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a b s t r a c t 

In this paper, we study the preferences for uncertain travel times in which probability 

distributions may not be fully characterized. In evaluating an uncertain travel time, we 

explicitly distinguish between risk , where the probability distribution is precisely known, 

and ambiguity , where it is not. In particular, we propose a new criterion called ambiguity- 

aware CARA travel time (ACT) for evaluating uncertain travel times under various attitudes 

of risk and ambiguity, which is a preference based on blending the Hurwicz criterion and 

Constant Absolute Risk Aversion (CARA). More importantly, we show that when the uncer- 

tain link travel times are independently distributed, finding the path that minimizes travel 

time under the ACT criterion is essentially a shortest path problem. We also study the 

implications on Network Equilibrium (NE) model where travelers on the traffic network 

are characterized by their knowledge of the network uncertainty as well as their risk and 

ambiguity attitudes under the ACT. We derive and analyze the existence and uniqueness 

of solutions under NE. Finally, we obtain the Price of Anarchy that characterizes the in- 

efficiency of this new equilibrium. The computational study suggests that as uncertainty 

increases, the influence of selfishness on inefficiency diminishes. 

© 2016 Published by Elsevier Ltd. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

In real world transportation networks, travel times are almost always uncertain, which is found to be one the most

important factors in the path selection decisions ( Abdel-Aty et al., 1995 ). Individuals’ preferences greatly depend on their

knowledge about the uncertain travel time as well as their attitudes towards uncertainty. In transportation literatures, an

uncertain travel time is often associated with a random variable with the known probability distribution. In other words,

the traveler knows the exact frequency of travel time outcomes, and his/her preference relies on his/her risk attitude, that

is usually characterized by taking an expectation over a disutility function (an increase in the travel time amounts to a

loss). Deliberating on reliability, Fan et al. (2005) , Mirchandani (1976) , and Nie and Wu (2009) consider the probability of

punctuality as a preference criterion, which could be treated as a step disutility function. Unfortunately, since in general,

computing the probability of a sum of random variables is NP-hard ( Khachiyan, 1989 ), it is a computationally intractable

problem to find the path with the minimum expected disutility over a transportation network, which severely limits our
∗ Corresponding author. 
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analysis and implementation. Murthy and Sarkar (1998) consider a piece-wise linear concave disutility function, and solve

the problem with certain enumeration algorithms. Loui (1983) and Eiger et al. (1985) consider disutility functions in the

form of linear, quadratic or exponential, in which the resultant static path selection problems are computationally tractable.

In particular, De Palma and Picard (2005) justify empirically the relevance of the exponential disutility function, which

appeals to travelers with Constant Absolute Risk Aversion (CARA) and has the best fit on path selection behavior amongst

common disutility functions. 

Implications of risk in Network Equilibrium (NE) problems, which model a collective behavior of a large population

of travelers, have also been studied. One stream suggests using disutility function to capture travel time uncertainty, and

travelers’ attitudes towards risk (see Chen et al., 2002; Mirchandani and Soroush, 1987; Nagurney and Dong, 2002; Yin and

Ieda, 2001 ; and Yin et al., 2004 ). The second stream discusses the travel time variability by adding the mean travel time

with a safety margin, which can be described by a penalty function (see Noland and Polak, 2002; Watling, 2006 ), or the

standard deviation (see Connors et al., 2007; Lo et al., 2006; Nikolova and Stier-Moses, 2014; Siu and Lo, 2008; Uchida and

Iida, 1993 ). However, adding the safety margin in these ways may violate first-order stochastic dominance, and it generally

cannot be separated by links, which makes the model hard to solve. We refer interested readers to the review papers of

Noland and Polak (2002) and Connors and Sumalee (2009) . We would like to distinguish our work with stochastic NE (see

for instance, Sheffi, 1985 ). Stochastic NE model captures the variations in travelers’ perception on the travel time but still

assumes that the travel time is deterministic. 

The assumption that travelers know the exact frequency of travel time outcomes is unrealistic. In a real world, it is

conceivable that a traveler is incapable of knowing the entire probability distributions of the transportation network. Major

exceptional events (e.g., natural disasters) and minor regular events (e.g., minor accident, traffic signal) will incur uncertainty

to travel time. Hence, complete distribution of travel time is seldom known exactly, and even the estimated one could be

considerably affected by the sampling procedure. If the actual travel time probability distribution is not fully known, then

it would be impossible to establish the preferences for travel times based on the expected disutility criterion. In fact, the

distinction between risk, where outcome frequency is known, and ambiguity, where it is not, can be retrospected to Knight

(1921) , and has been extensively studied in economics (see for instance Camerer and Weber, 1992; Gilboa et al., 2008;

Mukerji and Tallon, 2004; Wakker, 2008 ), finance (see for instance Bossaerts et al., 2010; Chen and Epstein, 2002; Dow

and Werlang, 1992; Epstein and Schneider, 2008; Guidolin and Rinaldi, 2013 ), and marketing (see for instance Erdem and

Swait, 2007; Muthukrishnan et al., 2009 ). Ellsberg (1961) shows convincingly by means of paradoxes that ambiguity prefer-

ence cannot be reconciled by classical expected utility theory. Inspired by this seminal work, numerous experimental and

theoretical studies spring up to verify and accommodate this behavior issue. Notably, in Hsu et al. (2005) ground-breaking

experiments, economists and neuroscientists collaborate to establish significant physiological evidence via functional brain

imaging that humans have varying and distinct attitudes towards risk and ambiguity. The results also indicate that people’s

attitudes towards risk and ambiguity are not fully correlated, i.e., there exists a population of people that are ambiguity

averse and risk-seeking, or ambiguity seeking and risk-averse. 

From the normative perspective, ambiguity is also an active area of research within the domains of decision theory and

operations research. Gilboa and Schmeidler (1989) consider ambiguity as a set of possible probability distributions, and

present the Max-min Expected Utility (MEU) model, which appeals to ambiguity averse decision makers. To accommodate

the heterogeneity of ambiguity and risk attitudes found in experiments, Ghirardato et al. (2004) , based on Hurwicz criterion

( Arrow and Hurwicz, 1972; Hurwicz, 1951 ), axiomatize the α−MEU model, which represents a compromise via a convex

combination of the worst and best case expected utility. The parameter α is an index of pessimism or optimism. However,

the discussion on travel time ambiguity is relatively new. Yu and Yang (1998) propose a worst-case shortest path problem

over a set of discrete scenarios, which results in an NP -hard problem. Bertsimas and Sim (2003) introduce the “budget of

uncertainty” in characterizing uncertain travel time and show that the worst-case shortest path problem is a tractable op-

timization problem. Ordóñes and Stier-Moses (2010) extend the work to address an NE problem. They generally consider

three cases of equilibrium with uncertain travel times: α-percentile equilibrium, added-variability equilibrium, and robust

Wardrop equilibrium. The α-percentile equilibrium assumes travelers minimize the α quantile (or Value-at-Risk) of their

experienced travel times, which are generally computationally intractable optimization problems. Added-variability equilib-

rium provides a safety margin to the expected travel time as a proxy to account for risk-averse behavior, an approach that

may not be coherent with decision analysis such as violating first order stochastic dominance. Robust Wardrop equilibrium

borrows the idea of Bertsimas and Sim (2003) , and assumes that ambiguity averse travelers minimize the worst-case travel

time given that the total variation is bounded by a certain parameter. However, the assumptions that the entire population

of travelers are only ambiguity averse and not risk sensitive limit the application of this model. 

In contrast to the aforementioned works that consider risk and ambiguity separately, our main contribution is to explic-

itly distinguish between risk and ambiguity in a unified framework in articulating travelers’ preferences for travel times. We

present a new criterion named ambiguity-aware CARA travel time (ACT) for evaluating uncertain travel times for travelers

with various attitudes of risk and ambiguity. Apart from the behavioral relevance of the ACT, we also present a compu-

tational justification by showing that when the uncertain link travel times are independently distributed, finding the path

that minimizes travel time under the ACT criterion is essentially a shortest path problem. We also study the implications

on NE problem, in which travelers minimize their own travel times under the ACT criterion, and no traveler can improve

his/her travel time under the ACT by unilaterally changing routes. Our new NE model under the ACT criterion shares similar

properties with deterministic multi-class NE model, and can be solved by the traditional Frank–Wolfe algorithm. We also
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examine the inefficiency of this NE model compared with System Optimum (SO), which minimizes the aggregate travel time

under the ACT criterion of all travelers, by deriving its Price of Anarchy. The computational study suggests that as uncer-

tainty increases, the influence of selfishness on inefficiency diminishes. Moreover, when uncertainty is neglected in traffic

equilibrium analysis, the social optimum solution may become more inefficient than the solution under selfish routing. 

The remainder of this paper is organized as follows. In Section 2 , we formally define the ACT criterion and its properties.

In Section 3 , we investigate a path selection problem under the ACT criterion. In Section 4 , we extend to the study of

the NE problem under the ACT criterion and discuss its computational solvability when the uncertain link travel time is

independent with each other. We also analyze the corresponding NE inefficiency by calculating its Price of Anarchy. Finally,

in Section 5 , we make our conclusions and some suggestions for future research. 

Notations. We use boldface, e.g., x to represent a vector. We use tilde ( ̃  ) sign to denote uncertain quantities, for example
˜ t denotes uncertain travel time. We model uncertainty ˜ t by a state-space � and a σ−algebra of events in �. We use V to 

represent the set of all real-valued random variables. ˜ x ≥ ˜ y denotes state-wise dominance, i.e., x ( ω) ≥ y ( ω) for all ω ∈ �.

To model ambiguity, ˜ t ’s true distribution P is not necessarily specified but is known to lie in a distributional uncertainty

set F , i.e., P ∈ F . Correspondingly, known distribution case is only a special case, in which F = { P } . We denote by E P 
(

˜ t 
)

the

expectation of ˜ t under the probability distribution P . 

2. Preferences for travel time under risk and ambiguity 

In the empirical study of De Palma and Picard (2005) , they conclude that exponential disutility function, which is the

unique disutility function that appeals to travelers with Constant Absolute Risk Aversion (CARA), aptly characterizes travelers’

preferences for travel times under risk. Besides, Cheu and Kreinovich (2007) also verify that exponential disutility function

is the only function that is consistent with common sense and could simplify the model. Hence, we first introduce the

exponential disutility function in the following form, 

u (x ) = 

{ 

1 

λ
exp (λx ) , when λ � = 0 , 

ax + b, when λ = 0 , 

in which a ∈ � + and the parameter λ ∈ � is known as the coefficient of absolute risk aversion. The corresponding certainty

equivalent of ˜ t , CE λ( ̃ t ) : V → � is defined as 

u 

(
CE λ

(
˜ t 
))

= E P 

(
u 

(
˜ t 
))

. 

The concept of certainty equivalent CE λ( ̃ t ) is popularized in economic literature (see for instance, Chapter 6 in Mas-Colell

et al., 1995 ), and represents a fixed interval of travel time that the traveler with risk tolerance parameter λ will view equally

acceptable as the uncertain travel time ˜ t under disutility function u ( ·). When u ( ·) is exponential disutility function, we have 

CE λ
(

˜ t 
)

= 

{ 

1 

λ
ln E P 

(
exp 

(
λ˜ t 
))

, when λ � = 0 , 

E P 

(
˜ t 
)
, when λ = 0 . 

Parameter λ specifies the traveler’s risk attitude. If λ > 0, he/she is risk-averse and evaluates an uncertain travel time longer

than its average. In contrast, a traveler with risk-seeking attitude has λ < 0 and perceives the uncertain travel time shorter

than its average. At neutrality ( λ = 0 ), the traveler is indifferent between the uncertain travel time and its mean. When

travel time is deterministic, we have CE λ( constant ) = constant for all λ ∈ � . When travel time follows certain probability

distribution, function CE λ( ̃ t ) can be derived through calculating the moment generating function of random variable ˜ t . For

example, if ˜ t is normally distributed N ( μ, σ 2 ), we have E P 
(
exp 

(
λ˜ t 
))

= exp 

(
λμ + 

1 
2 σ

2 λ2 
)
, and certainty equivalent CE λ( ̃ t )

is 

CE λ
(

˜ t 
)

= μ + 

1 

2 

λσ 2 , 

which is consistent with mean-variance measure ( Markowitz, 1959 ) of uncertain travel time ˜ t . Note that CE λ
(

˜ t 
)

is different

from the mean-variance measure when 

˜ t follows other kinds of distributions. Moreover, the nice thing about CE λ
(

˜ t 
)

is it pre-

serves first-order stochastic dominance (see for instance Föllmer and Schied, 2011 ), which is violated by the mean-variance

measure. Take two paths as an example, one with travel time equal to 1 or 2 with 0.5 probabilities and the other with

travel time equal to 3 (with certainty). Though the first path stochastically dominates the second, mean-variance measure

would favor the second path for an extremely risk-averse traveler, while the CARA model always supports the first path, as

the certainty equivalent of the first is always less than that of the second. 

If the actual travel time probability distribution is not fully known, then it would be impossible to establish preferences

for travel times based on the expected disutility criterion. The CARA model could not reveal travelers’ preferences when

facing ambiguity. We study the preference for uncertain travel times in which the traveler is oblivious to the true probability

distribution P but knows the distributional uncertainty set F , which can be characterized by certain descriptive statistics.

The “size” of the set F indicates the level of ambiguity perceived by the traveler. For instance, the distributional uncertainty
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set perceived by an informed traveler may be a subset of that perceived by a clueless traveler. To evaluate an ambiguity

preference, the Hurwicz criterion ( Arrow and Hurwicz, 1972; Hurwicz, 1951 ) represents a compromise between the worst-

case and the best-case evaluation of travel time under distributional ambiguity as follows: 

H α

(
˜ t 
)

= α sup 

P ∈ F 
E P 

(
˜ t 
)

+ (1 − α) inf 
P ∈ F 

E P 

(
˜ t 
)
, 

where the parameter α ∈ [0, 1] indicates the level of optimism, with α = 0 being the most optimistic and α = 1 being the

most pessimistic. 

2.1. Ambiguity-aware CARA travel time (ACT) 

Instead of considering risk and ambiguity separately, we explicitly distinguish between them in a unified framework for

articulating travelers’ preferences for travel times. We propose the ambiguity-aware CARA travel time (ACT) criterion for

evaluating an uncertain travel time under various attitudes of risk and ambiguity, which is based on blending Hurwicz and

Constant Absolute Risk Aversion (CARA) criteria. 

The traveler has a distributional uncertainty set F to characterize the uncertain travel time. Similar to the Hurwicz cri-

terion, his/her attitude towards ambiguity is described by parameter α ∈ [0, 1] and risk attitude under CARA is given by

parameter λ ∈ � . Accordingly, we identify the traveler under the ACT by V = (α, λ, F ) . 

Definition 1. The ambiguity-aware CARA travel time ACT V 
(

˜ t 
)

: V → � specified by the traveler with parameter V = (α, λ, F )

is 

ACT V 
(

˜ t 
)

= 

⎧ ⎨ 

⎩ 

α sup 

P ∈ F 

1 

λ
ln E P 

(
exp 

(
λ˜ t 
))

+ (1 − α) inf 
P ∈ F 

1 

λ
ln E P 

(
exp 

(
λ˜ t 
))

, when λ � = 0 , 

α sup 

P ∈ F 
E P 

(
˜ t 
)

+ (1 − α) inf 
P ∈ F 

E P 

(
˜ t 
)
, when λ = 0 . 

Observing that if the probability distribution is known, i.e., F = { P } , we have 

ACT V 
(

˜ t 
)

= ACT (α,λ, P ) 

(
˜ t 
)

= 

{ 

α
1 

λ
ln E P 

(
exp 

(
λ˜ t 
))

+ (1 − α) 
1 

λ
ln E P 

(
exp 

(
λ˜ t 
))

, when λ � = 0 , 

αE P ( ̃ t ) + (1 − α)E P ( ̃ t ) , when λ = 0 . 

= CE λ
(

˜ t 
)
. 

Hence, the ACT criterion is a generalization of certainty equivalent function under CARA. To quantitatively characterize trav-

elers’ attitudes towards risk and ambiguity, economists have summarized the procedure to sought these two parameters α, λ
in experimental studies (see for instance Wakker, 2010 §11.7; Abdellaoui et al., 2011 ). We believe this could shed some light

on the future empirical studies on travelers’ preferences. Next, we provide some useful properties of the ACT criterion. For

any given distributional uncertainty set F , we first define the corresponding bound as t F = inf { t ∈ �| P ( ̃ t ≤ t) = 1 , ∀ P ∈ F }
and t 

F 
= sup { t ∈ �| P ( ̃ t ≥ t) = 1 , ∀ P ∈ F } . 

Proposition 1. 

(a) ACT V 
(

˜ t 
)

is nondecreasing in λ ∈ � and α ∈ [0, 1], and 

lim 

λ→∞ 

ACT ( 1 ,λ, F ) 

(
˜ t 
)

= t F , lim 

λ→−∞ 

ACT ( 0 ,λ, F ) 

(
˜ t 
)

= t 
F 
. 

(b) For any ˜ x , ̃  y ∈ V, if ˜ x ≥ ˜ y , we have ACT V ( ̃  x ) ≥ ACT V ( ̃  y ) ; 

(c) Suppose ˜ t 1 , . . . , ̃  t J are independent random variables, and t 0 ∈ � . Then 

ACT V 

( 

t 0 + 

J ∑ 

j=1 

˜ t j 

) 

= t 0 + 

J ∑ 

j=1 

ACT V 
(

˜ t j 
)
. 

Proof. (a) Note that ACT V 
(

˜ t 
)

being nondecreasing in α follows directly from sup P ∈ F 1 
λ

ln E P 
(
exp 

(
λ˜ t 
))

≥
inf P ∈ F 1 

λ
ln E P 

(
exp 

(
λ˜ t 
))

and sup P ∈ F E P 
(

˜ t 
)

≥ inf P ∈ F E P 
(

˜ t 
)
. Based on Jensen’s inequality, for any λ1 ≤ λ2 < 0 or 0 < λ1

≤ λ2 , we can get 

1 

λ2 

ln E P 

(
exp 

(
λ2 ̃  t 

))
= 

1 

λ2 

ln E P 

((
exp 

(
λ1 ̃  t 

))λ2 /λ1 

)
≥ 1 

λ2 

λ2 

λ1 

ln E P 

(
exp 

(
λ1 ̃  t 

))
= 

1 

λ1 

ln E P 

(
exp 

(
λ1 ̃  t 

))
. 

When λ1 < 0 < λ2 , we have 

1 

λ2 

ln E P 

(
exp 

(
λ2 ̃  t 

))
≥ 1 

λ2 

ln exp 

(
E P 

(
λ2 ̃  t 

))
= E P 

(
˜ t 
)

≥ 1 

λ1 

ln E P 

(
exp 

(
λ1 ̃  t 

))
. 
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Therefore, for any λ1 ≤ λ2 , 

ACT (α,λ2 , F ) 

(
˜ t 
)

= α sup 

P ∈ F 

1 

λ2 

ln E P 

(
exp 

(
λ2 ̃  t 

))
+ (1 − α) inf 

P ∈ F 
1 

λ2 

ln E P 

(
exp 

(
λ2 ̃  t 

))
≥ α sup 

P ∈ F 

1 

λ1 

ln E P 

(
exp 

(
λ1 ̃  t 

))
+ (1 − α) inf 

P ∈ F 
1 

λ1 

ln E P 

(
exp 

(
λ1 ̃  t 

))
= ACT (α,λ1 , F ) 

(
˜ t 
)
. 

Equivalently, ACT V 
(

˜ t 
)

is nondecreasing in λ. 

When α = 1 , the traveler is most pessimistic towards ambiguity, then 

ACT (1 ,λ, F ) 

(
˜ t 
)

= 

⎧ ⎨ 

⎩ 

sup 

P ∈ F 

1 

λ
ln E P 

(
exp 

(
λ˜ t 
))

, when λ � = 0 , 

sup 

P ∈ F 
E P 

(
˜ t 
)
, when λ = 0 . 

We have for any P ∈ F and λ ∈ � \ {0}, 

1 

λ
ln E P 

(
exp 

(
λ˜ t 
))

≤ 1 

λ
ln 

(
exp 

(
λt F 

))
= t F . 

Therefore, 

lim 

λ→∞ 

ACT (1 ,λ, F ) 

(
˜ t 
)

≤ t F . 

Moreover, according to the definition of t F , for any ε > 0, ∃ P ∈ F such that P 

(
˜ t ∈ 

[
t F − ε, t F 

])
> 0 , we have 

lim 

λ→∞ 

1 

λ
ln E P 

(
exp 

(
λ˜ t 
))

= lim 

λ→∞ 

1 

λ
ln E P 

(
exp 

(
λt F 

)
exp 

(
λ
(

˜ t − t F 
)))

= t F + lim 

λ→∞ 

1 

λ
ln E P 

(
exp 

(
λ
(

˜ t − t F 
)))

≥ t + lim 

λ→∞ 

1 

λ
ln 

(
exp 

(
λ
(
t F − ε − t F 

))
P 

(
˜ t ∈ 

[
t F − ε, t F 

]))
= t F + lim 

λ→∞ 

1 

λ
ln ( exp (−λε) ) + lim 

λ→∞ 

1 

λ
ln 

(
P 

(
˜ t ∈ 

[
t F − ε, t F 

]))
= t F − ε, 

which means, 

lim 

λ→∞ 

sup 

P ∈ F 

1 

λ
ln E P 

(
exp 

(
λ˜ t 
))

≥ lim 

λ→∞ 

1 

λ
ln E P 

(
exp 

(
λ˜ t 
))

≥ t F − ε ∀ ε > 0 . 

Combining these two inequalities together, we have 

lim 

λ→∞ 

ACT (1 ,λ, F ) 

(
˜ t 
)

= t F . 

Similarly, we can modify the above proof to show that 

lim 

λ→−∞ 

ACT (0 ,λ, F ) 

(
˜ t 
)

= t 
F 
. 

(b) If ˜ x ≥ ˜ y i.e., x ( ω) ≥ y ( ω) for all ω ∈ �, we have when λ = 0 , 

ACT V ( ̃  x ) = α sup 

P ∈ F 
E P ( ̃  x ) + (1 − α) inf 

P ∈ F 
E P ( ̃  x ) ≥ α sup 

P ∈ F 
E P ( ̃  y ) + (1 − α) sup 

P ∈ F 
E P ( ̃  y ) = ACT V ( ̃  y ) . 

When λ � = 0, noting that 1 
λ

ln E P ( exp (λ ˜ x )) ≥ 1 
λ

ln E P ( exp (λ ˜ y )) for all P ∈ F , we have 

ACT V ( ̃  x ) = α sup 

P ∈ F 

1 

λ
ln E P ( exp ( λ ˜ x ) ) + (1 − α) inf 

P ∈ F 
1 

λ
ln E P ( exp ( λ ˜ x ) ) 

≥ α sup 

P ∈ F 

1 

λ
ln E P ( exp ( λ ˜ y ) ) + (1 − α) inf 

P ∈ F 
1 

λ
ln E P ( exp ( λ ˜ y ) ) 

= ACT V ( ̃  y ) . 

(c) Since random variables ˜ t 1 , . . . , ̃  t J are independently distributed, we define the true probability distribution of the random

variable ˜ t j as P 

j which belongs to the distributional uncertainty set as F 

j for all j = 1 , . . . , J. We let ˆ P = P 

1 × . . . × P 

J and
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Fig. 1. A simple network with uncertain travel time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ F = F 

1 × . . . × F 

J represent the joint probability distribution of ˜ t 1 , . . . , ̃  t J and its corresponding distributional uncertainty set,

respectively. Hence, we get 

ACT V 

( 

t 0 + 

J ∑ 

j=1 

˜ t j 

) 

= α sup 

ˆ P ∈ ̂ F 

1 

λ
ln E ˆ P 

( 

exp 

( 

λ

( 

t 0 + 

J ∑ 

j=1 

˜ t j 

) ) ) 

+ (1 − α) inf 
ˆ P ∈ ̂ F 

1 

λ
ln E ˆ P 

( 

exp 

( 

λ

( 

t 0 + 

J ∑ 

j=1 

˜ t j 

) ) ) 

= αt 0 + α sup 

P 1 ∈ F 1 
. . . sup 

P J ∈ F J 
1 

λ
ln 

( 

J ∏ 

j=1 

E 

P j 

(
exp 

(
λ˜ t j 

))) 

+ (1 − α) t 0 

+ (1 − α) inf 
P 1 ∈ F 1 

. . . inf 
P J ∈ F J 

1 

λ
ln 

( 

J ∏ 

j=1 

E 

P j 

(
exp 

(
λ˜ t j 

))) 

= t 0 + α sup 

P 1 ∈ F 1 
. . . sup 

P J ∈ F J 
1 

λ

( 

J ∑ 

j=1 

ln E 

P j 

(
exp (λ˜ t j ) 

)) 

+ (1 − α) inf 
P 1 ∈ F 1 

. . . inf 
P J ∈ F J 

1 

λ

( 

J ∑ 

j=1 

ln E 

P j 

(
exp (λ˜ t j ) 

)) 

= t 0 + α
1 

λ

( 

J ∑ 

j=1 

sup 

P j ∈ F j 
ln E 

P j 

(
exp (λ˜ t j ) 

)) 

+ (1 − α) 
1 

λ

( 

J ∑ 

j=1 

inf 
P j ∈ F j 

ln E 

P j 

(
exp (λ˜ t j ) 

)) 

= t 0 + 

J ∑ 

j=1 

(
α sup 

P j ∈ F j 
1 

λ
ln E 

P j 

(
exp (λ˜ t j ) 

)
+ (1 − α) inf 

P j ∈ F j 
1 

λ
ln E 

P j 

(
exp (λ˜ t j ) 

))

= t 0 + 

J ∑ 

j=1 

ACT V 
(

˜ t j 
)

The second and fourth equalities hold since random varaibles ˜ t 1 , . . . , ̃  t J are independently distributed. �

Remark 1. Property (a) is a trivial statement, it indicates that when a traveler is more risk-averse or ambiguity averse

than the others, he/she perceives the uncertain travel time longer than the others’ perception. The extreme cases occur

when λ = ∞ , α = 1 and λ = −∞ , α = 0 , respectively. When a traveler is extremely risk-averse and ambiguity averse, he/she

pessimistically regards the uncertain travel time from the worst-case perspective, and the corresponding ACT V ( ̃ t ) takes the

largest possible value. Property (b) captures traveler’s essential preference for a shorter travel time. His/her perceived travel

time becomes longer when the travel time increases. Property (c) suggests that ACT V ( ·) is additive for independent random

variables. This property is quite helpful for modeling, since ACT V ( ·) along a path could be easily separated by links. 

Next, we will provide an example to illustrate travelers’ preferences for travel times under the ACT criterion. Fig. 1 shows

three paths from the origin O to the destination D. Travel time on path A is deterministic, 1.5 h; travel time on path B is

stochastic and the duration is 1 h or 2 h with equal probability; travel time on path C is uncertain, and bounded by 1 h and

2 h. We present in Table 1 the path preferences induced by the ACT criterion under various attitudes and degrees of risk

and ambiguity. 

When a traveler is extremely risk-averse and pessimistic towards ambiguity ( λ → ∞ , α = 1 ) as property (a) described,

he/she will perceive the uncertain travel time as taking the longest duration. Hence, path A is preferred as it has the smallest

ACT . On the other hand, when the traveler is radically risk-seeking and optimistic towards ambiguity ( λ → −∞ , α = 0 ), then

path A would be least preferred. At risk neutrality, both paths A and B are equally preferred and the preference for path C
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Table 1 

Preferences for travel times under the ACT criterion. 

Risk attitude Ambiguity attitude ACT V 
(

˜ t A 
)

ACT V 
(

˜ t B 
)

ACT V 
(

˜ t C 
)

Preferences 

λ α

∞ 1 1 .5 2 2 A � B ∼ C 

0 1 1 .5 1 .5 2 A ∼ B � C 

0 0 1 .5 1 .5 1 C � A ∼ B 

−∞ 0 1 .5 1 1 B ∼ C � A 

 

 

 

 

 

 

 

depends on the traveler’s attitude towards ambiguity. For instance, if he/she is optimistic towards ambiguity, then path C

will be preferred over paths A and B. 

2.2. Two simple uncertainty models for travel time 

If the probability distribution of an uncertain travel time ˜ t is completely known, there exists no ambiguity, and ACT V ( ̃ t )

reduces to CE λ( ̃ t ) , which can be calculated directly. When the probability distribution is not fully available, the characteri-

zation of uncertain travel time can be in various ways depending on the available information. We then propose two simple

models for characterizing the uncertain travel time and provide analytical forms of the ACT criterion. 

Uncertainty model I 

Driven by pragmatism, the traveler may have a simple description of the uncertain travel time by providing the ranges

in which travel time and average travel time would fall within. Specifically, the travel time takes values in [ t , t ] , 0 < t ≤ t 

and the average travel time falls within the range [ μ, μ] ⊆ [ t , t ] . Hence, the distributional uncertainty set F of the uncertain

travel time ˜ t is given by 

F = 

{
P 

∣∣E P 

(
˜ t 
)

∈ 

[
μ, μ

]
, P 

(
˜ t ∈ 

[
t , t 

])
= 1 

}
. (1) 

Proposition 2. Given a distributional uncertainty set F described by (1) , the uncertain travel time under the ACT criterion is 

ACT V 
(

˜ t 
)

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

α

λ
ln 

( (
t − μ

)
exp ( λt ) + ( μ − t ) exp 

(
λt 
)

t − t 

) 

+ (1 − α) μ, when λ > 0 , 

αμ + 

1 − α

λ
ln 

( (
t − μ

)
exp ( λt ) + 

(
μ − t 

)
exp 

(
λt 
)

t − t 

) 

, when λ < 0 , 

αμ + (1 − α) μ, when λ = 0 . 

Moreover, 

lim 

λ→∞ 

ACT V 
(

˜ t 
)

= αt + (1 − α) μ, 

lim 

λ→−∞ 

ACT V 
(

˜ t 
)

= (1 − α) t + αμ. 

Proof. We first provide the analytical expressions for sup P ∈ F E P 
(
exp 

(
λ˜ t 
))

and inf P ∈ F E P 
(
exp 

(
λ˜ t 
))

. According to Proposition

3 in Brown et al. (2012) , 

sup 

P ∈ F 
E P 

(
exp 

(
λ˜ t 
))

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

(
t − μ

)
exp ( λt ) + ( μ − t ) exp 

(
λt 
)

t − t 
, when λ > 0 , (

t − μ
)

exp ( λt ) + 

(
μ − t 

)
exp 

(
λt 
)

t − t 
, when λ < 0 . 

To determine inf P ∈ F E P 
(
exp 

(
λ˜ t 
))

, we note that by Jensen’s inequality, 

E P 

(
exp 

(
λ˜ t 
))

≥ exp 

(
E P 

(
λ˜ t 
))

= exp 

(
λE P 

(
˜ t 
))

, 

consequently, 

inf 
P ∈ F 

E P 

(
exp 

(
λ˜ t 
))

≥
{

exp 

(
λμ

)
, when λ > 0 , 

exp ( λμ) , when λ < 0 . 

Equality holds when 

˜ t is deterministic, {
P 

(
˜ t = μ

)
= 1 , when λ > 0 ;

P 

(
˜ t = μ

)
= 1 , when λ < 0 . 
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Table 2 

Path preferences under ACT. 

Risk attitude λ Ambiguity attitude α Preferences 

[0, ∞ ) [ f ( λ), 1] a A � B � C 

[0, ∞ ) 
[

1 
2 
, f (λ) 

]
A � C � B 

[0, ∞ ) 
[
0 , 1 

2 

]
C � A � B 

(−∞ , 0] 
[

1 
2 
, 1 
]

B � A � C 

(−∞ , 0] 
[
g(λ) , 1 

2 

]
b B � C � A 

(−∞ , 0] [0, g ( λ)] C � B � A 

a f (λ) = 

λ
3 λ+2 ln 2 −2 ln ( 1+ exp (λ) ) 

; 

b g(λ) = 

2 ln ( 1+ exp (λ) ) −2 ln 2 
λ+2 ln ( 1+ exp (λ) ) −2 ln 2 

. 

 

 

 

 

Note that this distribution also belongs to the distributional uncertainty set F , and ACT V 
(

˜ t 
)

can be accordingly calculated.

Based on L’H ̂ o pital’s rule, when λ > 0, 

lim 

λ→∞ 

ACT V 
(

˜ t 
)

= lim 

λ→∞ 

( 

α

λ
ln 

( (
t − μ

)
exp ( λt ) + ( μ − t ) exp 

(
λt 
)

t − t 

) 

+ (1 − α) μ

) 

= lim 

λ→∞ 

( 

α

λ
ln 

( (
t − μ

)
exp ( λt ) + ( μ − t ) exp 

(
λt 
)

t − t 

) ) 

+ (1 − α) μ

= α lim 

λ→∞ 

( (
t − μ

)
exp ( λt ) t + ( μ − t ) exp 

(
λt 
)
t (

t − μ
)

exp ( λt ) + ( μ − t ) exp 

(
λt 
)
) 

+ (1 − α) μ

= α lim 

λ→∞ 

( (
t − μ

)
exp 

(
λ( t − t ) 

)
t + ( μ − t ) t (

t − μ
)

exp 

(
λ( t − t ) 

)
+ ( μ − t ) 

) 

+ (1 − α) μ

= αt + (1 − α) μ. 

Likewise, the result could extend to 

lim 

λ→−∞ 

ACT V 
(

˜ t 
)

= (1 − α) t + αμ. 

�

We further analyze paths preferences on the simple network depicted in Fig. 1 as an example. 

Example: In Fig. 1 , travel times on path A and C remain unchanged. As for path B, we now assume that the travel

time is within 1 h to 2 h, and the mean travel time is exactly 1.5 h. Given the above information of three paths, travelers’

preferences ranked by the ACT criterion are summarized in Table 2 . 

To show the results in Table 2 , from Proposition 2 , we calculate the travel time under the ACT criterion for each of the

three paths. The information is specified as follows: 

t A = 1 . 5 , t A = 1 . 5 μ
A 

= 1 . 5 , μA = 1 . 5 , 

t B = 1 , t B = 2 , μ
B 

= 1 . 5 , μB = 1 . 5 , 

t C = 1 , t C = 2 , μ
C 

= 1 , μC = 2 . 

Therefore, the ACT can be calculated correspondingly, 

ACT V (t A ) = 

3 

2 

;

ACT V 
(

˜ t B 
)

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

α

λ
ln 

(
1 

2 

exp (λ) + 

1 

2 

exp (2 λ) 
)

+ 

3 

2 

(1 − α) , when λ > 0 , 

3 

2 

α + 

1 − α

λ
ln 

(
1 

2 

exp (λ) + 

1 

2 

exp (2 λ) 
)
, when λ < 0 , 

3 

α + 

3 

(1 − α) , when λ = 0 ;

2 2 
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Fig. 2. Path preferences under different attitudes towards risk and ambiguity. 

 

 

 

 

 

 

 

 

ACT V 
(

˜ t C 
)

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

α

λ
ln ( exp (2 λ) ) + (1 − α) , when λ > 0 , 

2 α + 

1 − α

λ
ln ( exp (λ) ) , when λ < 0 , 

2 α + (1 − α) , when λ = 0 

= 1 + α. 

Since the travel time under the ACT criterion is nondecreasing in both λ and α, the preference relationships between paths

A and B, and between paths A and C can be readily established. When λ ≥ 0, we have A � B . Likewise, when 1 ≥ α ≥ 1 
2 ,

then A � C . Hence, we focus on the preferences between paths B and C. 

ACT V 
(

˜ t B 
)

≥ ACT V 
(

˜ t C 
)

implies ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

α

λ
ln 

(
1 

2 

exp (λ) + 

1 

2 

exp (2 λ) 
)

+ 

3 

2 

(1 − α) ≥ 1 + α, when λ > 0 , 

3 

2 

α + 

1 − α

λ
ln 

(
1 

2 

exp (λ) + 

1 

2 

exp (2 λ) 
)

≥ 1 + α, when λ < 0 , 

3 

2 

≥ 1 + α, when λ = 0 . 

Equivalently, path C is preferred to path B when ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

α ≤ f (λ) = 

1 
2 

3 
2 

− 1 
λ

ln 

(
1 
2 

+ 

1 
2 

exp (λ) 
) = 

λ

3 λ + 2 ln 2 − 2 ln ( 1 + exp (λ) ) 
, when λ > 0 , 

α ≤ g(λ) = 

1 
λ

ln 

(
1 
2 

+ 

1 
2 

exp (λ) 
)

1 
2 

+ 

1 
λ

ln 

(
1 
2 

+ 

1 
2 

exp (λ) 
) = 

2 ln ( 1 + exp (λ) ) − 2 ln 2 

λ + 2 ln ( 1 + exp (λ) ) − 2 ln 2 

, when λ < 0 . 

The preferences expressed by travelers with varied λ and α are depicted in Fig. 2 . When the traveler is risk-averse ( λ >

0), he/she prefers path A over path B , and the converse is true when the traveler is risk-seeking. With α decreases from 1

to 0, the traveler’s attitude towards ambiguity shifts from being pessimistic to optimistic, in which case, path C, which has

complete ambiguity, will become more favorable. This example may suggest a way to empirically identify travelers’ attitudes

towards risk and ambiguity by providing travelers with different choice scenarios. 

Uncertainty model II 

In practice, the uncertain travel time only takes a set of discrete values. Next, we present a general model for this discrete

case where the uncertain travel time has finite realizations, for example, t , . . . , t , and more statistics on the moment are
1 M 
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available, i.e., the distributional uncertainty set F is given by 

F = 

{
P 

∣∣E P 

(
˜ t l k 
)

∈ 

[
μ

k 
, μk 

]
, k = 1 , . . . , K, P 

(
˜ t ∈ { t 1 , . . . , t M 

} ) = 1 

}
, (2)

where l k ∈ Z + , k = 1 , . . . , K. 

Proposition 3. If the distributional uncertainty set F is described by (2) , the uncertain travel time under the ACT criterion can

be derived by solving two linear optimization problems, 

ACT V ( ̃ t ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

α
1 

λ
ln 

(
sup 

P ∈ F 
E P 

(
exp (λ˜ t ) 

))
+ (1 − α) 

1 

λ
ln 

(
inf 
P ∈ F 

E P 

(
exp (λ˜ t 

))
, when λ > 0 , 

(1 − α) 
1 

λ
ln 

(
sup 

P ∈ F 
E P 

(
exp (λ˜ t ) 

))
+ α

1 

λ
ln 

(
inf 
P ∈ F 

E P 

(
exp (λ˜ t 

))
, when λ < 0 , 

αμ1 + (1 − α) μ
1 
, when λ = 0 . 

where 

sup 

P ∈ F 
E P 

(
exp 

(
λ˜ t 
))

= max 
(p 1 , ... ,p M ) ∈P 

M ∑ 

m =1 

p m 

exp (λt m 

) 

inf 
P ∈ F 

E P 

(
exp 

(
λ˜ t 
))

= min 

(p 1 , ... ,p M ) ∈P 

M ∑ 

m =1 

p m 

exp (λt m 

) 

and 

P = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(p 1 , . . . , p M 

) 

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M ∑ 

m =1 

p m 

t 
l k 
m 

≤ μk , k = 1 , . . . , K, 

M ∑ 

m =1 

p m 

t 
l k 
m 

≥ μ
k 
, k = 1 , . . . , K, 

M ∑ 

m =1 

p m 

= 1 , 

p m 

≥ 0 , m = 1 , . . . , M. 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

. 

Proof. The proof for this proposition is rather straight forward. �

3. Path selection under the ACT criterion 

In this section, we study the problem of selecting the path that minimizes the ACT criterion when the link travel times

on the network are uncertain. We consider a directed network G = ( N , A ) and let R be the set of all admissible paths,

which are sets of links connecting the origin node to the destination node. The uncertain travel time along the link a ∈ A is

denoted by ˜ t a . 

The deterministic version of this path selection problem or shortest path problem is well known to be polynomial time

solvable. When the travel times are uncertain, the path selection problem that minimizes the travel time under the ACT

criterion is given by 

min 

r∈R 

ACT V 

(∑ 

a ∈ r 
˜ t a 

)
. (3)

In Proposition 4 below, we show that the solvability of Problem (3) depends on whether the uncertain link travel times are

correlated. 

Proposition 4. 

(a) If the uncertain link travel times are independently distributed, then Problem (3) is a shortest path problem on the same

network in which the link travel time on a ∈ A is given by ACT V 
(

˜ t a 
)
. 

(b) If the uncertain link travel times are correlated, then the recognition version of Problem (3) is NP-complete. 

Proof. (a) According to Proposition 1 , if the link travel times are independently distributed, the objective function in Prob-

lem (3) can be written additively as 

ACT V 

(∑ 

a ∈ r 
˜ t a 

)
= 

∑ 

a ∈ r 
ACT V 

(
˜ t a 
)
. 
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In this case, we can regard the travel time under the ACT criterion along each link as the deterministic link travel time, and

polynomially solve it by the shortest path algorithm. 

(b) We will prove its NP-complete by reduction from the following problem, which is proved to be NP-complete by Yu

and Yang (1998) : 

min 

r∈R 

max 

{∑ 

a ∈ r 
t 1 a , 

∑ 

a ∈ r 
t 2 a 

}
, (4) 

where t 1 a and t 2 a are two travel time scenarios on link a ∈ A . 

We construct an instance of Problem (3) , in which the uncertain travel time on link a is 

˜ t a = 

1 

2 

(
t 1 a + t 2 a 

)
+ 

1 

2 

(
t 1 a − t 2 a 

)
˜ z , ∀ a ∈ A , 

that is, the travel times of all the links are influenced by a common random variable ˜ z , which we assume is +1 or −1 with

equal probability. Hence, for an extremely risk-averse and pessimistic towards ambiguity traveler ( λ → ∞ , α = 1 ), finding a

path with minimum travel time under the ACT criterion from the origin node to the destination node can be written as 

min 

r∈R 

lim 

λ→∞ 

sup 

P ∈ F 

1 

λ
ln E P 

(
exp 

(
λ
∑ 

a ∈ r 

(
1 

2 

(
t 1 a + t 2 a 

)
+ 

1 

2 

(
t 1 a − t 2 a 

)
˜ z 

)))
. 

According to Proposition 1 , it can be simplified further as 

min 

r∈R 

∑ 

a ∈ r 

1 

2 

(
t 1 a + t 2 a 

)
+ max 

{∑ 

a ∈ r 

1 

2 

(
t 1 a − t 2 a 

)
, 
∑ 

a ∈ r 

1 

2 

(
t 2 a − t 1 a 

)}
, 

which could be equivalently written as Problem (4) . Thus, Problem (3) is NP-complete. �

Proposition 4 shows that when the link travel times are independently distributed, we can easily find the optimal path

under the ACT criterion, which accounts for both risk and ambiguity. The result, though simple, shows that the ACT crite-

rion not only is descriptive relevant by being able to account for a traveler’s different attitudes of risk and ambiguity over

uncertain travel times, but also can be used normatively to find the most preferred path using modest computational effort.

4. Analysis of network equilibrium with risk and ambiguity aware travelers 

We study the network equilibrium problem when travelers are sensitive to risk and ambiguity and evaluate the travel

times along paths using the ACT criterion. In Section 4.1 , we characterize the network equilibrium such that no traveler

could improve his/her travel time under the ACT criterion by unilaterally changing routes. In Section 4.2 , we investigate the

inefficiency of the NE by comparing with the System Optimal solution that minimizes the total travel time under the ACT

criterion of all travelers. We also provide a simple network equilibrium study in Section 4.3 . 

4.1. Network equilibrium formulation 

Given a network G = (N , A ) , we let W ⊆ N × N be a set of Origin-Destination (OD) pairs, and R w 

be a set of all simple

paths connecting a given OD pair w ∈ W . To derive a tractable model, we assume that the uncertain link travel times are

independently distributed. We define the uncertain travel time along link a ∈ A as 

˜ t a (v a ) = s a (v a ) ̃ z a + ˜ τa , 

where s a ( v a ) is a differentiable, monotonically increasing function in its own link traffic flow v a , and ˜ z a , ̃  τa , a ∈ A are in-

dependently distributed nonnegative random variables. The multiplicative uncertainty ˜ z a can be interpreted as the flow

dependent disturbance, while ˜ τa , the additive uncertainty, is the flow independent disturbance. 

For generality, we allow travelers to have different perceptions on uncertainty in link travel times. For example, a local

resident, who is very familiar with the area, would be less ambiguous, compared to a tourist, in characterizing the uncertain

travel times along the network links. To characterize the heterogeneity, we classify all travelers on the network into n types.

The i th type of travelers, i ∈ I = { 1 , . . . , n } are characterized by their risk parameter λi , ambiguity parameter αi , and their

distributional uncertainty set F i of the travel times on the network. For notational convenience, we denote V i = ( λi , αi , F i ) .

Under the ACT criterion, the uncertain travel time ˜ t a (v a ) perceived by the i th type of travelers is given by 

t ai (v a ) = ACT V i 
(

˜ t a (v a ) 
)

= ACT V i ( s a (v a ) ̃ z a + ˜ τa ) 

= ACT V i ( s a (v a ) ̃ z a ) + ACT V i ( ̃  τa ) . 

For a given OD pair w ∈ W, let d wi be the number of trips made by the i th type of travelers and f ri be the flow on path

r ∈ R w 

contributed by the i th type of travelers, and f = ( f ri ) r∈R w ,w ∈W,i ∈I is the vector of flows of all travelers along all paths.

The aggregate flow on link a ∈ A is 

v a ( f ) = 

∑ 

i ∈I 

∑ 

w ∈W 

∑ 

r∈R w 

f ri δar , 
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where δar equals 1 if the link a is along the path r and 0 otherwise. Moreover, since the travel time along any path r is

given by 

˜ c r ( f ) = 

∑ 

a ∈A 
˜ t a ( v a ( f ) ) δar , 

the travel time along path r ∈ R w 

under the ACT criterion perceived by the i th type of travelers is given by 

c ri ( f ) = ACT V i ( ̃  c r ( f ) ) 

= ACT V i 

(∑ 

a ∈A 
( s a (v a ( f )) ̃ z a + ˜ τa ) δar 

)
= 

∑ 

a ∈A 

(
ACT V i ( s a (v a ( f )) ̃ z a δar ) + ACT V i ( ̃  τa δar ) 

)
= 

∑ 

a ∈A 
t ai (v a ( f )) δar . 

Let c ( f ) = (c ri ( f )) r∈R w ,w ∈W,i ∈I be the vector of the travel time under the ACT criterion of all types of travelers over all paths,

and F be the feasible set of possible flows on all paths denoted by 

F = 

{ 

f ≥ 0 

∣∣∣∣∣∑ 

r∈R w 

f ri = d wi , w ∈ W, i ∈ I 

} 

, 

in which the constraints are OD demand conservation conditions for all classes of travelers among all OD pairs. Hence, the

path flow f ∗ ∈ F is in equilibrium if for all r ∈ R w 

, w ∈ W, i ∈ I, 

c ri ( f 
∗) 

{= μwi , if f ∗
ri 

> 0 , 

≥ μwi , if f ∗
ri 

= 0 , 

where μwi is the equilibrium travel time under the ACT criterion associated with the OD pair w and traveler type i . The

travel time along any path connecting the OD pair w perceived by the i th type of travelers under the ACT criterion is at

least μwi . Moreover, on the paths that have been actually traveled ( f ∗
ri 

> 0 ), the perceived travel times are exactly at the

minimum c ri ( f 
∗) = μwi . In other words, no traveler can improve his/her travel time under the ACT criterion by unilaterally

changing routes. 

Clearly, we can formulate the NE by means of Variational Inequalities (VI). We let v = (v ai ) a ∈A ,i ∈I be the vector of flows

of all travelers along all links, and we have v a = 

∑ 

i ∈I v ai , a ∈ A . Let t ( v ) = (t ai (v a )) a ∈A ,i ∈I be the vector of travel time under

the ACT criterion of all traveler types and along all links. The set of feasible link flows is represented by 

V = 

{ 

v 

∣∣∣∣∣v ai = 

∑ 

w ∈W 

∑ 

r∈R w 

f ri δar , a ∈ A , i ∈ I, f ∈ F 

} 

. 

Proposition 5. The path flow of the NE can be equivalently characterized by the following VI problem: 

Find f ∗ ∈ F , such that 

〈 f − f 
∗
, c ( f ∗) 〉 ≥ 0 , ∀ f ∈ F, 

where 〈·〉 denotes the Euclidean inner product. Likewise, the link flow of NE is characterized by finding v ∗ ∈ V, such that 

〈 v − v ∗, t ( v ∗) 〉 ≥ 0 , ∀ v ∈ V . (5)

Proof. This is an extension of the single class deterministic NE problem and we refer interested readers to Smith (1979) and

Dafermos (1980) . �

If travelers are homogeneous, i.e., n = 1 , the NE defined under the ACT criterion reduces to a single class deterministic

NE model. For the general case, n > 1, we could adopt algorithms for solving the generic VI (see Facchinei and Pang, 2003;

Nagurney, 1998 ). 

Corollary 1. The link flow of NE exists, but may not be unique. 

Proof. Since set V is a compact set, and function t ( v ) is continuous, Problem (5) admits at least one solution v ∗. Further-

more, this link flow of NE may not be unique, as t ( v ) is not strictly monotone in V . �

For the special case in which uncertainty along links is flow independent, we show that the corresponding NE problem

can be solved via a convex optimization problem. Under this case, the uncertain travel time on link a ∈ A can be simplified

as 

˜ t a (v a ) = s a (v a ) + ˜ τa , 
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and travel time perceived by the i th type of travelers under the ACT criterion is 

t ai (v a ) = s a (v a ) + ACT V i ( ̃  τa ) . 

Proposition 6. When the uncertainty is flow independent, we can compute the NE traffic flow by solving the following convex

optimization problem: 

min 

v ∈V 
∑ 

a ∈A 

∫ v a 

0 

s a (x ) dx + 

∑ 

a ∈A 

∑ 

i ∈I 
ACT V i ( ̃  τa ) v ai . (6) 

Proof. First, set V is convex and compact. Let Z( v ) = 

∑ 

a ∈A 
∫ v a 

0 s a (x ) dx + 

∑ 

a ∈A 
∑ 

i ∈I ACT V i ( ̃  τa ) v ai , we can easily verify that 

∂Z( v ) 
∂v ai 

= s a ( v a ) + ACT V i ( ̃  τa ) = t ai (v a ) , ∀ a ∈ A , i ∈ I, 

and Z( v ) is convex in v . Therefore, from the necessary optimality condition, we know v ∗ is an optimal solution to the convex

optimization problem 

min 

v ∈V 
Z( v ) , 

if and only if it solves VI Problem (5) when the uncertainty is flow independent. �

We next derive the uniqueness of the NE traffic flow under the assumption that uncertainty along links is flow indepen-

dent. 

Corollary 2. If the travel time function is a strictly monotonically increasing function of its own link flow, then the optimal

solution of aggregate flow on each link is unique. 

Proof. Suppose two distinct link flow solutions v 1 and v 2 are both optimal solutions to Problem (6) . That is, ∃ a ∈ A , v 1 a � = v 2 a ,

and Z( v 1 ) = Z( v 2 ) . Then we will show the contradiction. 

Since s a ( x ) is a strictly monotonic increasing function, 
∫ v a 

0 s a (x ) dx is a strictly convex function in v a . For any η ∈ (0, 1), 

Z 
(
ηv 1 + (1 − η) v 2 

)
−
(
ηZ 
(
v 1 
)

+ (1 − η) Z 
(
v 2 
))

= 

∑ 

a ∈A 

∫ ηv 1 a +(1 −η) v 2 a 

0 

s a (x ) dx + 

∑ 

a ∈A 

∑ 

i ∈I 
ACT V i ( ̃  τa ) 

(
ηv 1 ai + (1 − η) v 2 ai 

)

− η

( ∑ 

a ∈A 

∫ v 1 a 

0 

s a (x ) dx + 

∑ 

a ∈A 

∑ 

i ∈I 
ACT V i ( ̃  τa ) v 1 ai 

) 

− ( 1 − η) 

( ∑ 

a ∈A 

∫ v 2 a 

0 

s a (x ) dx + 

∑ 

a ∈A 

∑ 

i ∈I 
ACT V i ( ̃  τa ) v 2 ai 

) 

= 

∑ 

a ∈A 

∫ ηv 1 a +(1 −η) v 2 a 

0 

s a (x ) dx −
(

η
∑ 

a ∈A 

∫ v 1 a 

0 

s a (x ) dx + (1 − η) 
∑ 

a ∈A 

∫ v 2 a 

0 

s a (x ) dx 

)
< 0 , 

it follows that 

Z 
(
ηv 1 + (1 − η) v 2 

)
< ηZ( v 1 ) + (1 − η) Z( v 2 ) = Z( v 1 ) = Z( v 2 ) . 

Now we have a contradiction to the assumption that v 1 and v 2 are both optimal. Therefore, the optimal solution of aggregate

flow on each link is unique. �

We can interpret Problem (6) as a deterministic multi-class NE problem, which is easily solved by the traditional Frank–

Wolfe algorithm (see for instance Frank and Wolfe, 1956; Yang and Huang, 2004 ). 

4.2. Inefficiency of network equilibrium 

Another concept accompanied with NE is to compare with the so-called System Optimum (SO) in which the aggregate

travel time of all travelers is minimized ( Nash, 1951; Wardrop, 1952 ). As travelers choose routes without considering about

possible negative impacts on the system performance, it is obvious that the NE solution usually deviates from SO and is

less efficient in attaining the minimum aggregate travel time. Led by the seminal work of Koutsoupias and Papadimitriou

(1999) , the loss of efficiency in NE is an active area of research. The authors propose the concept of Price of Anarchy, which

is formally defined as the worst-case inefficiency or the ratio between the aggregate cost of NE and that of SO. In particular,

Roughgarden and Tardos (2002) and Correa et al. (2004) present a surprising, but welcome result that NE is near optimal

in the sense that the aggregate travel time of all travelers under NE is at most that under SO with double traffic in the
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same network. In addition, when the travel time function depends linearly on traffic flow, the aggregate travel time of all

travelers under NE is at most 4/3 times that under SO. This topic and many of its variants are extensively studied later

on. Chau and Sim (2003) , Perakis (2007) , Roughgarden (2003) and Correa et al. (2008) extend the results to more general

link travel time functions. Guo et al. (2010) study the inefficiency for logit-based stochastic NE. Wang et al. (2014) and

O’Hare et al. (2016) study the case with the variation of travel demand. In this section, we derive similar results in the NE

problem for the case when travelers are sensitive to risk and ambiguity. To obtain analytical results, we again assume that

the uncertainty along links is flow independent. Since in the network, each traveler may not have complete information

about uncertain travel times, his/her perceived travel time (the travel time under the ACT criterion) is the only foundation

to make route choice decisions. Therefore, to be consistent with travelers’ choices, we define the system performance as the

aggregate perceived travel time, i.e., aggregate travel time under the ACT criterion. Hence, we define SO as the minimum

aggregate perceived travel time. This definition is in line with the definition of Nikolova and Stier-Moses (2014) , which also

accounts for the uncertain travel time. 

For a given traffic flow, v ∈ V, we represent the aggregate travel time under the ACT criterion on the entire network by 

C v ( v ) = 〈 t ( v ) , v 〉 = 

∑ 

a ∈A 

∑ 

i ∈I 
t ai (v a ) v ai = 

∑ 

a ∈A 

∑ 

i ∈I 

(
s a (v a ) + ACT V i ( ̃  τa ) 

)
v ai . 

By defining C v ∗ ( v ) = 〈 t ( v ∗) , v 〉 , variational inequalities (5) can be replaced as C v ∗ ( v ∗) ≤ C v ∗ ( v ) , where v ∗ = (v ∗
ai 
) a ∈A ,i ∈I is

traffic flow vector at NE for types of travelers along all links, and v ∈ V is the vector of any feasible flows. Let x ∗ = (x ∗
ai 
) a ∈A ,i ∈I

denote the traffic flow vector at SO, which minimizes aggregate travel time under the ACT criterion. We can analyze the

inefficiency of NE by comparing C v ∗ ( v ∗) and C x ∗ ( x ∗) . In particular, we are interested in the Price of Anarchy, which is the

worst-case ratio between the aggregate travel time of NE and that of SO under the ACT criterion. 

Proposition 7. Consider an instance of Problem (6) . The vectors v ∗ = (v ∗
ai 
) a ∈A ,i ∈I and x ∗ = (x ∗

ai 
) a ∈A ,i ∈I represent link flows at NE

and SO, respectively. 

(a) Let vector u = (u ai ) a ∈A ,i ∈I be a feasible flow for the same network but with twice as many travelers of the same type.

Then 

C v ∗ ( v ∗) ≤ C u ( u ) . 

(b) If travel time function is a monomial function s a (v a ) = b a ( v a ) m (m ≥ 0) , then 

C v ∗ ( v ∗) 
C x ∗ ( x ∗) 

≤
(
1 − m (m + 1) −(m +1) /m 

)−1 
. 

(c) If travel time function is a general continuous and nondecreasing function, we have 

C v ∗ ( v ∗) 
C x ∗ ( x ∗) 

≤ 1 

1 − β(A ) 
, 

where 

β(A ) = sup 

a ∈A 
sup 

v ≥0 

max x ≥0 x ( s a (v ) − s a (x ) ) 

s a (v ) v 
, and 0 ≤ β(A ) ≤ 1 . 

The proof of this result follows from Correa et al. (2004) and for completeness, we present it in the Appendix. The bound

can be attained by a network with two parallel links a and b . Link a has constant travel time as s ( v ) and link b has uncertain

travel time as s (x ) + ˜ τ , where x is the traffic flow on link b and ˜ τ is an uncertain variable with its lower bound as 0. The

total number of travelers is v and we assume all these travelers are extremely risk and ambiguity seeking, i.e., λ → −∞
and α = 0 . Based on the definition of ACT, the travel time under the ACT criterion on link b for the above travelers is s ( x ).

This setting reduces to the example discussed in Correa et al. (2004) , in which the bound is attained. As far as we know,

classical Price of Anarchy results on traffic equilibriums do not consider the influence of uncertainty on travelers’ choice

and our result is possibly the first attempt in this direction. It is interesting to observe that after accounting for travelers

preferences for risk and ambiguity in the traffic equilibrium problem, the Price of Anarchy results remain similar to the

classical ones where travel times are deterministic. 

4.3. A network equilibrium example 

The following example explicitly illustrates the calculation of NE and SO under the ACT criterion, and demonstrates the

inefficiency issues under various mixtures of travelers’ profiles. It elucidates the importance of taking travelers’ risk and

ambiguity attitudes into account in analyzing traffic networks. 

We consider a two paths network from origin O to destination D depicted in Fig. 3 . The traffic rate is assumed to be 1.

The paths have travel times as follows: 

˜ t A (v A ) = (v A ) 4 + ˜ τA , ˜ t B (v B ) = 

6 

, 

5 
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Fig. 3. Two paths network with uncertain travel time. 

Table 3 

Travelers’ profile in Case 3. 

Type i Demand αi λi ACT V i ( ̃ τA ) 

1 2 
3 

4 
5 

5 1 
25 

+ 

4 
25 

ln 
(
1 + 

1 
5
 ( exp (5
) − 1 ) 

)
2 1 

3 
1 
5 

−5 1 
25 

− 4 
25 

ln 
(
1 + 

1 
5
 ( exp (−5
) − 1 ) 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where ˜ τA is uncertain. We assume that all travelers have the same information on the uncertain parameter ˜ τA . Specifically,

˜ τA has a mean value of 1 
5 and support in [0, 
], 
 > 

1 
5 . Hence, the corresponding distributional uncertainty set is given by 

F (
) = 

{ 
P 

∣∣∣E P ( ̃  τA ) = 

1 

5 

, P ( ̃  τA ∈ [0 , 
] ) = 1 

} 
. 

Note that the parameter 
 represents the worst-case delay of ˜ τA and implies the level of uncertainty along Path A . On the

other hand, Path B has deterministic travel time and is unaffected by 
. With various compositions of travelers in terms of

risk and ambiguity attitudes, the NE and SO under the ACT criterion will yield different flow patterns. To explore the impact

of 
 on these flow patterns, we consider the following three cases: 

Case 1 : All travelers are risk-neutral and ambiguity neutral ( λ = 0 , α = 

1 
2 ); 

Case 2 : All travelers are extremely risk-averse and pessimistic towards ambiguity ( λ → ∞ , α = 1 ). 

Case 3 : Travelers composition with profiles is shown in Table 3 . 

In Case 1, all travelers are risk and ambiguity neutral and they intuitively perceive the uncertain term as its mean value.

Hence, the solutions are consistent with traditional deterministic NE and SO models. In Case 2, travelers who are radically

risk-averse and pessimistic towards ambiguity consider the worst-case travel time in deciding between paths. In Case 3,

type 1 travelers are risk-averse and pessimistic towards ambiguity, while type 2 travelers are risk-seeking and optimistic

towards ambiguity. We derive flow solutions of NE and SO under the ACT criterion in Table 4 . For notational simplicity, in

this example, we let t A 1 = ACT V 1 ( ̃  τA ) and t A 2 = ACT V 2 ( ̃  τA ) . Note that 
1 and 
2 are the unique solutions satisfying ( 6 
25 −

1 
5 t A 1 ) 

1 / 4 − 1 
3 = 0 and ( 6 5 − t A 1 ) 

1 / 4 − 1 
3 = 0 , and 
1 ≈ 1.8136, and 
2 ≈ 1.8829, respectively. 

We now study the inefficiency of NE under the ACT criterion with respect to the parameter 
. We represent the ag-

gregate travel times under the ACT criterion in Case i under the NE and SO model by ACT NE 
i 

and ACT SO 
i 

respectively, and

quantify the inefficiency of NE via the ratio 
ACT NE 

i 

ACT SO 
i 

. For these three cases, the ratios are calculated as: 

ACT NE 
1 

ACT SO 
1 

= 

6 

6 − 4 × 5 

−1 / 4 
;

ACT NE 
2 

ACT SO 
2 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

6 

6 − 20 

(
6 

25 
− 1 

5 


)5 / 4 

, when 

1 

5 

< 
 ≤ 6 

5 

, 

1 , when 

6 

5 

≤ 
;

ACT NE 
3 

ACT SO 
3 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

6 
5 

− 1 
3 

t A 1 + 

1 
3 

t A 2 

6 
5 

− 1 
3 

t A 1 + 

1 
3 

t A 2 − 4 

(
6 

25 
− 1 

5 
t A 1 
)5 / 4 

, when 0 . 2 < 
 ≤ 
1 , 

6 
5 

− 1 
3 

t A 1 + 

1 
3 

t A 2 
4 
5 

+ 

1 
243 

+ 

1 
3 

t A 2 
, when 
1 ≤ 
 ≤ 
2 , 

1 , when 
2 ≤ 
. 

Fig. 4 depicts the ratios of Case 2 and 3. We observe that the ratios decrease with the increase of upper bound 
. For this

specific example, when the travel time becomes more uncertain, the change of traffic flow has less impact on the traveler’s

path selection decisions, correspondingly, the flow pattern at NE will approach to that at SO. In other words, it suggests

that if the travel time along a traffic network is highly uncertain, then there is little benefit from having the system optimal

solution in which the aggregate travel time under the ACT criterion is minimized. 

Next, we highlight that it is essential for traffic managers to consider travelers’ risk and ambiguity attitudes when deter-

mining the system optimal flow pattern. Specifically, if we ignore uncertainty and calculate the deterministic system optimal

(DSO) flow pattern, its aggregate travel time under the ACT criterion may be worse than that of NE. We represent the DSO
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Table 4 

Flow patterns of NE and SO under the ACT criterion for three cases. 

Case Condition Criterion Type Traffic flow Path ACT a Network ACT b 

A B A B 

1 NE 1 0 6 
5 

6 
5 

6 
5 

SO 5 −1 / 4 1 − 5 −1 / 4 2 
5 

6 
5 

6 
5 

− 4 × 5 −5 / 4 

2 1 
5 

< 
 NE ( 6 
5 

− 
) 1 / 4 1 − ( 6 
5 

− 
) 1 / 4 6 
5 

6 
5 

6 
5 

≤ 6 
5 

SO 
(

6 
25 

− 1 
5 


)1 / 4 

1 −
(

6 
25 

− 1 
5 


)1 / 4 6 

25 
+ 

4 
5 

 6 

5 
6 
5 

− 4 
(

6 
25 

− 1 
5 


)5 / 4 

6 
5 

≤ 
 NE 0 1 
 6 
5 

6 
5 

SO 0 1 
 6 
5 

6 
5 

3 NE 1 
(

6 
5 

− t A 1 
)1 / 4 − 1 

3 
1 −

(
6 
5 

− t A 1 
)1 / 4 6 

5 
6 
5 

6 
5 

− 1 
3 

t A 1 + 

1 
3 

t A 2 

1 
5 

< 
 2 1 
3 

0 6 
5 

− t A 1 + t A 2 
6 
5 

≤ 
1 SO 1 
(

6 
25 

− 1 
5 

t A 1 
)1 / 4 − 1 

3 
1 −

(
6 

25 
− 1 

5 
t A 1 
)1 / 4 6 

25 
+ 

4 
5 

t A 1 
6 
5 

6 
5 

− 1 
3 

t A 1 + 

1 
3 

t A 2 −4 
(

6 
25 

− 1 
5 

t A 1 
)5 / 4 

2 1 
3 

0 6 
25 

− 1 
5 

t A 1 + t A 2 
6 
5 

NE 1 
(

6 
5 

− t A 1 
)1 / 4 − 1 

3 
1 −

(
6 
5 

− t A 1 
)1 / 4 6 

5 
6 
5 

6 
5 

− 1 
3 

t A 1 + 

1 
3 

t A 2 


1 ≤ 
 2 1 
3 

0 6 
5 

− t A 1 + t A 2 
6 
5 

≤ 
2 SO 1 0 2 
3 

1 
81 

+ t A 1 
6 
5 

4 
5 

+ 

1 
243 

+ 

1 
3 

t A 2 

2 1 
3 

0 1 
81 

+ t A 2 
6 
5 


2 ≤ 
 NE 1 0 2 
3 

1 
81 

+ t A 1 
6 
5 

4 
5 

+ 

1 
243 

+ 

1 
3 

t A 2 

2 1 
3 

0 1 
81 

+ t A 2 
6 
5 

SO 1 0 2 
3 

1 
81 

+ t A 1 
6 
5 

4 
5 

+ 

1 
243 

+ 

1 
3 

t A 2 

2 1 
3 

0 1 
81 

+ t A 2 
6 
5 

a Path ACT refers to the travel time along the path under the ACT criterion; 
b Network ACT refers to the aggregate travel times under the ACT criterion for all travelers on the network. 

Fig. 4. Inefficiency of NE and DSO under the ACT criterion in Case 2 and 3. 
flow pattern by u 

∗ = ( u ∗a ) a ∈A , which is the unique optimal solution of 

min 

∑ 

a ∈A 
( s a (u a ) + E ( ̃  τa ) ) u a 

s . t . u a = 

∑ 

w ∈W 

∑ 

r∈R w 

f r δar , ∀ a ∈ A , 

∑ 

r∈R w 

f r = 

∑ 

i ∈I 
d wi , ∀ w ∈ W, 

f r ≥ 0 , ∀ r ∈ R w 

, w ∈ W . 
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Note that the flow pattern u 

∗ = ( u ∗a ) a ∈A only identifies the aggregate traffic flow on each link. Therefore, with the mixture

of travelers, the traffic flow for each type of travelers on each link may not be unique. We represent its feasible set as 

U = 

{ 

v ∈ V 

∣∣∣∣∣∑ 

i ∈I 
v ai = u 

∗
a , ∀ a ∈ A 

} 

. 

Then, for any v ∈ U , we define ACT DSO ( v ) as the total travel time under the ACT criterion of all travelers when the traffic

flow is v , that is, 

ACT DSO ( v ) = 

∑ 

a ∈A 

∑ 

i ∈I 

(
s a ( u 

∗
a ) + ACT V i ( ̃  τa ) 

)
v ai . 

Since ACT DSO ( v ) is a function of v ∈ U , we define its lower and upper bound by ACT DSO and ACT 
DSO 

respectively, where 

ACT DSO = min 

v ∈U 

∑ 

a ∈A 

∑ 

i ∈I 

(
s a ( u 

∗
a ) + ACT V i ( ̃  τa ) 

)
v ai ;

ACT 
DSO = max 

v ∈U 

∑ 

a ∈A 

∑ 

i ∈I 

(
s a ( u 

∗
a ) + ACT V i ( ̃  τa ) 

)
v ai . 

Hence, for any v ∈ U , ACT DSO ( v ) ∈ [ ACT DSO 
, ACT 

DSO 
] . Similarly, we quantify the inefficiency of DSO under the ACT criterion

via the ratios 
ACT DSO 

i 

ACT SO 
i 

and 

ACT 
DSO 
i 

ACT SO 
i 

as follows: 

ACT DSO 
2 

ACT SO 
2 

= 

ACT DSO 
2 

ACT SO 
2 

= 

ACT 
DSO 

2 

ACT SO 
2 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

6 + 5 

3 / 4 ( 
 − 1 ) 

6 − 20 

(
6 

25 
− 1 

5 


)5 / 4 

, when 

1 

5 

< 
 ≤ 6 

5 

, rcl 

6 + 5 

3 / 4 ( 
 − 1 ) 

6 

, when 

6 

5 

≤ 
;

ACT DSO 
3 

ACT SO 
3 

= 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

6 
5 

− 5 

−1 / 4 + 

(
5 

−1 / 4 − 1 
3 

)
t A 1 + 

1 
3 

t A 2 

6 
5 

− 1 
3 

t A 1 + 

1 
3 

t A 2 − 4 

(
6 

25 
− 1 

5 
t A 1 
)5 / 4 

, when 

1 

5 

< 
 ≤ 
1 , 

6 
5 

− 5 

−1 / 4 + 

(
5 

−1 / 4 − 1 
3 

)
t A 1 + 

1 
3 

t A 2 
4 
5 

+ 

1 
243 

+ 

1 
3 

t A 2 
, when 
1 ≤ 
;

ACT 
DSO 

3 

ACT SO 
3 

= 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

6 
5 

− 5 

−1 / 4 + 

2 
3 

t A 1 + 

(
5 

−1 / 4 − 2 
3 

)
t A 2 

6 
5 

− 1 
3 

t A 1 + 

1 
3 

t A 2 − 4 

(
6 

25 
− 1 

5 
t A 1 
)5 / 4 

, when 

1 

5 

< 
 ≤ 
1 , 

6 
5 

− 5 

−1 / 4 + 

2 
3 

t A 1 + 

(
5 

−1 / 4 − 2 
3 

)
t A 2 

4 
5 

+ 

1 
243 

+ 

1 
3 

t A 2 
, when 
1 ≤ 
. 

Fig. 4 demonstrates the inefficiency of NE and DSO under the ACT criterion of Cases 2 and 3. In Case 2, for the network

where travelers are extremely risk-averse and pessimistic towards ambiguity, with the increase of 
, the NE flow pattern

under the ACT criterion becomes less inefficient, while the inefficiency of DSO grows increasingly severe. When 
 > 1,

ACT DSO 
2 

> ACT NE 
2 suggests if we instruct the traffic flow following DSO criterion, which does not account for travelers’ atti- 

tudes towards risk and ambiguity, the performance will turn worse than its original anarchy state. Similarly, in Case 3, with

two types of travelers, the ratio 
ACT DSO 

3 ( v ) 
ACT SO 

3 

lies between the two curves 
ACT DSO 

3 

ACT SO 
3 

and 

ACT 
DSO 
3 

ACT SO 
3 

. The increase of upper bound 


will cut down the inefficiency of NE, but result in the deterioration of DSO in terms of system performance. Moreover, when

the level of travel time uncertainty increases to some specific value, the DSO performance will be no better than the NE

performance, which suggests this guidance effort would be in vain. 

Following the same strategy, we extend our computational study from this two links small network to a five-nodes

complete network, which includes 5 nodes, and 20 links. Since calculating ACT DSO and ACT 
DSO 

is generally a hard problem,

we only use this simple network for illustrative purpose. The demand on each OD pair for each type of travelers is uniformly

generated from the set { 101 , 102 , . . . , 800 } . Uncertain travel time on each link is written as 

˜ t a (v a ) = s a (0) + 0 . 15 

(v a 
c a 

)4 

+ ˜ τa , ∀ a ∈ A . 

Free flow travel time s a (0) follows uniform distribution U (2, 6), and capacity c a is generated from uniform distribution U (200,

10 0 0). Instead of deterministic travel time, we assume that uncertainties occur on each link independently. Moreover, the

disturbance is flow independent, with the mean equal to 20% of free flow travel time on that link, and lower bound equal

to zero. We vary the upper bound of uncertainties by 
. The uncertainty ˜ τa is characterized as 

F = { P | E P ( ̃  τa ) = 0 . 2 s a (0) , P ( ̃  τa ∈ [0 , 
 × E P ( ̃  τa ) ] ) = 1 , ∀ a ∈ A } . 
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Fig. 5. Inefficiency of NE and DSO under the ACT criterion in Case 3 in five-nodes Network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Travelers’ characteristics are consistent with Case 3. We randomly generate 50 instances, and summarize the average per-

formance. The inefficiency results of NE and DSO under the ACT criterion of five-nodes network are listed in Fig. 5 . Similar

conclusions could be derived here. When the flow independent disturbance on travel time becomes highly uncertain, the

influence of selfishness on inefficiency diminishes. 

5. Conclusion 

This paper studies the preferences for uncertain travel times in which the probability distributions may not be fully

characterized. By explicitly distinguishing risk and ambiguity concepts, we propose a new criterion called ambiguity-aware

CARA travel time for ranking the uncertain travel time, which systematically integrates the travelers’ inability to capture

the exact information of uncertain travel times, and their attitudes towards risk and ambiguity. This setting is based on the

Hurwicz criterion and constant absolute risk aversion, which is empirically supported and provides computational benefits. 

With this criterion, we explore computational solvability of the path selection problem on a network where travel times

are uncertain. We show that finding a path with the minimum travel time under the ACT criterion is polynomially solvable

when link travel times are independently distributed. We also prove that the problem becomes intractable when link travel

times are correlated. Focusing on independently distributed link travel times, we present the general VI formulation of NE

under the ACT criterion. We analyze the case when the uncertainty along links is flow independent and show that it can

be addressed as a convex optimization problem. We also determine the inefficiency of NE by deriving the Price of Anarchy,

which is similar to the deterministic NE case. 

The ACT criterion could potentially enhance the predictive capability of path selection and traffic equilibrium. First, it

does not require travelers to know the probability distributions of the network. Second, it has the potential to incorporate

risk and ambiguity in travelers’ decision making. Third, the path selection problem and network equilibrium established

retain the computational tractability of their deterministic counterparts. It will be valuable to establish empirically the risk

and ambiguity profiles of a population of travelers residing in different cities and possibly having different cultures. We

hope that our work could encourage future research in this direction. 

Appendix A. Proof of Proposition 7 

Proof. (a) Note that s a ( v a ) is a differentiable, monotonically increasing function in v a , and u = (u ai ) a ∈A ,i ∈I is a feasible flow

for the same network but with double demands. We have 

s a (u a ) u a + s a (v ∗a ) v ∗a − s a (v ∗a ) u a ≥ s a (u a ) u a ≥ 0 , if u a ≤ v ∗a ;
s a (u a ) u a + s a (v ∗a ) v ∗a − s a (v ∗a ) u a ≥ s a (v ∗a ) v ∗a ≥ 0 , if u a ≥ v ∗a . 

Therefore, 

C u ( u ) + C v ∗ ( v ∗) − C v ∗ ( u ) 

= 

∑ 

a ∈A 

∑ 

i ∈I 

(
t ai (u a ) u ai + t ai (v ∗a ) v ∗ai − t ai (v ∗a ) u ai 

)
= 

∑ 

a ∈A 

∑ 

i ∈I 

(
s a (u a ) u ai + s a (v ∗a ) v ∗ai + ACT V i ( ̃  τa ) v ∗ai − s a (v ∗a ) u ai 

)
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= 

∑ 

a ∈A 

∑ 

i ∈I 
ACT V i ( ̃  τa ) v ∗ai + 

∑ 

a ∈A 
( s a (u a ) u a + s a (v ∗a ) v ∗a − s a (v ∗a ) u a ) 

≥
∑ 

a ∈A 

∑ 

i ∈I 
ACT V i ( ̃  τa ) v ∗ai 

≥ 0 . 

Besides, we note that u / 2 = ( 
u ai 
2 ) a ∈A ,i ∈I is a feasible flow for the original instance. From the NE property, 

C u ( u ) ≥ C v ∗ ( u ) − C v ∗ ( v ∗) = 2 C v ∗
(

u 

2 

)
− C v ∗ ( v ∗) ≥ 2 C v ∗ ( v ∗) − C v ∗ ( v ∗) = C v ∗ ( v ∗) . 

(b) If travel time is a monomial function, defined as s a (v a ) = b a ( v a ) m such that 

t ai (v a ) = b a ( v a ) m + ACT V i ( ̃  τa ) . 

Then, we have 

C v ∗ ( x ) = 

∑ 

a ∈A 

∑ 

i ∈I 

(
t a ( v ∗a ) + ACT V i ( ̃  τa ) 

)
x ai 

= 

∑ 

a ∈A 

∑ 

i ∈I 
ACT V i ( ̃  τa ) x ai + 

∑ 

a ∈A 
b a ( v ∗a ) 

m x a 

≤
∑ 

a ∈A 

∑ 

i ∈I 
ACT V i ( ̃  τa ) x ai + 

∑ 

a ∈A 
b a 
(
x m +1 

a + m (m + 1) −(m +1) /m (v ∗a ) m +1 
)

= 

∑ 

a ∈A 

∑ 

i ∈I 

(
b a ( x a ) 

m + ACT V i ( ̃  τa ) 
)
x ai + m (m + 1) −(m +1) /m 

∑ 

a ∈A 

∑ 

i ∈I 
b a ( v ∗a ) 

m v ∗ai 

≤ C x ( x ) + m (m + 1) −(m +1) /m 

∑ 

a ∈A 

∑ 

i ∈I 

(
b a ( v ∗a ) 

m + ACT V i ( ̃  τa ) 
)
v ∗ai 

= C x ( x ) + m (m + 1) −(m +1) /m C v ∗ ( v ∗) , 
where the first inequality is tenable because the function f (x ) = v m x − x m +1 ( x ≥ 0) will get its maximum m (m +
1) −(m +1) /m v m +1 at x = v (m + 1) −1 /m ; and the second inequality holds because 

∑ 

a ∈A 
∑ 

i ∈I ACT V i ( ̃  τa ) v ∗ai 
≥ 0 . Then, since

C v ∗ ( v ∗) ≤ C v ∗ ( x ) , we get (
1 − m (m + 1) −(m +1) /m 

)
C v ∗ ( v ∗) ≤ C x ∗ ( x ∗) . 

When x ∗ = (x ∗
ai 
) a ∈A ,i ∈I is the system optimum, we can find the Price of Anarchy bounded at 

(
1 − m (m + 1) −(m +1) /m 

)−1 
,

which is the same as that in deterministic cases. 

(c) Similar to Correa et al. (2004) , we could generalize the travel time function to continuous, nondecreasing case. 

C v ∗ ( x ) = 

∑ 

a ∈A 

∑ 

i ∈I 
t ai (v ∗a ) x ai 

= 

∑ 

a ∈A 
s a (v ∗a ) x a + 

∑ 

a ∈A 

∑ 

i ∈I 
ACT V i ( ̃  τa ) x ai 

= 

∑ 

a ∈A 
x a ( s a (v ∗a ) − s a (x a ) ) + C x ( x ) 

= 

∑ 

a ∈A 

x a ( s a (v ∗a ) − s a (x a ) ) 

s a (v ∗a ) v ∗a 
s a (v ∗a ) v ∗a + C x ( x ) 

≤
∑ 

a ∈A 
β(v ∗a , s a (v ∗a )) s a (v ∗a ) v ∗a + C x ( x ) 

≤ sup 

a ∈A 
β(v ∗a , s a (v ∗a )) 

∑ 

a ∈A 
s a (v ∗a ) v ∗a + C x ( x ) 

≤ β(A ) C v ∗ ( v ∗) + C x ( x ) , 

where β(v , s (v )) = 

1 

s (v ) v 
max 
x ≥0 

{ x ( s (v ) − s (x ) ) } , and β( A ) = sup a ∈A sup v ≥0 β(v , s a (v )) . Since the travel time function s ( v ) is a

continuous nondecreasing function, the following relationship holds: 

0 = 

v (s (v ) − s (v )) 
s (v ) v 

≤ β(v , s (v )) ≤ max 0 ≤x ≤v x (s (v ) − s (x )) 

s ( v ) v 
≤ max 0 ≤x ≤v xs ( v ) 

s ( v ) v 
≤ v s ( v ) 

s ( v ) v 
= 1 . 

Assuming x ∗ = (x ∗
ai 
) a ∈A ,i ∈I is SO solution, we have the Price of Anarchy as 

C v ∗ ( v ∗) 
C x ∗ ( x ∗) 

≤ 1 

1 − β(A ) 
. 
�
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