outer) iteration number. The forcing function used in
our implementation is ρ(Ψ(w)) = min{10−6,

√
Ψ(w)}. The stop rule (S.1) used in

Algorithm 4.1 is replaced by

‖Bks
i − gkJ̄k

‖Ck
/‖gkJ̄k

‖Ck
≤ tol

if gk
J̄k

�= 0, and s = 0 would otherwise be the (unique) solution of the subproblem.

There are two iterative procedures in the implementation: One is the iterative
procedure in Algorithm 5.1, which we call the outer iterative procedure. For each
outer iteration, there is the truncated PCG iterative procedure described in Algo-
rithm 4.1 for solving the trust region subproblem, which we call the inner iterative
procedure. The average number of inner iterations per outer iteration is essential
to the efficiency of our approach. The following data are reported in our numerical
results: n, the problem size; it outer, number of outer iterations when Algorithm
5.1 was terminated; it inner, average number of PCG iterations per out iteration,
i.e., it inner = [Total numbers of PCG iterations/it outer], where [z] denotes the
nearest integer to z; nf, number of evaluations of the function F ; Ψ(wf), the value
of Ψ(·) at the final iterate; ‖∇Ψ(xf)‖, the value of ‖∇Ψ(·)‖ at the final iterate; ‖vf‖,
the value of ‖vk‖ at the final iteration. it outer is also equal to the number of
evaluations of the Jacobian F ′(x).

We tested Algorithm 5.1 with two purposes: to demonstrate the importance of
preconditioning and to compare our numerical results with existing ones.

(e) Importance of preconditioning. For this purpose, we tested three versions
of Algorithm 5.1. tcg: Algorithm 5.1 without preconditioning (C = I); tcg ssor:
Algorithm 5.1 with SSOR-preconditioner (C = PTP with P given by (43)); and
tcg chol: Algorithm 5.1 with Cholesky direct factorization (C = RTR with R being
the Cholesky factor of Bk). We expect that tcg ssor is much more efficient than
tcg and is less efficient than tcg chol (we use tcg ssor as benchmark). The nu-
merical results confirm this expectation. Table 1 contains results from tcg and Table
2 contains results from tcg ssor. On the one hand, tcg failed to solve four more
problems (i.e., bertsekas, freebert, games, and methan08) than tcg ssor. But for
the remaining solved problems, they behaved quite similarly except for colvdual. To
solve this problem, tcg took many more functional evaluations and outer iterations
than tcg ssor did. The observation clearly shows that the preconditioned version is
much more efficient than the unpreconditioned version. On the other hand, tcg chol

is able to solve one more problem (ne-hard) than tcg ssor, and they behaved very
similarly for the rest of the problems in terms of number of functional evaluations
and outer iterations. For this reason and to save space as well, we did not include
the complete results for tcg chol, but the final information for ne-hard is included
in Table 2. We note that when the Cholesky preconditioner is applied in Algorithm
4.1, in theory it takes only one inner iteration to solve the trust region subproblem,
and the resulting direction is of the Gauss–Newton type. Its steplength is controlled

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

460 HOUDUO QI, LIQUN QI, AND DEFENG SUN

Table 1
Numerical results with tcg.

Problem n it inner it outer nf Ψ(xf) ‖∇Ψ(xf)‖ ‖vf‖
badfree 5 2 4 5 2.68e-13 8.87e-07 8.87e-07
bertsekas 15 – – – – – –
billups 1 1 1 2 9.80e-05 2.94e-02 0.00e+00
bishopl 1645 – – – – – –
colvdual 20 19 48 200 7.11e-13 6.56e-06 6.56e-06
colvnlp 15 18 6 8 3.34e-13 2.91e-05 2.91e-05
cycle 1 1 5 7 2.18e-15 2.44e-07 2.44e-07
degen 2 1 5 7 2.88e-11 7.51e-06 7.51e-06
duopoly 63 – – – – – –
ehl k40 41 – – – – – –
ehl k60 61 – – – – – –
ehl k80 81 – – – – – –
ehl kost 101 – – – – – –
explcp 16 8 11 13 1.97e-13 4.40e-07 4.40e-07
forcebsm 184 – – – – – –
forcedsa 186 – – – – – –
freebert 15 – – – – – –
games 16 – – – – – –
hanskoop 14 10 22 32 1.65e-12 1.51e-05 1.51e-05
hydroc06 29 94 64 170 8.24e-11 2.59e-04 2.59e-04
hydroc20 99 – – – – – –
jel 6 8 6 9 5.84e-14 6.09e-06 6.09e-06
josephy 4 3 4 5 3.38e-20 1.60e-09 1.60e-09
kojshin 4 4 3 4 1.17e-11 2.70e-05 2.70e-05
lincon 419 – – – – – –
mathinum 3 3 5 6 8.82e-15 2.63e-07 2.63e-07
mathisum 4 3 8 10 5.83e-11 5.62e-05 5.62e-05
methan08 31 – – – – – –
nash 10 10 5 6 1.47e-17 2.87e-07 2.87e-07
ne-hard 3 – – – – – –
pgvon106 106 – – – – – –
powell 16 12 5 6 6.93e-14 6.14e-06 5.46e-06
powell mcp 8 7 2 3 3.33e-13 7.37e-06 7.37e-06
qp 4 2 9 45 1.26e-14 8.55e-07 3.19e-07
scarfanum 13 10 13 16 2.83e-16 8.57e-07 8.57e-07
scarfasum 14 12 11 45 7.31e-19 4.28e-08 4.28e-08
scarfbsum 40 – – – – – –
shubik 45 – – – – – –
simple-ex 17 – – – – – –
simple-red 13 15 10 15 2.12e-11 3.10e-06 3.10e-06
sppe 27 36 4 5 1.56e-18 3.58e-09 3.57e-09
tinloi 146 5 6 63 1.30e-11 1.71e-02 1.59e-02
tobin 42 36 8 43 2.02e-22 2.08e-10 1.85e-10
trafelas 2904 – – – – – –

by the trust region radius. In practice, it may take more than one inner iteration
to produce a direction due to the accumulated roundoff. Moreover, when the linear
equations of the type (42) is near singular, the Cholesky factor may not exist, leading
to the failure of tcg chol. In our experiments, tcg chol took only one inner iteration
per outer iteration. So it is not appropriate to compare tcg ssor with tcg chol in
terms of inner iterations taken per outer iteration. However, it is safe to say that the
efficiency of the preconditioned Algorithm 5.1 varies with the preconditioners used.

(f) Comparison. The results in Table 2 are comparable to those results obtained
with existing methods [37, 35]. Moreover, for most of the tested problems the av-

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

SOLVING KARUSH–KUHN–TUCKER SYSTEMS 461

Table 2
Numerical results with tcg ssor.

Problem n it inner it outer nf Ψ(xf) ‖∇Ψ(xf)‖ ‖vf‖
badfree 5 3 4 5 1.15e-12 1.84e-06 1.84e-06
bertsekas 15 7 18 58 8.84e-18 1.43e-07 1.43e-07
billups 1 1 1 2 9.80e-05 2.94e-02 0.00e+00
bishop 1645 – – – – – –
colvdual 20 14 22 68 8.05e-13 9.11e-05 9.11e-05
colvnlp 15 11 6 8 3.35e-13 2.92e-05 2.92e-05
cycle 1 1 5 7 2.18e-15 2.44e-07 2.44e-07
degen 2 1 5 7 2.88e-11 7.51e-06 7.51e-06
duopoly 63 – – – – – –
ehl k40 41 – – – – – –
ehl k60 61 – – – – – –
ehl k80 81 – – – – – –
ehl kost 101 – – – – – –
explcp 16 4 11 13 1.96e-13 4.39e-07 4.39e-07
forcebsm 184 – – – – – –
forcedsa 186 – – – – – –
freebert 15 7 24 117 1.18e-12 7.12e-05 7.12e-05
games 16 12 14 36 1.74e-14 5.16e-06 4.58e-06
hanskoop 14 9 24 37 1.09e-13 3.75e-06 3.72e-06
hydroc06 29 41 36 42 6.09e-11 1.86e-07 1.86e-07
hydroc20 99 – – – – – –
jel 6 5 6 9 5.84e-14 6.09e-06 6.09e-06
josephy 4 3 4 5 3.38e-20 1.60e-09 1.60e-09
kojshin 4 4 3 4 1.17e-11 2.70e-05 2.70e-05
lincon 419 – – – – – –
mathinum 3 3 5 6 8.82e-15 2.63e-07 2.63e-07
mathisum 4 3 8 10 5.83e-11 5.62e-05 5.62e-05
methan08 31 46 51 59 9.08e-11 9.95e-09 9.95e-09
nash 10 4 5 6 1.49e-17 2.86e-07 2.86e-07
ne-hard 3 1 25 51 5.09e-11 5.60e-02 6.60e-02
pgvon106 106 – – – – – –
powell 16 10 14 61 5.69e-12 3.80e-05 3.31e-05
powell mcp 8 7 2 3 3.33e-13 7.36e-06 7.36e-06
qp 4 2 9 45 1.26e-14 8.55e-07 3.19e-07
scarfanum 13 8 13 16 2.83e-16 8.57e-07 8.57e-07
scarfasum 14 9 11 45 7.31e-19 4.28e-08 4.28e-08
scarfbsum 40 – – – – – –
shubik 45 – – – – – –
simple-ex 17 – – – – – –
simple-red 13 10 10 15 1.04e-11 2.18e-06 2.18e-06
sppe 27 15 4 5 1.50e-18 1.96e-09 1.96e-09
tinloi 146 5 6 63 1.30e-11 1.71e-02 1.59e-02
tobin 42 19 8 43 2.78e-23 1.93e-11 1.89e-11
trafelas 2904 – – – – – –

erage number of inner iterations per outer iteration (column 3) in Table 2 is small
compared with the problem size. Although we have a few more failed problems, we
would like to point out that for some of those failed problems, say ehl 60, ehl 80,
and ehl kost, all of which can be solved in [37, 35], we were able to arrive at points
with functional values at the order of 10−5 and 10−8 for hydroc20 within 10 itera-
tions, but our algorithm hardly achieved any significant improvement thereafter. The
difficulties may come from two resources: On the one hand, there are many ways, all
mathematically equivalent, in which to implement the CG method for (42). In exact
arithmetic they will all generate the same sequence of approximations and all have

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

462 HOUDUO QI, LIQUN QI, AND DEFENG SUN

finite termination property, but in finite precision the achieved accuracy may differ
substantially. On the other hand, it is hard to select the “best” preconditioner for all
linear systems of type (42) arising from our implementation. Hence for those failed
problems, an appropriate option is an efficient implementation of the CG method with
a more suitable preconditioner (other than SSOR). Fortunately, many other precondi-
tioners with corresponding efficient implementation of the CG method are available;
see [1, pp. 293–311]. We also learned that the number of inner iterations may grow
significantly for (very) ill-conditioned linear systems of type (42) in order to meet the
required accuracy. We refer readers who are interested in the reasons to a recent pa-
per [15] by Hager. We also observed that the sooner direction dk is taken, the sooner
the active set is identified. In fact, for most cases, the active set is identified at least
two or three iterations before termination.

Based on the numerical results reported and observation in (e) and (f), we feel
that the trust region PCG method proposed in this paper provides an alternative to
the existing methods for solving KKT systems. More numerical experiments need to
be done to evaluate the proposed approach, especially on large-scale problems with a
Jacobian appearing in a certain pattern of sparsity.

9. Conclusions. In this paper, we proposed a trust region algorithm for solving
KKT systems arising from VIPs. Built around those components of the current
iterate, which are far from the boundary of the constrained region, the trust region
subproblem is solved by the truncated PCG method. Global and local convergence
analysis are provided for this method. Numerical experiments show that the proposed
method is promising, mainly due to its computational inexpensiveness in that the trust
region subproblem is solved by the truncated CG method. We also briefly discussed
ways for improving practical efficiency of the proposed method.

Acknowledgments. The authors would like to thank the associate editor and
two anonymous referees for their detailed comments, which considerably improved
the presentation of the paper. In particular, one referee’s expert comments on PCG
methods led us to the current version of Algorithm 4.1 as well as condition (13).

REFERENCES

[1] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA, 1996.
[2] Å. Björck and T. Elfving, Accelerated projection methods for computing pseudoinverse so-

lutions of systems of linear equations, BIT, 19 (1979), pp. 145–163.
[3] B. Chen, X. Chen, and C. Kanzow, A penalized Fischer-Burmeister NCP-function, Math.

Program., 88 (2000), pp. 211–216.
[4] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
[5] A.R. Conn, N.I.M. Gould, and P.L. Toint, Global convergence of a class of trust region

algorithms for optimization with simple bounds, SIAM J. Numer. Anal., 25 (1988), pp.
433–460.

[6] A.R. Conn, N.I.M. Gould, and P.L. Toint, Trust Region Methods, MPS/SIAM Ser. on
Optim. 1, SIAM, Philadelphia, 2000.

[7] S.P. Dirkse and M.C. Ferris, MCPLIB: A collection of nonlinear mixed complementarity
problems, Optim. Methods Softw., 5 (1995), pp. 319–345.

[8] F. Facchinei, A. Fischer, and C. Kanzow, A semismooth Newton method for variational
inequalities: The case of box constraints, in Complementarity and Variational Problems:
State of the Art, Proc. Appl. Math. 92, M. C. Ferris and J.-S. Pang, eds., SIAM, Philadel-
phia, 1997, pp. 76–90.

[9] F. Facchinei, A. Fischer, and C. Kanzow, Regularity properties of a semismooth reformu-
lation of variational inequalities, SIAM J. Optim., 8 (1998), pp. 850–869.

[10] F. Facchinei, A. Fischer, and C. Kanzow, On the accurate identification of active con-
straints, SIAM J. Optim., 9 (1998), pp. 14–32.

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

SOLVING KARUSH–KUHN–TUCKER SYSTEMS 463

[11] F. Facchinei, A. Fischer, C. Kanzow, and J.-M. Peng, A simply constrained optimization
reformulation of KKT systems arising from variational inequalities, Appl. Math. Optim.,
40 (1999), pp. 19–37

[12] A. Fischer, A special Newton-type optimization method, Optimization, 24 (1992), pp. 269–284.
[13] A. Fischer, Solution of monotone complementarity problems with locally Lipschitzian func-

tions, Math. Programming, 76 (1997), pp. 513–532.
[14] S.A. Gabriel and J.-S. Pang, An inexact NE/SQP method for solving the nonlinear comple-

mentarity problem, Comput. Optim. Appl., 1 (1992), pp. 67–91.
[15] W.W. Hager, Iterative methods for nearly singular linear systems, SIAM J. Sci. Comput., 22

(2000), pp. 747–766.
[16] H. Jiang, M. Fukushima, L. Qi, and D. Sun, A trust region method for solving generalized

complementarity problems, SIAM J. Optim. 8 (1998), pp. 140–157.
[17] C. Kanzow, An inexact QP-based method for nonlinear complementarity problems, Numer.

Math., 80 (1998), pp. 557–577.
[18] C. Kanzow, Strictly feasible equation-based methods for mixed complementarity problems, Nu-

mer. Math., 89 (2001), pp. 135–160.
[19] C. Kanzow and H.-D. Qi, A QP-free constrained Newton-type method for variational inequal-

ity problems, Math. Program., 85 (1999), pp. 81–106.
[20] C. Kanzow and M. Zupke, Inexact trust-region methods for nonlinear complementarity prob-

lems, in Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Meth-
ods, M. Fukushima and L. Qi, eds., Kluwer Academic, Dordrecht, The Netherlands, 1998,
pp. 211–233.

[21] C.-J. Lin and J.J. Moré, Newton’s method for large bound-constrained optimization problems,
SIAM J. Optim., 9 (1999), pp. 1100–1127.

[22] J. Liu, Strong stability in variational inequalities, SIAM J. Control Optim., 33 (1995), pp.
725–749.

[23] J.J. Moré and D.C. Sorensen, Computing a trust region step, SIAM J. Sci. Statist. Comput.,
4 (1983), pp. 553–572.

[24] J.-S. Pang and S.A. Gabriel, NE/SQP: A robust algorithm for the nonlinear complementarity
problem, Math. Programming, 60 (1993), pp. 295–337.

[25] J.-S. Pang and L. Qi, Nonsmooth equations: Motivation and algorithms, SIAM J. Optim., 3
(1993), pp. 443–465.

[26] J.-M. Peng, Global method for monotone variational inequality problems with inequality con-
straints, J. Optim. Theory Appl., 95 (1997), pp. 419–430

[27] M.J.D. Powell, A new algorithm for unconstrained optimization, in Nonlinear Programming
2, O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, eds., Academic Press, New York,
1975, pp. 1–27.

[28] H.-D. Qi, L. Qi, and D. Sun, Solving KKT Systems via the Trust Region and the Conjugate
Gradient Methods, AMR99/19, School of Mathematics, University of New South Wales,
Sydney, Australia, 1999.

[29] L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper.
Res., 18 (1993), pp. 227–244.

[30] L. Qi and H. Jiang, Semismooth Karush-Kuhn-Tucker equations and convergence analysis
of Newton and quasi-Newton methods for solving these equations, Math. Oper. Res., 22
(1997), pp. 301–325.

[31] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Math. Programming, 58 (1993),
pp. 353–368.

[32] S.M. Robinson, Strongly regular generalized equations, Math. Oper. Res., 5 (1980), pp. 43–62.
[33] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization,

SIAM J. Numer. Anal., 20 (1983), pp. 626–637.
[34] D. Sun and L. Qi, On NCP-functions, Comput. Optim. Appl., 13 (1999), pp. 201–220.
[35] D. Sun, R.S. Womersley, and H.-D. Qi, A feasible semismooth asymptotically Newton method

for mixed complementarity problems, Math. Program., 94 (2002), pp. 167–187.
[36] P.L. Toint, Towards an efficient sparsity exploiting Newton method for minimization, in

Sparse Matrices and Their Uses, I. Duff, ed., Academic Press, New York, 1981, pp. 57–88.
[37] M. Ulbrich, Nonmonotone trust-region methods for bound-constrained semismooth equations

with applications to nonlinear mixed complementarity problems, SIAM J. Optim., 11
(2001), pp. 889–917.

[38] Y. Yuan, On the truncated conjugate gradient method, Math. Program., 87 (2000), pp. 561–573.

D
ow

nl
oa

de
d

09
/1

5/
19

 to
 1

58
.1

32
.4

4.
22

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

