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Summary

The problems with embedded low-rank structures arise in diverse areas such as

engineering, statistics, quantum information, finance and graph theory. The nu-

clear norm technique has been widely-used in the literature but its efficiency is

not universal. This thesis is devoted to dealing with the low-rank structure via

techniques beyond the nuclear norm for achieving better performance.

In the first part, we address low-rank matrix completion problems with fixed

basis coefficients, which include the low-rank correlation matrix completion in var-

ious fields such as the financial market and the low-rank density matrix completion

from the quantum state tomography. For this class of problems, with a reasonable

initial estimator, we propose a rank-corrected procedure to generate an estimator of

high accuracy and low rank. For this new estimator, we establish a non-asymptotic

recovery error bound and analyze the impact of adding the rank-correction term on

improving the recoverability. We also provide necessary and sufficient conditions

for rank consistency in the sense of Bach [7], in which the concept of constraint

nondegeneracy in matrix optimization plays an important role. These obtained re-

sults, together with numerical experiments, indicate the superiority of our proposed

ix
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rank-correction step over the nuclear norm penalization.

In the second part, we propose an adaptive semi-nuclear norm regularization

approach to address rank regularized problems with hard constraints. This ap-

proach is designed via solving a nonconvex but continuous approximation problem

iteratively. The quality of solutions to approximation problems is also evaluated.

Our proposed adaptive semi-nuclear norm regularization approach overcomes the

difficulty of extending the iterative reweighted l1 minimization from the vector

case to the matrix case. Numerical experiments show that the iterative scheme of

our proposed approach has advantages of achieving both the low-rank-structure-

preserving ability and the computational efficiency.
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Notation

• Let Rn
+ denote the cone of all nonnegative real n-vectors and let Rn

++ denote

the cone of all positive real n-vectors.

• Let Rn1×n2 and Cn1×n2 denote the space of all n1 × n2 real and complex

matrices, respectively. Let Mn1×n2 represent Rn1×n2 for the real case and

Cn1×n2 for the complex case.

• Let Sn(Sn+, Sn++) denote the set of all n×n real symmetric (positive semidef-

inite, positive definite) matrices and Hn(Hn
+, Hn

++) denote the set of al-

l n × n Hermitian (positive semidefinite, positive definite) matrices. Let

Sn (Sn+, Sn++) represent Sn (Sn+, Sn++) for the real case and Hn (Hn
+, Hn

++) for

the complex case.

• Let Vn1×n2 represent Rn1×n2 , Cn1×n2 , Sn or Hn. We define n := min(n1, n2)

for the previous two cases and stipulate n1 = n2 = n for the latter two cases.

Let Vn1×n2 be endowed with the trace inner product 〈·, ·〉 and its induced

norm ‖ · ‖F , i.e., 〈X, Y 〉 := Re
(
Tr(XTY )

)
for X, Y ∈ Vn1×n2 , where “Tr”

stands for the trace of a matrix and “Re” means the real part of a complex

xv



Notation xvi

number.

• For the real case, On×k denotes the set of all n × k real matrices with or-

thonormal columns, and for the complex case, On×k denotes the set of all

n × k complex matrices with orthonormal columns. When k = n, we write

On×k as On for short.

• Let Qk be the set of all permutation matrices that have exactly one entry

1 in each row and column and 0 elsewhere. Let Q±k be the set of all signed

permutation matrices that have exactly one entry 1 or −1 in each row and

column and 0 elsewhere.

• The notation T denotes the transpose for the real case and the conjugate

transpose for the complex case. The notation ∗ means the adjoint of operator.

• For any index set π, let |π| denote the cardinality of π, i.e., the number of

elements in π. For any x ∈ Rn, let xπ denote the vector in R|π| containing

the components of x indexed by π, let |x| denote the vector in Rn
+ whose i-th

component is |xi|, and let x+ denote the vector in Rn
+ whose i-th component

is max(0, xi).

• For any given vector x, let Diag(x) denote the rectangular diagonal matrix

of suitable size with the i-th diagonal entry being xi.

• For any x ∈ Rn, let ‖x‖0, ‖x‖1, ‖x‖2 and ‖x‖∞ denote the l0 norm (cardinal-

ity), the l1 norm, the Euclidean norm and the maximum norm, respectively.

For any X ∈ Vn1×n2 , let ‖X‖ and ‖X‖∗ denote the spectral norm and the

nuclear norm, respectively.

• Let In denote the n× n identity matrix. Let e denote the vector of suitable

length whose entries are all ones. Let ei denote the vector of suitable length

whose i-th entries is one and the others are zeros.



Notation xvii

• The notations
a.s.→,

p→ and
d→ mean almost sure convergence, convergence in

probability and convergence in distribution, respectively. We write xm =

Op(1) if xm is bounded in probability.

• Let sgn(·) denote the sign function defined over R, i.e.,

sgn(t) :=


1 if t > 0,

0 if t = 0,

−1 if t < 0.

Let 1(·) denote the indicator function defined over R+, i.e.,

1(t) :=

 0 if t = 0,

1 if t > 0.

Let id(·) denote the identity function defined over R+, i.e, id(t) := t, t ≥ 0.

• For any set K, let δK denote the characteristic function of K, i.e.,

δK(x) :=

 0 if x ∈ K,

∞ if x /∈ K.

This function is also called the indicator function of K. To avoid confusion

with 1(·), we adopt the former name.



Chapter 1
Introduction

The problems with embedded low-rank structures arise in diverse areas such as

engineering, statistics, quantum information, finance and graph theory. An im-

portant class of them is the low-rank matrix completion, which is of considerable

interest recently in many applications, from machine learning to quantum state

tomography. This problem refers to recovering an unknown low-rank or approxi-

mately low-rank matrix from a small number of noiseless or noisy observations of

its entries, or more general, basis coefficients. In some cases, the unknown matrix

to be recovered may possess a certain structure, for example, a correlation matrix

from the financial market or a density matrix from the quantum state tomography.

Besides, some reliable prior information on entries (or basis coefficients) may also

be known, for example, the correlation coefficient between two pegged exchange

rates can be fixed to be one in a correlation matrix of exchange rates. Exist-

ing algorithms such as OptSpace [82], SVP [123], ADMiRA [103], GROUSE [9]

and LMaFit [178] have difficulty in dealing with such matrix completions prob-

lems with fixed entries (or basis coefficients), unless those additional requirements

of the unknown matrix are ignored, which is of course an unwilling choice. An

available choice, as far as we can see, is the nuclear norm technique. The nuclear

1
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norm, i.e., the sum of all the singular values, is the convex envelope of the rank

function over the unit ball of the spectral norm [49]. It has been shown that the

nuclear norm technique is efficient for encouraging a low-rank solution in many

cases including matrix completion in the literature. However, for structured ma-

trix completion problems with fixed basis coefficients considered in this thesis, the

efficiency of the nuclear norm could be highly weakened — may not able to lead

to a desired low-rank solution with a small estimation error. How to address such

matrix completion models constitutes our primary interest.

Another important problem is the rank regularized problem, which refers to

minimizing the tradeoff between a loss function and the rank function over a con-

vex set of matrices. The rank function can be used to measure the simplicity of

a model in many applications, with its specific meaning may varying in differen-

t problems to be such as order, complexity or dimensionality. Many application

problems in collaborative filtering [161, 162], system identification [50, 52], dimen-

sionality reduction [108, 187], video inpainting [35] and graph theory [41, 1], to

name but a few, can be cast into rank regularized problems, including also the

matrix completion problem described above as a special case. Rank regularized

problems are NP-hard in general due to the discontinuity and non-convexity of the

rank function. The nuclear norm technique — replacing the rank function with

the nuclear norm for a convex relaxation problem, is widely-used for finding a low-

rank solution. For example, as a special case, the rank minimization problem —

minimizing the rank of a matrix over a convex set, can be expressed as

min rank(X)

s.t. X ∈ K,
(1.1)

where X is the decision variable and K is a convex subset of Mn1×n2 . Its convex

relaxation using the nuclear norm is termed the nuclear norm minimization, taking
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the form

min ‖X‖∗

s.t. X ∈ K.
(1.2)

The equivalence of the rank minimization (1.1) and the nuclear norm minimization

(1.2) has been establish under certain conditions. Nevertheless, there is still a

big gap between them. Several iterative algorithms have been proposed in the

literature to step forward to close the gap. However, when hard constraints are

involved, how to efficiently address such low-rank optimization problems is still a

challenge.

In view of above, in this thesis, we focus on dealing with the low-rank structure

beyond the nuclear norm technique for matrix completion models with fixed basis

coefficients and rank regularized problems with hard constraints. Partial results in

this thesis come from the author’s recent papers [127] and [128].

1.1 Literature review

The nuclear norm technique has been observed to provide a low-rank solution in

practice for a long time, e.g., see [125, 124, 49]. The quality of the solution pro-

duced by using this technique is of particular interest in the literature. Among

which, most works focus on the low-rank matrix recovery problem, which refers to

recovering an unknown low-rank matrix from a number of its linear measurements.

The nuclear norm minimization (1.2) is an important and efficient approach. The

first remarkable theoretical characterization for the minimum rank solution via the

nuclear norm minimization with linear equality constraints was given by Recht,

Fazel and Parrilo [150]. It was shown that the success of recovering a low-rank

matrix of rank at most r from its partial noiseless linear measurements via the nu-

clear norm minimization is guaranteed under a certain restricted isometric property
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(RIP) condition for the linear map, which can be satisfied for several random en-

sembles with high probability as long as the number of linear measurements is

larger than O(r(n1 + n2) log(n1n2)). The success of recovery indeed implies that

with constraints defined by the linear map, the rank minimization (1.1) and the

nuclear norm minimization (1.2) are equivalent in terms of their solutions. RIP is

a powerful technique that can be used in the analysis of low-rank matrix recovery

problems, not only for the nuclear norm minimization but also for other algorithms

for recovery such as SVP [123] and ARMiDA [103]. However, RIP has its draw-

back — it is not invariant under measurement amplification. More precisely, given

a linear map A : Mn1×n2 → Rm, the linear system A(X) = b is equivalent to

B(A(X)) = B(b) for any non-singular linear map B : Rm → Rm. But the RIP

constant of the linear map A and B ◦ A could be dramatically different.

In the later work, different from the RIP-based analysis, necessary and suf-

ficient null space conditions were provided by Recht, Xu and Hassibi [151] and

Oymak and Hassibi [139] for exact low-rank matrix recovery, leading to an explic-

it relationship between the rank and the number of noiseless linear measurement

for the success of recovery for Gaussian random ensembles. Meanwhile, Dvijotham

and Fazel [37] presented another analysis of recovery based on the spherical section

property (SSP) of the null space of the linear map. Very recently, Kong, Tuncel

and Xiu [92] introduced the concepts of G-numbers of a linear map and derived

necessary and sufficient conditions for recovery based on them. The obtained con-

dition was shown to be equivalent to the null space condition in [139] and can be

considered as a dual characterization.

All the results mentioned above focus on the noiseless case. In a more realis-

tic setting, the available measurements are corrupted by a small amount of noise.

Candès and Plan [20] derived recovery error bounds based on the RIP for two

nuclear-norm-minimization based algorithms (the matrix Dantzig selector and the



1.1 Literature review 5

matrix Lasso) and showed that linear measurements of order O(r(n1 + n2)) are

enough for recovery provided they are sufficiently random. Other works for the

RIP-type error bounds can be found in [102, 131, 93, 18]. Negahban and Wain-

wright [134] analyzed the nuclear norm penalized least squares estimator based on

the restricted strong convexity (RSC) of a loss function introduced in [133] and es-

tablished non-asymptotic error bounds on the Frobenius norm that are applicable

to both exactly and approximately low-rank matrices. From a different perspec-

tive, Bach [7] derived necessary and sufficient conditions on the rank consistency of

nuclear norm penalized least squares estimator and provided an adaptive version

of it for free rank consistency. Almost all the results about the low-rank matrix

recovery using the nuclear norm technique are somewhat extended from that about

the sparse vector recovery via the l1 norm. In view of this, Oymak et al. [140]

provided a general approach for extending some sufficient conditions for recovery

from vector cases to matrix cases.

The nuclear norm technique deserves its popularity not only because of its

theoretical favor but also its computational efficiency. Fast algorithms for solv-

ing the nuclear norm minimization or its regularized versions, to name a few,

include the singular value thresholding (SVT) algorithm [17], fixed point contin-

uation with approximate SVD (FPCA) algorithm [114], the (inexact) accelerated

proximal gradient (APG) algorithm [168, 79], the linearized alternating direction

(LADM) method [185], the proximal point algorithm (PPA) [109] and the par-

tial PPA [81, 80]. The efficiency of all these algorithms owes to the full use of

the so-called singular value soft-thresholding operator, which is the proximal point

mapping of the nuclear norm.

The low-rank matrix completion problem currently dominates the applications

of the low-rank matrix recovery. For this problem, the linear measurements are

specialized to be a small number of observations of entries, or more generally, basis
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coefficients of the unknown matrix. In spite of being a special case of low-rank

matrix recovery, unfortunately, the matrix completion problem does not have the

Gaussian measurement ensemble and does not obey the RIP. Therefore, the the-

oretical results for low-rank matrix recovery mentioned above are not applicable.

Instead of the RIP, Candès and Recht [21] introduced the concept of incoherence

property and proved that most low-rank matrices can be exactly recovered from

a surprisingly small number of noiseless observations of randomly sampled entries

via the nuclear norm minimization. The bound of the number of sampled en-

tries was later improved to be near-optimal of by Candés and Tao [22] through

a counting argument. It was shown that, under suitable conditions, the number

of entries required for recovery under the uniform sampling via the nuclear norm

minimization is at most the degree of freedom by a poly-logarithmic factor in the

dimension of matrix. Such a bound was also obtained by Keshavan et al. [82] for

their proposed OptSpace algorithm, which is based on spectral methods followed

by local manifold optimization. Later, Gross [70] sharpened the bound by em-

ploying a novel technique from quantum information theory developed in [71], in

which noiseless observations were extended from entries to coefficients relative to

any basis. This technique was also adapted by Recht [149], leading to a short and

intelligible analysis. Besides the above results for the noiseless case, matrix comple-

tion with noise was first addressed by Candés and Plan [19]. More recently, nuclear

norm penalized estimators for matrix completion with noise have been well stud-

ied by Koltchinskii, Lounici and Tsybakov [91], Negahban and Wainwright [135],

Klopp [86] and Koltchinskii [89] under different settings. Several non-asymptotic

order-optimal (up to logarithmic factors) error bounds in Frobenius norm have

been correspondingly established. Besides the nuclear norm, other estimators for

matrix completion with different penalties have also been considered in terms of

recoverability in the literature, including the Schatten-p quasi-norm penalty by
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Rohde and Tsybakov [156], the rank penalty by Klopp [85], the von Neumann

entropy penalty by Koltchinskii [90], the max-norm (or γ2:l1→l∞ norm) by Srebro

and colleagues [162, 163, 57] and the spectrum elastic net by Sun and Zhang [164].

However, the efficiency of the nuclear norm for finding a low-rank solution

is not universal. The efficiency may be challenged in some circumstances. For

example, the conditions characterized by Bach [7] for rank consistency of the nu-

clear norm penalized least squares estimator may not be satisfied, especially when

certain constraints are involved. In particular for matrix completion problems,

general sampling schemes may highly weaken the efficiency of the nuclear norm.

Salakhutdinov and Srebro [158] showed that the nuclear norm minimization may

fail for matrix completion when certain rows and/or columns are sampled with high

probability. The failure is in the sense that the number of observations required for

recovery are much more than the setting of most matrix completion problems, at

least the degree of freedom by a polynomial factor in the dimension rather than a

poly-logarithmic factor. Negahban and Wainwright [135] also pointed out the im-

pact of such heavy sampling schemes on the recovery error bound. As a remedy for

this, a weighted nuclear norm (trace norm), based on row- and column-marginals

of the sampling distribution, was suggested in [135, 158, 56] for achieving better

performance if the prior information on sampling distribution is available.

In order to go beyond the limitation of the nuclear norm, several iterative

algorithms have also been proposed for solving rank regularized problems (rank

minimization problems) in the literature. Fazel, Hindi and Boyd in [51] (see also

[49]) proposed the reweighted trace minimization for minimizing the rank of a pos-

itive semidefinite matrix, which falls into the class of majorization methods. The

log-det function, which is concave over the positive semidefinite cone, is typically

used to be the surrogate of the rank function, leading to a linear majorization

in each iteration. Later, an attempt to extend this approach to the reweighted
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nuclear norm minimization for the rectangular case was conducted Mohan and

Fazel [132]. Iterative reweighted least squares algorithms were also independently

proposed by Mohan and Fazel [130] and Fornasier, Rauhut and Ward [54], which

enjoy improved performance beyond the nuclear norm and may allow for efficient

implementations. Besides, Lu and Zhang [113] proposed penalty decomposition

methods for both rank regularized problems and rank constrained problems which

make use of the closed-form solutions of some special minimization involving the

rank function.

1.2 Contributions

In the first part of this thesis, we address low-rank matrix completion models with

fixed basis coefficients. In our setting, given a basis of the matrix space, a few

basis coefficients of the unknown matrix are assumed to be fixed due to a certain

structure or some prior information, and the rest are allowed to be observed with

noises under general sampling schemes. Certainly, one can apply the nuclear norm

penalized technique to recover the unknown matrix. The challenge is that, this

may not yield a desired low-rank solution with a small estimation error.

Our consideration is strongly motivated by correlation and density matrix

completion problems. When the true matrix possesses a symmetric/Hermitian

positive semidefinite structure, the impact of general sampling schemes on the

recoverability of the nuclear norm technique is more remarkable. In this situation,

the nuclear norm reduces to the trace and thus only depends on diagonal entries

rather than all entries as the rank function does. As a result, if diagonal entries

are heavily sampled, the rank-promoting ability of the nuclear norm, as well as

the recoverability, will be highly weakened. This phenomenon is fully reflected in

the widely-used correlation matrix completion problem, for which the nuclear norm
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becomes a constant and severely loses its effectiveness for matrix recovery. Another

example of particular interest in quantum state tomography is to recover a density

matrix of a quantum system from Pauli measurements (e.g., see [71, 53, 175]). A

density matrix is a Hermitian positive semidefinite matrix of trace one. Obviously,

if the constraints of positive semidefiniteness and trace one are simultaneously

imposed on the nuclear norm minimization, the nuclear norm completely fails

in promoting a low-rank solution. Thus, one of the two constraints has to be

abandoned in the nuclear norm minimization and then be restored in the post-

processing stage. In fact, this idea has been much explored in [71, 53] and the

numerical results there indicated its relative efficiency though it is at best sub-

optimal.

In order to optimally address the difficulties in low-rank matrix completion

with fixed basis coefficient, especially in correlation and density matrix comple-

tion problems, we propose a low-rank matrix completion model with fixed basis

coefficients. A rank-correction step is introduced to address this critical issue pro-

vided that a reasonable initial estimator is available. A satisfactory choice of the

initial estimator is the nuclear norm penalized estimator or one of its analogies.

The rank-correction step solves a convex “nuclear norm − rank-correction term +

proximal term” regularized least squares problem with fixed basis coefficients (and

the possible positive semidefinite constraint). The rank-correction term is a linear

term constructed from the initial estimator, and the proximal term is a quadrat-

ic term added to ensure the boundedness of the solution to the convex problem.

The resulting convex matrix optimization problem can be solved by the efficient

algorithms recently developed in [79, 81, 80] even for large-scale cases.

The idea of using a two-stage or even multi-stage procedure is not brand new

for dealing with sparse recovery in the statistical and machine learning literature.

The l1 norm penalized least squares method, also known as the Lasso [167], is very
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attractive and popular for variable selection in statistics, thanks to the invention of

the fast and efficient LARS algorithm [39]. On the other hand, the l1 norm penalty

has long been known by statisticians to yield biased estimators and cannot attain

the estimation optimality [43, 47]. The issue of bias could be mitigated or overcome

by nonconvex penalization methods. Commonly-used nonconvex penalties include

the lq norm penalty (0 < q < 1) by Frank and Friedman [104], the smoothly

clipped absolute deviation (SCAD) penalty by Fan [42], and the minimax concave

penalty (MCP) by Zhang [190]. A multi-stage procedure naturally occurs if the

nonconvex problem obtained is solved by an iterative algorithm [195]. In particular,

once a good initial estimator is used, a two-stage estimator is enough to achieve

the desired asymptotic efficiency, e.g., the adaptive Lasso proposed by Zou [194]

and the relaxed Lasso proposed by Meinshausen [121]. There are also a number of

important papers in this line on variable selection, including [104, 122, 191, 77, 193,

44], to name only a few. For a broad overview, the interested readers are referred to

the recent survey papers [45, 46]. It is natural to extend the ideas from the vector

case to the matrix case. Recently, Bach [7] made an important step in extending

the adaptive Lasso of Zou [194] to the matrix case for seeking rank consistency

under general sampling schemes. However, it is not clear how to apply Bach’s idea

to our matrix completion model with fixed basis coefficients since the required rate

of convergence of the initial estimator for achieving asymptotic properties is no

longer valid as far as we can see. More critically, there are numerical difficulties in

efficiently solving the resulting optimization problems. Such difficulties also occur

when the reweighted nuclear norm proposed by Mohan and Fazel [132] is applied

to the rectangular matrix completion problems.

The rank-correction step to be proposed in this thesis is for the purpose to

overcome the above difficulties. This approach is inspired by the majorized penalty
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method recently proposed by Gao and Sun [62] for solving structured matrix op-

timization problems with a low-rank constraint. For our proposed rank-correction

step, we provide a non-asymptotic recovery error bound in the Frobenius norm,

following a similar argument adopted by Klopp in [86]. The obtained error bound

indicates that adding the rank-correction term could help to substantially improve

the recoverability. As the estimator is expected to be of low-rank, we also study

the asymptotic property — rank consistency in the sense of Bach [7], under the

setting that the matrix size is assumed to be fixed. This setting may not be ideal

for analyzing asymptotic properties for matrix completion, but it does allow us to

take the crucial first step to gain insights into the limitation of the nuclear nor-

m penalization. In particular, the concept of constraint nondegeneracy for conic

optimization problem plays a key role in our analysis. Interestingly, our results

of recovery error bound and rank consistency consistently suggest a criterion for

constructing a suitable rank-correction function. In particular, for the correlation

and density matrix completion problems, we prove that the rank consistency auto-

matically holds for a broad selection of rank-correction functions. For most cases,

a single rank-correction step is enough for significantly reducing the recovery error.

But if the initial estimator is not good enough, e.g., the nuclear norm penalized

least squares estimator when the sample ratio is very low, the rank-correction step

may also be iteratively used for several times for achieving better performance.

Finally, we remark that our results can also be used to provide a theoretical foun-

dation for the majorized penalty method of Gao and Sun [62] and Gao [61] for

structured low-rank matrix optimization problems.

In the second part of this thesis, we address rank regularized problems with

hard constraints. Although the nuclear norm technique is still a choice for such

problems, its rank-promoting ability could be much more limited, since the prob-

lems of consideration is more general than low-rank matrix recovery problems and
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could hardly have any property for guaranteeing the efficiency of its convex relax-

ation. To go a further step beyond the nuclear norm, inspired by the efficiency

of the rank-correction step for matrix completions problems (with fixed basis co-

efficients), we propose an adaptive semi-nuclear norm regularization approach for

rank regularized problems (with hard constraints). This approach aims to solve

an approximation problem instead, whose regularization term is a nonconvex but

continuous surrogate of the rank function that can be written as the nuclear nor-

m of the Löwner’s (singular value) operator associated with a concave increasing

function over R+. The relationship between a rank regularized problem and its

approximations is examined by using the epi-convergence. In particular for affine

rank minimization problems, we establish a necessary and sufficient null space

condition for ensuring the minimum-rank solution to the approximation problem.

This result further indicates that the considered nonconvex candidate surrogate

function possesses better rank-promoting ability (recoverability) than the nuclear

norm. Compared with the nuclear norm regularization, the convexity for compu-

tational convenience is sacrificed in change of the improvement of rank-promoting

ability.

Being an application of the majorized proximal gradient method proposed for

general nonconvex optimization problems, the adaptive semi-nuclear norm regu-

larization approach solves a sequence of convex optimization problems regularized

by a semi-nuclear norm in each iteration. Under mild conditions, we show that

any limit point of the sequence generated by this approach is a stationary point of

the corresponding approximation problem. Thanks to the semi-nuclear norm, each

subproblem can be efficiently solved by recently developed methodologies with high

accuracy, allowing for the use of the singular value soft-thresholding operator. Still

thanks to the semi-nuclear norm, each iteration of this approach produces a low-

rank solution. This property is crucial since when hard constraints are involved,
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each subproblem could be computational costly so that the fewer iterations the

better. Our proposed adaptive semi-nuclear norm regularization approach over-

comes the difficulty of extending the iterative reweighted l1 minimization from the

vector case to the matrix case. In particular for rank minimization problems, we

specified our approach to be the adaptive semi-nuclear norm minimization. For

the positive semidefinite case, this specified algorithm recovers the reweighted trace

minimization proposed by Fazel, Hindi and Boyd in [51], expect for an additional

proximal term. Therefore, the idea of using adaptive semi-nuclear norms can be

essentially regarded as an extension of the reweighted trace minimization from the

positive semidefinite case to the rectangular case. In spite of this, even for the

positive semidefinite rank minimization, our approach is still distinguished for its

computational efficiency due to the existence of the proximal term. Compared

with other existing iterative algorithms for rank regularized problems (rank mini-

mization problems), the iterative scheme of our proposed approach has advantages

of both the low-rank-structure-preserving ability and the computational efficiency,

both of which are especially crucial and favorable for rank regularized problems

with hard constraints.

1.3 Outline of the thesis

This thesis is organized as follows: In Chapter 2, we provide some preliminaries

that will be used in the subsequent discussions. Besides introducing some concepts

and properties of the majorization, the spectral operator and the epi-convergence

(in distribution), we derive the Clarke generalized gradients of the w-weighted

norm, provide f -version inequalities of singular values and propose the majorized

proximal gradient method for solving general nonconvex optimization problems.

In Chapter 3, we introduce the observation model of matrix completion with fixed
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basis coefficients and the formulation of the rank-correction step. We establish a

non-asymptotic recovery error bound and discuss the impact of the rank-correction

term on recovery. We also provide necessary and sufficient conditions for rank

consistency. The construction of the rank-correction function is discussed based

on the obtained results. Numerical results are reported to validate the efficiency

of our proposed rank-corrected procedure. In Chapter 4, we propose an adaptive

semi-nuclear norm regularization approach for rank regularized problems with hard

constraints. We discuss the approximation quality of the problem solved in this

approach and establish the convergence of this approach. Several families of can-

didate surrogate functions available for this approach are provided with a further

discussion. We also compare this approach with some existing iterative algorithms

for rank regularized problem (rank minimization problem). Numerical experiments

are provided to support the superiority of our approach. We conclude this thesis

and discuss the further work in Chapter 5.



Chapter 2
Preliminaries

In this chapter, we introduce some basic properties which are essential to our

discussions in the subsequent chapters.

2.1 Majorization

This concept of majorization — a partial ordering on vectors, was introduced by

Hardy, Littlewood and Pólya [74].

Definition 2.1. For any x, y ∈ Rn, we say that x is weakly majorized by y, denoted

by x ≺w y, if
k∑
i=1

x[i] ≤
k∑
i=1

y[i], k = 1, . . . , n, (2.1)

where (x[1], . . . , x[n])
T is the vector by rearranging the components xi, i = 1, . . . , n,

in the nonincreasing order, i.e., x[1] ≥ · · · ≥ x[n]. Moreover, we say that x is

majorized by y, denoted by x ≺ y, if (2.1) holds with equality for k = n.

Given any x ∈ Rn, let ∆(x) denote the convex hull of the set of vectors

obtained from x by all possible permutation of its components, i.e.,

∆(x) := conv
(
{z ∈ Rn | z = Qx,Q ∈ Qn}

)
;

15
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and let Γ(x) denote the convex hull of the set of vectors obtained from x by all

possible signed permutation of its components, i.e.,

Γ(x) := conv
(
{z ∈ Rn | z = Qx,Q ∈ Q±n }

)
;

Rado [147] first characterized the convex hull of permutations of a given vector as

follows:

Theorem 2.1 (Rado [147]). Let x, y ∈ Rn. Then x ≺ y if and only if x ∈ ∆(y).

As observed by Horn [76], this result can also be obtained by combining earlier

results of Hardy, Littlewood and Pólya [74] and Birkhoff [14]. Later, Markus [117,

Theorem 1.2] characterized the convex hull of signed permutations of a given vector.

Theorem 2.2 (Markus [117]). Let x, y ∈ Rn. Then x ≺w y if and only if x ∈ Γ(y).

The following result taken from [118, Proposition 3.C.1] will also be useful in

the sequel.

Proposition 2.3. Let I ⊆ R be an interval and g : I → R be a convex function.

Define φ(x) :=
∑n

i=1 g(xi). Then x ≺ y on In implies φ(x) ≤ φ(y).

2.2 The spectral operator

For any real or complex matrix X ∈ Mn1×n2 , the singular value decomposition

(SVD) of X is a factorization of the form

X = UDiag
(
σ(X)

)
V T,

where σ(X) =
(
σ1(X), . . . , σn(X)

)T
denotes the vector of singular values of X

arranged in the nonincreasing order, and U ∈ On1 , V ∈ On2 are orthogonal matrices

corresponding to the left and right singular vectors respectively. We define

On1,n2(X) :=
{

(U, V ) ∈ On1 ×On2 | X = UDiag
(
σ(X)

)
V T}.
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In particular for any real symmetric matrix or complex Hermitian matrix X ∈ Sn,

an eigenvalue decomposition of X takes the form

X = PDiag
(
λ(X)

)
P T,

where λ(X) =
(
λ1(X), . . . , λn(X)

)T
denotes the vector of eigenvalues of X ar-

ranged in the nonincreasing order and P ∈ On is an orthogonal matrix corre-

sponding to eigenvectors. We define

On(X) :=
{
P ∈ On | X = PDiag

(
λ(X)

)
P T}.

Now, we introduce the concept of spectral operator associated with a sym-

metric vector-valued function.

Definition 2.2. A function f : Rn → Rn is said to be symmetric if

f(x) = QTf(Qx) ∀Q ∈ Q±n and ∀x ∈ Rn,

Definition 2.3. The spectral operator F : Mn1×n2 → Mn1×n2 associated with the

function f is defined by

F (X) := UDiag
(
f(σ(X))

)
V T, (2.2)

where (U, V ) ∈ On1,n2(X) and X ∈Mn1×n2.

Notice that the symmetry of f implies that(
f(x)

)
i

= 0 if xi = 0.

This guarantees the well-definedness of the spectral operator F ([33, Theorem

3.1]). Moreover, the continuous differentiability of f implies the continuous dif-

ferentiability of F . When X ∈ Sn, we have an equivalent representation of (2.2)

as

F (X) = PDiag
(
f(|λ(X)|)

)(
PDiag(s(X))

)T
,
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where P ∈ On(X), and s(X) ∈ Rn with its i-th component taking the value

si(X) =

 −1, if λi(X) < 0

1, if otherwise.

In particular for the positive semidefinite case, both U and V in (2.2) reduce to P .

For more details on spectral operators, the reader may refer to the PhD thesis of

Ding [33].

Based on the well-definedness of the spectral operator, the well-known Löwner’s

(eigenvalue) operators [112] can be extended from symmetric matrices to nonsym-

metric matrices defined as follows.

Definition 2.4. Let f : R+ → R be a function such that f(0) = 0. The Löwner’s

(singular value) operator F : Mn1×n2 →Mn1×n2 associated with f is defined by

F (X) := UDiag
(
f(σ1(X)), . . . , f(σn(X))

)
V T, (2.3)

where (U, V ) ∈ On1,n2(X) and X ∈Mn1×n2.

It is not hard to check that the Löwner’s operator F (X) defined by (2.3) can

be regarded as a special spectral operator associated with the symmetric function

g : Rn → Rn defined by

g(x) =
(
sgn(x1)f(|x1|), · · · , sgn(xn)f(|xn|)

)T
, x ∈ Rn.

This operator has also been discussed in the Master thesis of Yang [186].

For preparation of discussions in the sequel, we introduce the so-called singular

values soft- and hard-thresholding operators, which in fact fall in the class of special

spectral operators (or Löwner’s operators). For any matrix Z ∈ Mn1×n2 and any

real number τ > 0, the singular values soft-thresholding operator Psoft
τ : Mn1×n2 →

Mn1×n2 is defined by

Psoft
τ (Z) := UDiag

(
(σ(Z)− τ)+

)
V T, (U, V ) ∈ On1,n2(Z), (2.4)
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and the singular value hard-thresholding operator is defined by

Phard
τ (Z) := UDiag

(
σ̃(Z)

)
V T, (U, V ) ∈ On1,n2(Z), (2.5)

where

σ̃i(Z) =

 σi(Z) if σi(Z) > τ,

0 if σi(Z) ≤ τ,
i = 1, . . . , n.

The name “soft” and “hard” come from the two different ways in dealing with

the singular values of a matrix. It is well-known that in fact, the singular value

soft-thresholding operator is the proximal point mapping of the nuclear norm, i.e.,

Psoft
τ (Z) = arg min

X∈Mn1×n2

{
‖X‖∗ +

1

2τ
‖X − Z‖2

}
,

e.g., see [17, 115]; while the singular value hard-thresholding operator is the (non-

convex) proximal point mapping of the rank function, i.e.,

Phard
τ (Z) ∈ arg min

X∈Mn1×n2

{
rank(X) +

1

τ 2
‖X − Z‖2

}
.

2.3 Clarke’s generalized gradients

Let φ : Rn → [−∞,∞] be any absolutely symmetric function, i.e., φ(Qx) = φ(x)

for any x ∈ Rn and any signed permutation matrix Q ∈ Q±n . Define a singular

value function Φ : Mn1×n2 → [−∞,∞] as

Φ(X) := φ
(
σ(X)

)
.

For any X ∈Mn1×n2 , it is easy to see that φ is Lipschitz near σ(X) if and only if Φ

is Lipschitz near X. In this case, from [105, Theorem 3.7], the Clarke generalized

gradient of Φ at X, denoted by ∂Φ(X), can be characterized as

∂Φ(X) =
{
UDiag(d)V T | d ∈ ∂φ

(
σ(X)

)
, (U, V ) ∈ On1,n2(X)

}
. (2.6)
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It is not hard to see from (2.6) that Φ is differential at X if and only if φ is

differential at σ(X). Based on this remarkable result, we next characterize Clarke’s

generalized gradients for two classes of singular valued functions.

Theorem 2.4. Given an extended real-valued function f on R, define φ : Rn →

[−∞,∞] and Φ : Mn1×n2 → [−∞,∞] as

φ(x) :=
n∑
i=1

f(|xi|) and Φ(X) := φ
(
σ(X)

)
=

n∑
i=1

f
(
σi(X)

)
.

For any X ∈Mn1×n2, if f is Lipschitz continuous near all σ1(X), . . . , σn(X), then

the Clarke’s generalized gradient ∂Φ(X) can be characterized as (2.6) with

∂φ
(
σ(X)

)
=

d ∈ Rn

∣∣∣∣∣ di ∈ ∂f
(
(σi(X)

)
if σi(X) > 0

di ∈
[
−|f ′+(0)|, |f ′+(0)|

]
if σi(X) = 0

 , (2.7)

where f ′− and f ′+ denote the left derivative and the right derivatives of f respectively.

Proof. It is known from [27, Theorem 2.5.1] that ∂φ
(
σ(X)

)
is the convex hull of

∂Bφ
(
σ(X)

)
taking the form

∂Bφ
(
σ(X)

)
:=
{

lim
k→∞
∇φ(xk)

∣∣ xk → σ(X), φ is differentiable at xk
}
,

where ∇φ(xk) denotes the gradient of φ at xk. By direct calculation, we have

∂Bφ
(
σ(X)

)
=

d ∈ Rn

∣∣∣∣∣ di ∈
{
f ′−
(
σi(X)

)
, f ′+
(
σi(X)

)}
if σi(X) > 0

di ∈
{
−f ′+(0), f ′+(0)

}
if σi(X) = 0

 .

Then, by taking the convex hull, we easily obtain (2.7). Thus, we complete the

proof.

Theorem 2.5. Given any vector w ∈ Rn
+, define φ : Rn → [−∞,∞] and Φ :

Mn1×n2 → [−∞,∞] as

φ(x) :=
n∑
i=1

wi|x|[i], x ∈ Rn and Φ(X) := φ
(
σ(X)

)
=

n∑
i=1

wiσi(X).
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For any matrix X ∈Mn1×n2, define the index sets π1, . . . , πl as

πk := {i : σi(X) = sk}, k = 1, . . . , l,

where s1 > . . . > sl are all the l distinct singular values of X. Then, Clarke’s

generalized gradient ∂Φ(X) can be characterized as (2.6) with

∂φ
(
σ(X)

)
=

d ∈ Rn

∣∣∣∣∣ dπk ≺ wπk ∀ k = 1, . . . , l − 1,

dπl ≺ wπl if sl > 0 and |dπl | ≺w wπlif sl = 0

 . (2.8)

In particular, for any (U, V ) ∈ On1,n2(X), one has

UDiag(w)V T ∈ ∂Φ(X). (2.9)

Proof. From (2.6), it suffices to characterize ∂φ
(
σ(X)

)
. It is not hard to check

that ∂Bφ
(
σ(X)

)
can be explicitly expressed as

∂Bφ
(
σ(X)

)
=

d ∈ Rn

∣∣∣∣∣ dπk = Qkwπk , Qk ∈ Q|πk| for k = 1, . . . , l − 1,

dπl = Qlwπl , Ql ∈ Q|πl| if sl > 0 and Ql ∈ Q±|πl| if sl = 0

 .

Then, by taking the convex hull, from Theorems 2.1 and 2.2, we can write ∂φ
(
σ(X)

)
in terms of (2.8). Then, by further noting the fact that w ∈ ∂Bφ

(
σ(X)

)
⊆

∂φ
(
σ(X)

)
, we also have (2.9). Thus, we complete the proof.

In particular, for any Rn
+ 3 w 6= 0 satisfying w1 ≥ . . . ≥ wn ≥ 0, Φw defines an

orthogonally invariant matrix norm on Mn1×n2 , called w-weighted norm, denoted

by ‖·‖w. In this case, by noting the convexity of ‖·‖w, Clarke’s generalized gradient

coincides with the subdifferential of ‖ · ‖w at X, i.e.,

∂‖X‖w :=
{
G ∈Mn1×n2 | ‖Y ‖w ≥ ‖X‖w + 〈G, Y −X〉 ∀Y ∈Mn1×n2

}
. (2.10)

It is easy to see that ‖ · ‖w will reduce to the spectral norm, the nuclear norm and

the Ky Fan k norm by choosing w = e1, w =
∑n

i=1 ei and w =
∑k

i=1 ei respectively,

where ei ∈ Rn denotes the vector whose i-th entry is 1 with all others entries 0.

The readers may also refer to [176, 177] for the subdifferentials of these special

matrix norms.
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2.4 f-version inequalities of singular values

For any X, Y ∈ Mn1×n2 , it is well-known that singular values of sum of matrices

have the property

σ(X + Y ) ≺w σ(X) + σ(Y ). (2.11)

This weak majorization of singular values, also known as the triangle inequalities

for Ky Fan k-norms, was first proved by Ky Fan [48] in 1949. This early result

was later extended by Rotfel’d [157, Theorem 1], Thompson [165, Theorem 3] and

Uchiyama [171, Theorem 4.4] to f -version subadditive inequalities, finally stated

as follows.

Theorem 2.6. Let f : R+ → R+ be a concave function with f(0) = 0. Then, for

any X, Y ∈Mn1×n2, one has

k∑
i=1

f
(
σi(X + Y )

)
≤

k∑
i=1

f
(
σi(X)

)
+

k∑
i=1

f
(
σi(Y )

)
, k = 1, . . . , n.

A stronger version of the weak majorization (2.11) also holds, known as the

perturbation theorem of singular values (see [13, Theorem IV.3.4]), i.e., for any

X, Y ∈Mn1×n2 ,

|σ(X)− σ(Y )| ≺w σ(X − Y ). (2.12)

Notice that it is immediate from Theorem 2.6 that∣∣∣∣ k∑
i=1

(
f
(
σi(X)

)
− f

(
σi(Y )

))∣∣∣∣ ≤ k∑
i=1

f
(
σi(X − Y )

)
, k = 1, . . . , n. (2.13)

This inequality provides us the possibility to extend the majorization (2.12) to an

f -version, by replacing the left-hand side of (2.13) with the sum of absolute values.

Recently, Miao (see [146, Conjecture 6]) proposed the following conjecture:

Conjecture 2.7. Let f : R+ → R+ be a concave function with f(0) = 0. Then,

for any X, Y ∈Mn1×n2, one has

k∑
i=1

∣∣f(σi(X)
)
− f

(
σi(Y )

)∣∣ ≤ k∑
i=1

f
(
σi(X − Y )

)
, k = 1, . . . , n. (2.14)
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A particular case of the f -version inequality (2.14) when f(t) = tq, 0 < q ≤ 1

and k = n was also proposed by Oymak et al. in [140]. Very recently, Lai et

al. [94] proved that when X, Y ∈ Sn+, this conjecture holds true for the case that

f(t) = tq, 0 < q ≤ 1. At almost the same time, Yue and So [188, Theorem 5]

proved this conjecture for the case that k = n with a stronger requirement that f

is continuously differentiable. Here, we slightly extend Yue and So’s result to get

rid of the continuous differentiability of f .

Theorem 2.8. Conjecture 2.7 holds for k = n.

Proof. We only need to prove for the continuous case f(0+) = 0. For the discontin-

uous case f(0+) > 0, one can simply consider the continuous function f − f(0+).

If f ′+(0) <∞, we define f̂ : R→ R by

f̂(t) :=

 f(t) if t ≥ 0,

f ′+(0)t if t < 0.

Then consider a sequence of the so-called averaged functions f̂k defined by

f̂k(t) :=

∫ ∞
−∞

f̂(t− s)ψk(s)ds,

where {ψk} is a sequence of bounded, measurable functions with
∫∞

0
ψk(s)ds = 1

such that Bk = {s | ψk(s) > 0} form a bounded sequence converging to {0}.

Notice that f̂ is increasing and concave over R and thus locally Lipschitz contin-

uous. It then follows from [155, Theorem 9.69] that the averaged functions f̂k are

continuously differentiable and converge uniformly to f̂ on any compact sets. In

particular, f̂k(0)→ f̂(0) = 0 as k →∞. For each k, define

f̃k(t) := f̂k(t)− f̂k(0).

By further checking that each f̃k is increasing and concave over R+ with f̃k(0) = 0,

from [188, Theorem 5], we obtain that
n∑
i=1

∣∣f̃k(σi(X)
)
− f̃k

(
σi(Y )

)∣∣ ≤ n∑
i=1

f̃k
(
σi(X − Y )

)
∀ k.
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By letting k →∞, we obtain that the inequality (2.14) holds for k = n.

If f ′+(0) =∞, we further consider fε : R+ → R+ defined by

fε(t) := f(t+ ε)− f(ε), t ≥ 0

with ε > 0. As reduced to the previous case, we obtain that

n∑
i=1

∣∣fε(σi(X)
)
− f

(
σi(Y )

)∣∣ ≤ n∑
i=1

fε
(
σi(X − Y )

)
∀ ε > 0.

By letting ε ↓ 0, we obtain that the inequality (2.14) holds for k = n. Thus, we

complete the proof.

Another extension of the weak majorization (2.11) is the generalized Lidskii

inequality proved by Thompson and Freede [166, Theorem 3], stated as follows (see

also [118, Theorem 9.C.4]):

Theorem 2.9 (Thompson and Freede [166]). Let i1, . . . , ik and ji, . . . , jk be integers

such that

1 ≤ i1 < . . . < ik ≤ n, 1 ≤ j1 < . . . < jk ≤ n and ik + jk ≤ k + n. (2.15)

Then for any X, Y ∈Mn1×n2, we have

k∑
s=1

σis+js−s(X + Y ) ≤
k∑
s=1

σis(X) +
k∑
s=1

σjs(Y ).

Theorem 2.9 reveals a more specific perspective of the nature of singular values

of X,Y and X + Y . In particular, this theorem includes the well-known Weyl’s

inequality [179] and the Lidskii’s inequality [106] as special cases. It arouses our

curiosity that whether the following conjecture, as a stronger version of Theorem

2.15, holds as well.
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Conjecture 2.10. Let i1, . . . , ik and ji, . . . , jk be integers such that (2.15) holds.

For any X, Y ∈Mn1×n2 and for each 1 ≤ i ≤ n, define

αi := max{σi(X), σi(Y )}, βi := min{σi(X), σi(Y )} and γi := σi(X − Y ).

Then we have
k∑
s=1

αis+js−s ≤
k∑
s=1

βis +
k∑
s=1

γjs . (2.16)

Notice that the inequality (2.16) includes (2.12) as a special case. Numerical

tests show that Conjecture 2.10 seems to be true. However, to the best of our

knowledge, this conjecture has not been proved theoretically yet. It is interesting

to notice that Conjecture 2.10 is stronger than Conjecture 2.7, as can be seen as

follows:

Theorem 2.11. If Conjecture 2.10 holds, then Conjecture 2.7 holds as well.

Proof. It is easy to see from the definition that

αi ≥ αi+1, βi ≥ βi+1, γi ≥ γi+1 and αi ≥ βi ∀ 1 ≤ i ≤ n.

Moreover, the inequality (2.12) can be equivalently written as

k∑
i=1

αi ≤
k∑
i=1

βi +
k∑
i=1

γi, 1 ≤ k ≤ n.

For any fixed k with 1 ≤ k ≤ n, let θ :=
∑k

i=1(βi + γi − αi) ≥ 0. Now, we aim to

show that

(α1 + θ, α2, . . . , αk, 0, . . . , 0)T � (β1, γ1, . . . , βk, γk)
T . (2.17)

It is clear that both sides have the equal sum of all components. Then, by observing

the largest l, 1 ≤ l ≤ k components of vectors on both sides, this majorization

(2.17) reduces to

l∑
i=1

αi + θ ≥ max
0≤j≤l

{ j∑
i=1

βi +

l−j∑
i=1

γi

}
, 1 ≤ l ≤ k. (2.18)
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For any fixed l with 1 ≤ l ≤ k, choose l + 1 pairs of index sets as follows:

(I0, J0) =
(
{1, . . . , k − l}, {l + 1, . . . , k}

)
,

(I1, J1) =
(
{2, . . . , k − l + 1}, {l, . . . , k − 1}

)
,

· · · · · ·

(Il, Jl) =
(
{l + 1, . . . , k}, {1, . . . , k − l}

)
.

Suppose that Conjecture 2.10 holds. It immediately follows that

k∑
i=l+1

αi ≤
∑
Ij

βi +
∑
Jj

γj, 0 ≤ j ≤ l,

which implies that

l∑
i=1

αi + θ =
k∑
i=1

(βi + γi)−
k∑

i=l+1

αi

≥
k∑
i=1

(βi + γi)−
(∑

Ij

βi +
∑
Jj

γj

)

=

( j∑
i=1

+
k∑

i=k−l+j+1

)
βi +

( l−j∑
i=1

+
k∑

i=k−j+1

)
γi

≥
j∑
i=1

βi +

l−j∑
i=1

γi, 1 ≤ j ≤ l.

Thus, the inequality (2.18) holds and thus the majorization (2.17) holds. Moreover,

since f : R+ → R+ is concave with f(0) = 0, from Proposition 2.3, we have

k∑
i=1

f(αi) ≤ f(α1 + θ) +
k∑
i=2

f(αk) ≤
k∑
i=1

f(βi) +
k∑
i=1

f(γi), 1 ≤ k ≤ n,

which is equivalent to (2.14). Thus, we complete the proof.

Finally, we remark that the techniques used by Yue and So [188, Theorem 5]

for proving the case k = n can also be slightly modified to prove the case k ≤ n.

This extension, together with the techniques used in the proof of Theorem 2.8,
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can prove that Conjecture 2.7 holds true. However, as Theorem 2.8 is enough for

what we care for in the sequel, here, we do not include the proof of Conjecture 2.7

with the corresponding modification due to its long length. According to personal

communication with So, the proof of Conjecture 2.7 may appear in the next version

of [188], in which the way to relax the requirement of continuous differentiability

also differs from ours.

2.5 Epi-convergence (in distribution)

Now we introduce the definition of epi-convergence, which yields the convergence

of minimizers and optimal values under suitable assumptions.

Definition 2.5. Let {φk} be a sequence of extended real-valued functions on Rn.

We say that {φk} epi-converges to φ, denoted by φk
e→ φ, if for every point x ∈ Rn,

lim inf
k→∞

φk(xk) ≥ φ(x) for every sequence xk → x, and

lim sup
k→∞

φk(xk) ≤ φ(x) for some sequence xk → x.

In this case, the function φ is called the epi-limit of {φk}, written as φ = e- limk φ
k.

The notion of epi-convergence, albeit under the name of infimal convergence,

was first introduced by Wijsman [180] for studying the relationship between the

convergence of convex functions and their conjugates. The name is motivated by

the fact that this convergence notion is equivalent to the set-convergence of the

epigraphs, i.e.,

φk
e→ φ ⇐⇒ epiφk → epiφ,

where the set

epiφ :=
{

(x, t) ∈ Rn × R : φ(x) ≤ t
}
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denotes the epigraph of the extended real-valued function φ, and the set con-

vergence is in the sense of Painlevé-Kuratowski, e.g., see the definition in [155,

Chapter 4.B]. This notion is also referred to the name of Γ-convergence introduced

by De Giorgi and Franzoni [30] in the calculus of variations. It is well-known that

continuous convergence, a fortiori uniform convergence, implies epi-convergence.

Moreover, in general, epi-convergence neither implies nor is implied by pointwise

convergence, unless certain properties are satisfied.

A function φ : Rn → [−∞,∞] is said to be lower semicontinuous (l.s.c. for

short) at x if

lim inf
x→x

φ(x) ≥ φ(x), or equivalently lim inf
x→x

φ(x) = φ(x),

and lower semicontinuous over Rn if this holds for every x ∈ Rn. Let clφ denote

the closure of φ, i.e., the greatest of all the l.s.c. functions ψ such that ψ ≤ φ. The

following results (see [155, Chapter 7]) will be used in the sequel.

Proposition 2.12. If the sequence {φk} is nondecreasing (i.e., φk+1 ≥ φk), then

e- limk φ
k exists and equals the pointwise supremum of {clφk}, i.e., φk

e→ supk(clφk).

Proposition 2.13. Let {φk} be a sequence of extended real-valued functions and let

ψ be a continuous extended real-valued functions. If φk
e→ φ, then φk +ψ

e→ φ+ψ.

For any ε > 0, we say that x is an ε-minimizer of φ if

φ(x) ≤ inf φ+ ε.

Then we have the following fundamental result (see [5], [40, 3.5.Theorem] or [155,

Theorem 7.33]).

Theorem 2.14 (Rockafellar and Wets [155]). Let {φk} be a sequence of lower semi-

continuous extended real-valued functions on Rn. Suppose that {φk} is eventually

level-bounded and φk
e→ φ. Then

inf φk → inf φ.
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In addition, if for each k, xk is a minimizer of φk, or generally, an εk-minimizer

with εk ↓ 0, then any cluster points of {xk} is a minimizers of φ. In particular, if

φ is uniquely minimized at x, then xk → x.

Epi-convergence can be induced by a metric on the space of l.s.c. functions,

i.e.,

LSC(Rn) := {φ : Rn → [−∞,∞] | φ is l.s.c. and φ 6≡ ∞} .

This metric dLSC(Rn)(·, ·) on LSC(Rn) for epi-convergence is defined in terms of

the metric dCn+1(·, ·) on the space of all nonempty closed sets in Rn+1 (denoted

by Cn+1) for Painlevé-Kuratowski set convergence. Here, dCn+1(·, ·) denotes the so-

called (integrated) set distance between two sets (see the definition in [155, Chapter

4.I]). More precisely, for any l.s.c. functions φ 6≡ ∞ and ψ 6≡ ∞ on Rn,

dLSC(Rn)(φ, ψ) := dCn+1(epiφ, epiψ).

This setting of epigraph topology does not lose generality, as the epi-convergence

of general functions can be characterized by the epi-convergence of their closures,

due to the fact that (e.g., see [155, Proposition 7.4])

φk
e→ φ ⇐⇒ φ is lower semicontinuous and clφk

e→ φ.

For more details on epi-convergence, the readers may refer to [28, 155, 4].

The above characterization of epi-convergence is particularly useful for defin-

ing epi-convergence in distribution for random l.s.c. functions. Let (Ω,F , P ) be a

probability space and let φ be a random l.s.c. function on Rn. Then, epiφ induces

a probability measure on the Borel sets of the complete metric space (Cn+1, dCn+1).

In view of this fact, the epi-convergence in distribution can be well-defined. A se-

quence of random l.s.c. functions {φk} on Rn is said to epi-converge in distribution

to φ if the probability measures induced by epiφk on the metric space (Cn+1, dCn+1)
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weakly converge to that induced by epiφ. Alternatively, a more visible definition

of epi-convergence in distribution can be stated as follows.

Definition 2.6. Let {φk} be a sequence of random l.s.c. functions on Rn. We say

that {φk} epi-converges in distribution to φ, denoted by φk
e−d−→ φ, if for any rect-

angles R1, . . . , Rl with open interiors R◦1, . . . , R
◦
l and any real numbers a1, . . . , al,

Pr

{
inf
x∈R1

φ(x) > a1, · · · , inf
x∈Rl

φ(x) > al

}
≤ lim inf

k→∞
Pr

{
inf
x∈R1

φk(x) > a1, · · · , inf
x∈Rl

φk(x) > al

}
≤ lim sup

k→∞
Pr

{
inf
x∈R◦1

φk(x) ≥ a1, · · · , inf
x∈R◦l

φk(x) ≥ al

}
≤ Pr

{
inf
x∈R◦1

φ(x) ≥ a1, · · · , inf
x∈R◦l

φ(x) ≥ al

}
Epi-convergence in distribution gives us an elegant way of proving the conver-

gence in distribution of minimizers or εk-minimizers. The following epi-convergence

theorem of Knight [87, Theorem 1] is particularly useful in this regard (see also

[73, Proposition 9]).

Theorem 2.15 (Knight [87]). Let {φk} be a sequence of random l.s.c. functions

such that φk
e−d−→ φ. Assume that the following statements hold:

(i) xk is an εk-minimizer of φk with εk
p→ 0;

(ii) xk = Op(1);

(iii) the function φ has a unique minimizer x.

Then, xk
d→ x. In addition, if φ is a deterministic function, then xk

p→ x.

In particular, when all φk are convex functions and φ has a unique minimizer,

we know from [65] that x̂k is guaranteed to be Op(1). In order to apply Theorem

2.15 on epi-convergence in distribution to a constrained optimization problem, we
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need to transform the constrained optimization problem into an unconstrained

one by using the indicator function of the feasible set. This leads to the issue of

epi-convergence in distribution of the sum of two sequences of random functions.

The space of l.s.c functions can also be endowed with the topology of uniform

convergence on compact sets (or compact convergence). This topology is generated

by all the seminorms ‖ · ‖K , defined by

‖φ‖K := sup
x∈K
|φ(x)|,

as K ranges over all compact subsets of Rn. This topology is stronger than both

the topology of pointwise convergence and the topology of epi-convergence but

weaker than the topology of uniform convergence. Indeed, {φk} converges to φ in

this topology, denoted by φk
u→ φ, if and only if {φk} converges uniformly to φ on

each compact set, i.e.,

sup
t∈K
|φk(x)− φ(x)| → 0 ∀ compact set K ⊆ Rn.

We also use “
u−d−→” to denote the weak convergence (or convergence in distribution)

with respect to the topology of uniform convergence on compact sets. The following

result stated in [143, Lemma 1] will be used in the sequel.

Theorem 2.16 (Pflug [143]). Let {φk} be a sequence of random l.s.c. functions

and {ψk} be a sequence of deterministic l.s.c. functions. If either of the following

two assumptions holds:

(i) φk
e−d−→ φ and ψk

u→ ψ;

(ii) φk
u−d−→ φ and ψk

e→ ψ,

then φk + ψk
e−d−→ φ+ ψ.

In particular for a sequence of random convex functions, as a direct extension

of Rockafellar [153, Theorem 10.8], Andersen and Gill [2, Theorem II.1] proved an
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“in probability” version that the pointwise convergence in probability implies the

convergence in probability (and thus in distribution) with respect to the topology

of uniform convergence on compact subset, stated as follows:

Theorem 2.17 (Andersen and Gill [2]). Let E be an open convex subset of Rn and

let {φk} be a sequence of real-valued random convex functions on E such that for

each x ∈ E, φk(x)
p→ φ(x) as k →∞. Then φ is also convex and for any compact

set K ⊂ E,

sup
x∈K
|φk(x)− φ(x)| p→ 0 as k →∞.

For more details on epi-convergence in distribution, the readers may refer to

King and Wets [84], Geyer [64], Pflug [142, 143] and Knight [87].

2.6 The majorized proximal gradient method

Before we explore the subject of this section, we first briefly introduce the ma-

jorization method, which is a kind of general framework for solving optimization

problems. Let X be a finite-dimensional real Hilbert space equipped with an inner

product 〈·, ·〉 and its induced norm ‖ · ‖. Let f be a real-valued function to be

minimized over some subset K ⊆ X. A function f̃ is said to majorize the function

f at some point x over K if

f̃(x) = f(x) and f̃(x) ≥ f(x) ∀x ∈ K, (2.19)

The general principle of majorization methods for minimizing f over K is to

generate a sequence {xk+1} from an initial (feasible) point x0, by minimizing fk

instead of f over K in each iteration k ≥ 0, i.e.,

xk+1 = arg min
x∈K

fk(x),
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where the function fk majorizes the function f at xk over K. In order words,

geometrically, the surface fk lies above the surface f and touches the later at the

point xk. It directly follows from (2.19) that the majorization method processes

the descent property:

f(xk+1) ≤ fk(xk+1) ≤ fk(xk) = f(xk) ∀ k ≥ 0. (2.20)

Roughly speaking, the efficiency of a majorization method depends on the

quality of the majorization function in terms of two keys — (1) the deviation

of the majorization functions from the original one, and (2) the difficulty of the

majorization functions to be minimized computationally. Naturally, these two

aims can conflict. Therefore, to some extent, it is an art to construct majorization

functions, where varieties of inequalities may be used, depending on the insights

into the shape of the function to be minimized. The most common setting is

to systematically generate the majorization functions by a single generator f̂ :

X× X→ R as

fk(x) := f̂(x, xk) ∀ k ≥ 0.

Majorization methods under this setting are referred to as the classical Majorization-

Minimization (MM) algorithms, which have been extensively studied especially in

the statistical literature.

An MM algorithm first appeared as early as in the work of de Leeuw and

Heiser [31] for multidimensional scaling problems, while the original idea of using

a majorization function was enunciated even earlier by Ortega and Rheinboldt

[138] for linear search methods. The well-known Expectation-maximization (EM)

algorithm is a prominent example of an MM algorithm to maximum likelihood

estimation. For details of development and applications of MM algorithms, the

readers may refer to the recent survey paper [184] or several previous ones [32, 75,

11, 99, 78].
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Figure 2.1: The principle of majorization methods

The way to generate the sequence {xk} in MM algorithms can be viewed from

a different angle, expressed as

xk+1 ∈M(xk),

where M : K → 2K is a point-to-set map defined as

M(y) := arg min
x∈K

f̂(x, y).

In view of this fact, the convergence analysis for MM algorithms can be tracked

back to Zangwill’s contribution in [189] on the convergence theory for algorithms

derived from point-to-set maps. Later, Meyer [126] strengthened this early re-

sult to global convergence for the entire generated sequence under relatively weak

hypotheses rather than the subsequential convergence. By noting the close re-

lationship between the (generalized) fixed point of the map M(·) and the local

minimum and maximum of f , based on the results of Zangwill [189], Wu [183]

established some convergence results for the EM algorithm under certain condi-

tions. These results can be extended to MM algorithms since MM algorithms are



2.6 The majorized proximal gradient method 35

generalizations of the EM algorithm. Other existing convergence results of EM

and MM algorithms can be found in [97, 99, 98, 172, 137, 159], to name only a few.

To the best of our knowledge, most convergence results in the literature focus on

convergence to interior points of the feasible set only.

The subject of this section — the majorized proximal gradient method is

proposed based on the essence of the majorization method. Let g : X→ (−∞,∞]

be a proper closed convex function, h : X → R be a continuously differentiable

function on an open set of X containing the domain of g denoted by dom g := {x ∈

X | g(x) < ∞}, and p : X → R be a continuous (nonconvex) function. A class of

nonconvex nonsmooth optimization problems we will consider takes the form

min
x∈X

f(x) := h(x) + g(x) + p(x). (2.21)

This class of optimization problems apparently look unconstrained, but actually

allow constraints. The constraint x ∈ K can be absorbed into the function g via

the characteristic function δK provided that K is a closed convex subset of X.

We study this class of optimization problems for preparation of the problems

that will be addressed in the sequel. In particular, when p ≡ 0, the problem (2.21)

has been explored with the proximal gradient method in some references (e.g., see

[6, 59, 129, 170]). More closely-related studies can be found in Gao and Sun [62]

and Gao [61], in which the proximal subgradient method was proposed to solve

the problem (2.21) with the function p being concave. The proximal subgradient

method is essentially treated as a majorization method, but with line search allowed

if the majorization functions is not easy to construct. In other words, this method

ensures the decrease of objective values by using linear search instead of using a

global majorization for tractable implementation. Based on the same idea, here,

we propose the majorized proximal gradient method to solve the problem (2.21)

for general cases.
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Algorithm 2.1. (A majorized proximal gradient method)

Step 0. Input x0 ∈ X. Choose τ ∈ (0, 1) and δ ∈ (0, 1). Set k := 0.

Step 1. Choose a self-adjoint positive definite operator Mk : X→ X and construct

a convex function pk that majorizes p at xk.

Step 2. Solve the (strongly) convex optimization problem:

dk := arg min
d∈X

{
〈∇h(xk), d〉+ 1

2
〈d,Mkd〉+ g(xk+ d) + pk(xk+ d)

}
. (2.22)

Step 3. Choose αk > 0 and let lk be the smallest nonnegative integer satisfying

f(xk + αkτ ldk) ≤ f(xk) + δαkτ l∆k, (2.23)

where

∆k := 〈∇h(xk), dk〉+ g(xk+ dk)− g(xk) + pk(xk+ dk)− pk(xk). (2.24)

Set αk := αkτ lk and xk+1 := xk + αkdk.

Step 4. If converged, stop; otherwise, set k := k + 1 and go to Step 1.

In particular, when p = 0, Algorithm 2.1 reduces to the proximal gradient

method studied in [6, 59, 129, 170], and when p is a concave function, Algorithm

2.1 reduces to the proximal subgradient method studied in [62] and [61] if pk is

chosen to be

pk(x) := p(xk) + 〈Gk, x− xk〉 ∀ k ≥ 0

with Gk ∈ ∂p(xk). In Algorithm 2.1, the Armijo rule is applied to choosing αk due

to its simplicity and efficiency. Other kinds of line search rules may also be allowed

for this algorithm. The following result shows the well-definedness of the Armijo

rule in Algorithm 2.1. Its proof, as well as the one for the convergence later, is in
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line with the one for the proximal subgradient method in [61].

Lemma 2.18. Let {xk} and {dk} be two sequences generated from Algorithm 2.1.

Then we have that for each k ≥ 0,

∆k ≤ −〈dk,Mkdk〉 < 0, (2.25)

where ∆k is defined by (2.24) and

f(xk + αdk) ≤ f(xk) + α∆k + o(α) ∀α ∈ (0, 1]. (2.26)

Moreover, assume that ∇h is Lipschitz continuous with constant κ ≥ 0 over dom g

and λmin(Mk) ≥ ν > 0 ∀ k ≥ 0, where λmin(·) denotes the smallest eigenvalue.

Then for each k ≥ 0, we have that for any δ ∈ (0, 1),

f(xk + αdk) ≤ f(xk) + δα∆k ∀ 0 < α ≤ min{1, 2ν(1− δ)/κ}. (2.27)

Proof. Since dk is the optimal solution to the problem (2.22), we have

〈∇h(xk), dk〉+
1

2
〈dk,Mkdk〉+ (g + pk)(xk + dk)

≤ 〈∇h(xk), αdk〉+
1

2
〈αdk,Mk(αdk)〉+ (g + pk)(xk + αdk)

≤ α〈∇h(xk), dk〉+
α2

2
〈dk,Mkdk〉+ α(g + pk)(xk + dk) + (1− α)(g + pk)(xk),

where the last inequality follows from the convexity of g + pk. By rearranging the

terms, we obtain

∆ = 〈∇h(xk), dk〉+ (g + pk)(xk + dk)− (g + pk)(xk) ≤ −1 + α

2
〈dk,Mkdk〉.

Then, by letting α ↑ 1, we can obtain (2.25) since M is positive definite. Moreover,

since pk majorizes p at xk, together with the continuous differentiability of h and
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the convexity of g + pk, we have that for any α ∈ (0, 1],

f(xk + αdk)− f(xk)

= (h+ g + p)(xk + αdk)− (h+ g + p)(xk)

≤ (h+ g + pk)(xk + αdk)− (h+ g + pk)(xk)

≤ 〈∇h(xk), αdk〉+ o(α) + α(g + pk)(xk + dk) + (1− α)(g + pk)(xk)− (g + pk)(xk)

= α
(
〈∇h(xk), dk〉+ (g + pk)(xk + dk)− (g + pk)(xk)

)
+ o(α)

= α∆k + o(α), (2.28)

which proves (2.26). If in addition ∇h is Lipschitz continuous with constant κ ≥ 0

over dom g, then from the fundamental theorem of calculus, we have

h(xk + αdk)− h(xk) = 〈∇h(xk), αdk〉+

∫ 1

0

〈∇h(xk + tαdk)−∇h(xk), αdk〉dt

≤ α〈∇h(xk), dk〉+

∫ 1

0

‖∇h(xk + tαdk)−∇h(xk)‖‖αdk‖dt

≤ α〈∇h(xk), dk〉+
1

2
α2κ‖d‖2.

This implies that the term o(α) in (2.28) can be replaced by 1
2
α2κ‖dk‖2. When

λmin(Mk) ≥ ν > 0 ∀ k ≥ 0, we further have for any 0 < α ≤ 2ν(1− δ)/κ,

1

2
α2κ‖dk‖2 ≤ αν(1− δ)‖dk‖2 ≤ α(1− δ)〈dk,Mkdk〉 ≤ −α(1− δ)∆k.

This, together with (2.28), proves (2.27). Thus, we complete the proof.

To analyze the convergence of the majorized proximal gradient method, we

assume that the convex majorization function pk, k ≥ 0 are constructed from a

single generator p̂(x, y) : X× X→ R as

pk(x) := p̂(x, xk) ∀ k ≥ 0. (2.29)

This assumption provides a global connection between all the majorization func-

tions pk, k ≥ 0 to make the convergence analysis possible.
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Theorem 2.19. Let {xk} and {dk} be the sequences generated from Algorithm 2.1.

Assume that 0 < ν ≤ λmin(Mk) ≤ µ <∞ ∀ k ≥ 0. Then {f(xk)} is monotonically

decreasing satisfying that for each k ≥ 0,

f(xk+1)− f(xk) ≤ δαk∆k ≤ −δαkν‖dk‖2. (2.30)

In addition, suppose that inf αk > 0, then the following results holds:

(i) If {xkj} is a convergent subsequence of {xk}, then limj→∞ d
kj = 0.

(ii) If pk, k ≥ 0 are constructed from (2.29) with p̂(x, y) being continuous, then

any limit point x of {xk} satisfies

0 ∈ ∂(h+ g + p̂x)(x) = ∇h(x) + ∂g(x) + ∂p̂x(x),

where p̂x(x) := p̂(x, x).

Proof. Since λmin(Mk) ≥ ν > 0, from Lemma 2.18, we have

∆k ≤ −〈dk,Mkdk〉 ≤ −ν‖dk‖2. (2.31)

Then, the inequality (2.30) is immediate from (2.23) and (2.31). This directly

implies that {f(xk)} is monotonically decreasing.

(i) Suppose that limj→∞ x
kj → x. The semicontinuity of f implies f(x) ≤

lim infj→∞ f(xkj). This, together with the monotonic decreasing property of {f(xk)},

implies that {f(xk)} converges to a finite limit. Hence, {f(xk+1)−f(xk)} converges

to 0. Then, from (2.30), we obtain that

lim
k→∞

αk∆k = 0. (2.32)

Now we prove limj→∞ d
kj = 0 by contradiction. Suppose not. Then by passing to

a subsequence if necessary, there exists some γ > 0 such that ‖dkj‖ ≥ γ ∀ j ≥ 0.

It then follows from (2.31) that ∆kj ≤ −νγ ∀ j ≥ 0. This, together with (2.32),
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implies that limj→∞ α
kj = 0. Recall that αkj = αkjτ lkj and infk α

k > 0. Then there

exists some index j such that αkj < αkj and αkj ≤ τ for all j ≥ j. Furthermore,

from the choice of αkj (2.23), we have

f
(
xkj + (αkj/τ)dkj

)
> f(xkj) + δ(αkj/τ)∆k ∀ j ≥ j.

Thus, for all j ≥ j, we have

δ∆kj <
(h+ g + pkj)(xkj + (αkj/τ)dkj)− (h+ g + pkj)(xkj)

αkj/τ

≤ h(xkj + (αkj/τ)dkj)− h(xkj)

αkj/τ
+ (g + pkj)(xkj + dkj)− (g + pkj)(xkj).

Using the definition of ∆k, the last inequality can be rewritten as

h(xkj + (αkj/τ)dkj)− h(xkj)

αkj/τ
− 〈∇h(xkj), dkj〉 ≥ −(1− δ)∆kj .

Dividing both sides by ‖dk‖ and using (2.31) yields

h(xkj + α̂kjdkj/‖dkj‖)− h(xkj)

α̂kj
− 〈∇h(xkj), dkj〉

‖dkj‖
≥ −(1− δ) ∆kj

‖dkj‖
≥ (1− δ)‖dkj‖,

(2.33)

where α̂kj := (αkj/τ)‖dkj‖. Note that −αkj∆kj ≥ ναkj‖dkj‖2 ≥ νγαkj‖dkj‖ for

all j ≥ j. Thus, (2.32) implies that {αkj‖dkj‖} converges 0 and so is {α̂kj}. In

addition, since {dkj/‖dkj‖} is bounded, by passing to a subsequence if necessary,

we assume that {dkj/‖dkj‖} converges to some point d. Now letting j → ∞ in

(2.33), we obtain

0 = 〈∇f(x), d〉 − 〈∇f(x), d〉 ≥ (1− δ)τ > 0,

which is a clear contradiction. Thus, {dkj} converges to 0.

(ii) Suppose that limj→∞ x
kj = x. Since dkj is the optimal solution to the

problem (2.22). Then there exists some Gkj ∈ ∂(g + pkj)(xkj + dkj) such that

0 = ∇h(xkj) +Mkjdkj +Gkj . (2.34)
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Moreover, we know from [153, Theorem 24.7] that {Gkj} is bounded. By passing

to a subsequence if necessary, we assume that limj→∞G
kj = G. Then by letting

j →∞ in (2.34), we obtain that

0 = ∇h(x) +G. (2.35)

Moreover, Gkj ∈ ∂(g + pkj)(xkj + dkj) implies that

(g + pkj)(x) ≥ (g + pkj)(xkj + dkj) + 〈Gkj , x− (xkj + dkj)〉 ∀x ∈ X.

By letting j →∞, from (2.29), the continuity of p̂ and (ii), we obtain

g(x) + p̂(x, x) ≥ g(x) + p̂(x, x) + 〈G, x− x)〉 ∀x ∈ X,

which implies that G ∈ ∂(g+ p̂x)(x). This, together with (2.35) and [153, Theorem

23.8], proves (ii).

To make a closer look at Algorithm 2.1, the Armijo line search rule can be

regarded as providing a local quadratic majorization of the function h, which de-

pends on the choice Mk in each iteration. This arouses us to ask if the function h

can be globally majorized, whether the line search can be removed from Algorithm

2.1. We turn back to Lemma 2.18. In Lemma 2.18, if ∇h is Lipschitz continuous

with constant κ > 0, then by choosing Mk ≡ κI (here I stands for the identity op-

erator), the inequality (2.27) holds for α = 1 provided δ ∈ (0, 1/2]. More generally,

suppose that in each iteration k ≥ 0,

h(x) ≤ hk(x) := h(xk)+〈∇h(xk), x−xk〉+ 1

2
〈x−xk,Mk(x−xk)〉 ∀x ∈ X. (2.36)

In other words, the function h is globally majorized by a quadratic convex function

hk at xk. In this case, (2.28) can be explicitly written as

f(xk + αdk) ≤ f(xk) + α∆k +
1

2
α2〈dk,Mkdk〉

≤ f(xk) +
(
α− 1

2
α2
)

∆k ∀α ∈ (0, 1].
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This implies that the update xk+1 = xk + dk with the step length αk ≡ 1 in

Algorithm 2.1 is applicable if (2.36) holds. Therefore, the answer to our question

is positive. The simplified majorized proximal gradient method without line search

is described as follows:

Algorithm 2.2. (A majorized proximal gradient method without line

search)

Step 0. Input x0 ∈ X. Set k := 0.

Step 1. Construct a quadratic convex function hk that majorized h at xk as (2.36)

and construct a convex function pk that majorizes p at xk.

Step 2. Solve the (strongly) convex optimization problem:

xk+1 := arg min
x∈X

{
hk(x) + g(x) + pk(x)

}
. (2.37)

Step 3. If converged, stop; otherwise, set k := k + 1 and go to Step 1.

Algorithm 2.2 is particularly useful for the case that ∇h is Lipschitz contin-

uous. As the function hk + g + pk in (2.37) majorizes the function h + g + p at

xk for all k ≥ 0, Algorithm 2.2 is actually a majorization method for solving the

original nonconvex nonsmooth problem (2.21). In particular, if h(x) vanishes and

p(x) is convex, Algorithm 2.2 with the choice hk(x) := γk

2
‖x − xk‖2, γk > 0 and

pk(x) = p(x) reduces to the well-known (primal) proximal point algorithm studied

in [119, 154] for solving the convex optimization problem. In addition, the conver-

gence result in Theorem 2.19 for Algorithm 2.1 can also be adapted to Algorithm

2.2.



Chapter 3
Matrix completion with fixed basis

coefficients

In this chapter, we address low-rank matrix completion problems with fixed ba-

sis coefficients. The unknown matrix for recovery could be rectangular, symmet-

ric/Hermitian, or further symmetric/Hermition positive semidefinite. To discuss

all these cases simultaneously, throughout this chapter, we use a unified symbol

Vn1×n2 to denote the matrix space we concern, i.e., Rn1×n2 , Cn1×n2 , Sn or Hn.

The organization of this chapter is as follows: In Section 3.1, we introduce the

observation model of matrix completion with fixed basis coefficients and the formu-

lation of the rank-correction step. In Section 3.2, we establish a non-asymptotic

recovery error bound for the rank-correction step and discuss the impact of the

rank-correction term on reducing the recovery error. In Section 3.3, we derive

necessary and sufficient conditions for rank consistency of the rank-correction step

in the sense of Bach [7], in which constraint nondegeneracy for conic optimization

problem plays a key role in our analysis. The construction of the rank-correction

function is discussed in Section 3.4. Numerical results are reported in Section 3.5

to validate the efficiency of our proposed rank-corrected procedure.

43
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3.1 Problem formulation

In this section, we formulate the model of the matrix completion problem with

fixed basis coefficients, and then propose a rank-correction step for solving this

class of problems.

3.1.1 The observation model

Let {Θ1, . . . ,Θd} be a given orthonormal basis of the given real inner product space

Vn1×n2 . Then, any matrix X ∈ Vn1×n2 can be uniquely expressed in the form of

X =
d∑

k=1

〈Θk, X〉Θk,

where 〈Θk, X〉 is called the basis coefficient of X relative to Θk. Let X ∈ Vn1×n2 be

the unknown low-rank matrix to be recovered. In some practical applications, for

example, the correlation and density matrix completion, a few basis coefficients of

the unknown matrix X are fixed (or assumed to be fixed) due to a certain structure

or reliable prior information. Throughout this paper, we let α ⊆ {1, 2, . . . , d}

denote the set of the indices relative to which the basis coefficients are fixed, and β

denote the complement of α in {1, 2, . . . , d}, i.e., α∩β = ∅ and α∪β = {1, . . . , d}.

We define d1 := |α| and d2 := |β|.

When a few basis coefficients are fixed, one only needs to observe the rest for

recovering the unknown matrix X. Assume that we are given a collection of m

noisy observations of the basis coefficients relative to {Θk : k ∈ β} in the following

form

yi =
〈
Θωi , X

〉
+ νξi, i = 1, . . . ,m, (3.1)

where ωi are the indices randomly sampled from the index set β, ξi are the indepen-

dent and identically distributed (i.i.d.) noises with E(ξi) = 0 and E(ξ2
i ) = 1, and
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ν > 0 controls the magnitude of noise. Unless otherwise stated, we assume a gen-

eral weighted sampling (with replacement) scheme with the sampling distributions

of ωi as follows.

Assumption 3.1. The indices ω1, . . . , ωm are i.i.d. copies of a random variable ω

that has a probability distribution Π over {1, . . . , d} defined by

Pr(ω = k) =

 0 if k ∈ α,

pk > 0 if k ∈ β.

Note that each Θk, k ∈ β is assumed to be sampled with a positive probability

in this sampling scheme. In particular, when the sampling probability of all k ∈ β

are equal, i.e., pk = 1/d2 ∀ k ∈ β, we say that the observations are sampled

uniformly at random.

Next, we present some examples of low-rank matrix completion problems in

the above settings.

• Correlation matrix completion:

A correlation matrix is an n×n real symmetric or Hermitian positive semidef-

inite matrix with all diagonal entries being ones. Then, The recovery of a

correlation matrix is based on the observations of entries.

(i) For the real case, Vn1×n2 = Sn, d = n(n+ 1)/2, d1 = n,

Θα =
{
eie

T
i

∣∣ 1 ≤ i ≤ n
}

and Θβ =

{
1√
2

(eie
T
j + eje

T
i )

∣∣∣∣ 1 ≤ i < j ≤ n

}
.

(ii) For the complex case, Vn1×n2 = Hn, d = n2, d1 = n,

Θα =
{
eie

T
i

∣∣ 1 ≤ i ≤ n
}

and Θβ =

{
1√
2

(eie
T
j + eje

T
i ),

√
−1√
2

(eie
T
j − ejeTi )

∣∣∣∣i < j

}
.

Here,
√
−1 represents the imaginary unit. Of course, one may fix some off-

diagonal entries in specific applications.
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• Density matrix completion:

A density matrix of dimension n = 2l for some positive integer l is an n× n

Hermitian positive semidefinite matrix with trace one. In quantum state

tomography, one aims to recover a density matrix from Pauli measurements

(i.e.,observations of the coefficients relative to the Pauli basis) [71, 53], given

by

Θα=

{
1√
n
In

}
and Θβ =

{
1√
n

(σs1 ⊗ · · · ⊗ σsl)
∣∣∣∣ (s1, . . . , sl) ∈ {0, 1, 2, 3}l

}∖
Θα,

where “⊗” means the Kronecker product of two matrices and

σ0 =

1 0

0 1

 , σ1 =

0 1

1 0

 , σ2 =

 0 −
√
−1

√
−1 0

 , σ3 =

1 0

0 −1


are the Pauli matrices. In this setting, Vn1×n2 = Hn, Tr(X) = 〈In, X〉 = 1,

d = n2, and d1 = 1.

• Rectangular matrix completion:

Assume that a few entries of a rectangular matrix are known and let I be

the index set of these entries. One aims to recover this rectangular matrix

from the observations of the rest entries.

(i) For the real case, Vn1×n2 = Rn1×n2 , d = n1n2, d1 = |I|,

Θα =
{
eie

T
j

∣∣ (i, j) ∈ I
}

and Θβ =
{
eie

T
j

∣∣ (i, j) /∈ I
}
.

(ii) For the complex case, Vn1×n2 = Cn1×n2 , d = 2n1n2, d1 = 2|I|,

Θα =
{
eie

T
j ,
√
−1eie

T
j

∣∣ (i, j) ∈ I
}

and Θβ =
{
eie

T
j ,
√
−1eie

T
j

∣∣ (i, j) /∈ I
}
.

For convenience of discussion, we first introduce some linear operators that are

frequently used in the subsequent sections. For any given index set π ⊆ {1, . . . , d},
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e.g., π = α or π = β, we define the linear operators Rπ: Vn1×n2 → R|π| and Pπ:

Vn1×n2 → Vn1×n2 , respectively, by

Rπ(X) :=
(
〈Θk, X〉

)T
k∈π and Pπ(X) :=

∑
k∈π

〈Θk, X〉Θk, X ∈ Vn1×n2 . (3.2)

It is easy to see that Pπ = R∗πRπ. Define the self-adjoint operators Qβ : Vn1×n2 →

Vn1×n2 and Q†β : Vn1×n2 → Vn1×n2 associated with the sampling probability, re-

spectively, by

Qβ(X) :=
∑
k∈β

pk〈Θk, X〉Θk and Q†β(X) :=
∑
k∈β

1

pk
〈Θk, X〉Θk, X∈Vn1×n2 . (3.3)

One may easily verify that the operators Qβ, Q†β and Pβ satisfy the following

relations

QβQ†β = Q†βQβ = Pβ, PβQβ = QβPβ = Qβ and Q†βR
∗
α = 0. (3.4)

Let Ω be the multiset of all the sampled indices from the index set β, i.e.,

Ω := {ω1, . . . , ωm}.

With a slight abuse on notation, we define the sampling operatorRΩ: Vn1×n2 → Rm

associated with Ω by

RΩ(X) :=
(
〈Θω1 , X〉, . . . , 〈Θωm , X〉

)T
, X ∈ Vn1×n2 .

Then, the observation model (3.1) can be expressed in the following vector form

y = RΩ(X) + νξ, (3.5)

where y = (y1, . . . , ym)T ∈ Rm and ξ = (ξ1, . . . , ξm)T ∈ Rm denote the observation

vector and the noise vector, respectively.
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3.1.2 The rank-correction step

It is obvious that a small portion of (noisy) observations may be generated from

lots of different matrices. However, the low-rank structure of the unknown matrix

could drastically reduce the amount of candidate matrices. This property makes it

possible to reconstruct the unknown low-rank matrix by minimizing the deviation

from observations and the rank simultaneously. This natural idea leads to the rank

penalized least squares estimator for recovery as follows:

min
X∈Vn1×n2

1

2m
‖y −RΩ(X)‖2

2 + ρmrank(X)

s.t. Rα(X) = Rα(X),

(3.6)

where ρm > 0 is a parameter depending on the number of observations to control

the tradeoff between the deviation and the rank. However, the rank function is

discontinuous and nonconvex, which makes the optimization problem (3.6) NP-

hard in general.

The nuclear norm, i.e., the sum of all singular values, is the convex envelope

of the rank function over a unit ball of spectral norm [49]. In many situations,

the nuclear norm has been demonstrated to be a successful alternative to the rank

function for matrix recovery, see e.g., [49, 150, 21, 22, 70, 19, 149, 91, 135, 86].

Applying this technique to our matrix completion model brings us the nuclear

norm penalized least square estimator instead of (3.6) as follows:

min
X∈Vn1×n2

1

2m
‖y −RΩ(X)‖2

2 + ρm‖X‖∗

s.t. Rα(X) = Rα(X).

(3.7)

This convex optimization problem is computationally tractable. However, its ef-

ficiency for encouraging a low-rank solution is not universal. The efficiency may

be challenged if the observations are sampled at random obeying a general dis-

tribution, particularly for the case considered in [158] where certain rows and/or
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columns are sampled with high probability. The setting of fixed basis coefficients

in our matrix completion model can be regarded to be under an extreme sampling

scheme. In particular, for the correlation and density matrix completion, the nucle-

ar norm completely loses its efficiency for low rank since in this case it reduces to a

constant. In order to overcome the shortcomings of the nuclear norm penalization,

we propose a rank-correction step to generate an estimator with a better recovery

performance.

Given a spectral operator F : Vn1×n2 → Vn1×n2 (see Definition 2.2) and an

initial estimator X̃m for the unknown matrix X, say the nuclear norm penalized

least squares estimator or one of its analogies, our rank-correction step is to solve

the convex optimization problem

min
X∈Vn1×n2

1

2m
‖y−RΩ(X)‖2

2 + ρm

(
‖X‖∗− 〈F (X̃m), X〉+

γm
2
‖X −X̃m‖2

F

)
s.t. Rα(X) = Rα(X),

(3.8)

where ρm > 0 and γm ≥ 0 are the regularization parameters depending on the

number of observations. The last quadratic proximal term is added to guarantee

the boundness of the solution to (3.8). If the function ‖X‖∗−〈F (X̃m), X〉 is level-

bounded, one may simply set γm = 0. Clearly, when F ≡ 0 and γm = 0, the

problem (3.8) reduces to the nuclear norm penalized least squares problem. In

the sequel, we call −〈F (X̃m), X〉 the rank-correction term. If the true matrix is

known to be positive semidefinite, we add the constraint X ∈ Sn+ to (3.8). Thus,

the rank-correction step is to solve the convex conic optimization problem

min
X∈Sn

1

2m
‖y −RΩ(X)‖2

2 + ρm

(
〈I − F (X̃m), X〉+

γm
2
‖X − X̃m‖2

F

)
s.t. Rα(X) = Rα(X), X ∈ Sn+.

(3.9)

For this case, we assume that the initial estimator X̃m belongs to Sn+ as the pro-

jection of any estimator onto Sn+ can approximate the true matrix X better.
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The rank-correction step above is inspired by the majorized penalty approach

recently proposed by Gao and Sun [62] for solving the rank constrained matrix

optimization problem:

min h(X)

s.t. rank(X) ≤ r, X ∈ K,
(3.10)

where r ≥ 1, h : Vn1×n2 → R is a given continuous function and K ∈ Vn1×n2 is a

closed convex set. Note that for any X ∈ Vn1×n2 , the constraint rank(X) ≤ r is

equivalent to

0 = σr+1(X) + · · ·+ σn(X) = ‖X‖∗ − ‖X‖(r),

where ‖X‖(r) := σ1(X) + · · · + σr(X) denotes the Ky Fan r-norm. The central

idea of the majorized penalty approach is to solve the following penalized version

of (3.10):

min h(X) + ρ
(
‖X‖∗ − ‖X‖(r)

)
s.t. X ∈ K,

where ρ > 0 is the penalty parameter. With the current iterate Xk, the majorized

penalty approach yields the next iterate Xk+1 by solving the convex optimization

problem

min ĥk(X) + ρ
(
‖X‖∗ − 〈Gk, X〉+

γk
2
‖X −Xk‖2

F

)
s.t. X ∈ K,

(3.11)

where γk ≥ 0, Gk is a subgradient of the convex function ‖X‖(r) at Xk, and ĥk is

a convex majorization function of h at Xk. Comparing with (3.8), one may notice

that our proposed rank-correction step is close to one step of the majorized penalty

approach.

Due to the structured randomness of matrix completion, we expect that the

estimator generated from the rank-correction step possesses some favorable prop-

erties for recovery. The key issue is how to construct the rank-correction function
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F to make such improvements possible. In the next two sections, we provide theo-

retical supports to our proposed rank-correction step, from which some important

guidelines on the construction of F can be captured.

Henceforth, we let X̂m denote the estimator generated from the rank-correction

step (3.8) or (3.9) for the corresponding cases and let r = rank(X) ≥ 1. Through-

out this chapter, for any X ∈ Vn1×n2 and any (U, V ) ∈ On1,n2(X), we write

U = [U1 U2] and V = [V1 V2] with U1 ∈ On1×r, U2 ∈ On1×(n1−r), V1 ∈ On2×r

and V2 ∈ On2×(n2−r). Meanwhile, for any X ∈ Sn+ and any P ∈ On(X), we write

P = [P1 P2] with P1 ∈ On×r and P2 ∈ On×(n−r).

3.2 Error bounds

In this section, we aim to derive a recovery error bound in the Frobenius norm

for the rank-correction step and discuss the impact of the rank-correction term on

the obtained bound.The following analysis focuses on the cases for recovering a

rectangular matrix or a symmetric/Hermitian matrix. All the results obtained in

this section are applicable to the positive semidefinite case since adding more prior

information can only improve recoverability.

We first introduce the orthogonal decomposition Vn1×n2 = T ⊕ T⊥ withT :=
{
X ∈ Vn1×n2

∣∣ X = X1 +X2 with col(X1) ⊆ col(X), row(X2) ⊆ row(X)
}
,

T⊥ :=
{
X ∈ Vn1×n2

∣∣ row(X) ⊥ row(X) and col(X) ⊥ col(X)
}
,

where row(X) and col(X) denote the row space and column space of the matrix

X, respectively. Let PT : Vn1×n2 → Vn1×n2 and PT⊥ : Vn1×n2 → Vn1×n2 be the

orthogonal projection operators onto the subspaces T and T⊥, respectively. It is
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not hard to verify thatPT (X) = U1U
T
1X +XV 1V

T
1 − U1U

T
1XV 1V

T
1 ,

PT⊥(X) = U2U
T
2XV 2V

T
2

(3.12)

for any X ∈ Vn1×n2 and (U, V ) ∈ On1,n2(X). Define am and bm, respectively, by am := min
{
‖U1V

T
1−PT (F (X̃m) + γmX̃m))‖, ‖U1V

T
1−(F (X̃m) + γmX̃m))‖

}
bm := 1− ‖PT⊥(F (X̃m) + γmX̃m))‖.

(3.13)

Note that the first term in the objective function of (3.8) can be rewritten as

1

2m
‖y −RΩ(X)‖2

2 =
1

2m

∥∥RΩ(X −X)
∥∥2

2
− ν

m
〈R∗Ω(ξ), X〉 .

Using the optimality of X̂m to the problem (3.8), we obtain the following result.

Theorem 3.1. Assume that ‖PT⊥(F (X̃m)+ γmX̃m)‖< 1. For any κ > 1, if

ρm ≥
κν

bm

∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥, (3.14)

then the following inequality holds:

1

2m

∥∥RΩ(X̂m−X)
∥∥2

2
≤
√

2r
(
am+

bm
κ

)
ρm‖X̂m−X‖F +

ρmγm
2

(
‖X‖2

F−‖X̂m‖2
F

)
.

(3.15)

Proof. Let ∆m := X̂m−X. Since X̂m is optimal to (3.8) and X is feasible to (3.8),

it follows that

1

2m
‖RΩ(∆m)‖2

2 ≤
〈 ν
m
R∗Ω(ξ),∆m

〉
− ρm

(
‖X̂m‖∗ − ‖X‖∗ − 〈F (X̃m) + γmX̃m,∆m〉

)
+
ρmγm

2

(
‖X‖2

F − ‖X̂m‖2
F

)
. (3.16)

Then, it follows from (3.14) that〈 ν
m
R∗Ω(ξ),∆m

〉
≤ ν

∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥(‖PT (∆m)‖∗ + ‖PT⊥(∆m)‖∗
)

≤ ρmbm
κ

(
‖PT (∆m)‖∗ + ‖PT⊥(∆m)‖∗

)
. (3.17)
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From the directional derivative of the nuclear norm at X (see [176, Theorem 1]),

we have

‖X̂m‖∗ − ‖X‖∗ ≥ 〈U1V
T
1 ,∆m〉+ ‖UT

2 ∆mV 2‖∗.

This, together with equations (3.12) and (3.13), implies that

‖X̂m‖∗ − ‖X‖∗ − 〈F (X̃m)+γmX̃m,∆m〉

≥ 〈U1V
T
1 ,∆m〉+‖U

T
2 ∆mV 2‖∗−〈F (X̃m) + γmX̃m,∆m〉

= 〈U1V
T
1−PT (F (X̃m)+γmX̃m),∆m〉+‖PT⊥(∆m)‖∗−〈PT⊥(F (X̃m)+γmX̃m),∆m〉

= 〈U1V
T
1−PT (F (X̃m)+γmX̃m),PT (∆m)〉+ ‖PT⊥(∆m)‖∗

− 〈PT⊥(F (X̃m)+γmX̃m),PT⊥(∆m)〉

≥ −min
{
‖U1V

T
1−PT (F (X̃m)+γmX̃m)‖, ‖U1V

T
1−(F (X̃m)+γmX̃m)‖

}
‖PT (∆m)‖∗

+
(
1−‖PT⊥(F (X̃m+γmX̃m)‖

)
‖PT⊥(∆m)‖∗

=− am‖PT (∆m)‖∗ + bm‖PT⊥(∆m)‖∗. (3.18)

By substituting (3.18) and (3.17) into (3.16), we obtain that

1

2m
‖RΩ(∆m)‖2

2 ≤ ρm

((
am +

bm
κ

)
‖PT (∆m)‖∗ −

(
bm −

bm
κ

)
‖PT⊥(∆m)‖∗

)
+
ρmγm

2
(‖X‖2

F − ‖X̂m‖2
F ). (3.19)

Note that rank(PT (∆m)) ≤ 2r. Hence,

‖PT (∆m)‖∗ ≤
√

2r‖PT (∆m)‖F ≤
√

2r‖∆m‖F ,

and the desired result follows from (3.19). Thus, we complete the proof.

Theorem 3.1 shows that, to derive an error bound on ‖X̂m − X‖F , we only

need to establish the relation between ‖X̂m − X‖2
F and 1

m
‖RΩ(X̂m − X)‖2

2. It

is well-known that the sampling operator RΩ does not satisfy the RIP, but it

has a similar property with high probability under certain conditions (see, e.g.,
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[135, 91, 86, 110]). For deriving such a property, here, we impose a bound restriction

on the true matrix X in the form of ‖Rβ(X)‖∞ ≤ h. This condition is very

mild since a bound is often known in some applications such as in the correlation

and density matrix completion. Correspondingly, we add the bound constraint

‖Rβ(X)‖∞ ≤ h to the problem (3.8) in the rank-correction step. Since the feasible

set is bounded in this case, we simply set γm = 0 and let X̂h
m denote the estimator

generated from the rank-correction step in this case.

The above boundedness setting is similar to the one adopted by Klopp [86]

for the nuclear norm penalized least squares estimator. A slight difference is that

the upper bound is imposed on the basis coefficients of X relative to {Θk : k ∈ β}

rather than all the entries of X. It is easy to see that if the bound is not too tight,

the estimator X̂h
m is the same as X̂m. Therefore, we next derive the recovery error

bound of X̂h
m instead of X̂m, by following Klopp’s arguments in [86], which are also

in line with the work done by Negahban and Wainwright [135].

Let µ1 be a constant to control the smallest sampling probability for observa-

tions as

pk ≥ (µ1d2)−1 ∀ k ∈ β. (3.20)

It follows from Assumption 3.1 that µ1 ≥ 1 and in particular µ1 = 1 for the uniform

sampling. Note that the magnitude of µ1 does not depend on d2 or the matrix size.

By the definition of Qβ, we then have

〈Qβ(∆),∆〉 ≥ (µ1d2)−1‖∆‖2
F ∀∆ ∈ {∆∈Vn1×n2 | Rα(∆) = 0}. (3.21)

Let {ε1, . . . , εm} be an i.i.d. Rademacher sequence, i.e., an i.i.d. sequence of

Bernoulli random variables taking the values 1 and −1 with probability 1/2. Define

ϑm := E
∥∥∥ 1

m
R∗Ω(ε)

∥∥∥ with ε = (ε1, . . . , εm)T. (3.22)

Then, we can obtain a similar result to [86, Lemma 12] by showing that the sam-

pling operatorRΩ satisfies some approximate RIP for the matrices in some specified



3.2 Error bounds 55

sets.

Lemma 3.2. Given any s > 0 and t > 0, define

K(s, t) :=
{

∆∈Vn1×n2
∣∣Rα(∆)=0, ‖Rβ(∆)‖∞=1, ‖∆‖∗≤s‖∆‖F , 〈Qβ(∆),∆〉≥ t

}
.

Then, for any θ, τ1 and τ2 satisfying

θ > 1, 0 < τ1 < 1 and 0 < τ2 <
τ1

θ
, (3.23)

with probability at least 1− exp(−(τ1−θτ2)2mt2/2)
1−exp(−(θ2−1)(τ1−θτ2)2mt2/2)

,

1

m
‖RΩ(∆)‖2

2 ≥ (1− τ1)〈Qβ(∆),∆〉 − 16

τ2

s2µ1d2ϑ
2
m ∀∆ ∈ K(s, t). (3.24)

In particular, given any constant c > 0, with probability at least 1− (n1+n2)−c

1−2−(θ2−1)c
, the

inequality (3.24) holds with t =
√

2c log(n1+n2)
(τ1−θτ2)2m

.

Proof. The proof is similar to that of [86, Lemma 12]. For any s, t > 0 and τ1, τ2, θ

satisfying (3.23), we need to show that the event

E=
{
∃∆∈K(s, t) such that

∣∣∣ 1

m
‖RΩ(∆)‖2

2−〈Qβ(∆),∆〉
∣∣∣≥τ1〈Qβ(∆),∆〉+ 16

τ2

s2µ1d2ϑ
2
m

}
occurs with probability less than exp(−(τ1−θτ2)2mt2/2)

1−exp(−(θ2−1)(τ1−θτ2)2mt2/2)
. We first decompose

K(s, t) as

K(s, t) =
∞⋃
k=1

{
∆ ∈ K(s, t)

∣∣ θk−1t ≤ 〈Qβ(∆),∆〉 ≤ θkt
}
.

For any a ≥ t, we further define

K(s, t, a) := {∆ ∈ K(s, t) | 〈Qβ(∆),∆〉 ≤ a}.

Then we get E ⊆
⋃∞
k=1 Ek with

Ek=
{
∃∆∈K(s, t, θkt) such that

∣∣∣ 1

m
‖RΩ(∆)‖2

2−〈Qβ(∆),∆〉
∣∣∣≥θk−1τ1t+

16

τ2

s2µ1d2ϑ
2
m

}
.
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Then, we need to estimate the probability of each event Ek. Define

Za := sup
∆∈K(s,t,a)

∣∣∣ 1

m
‖RΩ(∆)‖2

2 − 〈Qβ(∆),∆〉
∣∣∣.

Notice that for any ∆ ∈ Vn1×n2 ,

1

m
‖RΩ(∆)‖2

2 =
1

m

m∑
i=1

〈Θωi ,∆〉2
a.s.→ E(〈Θωi ,∆〉2) = 〈Qβ(∆),∆〉.

Since ‖Rβ(∆)‖∞ ≤ 1 for all ∆ ∈ K(s, t), from Massart’s Hoeffding type concen-

tration inequality [120, Theorem 9] for suprema of empirical processes, we have

Pr
(
Za ≥ E(Za) + ε

)
≤ exp

(
−mε

2

2

)
∀ ε > 0. (3.25)

Next, we use the standard Rademacher symmetrization in the theory of empiri-

cal processes to further derive an upper bound of E(Za). Let {ε1, . . . , εm} be a

Rademacher sequence. Then, we have

E(Za) = E
(

sup
∆∈K(s,t,a)

∣∣∣ 1

m

m∑
i=1

〈Θωi ,∆〉2 − E
(
〈Θωi ,∆〉2

)∣∣∣)
≤ 2E

(
sup

∆∈K(s,t,a)

∣∣∣ 1

m

m∑
i=1

εi〈Θωi ,∆〉2
∣∣∣)

≤ 8E
(

sup
∆∈K(s,t,a)

∣∣∣ 1

m

m∑
i=1

εi〈Θωi ,∆〉
∣∣∣)

= 8E
(

sup
∆∈K(s,t,a)

∣∣∣ 1

m

m∑
i=1

〈R∗Ω(ε),∆〉
∣∣∣)

≤ 8E
∥∥∥ 1

m
R∗Ω(ε)

∥∥∥( sup
∆∈K(s,t,a)

‖∆‖∗
)
, (3.26)

where the first inequality follows from the symmetrization theorem (e.g., see [173,

Lemma 2.3.1] and [16, Theorem 14.3]) and the second inequality follows from

the contraction theorem (e.g., see [101, Theorem 4.12] and [16, Theorem 14.4]).

Moreover, from (3.21), we have

‖∆‖∗ ≤ s‖∆‖F ≤ s
√
µ1d2〈Qβ(∆),∆〉 ≤ s

√
µ1d2a ∀∆ ∈ K(s, t, a). (3.27)
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Combining (3.26) and (3.27) with the definition of ϑm in (3.22), we obtain that

E(Za) +
(τ1

θ
− τ2

)
a ≤ 8sϑm

√
µ1d2a+

(τ1

θ
− τ2

)
a

= sϑm

√
32µ1d2

τ2

·
√

2aτ2 +
(τ1

θ
− τ2

)
a

≤ 16

τ2

s2µ1d2ϑ
2
m +

τ1

θ
a,

where the second inequality follows from the simple fact x1x2 ≤ (x2
1 + x2

2)/2 for

any x1, x2 ≥ 0. Then, it follows from (3.25) that

Pr

(
Za≥

τ1

θ
a+

16

τ2

s2µ1d2ϑ
2
m

)
≤Pr

(
Za≥E(Za)+

(τ1

θ
−τ2

)
a

)
≤exp

(
−
(τ1

θ
−τ2

)2 ma2

2

)
.

This implies that

Pr(Ek) ≤ exp
(
− 1

2
θ2(k−1)(τ1 − θτ2)2mt2

)
.

Then, since θ > 1, by using θk ≥ 1 + k(θ − 1) for any k ≥ 1, we have

Pr(E) ≤
∞∑
k=1

Pr(Ek) ≤
∞∑
k=1

exp
(
− 1

2
θ2(k−1)(τ1 − θτ2)2mt2

)
≤ exp

(
− 1

2
(τ1 − θτ2)2mt2

) ∞∑
k=1

exp
(
− 1

2
(θ2(k−1) − 1)(τ1 − θτ2)2mt2

)
≤ exp

(
− 1

2
(τ1 − θτ2)2mt2

) ∞∑
k=1

exp
(
− 1

2
(k − 1)(θ2 − 1)(τ1 − θτ2)2mt2

)
≤

exp
(
−(τ1 − θτ2)2mt2/2

)
1− exp

(
−(θ2 − 1)(τ1 − θτ2)2mt2/2

) .
In particular, for any constant c > 0, let t =

√
2c log(n1+n2)
(τ1−θτ2)2m

. Then, direct calculation

yields

exp
(
− (τ1 − θτ2)2mt2/2

)
1− exp

(
− (θ2 − 1)(τ1 − θτ2)2mt2/2

) =
(n1 + n2)−c

1− (n1 + n2)−(θ2−1)c
≤ (n1 + n2)−c

1− 2−(θ2−1)c
.

Thus, we complete the proof.

Now, combining Theorem 3.1 and Lemma 3.2, we obtain the following result.
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Theorem 3.3. Assume that ‖PT⊥(F (X̃m))‖< 1 and ‖Rβ(X)‖∞≤ h for some h.

Then, there exist some positive absolute constants c0, c1, c2 and C0 such that for

any κ > 1, if ρm is chosen as (3.14), then with probability at least 1−c1(n1+n2)−c2,

‖X̂h
m −X‖2

F

d2

≤ C0 max

{
µ2

1d2r

(
c2

0

(
am +

bm
κ

)2

ρ2
m +

( κ

κ− 1

)(
1 +

am
bm

)2

ϑ2
mh

2

)
,

h2µ1

√
log(n1 + n2)

m

}
. (3.28)

Proof. The proof is similar to that of [86, Theorem 3]. Let ∆h
m := X̂h

m − X. By

noting that γm = 0 in this case, from (3.19), we have(
am +

bm
κ

)
‖PT (∆h

m)‖∗ −
(
bm −

bm
κ

)
‖PT⊥(∆h

m)‖∗ ≥ 0.

Then, by setting wm := κ
κ−1

(
1 + am

bm

)
, together with the above inequality, we obtain

that

‖∆h
m‖∗ ≤ ‖PT (∆h

m)‖∗ + ‖PT⊥(∆h
m)‖∗ ≤ wm‖PT (∆h

m)‖∗ ≤
√

2rwm‖∆h
m‖F . (3.29)

Let hm := ‖Rβ(∆h
m)‖∞. Clearly, hm ≤ 2h. For any fixed constants c > 0 and any

fixed θ, τ1, τ2 satisfying (3.23), we proceed the discussions by two cases:

Case 1. Suppose that 〈Qβ(∆h
m),∆h

m〉 ≤ h2
m

√
2c log(n1+n2)
(τ1−θτ2)2m

. From (3.21), we obtain

that

‖∆h
m‖2

F

d2

≤ 4h2µ1

√
2c log(n1 + n2)

(τ1 − θτ2)2m
. (3.30)

Case 2. Suppose that 〈Qβ(∆h
m),∆h

m〉 > h2
m

√
2c log(n1+n2)
(τ1−θτ2)2m

. Then, from (3.29), we

have ∆h
m/hm ∈ K(s, t) with s =

√
2rwm and t =

√
2c log(n1+n2)
(τ1−θτ2)2m

. Together with

Lemma 3.2, we obtain that with probability at least 1− (n1+n2)−c

1−2−(θ2−1)c
,

(1− τ1)〈Qβ(∆h
m),∆h

m〉 ≤
1

m
‖RΩ(∆h

m)‖2
2 +

32

τ2

w2
mµ1d2rϑ

2
mh

2
m.
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Combining the above inequality with Theorem 3.1 and the equation (3.21), we

obtain that for any given τ3 satisfying 0 < τ3 < 1,

‖∆h
m‖2

F

d2

≤ µ1〈Qβ(∆h
m),∆h

m〉

≤ µ1

1− τ1

( 1

m
‖RΩ(∆h

m)‖2
2 +

32

τ2

w2
mµ1d2rϑ

2
mh

2
m

)
≤ 2
√

2r

1− τ1

(
am +

bm
κ

)
µ1ρm‖∆h

m‖F +
32

(1− τ1)τ2

w2
mµ

2
1d2rϑ

2
mh

2
m

≤ τ3
‖∆h

m‖2
F

d2

+
2

(1− τ1)2τ3

(
am +

bm
κ

)2

µ2
1ρ

2
mrd2 +

32

(1− τ1)τ2

w2
mµ

2
1d2rϑ

2
mh

2
m.

By plugging in wm, we have that

‖∆h
m‖2

F

d2

≤ µ2
1d2r

1− τ3

(
2

(1−τ1)2τ3

(
am+

bm
κ

)2

ρ2
m +

128

(1− τ1)τ2

( κ

κ−1

)(
1+

am
bm

)2

ϑ2
mh

2

)
.

(3.31)

Finally, by choosing τ1, τ2, τ3 and θ to be absolute constants in (3.30) and (3.31),

we complete the proof.

We remind the readers that in the proof of Theorem 3.3, when the probability

is fixed, (i.e., the constants c and θ are fixed), a tighter error bound can be achieved

by choosing τ1, τ2 and τ3 beyond absolute constants. More precisely, the error

bound (3.31) can be minimized over 0 < τ3 < 1, and after that, the joint error

bound of (3.30) and (3.31) can be further minimized over 0 < τ1 < 1 and 0 < τ2 <

θ/τ1. Nevertheless, for simplicity of our discussions, we stay with the error bound

(3.28) in Theorem 3.3 in the sequel.

In order to choose a parameter ρm such that (3.14) holds, we need to estimate

‖ 1
m
R∗Ω(ξ)‖. For this purpose, we make the following assumption on the noises.

Assumption 3.2. The i.i.d. noise variables ξi are sub-exponential, i.e., there exist

positive constants c1, c2 such that for all t > 0,

Pr
(
|ξi| ≥ t

)
≤ c1 exp(−c2t).
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The noncommutative Bernstein inequality is a useful tool for the study of

matrix completion problems. It provides bounds of the probability that the sum

of random matrices deviates from its mean in the operator norm (see, e.g., [149,

169, 70]). Recently, the noncommutative Bernstein inequality was extended by

replacing bounds of the operator norm of matrices with bounds of the Orlicz norms

(see [90, 91]). Given any s ≥ 1, the ψs Orlicz norm of a random variable z is defined

by

‖z‖ψs := inf

{
t > 0

∣∣∣∣ E exp

(
|z|s

ts

)
≤ 2

}
.

The Orlicz norms are useful to characterize the tail behavior of random variables.

The following noncommutative Bernstein inequality is taken from [88, Corollary

2.1].

Theorem 3.4 (Koltchinskii [88]). Let Z1, . . . , Zm ∈ Vn1×n2 be independent random

matrices with mean zero. Suppose that max
{∥∥‖Zi‖∥∥ψs , 2E 1

2 (‖Zi‖2)
}
< $s for some

constant $s. Define

σZ := max

{∥∥∥∥ 1

m

m∑
i=1

E(ZiZ
T
i )

∥∥∥∥1/2

,

∥∥∥∥ 1

m

m∑
i=1

E(ZT
i Zi)

∥∥∥∥1/2
}
.

Then, there exists a constant C such that for all t > 0, with probability at least

1− exp(−t),∥∥∥∥ 1

m

m∑
i=1

Zi

∥∥∥∥ ≤ C max

{
σZ

√
t+ log(n1 + n2)

m
,$s

(
log

$s

σZ

)1/s
t+ log(n1+ n2)

m

}
.

It is known that a random variable is sub-exponential if and only its ψ1 Orlicz

norm is finite [173]. To apply the noncommutative Bernstein inequality, we let µ2

be a constant such that

max

{∥∥∥∥∑
k∈β

pkΘkΘ
T
k

∥∥∥∥, ∥∥∥∥∑
k∈β

pkΘ
T
kΘk

∥∥∥∥
}
≤ µ2

n
. (3.32)

Notice that

Tr

(∑
k∈β

pkΘkΘ
T
k

)
= Tr

(∑
k∈β

pkΘ
T
kΘk

)
= 1.
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Thus, the lower bound of the term on the left-hand side is 1/n. This implies

that µ2 ≥ 1. In the following, we also assume that the magnitude of µ2 does

not depend on the matrix size. For example, µ2 = 1 for the correlation matrix

completion under uniform sampling and the density matrix completion described

in Section 3.1. The following result extends [91, Lemma 2] and [86, Lemmas 5 &

6] from the standard basis to an arbitrary orthonormal basis. A similar result can

also be found in [135, Lemma 6].

Lemma 3.5. Under Assumption 3.2, there exists a positive constant C∗ (only

depending on the ψ1 Orlicz norm of ξk) such that for all t > 0, with probability at

least 1− exp(−t),∥∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥ ≤ C∗max

{√
µ2(t+ log(n1+ n2))

mn
,
log(n)(t+ log(n1+ n2))

m

}
. (3.33)

In particular, when m ≥ n log3(n1 + n2)/µ2, we also have

E
∥∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥ ≤ C∗

√
2eµ2 log(n1 + n2)

mn
, (3.34)

where e is the exponential constant.

Proof. Recall that
1

m
R∗Ω(ξ) =

1

m

m∑
i=1

ξiΘωi .

Let Zi := ξiΘωi . Since E(ξi) = 0, the independence of ξi and Θωi implies that

E(Zi) = 0. Since ‖Θωi‖F = 1, we have that

‖Zi‖ ≤ ‖Zi‖F = |ξi|‖Θωi‖F = |ξi|.

It follows that
∥∥‖Zi‖∥∥ψ1

≤ ‖ξi‖ψ1 . Thus,
∥∥‖Zi‖∥∥ψ1

is finite since ξi is sub-

exponential. Meanwhile,

E
1
2 (‖Zi‖2) ≤ E

1
2 (‖Zi‖2

F ) = E
1
2 (ξ2

i ) = 1.



3.2 Error bounds 62

We also have

E
(
ZiZ

T
i

)
= E

(
ξ2
i ΘωiΘ

T
ωi

)
= E

(
ΘωiΘ

T
ωi

)
=
∑
k∈β

pkΘkΘ
T
k .

The calculation of E
(
ZT
i Zi
)

is similar. From (3.32), we obtain that
√

1/n ≤ σZ ≤√
µ2/n. Then, applying the noncommutative Bernstein inequality yields (3.33).

The proof of (3.34) is exactly the same as the proof of Lemma 6 in [86]. For

simplicity, we omit the proof.

Since Bernoulli random variables are sub-exponential, the right-hand side of

(3.34) provides an upper bound of ϑm defined by (3.22). Now, we choose t =

c2 log(n1 +n2) in Lemma 3.5 for achieving an optimal order bound with probability

at least 1− (n1 + n2)−c2 , where c2 is the same as that in Theorem 3.3. With this

choice, when m ≥ (1 + c2)n log2(n) log(n1 +n2)/µ2, the first term in the maximum

of (3.33) dominates the second term. Hence, for any given κ > 1, by choosing

ρm =
κν

bm
C∗

√
(1 + c2)µ2 log(n1 + n2)

mn
, (3.35)

from Theorem 3.3 and Lemma 3.5, we obtain the following main result for recovery

error bound.

Theorem 3.6. Assume that ‖PT⊥(F (X̃m))‖ < 1, ‖Rβ(X)‖∞ ≤ h for some h,

and Assumption 3.2 holds. Then, there exist some positive absolute constants

c′0, c
′
1, c
′
2, c
′
3 and some positive constants C ′0, C

′
1 (only depending on the ψ1 Orlicz

norm of ξk) such that when m ≥ c′3n log3(n1 + n2)/µ2, for any κ > 1, if ρm is

chosen as

ρm =
κν

bm
C ′1

√
µ2 log(n1 + n2)

mn
,

then with probability at least 1− c′1(n1 + n2)−c
′
2,

‖X̂h
m−X‖2

F

d2

≤C ′0 max

{[
c′0

2
(

1+κ
am
bm

)2

ν2+
( κ

κ−1

)2(
1+

am
bm

)2

h2

]
µ2

1µ2d2r log(n1+n2)

mn
,

h2µ1

√
log(n1+n2)

m

}
. (3.36)
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Proof. It is easy to see that combining Theorem 3.3 and Lemma 3.5 yields (3.36)

with C ′0 = C0 max
{

2eC2
∗ , 1
}

, C ′1 = C∗
√

1 + c2, c′0 = c0

√
1+c2

2e
, c′1 = 1 + c1, c′2 = c2,

c′3 = 1 + c2, where C0, c0, c1, c2 are the same as that in Theorem 3.3 and C∗ is the

same as that in Lemma 3.5.

When the matrix size is large, the second term in the maximum of (3.36) is

negligible compared with the first term. Thus, Theorem 3.6 indicates that for any

rank-correction function such that ‖PT⊥(F (X̃m))‖ < 1, one needs only samples

with size of order d2r log(n1 + n2)/n to control the recovery error. Note that d2

is of order n1n2 in general. Hence, the order of sample size needed is roughly the

degree of freedom of a rank r matrix up to a logarithmic factor in the matrix size.

In addition, it is very interesting to notice that the value of κ (or the value of

ρm) has a substantial influence on the recovery error bound. The first term in the

maximum of (3.36) is a sum of two parts related to the magnitude of noise ν and

the upper bound of entries h, respectively. The part related to ν increases as κ

increases provided am/bm > 0, while the part related to h slightly decreases to its

limit as κ increases.

Theorem 3.6 also reveals the impact of the rank-correction term on recovery

error. It is easy to see from (3.36) that with κ chosen to be the same, a smaller

value of am/bm brings a smaller error bound and potentially leads to a smaller

recovery error for the rank-correction step. Note that the value of am/bm fully

depends on the rank-correction function F when an initial estimator X̃m is given.

Note that for any given ε1 ≥ 0 and 0 ≤ ε2 < 1, we have

am
bm
≤ ε1

1− ε2

if


∥∥PT (F (X̃m))− U1V

T
1

∥∥ ≤ ε1,∥∥PT⊥(F (X̃m)
)∥∥ ≤ ε2.

In particular, if F ≡ 0, then the estimator of the rank-correction step reduces to the

nuclear norm penalized least squares estimator with am/bm = 1. Thus, Theorem
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3.6 shows that, with a suitable rank-correction function F , the estimator generated

from the rank-correction step for recovery is very likely to perform better than

the nuclear norm penalized least squares estimator. In addition, this observation

also provides us clues on how to construct a good rank-correction function, to be

discussed in Section 3.4.

To disclose the power of the rank-correction term in more details, for any value

of am/bm, we intend to find the smallest one among all the error bounds (3.36)

with κ > 1. Here, for simplicity of discussions, instead of (3.36), we consider a

slightly relaxed version:

‖X̂h
m −X‖2

F

d2

≤ C ′0 max

{
η2
m

µ2
1µ2d2r log(n1 + n2)

mn
, h2µ1

√
log(n1 + n2)

m

}
,

with

ηm := c′0

(
1 + κ

am
bm

)
ν +

( κ

κ− 1

)(
1 +

am
bm

)
h.

It is easy to see from the derivative that over ηm attains its minimum ηm over

κ > 1 at

κ = 1 +

√(
1 +

bm
am

) h

c′0ν
,

with the minimum value

ηm =
(

1 +
am
bm

)
(c′0ν + h) + 2

√
am
bm

(
1 +

am
bm

)
c′0νh.

It is interesting to notice that when am/bm � 1, we have κ = O
(
1/
√
am/bm

)
,

which means that the optimal choice of κ is inversely proportional to
√
am/bm.

In other words, for achieving the best possible recovery error, the parameter ρm

chosen for the rank-correction step with am/bm < 1 should be larger than that for

the nuclear norm penalized least squares estimator. In addition,

ηm =


η1 := 2(c′0ν + h) + 2

√
2
√
c′0νh if

am
bm

= 1,

η0 := c′0ν + h if
am
bm

= 0.
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By direct calculation, we obtain η1/η0 ∈ [2, 2 +
√

2], where the upper bound is

attained when c′0ν = h and the lower bound is approached when c′0ν/h → 0 or

c′0ν/h → ∞. This finding motivates us to wonder whether the recovery error can

be reduced by around half in practice. The numerical experiments of supporting

this can be found in Section 3.5.

3.3 Rank consistency

In this section we study the asymptotic behavior of the rank of the estimator X̂m

for both the rectangular case and the positive semidefinite case. Theorem 3.6

shows that under mild conditions, the distribution of X̂m becomes more and more

concentrated to the true matrix X. Due to the low-rank structure of X, we expect

that the estimator X̂m has the same low-rank property as X. For this purpose, we

consider the rank consistency in the sense of Bach [7] under the setting that the

matrix size is fixed.

Definition 3.1. An estimator Xm of the true matrix X is said to be rank consistent

if

lim
m→∞

Pr
(
rank(Xm) = rank(X)

)
= 1.

Throughout this section we make the following assumptions:

Assumption 3.3. The spectral operator F is continuous at X.

Assumption 3.4. The initial estimator X̃m satisfies X̃m
p→ X as m→∞.

In addition, we also need the following properties of the operator RΩ and its

adjoint R∗Ω.

Lemma 3.7. (i) For any X ∈ Vn1×n2, the random matrix
1

m
R∗ΩRΩ(X)

a.s.→ Qβ(X).

(ii) The random vector
1√
m
Rα∪βR∗Ω(ξ)

d→ N
(
0,Diag(p)

)
, where p = (p1, . . . , pd)

T.
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Proof. (i) From the definition of the sampling operator RΩ and its adjoint R∗Ω, we

have
1

m
R∗ΩRΩ(X) =

1

m

m∑
i=1

〈Θωi , X〉Θωi .

This is an average value of m i.i.d. random matrices 〈Θωi , X〉Θωi . It is easy to see

that E
(
〈Θωi , X〉Θωi

)
= Qβ(X). The result then follows directly from the strong

law of large numbers.

(ii) From the definition of R∗Ω and Rα∪β, it is immediate to obtain that

1√
m
Rα∪βR∗Ω(ξ) =

1√
m
Rα∪β

( m∑
i=1

ξiΘωi

)
=

1√
m

m∑
i=1

ξiRα∪β(Θωi).

Since E(ξi) = 0 and E(ξ2
i ) = 1, from the independence of ξi and Rα∪β(Θωi), we

have E
(
ξiRα∪β(Θωi)

)
= 0 and cov

(
ξi,Rα∪β(Θωi)

)
= pi. Applying the central limit

theorem then yields the desired result.

Based on the above epi-convergence results in Section 2.5, we can analyze the

asymptotic behavior of optimal solutions of a sequence of constrained optimization

problems. The following result is a direct consequence of the above epi-convergence

theorems and Lemma 3.7.

Theorem 3.8. If ρm → 0 and γm = Op(1), then X̂m
p→ X as m→∞.

Proof. Let Φm denote the objective function of (3.8) and K denote the feasible set.

Then, the problem (3.8) can be concisely written as

min
X∈Vn1×n2

Φm(X) + δK(X).

By Assumptions 3.3 and 3.4 and Lemma 3.7, we have that the convex functions

Φm converges pointwise in probability to the convex function Φ, where Φ(X) :=

1
2
‖Qβ(X−X)‖2

2 for any X ∈Vn1×n2 . Then from Theorems 2.16 and 2.17, we obtain

that

Φm + δK
e−d−→ Φ + δK .
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Note that X is the unique minimizer of Φ(X) + δK(X) since Φ(X) is strongly

convex over the feasible set K. Thus, we complete the proof by applying Theorem

2.15 on epi-convergence in distribution.

Theorem 3.8 actually implies that X̂m has a higher rank than X with probabil-

ity converging to 1 if ρm → 0 and γm = Op(1), due to the following straightforward

result.

Lemma 3.9. If Xm
p→ X, then lim

m→∞
Pr
(
rank(Xm) ≥ rank(X)

)
= 1.

Proof. It follows the Lipschitz continuity of singular values that

σk(Xm)
p→ σk(X) ∀ 1 ≤ k ≤ n.

Thus, for a fixed ε satisfying 0 < ε < 1,

P
(
rank(Xn) ≥ rank(X)

)
≥ P

(
|σr(Xm)− σr(X)| ≤ εσr(X)

)
→ 1 as m→∞.

Alternatively, this result can also be proved by the lower semicontinuity of the rank

function.

In what follows, we focus on the characterization of necessary and sufficient

conditions for rank consistency of X̂m. The idea is similar to that of [7] for the

nuclear norm penalized least squares estimator. Note that, unlike for the recover er-

ror bound, adding more constraints may break the rank consistency. Therefore, we

separate the discussion into the rectangular case (recovering a rectangular matrix

or a symmetric/Hermitian matrix) and the positive semidefinite case (recovering a

symmetric/Hermitian positive semidefinite matrix) below.

3.3.1 The rectangular case

Since we have established that X̂m
p→ X, we only need to focus on some neighbor-

hood of X for the discussion about the rank consistency of X̂m. First, we take a
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look at a local property of the rank function via the directional derivative of the

singular value functions.

Let σ′i(X; ·) denote the directional derivative function of the i-th largest sin-

gular value function σi(·) at X. From [105, Section 5.1] and [34, Proposition 6],

for Vn1×n2 3 H → 0,

σi(X +H)− σi(X)− σ′i(X;H) = O(‖H‖2
F ), i = 1, . . . , n. (3.37)

Recall that r = rank(X). From [34, Proposition 6], we have

σ′r+1(X;H) = ‖UT
2HV 2‖, H ∈ Vn1×n2 .

This leads to the following result for the perturbation of the rank function. A

similar result can also be found in [7, Proposition 18], whose proof is more involved.

Lemma 3.10. Let ∆ ∈ Vn1×n2 satisfy U
T
2 ∆V 2 6= 0. Then for all ρ 6= 0 sufficiently

small and ∆ sufficiently close to ∆, we have

rank(X + ρ∆) > rank(X).

Proof. By replacing X and H in (3.37) with X and ρ∆, respectively, and noting

that σr+1(X) = 0, we have

σr+1(X + ρ∆)− ‖UT
2 (ρ∆)V 2‖ = O(‖ρ∆‖2

F ).

Since U
T
2 ∆V 2 6= 0, for any ρ 6= 0 sufficiently small and ∆ sufficiently close to ∆,

σr+1(X + ρ∆)

|ρ|
= ‖UT

2 ∆V 2‖+O(|ρ|‖∆‖2
F )

≥ ‖UT
2 ∆V 2‖ − ‖U

T
2 (∆−∆)V 2‖+O(|ρ|‖∆‖2

F )

≥ 1

2
‖UT

2 ∆V 2‖ > 0.

This implies that rank(X + ρ∆) > r.
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To guarantee the efficiency of the rank-correction term on encouraging a low-

rank solution, the parameter ρm should not decay too fast. Define

∆̂m := ρ−1
m (X̂m −X).

Then, for a slow decay on ρm, we can establish the following result.

Proposition 3.11. If ρm → 0,
√
mρm → ∞ and γm = Op(1), then ∆̂m

p→ ∆̂,

where ∆̂ is the unique optimal solution to the following convex optimization problem

min
∆∈Vn1×n2

1

2
〈Qβ(∆),∆〉+ 〈U1V

T
1 − F (X),∆〉+ ‖UT

2 ∆V 2‖∗

s.t. Rα(∆) = 0.

(3.38)

Proof. By letting ∆ := ρ−1
m (X − X) in the optimization problem (3.38), one can

easily see that ∆̂m is the optimal solution to

min
∆∈Vn1×n2

1

2m
‖RΩ(∆)‖2

2 −
ν

mρm
〈R∗Ω(ξ),∆〉+

1

ρm

(
‖X + ρm∆‖∗ − ‖X‖∗

)
− 〈F (X̃m),∆〉+

ρmγm
2
‖∆‖2

F + γm〈X − X̃m,∆〉

s.t. Rα(∆) = 0.

(3.39)

Let Φm and Φ denote the objective functions of (3.39) and (3.38), respectively. Let

K denote the feasible set of (3.38). By the definition of directional derivative and

[176, Theorem 1], we have

lim
ρm→0

1

ρm

(
‖X + ρm∆‖∗ − ‖X‖∗

)
= 〈U1V

T
1 ,∆〉+ ‖UT

2 ∆V 2‖∗.

Then, by combining Assumptions 3.3 and 3.4 with Lemma 3.7, we obtain that Φm

converges pointwise in probability to Φ. Then from Theorems 2.16 and 2.17, we

obtain that

Φm + δK
e−d−→ Φ + δK .

Moreover, the optimal solution to (3.38) is unique due to the strong convexity of

Φ over the feasible set K. Therefore, we complete the proof by applying Theorem

2.15 on epi-convergence in distribution.
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Note that X̂m = X + ρm∆̂m. From Theorem 3.8, Lemmas 3.9 and 3.10 and

Proposition 3.11, we see that the condition U
T
2 ∆̂V 2 = 0 is necessary for the rank

consistency of X̂m. From the following property of the unique solution ∆̂ to (3.38),

we can derive a more detailed necessary condition for rank consistency as stated

in Theorem 3.13 below.

Lemma 3.12. Let ∆̂ be the optimal solution to (3.38). Then U
T
2 ∆̂V 2 = 0 if and

only if the linear system

U
T
2Q
†
β(U2ΓV

T
2 )V 2 = U

T
2Q
†
β

(
U1V

T
1 − F (X)

)
V 2 (3.40)

has a solution Γ̂ ∈ V(n1−r)×(n2−r) with ‖Γ̂‖ ≤ 1. Moreover, in this case,

∆̂ = Q†β
(
U2Γ̂V

T
2 − U1V

T
1 + F (X)

)
. (3.41)

Proof. Assume that U
T
2 ∆̂V 2 = 0. Since ∆̂ is the optimal solution to (3.38), from

the optimality condition, the subdifferential of ‖X‖∗ at 0, and [153, Theorem 23.7],

we obtain that there exist some Γ̂ ∈ V(n1−r)×(n2−r) with ‖Γ̂‖ ≤ 1 and η̂ ∈ Rd1 such

that Qβ(∆̂) + U1V
T
1 − F (X)−R∗α(η̂)− U2Γ̂V

T
2 = 0,

Rα(∆̂) = 0.
(3.42)

Then, according to (3.4), we can easily obtain (3.41) by applying the operator Q†β
to the first equation of (3.42) and using the second equation. By further combining

(3.41) and U
T
2 ∆̂V 2 = 0, we obtain that Γ̂ is a solution to the linear system (3.40).

Conversely, if the linear system (3.40) has a solution Γ̂ with ‖Γ̂‖ ≤ 1, then

it is easy to check that (3.42) is satisfied with ∆̂ taking the form of (3.41) and

η̂ = Rα

(
U1V

T
1−F (X)−U2Γ̂V

T
2

)
. Consequently, U

T
2 ∆̂V 2 = 0 follows directly from

the equations (3.40) and (3.41).

Theorem 3.13. If ρm → 0,
√
mρm → ∞ and γm = Op(1), then a necessary

condition for the rank consistency of X̂m is that the linear system (3.40) has a

solution Γ̂ ∈ V(n1−r)×(n2−r) with ‖Γ̂‖ ≤ 1.



3.3 Rank consistency 71

Proof. This result is immediate from Lemma 3.12 and the fact that U
T
2 ∆̂V 2 = 0 is

necessary for rank consistency.

By making a slight modification for the necessary condition in Theorem 3.13,

we provide a sufficient condition for the rank consistency of the estimator X̂m as

follows.

Theorem 3.14. If ρm → 0,
√
mρm → ∞ and γm = Op(1), then a sufficient

condition for the rank consistency of the estimator X̂m is that the linear system

(3.40) has a unique solution Γ̂ ∈ V(n1−r)×(n2−r) with ‖Γ̂‖ < 1.

Proof. The estimator X̂m is an optimal solution to (3.8) if and only if there exist

a subgradient Ĝm of the nuclear norm at X̂m and a vector η̂m ∈ Rd1 such that

(X̂m, η̂m) satisfies the KKT conditions:
1

m
R∗Ω
(
RΩ(X̂m)− y

)
+ ρm

(
Ĝm−F (X̃m) + γm(X̂m−X̃m)

)
−R∗α(η̂m) = 0,

Rα(X̂m) = Rα(X).

(3.43)

Let (Ûm, V̂m) ∈ On1,n2(X̂m). From Theorem 3.8 and Lemma 3.9, we know that

rank(X̂m) ≥ r with probability one. When rank(X̂m) ≥ r holds, from the charac-

terization of the subdifferential of the nuclear norm [176, 177], we have that

Ĝm = Ûm,1V̂
T
m,1 + Ûm,2Γ̂mV̂

T
m,2

for some Γ̂m ∈ V(n1−r)×(n2−r) satisfying ‖Γ̂m‖ ≤ 1. Moreover, if ‖Γ̂m‖ < 1, then

rank(X̂m) = r. Since X̂m
p→ X, by [34, Proposition 8] we have Ûm,1V̂

T
m,1

p→ U1V
T
1 .

Together with Lemma 3.7, the equation (3.5) and Lemma 3.12, it is not hard to

obtain that

1

mρm
R∗Ω
(
RΩ(X̂m)− y

)
+ Ûm,1V̂

T
m,1 − F (X̃m) + γm(X̂m − X̃m)

p→ Qβ(∆̂) + U1V
T
1 − F (X) = U2Γ̂V

T
2 , (3.44)
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where the equality follows from (3.41) and Γ̂ is the unique optimal solution to

(3.40). Then, by applying the operator Q†β to (3.43), we obtain from (3.44) that

U
T
2Q
†
β(Ûm,2Γ̂mV̂

T
m,2)V 2

p→ U
T
2Q
†
β(U2Γ̂V

T
2 )V 2. (3.45)

Since X̂m
p→ X, according to [34, Proposition 7], there exist two sequences of

matrices Qm,U ∈ On1−r and Qm,V ∈ On2−r such that

Ûm,2Qm,U
p→ U2 and V̂m,2Qm,V

p→ V 2. (3.46)

Moreover, the uniqueness of the solution to the linear system (3.40) is equivalent to

the non-singularity of its linear operator U
T
2Q
†
β

(
U2(·)V T

2

)
V 2. By combining (3.45)

and (3.46), we obtain that

QT
m,U Γ̂mQm,V

p→ Γ̂.

Hence, we obtain that ‖Γ̂m‖ < 1 with probability one since ‖Γ̂‖ < 1. As discussed

above, it follows that rank(X̂m) = r with probability one.

3.3.2 The positive semidefinite case

For the positive semidefinite case, we first need the following Slater condition.

Assumption 3.5. There exists some X0 ∈ Sn++ such that Rα(X0) = Rα(X).

Proposition 3.15. If ρm → 0,
√
mρm → ∞ and γm = Op(1), then ∆̂m

p→ ∆̂,

where ∆̂ is the unique optimal solution to the following convex optimization problem

min
∆∈Sn

1

2
〈Qβ(∆),∆〉+ 〈In − F (X),∆〉

s.t. Rα(∆) = 0, P
T
2 ∆P 2 ∈ Sn−r+ .

(3.47)
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Proof. It is easy to verify that ∆̂m is the optimal solution to

min
∆∈Sn

1

2m
‖RΩ(∆)‖2

2 −
ν

mρm
〈R∗Ω(ξ),∆〉+ 〈In − F (X̃m),∆〉+

ρmγm
2
‖∆‖2

F

+ γm〈X − X̃m,∆〉

s.t. ∆ ∈ Km := ρ−1
m (E ∩ Sn+ −X),

(3.48)

where E :=
{
X ∈ Sn | Rα(X) = Rα(X)

}
. Let Φm and Φ denote the objec-

tive functions of (3.48) and (3.47), respectively. Then Φm converges pointwise in

probability to Φ. Moreover, by considering the upper limit and lower limit of the

family of feasible sets Km, we know that Km converges in the sense of Painlevé-

Kuratowski to the tangent cone TE∩Sn+(X) (see [155, 15]). Note that the Slater

condition implies that E and Sn+ cannot be separated. Then, from [155, Theorem

6.42], we have

TE∩Sn+(X) = TE(X) ∩ TSn+(X).

Elearly, TE(X) = {∆ ∈ Sn | Rα(∆) = 0}. Moreover, by Arnold [3],

TSn+(X) =
{

∆ ∈ Sn
∣∣ P T

2 ∆P 2 ∈ Sn−r+

}
.

Since epi-convergence of functions corresponds to set convergence of their epigraphs

[155], we obtain that δKm
e→ δTE∩Sn+

= δTE + δTSn+
. Then, from Theorem 2.16,

Φm + δKm
e−d−→ Φ + δTE + δTSn+

.

In addition, the optimal solution to (3.47) is unique due to the strong convexity

of Φ over the feasible set E ∩ Sn+. Therefore, we complete the proof by applying

Theorem 2.15 on epi-convergence in distribution.

For the optimal solution ∆̂ to (3.47), we also have the following further char-

acterization.
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Lemma 3.16. Let ∆̂ be the optimal solution to (3.47). Then P
T
2 ∆̂P 2 = 0 if and

only if the linear system

P
T
2Q
†
β(P 2ΛP

T
2 )P 2 = P

T
2Q
†
β

(
In − F (X)

)
P 2 (3.49)

has a solution Λ̂ ∈ Sn−r+ . Moreover, in this case,

∆̂ = Q†β
(
P 2Λ̂P

T
2 − In + F (X)

)
. (3.50)

Proof. Note that the Slater condition also holds for the problem (3.47). (One may

check the point X0 −X.) Hence, ∆̂ is the optimal solution to (3.47) if and only if

there exists (ζ̂ , Λ̂) ∈ Rd1 × Sn−r such that
Qβ(∆̂) + In − F (X)−R∗α(ζ̂)− P 2Λ̂P

T
2 = 0,

Rα(∆̂) = 0,

P
T
2 ∆̂P 2 ∈ Sn−r+ , Λ̂ ∈ Sn−r+ , 〈P T

2 ∆̂P 2, Λ̂〉 = 0.

(3.51)

Applying the operator Q†β to the first equation of (3.51) yields the equality (3.50).

Suppose that P
T
2 ∆̂P 2 = 0. Then, it is immediate to obtain from (3.51) that Λ̂ is a

solution to the linear system (3.49).

Conversely, if the linear system (3.49) has a solution Λ̂ ∈ Sn−r+ , then it is

easy to check that (3.51) is satisfied with ∆̂ taking the form of (3.50) and ζ̂ =

Rα

(
In−F (X)−P 2Λ̂P

T
2

)
. Then, P

T
2 ∆̂P 2 = 0 directly follows from (3.50) and the

first equation of (3.51).

Note that Lemma 3.10 still holds for the positive semidefinite case if U
T
2 ∆V 2

is replaced by P
T
2 ∆P 2. Therefore, in line with the rectangular case, from Lemma

3.16, we have the following necessary condition for rank consistency.

Theorem 3.17. If ρm → 0,
√
mρm → ∞ and γm = Op(1), then a necessary

condition for the rank consistency of X̂m is that the linear system (3.49) has a

solution Λ̂ ∈ Sn−r+ .
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Proof. This result is immediate from Lemma 3.16 and the fact that P
T
2 ∆̂P 2 = 0 is

necessary for rank consistency.

Similarly to Theorem 3.14, we have the following sufficient condition for rank

consistency for the positive semidefinite case.

Theorem 3.18. If ρm → 0,
√
mρm → ∞ and γm = Op(1), then a sufficient

condition for the rank consistency of X̂m is that the linear system (3.49) has a

unique solution Λ̂ ∈ Sn−r++ .

Proof. The Slater condition implies that X̂m is the optimal solution to (3.9) if and

only if there exists multipliers (ζ̂m, Ŝm) ∈ Rd1 × Sn such that (X̂m, ζ̂m, Ŝm) satisfy

the KKT conditions:
1

m
R∗Ω
(
RΩ(X̂m)−y

)
+ ρm

(
In−F (X̃m) + γm(X̂m−X̃m)

)
−R∗α(ζ̂m)− Ŝm = 0,

Rα(X̂m) = Rα(X),

X̂m ∈ Sn+, Ŝm ∈ Sn+, 〈X̂m, Ŝm〉 = 0.

(3.52)

The third equation of (3.52) implies that X̂m and Ŝm can have a simultaneous

eigenvalue decomposition. Let P̂m ∈ On(X̂m). From Theorem 3.8 and Lemma 3.9,

we know that rank(X̂m) ≥ r with probability one. When rank(X̂m) ≥ r holds, we

can write

Ŝm = P̂m,2Λ̂mP̂
T
m,2

for some diagonal matrix Λ̂m ∈ Sn−r+ . In addition, if Λ̂m ∈ Sn−r++ , then rank(X̂m) =

r. Since X̂m
p→ X, according to [34, Proposition 1], there exists a sequence of

matrices Qm ∈ On−r such that P̂m,2Qm
p→ P 2. Then, using the similar arguments

to the proof of Theorem 3.14, we obtain that

QT
mΛ̂mQm

p→ Λ̂.
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Since Λ̂ ∈ Sn++, we have Λ̂m ∈ Sn++ with probability one. Thus, we complete the

proof.

3.3.3 Constraint nondegeneracy and rank consistency

In this subsection, with the help of constraint nondegeneracy, we provide conditions

to guarantee that the linear systems (3.40) and (3.49) have a unique solution.

The concept of constraint nondegeneracy was pioneered by Robinson [152] and

later extensively developed by Bonnans and Shapiro [15]. Consider the following

constrained optimization problem

min
X∈Vn1×n2

Φ(X) + Ψ(X)

s.t. A(X)− b ∈ K,
(3.53)

where Φ : Vn1×n2 → R is a continuously differentiable function, Ψ : Vn1×n2 → R is

a convex function, A : Vn1×n2 → Rl is a linear operator, b ∈ Rl is a given vector

and K ⊆ Rl is a closed convex set. Let X̂ be a given feasible point of (3.53) and

ẑ := A(X̂)− b.

When Ψ is differentiable at X̂, we say that the constraint nondegeneracy holds

at X̂ if

AVn1×n2 + lin
(
TK(ẑ)

)
= Rl, (3.54)

where TK(ẑ) denotes the tangent cone of K at ẑ and lin(TK(ẑ)) denotes the largest

linearity space contained in TK(ẑ), i.e.,

lin(TK(ẑ)) = TK(ẑ) ∩ (−TK(ẑ)).

When the function Ψ is nondifferentiable, we can rewrite the optimization problem

(3.53) equivalently as

min
(X,t)∈Vn1×n2×R

Φ(X) + t

s.t. Ã(X, t) ∈ K × epiΨ,
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where epiΨ denotes the epigraph of Ψ and Ã : Vn1×n2 ×R→ Rl ×Vn1×n2 ×R is a

linear operator defined by

Ã(X, t) :=


A(X)− b

X

t

 , (X, t) ∈ Vn1×n2 × R.

From (3.54) and [155, Theorem 6.41], the constraint nondegeneracy holds at (X̂, t̂)

with t̂ = Ψ(X̂) if

Ã

Vn1×n2

R

+

 lin
(
TK(X̂)

)
lin
(
TepiΨ(X̂, t̂)

)
 =


Rl

Vn1×n2

R

 .

By the definition of Ã, it is not difficult to verify that this condition is equivalent

to

[A 0]
(
lin(TepiΨ(X̂, t̂))

)
+ lin

(
TK(X̂)

)
= Rl. (3.55)

By letting Ψ = ‖ · ‖∗,A = Rα and K = {0}, one can see that the problem (3.8)

takes the form of (3.53). By the expression of TepiΨ(X, t) with t = ‖X‖∗ (e.g., see

[79]), we see that for the problem (3.8), the condition (3.55) reduces to

Rα

(
T (X)

)
= Rd1 , (3.56)

where

T (X) =
{
H ∈ Vn1×n2

∣∣ UT
2HV 2 = 0

}
. (3.57)

Hence, we say that the constraint nondegeneracy holds at X to the problem (3.8)

if the condition (3.56) holds. By letting Ψ = δSn+ ,A = Rα and K = {0}, we can

see that the problem (3.9) takes the form of (3.53) , and now that the condition

(3.55) reduces to

Rα

(
lin(TSn+(X))

)
= Rd1 . (3.58)
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Thus, we say that the constraint nondegeneracy holds at X to the problem (3.9)

if the condition (3.58) holds. From Arnold’s characterization of the tangent cone

in [3]:

TSn+(X) =
{
H ∈ Sn

∣∣ P T
2HP 2 ∈ Sn−r+

}
,

we can write the linearity space lin(TSn+(X)) explicitly as

lin(TSn+(X)) =
{
H ∈ Sn

∣∣ P T
2HP 2 = 0

}
.

Interestingly, for some special matrix completion problems, the constraint non-

degeneracy automatically hold at X, as stated in the following proposition.

Proposition 3.19. For the following matrix completion problems:

(i) the covariance matrix completion with partial positive diagonal entries being

fixed , in particular, the correlation matrix completion with all diagonal en-

tries being fixed as ones;

(ii) the density matrix completion with its trace being fixed as one,

the constraint nondegeneracy (3.58) holds at X.

Proof. For the real covariance matrix case, the proof is given in [144, Lemma 3.3]

and [145, Proposition 2.1]. For the complex covariance matrix case, one can use

the similar arguments to prove the result.

We next consider the density matrix case. Suppose that X satisfies the density

constraint, i.e., Rα(X) = Tr(X) = 1. Note that for any t ∈ R, we have tX ∈

lin(THn+(X)). This, along with Tr(X) = 1, implies that

Tr
(
lin(THn+(X))

)
= Rα

(
lin(THn+(X))

)
= R.

This means that the constraint nondegeneracy condition (3.58) holds.
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Next, we take a closer look at the solutions to the linear systems (3.40) and

(3.49). Define linear operators B1 : Vr×r → V(n1−r)×(n2−r) and B2 : V(n1−r)×(n2−r) →

V(n1−r)×(n2−r) associated with X, respectively, by

B1(Y ) := U
T
2Q
†
β(U1Y V

T

1 )V 2 and B2(Z) := U
T
2Q
†
β(U2ZV

T

2 )V 2, (3.59)

where Y ∈ Vr×r and Z ∈ V(n1−r)×(n2−r). Note that the operator B2 is self-adjoint

and positive semidefinite according to the definition of Q†β. Let ĝ(X) be the vector

in Rr defined by

ĝ(X) :=
(
1− f1(σ(X)), . . . , 1− fr(σ(X))

)T
. (3.60)

Then, by the definition of the spectral operator F , we can rewrite (3.40) in the

following concise form

B2(Γ) = B1

(
Diag(ĝ(X))

)
, Γ ∈ V(n1−r)×(n1−r). (3.61)

For the positive semidefinite case Vn1×n2 = Sn and X ∈ Sn+, both U i and V i reduce

to P i for i = 1, 2. In this case, the linear system (3.49) can be concisely written as

B2(Λ) = B2(In−r) + B1

(
Diag(ĝ(X))

)
, Λ ∈ Sn−r. (3.62)

Proposition 3.20. (i) For the rectangular case, if the constraint nondegeneracy

(3.56) holds at X to the problem (3.8), then the linear operators B2 defined by

(3.59) is self-adjoint and positive definite.

(ii) For the positive semidefinite case, if the constraint nondegeneracy (3.58) holds

at X to the problem (3.9), then the linear operators B2 is also self-adjoint and

positive definite.

Proof. We prove for the rectangular case by contradiction. Assume that there

exists some V(n1−r)×(n2−r) 3 Γ 6= 0 such that B2(Γ) = U
T
2Q
†
β(U2ΓV

T
2 )V 2 = 0.

By noting that Q†β is a self-adjoint and positive semidefinite operator, we obtain
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(Q†β)1/2(U2ΓV
T
2 ) = 0. It follows that Pβ(U2ΓV

T
2 ) = 0. This, together with Γ 6= 0,

implies that Pα(U2ΓV
T
2 ) = U2ΓV

T
2 6= 0. It further implies that Rα(U2ΓV

T
2 ) 6= 0.

However, for any H ∈ T (X), we have

〈Rα(U2ΓV
T
2 ),Rα(H)〉 = 〈Pα(U2ΓV

T
2 ), H〉 = 〈U2ΓV

T
2 , H〉 = 〈Γ, UT

2HV 2〉 = 0.

Thus, the constraint nondegeneracy condition (3.56) implies thatRα(U2ΓV
T
2 ) = 0.

This leads to a contradiction. Therefore, the linear operator B2 is positive definite.

The proof for the positive semidefinite case is similar.

According to Proposition 3.20, the constraint nondegeneracy at X to the prob-

lem (3.8) and (3.9), respectively, implies that the linear system (3.40) has a unique

solution

Γ̂ = B−1
2 B1

(
Diag(ĝ(X))

)
(3.63)

and the linear system (3.49) has a unique solution

Λ̂ = In−r + B−1
2 B1

(
Diag(ĝ(X))

)
. (3.64)

Then we can obtain the following main result for rank consistency.

Theorem 3.21. Suppose that ρm → 0,
√
mρm → ∞ and γm = Op(1). For the

rectangular case, if the constraint nondegeneracy (3.56) holds at X to the problem

(3.8) and ∥∥B−1
2 B1

(
Diag(ĝ(X))

)∥∥ < 1, (3.65)

then the estimator X̂m generated from the rank-correction step (3.8) is rank con-

sistent. For the positive semidefinite case, if the constraint nondegeneracy (3.58)

holds at X to the problem (3.9) and

In−r + B−1
2 B1

(
Diag(ĝ(X))

)
∈ Sn−r++ , (3.66)

then the estimator X̂m generated from the rank-correction step (3.9) is rank con-

sistent.
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Proof. It is immediate from Theorems 3.14 and 3.18, Proposition 3.20 together

with (3.63) and (3.64).

From Theorem 3.21, it is not difficult to see that there exists some threshold

ε > 0 (depending on X) such that the condition (3.65) holds if

|1− fi(σ(X))| ≤ ε ∀ 1 ≤ i ≤ r.

In other words, when F (X) is sufficiently close to U1V
T
1 , the condition (3.65) holds

automatically and so does the rank consistency. Thus, Theorem 3.21 provides us

a guideline to construct a suitable rank-correction function for rank consistency.

This is another important aspect of what we can benefit from the rank-correction

step, besides the reduction of recovery error discussed in Section 3.2.

The next theorem shows that for the covariance (correlation) and density

matrix completion problems with fixed basis coefficients described in Proposition

3.19, if observations are sampled uniformly at random, the rank consistency can

be guaranteed for a broad class of rank-correction functions F .

Theorem 3.22. For the covariance (correlation) and density matrix completion

problems defined in Proposition 3.19 under uniform sampling, if ρm → 0,
√
mρm →

∞, γm = Op(1) and F is a spectral operator associated with a symmetric function

f : Rn → Rn such that fi(x) > 0 if xi > 0,

fi(x) = 0 if xi = 0,
∀x ∈ Rn

+ and ∀ i = 1, . . . , n, (3.67)

then the estimator X̂m generated from the rank-correction step is rank consistent.

Proof. From Propositions 3.19 and 3.20, for both cases, the linear system (3.49)

has a unique solution Λ̂. Moreover, uniform sampling yields Q†β = Pβ/d2. Thus,

from (3.49), we get

Λ̂− P T
2Pα(P 2Λ̂P

T
2 )P 2 = P

T
2Pβ(P 2Λ̂P

T
2 )P 2 = P

T
2Pβ

(
In − F (X)

)
P 2. (3.68)
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We first prove the covariance matrix completion by contradiction. Without

loss of generality, we assume that the first l diagonal entries are fixed and positive.

Then, for any X ∈ Sn+, Pα(X) is the diagonal matrix whose first l diagonal entries

are Xii, 1 ≤ i ≤ l respectively and the other entries are 0. Assume that Λ̂ /∈ Sn−r++ ,

i.e., λmin(Λ̂) ≤ 0, where λmin(·) denotes the smallest eigenvalue. Then, we have

λmin(Λ̂) = λmin(P 2Λ̂P
T
2 ) ≤ λmin

(
Pα(P 2Λ̂P

T
2 )
)
≤ λmin

(
P

T
2Pα(P 2Λ̂P

T
2 )P 2

)
,

where the equality follows from the fact that Λ̂ and P 2Λ̂P
T
2 have the same nonzero

eigenvalues, the first inequality follows from the fact that the vector of eigenvalues

is majorized by the vector of diagonal entries (e.g., see [118, Theorem 9.B.1]), and

the second inequality follows from the Courant-Fischer minmax theorem (e.g., see

[118, Theorem 20.A.1]). As a result, the left-hand side of (3.68) is not positive

definite. However, the right-hand side of (3.68) can be written as

P
T
2Pβ

(
In − F (X)

)
P 2 = P

T
2

(
Pβ(In)− F (X) + Pα(F (X))

)
P 2

= P
T
2

(
Pβ(In) + Pα(F (X))

)
P 2,

where the second equality follows from the fact that P
T
2F (X)P 2 = 0. Since

rank(X) = r, with the choice (3.67) of F , we have that for any 1 ≤ i ≤ l,

X ii =
r∑
j=1

λj(X)|P ij|2 > 0 =⇒
(
F (X)

)
ii

=
r∑
j=1

fi
(
λj(X)

)
|P ij|2 > 0.

Moreover, Pβ(In) is the diagonal matrix with the last n− r diagonal entries being

ones and the other entries being zeros. Thus, Pβ(In) + Pα
(
F (X)

)
is a diagonal

matrix with all positive diagonal entries. It follows that the right-hand side of

(3.68) is positive definite. Thus, we obtain a contradiction. Hence, Λ̂ ∈ Sn−r++ .

Then, from Theorem 3.18, we obtain the rank consistency.

For the density matrix completion, Pα(·) = 1
n
Tr(·)In. By further using the

fact that P
T
2F (X)P 2 = 0 and Pβ(In) = 0, we can rewrite (3.68) as

Λ̂− 1

n
Tr(Λ̂)In−r =

1

n
Tr(F (X))In−r.
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By taking the trace on both sides, we obtain that Λ̂ = 1
r
Tr(F (X))In−r. Since X is

a density matrix of rank r, with the choice (3.67) of F , we have that

Tr(X) =
n∑
i=1

r∑
j=1

λj(X)|P ij|2 = 1 =⇒ Tr
(
F (X)

)
=

n∑
i=1

r∑
j=1

fi
(
λj(X)

)
|P ij|2 > 0.

It follows that Λ̂ ∈ Sn−r++ and thus we obtain the rank consistency.

3.4 Construction of the rank-correction function

In this section, we focus on the construction of a suitable rank-correction function F

based on the results obtained in Sections 3.2 and 3.3. As can be seen from Theorem

3.6, a smaller value of am/bm potentially leads to a smaller recovery error. Thus,

we desire a construction of the rank-correction function such that F (X̃m) is close

to U1V
T
1 . Meanwhile, according to Theorem 3.21, we also desire that F (X) is close

to U1V
T
1 for rank consistency. Notice that a reasonable initial estimator X̃m should

not deviate too much from the true matrix X. Therefore, the above two criteria

consistently suggest a natural idea to construct a rank-correction function F , if

possible, such that

F (X)→ U1V
T
1 as X → X. (3.69)

Next, we proceed the construction of the rank-correction function F for the rect-

angular case. For the positive semidefinite case, one may just replace the singular

value decomposition with the eigenvalue decomposition and conduct exactly the

same analysis.
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3.4.1 The rank is known

If the rank of the true matrix X is known in advance, we construct the rank-

correction function F by

F (X) := U1V
T

1 , (3.70)

where (U, V ) ∈ On1,n2(X) and X ∈ Vn1×n2 . Note that F defined by (3.70) is not

a spectral operator over the whole space of Vn1×n2 , but in a neighborhood of X it

is indeed a spectral operator and is actually twice continuously differentiable (see,

e.g., [34, Proposition 8]). Hence, it satisfies the criterion (3.69). With this rank-

correction function, the rank-correction step is essentially the same as one step of

the majorized penalty method developed in [62]. Then we obtain the following

result.

Corollary 3.23. Suppose that the rank of the true matrix X is known and the

constraint nondegeneracy holds at X. If ρm → 0,
√
mρm → ∞, γm = Op(1) and

F is chosen by (3.70), then the estimator X̂m generated from the rank-correction

step is rank consistent.

Proof. This is immediate from Theorem 3.21 since the choice (3.70) of the rank-

correction function F yields ĝ(X) = 0.

3.4.2 The rank is unknown

If the rank of the true matrix X is unknown, then the rank-correction function F

cannot be defined by (3.70). What we will do is to construct a spectral operator F

to imitate the case when the rank is known. Here, we propose F to be a spectral

operator

F (X) := UDiag
(
f(σ(X))

)
V T (3.71)
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associated with the symmetric function f : Rn → Rn defined by

fi(x) =

 φ

(
xi
‖x‖∞

)
if x ∈ Rn\{0},

0 if x = 0,

(3.72)

where (U, V ) ∈ On1,n2(X), X ∈ Vn1×n2 , and the scalar function φ : R → R takes

the form

φ(t) := sgn(t)(1 + ετ )
|t|τ

|t|τ + ετ
, t ∈ R, (3.73)

for some τ > 0 and ε > 0. Then we have the following result.

Corollary 3.24. Suppose that the constraint nondegeneracy holds at X. If ρm →

0,
√
mρm → ∞, γm = Op(1), then for any given τ > 0, there exists some ε > 0

such that for any F defined by (3.71), (3.72) and (3.73) with 0 < ε ≤ ε, the

estimator X̂m generated from the rank-correction step is rank consistent.

Proof. Note that for each t, φ(t) → sgn(t) as ε ↓ 0. It implies that fi(X) →

1,∀ 1 ≤ i ≤ r and thus ĝ(X) → 0 as ε ↓ 0. Then the result is immediate from

Theorem 3.21.

Corollary 3.24 indicates that one needs to choose a small ε > 0 in pursuit of

rank consistency. Meanwhile, we also need to take care of the influence of a small

ε > 0 on the recovery error bound which depends on the value of am/bm. Certainly,

we desire am ≈ 0 and bm ≈ 1. This motivates us to choose a function φ, if possible,

such that

φ

(
σi(X̃m)

σ1(X̃m)

)
≈

1 if 1 ≤ i ≤ r,

0 if r + 1 ≤ i ≤ n.

(3.74)

This is also why we normalize the function φ defined by (3.73) in the interval

t ∈ [0, 1] such that φ(0) = 0 and φ(1) = 1. However, as indicated by Lemma 3.9,

the initial estimator X̃m is very possible to have a higher rank than X when it
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approaches to X. It turns out that when ε > 0 is tiny,

φ

(
σi(X̃m)

σ1(X̃m)

)
≈ 1 ∀ r + 1 ≤ i ≤ rank(X̃m),

which violates our desired property (3.74). As a result, ε > 0 should be chosen

to be small but balanced. Notice that φ(ε) = (1 + ετ )/2 ≈ 1/2 if ε > 0 is small

and τ > 0 is not too small. Thus, the value of ε can be regarded as a divide of

confidence on whether σi(X̃m) is believed to come from a nonzero singular values

of X with perturbation — positive confidence if σi(X̃m) > εσ1(X̃m) and negative

confidence if σi(X̃m) < εσ1(X̃m). On the other hand, the parameter τ > 0 mainly

controls the shape of the function φ over t ∈ [0, 1]. The function φ is concave

if 0 < τ ≤ 1 and S-shaped with a single inflection point at
(
τ−1
τ+1

)1/τ
ε if τ > 1.

Moreover, the steepness of the function φ increases when τ increases. In particular,

if 0 < ε < 1 and τ is very large, φ is very close to the step function taking the value

0 if 0 ≤ t < ε and the value 1 if ε < t ≤ 1. In this case, there exists some ε such

that the desired property (3.74) can be achieved and that the corresponding rank-

correction function F is very close to the one defined by (3.70). Thus, it seems to be

a good idea to choose an S-shaped function φ with a large τ . However, in practice,

the parameter ε should be pre-determined. Since rank(X) is unknown and the

singular values of X̃m are unpredictable, it is hard to choose a suitable ε in advance,

and hence, it will be too risky to choose a large τ for recovery. As a result, one has

to be somewhat conservative to choose τ , sacrificing some optimality of recovery in

exchange for robustness strategically. If the initial estimator is generated from the

nuclear norm penalized least squares problem, we recommend the choices τ = 1

or 2 and ε = 0.01 ∼ 0.1 as these choices show stable performance for plenty of

problems, as validated in Section 6.

We also remark that for the positive semidefinite case, the rank-correction

function defined by (3.71), (3.72) and (3.73) is related to the reweighted trace norm
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Figure 3.1: Shapes of the function φ with different τ > 0 and ε > 0

for the matrix rank minimization proposed by Fazel et al. [51, 132]. The reweighted

trace norm in [51, 132] for the positive semidefinite case is 〈(Xk+εIn)−1, X〉, which

arises from the derivative of the surrogate function log det(X + εIn) of the rank

function at an iterate Xk, where ε is a small positive constant. Meanwhile, in

our proposed rank-correction step, if we choose τ = 1, then In − 1
1+ε

F (X̃m) =

ε′(X̃m + ε′In)−1 with ε′ = ε‖X̃m‖. Superficially, similarity occurs; however, it is

notable that ε′ depends on X̃m, which is different from the constant ε in [51, 132].

More broadly speaking, the rank-correction function F defined by (3.71), (3.72)

and (3.73) is not a gradient of any real-valued function. This distinguishes our

proposed rank-correction step from the reweighted trace norm minimization in

[51, 132] even for the positive semidefinite case.
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3.5 Numerical experiments

In this section, we validate the power of our proposed rank-corrected procedure

on the recovery by applying it to different kinds of matrix completion problem-

s. In solving the optimization problem in the rank-correction step (3.9) for the

positive semidefinite matrix completion, we adopted the code developed by Jiang

et al. [79] for large scale linearly constrained convex semidefinite programming

problems. The implemented code is based on an inexact version of the accelerated

proximal gradient method [136, 10]. We also modified this code to make it adaptive

to the optimization problem in the rank-correction step (3.8) for the rectangular

matrix completion. (The subproblem in each iteration was solved by a semismooth

Newton-CG method.) All tests were run in MATLAB under Windows 7.0 oper-

ating system on an Intel Core(TM) i7-2720 QM 2.20GHz processor with 8.00GB

RAM.

For convenience, in the sequel, the NNPLS estimator and the RCS estimator,

respectively, stand for the estimators from the nuclear norm penalized least squares

problem (3.7) (with additional constraint X ∈ Sn+ for the positive semidefinite

matrix completion) and the rank-correction step (3.8) (the rank-correction step

(3.9) for the positive semidefinite matrix completion). Let Xm be an estimator.

The relative error (relerr for short) of Xm and the relative deviation (reldev

for short) are defined, respectively, by

relerr :=
‖Xm −X‖F

max(10−8, ‖X‖F )
and reldev :=

‖y −RΩ(X̃m)‖2

max(10−8, ‖y‖2)
.

3.5.1 Influence of fixed basis coefficients on the recovery

In this subsection, we take the correlation matrix completion for example to test

the performance of the NNPLS estimator and the RCS estimator with different
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patterns of fixed basis coefficients. We randomly generated the true matrix X by

the following command:

M = randn(n,r); ML = weight*M(:,1:k); M(:,1:k) = ML; Xtemp = M*M’;

D = diag(1./sqrt(diag(Xtemp))); X_bar = D*Gtemp*D

where the parameter weight is used to control the relative magnitude difference

between the first k largest eigenvalues and the other nonzero eigenvalues. In our

experiments, we set weight = 5 and k = 1, and took X = X bar with dimension

n = 1000 and rank r = 5. We randomly fixed partial diagonal and off-diagonal

entries of X and sampled the rest entries uniformly at random with i.i.d. Gaussian

noise at the noise level 10%.

In Figure 3.2, we plot the curves of the relative error and the rank of the

NNPLS estimator and the RCS estimator with different patterns of fixed entries.

In the captions of the subfigures, diag means the number of fixed diagonal en-

tries and non-diag means the number of fixed off-diagonal entries. The subfigures

on the left-hand side and the right-hand side show the performance of the N-

NPLS estimator and the RCS estimator, respectively. For the RCS estimator, the

rank-correction function F is defined by (3.71), (3.72) and (3.73) with τ = 2 and

ε = 0.02, and the initial X̃m is chosen from those points of the corresponding sub-

figures on the left-hand side such that the absolute difference between the relative

derivation and the noise level attains the minimum.

From the subfigures on the left-hand side, we observe that as the number of

fixed diagonal entries increases, the parameter ρm for the smallest recovery error

deviates more and more from the one for attaining the true rank. In particular,

when diag = n, the NNPLS estimator reduces to the (constrained) least squares

estimator so that one cannot benefit from the NNPLS estimator for encouraging

a low-rank solution. This implies that the NNPLS estimator does not possess the
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(a) NNPLS: diag = 0, off-diag = 0
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(b) RCS: diag = 0, off-diag = 0
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(c) NNPLS: diag = n/4, off-diag = 0
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(d) RCS: diag = n/4, off-diag = 0
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(e) NNPLS: diag = n/2, off-diag = 0
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(f) RCS: diag = n/2, off-diag = 0
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(g) NNPLS: diag = 3n/4, off-diag = 0
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(h) RCS: diag = 3n/4, off-diag = 0
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(q) NNPLS: diag = n, off-diag = 0
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(r) RCS: diag = n, off-diag = 0
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(s) NNPLS: diag = n, off-diag = n/4
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(t) RCS: diag = n, off-diag = n/4
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(u) NNPLS: diag = n, off-diag = n/2
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(v) RCS: diag = n, off-diag = n/2
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(w) NNPLS: diag = n/4, off-diag = n/4
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(x) RCS: diag = n/4, off-diag = n/4

Figure 3.2: Influence of fixed basis coefficients on recovery (sample ratio = 6.38%)
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rank consistency when some entries are fixed. However, the subfigures on the right-

hand side indicate that the RCS estimator can yield a solution with the correct

rank as well as a desired small recovery error simultaneously, with the parameter

ρm in a large interval. This exactly validates the theoretical result of Theorem 3.22

for rank consistency.

3.5.2 Performance of different rank-correction functions for

recovery

In this subsection, we test the performance of different rank-correction functions

for recovering a correlation matrix. We randomly generated the true matrix X by

the command in Subsection 6.1 with n = 1000, r = 10, weight = 2 and k = 5.

We fixed all the diagonal entries of X and sampled partial off-diagonal entries

uniformly at random with i.i.d. Gaussian noise at the noise level 10%. We chose

the (nuclear norm penalized) least squares estimator to be the initial estimator X̃m.

In Figure 3.3, we plot four curves corresponding to the rank-correction functions

F defined by (3.71), (3.72) and (3.73) with τ = 2 and different ε, and another two

curves corresponding to the rank-correction functions F defined by (3.70) at X̃m

(i.e., Ũ1Ṽ
T

1 ) and X (i.e., U1V
T
1 ), respectively. The values of am, bm and the optimal

recovery error with different ρm are listed in Table 3.1.

As can be seen from Figure 3.3, when ρm increases, the recovery error decreases

with the rank and then increases after the correct rank is attained, except for the

case U1V
T
1 . This validates our discussion about the recovery error at the end of

Section 3.2. Moreover, for a smaller ε, the curve of recovery error changes more

gently, though a certain optimality in the sense of recovery error is sacrificed. This

means that the choice of a relatively small ε, say 0.01 or 0.02, is more robust

for those ill-conditioned problems. From Table 3.1, we see that a smaller am/bm
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corresponds to a better optimal recovery error. It is worthwhile to point out that,

even if am/bm is larger than 1, the performance of the RCS estimator for recovery

is still much better than that of the NNPLS estimator.

Table 3.1: Influence of the rank-correction term on the recovery error

rank-correction function am bm am/bm optimal relerr

zero function 1 1 1 10.85%

ε = 0.01, τ = 2 0.1420 0.2351 0.6038 5.96%

ε = 0.02, τ = 2 0.1459 0.5514 0.2646 5.80%

ε = 0.05, τ = 2 0.1648 0.8846 0.1863 5.75%

ε = 0.1, τ = 2 0.2399 0.9681 0.2478 5.77%

Ũ1Ṽ
T

1 (initial) 0.1445 0.9815 0.1472 5.75%

U1V
T
1 (true) 0 1 0 2.25%

3.5.3 Performance for different matrix completion prob-

lems

In this subsection, we test the performance of the RCS estimator for the covariance

and density matrix completion problems. As can be seen from Figure 3.2, a good

choice of the parameter ρm for the RCS estimator could be the smallest one such

that the rank becomes stable. Such a parameter ρm can be found by the bisection

search method. This is actually what we benefit from rank consistency. In the

following numerical experiments, we apply the above strategy to find a suitable

ρm for the RCS estimator, and choose the rank-correction function F defined by

(3.71), (3.72) and (3.73) with τ = 2 and ε = 0.02. However, it is difficult to
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Figure 3.3: Influence of the rank-correction term on the recovery
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choose a good parameter ρm for the NNPLS estimator according the behavior

of the rank. For comparison, if not specified, the parameter ρm for the NNPLS

estimator is chosen to be the one such that the absolute difference between the

relative deviation and the noise level falls attains the minimum. This choice is

reasonable and leads to a relatively smaller recover error compared with others in

general. (In our experiments, we actually gave priority to choosing ρm to be the

smallest one such that the rank becomes stable before the relative error is beyond

150% noise level. But this case never happened.)
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Figure 3.4: Performance of the RCS estimator with different initial X̃m

We first take the covariance matrix completion for example to test the perfor-

mance of the RCS estimator with different initial estimators X̃m. The true matrix

X is generated by the command in Subsection 6.1 with n = 500, r = 5, weight

= 3 and k = 1 except that D = eye(n). We depict the numerical results in Figure

3.4, where the dash curves represent the relative recovery error and the rank of

the NNPLS estimator with different ρm, and the solid curves represent the relative

recovery error and the rank of the RCS estimator with X̃m chosen to be the corre-

sponding NNPLS estimator. As can be seen from Figure 3.4, the RCS estimator



3.5 Numerical experiments 96

substantially improves the quality of the NNPLS estimator in terms of both the

recovery error and the rank. We also observe that when the initial X̃m has a large

deviation from the true matrix, the quality of the RCS estimator may still not be

satisfied. Thus, it is natural to ask whether further rank-correction steps could

improve the quality. The answer can be found from Tables 3.2, 3.3 and 3.4 below,

where the numerical results of the covariance matrix completion, density matrix

completion and rectangular matrix completion are reported respectively.

For the covariance matrix completion problems, we generated the true matrix

X by the command in Subsection 3.5.1 with n = 1000, weight = 3 and k = 1

except that D = eye(n). We fixed partial diagonal and upper off-diagonal entries

and then sampled partial entries uniformly at random from the rest diagonal and

upper off-diagonal entries with i.i.d. Gaussian noise at the noise level 10%. The

rank of X and the number of fixed diagonal and upper non-diagonal entries of

X are reported in the first and the second columns of Table 3.2, respectively.

The third column reports the sample ratio, which was calculated excluding the

number of fixed entries. The first RCS estimator is using the NNPLS estimator as

the initial estimator X̃m, and the second (third) RCS estimator is using the first

(second) RCS estimator as the initial estimator X̃m. From Table 3.2, we see that

when the sample ratio is reasonable, one rank-correction step is enough to yield a

desired result. Meanwhile, when the sample ratio is very low, especially if some

off-diagonal entries are further fixed, one or two more rank-correction steps can

still improve the quality of estimation. We also remark that the NNPLS estimator

with a larger ρm could return a matrix of rank lower than what we reported in

Table 3.2. However, correspondingly, the recover error will greatly increase.

For the density matrix completion problems, we generated the true density

matrix X by the following command:

M = randn(n,r)+i*randn(n,r); ML = weight*M(:,1:k); M(:,1:k) = ML;
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Table 3.2: Performance for covariance matrix completion problems with n = 1000

NNPLS 1st RCS 2st RCS 3rd RCS
r

diag/

off−diag

sample

ratio relerr (rank) relerr(rank) relerr (rank) relerr (rank)

1000/0 2.40% 1.95e-1 (47) 1.27e-1 (5) 1.18e-1 (5) 1.12e-1 (5)

1000/0 7.99% 6.10e-2 (51) 3.41e-2 (5) 3.37e-2 (5) 3.36e-2 (5)
5

500/50 2.39% 2.01e-1 (45) 1.10e-1 (5) 9.47e-2 (5) 8.97e-2 (5)

500/50 7.98% 7.19e-2 (32) 3.77e-2 (5) 3.59e-2 (5) 3.58e-2 (5)

1000/0 5.38% 1.32e-1 (74) 7.68e-2 (10) 7.39e-2 (10) 7.36e-2 (10)

1000/0 8.96% 9.18e-2 (78) 5.15e-2 (10) 5.08e-2 (10) 5.08e-2 (10)
10

500/100 5.37% 1.58e-1 (57) 8.66e-2 (10) 7.74e-2 (10) 7.60e-2 (10)

500/100 8.96% 1.02e-1 (49) 5.36e-2 (10) 5.24e-2 (10) 5.25e-2 (10)

Table 3.3: Performance for density matrix completion problems with n = 1024

n
oi

se

r
NNPLS1 NNPLS2 RCSnoise

level

sample

ratio fidelity relerr rank fidelity relerr rank fidelity relerr rank

st
at

is
ti

ca
l

10.0% 1.5% 0.697 2.59e-1 3 0.955 2.50e-1 3 0.987 1.02e-1 3
3

10.0% 4.0% 0.915 8.04e-2 3 0.997 6.84e-2 3 0.998 4.13e-2 3

10.0% 2.0% 0.550 3.71e-1 5 0.908 4.23e-1 5 0.972 1.61e-1 5
5

10.0% 5.0% 0.889 1.03e-1 5 0.995 9.18e-2 5 0.997 4.91e-2 5

m
ix

ed

12.4% 1.5% 0.654 2.93e-1 3 0.957 2.43e-1 3 0.988 1.06e-1 3
3

12.4% 4.0% 0.832 1.49e-1 3 0.995 8.14e-2 3 0.997 6.41e-2 3

12.4% 2.0% 0.521 3.95e-1 5 0.912 4.09e-1 5 0.977 1.51e-1 5
5

12.5% 5.0% 0.817 1.61e-1 5 0.987 1.01e-1 5 0.996 7.09e-2 5
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Xtemp = M*M’; X_bar = Xtemp/sum(diag((Xtemp))).

During the testing, we set n = 1024, weight = 2 and k = 1, and sampled partial

Pauli measurements except the trace of X uniformly at random with i.i.d. Gaus-

sian noise at the noise level 10%. Besides the above statistical noise, we further

added the depolarizing noise, which frequently appears in quantum systems, with

strength 0.01. This case is labeled as the mixed noise in the last four rows of Table

3.3. We remark here that the depolarizing noise differs from our assumption on

noise since it does not have randomness. One may refer to [71, 53] for details of the

quantum depolarizing channel. In Table 3.3, the (squared) fidelity is a measure

of the closeness of two quantum states, defined by
∥∥X̂1/2

m X
1/2∥∥2

∗, the NNPLS1 esti-

mator means the NNPLS estimator by dropping the trace one constraint, and the

NNPLS2 estimator means the one obtained by normalizing the NNPLS1 estimator

to be of trace one. Note that the NNPLS2 estimator was ever used by Flammia

et al. [53]. Table 3.3 shows that the RCS estimator is superior to the NNPLS2

estimator in terms of both the fidelity and the relative error.

For the rectangular matrix completion problems, we generated the true matrix

X by the following command:

ML = randn(nr,r); MR = randn(nc,r); MW = weight*ML(:,1:k);

ML(:,1:k) = MW; X_bar = ML*MR’.

We set weight = 2, k = 1 and took X = X bar with different dimensions and

ranks. Both the uniform sampling scheme and the non-uniform sampling scheme

were tested for comparison. For the non-uniform sampling scheme, the first 1/4

rows and the first 1/4 columns were sampled with probability 3 times than the other

rows and columns respectively. In other words, the density of sampled entries in

the top-left part is 3 times as much as that in the bottom-left part and the top-

right part respectively and 9 times as much as that in the bottom-right part.
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We add 10% i.i.d. Gaussian noise to the sampled entries. We also fixed partial

entries of X uniformly from the rest un-sampled entries. The first RCS estimator

is using the NNPLS estimator as the initial estimator X̃m, and the second (third)

RCS estimator is using the first (second) RCS estimator as the initial estimator

X̃m. What we observe from Table 3.4 for the rectangular matrix completion is

similar to that for the covariance matric completion. Moreover, comparing the

performances for the uniform and non-uniform sample schemes, we can see that

the non-uniform sampling scheme greatly weakens the recoverability of the NNPLS

estimator in terms of both the recovery error and the rank, especially when the

sample ratio is low. Meanwhile, the advantage of the RCS estimators in these cases

becomes more remarkable.
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Table 3.4: Performance for rectangular matrix completion problems

se
tt

in
g

sa
m

p
le NNPLS 1st RCS 2st RCS 3rd RCS

fixed
sample

ratio relerr (rank) relerr (rank) relerr (rank) relerr (rank)

d
im

=
10

00
×

10
00
,r

an
k

=
10

u
n
if

or
m

0 5.97% 1.98e-1 (73) 7.67e-2 (10) 7.28e-2 (10) 7.27e-2 (10)

0 11.9% 9.56e-2 (61) 4.47e-2 (10) 4.45e-2 (10) 4.45e-2 (10)

1000 5.98% 1.98e-1 (75) 7.50e-2 (10) 7.10e-2 (10) 7.08e-2 (10)

1000 12.0% 8.51e-2 (65) 4.37e-2 (10) 4.35e-2 (10) 4.35e-2 (10)

n
on

-u
n
if

or
m

0 5.97% 3.27e-1 (94) 1.28e-1 (22) 9.15e-2 (10) 8.66e-2 (10)

0 11.9% 1.28e-1 (100) 5.19e-2 (10) 5.07e-2 (10) 5.07e-2 (10)

1000 5.98% 3.21e-1 (90) 1.07e-1 (15) 8.81e-2 (10) 8.35e-2 (10)

1000 12.0% 1.31e-1 (98) 5.11e-2 (10) 4.95e-2 (10) 4.95e-2 (10)

d
im

=
50

0
×

15
00
,r

an
k

=
5

u
n
if

or
m

0 4.32% 1.97e-1 (46) 7.86e-2 (5) 7.25e-2 (5) 7.17e-2 (5)

0 7.98% 9.06e-2 (39) 4.61e-2 (5) 4.57e-2 (5) 4.57e-2 (5)

1000 4.33% 1.96e-1 (47) 7.63e-2 (5) 6.96e-2 (5) 6.87e-2 (5)

1000 7.99% 8.87e-2 (48) 4.37e-2 (5) 4.35e-2 (5) 4.35e-2 (5)

n
on

-u
n
if

or
m

0 4.32% 2.98e-1 (57) 1.97e-1 (5) 1.25e-1 (5) 1.07e-1 (5)

0 7.98% 1.52e-1 (54) 5.98e-2 (5) 5.48e-2 (5) 5.43e-2 (5)

1000 4.33% 2.92e-1 (60) 1.51e-1 (6) 1.08e-1 (5) 9.59e-2 (5)

1000 7.99% 1.46e-1 (60) 6.65e-2 (5) 5.28e-2 (5) 5.16e-2 (5)



Chapter 4
Rank regularized problems with hard

constraints

In this chapter, we address the rank regularized problem with hard constraints.

The organization of this chapter is as follows: In Section 4.1, we introduce the

rank regularized problem with hard constraints and approximate it by a noncon-

vex but continuous problem. In Section 4.2, we discuss the solution quality of the

approximation problem for affine rank minimization problems and general rank reg-

ularized problems respectively. In Section 4.3, we propose an adaptive semi-nuclear

norm regularization approach to address the rank regularized problem via solving

its approximation problem, and also study the convergence of our proposed ap-

proach. Discussions of candidate functions used in this approach and comparisons

with other existing algorithms can be found in Sections 4.4 and 4.5 respectively.

Numerical results of different problems are reported in Section 4.6 to show that

the iterative scheme of our proposed approach has advantages of achieving both

the low-rank structure preserving ability and the computational efficiency.

101
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4.1 Problem formulation

We consider the general rank regularized minimization problem expressed as

min h(X) + ρ rank(X)

s.t. X ∈ K,
(4.1)

where h : Mn1×n2 → R is a loss function assumed to be continuously differentiable,

ρ > 0 is a regularization parameter and K is a nonempty closed convex subset of

Mn1×n2 . This formulation includes the rank minimization problem — minimizing

the rank over a convex set as a special case, provided that the loss function h

vanishes. Many practical problems can be cast into the class of rank regularized

problems, some of which have already been summarized in Fazel’s PhD thesis [49].

For example, the loss function h is used to measure decision objectives such as the

accuracy of a model or the cost of a design; while the rank function measures the

order, the complexity or the dimensionality. Generally, the goal of the decision

maker is a tradeoff between these desired objectives, reflected by the parameter ρ.

We take the matrix completion problem discussed in Chapter 3 as an illustrative

example. The goal of this problem is to recover a true low-rank matrix from

a small number of its linear measurements. For achieving this goal, a tradeoff

between two representable objectives — a small deviation from noisy observations

and a low rank are considered. These two objectives, together with the structure

that the unknown matrix needs to satisfy, make it possible to formulate the matrix

completion problem in terms of (3.6), falling into the class of rank regularized

problems (4.1).

Another two variants of the tradeoff mentioned above can be formulated as

min rank(X)

s.t. h(X) ≤ t,

X ∈ K,

(4.2)
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and

min h(X)

s.t. rank(X) ≤ k,

X ∈ K.

(4.3)

Clearly, the formulation (4.2) can be absorbed in the formulation (4.1) if h is

convex. Besides, the formulation (4.3) is closely related to (4.2) and thus (4.1). As

has been argued in [49, Chapter 2], if the problem (4.2) can be solved, then the

problem (4.3) can be solved via bisection as well.

Although the formulations (4.1) and (4.2) are equivalent if the parameters ρ

and t are chosen correspondingly, the former one is computationally more favorable

than the latter since generally handling one more penalized term in the objective

function is easier than handling one more constraint. Penalization is a commonly-

used technique to deal with constraints. However, against abuse of this technique,

one needs to tell the difference between hard constraints and soft constraints. Hard

constraints are those that must be satisfied (with high accuracy), e.g., as described

in Chapter 3, the matrix is constrained to be positive semidefinite with diagonal

entries being one for the correlation matrix completion and with trace being one

for the density matrix completion. Soft constraints are those should be preferably

satisfied but violations are allowed will the solution quality being possibly affected,

e.g, the deviation from noisy observations in the matrix completion problem. One

may prefer to reduce the number of soft constraints by using the penalization,

especially for large-scale problems. But, such reduction cannot be applied to hard

constraints in general. In this chapter, we are particular interested to address the

rank regularized problem (4.1) with hard constraints.

As involving the rank function in the objective, the optimization problem

(4.1) is NP-hard in general and computationally difficult to be solved in practice.

A recent popular heuristic for solving (4.1) is to replace the rank function with the
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nuclear norm as

min h(X) + ρ ‖X‖∗

s.t. X ∈ K.
(4.4)

The problem (4.4) can be regarded as the best convex approximation of the problem

(4.1). If one aims to achieve the same tradeoff of objectives as that in (4.1), the

parameter ρ > 0 in (4.4) needs to be adjusted in general.

The convex relaxation (4.4) has gained great success in many applications.

Its success is mainly due to the reason that the matrix having the smallest sum of

singular values is very probable to have the smallest rank among all the matrices in

the feasible set since the nuclear norm is the convex envelope of the rank function

over the unit ball of spectral norm [49]. However, one cannot expect that the

nuclear norm always works well as a surrogate of the rank function in any case. In

particular, when the feasible set consists of correlation matrices or density matrices

as considered in Chapter 3, the nuclear norm reduces to a constant and no longer

contains the rank information so that one has to turn to other surrogates of the

rank function for help.

The rank function can be alternatively represented in terms of singular values

as

rank(X) =
n∑
i=1

1
(
σi(X)

)
,

where 1(·) is the indicator function define over R+. Each nonzero singular val-

ues contributes equally to the rank function. Differently, each singular values

contributes to the nuclear norm proportionally to its magnitude. Due to this dif-

ference, the nuclear norm is endowed with the favorable properties in computation

— continuity and convexity. However, as the price to pay, the rank-promoting

ability of the nuclear norm is somewhat weaker than that of the rank function.

Therefore, it is inevitable to face the tradeoff between the computational difficulty

and the rank-promoting ability. Nevertheless, one may think about sacrificing the
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convexity in change of the improvement of rank-promoting ability by increasing

the proportions of contributions of relatively-small singular values in the construc-

tion of a surrogate of the rank function, provided that the computational difficulty

caused by the non-convexity can be well-handled. This realization motivates us to

construct an approximate problem to deal with the tradeoff between minimizing

the loss function and the rank function in terms of

min h(X) + ρ ‖F (X)‖∗

s.t. X ∈ K,
(4.5)

where F : Mn1×n2 →Mn1×n2 is a Löwner’s operator (see Definition 2.4) associated

with a function f : R+ → R+ which is pre-selected from the set of functions C(R+)

defined by

C(R+) :=
{
f : R+ → R+ is non-identical zero, concave with f(0) = 0

}
,

and ρ > 0 is the parameter to control the tradeoff. The function ‖F (X)‖∗ is a

surrogate of the rank function, expressed as

‖F (X)‖∗ =
n∑
i=1

f
(
σi(X)

)
∀X ∈Mn1×n2 .

In particular, ‖F (X)‖∗ reduces to rank(X) if f(·) = 1(·) and reduces to ‖X‖∗ if

f(·) = id(·). Given any f ∈ C(R+), the surrogate function ‖F (X)‖∗ is nonconvex

(and also nonconcave) except for the case ‖F (X)‖∗ = ‖X‖∗. Moreover, it is easy

to check that if f, g ∈ C(R+), then all their convex combinations belong to C(R+),

as well as g ◦f and min(f, g). Thanks to the concavity of f ∈ C(R+), the surrogate

function ‖F (X)‖∗ is expected to be endowed with better rank-promoting ability

compared with the nuclear norm.
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4.2 Approximation quality

In this section, we study the relationship between the solutions to the rank regu-

larized problem (4.1) and its approximation (4.5) and evaluate the quality of the

approximation.

4.2.1 Affine rank minimization problems

We first consider a special case of (4.1) — the affine rank minimization problem,

taking the form

min rank(X)

s.t. A(X) = b,
(4.6)

where the linear map A : Mn1×n2 → Rl and the vector b ∈ Rl are given. This

problem is of particular interest in many applications such as system control, matrix

completion and image reconstruction, to name but a few. Let f ∈ C(R+) and F be

the Löwner’s operator associated with f . Then we can construct an approximation

of the affine rank minimization problem (4.6), expressed as

min ‖F (X)‖∗
s.t. A(X) = b.

(4.7)

On account of the special structure of (4.7), we are interested in the question:

What is the prior guarantee such that the affine rank minimization problem (4.6)

and its approximation (4.7) produce the same optimal solution?

Let f ∈ C(R+) and let r be an integer with 1 ≤ r ≤ n. For any z ∈ Rn
+, define

θf,r(z) :=


∑r

i=1 f(z[i])∑n
i=1 f(z[i])

if z ∈ Rn
+\{0},

0, if z = 0.

and for any linear operator A : Mn1×n2 → Rl, we define

Θf,r(A) := sup
Z∈N(A)

θf,r
(
σ(Z)

)
,



4.2 Approximation quality 107

where N(A) denotes the nullspace of the linear operator A, i.e.,

N(A) = {Z ∈Mn1×n2 | A(Z) = 0}.

It is easy to see from the definition that

0 ≤ Θf,r1(A) ≤ Θf,r2(A) ≤ 1 ∀ 1 ≤ r1 ≤ r2 ≤ n.

The following result characterizes the uniqueness of the solution to the ap-

proximation problem (4.7).

Theorem 4.1. Any matrix X ∈ Mn1×n2 of rank at most r is the unique solution

to the problem (4.7) with b := A(X) if and only if

Θf,r(A) <
1

2
. (4.8)

In addition, in this case, X is also the unique solution to the problem (4.6).

Proof. Notice that Θf,r(A) < 1
2

is equivalent to

N(A) = {0} or
r∑
i=1

f
(
σi(Z)

)
<

n∑
i=r+1

f
(
σi(Z)

)
∀Z ∈ N(A)\{0}.

Suppose that (4.8) holds and N(A) 6= {0}. From Theorem 2.8, we have that for

any matrix X of rank at most r and any N(A) 3 Z 6= 0,

‖F (X + Z)‖∗ =
n∑
i=1

f
(
σi(X + Z)

)
≥

n∑
i=1

∣∣f(σi(X)
)
− f

(
σi(Z)

)∣∣
≥

r∑
i=1

(
f
(
σi(X)

)
− f

(
σi(Z)

))
+

n∑
i=r+1

(
f
(
σi(Z)

)
− f

(
σi(X)

))
= ‖F (X)‖∗ −

r∑
i=1

f
(
σi(Z)

)
+

n∑
i=r+1

f
(
σi(Z)

)
> ‖F (X)‖∗.

Hence, X is the unique optimal solution to the problem (4.7) if (4.8) holds.
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Conversely, suppose that any matrix X of rank at most r is the unique solution

to (4.7) with b := A(X). Assume that (4.8) does not hold. Then there exists some

N(A) 3 Ẑ 6= 0 such that

r∑
i=1

f
(
σi(Ẑ)

)
≥

n∑
i=r+1

f
(
σi(Ẑ)

)
. (4.9)

Let (Û , V̂ ) ∈ On1,n2(Ẑ) and let

X̂ := ÛDiag
(
−σ1(Ẑ), . . . ,−σr(Ẑ), 0, . . . , 0

)
V̂ T.

Clearly, rank(X̂) ≤ r. Moreover, from (4.9), we obtain

‖F (X̂ + Ẑ)‖∗ =
n∑
i=1

f
(
σi(X̂ + Ẑ)

)
=

n∑
i=r+1

f
(
σi(Ẑ)

)
≤

r∑
i=1

f
(
σi(Ẑ)

)
= ‖F (X̂)‖∗.

This means that X̂ is not the unique solution to the problem (4.7) with b := A(X̂),

which leads to a contradiction. Thus, we complete the “if and only if” part.

Furthermore, assume that in this case the problem (4.6) has another optimal

solution X̃ 6= X. Then from the first part of this theorem, X̃ is also the unique

solution to (4.7), leading to a contradiction. Thus, X is also the unique solution

to (4.6).

Theorem 4.1 is an extension of Lemma 6 in [139] for strong recovery of low-

rank matrices via the nuclear norm minimization. This result implies that if the

nullspace property (4.8) holds, then any matrix of rank at most r can be recovered

from its linear measurements via solving the optimization problem (4.7). A similar

result has also been obtained in [140, 188] for the Schatten-q quasi-norm. By

further applying Theorem 4.1 to the case that f(·) = 1(·), we obtain an implicit

recurrence relation, i.e., for any f ∈ C(R+),

Θf,r <
1

2
=⇒ Θ1,r <

1

2
, (4.10)
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where the later one is also equivalent to

N(A) = 0 or rank(Z) > 2r ∀Z ∈ N(A). (4.11)

Thus, the condition (4.11), which also implies r < n/2, is necessary for (4.8) to

hold true. A stronger version of (4.10) can be achieved as stated below.

Theorem 4.2. Let f, g ∈ C(R+). Then for any linear operator A : Mn1×n2 → Rl

and any integer r with 1 ≤ r ≤ n,

Θ1,r(A) ≤ Θg◦f,r(A) ≤ Θf,r(A) ≤ Θid,r(A).

Proof. It suffices to show that

θ1,r(z) ≤ θg◦f,r(z) ≤ θf,r(z) ≤ θid,r(z) ∀ z ∈ Rn
+\{0}.

We first prove the last inequality. Let Rn
+ 3 z 6= 0 be arbitrary. Notice that

f ∈ C(R+) implies that f(x)/x is nonincreasing on (0,∞). Then for any integer

1 ≤ i ≤ k ≤ n − 1, we obtain that z[i]f(z[k+1]) ≥ z[k+1]f(z[i]) since z[i] ≥ z[k+1]. It

follows that

k∑
i=1

z[i]f(z[k+1]) ≥
k∑
i=1

z[k+1]f(z[i]) ∀ 1 ≤ k ≤ n− 1.

From the above inequality, we further obtain that for any 1 ≤ k ≤ n− 1,∑k+1
i=1 f(z[i])∑k
i=1 f(z[i])

= 1 +
f(z[k+1])∑k
i=1 f(z[i])

≥ 1 +
z[k+1]∑k
i=1 z[i]

=

∑k+1
i=1 z[i]∑k
i=1 z[i]

.

This implies that
{∑k

i=1 f(z[i])∑k
i=1 z[i]

}
is nondecreasing and thus∑r

i=1 f(z[i])∑r
i=1 z[i]

≤
∑n

i=1 f(z[i])∑n
i=1 z[i]

.

Hence, θf,r(z) ≤ θid,r(z). This relation further leads to

θg◦f,r(z) = θg,r
(
f(z)

)
≤ θid,r

(
f(z)

)
= θf,r(z),
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where f(z) denotes the vector
(
f(z1), . . . , f(zn)

)T
. Then, since g ◦ f ∈ C(R+), we

further obtain

θ1,r(z) = θ1◦(g◦f),r(z) ≤ θg◦f,r(z).

Thus we complete the proof.

Theorem 4.2 is an extension of [69, Lemma 7] from the vector case to the

matrix case. This result provides us the possibility to compare the preference

of functions in C(R+) to construct a surrogate of the rank function. Combing

Theorems 4.1 and 4.2 together, we realize that among all the surrogate function-

s ‖F (X)‖∗ with f ∈ C(R+), theoretically, the rank function possesses the best

recoverability (or rank-promoting ability), while the nuclear norm possesses the

least. In addition, the “more concave” the function f is, the better recoverability

the surrogate function ‖F (X)‖∗ possesses. Here, “more concave” refers to a larger

ratio of the increase speeds near zero to that away from zero.

4.2.2 Approximation in epi-convergence

For the general case, it is hard to derive similar results as in Section 4.2.1. Alterna-

tively, we consider the gradual behavior of a sequence of approximation problems

that approaches the rank regularized problem (4.1) in terms of their optimal so-

lutions. For this purpose, we use the technique of epi-convergence introduced in

Subsection 2.5. The sequential approximation problems take the form

min h(X) + ρ ‖F k(X)‖∗

s.t. X ∈ K,
(4.12)

where F k(X) are Löwner’s operators associated with fk ∈ C(R+).

Lemma 4.3. If fk(·) e→ 1(·), then ‖F k(·)‖∗
e→ rank(·).
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Proof. Given any matrix X ∈Mn1×n2 and any sequence Xk → X, the (Lipschitiz)

continuity of singular values leads to σi(X
k)→ σi(X) ∀ i = 1, . . . , n. Since fk(·) e→

1(·), from the definition of epi-convergence, we obtain that

lim inf
k→∞

fk
(
σi(X

k)
)
≥ 1

(
σi(X)

)
∀ i = 1, . . . , n.

This leads to

lim inf
k→∞

‖F k(Xk)‖∗ = lim inf
k→∞

n∑
i=1

fk
(
σi(X

k)
)
≥

n∑
i=1

lim inf
k→∞

fk
(
σi(X

k)
)

≥
n∑
i=1

1
(
σi(X)

)
= rank(X).

Meanwhile, fk(·) e→ 1(·) also implies that there exists a sequence Rn
+ 3 xk → σ(X)

such that

lim
k→∞

fk(xki ) = 1
(
σi(X)

)
∀ i = 1, . . . , n.

Let (U, V ) ∈ On1,n2(X) and define Xk := UDiag(xk)V T. Then, Xk → X and

lim
k→∞
‖F k(Xk)‖∗ = lim

k→∞

n∑
i=1

fk(xki ) =
n∑
i=1

lim
k→∞

fk(xki )

=
n∑
i=1

lim
k
1
(
σi(X)

)
= rank(X).

Thus, we complete the proof.

Corollary 4.4. If the sequence {fk} is nondecreasing (i.e., fk+1 ≥ fk) and point-

wise converges to 1(·) over R+, then ‖F k(·)‖∗
e→ rank(·).

Proof. This is immediate from Proposition 2.13, Lemma 4.3 and the lower semi-

continuity of the functions fk.

Now we are in the position to obtain the following result.

Theorem 4.5. Suppose that {fk} is eventually level-bounded or K ⊂ Mn1×n2 is

compact. For each k, let Xk be an optimal solution and νk be the optimal value to
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the approximation problem (4.12). Let ν be the optimal value to the problem (4.1).

If fk(·) e→ 1(·), then νk → ν. Moreover, any cluster point of {Xk} is an optimal

solution to (4.1). In particular, if the problem (4.1) has a unique solution X, then

Xk → X.

Proof. This is immediate from Proposition 2.13, Theorem 2.14 and Lemma 4.3.

This result sounds good since it provides us a possible way to solve the rank

regularized problem sequentially. However, generally speaking, it is more of the-

oretical interest rather than for practical implementations. First, since the con-

vergence for each individual nonconvex approximation problem is not guaranteed,

one cannot expect to numerically obtain a sequence of solutions that converges to

the optimal solution to the rank regularized problem in practice. Secondly, as we

know, the closer two functions are, the more similarities they share with each other.

Therefore, if the surrogate function approximates the rank function too aggressive-

ly, computational difficulties will become apparent and hard to be well-handled.

As a result, a more practical way is to solve only one approximation problem that is

suitably pre-determined on account of the tradeoff between theoretical advantage

and numerical convenience, or to solve at most several approximation problems

and choose the best solution among them. Despite the above discussion, one may

still gain a further understanding of the quality of solution to the approximation

problem (4.5) from the obtained results in this subsection.

4.3 An adaptive semi-nuclear norm regulariza-

tion approach

In this section, we propose an adaptive semi-nuclear norm regularization approach

to address the rank regularized problem via solving its nonconvex approximation
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problem (4.5). In general, a basic approach for solving a nonconvex optimization

problem is to sequentially solve a sequence of convex approximation optimization

problems instead. This motivates us to apply the majorized proximal gradient

method, i.e., Algorithm 2.1, to the approximation problem (4.5) by setting

X := Mn1×n2 , h(x) = h(X), g(x) = δK(X), p(x) = ‖F (X)‖∗.

4.3.1 Algorithm description

As can be seen from Algorithm 2.1, a crucial step is to construct a sequence of

suitable convex functions to majorize the nonconvex function ‖F (X)‖∗. For this

purpose, the Lipschitz continuity of the function ‖F (X)‖∗ is necessary. Therefore,

we restrict the function f to be selected from the set C(R+) ⊂ C(R+) defined as

C(R+) :=

 f : R+ → R+ is non-identical zero, concave

with f(0) = 0 and f ′+(0) <∞

 .

Then we easily have the following result.

Lemma 4.6. Let F be the Löwner’s operator associated with f ∈ C(R+). Then

the function ‖F (X)‖∗ is Lipschitz continuous with constant at most
√
nf ′+(0).

Proof. Note that for any f ∈ C(R+), we have f(t) ≤ f ′+(0) t for any t ≥ 0.

Then for any X, Y ∈ Mn1×n2 , according to the inequality (2.13) and the fact

‖X‖∗ ≤
√

rank(X)‖X‖F , we obtain

∣∣‖F (X)‖∗ − ‖F (Y )‖∗
∣∣ ≤ ‖F (X − Y )‖∗ ≤ f ′+(0)‖X − Y ‖∗ ≤

√
nf ′+(0)‖X − Y ‖F .

Thus, we complete the proof.

Notice that the surrogate function ‖F (X)‖∗ with f ∈ C(R+) is actually con-

cave over the positive semidefinite cone Sn+. Therefore, for the positive semidefinite
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case K ⊂ Sn+, one can easily construct a majorization function of ‖F (X)‖∗ by us-

ing its linearization. This fact was observed by Fazel, Hindi and Boyd in [51] (see

also [49]), leading to the proposal of the reweighted trace minimization for positive

semidefinite matrix rank minimization problems. However, for the general rectan-

gular case, one has to make more efforts to construct a suitable convex majorization

function of ‖F (X)‖∗. In the following, we provide an efficient strategy for such

consideration, extending the linear majorization for the positive semidefinte case

to its variant for the rectangular case.

Clearly, the concavity of f implies that

0 ≤ f ′−(t1) ≤ f ′+(t) ≤ f ′−(t) ≤ f ′+(t2) ∀ 0 ≤ t2 ≤ t ≤ t1,

where f ′− and f ′+ denote the left derivative and the right derivative of f respectively.

Moreover, for any t ∈ R+, we have a global linear overestimate of f over R+ as

f(t) ≤ f(t) + s(t− t) ∀ t ∈ R+,

where s ∈ [f ′+(t), f ′−(t)]. Hereafter, we set f ′−(0) := f ′+(0). Then given any matrix

Y ∈Mn1×n2 , one may construct a vector w ∈ Rn
+ such that

w =
(
1− s1/µ, . . . , 1− sn/µ

)T
with si ∈

[
f ′+
(
σi(Y )

)
, f ′−
(
σi(Y )

)]
and µ ≥ sn. Basically, there are two simple

options: µ := sn and µ := f ′+(0). (Indeed, if Y is not of full rank, these two

options lead to the same value.) In addition,

0 ≤ s1 ≤ · · · ≤ sn ≤ f ′+(0) =⇒ 1 ≥ w1 ≥ · · · ≥ wn ≥ 0.

Then, we have the first step majorization as

‖F (X)‖∗ ≤
n∑
i=1

((
f(σi(Y )

)
+ si

(
σi(X)− σi(Y )

))
=

n∑
i=1

f
(
σi(Y )

)
+ µ

n∑
i=1

(1− wi)σi(X)− µ
n∑
i=1

(1− wi)σi(Y )

= µ
(
‖X‖∗ − ‖X‖w

)
+ ‖F (Y )‖∗ − µ

(
‖Y ‖∗ − ‖Y ‖w

)
(4.13)
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where ‖ · ‖w denotes the w-weighted norm, i.e., ‖X‖w =
∑n

i=1wiσi(X) ∀X ∈

Mn1×n2 (see the definition in Section 2.3). Notice that the right-hand side of the

above inequality (4.13) is a difference of two convex functions. Therefore, the

second step majorization is to further linearize the second convex function ‖ · ‖w
as

‖X‖w ≥ ‖Y ‖w + 〈G,X − Y 〉 ∀X ∈Mn1×n2 , (4.14)

where G is any element in the subdifferential of ‖ · ‖w at Y , whose characterization

can be found in Theorem 2.5. A particular choice of G ∈ ∂‖Y ‖w is

G := UDiag(w)V T, (4.15)

where (U, V ) ∈ On1,n2(Y ). For notational simplicity, we define

p̂(X, Y ) := µ
(
‖X‖∗ − 〈G,X − Y 〉

)
+ ‖F (Y )‖∗ − µ‖Y ‖∗, (4.16)

though abuse of notation may occur for p̂(X, Y ) due to the possible freedom for

choosing µ and G. By substituting (4.14) into (4.13), we obtain a convex majoriza-

tion of ‖F (X)‖∗ as

‖F (X)‖∗ = p̂(X,X) and ‖F (X)‖∗ ≤ p̂(X, Y ) ∀X, Y ∈Mn1×n2 .

One may notice that for the positive semidefinite case, this majorization is nothing

but the linearization of ‖F (X)‖∗ at Y .

Based on the above construction of the majorization function, now we describe

the basic framework of the adaptive semi-nuclear norm regularization approach.
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Algorithm 4.1. (Adaptive semi-nuclear norm regularization approach)

Step 0. Choose f ∈ C(R+). Input X0 ∈Mn1×n2. Set k := 0.

Step 1. Compute σ(Xk). Construct Rn
+ 3 wk = (1 − sk1/µk, . . . 1 − skn/µk)T with

ski ∈ [f ′+(σi(X
k), f ′−(σi(X

k))] and µk ≥ skn. Choose Gk to be an element

in the subdifferential of ‖ · ‖wk at Xk. Construct a convex function hk

that majorizes h at Xk over K.

Step 2. Compute the optimal solution Xk+1 to the convex problem:

min hk(X) + ρµk
(
‖X‖∗ − 〈Gk, X〉

)
s.t. X ∈ K.

(4.17)

Step 3. If converged, stop; otherwise, set k := k + 1 and go to Step 1.

Notice that for each k ≥ 0, wki ∈ [0, 1], i = 1, . . . , n. Then, from the charac-

terization of Gk in Theorem 2.5, we have σi(G
k) ∈ [0, 1], i = 1, . . . , n. This leads

to

‖X‖∗ − 〈Gk, X〉 ≥ ‖X‖∗ −
n∑
i=1

σi(G
k)σi(X) ≥ 0 ∀X ∈Mn1×n2 , (4.18)

where the first inequality follows from von Neumann’s inequality [174], i.e.,

〈X, Y 〉 ≤
n∑
i=1

σi(X)σi(Y ) ∀X, Y ∈Mn1×n2 .

The nonnegative property (4.18) implies that for each k ≥ 0, ‖X‖∗ − 〈Gk, X〉

actually defines a semi-norm, called a semi-nuclear norm (associated with Gk)

hereafter, with its form depending on the current iterate Xk. This is the reason

why we call Algorithm 4.2 the adaptive semi-nuclear norm regularization approach.

Thanks to the regularization of a sequence of semi-nuclear norms, the iterative

scheme preserves the low-rank structure of the solution in each iteration.
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It is recommended to choose the initial point X0 = 0 in the implementation

of Algorithm 4.1. Under this setting, G0 = 0 and thus the first iteration solves a

nuclear norm regularized problem. It is well-known that the nuclear norm regular-

ization is able to provide a reasonable low-rank solution in many cases. Therefore,

the initial input X0 = 0 allows the algorithm to have a probable good start. When

the loss function h is convex, one may simply choose hk ≡ h in the implementation

of Algorithm 4.1, provided that the subproblem can be efficiently solved by certain

methodologies. In fact, the adaptive semi-nuclear norm regularization approach

can be regarded as a sequential corrections of the nuclear norm regularization for

achieving better performance.

As we discussed in Subsection 2.6, the efficiency of a majorization method

depends on the quality of the constructed majorization functions. For general cases,

majorizing the function h by using a quadratic function could be a straightforward

choice. However, the construction of a suitable majorization function may not be

easy or even possible in practice. Instead, line search could help to ensure the

decrease of objective values. Even when majorization functions are available, line

search can also help to reduce the deviation from the original function. Hence, we

recommend a variant of Algorithm 4.1 with linear search as follows.
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Algorithm 4.2. (Adaptive semi-nuclear norm regularization approach

with line search)

Step 0. Choose f ∈ C(R+). Input X0 ∈Mn1×n2. Choose τ ∈ (0, 1) and δ ∈ (0, 1).

Set k := 0.

Step 1. Compute σ(Xk). Construct Rn
+ 3 wk = (1 − sk1/µk, . . . 1 − skn/µk)T with

ski ∈ [f ′+(σi(X
k), f ′−(σi(X

k))] and µk ≥ skn. Choose Gk to be an element

in the subdifferential of ‖ · ‖wk at Xk. Choose γk > 0.

Step 2. Compute the optimal solution X̃k+1 to the (strongly) convex problem:

min 〈∇h(Xk), X〉+
γk

2
‖X −Xk‖2

F + ρµk
(
‖X‖∗ − 〈Gk, X〉

)
s.t. X ∈ K.

(4.19)

Step 3. Choose αk > 0 and let lk be the smallest nonnegative integer satisfying

φ
(
Xk + αkτ l(X̃k+1 −Xk)

)
≤ φ(Xk) + δαkτ l∆k, (4.20)

where φ(X) := h(X) + ρ ‖F (X)‖∗ and

∆k := 〈∇h(Xk), X̃k+1−Xk〉+ρµk
(
‖X̃k+1‖∗−‖Xk‖∗−〈Gk, X̃k+1−Xk〉

)
.

Set αk := αkτ lk and Xk+1 := Xk + αk(X̃k+1 −Xk).

Step 4. If converged, stop; otherwise, set k := k + 1 and go to Step 1.

Algorithm 4.2 can be regarded as a direct application of the majorized proxi-

mal gradient method discussed in Section 2.6 to solve the approximation problem

(4.5) with f ∈ C(R+). In particular, when the loss function f is convex and ∇h

is Lipschitz continuous with constant κ, Algorithm 4.2 can be simplified without

line search by setting γk := κ for all k ≥ 0 since the objective function of (4.19)
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reduces to a regular majorization.

4.3.2 Convergence results

In this subsections, we aim to discuss the convergence of the adaptive semi-nuclear

norm regularization approach with line search. For convergence analysis, we need

the following concepts. For any X ∈ K, let NK(X) denote the normal cone of K

at X, i.e.,

NK(X) := {Z ∈Mn1×n2 | 〈Z,X −X〉 ≤ 0 ∀X ∈ K}.

We denote by ∂‖F (X)‖∗ the Clarke’s generalized gradient of ‖F (X)‖∗ at X.

Definition 4.1. Let f ∈ C(R+). We say that X ∈ K is a stationary point of the

problem (4.5) if

0 ∈ ∇h(X) + ρ ∂‖F (X)‖∗ +NK(X). (4.21)

Recall that for any f ∈ C(R+), ‖F (X)‖∗ is Lipschitz continuous and thus

h(X) + ρ ‖F (X)‖∗ is locally Lipschitz continuous. Then, it is known from [27,

Corollary 2.4.3] that (4.21) is a necessary condition for X to be an optimal solution

to the problem (4.5).

The general convergence result in Theorem 2.19 can be applied to the adaptive

semi-nuclear norm regularization approach. The following result will be helpful in

this regard.

Lemma 4.7. Suppose that f ∈ C(R+) is continuously differentiable. If µ := sn

or µ := f ′+(0), and G is chosen as (4.15), then p̂(X, Y ) defined by (4.16) is a

continuous function.

Proof. The continuity of µ := sn with respect to Y comes from the continuous

differentiability of f . In this case, we can write G as a spectral operator

G = UDiag
(
ψ(σ(Y ))

)
V T,
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associated with a symmetric function ψ : Rn → Rn defined by

ψi(x) =

 sgn(xi)

(
1− f ′(|xi|)

f ′(|x|min)

)
if x ∈ Rn\{0},

0 if x = 0,

(4.22)

where (U, V ) ∈ On1×n2(Y ) and |x|min denotes the smallest component of |x|. It is

easy to see that the function ψ is continuous. It then follows from [33, Chapter 3]

that G is also continuous with respect to Y . Hence, p̂(X, Y ) defined by (4.16) is a

continuous function. The argument for the case that µ = f ′+(0) is the same expect

replacing f ′(|x|min) with f ′+(0) in (4.22).

Theorem 4.8. Let {Xk} be a sequence generated from Algorithm 4.2. Suppose

that f ∈ C(R+) and 0 < γ ≤ γk ≤ γ < ∞ ∀ k ≥ 0. Then, the sequence {h(Xk) +

ρ‖F (Xk)‖∗} is monotonically decreasing. In addition, suppose that f is further

continuously differentiable and infk α
k > 0. If µk := skn or µk := f ′+(0), and Gk is

chosen as (4.15), then any limit point of {Xk} is a stationary point of the problem

(4.5).

Proof. The problem (4.5) can be equivalently written as

min
X∈Mn1×n2

h(X) + ρ ‖F (X)‖∗ + δK(X). (4.23)

According to Lemma 4.7, the function p̂(X, Y ) is continuous. Notice that ∂δK(X) =

NK(X) for any X ∈ K. Then after applying Theorem 2.19 to the problem (4.23),

we only need to show that for any limit point X of {Xk},

∂p̂X(X) = f ′
(
σn(X)

)(
∂‖X‖∗ −G

)
⊆ ∂‖F (X)‖∗,

where p̂X(X) := p̂(X,X) with the function p̂(X, Y ) being defined by (4.16), and

G = UDiag
(
ψ(σ(X))

)
V

T
with ψ being defined by (4.22) and (U, V ) ∈ On1,n2(X).

Let r = rank(X) and write U = [U1, U2] with U1 ∈ On1×r, U2 ∈ On1×(n1−r) and
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V = [V 1, V 2] with V 1 ∈ On2×r, V 2 ∈ On2×(n2−r). Since ψi(x) = 0 if xi = 0, we can

rewrite G as

G = U1Diag

(
1− f ′(σ1(X))

f ′(σn(X))
, . . . , 1− f ′(σr(X))

f ′(σn(X))

)
V

T
1 .

Moreover, it follows from [176, 177] that the subdifferential of the nuclear norm at

X takes the form

∂‖X‖∗ =
{
U1V

T
1 + U2WV

T
2 | W ∈M(n1−r)×(n2−r) with ‖W‖ ≤ 1

}
.

Then from Theorem 2.4, we obtain that

f ′
(
σn(X)

)(
∂‖X‖∗ −G

)
=
{
U1Diag

(
f ′(σ1(X)), . . . , f ′(σr(X))

)
V

T
1 + U2WV

T
2

∣∣ ‖W‖ ≤ 1
}

⊆ ∂‖F (X)‖∗.

Thus, we complete the proof.

The two options µk := skn and µk := f ′+(0) differ very little in practice since

each iteration produces a low-rank solution due to a semi-nuclear norm and thus

these two options lead to the same value of µk. Moreover, as can be seen from the

proof of Theorem 2.19, the results in Theorem 4.8 also hold if the global contin-

uous differentiability of the function f is slightly relaxed to the local continuous

differentiability at all σi(X), i = 1, . . . , n.

We further remark here that according to Theorem 4.8, it is recommended

to choose a strictly increasing continuously differentiable function f ∈ C(R+) to

construct the approximation problem (4.5). The continuous differentiability is for

the theoretical convergence guarantee. Meanwhile, the strict monotonicity is to

reduce the number of undesired stationary points of the problem (4.5) at which

Algorithm 4.2 may terminate unexpectedly, especially for the case that h ≡ 0. The

strict monotonicity also helps to avoid the possibility of µk = 0 in the subproblem

(4.19) if we choose µk = skn.
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4.3.3 Related discussions

The proposal of using the adaptive semi-nuclear norm regularization approach is

inspired by the rank-corrected procedure for matrix completion problems discussed

in Chapter 3. Recall that in the rank-correction step (3.8), combing the nuclear

norm with either the spectral operator defined by (3.70) when the rank is known

or the spectral operator defined by (3.71), (3.72), (3.73) yields a semi-nuclear

norm. As a result, theoretical results and numerical experiments in Chapter 3

already provide substantial evidences to support the efficiency of the semi-nuclear

technique for addressing the low-rank structure.

Let us take a look at the computational cost of our proposed adaptive semi-

nuclear norm regularization approach — Algorithms 4.1 and 4.2, which mainly

lies in solving the subproblems (4.17) and (4.19) respectively. Notice that the

subproblem (4.19) in Algorithm 4.2 can be equivalently (up to a constant term in

the objective function) written as

min
γk

2
‖X − Y k‖2

F + ρµk‖X‖∗

s.t. X ∈ K.
(4.24)

where

Y k := Xk − 1

γk
∇h(Xk) +

ρµk

γk
Gk.

For the unconstrained case, i.e., K = Mn1×n2 , by using the singular value soft-

thresholding operator defined by (2.4), the problem (4.24) has the unique solution

X̃k+1 taking the form

X̃k+1 = Psoft
τk (Y k) with τ k := ρµk/γk.

For more general constraints, due to a semi-nuclear norm regularization, the favor-

able singular value soft-thresholding operator can be fully used to design efficient

algorithms to solve the subproblems (4.17) and (4.19). This is another aspect what
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we can benefit from a semi-nuclear norm besides its low-rank structure-preserving

ability.

Many existing algorithms designed for the nuclear norm regularization prob-

lems can be directly applied or slightly modified to solve the subproblems (4.17)

and (4.19), e.g., [17, 109, 115, 81, 80], to name but only a few. For example, when

K is the set of linear equality and/or inequality constraints, the proximal alter-

nating direction method of multipliers (proximal ADMM) could be a satisfactory

choice for solving (4.17) in many situations, especially when the loss function h is

a quadratic function. One may refer to Appendix B of [52] for detailed discussion-

s on the convergence of this algorithm. The advantage of the proximal ADMM

is the fast reduction of the loss and the rank. However, in some circumstances,

it also has difficulty in achieving high feasibility for hard problems, which is a

common shortcoming of first-order methods. To meet the demand of high feasi-

bility of certain hard constraints, the semismooth/smoothing Newton-CG method

could be a suitable choice. Recent developed methodologies for the nuclear nor-

m regularized problems in [79, 81, 80] had demonstrate the efficiency of using

the semismooth Newton-CG method and the smoothing Newton-BiCG method

for hard constraints. It is worthy of noticing that the main aim of the first few

iterations is to gain a proper semi-nuclear norm. Therefore, for improving the com-

putational efficiency, moderate accuracy of solutions is already enough in the first

few iterations. In view of this, a potentially good idea is taking the full use of the

advantages of both the proximal ADMM and the semismooth/smoothing Newton-

CG method — first using the proximal ADMM for finding a proper semi-nuclear

norm and then switching to the semismooth/smoothing Newton-CG method for

the required high feasibility. However, so far, large-scale problems with hard con-

straints remain to be further explored since the semismooth Newton-CG method

and the smoothing Newton-BiCG method also have difficulty in dealing with a
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large number of constraints.

In particular, for the rank minimization problem

min rank(X)

s.t. X ∈ K,
(4.25)

we propose the adaptive semi-nuclear norm minimization, which is a specialized

version of Algorithm 4.1 when the loss function h vanishes.

Algorithm 4.3. (Adaptive semi-nuclear norm minimization)

Step 0. Choose f ∈ C(R+). Input X0 ∈Mn1×n2. Set k := 0.

Step 1. Compute σ(Xk). Construct Rn
+ 3 wk = (1 − sk1/µk, . . . 1 − skn/µk)T with

ski ∈ [f ′+(σi(X
k), f ′−(σi(X

k))] and µk ≥ skn. Choose Gk to be an element

in the subdifferential of ‖ · ‖wk at Xk. Choose γk ↓ γ ≥ 0.

Step 2. Compute the optimal solution Xk+1 to the (strongly) convex problem:

min ‖X‖∗ − 〈Gk, X〉+
γk

2
‖X −Xk‖2

F

s.t. X ∈ K.
(4.26)

Step 3. If converged, stop; otherwise, set k := k + 1 and go to Step 1.

Algorithm 4.3 is specialized version of Algorithm 4.1 when the loss function

h vanishes. For the special positive semidefinite case K ⊂ Sn+, the adaptive semi-

nuclear norm minimization reduces to the reweighted trace minimization of Fazel,

Hindi and Boyd in [51], except for the proximal term γk

2
‖X − Xk‖2

F added in

the objective in each subproblem of the adaptive semi-nuclear norm minimization.

The proximal term plays an important role in two aspects. One aspect is to

stabilize the solution to the subproblem (4.26) to make it unique and bounded.

The other aspect is to save the computational cost for solving the subproblem. In
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particular, if the surrogate of the rank function is the nuclear norm, i.e., ‖F (X)‖∗ =

‖X‖∗, then Gk ≡ 0 for all k ≥ 0 and thus Algorithm 4.3 reduces to the (primal)

proximal point algorithm for solving the nuclear norm minimization problem, e.g.,

see [109]. Roughly speaking, the computational cost of the adaptive semi-nuclear

norm minimization is of the same order as that of the nuclear norm minimization in

general. We also remark here that in the practical implementation, one may simply

set the parameter γk ≡ 0 provided that the subproblem (4.26) can be efficiently

solved by a certain method.

Finally, for the special case K = Mn1×n2 , we also provide another simple

iterative method to solve the unconstrained version of (4.5). For simplicity of

illustration, we assume that ∇h is Lipschitz continuous with constant κ > 0. Then

we can easily construct a majorization of the objective function such that for any

X, Y ∈Mn1×n2 ,

h(X) + ρ‖F (X)‖∗ ≤ h(Y ) + 〈∇h(Y ), X − Y 〉+
κ

2
‖X − Y ‖2

F + ρ‖F (X)‖∗.

Compared with the adaptive semi-nuclear norm regularization approach, here, we

only majorize the function h(X) but not ‖F (X)‖∗. Thus, we do not need the

restriction f ′+(0) < ∞. According to the framework of majorization methods

discussed in Section 2.6, with an initial input X0, we generate {Xk+1} by solving

a sequence of nonconvex optimization problems as

Xk+1 ∈ arg min
X∈Mn1×n2

{
κ

2
‖X − Zk‖2

F + ρ‖F (X)‖∗
}
, (4.27)

where Zk = Xk − 1
κ
∇h(Xk). Although being nonconvex, due to the simplicity

of no constraint, each problem (4.27) has an optimal solution (may not unique)

taking the form

Xk+1 = UkDiag(xk+1)V T
k ,
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where (Uk, Vk) ∈ On1,n2(Zk) and xk ∈ Rn
+ such that

xk+1
i ∈ arg min

t∈R+

{
κ

2

(
t− σi(Zk)

)2
+ ρf(t)

}
∀ i = 1, . . . , n. (4.28)

Thus, in each iteration, one only needs to solve n numbers of one-dimensional

optimization problems. For some special functions, say f(t) = t1/2 or f(t) = log(t),

each problem (4.28) has a closed-form solution. Even if not for general cases,

solving such one-dimensional problems is essentially not a time-consuming work in

matrix optimization problems. In this iterative method, line search may also be

included as what we did in the adaptive semi-nuclear norm regularization approach,

especially when∇f is not Lipschitz continuous. However, as majorization functions

are nonconvex, the general convergence result of this iterative method described

above has not been explored yet. This will be left to the further work.

4.4 Candidate functions

Now we list several families of candidate functions from C(R+) that are available

for our proposed adaptive semi-nuclear norm regularization approach in Table 4.4.

We also plot a representable function in each family under the same standard in

Figure 4.4 for comparison.

Let us take a look at the functions listed in Table 4.4. For a fixed ε >

0, the functions f
[i]
ε , i = 1, . . . , 6, are continuously differentiable over R+; while

the function f
[7]
ε is continuously differentiable over R+ if p ≥ 2. The functions

f
[i]
ε , i = 1, . . . , 5, are strictly increasing over R+. When ε ↓ 0, the sequences of

functions
{
f

[i]
ε

}
, i = 3, . . . , 7, are nondecreasing and pointwise converge to the

indicator function 1(·) over R+ respectively. Thus, it follows from Corollary 4.4

that f
[i]
ε (·) e→ 1(·) and ‖F [i]

ε (·)‖∗
e→ rank(·) as ε ↓ 0 for i = 3, . . . , 7.

All the functions listed in Table 4.4 can be found in the literature to be used to
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Table 4.1: Several families of candidate functions defined over R+ with ε > 0

Log function f
[1]
ε (t) := log(t+ ε)− log(ε).

Lq function (0 < q < 1) f
[2]
ε (t) := (t+ ε)q − εq.

Fractional function f
[3]
ε (t) := t/(t+ ε)

Exponential function f
[4]
ε (t) := 1− e−t/ε

Arctan function f
[5]
ε (t) := 2

π
arctan(t/ε)

Smoothly clipped absolute

deviation (SCAD) function

(a > 2)

f
[6]
ε (t) :=


2t

(a+1)ε
if 0 ≤ t < ε

− (t2−2aεt+ε2)
(a2−1)ε2

if ε ≤ t < aε

1 if t ≥ aε

Generalized hard-thresholding

(GHT) function (p ≥ 1)
f

[7]
ε (t) := 1−

(
(1− t/ε)+

)p
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Lq(q = 0.5)
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Figure 4.1: For comparison, each function f is scaled with a suitable chosen pa-

rameter such that f(0) = 0, f(1) = 1 and f ′+(0) = 5.
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construct sparsity-promoting functions, especially in the field of variable selection

and signal/image restoration. Some of them can be tracked back to the early

90’s, e.g., see [63, 58]. These functions are designed towards “bridging” the gap

between the cardinality and the l1 norm via using concave functions to achieve a

sparse vector with certain desired properties. In particular, the function f
[6]
ε is the

normalized version of the SCAD penalty function proposed in [42] (see also [43]),

and the function f
[7]
ε with p = 2 is the normalized version of the hard-thresholding

(HT) penalty function (see [36]), which is also a special case of the minimax concave

penalty (MCP) function proposed in [190]. (The SCAD penalty function and the

MCP function are used as Type 2 penalties in [43] and [190] respectively, where

“Type 2” means that the regularization parameter cannot be separated from the

penalty function. Differently, here, we use these two kinds of functions as Type

1 penalties in the approximation problem (4.5), allowing for the separation of the

regularization parameter and the penalty function.)

We also remark that the functions f(t) = tq, 0 < q < 1, are ruled out to

be candidate functions for our proposed adaptive semi-nuclear norm regularization

approach, since the requirement f ′+(0) < +∞ is not satisfied. In compressed

sensing, the lq quasi-norm with 0 < q < 1, given by ‖x‖qq :=
∑n

i=1 |xi|q, has been

shown to have better theoretical recoverability for a sparse vector from a number

of linear measurements, compared with the l1 norm. However, the resulting lq

regularized problem is computationally intractable, and therefore in many works

of literature, the lq quasi-norm is approximated by
∑n

i=1(|xi|+ε)q or
∑n

i=1(x2
i +ε)

q/2

for some small ε > 0, e.g., see [24, 25, 55, 95]. A similar situation also occurs for

the matrix case. The Schatten-q quasi-norm with 0 < q < 1, given by ‖X‖qq :=∑n
i=1 σ

q
i (X), has been shown to be a better surrogate of the rank function in term

of recoverability, e.g., see [140, 94, 188]. Some specialized algorithm have also been

designed for special cases, e.g., see the one we discussed at the end of Section
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4.3.3 and see also [116]. However, as our proposed adaptive semi-nuclear norm

regularization approach is a general-purpose method including dealing with hard

constraints, the Schatten-q quasi-norm is ruled out to be a surrogate of the rank

function due to its computational difficultly. But, this sacrifice does not matter

because other candidate functions are capable of taking its place without any loss

of effectiveness.

Other surrogates of the rank function have also been discussed in the literature.

For example, Mohan and Fazel [130], as well as Fornasier, Rauhut and Ward [54],

considered the surrogate function
∑n

i=1

(
σi(X)2+ε

)q/2
, 0 < q < 1 and proposed the

iterative reweighted least squares minimization, which will be discussed in details

in Subsection 4.5.1. Another similar function
∑n

i=1 log
(
σi(X)2+ε

)
was also consid-

ered in [130]. Zhao [192] considered the surrogate function
∑n

i=1 σ
2
i (X)/

(
σ2
i (X)+ε

)
and reformulated the resulting problem to be a linear bilevel semidefinite pro-

gramming (SDP) which was further solved approximately by an SDP. Moreover,

Ghasemi et al. [66] considered the surrogate function n −
∑n

i=1 e
−σ2

i (X)/ε for the

matrix completion problem and applied the gradient projection method to solve

the resulting problem without convergence analysis. To take a closer look, we can

find that all the above four surrogate functions are of the form ‖F (XTX)‖∗ with F

being the Löwner’s operator associated with some function f ∈ C(R+), more pre-

cisely, the functions f
[i]
ε , i = 1, . . . , 4, respectively. As rank(X) = rank(XTX), this

kind of surrogate functions can also be interpreted as being proposed according

to the same principle of approximation which we follow. Differently, each func-

tion ‖F (XTX)‖∗ with f ∈ C(R+) is smooth. (This property is not needed in our

proposed adaptive semi-nuclear norm regularization approach.) However, in ex-

change, the rank-promoting ability of ‖F (XTX)‖∗ is somewhat weaker than that

of the corresponding surrogate function ‖F (X)‖∗. This is because the function

f(t2) is no longer concave but indeed convex in [ 0, t ] for some t > 0. A special
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case of the log function f
[2]
ε can be seen in Figure 4.4. This phenomenon can be

seen much more clearly in the extreme case f(t) = t ∀ t ≥ 0, i.e., ‖F (X)‖∗ = ‖X‖∗
and ‖F (XTX)‖∗ = ‖X‖2

F , as we know that the Frobenius norm does not encourage

the low-rank in general. This inherent weaknesses may limit the efficiency of us-

ing the surrogate function ‖F (XTX)‖∗ for finding a low-rank solution. Moreover,

the S-shape of such function may also bring difficulty for designing an efficient

algorithm.
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log(t + ε)− log(ε)

log(t2 + ε)− log(ε)

Figure 4.2: Comparison of log(t+ε)−log(ε) and log(t2+ε)−log(ε) with ε = 0.1.

We also attempt to discuss the difference of all these candidate functions —

which one we prefer to choose in general to form a surrogate of the rank function?

Without the support of numerical experiments, this seems to be hard. However, we

can still find some inklings of this matter right now. As we discussed at the end of

Section 4.2.1, for better rank-promoting ability, the function f ∈ C(R+) needs to be

“more concave” to imitate the behavior of indicator function 1(·) more aggressively.

But the discussion there does not take into account of the computational difficulty

for a nonconvex optimization problem. Indeed, after applying the adaptive semi-

nuclear norm regularization approach, the decrease of the rank could be slow for
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a too aggressive choice. To gain insights into this, we may consider a simple one-

dimensional example as

min
t≥0

1

2
(t− 1)2 + 1(t). (4.29)

It is easy to see that the optimal solution to (4.29) is t∗ = 0. Suppose that we

replace the indicator function 1(·) with a differentiable function f ∈ C(R+) as

min
t≥0

1

2
(t− 1)2 + f(t). (4.30)

At each iterate tk 6= 0, the adaptive semi-nuclear norm regularization approach

yields the next iterate tk+1 as

tk+1 := arg min
t≥0

{1

2

(
t− (1− f ′(tk)

)2
}

=

 1− f ′(tk) if f ′(tk) < 1,

0 if f ′(tk) ≥ 1.

Therefore, if the function f is “too concave”, then f ′(tk) will be small when tk is

away from zero. Thus, if the initial point is not near zero, many iterations will

be needed for achieving the optimal solution t∗ = 0 to the problem (4.29). We

also see that f ′(0) ≥ 1 is necessary in this example to make sure that the iterative

scheme capable to achieve t∗ = 0 eventually. This refers to the zero-promoting

ability of the surrogate function f . (In this example, one may think of choosing

f(t) = ρ t ∀ t ≥ 0 with sufficiently large ρ > 0 for achieving t∗ = 0 in one-step,

rather than strengthening the concavity of f . However, this choice distorts the

original target of the problem (4.29) since the problem (4.30) with this choice is

more like checking whether t∗ = 0 is a feasible solution, rather than minimizing the

objective function of (4.29).) As a result, in order to construct a suitable surrogate

of the rank function, one needs to balance the rank-promoting ability and the

computational efficiency. Taking a look at the shape of the function f may be

helpful to make a prediction. In general, a function f ∈ C(R+) with a steady

decrease of derivatives (or subderivatives) to zero as t → ∞ may be preferred for

computational robustness. If one aims to be more aggressive, much more attention

should be paid for choosing the initial point and the parameters.
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4.5 Comparison with other works

In this section, we compare the adaptive semi-nuclear norm regularization approach

with some existing algorithms for solving the rank regularized problem (4.1).

4.5.1 Comparison with the reweighted minimizations

For simplicity, the comparison in this subsection focuses on solving the rank min-

imization problem (4.25). As the rank of a matrix is the cardinality of its singular

values, the rank minimization problem is an extension of the cardinality minimiza-

tion problem taking the form

min ‖x‖0

s.t. x ∈ C,
(4.31)

where C is a closed convex subset of Rn. Two classes of iterative algorithms,

called iterative reweighted l1 and l2 minimizations respectively, have been shown

to outperform the l1 minimization for finding a sparse solution in terms of solution

quality, though some results related to the convergence and the sparse estimation

have not been fully exploited yet. Let f ∈ C(R+) be chosen. At each iterate xk,

the iterative reweighted l1 minimization yields the next iterate xk+1 by solving the

weighted l1 minimization as

xk+1 := arg min
x∈C

n∑
i=1

wki |xi|, (4.32)

where wki ∈
[
f ′+(|xki |), f ′−(|xki |)

]
, i = 1, . . . , n; while the iterative reweighted l2

minimization yields the next iterate xk+1 by solving the weighted l2 minimization

as

xk+1 := arg min
x∈C

n∑
i=1

wki x
2
i , (4.33)

where wki ∈
[
f ′+
(
(xki )

2
)
, f ′−
(
(xki )

2
)]

, i = 1, . . . , n. Among all the functions f ∈

C(R+), two most common choices are the lq function and the log functions listed in
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Table 4.4. One may refer to various detailed discussions related to the l1 reweight-

ing scheme in [58, 42, 194, 195, 190, 111, 23] and the l2 reweighting scheme in

[148, 26, 29], to name but a few. A survey of these two methods can be found in

[181].

Both the iterative reweighted l1 and l2 minimizations fall into the category of

majorization methods. Since f ∈ C(R+), the function
∑n

i=1 f(xi) is concave over

Rn
+ and thus has a linear majorization over Rn

+ at any y ∈ Rn
+ as

n∑
i=1

f(xi) ≤
n∑
i=1

(
f(yi) + wi(xi − yi)

)
∀x ∈ Rn

+, (4.34)

where wi ∈
[
f ′+(yi), f

′
−(yi)

]
, i = 1, . . . , n. The constructions of the majorization

functions in these two iterative methods both are based on the property (4.34).

The difference between them is how to make use of this property. The design of

the iterative reweighted l1 minimization is based on the equivalence of (4.31) and

the problem

min ‖z‖0

s.t. |xi| ≤ zi, i = 1, . . . , n,

x ∈ C,

(4.35)

where the equivalence means that if x∗ is an optimal solution to (4.31), then

(x∗, |x∗|) is an optimal solution to (4.35); and conversely if (x∗, z∗) is an optimal

solution to (4.35), then x∗ is an optimal solution to (4.31). The iterative scheme

can be derived from solving the approximation problem

min
n∑
i=1

f(zi)

s.t. |xi| ≤ zi, i = 1, . . . , n,

x ∈ C,

(4.36)

Introducing the auxiliary variable z ∈ Rn
+ makes the property (4.34) be applicable

to majorizing the objective function of (4.36). This gives the iterative scheme for
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solving (4.36) as

(xk+1, zk+1) := arg min
x,z∈Rn

{ n∑
i=1

wki zi

∣∣∣∣ |xi| ≤ zi, i = 1, . . . , n, x ∈ C
}
,

where wki ∈
[
f ′+(zki ), f ′−(zki )

]
, i = 1, . . . , n. Then, one can recognize the iterative

scheme (4.32) by noting that zk = xk in each iteration. Differently, the design of the

iterative reweighted l2 minimization is based on the simple fact that ‖x‖0 = ‖x2‖0.

The iterative scheme can be derived from solving the approximation problem

min
n∑
i=1

f(x2
i )

s.t. x ∈ C.

By introducing z = x2 and applying the same argument as above, one can recognize

the iterative scheme (4.33). We also remark here that the above discussions only

focus on the basic frameworks of the l1 and l2 reweighting schemes. For the detailed

implementation, some variants of the above reweighting schemes also exist and may

further improve the performance.

As an extension of the iterative reweighted l1 minimization from the vector

case to the matrix case, Fazel, Hindi and Boyd [51] (see also [49]) proposed the

reweighted trace minimization for the positive semidefinite matrix rank minimiza-

tion problem

min rank(X)

s.t. X ∈ K ⊆ Sn+,

where K is a closed convex subset of Sn+. Among different implementations, the

most representable one is called the log-det heuristic, where the rank function

over Sn+ is surrogated by log det(X + εIn), X ∈ Sn+ for some ε > 0. This surrogate

function is equal to
∑n

i=1 log
(
λi(X)+ε

)
, X ∈ Sn+ and thus corresponds to ‖F (X)‖∗

associated with the log function listed in Table 4.4. It is not hard to see that the
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function log det(X + εIn) is concave over Sn+ so that it has a linear majorization

over Sn+ at any Y ∈ Sn+ as

log det(X + εIn) ≤ log det(Y + εIn) + 〈(Y + εIn)−1, X − Y 〉 ∀X ∈ Sn+. (4.37)

Here, (Y + εIn)−1 is the derivative of the function log det(X + εIn) at Y ∈ Sn+.

Thus, for the case K ⊆ Sn+, at each iterate Xk, the log-det heuristic yields the next

iterate Xk+1 by solving the following convex optimization problem:

Xk+1 := arg min
X∈K

〈(Xk + εIn)−1, X〉.

For the general case K ⊆ Mn1×n2 , the rank minimization problem (4.25) can be

equivalently written as

min
1

2

(
rank(Y ) + rank(Z)

)
s.t.

 Y X

XT Z

 ∈ Sn1+n2
+ , X ∈ K.

(4.38)

The two auxiliary variables Y ∈ Sn1
+ and Z ∈ Sn2

+ make the property (4.37) ap-

plicable to the log-det approximation of (4.38). This gives an iterative scheme

as

(Xk+1, Y k+1, Zk+1) := arg min
1

2

(
〈(Y k+ εIn1)

−1, Y 〉+ 〈(Zk+ εIn2)
−1, Z〉

)
s.t.

 Y X

XT Z

 ∈ Sn1+n2
+ , X ∈ K.

(4.39)

However, the positive semidefinite constraint increases the problem size and thus

leads to more computational difficulty. In view of this, later, Mohan and Fazel

[132] further simplified the iterative scheme (4.39) by eliminating the two auxiliary

variables Y and Z as

Xk+1 := arg min
X∈K

‖W k
1 XW

k
2 ‖∗,
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where for each k ≥ 0, the weights are updated as

W k+1
1 = (Y k+1 + εIn1)

−1/2 and W k+1
2 = (Zk+1 + εIn2)

−1/2. (4.40)

Here, Y k+1 and Zk+1 are the optimal solution to (4.39), taking the form Y k+1 = (W k
1 )−1Ũk+1Diag

(
σ(X̃k+1)

)
ŨT
k+1(W k

1 )−1,

Zk+1 = (W k
2 )−1Ṽk+1Diag

(
σ(X̃k+1)

)
Ṽ T
k+1(W k

2 )−1.
(4.41)

where X̃k+1 = W k
1 X

k+1W k
2 and (Ũk+1, Ṽk+1) ∈ On1,n2(X̃k+1). This procedure is

called the reweighted nuclear norm minimization in [132]. Other concave surrogate

functions are also applicable to the reweighted nuclear norm minimization.

As can be seen from the above, the way to majorize the surrogate of the rank

function in the reweighed nuclear norm minimization in [132] looks totally different

from that of our proposed adaptive semi-nuclear norm minimization. Nevertheless,

by a simple deduction, it is interesting to see that for the positive semidefinite case

K ⊆ Sn+, the two different ways result in the same linear majorization, in particular

whose form for the case of the log function has been shown in (4.37). Theoreti-

cally, it is difficult to say which majorization is better. However, computationally,

majorizing by a semi-nuclear norm is superior to majorizing by a weighted nucle-

ar norm in general because the former one could make full use of the advantage

of the soft-thresholding operator (2.4) but the latter one cannot. Moreover, the

construction of the weights W k
1 and W k

2 for a weighted nuclear norm needs three

SVDs in each iteration, while the construction of a semi-nuclear norm needs only

one SVD. This could make a considerable difference when the problem size is not

small. Even if for the positive semidefinite case K ⊆ Sn+, the adaptive semi-nuclear

norm minimization is also distinguished from the reweighted nuclear norm mini-

mization due to the allowance of the proximal term γk

2
‖X−Xk‖2

F for reducing the

computational cost.

In an alternative line of work, the iterative reweighted l2 minimization for

minimizing the vector cardinality was extended by Mohan and Fazel [130] and



4.5 Comparison with other works 137

also Fornasier, Rauhut and Ward [54] to the iterative reweighted least squares

minimization for minimizing the matrix rank. A similar work can also be found in

the paper of Lai, Xu and Yin [96]. The design of this method is based on the simple

fact rank(X) = rank(XTX). We also take the log-det surrogate as an example,

i.e., the approximation problem takes the form

min log det(XTX + εIn2)

s.t. X ∈ K.
(4.42)

The positive semidefiniteness of XTX makes the property (4.37) be applicable

to majorizing this surrogate function. Thus, at each iterate Xk, the iterative

reweighted least squares minimization yields the next iterate Xk+1 by solving a

weighted Frobenius norm minimization as

Xk+1 := arg min
X∈K

〈(
(Xk)TXk + εIn2

)−1
, XTX

〉
. (4.43)

The smoothness of the problem (4.43) in each iteration provides possibility

for achieving computational efficiency in each iteration. For the case of exact

matrix completion, the subproblem (4.43) was solved in column wise by using a

number of inversions in [54], (which can be expensive when the matrix size is

large), and was solved by using the gradient projection method in [130]. (Another

iterative algorithm — a gradient projection algorithm directly applied to (4.42),

was also proposed in [130] for exact matrix completion, which is nothing but the

iterative reweighted least squares minimization with the subproblem (4.43) being

solved by the gradient projection method but terminated after only one iteration.)

However, such advantage disappears for rank minimization problems with general

hard constraints rather than the matrix completion problem.

Compared with the adaptive semi-nuclear norm minimization, as well as the

reweighted nuclear norm minimization, there are two main disadvantages of the

iterative reweighted least squares minimization. The first disadvantage is that each
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single iteration does not encourage a low-rank solution because the objective func-

tion is a weighted Frobenius norm rather than the nuclear norm or a semi-nuclear

norm. This may lead to more computational cost for updating the weight in each

iteration since full singular value decompositions may be needed. The second dis-

advantage is that more iterations are needed in general, which is a bottleneck espe-

cially if solving the subproblem is time consuming. These disadvantages are crucial

when hard constraints are involved. Furthermore, the rank-promoting ability of

the surrogate function in the iterative least squares minimization is somewhat s-

lightly weaker than that of the corresponding one in the adaptive semi-nuclear

norm minimization and the reweighted nuclear norm minimization, as having been

discussed in Section 4.4.

4.5.2 Comparison with the penalty decomposition method

Lu and Zhang [113] proposed a penalty decomposition method for solving the rank

regularized problem (4.1). The essential idea is to introduce an auxiliary variable

Y ∈ Mn1×n2 such that Y = X and then to solve a sequence of the penalized

problems with increasing penalty parameters. Each penalized problem takes the

form

min h(X) + ρ rank(Y ) + ρµ‖X − Y ‖2
F

s.t. X ∈ K,
(4.44)

where µ > 0. In fact, other equality and inequality constraints are also penalized

into the objective function in the proposed penalty decomposition method in [113].

Here, we only focus on the core idea of this method for comparison. Applying

the block coordinate descent method (also known as the alternating minimization
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method) to the problem (4.44) yields an iterative scheme as
Y k+1 ∈ arg min

Y ∈Mn1×n2

{
rank(Y ) + µ‖Y −Xk‖2

F

}
,

Xk+1 = arg min
X∈K

{
h(X) + ρµ‖X − Y k+1‖2

F

}
.

(4.45)

At the first glance of (4.45), it seems that the penalty decomposition method

is irrelative to the adaptive semi-nuclear norm regularization approach. But, this

is not true. In the following, we disclose the connection between them with details.

By using the singular value hard-thresholding operator defined by (2.5), the

iterative scheme (4.45) could be simplified as

Xk+1 = arg min
X∈K

{
h(X) + ρµ

∥∥X − Phard
1/µ1/2(X

k)
∥∥2

F

}
. (4.46)

Let F and F̂ be the Löwner’s operators, respectively, associated with

f(t) := 1− (1− µt)+ and f̂(t) := f(t2) = 1− (1− µt2)+ ∀ t ≥ 0,

where the former one is the GHT function with p = 1 listed in Table 4.4. Now, we

alternatively consider the following optimization problem

min h(X) + ρ ‖F̂ (X)‖∗

s.t. X ∈ K.
(4.47)

This problem is nonconvex and nonconcave. Without loss of generality, we assume

n1 ≥ n2. (Recall that n = min{n1, n2}.) Note that ‖F̂ (X)‖∗ = ‖F (XTX)‖∗.

Then by regarding XTX as a whole, according to the majorization scheme in our

proposed adaptive semi-nuclear norm regularization approach, we obtain that for

any X, Y ∈Mn1×n2 ,

‖F̂ (X)‖∗ ≤ µ
(
‖XTX‖∗− ‖XTX‖w

)
+ ‖F (Y TY )‖∗− µ

(
‖Y TY ‖∗− ‖Y TY ‖w

)
≤ µ

(
‖XTX‖∗− 〈G,XTX− Y TY 〉

)
+ ‖F (Y TY )‖∗− µ‖Y TY ‖∗, (4.48)
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where the first inequality follows from (4.13), the second inequality follows from

(4.14), w ∈ Rn
+ is given by

wi =

 1 if σi(Y ) >
√

1/µ,

0 if σi(Y ) ≤
√

1/µ,
i = 1, . . . , n,

and G is an element of the subdifferential of ‖ · ‖w at Y TY taking the form

G = VDiag(w)V T,

where (U, V ) ∈ On1,n2(Y ). We further notice that 〈G,XTX〉 is a convex function

because G is positive semidefinite. Thus,

〈G,XTX〉 ≤ 〈G, Y TY 〉+ 2〈Y G,X − Y 〉 ∀X, Y ∈Mn1×n2 . (4.49)

It is easy to check that Y G = Phard
1/µ1/2

(Y ). Then, combining (4.48) and (4.49) leads

to a majorization function of ‖F̂ (X)‖∗ at Y , i.e., for any X, Y ∈Mn1×n2 ,

‖F̂ (X)‖∗ ≤ µ
(
‖X‖2

F − 2
〈
Phard

1/µ1/2(Y ), X − Y
〉)

+ ‖F̂ (Y )‖∗ − µ‖Y ‖2
F

= µ
(∥∥X − Phard

1/µ1/2(Y )
∥∥2

F
+
∥∥Phard

1/µ1/2(Y )
∥∥2

F

)
+ ‖F̂ (Y )‖∗ − µ‖Y ‖2

F

= µ
∥∥X − Phard

1/µ1/2(Y )
∥∥2

F
+ ‖F̂ (Y )‖∗ − µ

∥∥Y − Phard
1/µ1/2(Y )

∥∥2

F
. (4.50)

Thus, applying the majorization method gives an iterative scheme exactly the

same as (4.46). (The above deduction can also be simplified by using the fact that

‖XTX‖w is a convex function in X and Phard
1/µ1/2

(Y ) is a subgradient of ‖XTX‖w at

Y .)

Consequently, the penalty decomposition method for the rank regularized

problem (4.1) can be interpreted as solving a sequence of the approximation prob-

lems (4.47) with µ > 0 increasing by applying the majorization method described

above. If we further look closer at the above majorization procedure, we can find

that the intermediate step (4.48) can be rewritten as

‖F̂ (X)‖∗ ≤ µ〈In −G,XTX〉+ µ〈G, Y TY 〉+ ‖F (Y TY )‖∗− µ‖Y TY ‖∗. (4.51)
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This indeed already provides a convex majorization of ‖F̂ (X)‖∗, which is used

in the corresponding reweighted least squares minimization described in Section

4.5.1. We can see that compared with (4.51), the majorization (4.50) sacrifices

the tightness of approximation in change of the simplicity of the obtained func-

tion. Therefore, compared with the adaptive semi-nuclear norm regularization

approach, the advantage and disadvantage of the penalized decomposition method

(for a single µ) are similar to that of the iterative reweighted least squares mini-

mization discussed in Section 4.5.1, only differing in more possible computational

convenience in each iteration but accompanied by more iterations as the price.

4.5.3 Related to the MPEC formulation

The rank function over the positive semidefinite cone Sn+ has a positive semidefinite

representation as follows:

Lemma 4.9. For any matrix X ∈ Sn+, one has

rank(X) = min
{
〈In,W 〉

∣∣ 〈In −W,X〉 = 0, W ∈ Sn+, In −W ∈ Sn+
}
.

Proof. Suppose that rank(X) = r. For any feasible solution W , the three con-

straints together implies that X and In −W have a simultaneous eigenvalue de-

composition and in addition, rank(In −W ) + rank(X) = n. This further implies

that λi(W ) = 1, i = 1, . . . , r. Thus, 〈In,W 〉 =
∑n

i=1 λi(W ) achieves the minimum

value r when rank(W ) = r.

This result is an extension of the well-known representation of the cardinality

of a vector, i.e., for any vector x ∈ Rn,

‖x‖0 = min
{
‖w‖1

∣∣ (1− wi)xi = 0, wi ≥ 0, i = 1, . . . , n
}
.

Therefore, for the positive semidefinite case K ⊆ Sn+, according to Lemma 4.9, the

rank regularized problem (4.1) can be equivalently written to be a mathematical
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programming with equilibrium constraints (MPEC) problem as

min h(X) + ρ 〈In,W 〉

s.t. 〈In −W,X〉 = 0,

W ∈ Sn+, In −W ∈ Sn+,

X ∈ K ⊆ Sn+.

(4.52)

A bilinear constraint 〈In−W,X〉 = 0 occurs in this conversion in exchange for con-

tinuity. By penalizing this constraint into the objective function with a sufficient

large µ > 0, we obtain an approximation problem written as

min h(X) + ρ 〈In,W 〉+ ρµ 〈In −W,X〉

s.t. W ∈ Sn+, In −W ∈ Sn+,

X ∈ K ⊆ Sn+.

(4.53)

Applying the block coordinate descent method (or alternating minimization method)

to the problem (4.53) yields the iterative scheme as W k+1 = arg minW
{
〈In − µXk,W 〉 | W ∈ Sn+, In −W ∈ Sn+

}
,

Xk+1 = arg minX
{
h(X) + ρµ〈In −W k+1, X〉 | X ∈ K ⊆ Sn+

}
.

A simple calculation yields the closed-form solution of W k+1 as

W k+1 = PkDiag(wk+1)P T
k ,

where Pk ∈ On(Xk) and wk ∈ Rn
+ is given by

wk+1
i =

 1, if λi(X
k) > 1/µ,

0, if λi(X
k) ≤ 1/µ,

i = 1, . . . , n.

One may notice that the above iterative scheme coincides the one in our proposed

adaptive semi-nuclear norm regularization approach if the GHT function f(t) = 1−

(1−µt)+ ∀ t ≥ 0 is chosen and the function h is not majorized. This interpretation
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provides another interesting perspective to understand the adaptive semi-nuclear

norm regularization approach, as well as the reweighted trace norm, for the positive

semidefinite case.

4.6 Numerical experiments

In this section, we validate the efficiency of our proposed adaptive semi-nuclear

norm technique for different problems involving minimizing the rank. All tests

were run in MATLAB under Mac OS X system on an Intel Core i7 2.3 GHz

processor with 8.00GB RAM.

Before we go into the details of each test problem, we first describe the method

we used to solve each subproblem involved in our proposed adaptive semi-nuclear

regularization approach in our experiments. All the test problems below in this

section can be unified with the formulation as

min
1

2
‖A(X)− b‖2

2 + ρ ‖F (X)‖∗

s.t. B(X)− d ∈ Q,
(4.54)

where A : Rn1×n2 → Rm and B : Rn1×n2 → Rl are linear maps, b ∈ Rm and

d ∈ Rl are vectors, Q = 0l1 × Rl2
+ with l1 + l2 = l, and F is the Löwner’s operator

associated with some f ∈ C(Rn
+). (For simplicity, we omit such description of F

in this sequel of this section.) Then in the k-th iteration, the subproblem (4.17)

involved in Algorithm 4.1 with hk ≡ h and µk ≡ µ = f ′+(0) can be specified to be

min
1

2
‖A(X)− b‖2

2 + ρµ
(
‖X‖∗ − 〈Gk, X〉

)
s.t. B(X)− d ∈ Q.

(4.55)

For notational simplicity, from now on, we omit the superscript “k”. In what

follows, we introduce the proximal alternating direction multiplier method (proxi-

mal ADMM) for solving the problem (4.55), and to be more exact, for its equivalent
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reformulation

min
X,y,z

1

2
‖y‖2

2 + ρµ
(
‖X‖∗ − 〈G,X〉

)
s.t.

A
B

 (X)−

y
z

 =

b
d

 ,

y
z

 ∈
0m

Q

 ,

(4.56)

where y ∈ Rm and z ∈ Rl are two auxiliary variables. For more detailed descrip-

tions and convergence analysis of the proximal ADMM, the interested readers may

refer to Appendix B of [52]. Given a penalty parameter β > 0, the augmented

Lagrangian function of (4.56) takes the form

Lβ(X, y, z, ξ, ζ) :=
1

2
‖y‖2

2 + ρµ
(
‖X‖∗ − 〈G,X〉

)
− 〈A(X)− y − b, ξ〉

− 〈B(X)− z − d, ζ〉+
β

2
‖A(X)− y − b‖2

2 +
β

2
‖B(X)− z − d‖2

2.

In the classical ADMM (see, e.g., [60, 67, 38]), the function Lβ is minimized with

respect to (y, z) and then with respect to X, followed by an update of the multiplier

(ξ, ζ). While minimizing Lβ with respect to (y, z) admits a closed-form solution,

minimizing Lβ with respect to X does not have a simple closed-form solution

in general and could be costly. To overcome this difficulty, the proximal ADMM

introduces an additional proximal term to “cancel out” the complicated parts. The

iterative scheme of the proximal ADMM specified for the problem (4.56) can be

described as

yj+1 := arg min
z

Lβ(Xj, y, zj, ξj, ζj),

zj+1 := arg min
y∈Q

Lβ(Xj, yj, z, ξj, ζj),

Xj+1 := arg min
X

{
Lβ(X, yj+1, zj+1, ξj, ζj) +

1

2
‖X −Xj‖2

S

}
,

ξj+1 := ξj − τβ
(
A(Xj+1)− yj+1 − b

)
,

ζj+1 := ζj − τβ
(
B(Xj+1)− zj+1 − d

)
,

where β > 0 is the penalty parameter, τ ∈ (0, (
√

5 + 1)/2) is the step length,

S is a self-adjoint positive semidefinite (not necessary positive definite) operator



4.6 Numerical experiments 145

and ‖ · ‖S := 〈·,S(·)〉. In particular, one can take τ ∈ (0, 2) when the (y, z)-part

vanishes. An elementary calculation yields the expression of zj+1 and yj+1 as

yj+1 =
β

β + 1

(
A(Xj)− b

)
− 1

β + 1
ξj,

and

zj+1 = ΠQ

(
B(X)− d− 1

β
ζj
)
,

where ΠQ is the projection operator onto Q. Meanwhile, in order to “cancel out”

the complicated part β(A∗A+ B∗B), we choose

δ ≤ 1

β‖A∗A+ B∗B‖
and S :=

1

δ
I − β(A∗A+ B∗B),

where ‖ · ‖ denotes the spectral norm of the operator. Then, we can explicitly

express the update of Xj+1 as

Xj+1 = δPsoft
ρµ (Y j), (4.57)

where Psoft
ρµ is the singular value soft-thresholding operator defined by (2.4) and

Y j = ρµG+A∗
(
ξj − β(yj+1 − b)

)
+ B∗

(
ζj − β(zj+1 − d)

)
+ S(Xj).

Now we can see that the trick of shifting A(X)− b from the objective function into

the constraint allows more flexibility to control the singular value soft-thresholding

to speed up the convergence since we know that the solution will be of low-rank.

For a reasonable stopping criterion, we take a look at the dual problem of (4.56)

taking the form

min
ξ,ζ

1

2
‖ξ‖2 − 〈ξ, b〉 − 〈ζ, d〉

s.t. A∗(ξ) + B∗(ζ) + ρµG = Λ,

‖Λ‖ ≤ ρµ, ζ ∈ Q∗,

where Q∗ = Rl1 ×Rl2
+ is the dual cone of Q. It is easy to see from (4.57) that if we

let Λj = Y j −Xj+1/δ, then ‖Λj‖ ≤ ρµ and a simple calculation yields

∆j := A∗(ξj) + B∗(ζj) + ρµG− Λj

=
1

δ
(Xj+1 −Xj) + βA∗

(
A(Xj)− yj+1 − b

)
+ βB∗

(
B(Xj)− zj+1 − d

)
.
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In view of this, given a tolerance τsub, we terminate the primal ADMM if

max
{
Rj
p, 0.5Rj

d, R
j
}
< τsub, (4.58)

where Rj
p and Rj

d denote the relative primal and dual feasibility of the problem

(4.56) and Rj denotes the relative primal feasibility of the original problem (4.55),

defined by

Rj
p :=

√
‖A(Xj)− yj − b‖2

2 + (dist(B(Xj)− d,Q))2

max{1, ‖b‖2
2 + ‖d‖2

2}
,

Rj
d :=

√
‖∆j‖2

F

max{1, ‖A∗(b)‖2
F + ‖B∗(d)‖2

F }
+

(dist(ζj,Q∗))2

max{1, ‖b‖2
2 + ‖d‖/2

2}
,

and

Rj :=
dist(B(Xj)− d,Q)

max{1, ‖d‖2
2}

,

where dist(·, ·) denotes the Euclidean distance. The penalty parameter β plays an

important role for the efficiency of the proximal ADMM. In our implementation,

we let β be self-adjusted according to the ratio Rj
p/R

j
d.

When we apply Algorithm 4.2 to the problem (4.54) or apply Algorithm 4.3 if

the loss function vanishes, the subproblem involved in the k-th step iteration can

be concisely written as

min
1

2
‖X − Ck‖2

F + %k‖X‖∗

s.t. B(X)− d ∈ Q
(4.59)

for some %k > 0 and some Ck ∈ Rn1×n2 . A simple calculation yields the dual

problem of this strongly convex optimization problem (4.59) as

min
η∈Q∗

{
1

2
‖Psoft

%k

(
Ck − B(η)

)
‖2
F + 〈ξ, d〉

}
. (4.60)

To obtain the optimal solution η∗ to the dual problem (4.60), we can use the semi-

smooth Newton-CG method developed in [80] when only equalities are involved,
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i.e., l2 = 0; or use the smoothing Newton-BiCG method developed in [81] when

inequalities is involved, i.e., l2 > 0. After that, we can further obtain the unique

optimal solution Xk to the subproblem (4.59) in the k-th step via the relation

Xk = Psoft
%k

(
Ck − B∗(η∗)

)
.

Let Xk be generated from the k-th (outer) iteration of Algorithms 4.1, 4.2,

4.3 or other algorithms for comparison. In all the following test problems, we set

the initial point X0 = 0. The relative primal feasibility (relfea for short) and the

relative difference (reldif for short) are defined, respectively, by

relfeak :=
dist(B(Xk)− d,Q)

max{1, ‖d‖2}
and reldifk :=

‖Xk −Xk−1‖F
max{1, ‖Xk‖F}

.

Let objk be the objective value of the problem (4.54) achieved after the k-th iter-

ation, i.e.,

objk :=
1

2
‖A(Xk)− b‖2

2 + ρ ‖F (Xk)‖∗.

The relative objective difference (reldif obj for short) is defined by

reldif objk :=
|objk − objk−1|
max{1, objk}

.

For matrix recovery problems, the relative recovery error (relerr for short) is

defined by

relerrk :=
‖Xk −X‖F

max{1, ‖X‖F}
,

where X is the unknown matrix to be recovered. We stress that unless specified,

we did not perform any special technique in our implementation, especially the

rank truncation technique.

4.6.1 Power of different surrogate functions

In this subsection, we test the power of different candidate functions for our pro-

posed adaptive semi-nuclear norm technique for recovering a low-rank matrix from
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a number of noiseless Gaussian linear measurements. Let X ∈ Rn1×n2 be the un-

known matrix of rank r to be recovered and let (Ai, bi), i = 1, . . . ,m be the linear

measurements with bi = 〈Ai, X〉. We aim to recover X via solving the problem

min ‖F (X)‖∗

s.t. 〈Ai, X〉 = bi, i = 1, . . . ,m.
(4.61)

In our experiments, we tested for a number of small problems on account of

the computational cost. We set n1 = n2 = 60 and r = 2. For each trial, we

randomly generated the true matrices X, normalized in the spetral norm, by the

command:

ML = randn(n1,r); MR = randn(n2,r); s = rand(r,1);

X_bar = ML*diag(s)*MR’; X_bar = X_bar/norm(X_bar).

We also independently generated m random matrices Ai ∈ Rn1×n2 with i.i.d. Gaus-

sian entries of N(0, 1/m) and then let bi := 〈Ai, X〉. To test for different numbers

of linear measurements, we increased the ratio α := m/(r(n1 + n2 − r)) from 1 to

3, in which the denominator is the degree of freedom. For each m, we run 20 trial

for each candidate function with each given ε > 0.

We applied Algorithm 4.3 to the problem (4.61) and solved each subproblem

(4.26) by using the semi-smooth Newton-CG method. For each subproblem, we

fixed the coefficient γk of the proximal term such that γk ≡ 0.1. In order to

speed up the convergence, the subproblems were solved with tolerance increased

from 10−3 to 10−6. Algorithm 4.3 were terminated after 200 iterations unless the

following stopping criterion is satisfied beforehand:

relfeak < 10−6 and reldifk < 10−6.

We declared the true matrix X to be successfully recovered if the relative recovery

error satisfies

relerrk ≤ 10−5.
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Figure 4.3: Frequency of success for different surrogate functions with different

ε > 0 compared with the nuclear norm.
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The comparison of recovery in terms of the frequency of success by using differ-

ent surrogate functions with different ε > 0 and the nuclear norm are presented in

Figure 4.3. We can see that compared with the nuclear norm, nonconvex surrogate

functions substantially improve the recoverability, with their performances closely

related to the chosen parameter ε which controls the function shape. Moreover,

compared with the others, the performance of SCAD and GHT functions are more

sensitive to the choice of parameter ε since they are not strictly increasing, as we

discussed in Subsection 4.3.2. We can also see from Figure 4.3 that the parameter

ε > 0 cannot be chosen too large or too small. The detailed sequential perfor-

mances for one of the test problems using the log functions with different ε > 0

are plotted in Figure 4.4. As can be seen, a large ε (ε = 1) may lead to insufficient

recoverability (or rank-promoting ability), while a small ε (ε = 0.001) may lead to

very slow sequential progress. It is notable that the value of ε should be interpreted

as the ratio to the spectral norm of the true matrix to be recovered because the

true matrix has been normalized in spectral norm in our experiments. In addition,

it is also interesting to notice that the curve of the relative recovery error has a

very sharp decay once it passes through a threshold around 10−2. This observation

indicates that the iterative scheme of our proposed adaptive semi-nuclear norm

minimization has a good “singular value filtering” effect.

4.6.2 Performance for exact matrix completion

In this section, we test the performance of our proposed adaptive semi-nuclear

norm minimization for exact matrix completion problems, i.e., to recover a low-

rank matrix from a number of its noiseless observations of entries. Let X ∈ Rn1×n2

be the unknown matrix to be recovered and let Ω denote the set of indices for the
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Figure 4.4: Comparison of log functions with different ε for exact matrix recovery

observed entries. We aim to recover X via solving the following problem

min ‖F (X)‖∗

s.t. Xij = X ij, (i, j) ∈ Ω.

Mohan and Fazel [130] proposed two iterative algorithms for exact matrix com-

pletion. One is called the IRLS-0 algorithm, which is an implementation of the

iterative reweighted least squares minimization base on the log surrogate function

discussed in Subsection 4.5.1, with its subproblem (4.43) solved by the gradient

projection method. The other one is called the sIRLS-0 algorithm, which can be

thought of as IRLS-0 but with each subproblem solved approximately using only

one iteration of gradient projection. Both of theses two algorithms are feasible al-

gorithms, taking advantage of easy manipulation of the projection onto the special

feasible set. To speed up the performances of IRLS-0 and sIRLS-0, a randomized

truncated SVD (e.g., see [182, 72]) together with the rank truncation technique

are used in the implementation. The corresponding codes can be downloaded at

http://faculty.washington.edu/mfazel/IRLS_final.zip.

http://faculty.washington.edu/mfazel/IRLS_final.zip
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We aim to compare our proposed adaptive semi-nuclear norm minimization

approach (Algorithm 4.3, ASNN for short) with IRLS-0 and sIRLS 0. For con-

sistency of comparison, we followed the experimental design of Mohan and Fazel

in [130] and used the log function listed in Table 4.4 with ε = 0.1. It should be

pointed out that different from our setting, the parameter ε in iterations of IRLS-0

and sIRLS-0 is not fixed but exponentially decreases from 10−2 to 10−10. We tested

both easy problems and hard problems in terms of different numbers of samples

— divided into two categories with more than or less than 2.5 times the degree of

freedoms respectively. We created the true matrix X ∈ Rn1×n2 of the form UV T

with U ∈ Rn1×r and V ∈ Rn2×r drawn from i.i.d. standard Gaussian entries and

normalized to have the spectral norm one. We sampled the indices for observation

by using i.i.d. Bernoulli random variables. As was done in [130], we terminated all

the three algorithms when the relative recovery error

relerrk < 10−3

was achieved and declared the success of recovery. Because the proximal ADMM

is not a feasible algorithm, besides the relative recovery error, we also require one

more stopping criterion on the relative primal feasibility for ASNN such that

relfeak ≤ 10−4.

It is reasonable to match the accuracy of feasibility to the relative recovery er-

ror declared for successful recovery. In addition, when the dimension of the test

problem is no more than 200, we slightly modified Mohan and Fazel’s codes of

IRLS-0 and sIRLS-0 by replacing the randomized SVD with the default full SVD

in MATLAB, as we observed that the latter one is much faster than the former

one when the matrix size is small.

In our implementation of ASNN, we solved each subproblem (4.26) by us-

ing the proximal ADMM. Given that the proximal ADMM already introduces a
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proximal term in each step, we simply set γk ≡ 0 in (4.26). To speed up the con-

vergence, the subproblems (4.26) in the first few iterations were not solved with

high accuracy, but with a moderate accuracy increased iteration by iteration. More

specifically, let τ ksub be the tolerance in (4.58) for terminating the proximal ADMM

in the k-th iteration. We set

τ 1
sub := 10−1 and τ k+1

sub := max
{

0.5 τ ksub, 10−4
}
∀ k ≥ 1.

One may take the first few iterations as finding a good starting point for ASNN.

This strategy increases the number of outer iterations but reduces the total num-

ber of inner iterations as well as the number of SVDs. The main computational

cost lies in computing a singular value decomposition (SVD). In our implemen-

tation, following [17, 168, 109], we used PROPACK [100] to compute a partial

SVD whenever the matrix size is greater than 300 and the rank is recognized to

be stable.

Tables 4.2 and 4.3 report the comparison among ASNN, IRLS-0 and sIRLS-0

for easy and hard test problems with different dimensions (n1 = n2 = n), ranks (r)

and number of samples in terms of the sample ratio (sr), or alternatively, the ratio

to the degree of freedom (α). The results of each test problem are reported to be

the average of successful recoveries over 10 trials of random generations of the true

matrix and its partial noiseless observations of entries. If no successful recovery

was achieved, the results are reported to be that obtained at termination. In both

Tables 4.2 and 4.3, succ means the number of successful recoveries; iter means the

number of outer iterations and initer means the total number of inner iterations.

The rank of a matrix was recognized under two different levels. The reported

rank1 and rank2 refer to the numbers of singular values that are greater than

10−4 and 10−6 respectively. In addition, we also report the cumulative singular

value residue (sigres), i.e., the sum of all singular values σi(X) with i from r + 1

to n. The computational time (time) is reported in seconds.
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Table 4.2: Comparison of ASNN, IRLS-0 and sIRLS-0 on easy problems

Problem Algorithm succ iter initer relerr relfea rank1|rank2 sigres time

n
r
sr
α

100
10

57%
3.00

ASNN 10 7.8 55.8 4.70e-5 2.42e-5 10.0|10.0 1.41e-14 0.23

IRLS-0 10 47.1 300.9 9.53e-4 — 41.0|99.0 7.58e-3 0.22

sIRLS-0 10 51.8 — 9.40e-4 — 33.7|98.8 6.41e-3 0.16

n
r
sr
α

200
10

39%
4.00

ASNN 10 7.6 58.9 5.34e-5 2.97e-5 10.0|10.0 2.24e-14 0.79

IRLS-0 10 50.7 363.2 9.67e-4 — 42.6|197.0 1.06e-2 0.93

sIRLS-0 10 58.0 — 9.57e-4 — 28.9|196.7 8.77e-3 0.68

n
r
sr
α

500
10

20%
5.05

ASNN 10 8.0 76.5 6.05e-5 4.14e-5 10.0|10.0 5.06e-14 3.03

IRLS-0 10 70.8 616.3 9.65e-4 — 14.3|482.2 1.06e-2 8.44

sIRLS-0 10 90.4 — 9.71e-4 — 12.0|483.5 1.07e-2 6.86

n
r
sr
α

500
10

12%
3.03

ASNN 10 10.0 164.5 1.80e-4 6.32e-5 10.0|10.0 5.50e-14 5.74

IRLS-0 10 221.5 1622.1 9.93e-4 — 11.5|466.0 5.28e-3 17.7

sIRLS-0 10 274.8 — 9.91e-4 — 10.8|469.8 5.62e-3 12.7

n
r
sr
α

1000
10

12%
6.03

ASNN 10 8.4 110.3 5.83e-5 5.38e-5 10.0|10.0 1.02e-13 17.5

IRLS-0 10 103.7 943.8 9.76e-4 — 11.7|934.1 1.18e-2 42.9

sIRLS-0 10 135 — 9.82e-4 — 10.8|944.3 1.30e-2 22.6

n
r
sr
α

1000
50

39%
4.00

ASNN 10 6.9 58.0 1.62e-5 1.03e-5 50.0|50.0 1.04e-13 19.4

IRLS-0 10 49.1 332.1 9.65e-4 — 257.1|991.2 6.00e-2 71.1

sIRLS-0 10 52.3 — 9.62e-4 — 214.6|990.2 5.54e-2 102.3

n
r
sr
α

1000
20

12%
3.03

ASNN 10 9.0 141.2 9.62e-5 4.29e-5 20.0|20.0 1.04e-13 26.1

IRLS-0 10 180.0 1472.7 9.90e-4 — 20.5|957.5 1.39e-2 75.8

sIRLS-0 10 232.6 — 9.89e-4 — 20.2|939.3 1.42e-2 45.2

n
r
sr
α

2000
20

12%
6.03

ASNN 10 8.0 122.1 3.51e-5 3.64e-5 20.0|20.0 2.08e-13 103.2

IRLS-0 10 92.6 897.7 9.74e-4 — 20.3|1907.3 2.87e-2 176.8

sIRLS-0 10 124.6 — 9.77e-4 — 20.0|1915.1 2.94e-2 131.3

n
r
sr
α

2000
40

12%
3.03

ASNN 10 8.5 136.8 6.23e-5 2.91e-5 40.0|40.0 2.05e-13 141.9

IRLS-0 10 164.6 1406.8 9.84e-4 — 40.1|1924.7 2.98e-2 328.4

sIRLS-0 10 216.9 — 9.90e-4 — 40.0|1927.4 3.02e-2 258.0
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Table 4.3: Comparison of ASNN, IRLS-0 and sIRLS-0 on hard problems

Problem Algorithm succ iter initer relerr relfea rank1|rank2 sigres time

n
r
sr
α

50
5

25%
1.32

ASNN 6 31.8 552.3 8.88e-4 6.14e-5 5.0|5.2 2.66e-6 0.67

IRLS-0 4 2616.5 7664.0 9.99e-4 — 5.0|44.0 2.96e-4 2.53

sIRLS-0 1 2339.0 — 9.99e-4 — 5.0|45.0 3.30e-4 1.98

n
r
sr
α

100
10

25%
1.32

ASNN 10 27.6 426.5 8.16e-4 8.37e-5 10.0|10.0 1.15e-14 1.57

IRLS-0 10 2028.4 6224.5 9.99e-4 — 10.0|90.2 6.69e-4 6.16

sIRLS-0 6 1858.2 — 9.99e-4 — 10.0|90.8 7.01e-4 5.17

n
r
sr
α

500
20

10%
1.28

ASNN 10 31.0 1095.6 6.94e-4 7.51e-5 20.0|20.0 5.01e-14 44.7

IRLS-0 10 5019.2 16715.2 1.00e-3 — 20.0|407.1 1.66e-3 330.9

sIRLS-0 10 5039.7 — 1.00e-3 — 20.0|409.7 1.67e-3 287.9

n
r
sr
α

1000
10
5%
2.52

ASNN 10 11.0 425.0 3.82e-4 7.52e-5 10.0|10.0 1.02e-13 60.0

IRLS-0 10 896.5 6595.1 9.98e-4 — 10.1|828.9 4.07e-3 268.0

sIRLS-0 10 1024.5 — 9.98e-4 — 10.2|834.7 4.13e-3 102.1

n
r
sr
α

1000
10
3%
1.51

ASNN 10 39.4 2354.9 9.38e-4 5.44e-5 10.0|10.0 1.03e-13 256.5

IRLS-0 0 10000 36404.1 1.02e1 — 981.0|999.6 3.54e0 1400.4

sIRLS-0 0 10000 — 2.72e-3 — 10.1|583.3 1.82e-3 878.5

n
r
sr
α

1000
20

10%
2.52

ASNN 10 10.0 209.3 1.52e-4 5.60e-5 20.0|20.0 1.03e-13 41.9

IRLS-0 10 331.6 2561.3 9.93e-4 — 20.0|949.0 1.12e-2 131.1

sIRLS-0 10 396.3 — 9.96e-4 — 20.1|948.9 1.11e-2 72.5

n
r
sr
α

1000
20
6%
1.52

ASNN 10 30.0 846.8 4.91e-4 7.83e-5 20.0|20.0 1.03e-13 139.1

IRLS-0 6 2519.7 13547.3 9.99e-4 — 20.0|853.2 3.86e-3 648.5

sIRLS-0 10 2846.2 — 9.99e-4 — 20.0|828.8 3.46e-3 367.5

n
r
sr
α

1000
30
7%
1.18

ASNN 10 31.1 3175.8 9.48e-4 8.20e-5 30.0|30.0 1.01e-13 601.5

IRLS-0 0 10000 34155.0 9.20e-1 — 976.2|999.6 2.48e0 2175.3

sIRLS-0 0 10000 — 1.63e-3 — 30.0|849.2 3.70e-3 1535.6

n
r
sr
α

2000
20
3%
1.51

ASNN 10 31.0 1419.2 6.67e-4 8.09e-5 20.0|20.0 2.08e-13 938.8

IRLS-0 0 10000 40789.7 9.18e-1 — 1971|2000 8.06e0 5735.7

sIRLS-0 9 6184.9 — 1.00e-3 — 20.0|1300 3.58e-3 2102.2
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As can be observed from Table 4.2, for easy problems with high sample ratios,

overall, the performances of ASNN, IRLS-0 and sIRLS-0 are comparable in terms

of recovery error. Actually, due to a high sample ratio, the nuclear norm minimiza-

tion already has enough recoverability for handling the recovery. That is why no

much difference occurs in recovery among ASNN, IRLS-0 and sIRLS-0 since their

advantages beyond the nuclear norm has not been involved yet. But one may still

notice that ASNN appears more attractive than the other two when the sample

ratio is relatively lower than the others. In Table 4.3 for hard problems with low

sample ratios, the attraction of ASNN becomes more significant. We observe that

ASNN substantially outperforms both IRLS-0 and sIRLS-0 in terms of high fre-

quency of successful recovery, fewer iterations and less computational time. (The

numbers of SVDs required in ASNN is equal to initer; while the number of SVDs

required in IRLS-0 and sIRLS-0 is equal to iter.)

Another important observation is that rank2 and sigres of ASNN is dramat-

ically lower than that of IRLS-0 and sIRLS-0 for both easy and hard problems.

This phenomenon is in concert with what we observed before in Figure 4.4 in the

experiments of exact low-rank matrix recovery. This observation indicate that as

a tool for “singular value filtering”, ASNN possesses higher rank-promoting ability

than that of IRLS-0 and sIRLS-0. Numerical results reported in Tables 4.2 and

4.3 validate our discussions in Subsection 4.5.1. We also point out that the per-

formance of ASNN is much more stable than IRLS-0 and sIRLS-0 under different

setting of parameters. In both IRLS-0 and sIRLS-0, the choice of the parameter

ε is a critical issue in practical computations. For achieving the success of recov-

ery, the parameter ε in IRLS-0 and sIRLS-0 is chosen to have an exponentially

decay. Indeed, starting from a relatively larger ε serves for a quick decrease of the

rank. However, due to the limited singular value filtering capability of the itera-

tive scheme, ε has to be decreased to very small or tiny so that the weights of very
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small singular values could be significantly larger than those of moderate singular

values. Meanwhile, the delay speed of ε may heavily affect the performance. Dif-

ferently, applying ASNN does not need to face such difficulty. The existence of the

semi-nuclear norm endows the iterative scheme with strong singular value filtering

capability so that one could simply fix a suitable ε to enjoy an exact low-rank

solution.

4.6.3 Performance for finding a low-rank doubly stochastic

matrix

In this subsection, we test the performance of our proposed adaptive semi-nuclear

norm regularization approach for finding a low-rank doubly stochastic matrix based

on a collection of observations of entries from a matrix which may or may not be of

low rank or approximately low rank. A doubly stochastic matrix refers to a square

matrix of nonnegative real numbers with each row and column summing to one.

The goal of finding a doubly stochastic matrix is two-fold — having a low rank

and deviating small from the given observations of entries. This consideration is

a generalization of finding a nearest doubly stochastic matrix to a given square

matrix that have been considered in the literature, e.g., see [68, 83, 8]. Some of

entries could also be fixed according to possible available prior information. The

problem of finding a low-rank doubly stochastic matrix was chosen to be a test

problem in [81], formulated as a nuclear norm regularized least square problem.

In our experiments, we followed the setting in [81]. For each test problem,

we generated a low-rank nonnegative matrix of the form UV T with U, V ∈ Rn×r

drawn from i.i.d. uniform entries in [0, 1] and then applied the Sinkhorn-Knopp

algorithm [160] to convert it to a doubly stochastic matrix of rank r , denoted by

M . We sampled partial entries of the generated matrix uniformly at random as
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observations without noise or with i.i.d. Gaussian noise at noise level 10%. We let

Ω1 be the index set of observations and let M̃ij be the noiseless or noisy observation

of the (i, j)-th entry of M . We also randomly fixed a small number of entries of

M to construct hard constraints and let Ω2 be the corresponding index set (may

be empty). The problem of finding a low-rank doubly stochastic matrix can be

formulated as

min
1

2

∑
(i,j)∈Ω1

(Xij − M̃ij)
2 + ρ ‖F (X)‖∗

s.t. XT e = e, Xe = e,

Xij = Mij, (i, j) ∈ Ω2,

X ≥ 0.

(4.62)

We applied Algorithm 4.1 with hk ≡ h and µk ≡ f ′+(0) to the problem (4.62)

and solved each subproblem (4.17) by using the proximal ADMM. Let τ ksub be the

tolerance in (4.58) for terminating the proximal ADMM in the k-th iteration. We

set

τ 1
sub := 5× 10−3 and τ k+1

sub := max
{

0.8 τ ksub, 10−5
}
∀ k ≥ 1.

We terminated Algorithm 4.1 by using the following stopping criterion: rank(Xk) = rank(Xk−1) = rank(Xk−2),

relfeak < 10−5 and reldif objk < 10−5.
(4.63)

Tables 4.4 and 4.5 report the numerical comparison among the nuclear norm

regularization approach (NN for short) and two adaptive semi-nuclear norm reg-

ularization approaches using the log function listed in Table 4.4 with different ε

(ASNN1 and ASNN2 for short). For consistency of comparison, the parameters

ρ for these three approaches were chosen such that ρµ are equal to each other,

where µ := 1 in NN and µ := 1/ε in ASNN1 and ASNN2. Under this setting, with

the initial point X0 = 0, both ASNN1 and ASNN2 start from solving the nuclear

norm regularized problem that is solved in NN. We set ε := 0.05σ1(X1) in ASNN1
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and ε := 0.01σ1(X1) in ASNN2. For each test problem with different sample ra-

tios (sr) and different numbers of fixed entries (l = |Ω2|), we report the number

of iterations (iter: both the number of outer iterations and the total number of

inner iterations), the value of the loss function (loss), the rank (r: the number of

singular values greater than 10−6σ1(X)), the relative primal feasibility (feas) and

the running time (time: in seconds). In fact, under our particular experimental

setting, finding a low-rank doubly stochastic matrix also fall into the category of

matrix completion. Therefore, we also report the relative recovery error (relerr)

for a reference.

As observed from Tables 4.4 and 4.5, for a smaller ρµ, both ASNN1 and

ASNN2 outperform NN in terms of the solution quality — a smaller loss and a

lower rank. For a larger ρµ, though NN, ASNN1 and ASNN2 produced the same

rank due to the low-rank structure of the true matrix, ASNN1 and ASNN2 still lead

to considerable decreases of loss. A notable observation is that the running time of

the three approaches are overall comparable to each other. Furthermore, it is also

notable that when a few entries are fixed, the total number of inner iterations and

the running time grow greatly. This is because the additional hard constraints on

partial entries largely increase the hardness of the problem so that the proximal

ADMM has difficulty in achieving the target feasibility of constraints. We also

comment here that Algorithm 4.2 with the subproblems solved by the smoothing

Newton-BiCG method could be an alternative choice to achieve high feasibility for

such hard problems. For a thorough comparison, we also run for each NN, ASNN1

and ASNN2 with different parameters ρ and plot three Loss vs. Rank paths in

Figure 4.5. It is clear that ASNN2 shows the best performance in terms of the

solution quality among the three algorithms under this experimental setting.

We also conducted another type of experiments in which the random matrix for

observations of entries were drawn from i.i.d uniform entries in [0, 2/n]. Different
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Table 4.4: Comparison of NN and ASNN with observations generated from a

random low-rank doubly stochastic matrix without noise

ρµ = 10−4 ρµ = 10−3

Prob. Alg.
iter loss r feas relerr time iter loss r feas relerr time

n
r
sr
l

500
10
5%
0

NN – |351 9.68e-7 64 2.63e-7 7.84e-2 49.6 – |168 7.21e-5 21 5.52e-7 8.14e-2 23.6

ASNN1 35|719 7.97e-7 35 4.26e-7 4.38e-2 89.4 22|126 4.80e-5 10 4.26e-6 7.15e-2 17.5

ASNN2 33|827 3.00e-7 10 8.90e-7 1.74e-2 110.3 19|124 1.64e-5 10 7.69e-6 5.78e-2 17.3

n
r
sr
l

500
10
5%
250

NN – |673 9.44e-7 63 6.72e-6 7.68e-2 87.8 – |1905 6.62e-5 23 1.00e-5 7.96e-2 255.9

ASNN1 34|1380 7.75e-7 35 5.76e-6 4.12e-2 170.8 27|1032 4.19e-5 10 9.01e-6 6.70e-2 139.2

ASNN2 33|1478 3.26e-7 10 6.24e-6 1.75e-2 191.2 29|836 9.74e-6 10 9.99e-6 4.57e-2 113.7

n
r
sr
l

1000
10
6%
0

NN – |404 1.14e-6 27 6.66e-7 1.08e-2 270.2 – |154 7.55e-5 10 1.85e-7 6.01e-2 104.6

ASNN1 28|315 3.90e-7 10 7.97e-7 5.69e-3 216.5 15|88 5.62e-5 10 4.90e-6 5.46e-2 61.7

ASNN2 24|281 8.06e-8 10 1.93e-6 3.06e-3 193.8 13|86 2.50e-5 10 7.26e-6 4.10e-2 60.2

n
r
sr
l

1000
10
6%

1000

NN – |692 1.14e-6 33 3.69e-6 1.16e-2 465.6 – |2250 6.67e-5 10 6.21e-6 5.64e-2 1518.5

ASNN1 28|421 3.70e-7 10 2.24e-6 5.55e-3 287.8 26|1248 3.39e-5 10 8.51e-6 4.26e-2 828.1

ASNN2 29|460 9.63e-8 10 2.42e-6 3.37e-3 310.5 29|291 5.53e-6 10 1.00e-5 1.96e-2 201.5

n
r
sr
l

1000
10

20%
0

NN – |136 2.47e-7 10 5.91e-7 1.72e-3 93.0 – |83 2.42e-5 10 3.26e-7 1.68e-2 58.5

ASNN1 19|123 7.59e-8 10 6.43e-6 9.40e-4 90.7 14|57 1.36e-5 10 9.78e-6 1.31e-2 42.0

ASNN2 18|132 1.12e-8 10 8.94e-6 3.56e-4 94.2 14|61 3.40e-6 10 9.23e-6 6.93e-3 44.8

n
r
sr
l

1000
10

20%
1000

NN – |189 2.38e-7 10 8.96e-7 1.69e-3 128.9 – |423 2.37e-5 10 1.00e-5 1.66e-2 286.4

ASNN1 26|174 7.82e-8 10 1.24e-6 9.73e-4 125.1 16|61 1.14e-5 10 9.88e-6 1.19e-2 44.7

ASNN2 26|175 1.26e-8 10 1.45e-6 3.95e-4 124.5 15|63 2.77e-6 10 8.18e-6 6.23e-3 45.6

n
r
sr
l

1000
20

10%
0

NN – |281 1.44e-6 55 6.90e-7 9.73e-3 191.5 – |91 8.80e-5 20 2.47e-7 4.94e-2 62.0

ASNN1 25|221 8.35e-7 20 1.64e-6 6.63e-3 154.8 15|52 8.13e-5 20 6.44e-6 4.85e-2 38.1

ASNN2 25|254 3.63e-7 20 1.54e-6 5.09e-3 176.2 14|57 4.02e-5 20 7.76e-6 3.78e-2 41.2

n
r
sr
l

1500
10

10%
0

NN – |167 5.19e-7 11 7.03e-7 3.75e-3 340.3 – |114 4.80e-5 10 2.08e-7 3.40e-2 231.7

ASNN1 19|144 1.62e-7 11 5.03e-6 2.26e-3 302.5 12|57 4.05e-5 10 9.93e-6 3.24e-2 121.5

ASNN2 19|149 2.69e-8 11 5.16e-6 1.09e-3 309.5 12|60 1.42e-5 10 9.46e-6 2.04e-2 126.7
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Table 4.5: Comparison of NN, ASNN1 and ASNN2 with observations generated

from a random low-rank doubly stochastic matrix with 10% noise

ρµ = 10−3 ρµ = 3× 10−3

Prob. Alg.
iter loss r feas relerr time iter loss r feas relerr time

n
r
sr
l

500
10
5%
0

NN – |175 9.22e-5 49 3.85e-7 1.03e-1 24.9 – |74 5.15e-4 7 4.62e-7 1.09e-1 10.5

ASNN1 26|273 7.21e-5 27 9.32e-7 1.04e-1 36.8 20|60 4.86e-4 7 3.50e-6 1.08e-1 9.0

ASNN2 30|573 2.46e-5 17 4.73e-7 1.23e-1 77.6 16|103 2.62e-4 7 8.64e-6 1.05e-1 14.4

n
r
sr
l

500
10
5%
250

NN – |1031 9.00e-5 49 9.98e-6 1.02e-1 138.5 – |2470 4.32e-4 18 1.00e-5 1.07e-1 322.6

ASNN1 29|1541 7.02e-5 24 9.50e-6 1.03e-1 206.5 29|3371 3.94e-4 7 1.00e-5 1.06e-1 454.1

ASNN2 29|2050 2.43e-5 17 9.98e-6 1.22e-1 275.6 27|2942 1.94e-4 7 8.86e-6 1.13e-1 395.6

n
r
sr
l

1000
10
6%
0

NN – |153 1.74e-4 80 4.29e-7 8.12e-2 103.5 – |62 6.84e-4 5 4.19e-7 1.12e-1 42.1

ASNN1 30|246 1.53e-4 50 4.89e-7 6.88e-2 174.0 15|30 6.82e-4 5 9.68e-6 1.12e-1 22.8

ASNN2 30|486 8.23e-5 26 5.12e-7 8.11e-2 330.8 16|99 4.74e-4 5 7.19e-6 9.48e-2 68.8

n
r
sr
l

1000
10
6%

1000

NN – |1341 1.71e-4 80 1.00e-5 7.96e-2 903.5 – |4748 5.37e-4 17 6.32e-6 9.92e-2 3382.2

ASNN1 29|1453 1.51e-4 51 8.30e-6 6.73e-2 994.9 30|4584 5.18e-4 10 9.93e-6 9.61e-2 3219.7

ASNN2 29|1927 8.31e-5 26 9.99e-6 8.01e-2 1308.7 27|7223 3.07e-4 9 6.73e-6 7.23e-2 5091.0

n
r
sr
l

1000
10

20%
0

NN – |153 2.34e-4 229 5.82e-7 5.43e-2 105.7 – |83 1.13e-3 10 1.37e-7 4.98e-2 59.9

ASNN1 23|147 2.12e-4 204 5.61e-7 5.18e-2 108.1 14|53 1.03e-3 10 4.08e-6 4.00e-2 39.8

ASNN2 34|568 1.46e-4 120 1.65e-7 6.66e-2 398.6 16|69 9.37e-4 10 2.40e-6 3.10e-2 52.0

n
r
sr
l

1000
10

20%
1000

NN – |785 2.34e-4 228 1.00e-5 5.37e-2 538.1 – |3082 1.11e-3 23 7.75e-6 4.79e-2 2152.7

ASNN1 29|790 2.13e-4 201 1.00e-5 5.14e-2 542.8 29|2253 1.00e-3 10 9.01e-6 3.66e-2 1548.5

ASNN2 41|1699 1.46e-4 116 7.84e-6 6.71e-2 1176.2 29|1995 9.34e-4 10 1.00e-5 3.00e-2 1455.8

n
r
sr
l

1000
20

10%
0

NN – |142 1.97e-4 136 5.15e-7 6.93e-2 98.3 – |42 8.01e-4 1 2.38e-6 7.72e-2 29.8

ASNN1 30|226 1.77e-4 105 5.96e-7 6.91e-2 160.7 15|29 8.00e-4 2 4.81e-6 7.72e-2 22.6

ASNN2 40|1011 1.01e-4 48 5.51e-7 8.70e-2 697.9 15|29 7.99e-4 3 4.83e-6 7.71e-2 23.0

n
r
sr
l

1500
10

10%
0

NN – |177 2.75e-4 155 1.28e-7 5.38e-2 364.8 – |68 8.28e-4 10 4.21e-7 8.61e-2 147.5

ASNN1 29|213 2.55e-4 124 1.31e-7 4.52e-2 465.4 11|42 7.95e-4 10 6.35e-6 8.30e-2 95.1

ASNN2 34|558 1.84e-4 59 1.43e-7 5.53e-2 1191.7 14|73 4.89e-4 10 9.58e-6 4.21e-2 165.0
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Figure 4.5: Loss vs. Rank: Comparison of NN, ASNN1 and ASNN2 with observa-

tions generated from a low-rank doubly stochastic matrix with noise (n = 1000, r =

10, noise level = 10%, sample ratio = 10%)

from the pervious type of experiments, the matrix generated in this way is only

an approximate doubly stochastic matrix without any artificial low-rank structure.

(Actually, due to the nonnegative restriction of entries, the largest singular value

of the random matrix generated in either of these two ways dominates the other

singular values so that the matrix has the approximate rank-1 structure to some

extent in most cases.) Table 4.6 reports the comparison of NN, ASNN1 and ASNN2

for finding a low-rank doubly stochastic matrix under this setting. Besides the final

results, we also report the intermediate results of ASNN1 and ASNN2 (in italic

type) after a similar running time of NN.

We can see that both ASNN1 and ASNN2 outperform NN in terms of solu-

tion quality. But, due to the hardness of problems in this type of experiments,

reducing the loss and the rank heavily conflicts with maintaining the feasibility of
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Figure 4.6: Loss & Rank vs. Time: Comparison of NN, ASNN1 and ASNN2

with observations generated from an approximate doubly stochastic matrix (n =

1000, r = 10, sample ratio = 20%)

constraints, especially the nonnegative constraints of entries. Therefore, compar-

ing the intermediate and final results reported for each test problem in Table 4.6,

we find that ASNN1 and ASNN2 spend much time on harmonizing this conflict

for producing a solution with the loss and the rank being lower than that of NN.

This can be found more clearly in Figure 4.6, which records the whole iterative

processes of NN, ASNN1 and ASNN2 for the test problem with n = 1000 and

sample ratio = 20% listed in Table 4.6. It is easy to see from Figure 4.6 that

diminishing marginal utility of ASNN1 and ASNN2 are very obvious. Therefore,

users should take into account the tradeoff between the solution quality and the

computational time to make a decision, according to their demands.
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Table 4.6: Comparison of NN, ASNN1 and ASNN2 with observations generated

from an approximate doubly stochastic matrix (ρµ = 10−2, no fixed entries)

n = 500 n = 1000
sr Alg.

iter loss r feas time iter loss r feas time

10%

NN – |102 9.08e-3 50 4.11e-7 14.2 – |65 1.51e-2 36 4.53e-7 46.7

ASNN1 27|1432 3.89e-3 20 7.19e-6 204.1 19|174 1.04e-2 20 4.34e-6 123.0

intermed. 10 |90 4.48e-3 29 2.99e-5 13.3 10 |65 1.18e-2 28 2.52e-5 46.6

ASNN2 28|3970 6.39e-4 31 8.33e-6 561.9 27|4625 2.81e-3 38 9.48e-6 3108.0

intermed. 11 |94 7.93e-4 40 1.58e-4 13.9 5 |69 5.45e-3 38 1.27e-4 49.0

20%

NN – |88 1.12e-2 101 4.67e-7 12.4 – |61 1.98e-2 138 4.42e-7 42.8

ASNN1 28|1909 5.61e-3 47 9.58e-6 241.9 27|307 1.35e-2 70 3.76e-6 221.1

intermed. 10 |83 5.89e-3 63 5.14e-5 11.9 8 |61 1.41e-2 102 1.16e-5 44.9

ASNN2 28|3127 9.74e-4 61 9.82e-6 391.5 28|3050 3.05e-3 97 9.65e-6 2138.7

intermed. 10 |84 1.19e-4 75 2.87e-6 11.9 7 |61 4.19e-3 111 1.70e-4 44.1

50%

NN – |62 1.55e-2 218 5.94e-7 9.8 – |43 2.82e-2 360 6.43e-7 32.3

ASNN1 29|933 8.79e-3 157 9.69e-6 141.2 29|484 1.98e-2 285 8.95e-6 353.6

intermed. 9 |55 8.85e-3 176 1.44e-4 9.1 7 |41 2.00e-2 314 2.42e-5 33.0

ASNN2 34|3722 2.16e-3 148 9.59e-6 560.7 29|3017 6.39e-3 253 8.47e-6 2183.3

intermed. 8 |59 2.35e-3 174 5.64e-4 9.6 6 |42 7.07e-3 297 3.10e-4 33.9

100%

NN – |22 2.16e-2 378 5.34e-7 4.1 – |22 3.87e-2 655 3.92e-7 17.9

ASNN1 28|87 1.32e-2 378 6.50e-6 15.4 10|21 2.77e-2 655 7.78e-6 20.4

intermed. 9 |20 1.33e-2 378 1.78e-5 4.0 8 |19 2.78e-2 655 1.79e-5 18.0

ASNN2 29|376 5.42e-3 378 9.96e-6 63.6 29|641 1.25e-2 655 9.98e-6 511.2

intermed. 7 |21 5.66e-3 378 7.44e-5 4.0 5 |21 1.32e-2 655 5.05e-5 18.4
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4.6.4 Performance for finding a reduced-rank transition

matrix

In this subsection, we test the performance of the adaptive semi-nuclear norm

regularization approach for finding a reduced-rank transition matrix. A transition

matrix is a square matrix that describes the probability of moving from one state

to another in a dynamic system. Entries in each row represent the probabilities

of moving from the state represented by that row to the other states. Thus, the

sum of each row of a transition matrix is equal to one. Finding a reduced-rank

approximation of a transition matrix has been considered by Lin [107] using the

Latent Markov Analysis (LMA) approach. One of its applications is for computing

the personalized PageRank, e.g. Google PageRank, which describes the backlink-

based page quality around user-selected pages [12]. This problem was chosen to

be a test problem in [81] recently after being formulated to be a nuclear norm

regularized least squares problem.

In our experiments, we follow the setting in [81]. Given a set of n web pages

as a directed graph whose nodes represent the web pages and edges represent the

links between pages, let deg(i) denote the outdegree of Page i, i.e., the number of

pages that can be reached by a direct line from Page i, excluding the self-referential

links. Let P ∈ Rn×n be the transition matrix whose (i, j)-th entriy describes the

transition probability from Page i to Page j. If deg(i) > 0, then Pij = 1/deg(i) if

there is a link from Page i to Page j and Pij = 0 otherwise. If deg(i) = 0, then we

assume the uniform selection, i.e., Pij = 1/n. In order to handle the convergence

issue of the power method for computing the PageRank [141], the standard way is

to replace the transition matrix with

Pc = cP + (1− c)evT ,

where c ∈ (0, 1), e = (1, . . . , 1) ∈ Rn and v ∈ Rn is a probability vector, i.e., v ≥ 0
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and eTv = 1. As what was did [81], we chose c = 0.85, vi = 1/n, i = 1, . . . , n and

added 10% i.i.d Gaussian noise to Pc, termed as P̃c.

In our experiments, we aim to find a reduced-rank transition matrix by solving

the following optimization problem :

min
1

2
‖X − P̃c‖2

F + ρ ‖F (X)‖∗

s.t. Xe = e, X ≥ 0.

(4.64)

The data for our experiments are identical to that used in [81], including “Har-

vard500” (available at http://www.mathworks.com/moler/numfilelist.html),

“NUS500”, “NUS1000”, “NUS1500” (collected by Kaifeng Jiang, generated from

a portion of web page starting at the root page http://www.nus.edu.sg), “au-

tomobile industries”, “computational complexity”, “computational geometry” and

“randomized algorithms” (collected by Panayiotis Tasparas, available at http:

//www.cs.toronto.edu/~tsap/experiments/download/download.html).

We applied Algorithm 4.1 with hk ≡ h and µk ≡ f ′+(0) to the problem (4.64)

and solved each subproblem (4.17) by using the smoothing Newton-BiCG method.

Due to the Euclidean distance loss function in the objective, there is no need

to majorize the loss function so that the smoothing Newton-CG method is more

appropriate than the proximal ADMM described in Subsection 4.6.3 as it can lead

to high feasibility more easily because of its quadratic convergence under certain

conditions. We solved the subproblems with the tolerance 10−5 and terminated

Algorithm 4.1 by using the same stopping criterion (4.63) in Subsection 4.6.3.

The numerical results of NN, ASNN1 and ASNN2 on the data mentioned

above are reported in Table 4.7, in which all the abbreviations mean the same as

that in Subsection 4.6.3. Recall that given the same ρµ, both ASNN1 and ASNN2

start from solving a nuclear norm regularized problem solved in NN. (The first

choice ρµ = 5× 10−3 ‖P̃c‖F in Table 4.7 is consistent with that chosen in [81].) In

Table 4.7, substantial decreases of the loss as well as the recovery error are found in

http://www.mathworks.com/moler/numfilelist.html
http://www.nus.edu.sg
http://www.cs.toronto.edu/~tsap/experiments/download/download.html
http://www.cs.toronto.edu/~tsap/experiments/download/download.html
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Table 4.7: Comparison of NN, ASNN1 and ASNN2 for finding a reduced-rank

transition matrix

ρµ = 5× 10−3 ‖P̃c‖F ρµ = 1.25× 10−2 ‖P̃c‖F
Prob. Alg.

iter loss r feas relerr time iter loss r feas relerr time

Harv.500

n = 500

r = 218

NN – |7 4.36e-1 366 5.97e-6 5.86e-2 5.2 – |11 9.69e-1 202 8.41e-6 1.04e-1 11.0

ASNN1 4|14 3.76e-1 369 1.44e-7 4.86e-2 10.0 4|22 6.45e-1 208 5.82e-6 7.12e-2 21.1

ASNN2 6|19 3.40e-1 372 8.03e-9 4.55e-2 15.3 6|50 5.05e-1 214 3.92e-6 5.37e-2 89.5

NUS500

n = 500

r = 225

NN – |8 1.35e-1 384 2.47e-6 5.70e-2 6.3 – |9 2.81e-4 210 3.34e-6 7.75e-2 7.0

ASNN1 4|15 1.20e-1 386 9.10e-8 5.29e-2 11.2 4|18 2.10e-1 215 4.00e-7 5.64e-2 13.5

ASNN2 5|17 1.09e-1 388 4.38e-8 5.47e-2 13.0 6|23 1.73e-1 221 3.64e-7 4.84e-2 18.6

NUS1000

n = 1000

r = 466

NN – |12 3.88e-1 657 3.10e-6 5.63e-2 59.3 – |15 8.30e-1 249 9.26e-6 9.64e-2 75.9

ASNN1 4|19 3.45e-1 663 5.34e-7 4.82e-2 93.8 6|32 6.12e-1 259 2.73e-6 7.04e-2 156.0

ASNN2 5|21 3.07e-1 672 2.86e-6 4.59e-2 107.6 6|45 5.00e-1 268 5.77e-6 5.45e-2 305.4

NUS1500

n = 1000

r = 807

NN – |13 5.74e-1 957 1.11e-6 6.35e-2 181.7 – |25 1.27e0 357 9.10e-6 1.14e-1 502.0

ASNN1 4|20 5.05e-1 966 9.67e-6 5.37e-2 280.3 4|41 9.25e-1 368 3.85e-6 8.64e-2 801.5

ASNN2 5|24 4.43e-1 982 1.78e-6 4.77e-2 326.1 9|66 7.39e-1 384 8.79e-6 6.82e-2 1312.2

Rand.Alg.

n = 742

r = 216

NN – |11 7.87e-1 631 3.09e-6 4.48e-2 26.3 – |13 1.19e0 443 5.90e-6 6.03e-2 34.2

ASNN1 4|18 7.40e-1 633 2.45e-7 4.06e-2 42.5 4|22 9.27e-1 450 8.30e-7 3.84e-2 63.9

ASNN2 4|18 7.21e-1 636 1.01e-6 4.19e-2 42.5 6|28 8.49e-1 459 9.01e-7 3.67e-2 76.7

Complex.

n = 884

r = 255

NN – |11 7.98e-1 711 3.67e-6 4.77e-2 42.5 – |14 1.39e0 440 4.68e-6 6.93e-2 57.9

ASNN1 4|19 7.32e-1 715 7.66e-8 4.22e-2 67.6 7|32 1.02e0 448 4.95e-7 4.24e-2 142.3

ASNN2 4|18 7.01e-1 719 1.53e-6 4.31e-2 67.5 8|37 9.01e-1 458 8.45e-7 3.74e-2 179.1

Auto.Ind.

n = 1196

r = 206

NN – |10 1.21e0 844 2.06e-6 4.05e-2 79.3 – |32 2.05e0 324 9.21e-6 6.67e-2 543.1

ASNN1 4|18 1.24e0 849 9.30e-7 3.42e-2 129.3 21|91 1.61e0 340 1.49e-6 4.14e-2 993.2

ASNN2 4|18 1.07e0 858 7.08e-7 3.41e-2 135.7 9|67 1.47e0 348 3.11e-6 3.06e-2 842.0

Geometry

n = 1226

r = 416

NN – |10 9.18e-1 1019 1.66e-6 4.67e-2 81.3 – |13 1.52e0 682 9.24e-6 6.77e-2 130.2

ASNN1 4|18 8.50e-1 1021 2.69e-7 4.14e-2 140.5 4|22 1.13e0 694 9.33e-6 4.26e-2 204.8

ASNN2 5|19 8.20e-1 1026 2.43e-7 4.21e-2 150.1 7|30 1.00e0 709 8.33e-6 3.77e-2 319.6
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ASNN1 and ASNN2 compared with NN, in spite of a slight increase of the rank. To

make a more clear vision, we also plot the Loss vs. Rank paths and the Relerr vs.

Rank paths for NN, ASNN1 and ASNN2 in Figure 4.7 for comparison on the data

“Harvard500”. We can see that the solution qualities of ASNN1 and ASNN2 are

substantially better than that of NN, especially when the rank attained is small.
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Figure 4.7: Loss vs. Rank and Relerr vs. Rank: Comparison of NN, ASNN1 and

ASNN2 for finding a reduced-rank transition matrix on the data “Harvard500”

4.6.5 Performance for large noisy matrix completion with

hard constraints

In this subsection, we test the performance of our proposed adaptive semi-nuclear

norm regularization approach for large noisy matrix completion problems (of di-

mension at least 5000) with hard constraints. In our experiments, we created the

true matrix X ∈ Rn×n as the product of two random n × r matrices with i.i.d.

standard Gaussian entries. We sampled partial entries uniformly at random, most
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of which were used as observations with 10% i.i.d. Gaussian noises and the others

were used as fixed entries to construct equality constraints. Besides, we further

sampled partial entries uniformly at random and identified their signs to construct

inequalities constraints.

Let Ω0 and Ωi, i = 1, 2, 3 denote the set of indices of observed entries, fixed

entries, identified non-negative entries and identified non-positive entries, respec-

tively. Let X̃ij denote the noisy observation of the (i, j)-th entry of X. Then, the

optimization problem to be solved for recovering the unknown low-rank matrix X

can be formulated as

min
1

2

∑
(i,j)∈Ω0

(Xij − X̃ij)
2 + ρ ‖F (X)‖∗

s.t. Xij = X ij, (i, j) ∈ Ω1,

Xij ≥ 0, (i, j) ∈ Ω2,

Xij ≤ 0, (i, j) ∈ Ω3.

(4.65)

We applied Algorithm 4.1 with hk ≡ h and µk ≡ f ′+(0) to the problem (4.65)

and solved the each subproblem (4.17) by using the proximal ADMM. Given that

the full SVD is not suitable to be applied for large matrices, we used PROPACK

[100] to compute a partial SVD instead to reduce the computational time. Let

svk be the number of singular values to be calculated in the k-th iteration. In our

experiments, we simply set

sv1 = 1 and svk+1 = min
{

rank(Xk) + 1, svmax

}
∀ k ≥ 1

where svmax is the maximum number of singular values allowed for partial SVDs.

We set svmax = 100 when n ≤ 10000 and svmax = 50 when n > 10000. These

upper bounds can be regarded as the prior information for the rank of the unknown

matrix. Let τ ksub be the tolerance in (4.58) for terminating the proximal ADMM in
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the k-th iteration. We set

τ 1
sub := 5× 10−3 and τ k+1

sub := max
{

0.5 τ ksub, 10−5
}
∀ k ≥ 1.

We terminated Algorithm by using the same stopping criterion (4.63) in Subsection

4.6.3.

Table 4.8 reports the comparison of NN and ASNN1 for large noisy matrix

completion with hard constraints, in which all the abbreviations mean the same

as that in Subsection 4.6.3. In addition, α denotes the ratio of the total number

of observed entries over the degree of freedom, i.e., α = |Ω0|/(r(n1 + n2 − r)),

leq denotes the number of equality constraints for fixed entries, i.e., leq = |Ω1|,

and lineq denotes the number of inequality constraints for identified non-negative

and non-positive entries, i.e., lineq = |Ω2| + |Ω3|. Table 4.8 indicates that the

strategy for partial SVDs described above works so that in general large matrix

completion problems with hard constraint (of good conditions) can be solved within

a reasonable time. As can be observed, the advantage of ASNN1 over NN is quite

apparent, not only in the solution quality, but also in the computational time for

two main reasons. First, solving the subproblems in the first few iterations with

moderate accuracy rather than high accuracy is a very efficient strategy. Second,

the merit of the partial SVD in saving the computational time is more fully utilized

since ASNN1 possesses more low-rank promoting ability. We also remark that the

computational time of both NN and ASNN1 can be much reduced if svmax is set

to be smaller but appropriate. The rank truncation technique in [168] can also be

applied to accelerated the convergence, especially when ρ is small. But the use of

this technique should be careful since it may lead to erroneous results in certain

instances, especially when the singular values of the matrix to be recovered are not

clustered.
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Table 4.8: Comparison of NN and ASNN1 for large matrix completion problems

with hard constraints (noise level = 10%)

Problem ρµ = 10−1‖A∗(b)‖2
n r α leq lineq

Algrithm
iter loss r feas relerr time

5000

10

6 0 10000
NN – |277 7.10e4 10 9.90e-6 1.54e-1 109.2

ASNN1 10|355 2.52e4 10 9.94e-6 4.53e-2 129.8

6 10000 0
NN – |371 6.47e4 12 9.89e-6 1.42e-1 206.4

ASNN1 10|412 2.52e4 10 9.93e-6 4.28e-2 140.5

6 10000 9845
NN – |372 6.47e4 12 1.00e-5 1.42e-1 215.8

ASNN1 10|411 2.52e4 10 9.97e-6 4.28e-2 142.6

6 100000 99576
NN – |668 2.99e4 100 1.00e-5 9.25e-2 1445.0

ASNN1 11|1214 2.37e4 55 1.00e-5 1.43e-2 2261.9

3 10000 0
NN – |902 3.26e4 100 9.98e-6 2.63e-1 1743.0

ASNN1 10|1072 1.00e4 10 9.95e-6 6.87e-2 416.0

50 5 10000 10000
NN – |168 1.55e6 50 9.86e-6 1.61e-1 259.1

ASNN1 10|210 5.00e5 50 9.86e-6 4.94e-2 351.8

10000 10

6 10000 0
NN – |536 1.36e5 10 9.93e-6 1.49e-1 699.2

ASNN1 10|634 5.03e4 10 9.99e-6 4.42e-2 514.4

4 100000 100322
NN – |2286 5.48e4 100 9.99e-6 1.69e-1 9397.1

ASNN1 10|1639 3.01e4 15 9.97e-6 4.12e-2 2863.1

20000 10 6 20000 19738
NN – |1193 2.65e5 10 9.95e-6 1.46e-1 2797.0

ASNN1 11|1349 1.00e5 10 9.93e-6 4.42e-2 2357.0

50000 10 6 50000 0
NN – |2331 6.59e5 11 9.97e-6 1.46e-1 18808.7

ASNN1 11|2669 2.50e5 10 9.99e-6 4.42e-2 17746.2



Chapter 5
Conclusions and discussions

In this thesis, we proposed the semi-nuclear norm technique to address optimiza-

tion problems with low-rank structures. Applying this novel technique yields a

rank-corrected procedure for low-rank matrix completion with fixed basis coeffi-

cients and an adaptive semi-nuclear regularization approach for rank regularized

problems with hard constraints. The introduced concept — semi-nuclear norm

consists of the nuclear norm and a linear term. A proper semi-nuclear norm can

possess significantly high rank-promoting ability beyond the reach of the widely-

used nuclear norm. Thanks to a semi-nuclear norm, the rank-correction step for

matrix completion with fixed basis coefficients produces an estimator of high accu-

racy and low rank. For this new estimator, we established non-asymptotic recovery

error bounds and provided necessary and sufficient conditions for rank consistency

in the sense of Bach [7]. The obtained results in these two aspects yield a con-

sistent criterion for constructing a suitable rank-correction term (or semi-nuclear

norm). For rank regularized problems, the adaptive semi-nuclear norm regular-

ization approach iteratively solves a sequence of convex optimization problems, in

which the objective functions are regularized by self-adjusted semi-nuclear norms.

Each subproblem can be efficiently solved by recently developed methodologies.

172
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Our proposed approach using adaptive semi-nuclear norms overcomes the difficult-

ly in extending the reweighted trace minimization of Fazel, Hindi and Boyd [51]

for rank minimization from the positive semidefinite case to the rectangular case.

Again thanks to semi-nuclear norms, the iterative scheme of this approach has

the advantages of achieving both high computational efficiency and the low-rank

structure-preserving ability.

Many crucial issues of optimization problems with low-rank structures are still

far from being settled. To conclude this thesis, we list some challenges that need

to be explored in the further work.

• We believe that am/bm < 1 should be guaranteed for the nuclear norm pe-

nalized least squares estimator with a reasonably small number of samples

so that the error reduction of the rank-correction step could be confirmative.

This problem is of paramount importance for practical applications.

• How to extend the rank consistency results for our proposed rank-correction

step for matrix completion with noise to the high dimensional setting?

• How to establish a theoretical guarantee for the minimum-rank solution of

our proposed adaptive semi-nuclear norm minimization for rank minimization

problems?

• How to efficiently deal with large-scale low-rank optimization problems in-

volving a large number of hard constraints that need to be satisfied with high

accuracy?

• As the rank of a matrix reveals the relation between rows or columns more

straightforward than singular values, it could be worthwhile looking for other

surrogates of the rank function in this direction so that the costly SVDs could

be avoided in computations even when hard constraints are involved.
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