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To use a low rank matrix to approximate a given matrix dates back to
E. Schmidt [Math. Ann. 63 (1907), pp. 433–476] and C. Eckart and
G. Young [Psychometrika 1 (1936), pp. 211–218]:

min
1

2
‖X − Z‖2

F

s.t. rank(X) ≤ r
(1)

admits an analytic solution for a given Z ∈ ℜm×n (m ≤ n without loss
of generality):

X∗ =
r

∑

i=1

σi(Z)uiv
T
i ,

where Z has the following singular value decomposition (SVD):

Z = U [diag(σ(Y )) 0]V T .
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The matrix completion example:

min
{

rank(X) : Xij ≈ Mij ∀ (i, j) ∈ Ω
}

,

where
Ω ∈ {1, . . . , p} × {1, . . . , q} :








∗ ∗
∗ ∗

∗ ∗
∗ ∗








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A relaxed convex problem:

min
{

‖X‖∗ : Xij ≈ Mij ∀ (i, j) ∈ Ω
}

,

‖X‖∗ =
k

∑

i=1

σi(X)

and σi(X) are the singular values of X.
Further relaxation:

min
{1

2

∑

(i,j)∈Ω

(Xij − Mij)
2 + ρ‖X‖∗

}

.

The Netflix Prize problem: the convex relaxation is pretty good.
http://www.netflixprize.com/index
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It works very well in practice and has a theoretical guarantee [refer to as
the ”l1”-revolution – Donoho, Tao, Candes]

In many applications such as in image processing, we not only seek a low
rank matrix, but also want the matrix to have certain desirable
properties:

• X ≥ 0 -component-wisely
• X is in special class of matrices (Hankel, Toeplitz, tri-diagonal, for
examples)
• The rank of X may not be small, but be less than a given number
• Many others.

The theory breaks down ...
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Let us look at an example from finance (rank constrained covariance
matrix problem):

min ‖H ◦ (X − G)‖2
F

s.t. Xii = 1, i = 1, . . . , n

Xij = eij, (i, j) ∈ Be ,

Xij ≥ lij, (i, j) ∈ Bl ,

Xij ≤ uij, (i, j) ∈ Bu ,

X ∈ Sn
+ ,

rank(X) ≤ r ,

(2)

where Be, Bl, and Bu are three index subsets of {(i, j) | 1 ≤ i < j ≤ n}
satisfying Be ∩Bl = ∅, Be ∩Bu = ∅, and lij < uij for any (i, j) ∈ Bl ∩Bu.



continued
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Here Sn and Sn
+ are, respectively, the space of n × n symmetric

matrices and the cone of positive semidefinite matrices in Sn.

‖ · ‖F is the Frobenius norm defined in Sn and ” ◦ ” is the Hardamard
product [component-wise multiplication of two matrices].

H ≥ 0 is a weight matrix.

• Hij is larger if Gij is better estimated.

• Hij = 0 if Gij is missing.

A matrix X ∈ Sn is called a correlation matrix if X � 0 (i.e., X ∈ Sn
+)

and Xii = 1, i = 1, . . . , n.
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The bad news is that for a correlation matrix X ∈ Sn
+:

||X||∗ = trace(X) = n.

So any convex relaxation of using the nuclear norm directly is doomed as
one will simply add a CONSTANT TERM if one does so.

Worse than that: the rank r cannot be satisfied even if it may work in
some cases.

A cure for these problems?
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On January 15, 2010, I received the following email:
From: XXX@grupobbva.com
Sent: Friday, January 15, 2010 5:14 PM
To: Sun Defeng
Cc: XXX XXX
Subject: Nearest Correlation Matrix: Faster code request

Dear Mr. Sun,
Please let me introduce myself. My name is XXX and I work in one of
Spain’s major banks, BBVA. The position that I hold is Quantitative
Analyst.

We have been looking for quite a while for ”nearest correlation matrix
problem” algorithms until we found your paper ”An augmented
Lagrangian dual approach for the H-weighted nearest correlation matrix
problem” ...,
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which shows not only a feasible approach, but also robust and fast
results. I was also happy to check and test the MATLAB code that you
provide in your web page ..., with outstanding results. We are planning
to apply your algorithm to large scale problems (around 2000x2000
correlation matrixes) through a C++ implementation using LAPACK
library routines; this is why we are particularly interested in performance.
Could you please provide us with any faster code (MATLAB or other) for
this matter?
Thank you in advance and sorry for any inconvenience this may cause
you.
Regards,
XXX
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On November 18, 2009, I received the following email:
From: XXXXX@fortis.com
Sent: Wednesday, November 18, 2009 5:11 PM
To: Sun Defeng
Subject: nearest correlation matrix

Dear Professor Sun,

For R&D purpose, I am currently using your algorithms CorNewton and
CorNewton3−Wnorm, which I downloaded from your webpage.

The results look very satisfactory. I was wondering whether you would
have another version of the algorithm available in C or C++.

Best Regards,

Dr. XXX XXX
BNP Paribas Equity Derivatives Quantitative Research
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On October 27, 2009, I received this from Universiteit van Tilburg:

My thesis is about correlations in a pension fund pooling. It is important
for economic capital calculations. For some risks such as operational
risk, I dont have data and hence I need to consult for an expert opinion.
Then I might end up with not PSD matrices. Therefore, I need to
calculate nearest correlation matrix.

In my given correlation matrix, I want to fix the correlations, which are
data driven and I want the rest of the correlations not smaller than 0.1
from original matrix.

Your code is very convenient for my study. However, ...
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On November 3, 2009:

Thank you for your valuable time, comments and helping me about
solving my problem.

I gave no chance that my fixed constraints could be non-PSD before.
Your advice solves the problem. I will modify my study in the light of it.



A simple correlation matrix model
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min ‖H ◦ (X − G)‖2
F

s.t. Xii = 1 , i = 1, . . . , n

X � 0 ,

rank(X) ≤ r .

(3)



The simplest corr. matrix model
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min ‖(X − G)‖2
F

s.t. Xii = 1 , i = 1, . . . , n

X � 0 ,

rank(X) ≤ r .

(4)
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In finance and statistics, correlation matrices are in many situations
found to be inconsistent, i.e., X � 0.

These include, but are not limited to,

■ Structured statistical estimations; data come from different time
frequencies

■ Stress testing regulated by Basel II;

■ Expert opinions in reinsurance, and etc.



One correlation matrix
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Partial market data1

G =

















1.0000 0.9872 0.9485 0.9216 −0.0485 −0.0424

0.9872 1.0000 0.9551 0.9272 −0.0754 −0.0612

0.9485 0.9551 1.0000 0.9583 −0.0688 −0.0536

0.9216 0.9272 0.9583 1.0000 −0.1354 −0.1229

−0.0485 −0.0754 −0.0688 −0.1354 1.0000 0.9869

−0.0424 −0.0612 −0.0536 −0.1229 0.9869 1.0000

















The eigenvalues of G are: 0.0087, 0.0162, 0.0347, 0.1000, 1.9669, and
3.8736.

1RiskMetrics (www.riskmetrics.com/stddownload edu.html)



Stress tested
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Let’s change G to

[change G(1, 6) = G(6, 1) from −0.0424 to −0.1000]

















1.0000 0.9872 0.9485 0.9216 −0.0485 −0.1000

0.9872 1.0000 0.9551 0.9272 −0.0754 −0.0612

0.9485 0.9551 1.0000 0.9583 −0.0688 −0.0536

0.9216 0.9272 0.9583 1.0000 −0.1354 −0.1229

−0.0485 −0.0754 −0.0688 −0.1354 1.0000 0.9869

−0.1000 −0.0612 −0.0536 −0.1229 0.9869 1.0000

















The eigenvalues of G are: −0.0216, 0.0305, 0.0441, 0.1078, 1.9609, and
3.8783.



Missing data
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On the other hand, some correlations may not be reliable or even missing:

G =

















1.0000 0.9872 0.9485 0.9216 −0.0485 −−−
0.9872 1.0000 0.9551 0.9272 −0.0754 −0.0612

0.9485 0.9551 1.0000 0.9583 −0.0688 −0.0536

0.9216 0.9272 0.9583 1.0000 −0.1354 −0.1229

−0.0485 −0.0754 −0.0688 −0.1354 1.0000 0.9869

−−− −0.0612 −0.0536 −0.1229 0.9869 1.0000



















Drop the rank constraint
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Let us first consider the problem without the rank constraint:

min
1

2
‖H ◦ (X − G)‖2

F

s.t. Xii = 1 , i = 1, . . . , n

X � 0 .

(5)

When H = E, the matrix of ones, we get

min
1

2
‖X − G‖2

F

s.t. Xii = 1 , i = 1, . . . , n

X � 0 .

(6)

which is known as the nearest correlation matrix (NCM) problem, a
terminology coined by Nick Higham (2002).



The story starts
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The NCM problem is a special case of the best approximation problem

min
1

2
‖x − c‖2

s.t. Ax ∈ b + Q ,

x ∈ K ,

where X is a real Hilbert space equipped with a scalar product 〈·, ·〉 and
its induced norm ‖ · ‖, A : X → ℜm is a bounded linear operator,
Q = {0}p × ℜq

+ is a polyhedral convex cone, 1 ≤ p ≤ m, q = m − p,
and K is a closed convex cone in X .



The KKT conditions
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The Karush-Kuhn-Tucker conditions are






















(x − z) − c −A∗y = 0

Q∗ ∋ y ⊥ Ax − b ∈ Q

K∗ ∋ z ⊥ x ∈ K ,

,

where “⊥” means the orthogonality. Q∗ is the dual cone of Q and K∗ is
the dual cone of K.
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Equivalently,






















(x − z) − c −A∗y = 0

Q∗ ∋ y ⊥ Ax − b ∈ Q

x − ΠK(x − z) = 0

,

where ΠK(x) is the unique optimal solution to

min
1

2
‖u − x‖2

s.t. u ∈ K .
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Consequently, by first eliminating (x − z) and then x, we get

Q∗ ∋ y ⊥ AΠK(c + A∗y) − b ∈ Q ,

which is equivalent to

F (y) := y − ΠQ∗ [y − (AΠK(c + A∗y) − b)] = 0, y ∈ ℜm .



The dual formulation
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The above is nothing but the first order optimality condition to the
convex dual problem

max −θ(y) := −

[

1

2
‖ΠK(c + A∗y)‖2 − 〈b, y〉 −

1

2
‖c‖2

]

s.t. y ∈ Q∗ .

Then F can be written as

F (y) = y − ΠQ∗(y −∇θ(y)) .
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Now, we only need to solve

F (y) = 0, y ∈ ℜm .

However, the difficulties are:

■ F is not differentiable at y;

■ F involves two metric projection operators;

■ Even if F is differentiable at y, it is too costly to compute F ′(y).



The NCM problem
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For the nearest correlation matrix problem,

• A(X) = diag(X), a vector consisting of all diagonal entries of X.
.

• A∗(y) = diag(y), the diagonal matrix.

• b = e, the vector of all ones in ℜn and K = Sn
+.

Consequently, F can be written as

F (y) = AΠSn

+
(G + A∗y) − b.



The projector

May 20, 2010, Fudan University, Shanghai NUS/SUN – 28 / 55

For n = 1, we have

x+ := ΠS1
+
(x) = max(0, x).

Note that
• x+ is only piecewise linear, but not smooth.
• (x+)2 is continuously differentiable with

∇
{1

2
(x+)2

}

= x+,

but is not twice continuously differentiable.



The one dimensional case
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The multi-dimensional case
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The projector for K = Sn
+:

x

x

 
Convex Cone 

x2 3

1

ΠK

η

(η)
K

0
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Let X ∈ Sn have the following spectral decomposition

X = PΛP T ,

where Λ is the diagonal matrix of eigenvalues of X and P is a
corresponding orthogonal matrix of orthonormal eigenvectors.

Then

X+ := ΠSn

+
(X) = PΛ+P T .
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We have

• ‖X+‖2 is continuously differentiable with

∇
(1

2
‖X+‖

2
)

= X+,

but is not twice continuously differentiable.

• X+ is not piecewise smooth, but strongly semismooth2.

2 D.F. Sun and J. Sun. Semismooth matrix valued functions. Mathematics of

Operations Research 27 (2002) 150–169.
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A quadratically convergent Newton’s method is then designed by Qi and
Sun3. The written code is called CorNewton.m.

"This piece of research work is simply great and

practical. I enjoyed reading your paper." –
March 20, 2007, a home loan financial institution based in
McLean, VA.

"It’s very impressive work and I’ve also run the
Matlab code found in Defeng’s home page. It
works very well."– August 31, 2007, a major investment
bank based in New York city.

3H.D. Qi and D.F. Sun, A quadratically convergent Newton method for comput-
ing the nearest correlation matrix. SIAM Journal on Matrix Analysis and Applications

28 (2006), pp. 360–385.



Inequality constraints
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If we have lower and upper bounds on X, F takes the form

F (y) = y − ΠQ∗ [y − (AΠSn

+
(G + A∗y) − b)] ,

which involves double layered projections over convex cones.

A quadratically convergent inexact smoothing Newton-BICGStab method
is designed by Gao and Sun4.

Again, highly efficient.

4Y. Gao and D.F. Sun, Calibrating least squares covariance matrix problems with
equality and inequality constraints, SIAM Journal on Matrix Analysis and Applications
31 (2009), pp. 1432–1457.



Back to the rank constraint
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min
1

2
‖H ◦ (X − G)‖2

F

s.t. AX ∈ b + Q ,

X ∈ Sn
+ ,

rank(X) ≤ k,

equivalently,

min
1

2
‖H ◦ (X − G)‖2

F

s.t. AX ∈ b + Q ,

X ∈ Sn
+ ,

λi(X) = 0, i = k + 1, . . . , n.



The penalty approach
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Given c > 0, we consider a penalized version

min
1

2
‖H ◦ (X − G)‖2

F + c

n
∑

i=k+1

λi(X)

s.t. AX ∈ b + Q ,

X ∈ Sn
+ ,

or equivalently

min fc(X) :=
1

2
‖H ◦ (X − G)‖2

F + c〈I,X〉 − c

k
∑

i=1

λi(X)

s.t. AX ∈ b + Q ,

X ∈ Sn
+ .



Majorization functions
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Let h(X) :=
∑k

i=1 λi(X) − 〈I,X〉. Since h is a convex function, for
given Xk, we have

h(X) ≥ hk(X) := h(Xk) + 〈V k, X − Xk〉,

where V k ∈ ∂h(Xk). Thus, −h is majorized by −hk.

Let d ∈ ℜn be a positive vector such that

H ◦ H ≤ ddT .

For example, d = max(Hij)e. Let D1/2 = diag(d0.5
1 , . . . , d0.5

n ).
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Let

g(X) :=
1

2
‖H ◦ (X − G)‖2

F .

Then g is majorized by

gk(X) := g(Xk)+〈H ◦H(Xk−G), X−Xk〉+
1

2
‖D1/2(X−Xk)D1/2‖2

F .

Thus, at Xk, fc is majorized by

fc(X) ≤ fk(X) := gk(X) − chk(X)

and fc(X
k) = fk(Xk).



The idea of majorization
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Instead of solving the penalized problem, the idea of the majorization is
to solve, for given Xk, the following problem

min fk
c (X) = gk(X) − chk(X)

s.t. AX ∈ b + Q ,

X ∈ Sn
+ ,

which is a diagonal weighted least squares correlation matrix problem

min
1

2
‖D1/2(X − Xk)D1/2‖2

F

s.t. AX ∈ b + Q ,

X ∈ Sn
+ .
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Now, we can use the two Newton methods introduced earlier for the
majorized subproblems!

fc(X
k+1) < fc(X

k) < · · · < fc(X
1).



Where is the rank condition?
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Looks good? But how can one guarantee that we can get a final X∗

such that its rank is less or equal to k?

The answer is: increase c. That is, to have a sequence of {ck} with
ck+1 ≥ ck.

Will it work? Numerical stability? Does not need a large ck in numerical
computations.

There are no known methods that can solve the general rank constrained
problem. For the H-normed correlation matrix problems (without
constraints on the off diagonal entries), the major.m of R. Pietersz and
J.F. Groenen (2004) is the most efficient one so far [write X = Y Y T for
Y ∈ ℜn×k and apply component-by-component majorization.].
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Let Y ∈ Sn be arbitrarily chosen. Suppose that Y has the spectral
decomposition

Y = UΣ(Y )UT , (7)

where U ∈ On is a corresponding orthogonal matrix of orthonormal
eigenvectors of Y and Σ(Y ) := diag(σ(Y )) where
σ(Y ) = (σ1(Y ), . . . , σn(Y ))T is the column vector containing all the
eigenvalues of Y being arranged in the non-increasing order in terms of
their absolute values, i.e.,

|σ1(Y )| ≥ · · · ≥ |σn(Y )| ,

and whenever the equality holds, the larger one comes first, i.e.,

if |σi(Y )| = |σj(Y )| and σi(Y ) > σj(Y ), then i < j .
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Define

ᾱ := {i | |σi(Y )| > |σr(Y )| }, β̄ := {i | |σi(Y )| = |σr(Y )| },

γ̄ := {i | |σi(Y )| < |σr(Y )| },

and β̄+ := {i | σi(Y ) = |σr(Y )| }, β̄− := {i | σi(Y ) = −|σr(Y )| } .

Denote

Ψr(Y ) := min
1

2
‖Z − Y ‖2

s.t. Z ∈ Sn(r) .
(8)

Denote the set of optimal solutions to (8) by ΠSn(r)(Y ).



Projection onto Sn(r)
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Lemma 1. Let Y ∈ Sn have the spectral decomposition as in (7). Then
the solution set ΠSn(r)(Y ) to problem (8) can be characterized as follows

ΠSn(r)(Y ) =

{

[Uᾱ Uβ̄Qβ̄ Uγ̄ ]diag(v) [Uᾱ Uβ̄Qβ̄ Uγ̄ ]T
∣

∣

∣

v ∈ V , Qβ̄ =

[

Qβ̄+ 0
0 Qβ̄−

]

, Qβ̄+ ∈ O|β̄+|, Qβ̄− ∈ O|β̄−|

}

,

(9)
where

V :=
{

v ∈ ℜn | vi = σi(Y ) for i ∈ ᾱ ∪ β̄1, vi = 0 for i ∈ (β̄ \ β̄1) ∪ γ̄ ,

where β̄1 ⊆ β̄ and |β̄1| = r − |ᾱ|
}

.

(10)



Global Optimality Checking
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Theorem 1. 5 The optimal solution (ȳ, Y ) ∈ Q∗ × Sn to the the dual
problem satisfies

b −AΠSn

+

(

C + A∗ȳ + Y
)

∈ NQ∗(ȳ) (11)

and
ΠSn

+

(

C + A∗ȳ + Y
)

∈ conv
{

ΠSn(r)(C − Y )
}

, (12)

where ΠSn(r)(·) is defined as in Lemma 1. Furthermore, if there exists a
matrix X ∈ ΠSn(r)(C − Y ) such that X = ΠSn

+

(

C + A∗ȳ + Y
)

, then X

and (ȳ, Y ) globally solve the primal problem with H = E and the
corresponding dual problem, respectively and there is no duality gap
between the primal and dual problems.

5Y. Gao and D.F. Sun, A majorized penalty approach for calibrating rank con-
strained correlation matrix problems, manuscript, March 2010.



Testing Examples
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The testing examples to be reported are given below.

Example 1. Let n = 500 and the weight matrix H = E. For
i, j = 1, . . . , n, Cij = 0.5 + 0.5e−0.05|i−j|. The index sets are
Be = Bl = Bu = ∅.

Example 2. Let n = 500 and the weight matrix H = E. The matrix C

is extracted from the correlation matrix which is based on a 10, 000 gene
micro-array data set obtained from 256 drugs treated rat livers. The
index sets are Be = Bl = Bu = ∅.

Example 3. Let n = 500. The matrix C is the same as in Example 1,
i.e., C = 0.5 + 0.5e−0.05|i−j| for i, j = 1, . . . , n. The index sets are
Be = Bl = Bu = ∅. The weight matrix H is generated in the way such
that all its entries are uniformly distributed in [0.1, 10] except for 2× 100
entries in [0.01, 100].
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Example 4. Let n = 500. The matrix C is the same as in Example 2.
The index sets are Be = Bl = Bu = ∅ . The weight matrix H is
generated in the same way as in Example 3.

Example 5. The matrix C is obtained from the gene data sets with
dimension n = 1, 000 as in Example 2. The weight matrix H is the same
as in Example 3. The index sets Be, Bl, and
Bu ⊂ {(i, j) | 1 ≤ i < j ≤ n} consist of the indices of min(n̂r, n − i)
randomly generated elements at the ith row of X, i = 1, . . . , n with
n̂r = 5 for Be and n̂r = 10 for Bl and Bu. We take eij = 0 for
(i, j) ∈ Be, lij = −0.1 for (i, j) ∈ Bl and uij = 0.1 for (i, j) ∈ Bu.
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Eg1 Major SemiNewton Dual-BFGS PenCorr

rank time residue relgap time residue relgap time residue relgap time residue relgap

2 1.9 1.564e2 3.4e-3 63.0 1.564e2 3.5e-3 432.0 1.660e2 6.5e-2 25.7 1.564e2 3.4e-3
5 2.2 7.883e1 6.5e-5 23.5 7.883e1 2.8e-5 24.6 7.883e1 1.1e-15 7.5 7.883e1 7.0e-5
10 2.7 3.869e1 6.9e-5 19.0 3.868e1 8.0e-6 8.0 3.868e1 1.7e-14 4.4 3.869e1 6.7e-5
15 4.2 2.325e1 8.3e-5 18.5 2.324e1 7.3e-6 6.0 2.324e1 3.4e-14 3.9 2.325e1 7.9e-5
20 7.5 1.571e1 8.8e-5 15.3 1.571e1 7.6e-6 5.6 1.571e1 2.9e-14 4.1 1.571e1 6.9e-5
25 12.8 1.145e1 1.1e-4 14.4 1.145e1 8.6e-6 5.0 1.145e1 1.8e-13 3.2 1.145e1 1.0e-4
30 19.4 8.797e0 1.3e-4 14.0 8.796e0 9.5e-6 4.3 8.795e0 4.4e-13 3.0 8.796e0 9.4e-5
35 34.4 7.020e0 1.7e-4 14.0 7.019e0 1.0e-5 4.8 7.019e0 2.0e-13 4.7 7.019e0 2.8e-5
40 43.4 5.766e0 2.2e-4 1.3 5.774e0 1.7e-3 4.3 5.764e0 5.6e-13 3.0 5.765e0 3.9e-5
45 63.6 4.843e0 3.0e-4 1.3 4.849e0 1.6e-3 4.5 4.841e0 7.4e-13 3.0 4.841e0 4.2e-5
50 80.1 4.141e0 4.0e-4 1.4 4.146e0 1.6e-3 4.3 4.139e0 1.8e-12 1.8 4.139e0 6.8e-5
60 145.0 3.156e0 6.7e-4 1.4 3.158e0 1.4e-3 4.5 3.153e0 8.4e-13 1.6 3.154e0 8.4e-5
70 243.0 2.507e0 1.1e-3 1.4 2.507e0 1.3e-3 4.3 2.504e0 3.4e-12 1.6 2.504e0 1.0e-4
80 333.0 2.053e0 1.6e-3 1.5 2.052e0 1.2e-3 4.1 2.050e0 4.2e-12 1.6 2.050e0 1.2e-4
90 452.0 1.722e0 2.4e-3 1.6 1.720e0 1.2e-3 4.2 1.718e0 1.1e-11 1.7 1.718e0 1.4e-4
100 620.0 1.471e0 3.3e-3 1.5 1.468e0 1.1e-3 4.3 1.467e0 3.3e-12 1.6 1.467e0 1.5e-4
125 1180.0 1.055e0 6.8e-3 1.7 1.049e0 9.9e-4 4.2 1.048e0 1.0e-11 1.7 1.048e0 1.8e-4

Table 1: Numerical results for Example 1
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Eg2 Major SemiNewton Dual-BFGS PenCorr

rank time residue relgap time residue relgap time residue relgap time residue relgap

2 0.6 2.858e2 6.5e-4 54.4 2.860e2 1.5e-3 304.5 2.862e2 2.1e-3 37.2 2.859e2 8.2e-4
5 6.0 1.350e2 2.0e-3 38.2 1.358e2 8.1e-3 78.8 1.367e2 1.5e-2 99.2 1.351e2 2.4e-3
10 9.3 6.716e1 4.4e-4 32.7 6.735e1 3.2e-3 58.3 6.802e1 1.3e-2 32.1 6.719e1 9.7e-4
15 8.8 4.097e1 3.4e-4 26.8 4.100e1 1.0e-3 44.6 4.096e1 1.0e-4 18.4 4.099e1 7.5e-4
20 13.0 2.842e1 7.3e-4 18.8 2.844e1 1.4e-3 40.4 2.842e1 8.9e-4 16.6 2.843e1 1.1e-3
25 34.9 2.149e1 1.2e-3 18.0 2.152e1 2.6e-3 26.6 2.149e1 1.2e-3 16.4 2.151e1 2.2e-3
30 33.7 1.693e1 4.3e-4 17.3 1.695e1 1.7e-3 23.0 1.694e1 7.8e-4 14.5 1.694e1 1.2e-3
35 71.8 1.379e1 1.3e-3 18.1 1.381e1 2.6e-3 19.7 1.378e1 7.1e-4 11.9 1.379e1 1.6e-3
40 50.0 1.151e1 1.5e-3 12.5 1.152e1 2.1e-3 34.7 1.145e1 3.2e-4 7.7 1.151e1 1.6e-3
45 43.3 9.733e0 9.6e-4 10.6 9.736e0 1.3e-3 23.1 9.733e0 9.2e-4 6.3 9.733e0 1.0e-3
50 44.5 8.318e0 4.1e-4 10.7 8.319e0 4.8e-4 19.7 8.315e0 5.1e-6 5.7 8.318e0 4.5e-4
60 66.5 6.214e0 8.1e-4 10.9 6.214e0 7.4e-4 6.1 6.209e0 1.4e-13 6.9 6.213e0 5.9e-4
70 91.2 4.733e0 1.1e-3 11.0 4.731e0 8.2e-4 23.1 4.728e0 1.9e-4 4.6 4.731e0 7.2e-4
80 93.0 3.663e0 8.7e-4 2.2 3.800e0 3.8e-2 5.2 3.660e0 4.0e-13 2.9 3.662e0 4.5e-4
90 125.0 2.865e0 1.2e-3 2.0 2.962e0 3.5e-2 5.0 2.862e0 5.1e-13 3.0 2.864e0 7.0e-4
100 150.0 2.255e0 1.4e-3 1.7 2.323e0 3.2e-2 15.1 2.254e0 7.8e-4 2.9 2.254e0 8.3e-4
125 288.6 1.269e0 2.4e-3 1.4 1.304e0 3.0e-2 17.1 1.266e0 1.6e-4 2.7 1.268e0 1.4e-3

Table 2: Numerical results for Example 2
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Example 3 Example 4

Majorw PenCorr Majorw PenCorr

rank time residue time residue time residue time residue

2 8.8 1.805e2 81.2 1.804e2 2.9 3.274e2 141.6 3.277e2
5 27.0 8.984e1 70.0 8.986e1 34.4 1.523e2 245.0 1.522e2
10 38.7 4.382e1 48.7 4.383e1 48.5 7.423e1 98.7 7.428e1
15 55.5 2.616e1 43.7 2.618e1 70.5 4.442e1 79.9 4.446e1
20 84.4 1.751e1 39.1 1.753e1 101.4 2.985e1 67.0 2.987e1
25 117.0 1.265e1 38.2 1.266e1 289.6 2.197e1 69.8 2.204e1
30 171.8 9.657e0 36.5 9.657e0 335.6 1.694e1 65.8 1.699e1
35 250.6 7.639e0 39.8 7.632e0 436.7 1.345e1 71.0 1.343e1
40 324.7 6.213e0 38.8 6.203e0 470.7 1.098e1 50.5 1.098e1
45 408.4 5.169e0 38.4 5.148e0 498.7 9.104e0 47.7 9.094e0
50 502.2 4.391e0 37.5 4.355e0 639.5 7.625e0 48.0 7.623e0
60 654.1 3.290e0 35.6 3.219e0 837.6 5.552e0 44.0 5.523e0
70 972.5 2.579e0 38.2 2.481e0 987.5 4.135e0 44.9 4.084e0
80 1274.9 2.090e0 42.6 1.959e0 1212.0 3.127e0 38.0 3.082e0
90 1526.9 1.740e0 44.0 1.588e0 1417.0 2.393e0 35.6 2.345e0
100 1713.7 1.478e0 40.9 1.310e0 1612.0 1.865e0 32.7 1.814e0
125 2438.1 1.052e0 44.6 8.591e-1 1873.0 1.030e0 27.7 9.748e-1

Table 3: Numerical results for Example 3 and 4
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Example 5 PenCorr

rank time residue
20 11640.0 1.872e2
50 1570.0 1.011e2
100 899.0 8.068e1
250 318.3 7.574e1
500 326.3 7.574e1

Table 4: Numerical results for Example 5
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• A code named PenCorr.m can efficiently solve all sorts of rank
constrained correlation matrix problems. Faster when rank is larger.

• The techniques may be used to solve other problems, e.g., low
rank matrix problems with sparsity.

• The limitation is that it cannot solve problems for matrices
exceeding the dimension 4, 000 by 4, 000 on a PC due to memory
constraints.

• The techniques are applicable to general rank constrained matrix
(including nonsymmetric matrices) optimization problems.



End of talk
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Thank you! :)
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