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Abstract. Robust Low-Rank Tensor Completion (RTC) problems have received considerable attention in recent4
years such as signal processing and computer vision. In this paper, we focus on the bound constrained5
RTC problem for third-order tensors which recovers a low-rank tensor from partial observations6
corrupted by impulse noise. A widely used convex relaxation of this problem is to minimize the tensor7
nuclear norm for low rank and the `1-norm for sparsity. However, it may result in biased solutions.8
To handle this issue, we propose a nonconvex model with a novel nonconvex tensor rank surrogate9
function and a novel nonconvex sparsity measure for RTC problems under limited sample constraints10
and two bound constraints, where these two nonconvex terms have a difference of convex functions11
(DC) structure. Then, a proximal majorization-minimization (PMM) algorithm is developed to solve12
the proposed model and this algorithm consists of solving a series of convex subproblems with an13
initial estimator to generate a new estimator which is used for the next subproblem. Theoretically, for14
this new estimator, we establish a recovery error bound for its recoverability and give the theoretical15
guarantee that lower error bounds can be obtained when a reasonable initial estimator is available.16
Then, by using the Kurdyka- Lojasiewicz property exhibited in the resulting problem, we show that17
the sequence generated by the PMM algorithm globally converges to a critical point of the problem.18
Extensive numerical experiments including color images and multispectral images show the high19
efficiency of the proposed model.20
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1. Introduction. Multi-dimensional data is becoming prevalent in many areas such as24

computer vision [27, 44], data mining [32], signal processing [10], and machine learning [39].25

Tensor-based modeling has the capability of capturing these underlying multi-dimensional26

structures. However, the tensor data observed may suffer from information loss and be per-27

turbed by different kinds of noise originating from human errors or signal interference. The28

purpose of this paper is to study Robust Low-Rank Tensor Completion (RTC) problems for29

third-order tensors, in which few available entries are defiled by impulse noise.30

The original model of RTC problems is to minimize an optimization problem which con-31

sists of the tensor rank function plus the `0-norm under limited sample constraints, which32

is a generalization of Robust Matrix Completion (RMC) [8, 22]. As the rank function is33
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nonconvex, the nuclear norm is widely used to approximate the rank function. Candès et34

al. [8] studied the RMC problem by solving a convex optimization problem that minimizes a35

weighted combination of the nuclear norm and the `1-norm under limited sample constraints,36

and theoretical conditions to ensure the perfect recovery in the probabilistic sense have been37

analyzed. Although the nuclear norm is a convex relaxation of the rank function, this kind38

of surrogate may make the solution seriously deviate from the solution of rank minimization.39

To improve the recovery quality of the solution for matrix completion with fixed basis coeffi-40

cient, Miao et al. [31] proposed a rank-corrected procedure to generate an estimator with a41

pre-estimator and established a non-asymptotic recovery error bound. Liu et al. [28] recently42

reformulated the rank regularized problem as a family of nonconvex equivalent surrogates by43

establishing its global exact penalty.44

Compared with RMC, RTC is more difficult to solve due to the fact that the rank of a45

tensor is not unique. The two commonly used tensor ranks are the CANDECOMP/PARAFAC46

(CP) rank [9] and the Tucker rank [43]. However, computing the CP rank of a given tensor47

is known to be NP-hard [16]. Liu et al. [27] proposed the sum of nuclear norms of unfolding48

matrices (SNN) of a tensor to approximate the Tucker rank to solve the low-rank tensor49

completion problem, which has since appeared frequently in practical settings. Although the50

SNN is easy to compute, Romera-Paredes et al. [36] showed that it is not the tightest convex51

envelope of the sum of entries of the Tucker rank. Recently, Huang et al. [17] proposed a tensor52

ring (TR) decomposition that factorizes a high-order tensor into a sequence of three-order53

tensors and used a number of TR unfoldings for RTC problems. However, the matricization54

of a tensor may break the intrinsic structures and correlations in the tensor data, hence the55

rank defined by the unfolding matrices cannot accurately describe the low-rank property of56

the tensor. Different from the rank based matricization above, Kilmer et al. [19] proposed the57

tensor multi-rank and tubal rank definitions based on a tensor singular value decomposition58

(t-SVD) framework [20] and Semerci et al. [37] developed a new tubal nuclear norm (TNN),59

which is a convex surrogate of the multi-rank [57]. In recent years, the tubal rank and the60

TNN have been widely studied for tensor recovery problems [18, 29, 45, 55]. Jiang et al. [18]61

showed that one can recover a low tubal rank tensor exactly with overwhelming probability62

by solving a convex program, where the objective function is a weighted combination of63

the TNN and the `1-norm. However, as pointed out in [38], the low-rank property of most64

natural images is mainly affected by a few large singular values, which present a heavy-tailed65

distribution. It means that the larger singular values are expected to be penalized mildly while66

the smaller ones are penalized severely. Nevertheless, the TNN treats the singular values with67

the same penalty, which will over-penalize large singular values and hence get the suboptimal68

performance. To address this issue, Zhang et al. [55] proposed a corrected TNN (CTNN)69

model for third-order tensor recovery from partial observations corrupted by Gaussian noise70

based on the rank-corrected procedure [31] and provided a non-asymptotic error bound of the71

CTNN model. However, [55] is not able to address the observations with impulse noise and72

the outer loop convergence of the adaptive correction procedure is unknown.73

On the other hand, it is challenging to solve the `0 regularization problem since it is NP-74

hard [33]. As a convex relaxation of the `0-norm, the `1-norm has been widely used for sparsity75

in statistics. The least absolute shrinkage and selection operator (lasso) problem is the `1-norm76

penalized least squares method, which was proposed in [42] and has been used extensively in77
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ROBUST TENSOR COMPLETION 3

high-dimensional statistics and machine learning. However, as indicated by [12], the `1-norm78

has long been known by statisticians to yield biased estimators and cannot achieve the best79

estimation performance, and might not be statistically optimal in more challenging scenarios.80

Hence, to solve the above mentioned problems, some nonconvex penalties have been proposed81

to substitute sparsity measures [13, 14, 41, 50, 51, 58]. In [41], a sparse semismooth Newton82

based proximal majorization-minimization (PMM) algorithm for nonconvex square-root-loss83

regression problems was introduced where the nonconvex regularizer has the difference of84

convex functions (DC) structure. Ahn et al. [1] gave a unified DC representation for a85

family of surrogate sparsity functions that are employed as approximations of the `0-norm86

in statistical learning and established some sparsity properties of the directional stationary87

points. Yang et al. [51] proposed nonconvex models for RTC by the regularizing redescending88

M-estimators as sparsity measures and developed the linearized and proximal block coordinate89

methods to solve the nonconvex problems. Zhao et al. [58] studied a nonconvex model,90

consisting of the data-fitting term combined with the TNN and the nonconvex data fidelity91

term, for RTC problems and presented a Gauss-Seidel DC algorithm (GS-DCA) to solve92

the resulting optimization. By numerical experiments, [51] and [58] all showed that these93

nonconvex penalties outperformed the `1-norm penalty. Actually, the TNN is the sum of94

nuclear norms of all frontal slides of the tensor in the Fourier domain, which is the `1-norm95

of all singular vectors. In other words, the TNN results in a biased estimator as well as the96

`1-norm does. Therefore, some works [26, 49, 50, 54] proposed nonconvex penalties to replace97

the `1-norm in TNN. For example, Li et al. [26] established a nonconvex `p-norm relaxation98

model for low Tucker rank tensor recovery problem, which can recover the data in lower99

sampling ratios compared to the convex nuclear norm relaxation model, and the alternating100

direction method of multipliers (ADMM) was used to solve the resulting model. Xu et al.101

[49] proposed a novel nonconvex surrogate for the tensor multi-rank based on the Laplace102

function, which can more tightly approximate to the `0-norm than the tensor nuclear norm.103

However, there are few works on the mechanism to produce equivalent surrogates for the104

rank and the zero-norm optimization problems, although much research has been considering105

the nonconvex surrogates. What’s more, prior studies mentioned above only focused on the106

algorithm and its convergence analysis, but statistical error bounds of obtained solutions were107

rarely discussed.108

With an eye toward statistical performance, some researchers have studied the error bound109

for various models. Wu [48] proposed a two-stage rank-sparsity-correction procedure to deal110

with the problem of noisy low-rank and sparse matrix decomposition by adding adaptive rank-111

correction terms designed in [31], and examined its recovery performance by developing an112

error bound. However, [48] did not establish any theoretical guarantee that the recovery error113

bound obtained by the corrected model is smaller than that of the model without correction114

terms. Furthermore, it is difficult to generalize the error bound to tensor cases directly. In115

the tensor algebra framework, Bai et al. [4] proposed an adaptive correction approach for116

higher-order tensor completion and showed that the correction term with a suitable estimator117

could reduce the error bound of the corrected model, while the corrected model mainly deals118

with data missing problems without noises. In order to derive solutions with higher accuracy,119

zhang et al. [55] presented the CTNN model for low-rank tensor recovery and provided a120

non-asymptotic error bound, but this model could not address the sparse outliers.121
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To address the above problems, in this paper, we not only pay attention to nonconvex122

surrogates of the rank function and the `0-norm to overcome biased estimators yielded by the123

`1-norm penalty and the TNN penalty, but also study the statistical performance analysis124

of our method by establishing the recovery error bounds. We propose a bound constrained125

Nonconvex Robust Tensor Completion (BCNRTC) model which aims to recover a third-order126

tensor corrupted by impulse noise with partial observations. The proposed model consists127

of two nonconvex regularization terms with the DC structure for low-rank and sparsity un-128

der limited sample constraints and two bound constraints. These two nonconvex penalties129

can be chosen as the minimax concave penalty (MCP) function, the smoothly clipped abso-130

lute deviation (SCAD) function since such functions are continuous, sparsity promoting, and131

nearly unbiased [12, 52]. In addition, we prove the equivalence of global solutions between the132

bound constrained RTC problems and our proposed nonconvex model in theory. Recently,133

some works [6, 15, 40, 46] have been proposed to solve nonconvex and nonsmooth problems.134

Unfortunately, these works could not be applied to solve our proposed model directly. For135

example, Bolte et al. [6] proposed a proximal alternating linearized minimization (PALM) al-136

gorithm to solve the nonconvex and nonsmooth problems, but no constraints were considered.137

Guo et al. [15] studied the convergence of ADMM for minimizing the sum of two nonconvex138

functions with linear constraints, however, one of the nonconvex functions was required to be139

differentiable. [46] analyzed the convergence of ADMM for minimizing a nonconvex problem140

with coupled linear equality constraints, but the objective functions also needed to be Lips-141

chitz differentiable. Therefore, for the proposed nonconvex and nonsmooth model, we design142

a proximal majorization-minimization (PMM) algorithm similar to [24, 41, 53] to solve it.143

The key idea of the PMM algorithm is to solve a series of convex subproblems with an initial144

estimator to generate a new estimator which is used for the next subproblem. Specifically,145

each subproblem solves a convex program which is to minimize a weighted combination of the146

TNN and the `1-norm minus two linear terms, where the linear terms can be seen as the rank-147

correction term and sparsity-correction term constructed on the initial estimator. Meanwhile,148

we establish the recovery error bound between new estimators and initial estimators and also149

discuss the impact of the correction term on recovery error. Compared with the one obtained150

without these two linear terms, the error bound has a certain degree of reduction. Finally,151

the convergence of the PMM algorithm is established by using the Kurdyka- Lojasiewicz prop-152

erty and extensive numerical experiments are presented to demonstrate the efficiency of the153

proposed BCNRTC model. Therefore, our work not only improves the tensor rank surrogate154

function but also modifies the tensor sparsity measure.155

The main contributions of this paper are four aspects.156

• We produce and prove equivalent nonconvex surrogates with DC structures in the157

sense that they have the same global optimal solution set as RTC problems with the158

tensor average rank and the `0-norm do. We also show that these equivalent surrogates159

include the popular MCP function and SCAD function in statistics as special cases.160

• A proximal majorization-minimization (PMM) algorithm with convergence analysis161

is presented to solve the BCNRTC model, which is a nonconvex optimization prob-162

lem with linear constraints and bound constraints. Each subproblem of the PMM163

algorithm is to solve a convex program, where the two linear terms obtained by ma-164

jorization can be seen as the tensor rank-correction term and the sparsity-correction165
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term constructed on the initial estimator.166

• We establish a non-asymptotic recovery error bound for the subproblem of the PMM167

algorithm, which gives the theoretical guarantee that under the mild condition the sub-168

problem of the PMM algorithm can reduce recovery error bounds. Our results of re-169

covery error bounds also suggest a criterion for constructing a suitable rank-correction170

function and a sparsity-correction function. We show that rank-correction functions171

and sparsity-correction functions constructed by the MCP function and SCAD func-172

tion satisfy the above criterion.173

• Numerically, we confirm that the error bounds decrease as the number of outer it-174

erations increases. Moreover, extensive numerical experiments on color images and175

multispectral images demonstrate the superiority of the proposed model over several176

existing methods.177

The rest of this paper is organized as follows. Some notations used throughout this paper178

are introduced in Section 2. The bound constrained Nonconvex Robust Tensor Completion179

(BCNRTC) model is proposed in Section 3. The PMM algorithm is presented to solve the180

resulting model and its global convergence is also established in Section 4. In Section 5, we181

establish a recovery error bound for the estimator generated from the PMM algorithm. Finally,182

we report numerical results to validate the efficiency of our proposed model in Section 6 and183

draw conclusions in Section 7.184

2. Preliminaries. Throughout this paper, tensors are denoted by Euler script letters, e.g.,185

X . Matrices are denoted by boldface capital letters, e.g., X. Vectors are denoted by bold186

lowercase letters, e.g., x, and scalars are denoted by ordinary letters, e.g., x. The fields of187

real numbers and complex numbers are denoted as R and C, respectively. For a third-order188

tensor X ∈ Cn1×n2×n3 , we denote its (i, j, k)-th entry as Xijk. A slice of a tensor X is a matrix189

defined by fixing all indices but two. We use the notation X (i, :, :),X (:, i, :) and X (:, :, i) to190

denote the i-th horizontal, lateral and frontal slice, respectively. Specifically, the front slice191

X (:, :, i) is also denoted by X(i). A fiber of a tensor X is a vector defined by fixing all indices192

but one. The fiber along the third dimension X (i, j, :) is also called as the (i, j)-th tube of X .193

We denote btc as the nearest integer less than or equal to t and dte as the one greater than or194

equal to t.195

For X ∈ Rn1×n2×n3 , π(X ) ∈ Rn1n2n3 means the vector obtained by arranging the entries196

of |X | in a non-increasing order, where |X | means the tensor whose (i, j, k)-th component is197

|Xijk|; and πi(·) denotes the i-th entry of π(·). ForX ∈ Cn1×n2 , σ(X) means the singular value198

vector of X with entries arranged in a non-increasing order; and σi(·) denotes the i-th entry199

of σ(·). For any given vector x, Diag(x) denotes a rectangular diagonal matrix of suitable size200

with the i-th diagonal entry being xi. For any matrix X, diag(X) denotes a vector of suitable201

size with the i-th diagonal entry being xii. Denote the function sign : R → R by sign(t) = 1202

if t > 0, sign(t) = −1 if t < 0, and sign(t) = 0 if t = 0, for t ∈ R. For any X ∈ Rn1×n2×n3 , let203

sign(X ) be the sign tensor of X where [sign(X )]ijk = sign(Xijk).204

The inner product of two matrices X and Y in Cn1×n2 is defined as 〈X,Y 〉 := Tr(XHY ),205

where XH denotes the conjugate transpose of X, and Tr(·) denotes the matrix trace. The206

inner product of two tensors X ,Y ∈ Cn1×n2×n3 is defined as 〈X ,Y〉 :=
∑n3

i=1〈X
(i),Y (i)〉. The207

Frobenius norm of a tensor X is defined as ‖X‖F =
√
〈X ,X〉. And the infinity norm and the208
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6 X. ZHAO, M. BAI, D. SUN, AND L. ZHENG

l1-norm of a tensor are defined as ‖X‖∞ = maxijk |Xijk| and ‖X‖1 =
∑n1

i=1

∑n2
j=1

∑n3
k=1 |Xijk|,209

respectively. For any X ∈ Cn1×n2×n3 , the complex conjugate of X is denoted as conj(X ) which210

takes the complex conjugate of each entry of X .211

For any tensor X ∈ Rn1×n2×n3 , we denote X̂ ∈ Cn1×n2×n3 as the results of the Fast212

Fourier Transform (FFT) of all tubes along the third dimension. Using MATLAB command213

fft, X̂ = fft(X , [ ], 3). One can also compute X from X̂ by using the inverse FFT operation214

along the third-dimension, i.e., X = ifft(X̂ , [ ], 3) . Let X denote the block diagonal matrix215

of the tensor X̂ , where the i-th diagonal block of X is the i-th frontal slice X̂
(i)

of X̂ , i.e.,216

X := bdiag(X̂ ) =


X̂

(1)

X̂
(2)

. . .

X̂
(n3)

 .217

We define a block circular matrix from the frontal slices X(i) of X as218

bcirc(X ) :=


X(1) X(n3) · · · X(2)

X(2) X(1) · · · X(3)

...
...

. . .
...

X(n3) X(n3−1) · · · X(1)

 .219

It can be block diagonalized by using the FFT, i.e., (F n3 ⊗ In1) ·bcirc(X ) · (F−1
n3
⊗ In2) = X,220

where F n is the n× n discrete Fourier matrix, In is the n× n identity matrix, ⊗ denotes the221

Kronecker product, and (F n3 ⊗ In1)/
√
n3 is unitary. The command unfold(X ) takes X into222

a block n1n3 × n2 matrix:223

unfold(X ) :=


X(1)

X(2)

...

X(n3)

 .224

The inverse operator fold takes unfold(X ) into a tensor form: fold(unfold(X )) = X . It is225

showed in [29] that226

conj(X̂
(i)

) = X̂
(n3−i+2)

∀i = 2, . . . ,

⌊
n3 + 1

2

⌋
.227

The tensor spectral norm of X is defined as ‖X‖ := ‖X‖, i.e., the spectral norm of the block228

diagonal matrix X in the Fourier domain. The following properties will be used frequently:229

〈X ,Y〉 = 1
n3
〈X,Y 〉, ‖X‖F = 1√

n3
‖X‖F .230

Now we give some basic definitions about tensors, which serve as the foundation for our231

further analysis.232

Definition 2.1 (T-product [20]). The t-product X ∗Y of X ∈ Cn1×n2×n3 and Y ∈ Cn2×n4×n3233

is a tensor Z ∈ Cn1×n4×n3 given by Z = fold(bcirc(X ) · unfold(Y)). Moreover, we have the234

following equivalence: X ∗ Y = Z ⇔X Y = Z.235
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Definition 2.2 (Tensor transpose [20]). The conjugate transpose of a tensor X ∈ Cn1×n2×n3236

is the tensor XH ∈ Cn2×n1×n3 obtained by conjugate transposing each of the frontal slice and237

then reversing the order of transposed frontal slices 2 through n3.238

Definition 2.3 (F-diagonal tensor [20]). A tensor X is called f -diagonal if each frontal slice239

X(i) is a diagonal matrix.240

Definition 2.4 (Tensor Singular Value Decomposition: t-SVD [20]). For X ∈ Rn1×n2×n3, the241

t-SVD of X is given by X = U ∗ S ∗ VH , where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are242

orthogonal tensors, and S ∈ Rn1×n2×n3 is a f-diagonal tensor, respectively. The entries in S243

are called the singular fibers of X .244

Definition 2.5 (Tubal multi-rank [19, 57]). The multi-rank of a tensor X ∈ Rn1×n2×n3 is245

a vector r ∈ Rn3 with its i-th entry as the rank of the i-th frontal slice X̂
(i)

of X̂ , i.e.,246

ri = rank(X̂
(i)

).247

Definition 2.6 (Tensor average rank [29]). For X ∈ Rn1×n2×n3, the tensor average rank,248

denoted as ranka(X ), is defined as ranka(X ) = 1
n3

∑n3
i=1 rank(X̂

(i)
).249

Definition 2.7 (Tubal nuclear norm [29]). The tubal nuclear norm of X ∈ Rn1×n2×n3, de-250

noted as ‖X‖TNN, is the average of the nuclear norm of all the frontal slices of X̂ , i.e.,251

‖X‖TNN = 1
n3

∑n3
i=1 ‖X̂

(i)
‖∗, where ‖ · ‖∗ denote the nuclear norm of matrix, i.e., the sum of252

all singular values of matrix.253

Definition 2.8 (Tensor basis [56]). The column basis, denoted by ~ei is a tensor of size n1 ×254

1× n3 with the (i, 1, 1)-th entry equaling to 1 and the rest equaling to 0. The row basis is the255

transpose of ~ei, i.e., ~eTi . The tube basis, denoted by e̊i, is a tensor of size 1× 1× n3 with the256

(1, 1, k)-th entry equaling to 1 and the rest equaling to 0. Hence, one can obtain a unit tensor257

Θijk ∈ Rn1×n2×n3 with the (i, j, k)-th nonzero entry equaling 1 via Θijk = ~ei ∗ e̊k ∗ ~eTj . Now258

for any tensor X ∈ Rn1×n2×n3, its description based on the basis form can be given as follows:259

X =
∑n1

i=1

∑n2
j=1

∑n3
k=1〈Θijk,X〉Θijk.260

Other notations will be defined in appropriate sections if necessary.261

3. The Equivalent Surrogates for Robust Tensor Completion Model. Since the tensor is262

bounded in many practical applications, such as an 8-byte image with elements ranging from263

0 to 255, in this section, we introduce a nonconvex optimization model for bound constrained264

robust low-rank tensor completion problems.265

3.1. Robust Tensor Completion Model. Given the noisy data tensor X ∈ Rn1×n2×n3 ,266

only partial entries of X are observed, and the noisy data tensor X is an unknown low-rank267

tensor L? ∈ Rn1×n2×n3 corrupted by an unknown sparse noise M? ∈ Rn1×n2×n3 . Then, we268

can recover the low-rank tensor L? by solving the following bound constrained Robust Tensor269

Completion model:270

min
L,M

ranka(L) + λ‖M‖0

s.t. PΩ(L+M) = PΩ(X ), ‖M‖∞ ≤ bm, ‖L‖ ≤ bl,
(3.1)271
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wherebl, bm > 0 are given constants, λ > 0 is a regularization parameter, ‖ · ‖0 denotes the272

number of non-zero elements, ranka(L) is the tensor average rank, ‖ · ‖∞ denotes the infinity273

norm, ‖ · ‖ is the tensor spectral norm, Ω is an index set, and PΩ is the orthogonal projection274

operator on Ω, i.e.,275

PΩ(X ) :=

{
Xijk, (i, j, k) ∈ Ω,

0, otherwise.
276

It is well known that the rank and zero-norm optimization problems are in general NP-hard.277

Next, in terms of the variational characterization of the rank function and the zero-norm,278

we give its equivalent surrogates of (3.1) and prove that they have the same global optimal279

solution set as (3.1).280

3.2. Equivalent Surrogates . Let Φ denote the family of closed proper convex functions281

φ : R → (−∞,+∞] satisfying [0, 1] ⊆ int(domφ), φ(1) = 1 and φ(t∗φ) = 0 where t∗φ is the282

unique minimizer of φ over [0, 1]. Let e be the vector of all ones. Then283

(3.2) ‖z‖0 = min
w
{Σp

i=1φ(wi) s.t.〈e−w, |z|〉 = 0, 0 ≤ w ≤ e}284

and285

(3.3) rank(X) = min
W
{Σn

i=1φ(σi(W )) s.t.‖X‖∗ − 〈W ,X〉 = 0, ‖W ‖ ≤ 1},286

which are introduced in [28]. By the variational characterization of the zero-norm and the rank287

function in (3.2) and (3.3), the rank plus zero-norm minimization problem (3.1) is equivalent288

to the problem289

min
L,M,B,S

1

n3
Σn3
i=1Σñ

j=1φ(σj(Ŝ
(i)

)) + λΣn1
i=1Σn2

j=1Σn3
k=1φ(Bijk)

s.t.
1

n3
Σn3
i=1(‖L̂

(i)
‖∗ − 〈Ŝ

(i)
, L̂

(i)
〉) + λ〈E − B, |M|〉 = 0, 0 ≤ B ≤ E , ‖Ŝ

(i)
‖ ≤ 1,

PΩ(L+M) = PΩ(X ), ‖M‖∞ ≤ bm, ‖L‖ ≤ bl,

(3.4)290

where ñ = min{n1, n2} and E is the tensor of all ones. Notice that 1
n3

Σn3
i=1(‖L̂

(i)
‖∗ −291

〈Ŝ
(i)
, L̂

(i)
〉) + λ〈E − B, |M|〉 = 0, 0 ≤ B ≤ E , and ‖Ŝ

(i)
‖ ≤ 1 if and only if ‖L̂

(i)
‖∗ −292

〈Ŝ
(i)
, L̂

(i)
〉 = 0, 〈E − B, |M|〉 = 0, 0 ≤ B ≤ E , and ‖Ŝ

(i)
‖ ≤ 1, which can be obtained by the293

definition of the dual norm.294

For brevity, we denote J := {(i, j, k)}. Now we consider the following penalty problem:295

min
L,M,B,S

1

n3
Σn3
i=1Σñ

j=1φ(σj(Ŝ
(i)

)) + λΣ
(n1,n2,n3)
J φ(BJ) +

ρ

n3
Σn3
i=1(‖L̂

(i)
‖∗ − 〈Ŝ

(i)
, L̂

(i)
〉)

+ ρλ〈E − B, |M|〉

s.t. 0 ≤ B ≤ E , ‖Ŝ
(i)
‖ ≤ 1, PΩ(L+M) = PΩ(X ), ‖M‖∞ ≤ bm, ‖L‖ ≤ bl,

(3.5)296

where ρ > 0 is the penalty factor. Next, we show that the penalty problem (3.5) is a global297

exact penalty for (3.4) in the sense that it has the same global optimal solution set as (3.4)298
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does. The proof follows the line of [28, Theorem 5.1] in the matrix case by proving that the299

problem (3.4) is partially calm in its optimal solution set. The partial calmness is defined in300

[28], which is also given in Appendix A.301

Theorem 3.1. Let φ ∈ Φ. The penalty problem (3.5) is a global exact penalty for (3.4).302

Proof. Let (L∗,M∗,B∗,S∗) be an arbitrary global optimal solution of (3.4) and conse-303

quently L∗ 6= 0 and M∗ 6= 0. For all i ∈ {1, 2, . . . , n3}, we write r∗i = rank(L̂∗
(i)

) and304

s∗ = ‖M∗‖0. Then σr∗i (L̂∗
(i)

) > 0 and πs∗(M∗) > 0. By the continuity of σr∗i (·) and πs∗(·),305

there exists ε > 0 such that for any (L,M) ∈ B((L∗,M∗), ε),306

(3.6)

σr∗i (L̂∗
(i)

) ≥ α and πs∗(M) ≥ α with α = min(σr∗i (L̂∗
(i)

), πs∗(M∗))/2 ∀i ∈ {1, 2, . . . , n3}.307

We consider the perturbed problem of (3.4) whose feasible set takes the following form:308

Fε :=

{
(L,M,B,S)

∣∣∣∣ 1

n3
Σn3
i=1(‖L̂

(i)
‖∗ − 〈Ŝ

(i)
, L̂

(i)
〉) + λ(‖M‖1 − 〈B, |M|〉) = ε,

0 ≤ B ≤ E , ‖Ŝ
(i)
‖ ≤ 1, PΩ(L+M) = PΩ(X ), ‖M‖∞ ≤ bm, ‖L‖ ≤ bl

}
.

309

Fix an arbitrary ε ∈ R. It suffices to consider the case ε ≥ 0. Let (L,M,B,S) be an arbitrary310

point from Fε
⋂
B((L∗,M∗,B∗,S∗), ε). Then, with ρ̄ = φ

′
(1)/α,311

1

n3
Σn3

i=1Σñ
j=1φ(σj(Ŝ

(i)
)) + λΣ

(n1,n2,n3)
J φ(BJ) +

ρ̄

n3
Σn3

i=1(‖L̂
(i)
‖∗ − 〈Ŝ

(i)
, L̂

(i)
〉)

+ ρ̄λ(‖M‖1 − 〈B, |M|〉)

≥ 1

n3
Σn3

i=1Σñ
j=1[φ(σj(Ŝ

(i)
)) + ρ̄σj(L̂

(i)
)(1− σj(Ŝ

(i)
))] + λΣn1n2n3

j=1 [φ(πj(B)) + ρ̄πj(M)(1− πj(B))]

≥ 1

n3
Σn3

i=1Σ
r∗i
j=1[φ(σj(Ŝ

(i)
)) + ρ̄σr∗i (L̂

(i)
)(1− σj(Ŝ

(i)
))] + λΣs∗

j=1[φ(πj(B)) + ρ̄πs∗(M)(1− πj(B))]

≥ 1

n3
Σn3

i=1Σ
r∗i
j=1[φ(σj(Ŝ

(i)
)) + φ

′
(1)(1− σj(Ŝ

(i)
))] + λΣs∗

j=1[φ(πj(B)) + φ
′
(1)(1− πj(B))]

≥(
1

n3
Σn3

i=1r
∗
i + λs∗)φ(1) =

1

n3
Σn3

i=1rank(L̂∗
(i)

) + λ‖M∗‖0,

(3.7)

312

where the first inequality is by the von Neumann’s inequality and 〈B, |M|〉 ≤ 〈π(B), π(M)〉,313

the second one is by the nonnegativity of φ in [0, 1], the third one is due to (3.6) and314

ρ̄ = φ
′
(1)/α, and the last one is using φ(t) ≥ φ(1) + φ

′
(1)(t − 1) for t ∈ [0, 1]. Since315

1
n3

Σn3
i=1rank(L̂∗

(i)
) +λ‖M∗‖0 is exactly the optimal value of (3.4), by the arbitrariness of ε in316

R and that of (L,M,B,S) in Fε
⋂
B((L∗,M∗,B∗,S∗), ε), (3.7) shows that (3.4) is partially317

calm at (L∗,M∗,B∗,S∗), where the definition of partial calmness and its properties are intro-318

duced in [28]. By the arbitrariness of (L∗,M∗,B∗,S∗) in the global optimal solution set, it is319

partially calm in its optimal solution set. Since the feasible set of problem (3.5) is compact,320

the penalty problem (3.5) is a global exact penalty for (3.4) follows from [28, Proposition321

2.1(b)].322

This manuscript is for review purposes only.
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Then, by letting ψ(t) :=

{
φ(t), t ∈ [0, 1],
+∞, otherwise

and using the conjugate ψ∗ of ψ, i.e., ψ∗(s) :=323

supt∈R{st− ψ(t)}, we can obtain the following conclusion.324

Corollary 3.2. Let φ ∈ Φ. There exists ρ∗ > 0 such that the problem (3.1) has the same325

global optimal solution set as the following problem with ρ > ρ∗ does:326

min
L,M

ρ

n3
Σn3
i=1‖L̂

(i)
‖∗ −

1

n3
Σn3
i=1Σñ

j=1ψ
∗(ρσj(L̂

(i)
)) + λ(ρ‖M‖1 − ΣJψ

∗(ρ|MJ |))

s.t. PΩ(L+M) = PΩ(X ), ‖M‖∞ ≤ bm, ‖L‖ ≤ bl.
(3.8)327

Let u > 0. Denote328

(3.9) θ̃(s) := uθ(ρs)329

with θ(s) := |s| − ψ∗(|s|). Then the problem (3.8) is equivalent to the following problem:330

min
L,M

1

n3
Σn3
i=1Σñ

j=1θ̃(σj(L̂
(i)

)) + λΣJ θ̃(|MJ |)

s.t. PΩ(L+M) = PΩ(X ), ‖M‖∞ ≤ bm, ‖L‖ ≤ bl.
(3.10)331

It is worth noting that φ can be chosen as different functions satisfying φ ∈ Φ. In particular,332

if φ is chosen as the one in Example 3.1, then θ̃ becomes the MCP function (3.14); if φ is333

chosen as the one in Example 3.2, then θ̃ becomes the SCAD function (3.16).334

Example 3.1. Let φ(t) := ϕ(t)
ϕ(1) with ϕ(t) := a2

4 t
2 − a2

2 t + at +
(a−2)2+

4 , where a > 0 is335

a constant. Clearly, φ ∈ Φ with t∗φ = (a−2)+
a . Simple calculations show that ψ∗ takes the336

following form:337

ψ∗(s) =


− (a−2)2+

4 , if s ≤ a−a2/2
ϕ(1) ,

1
a2ϕ(1)

(a
2−2a

2 + sϕ(1))2 − (a−2)2+
4ϕ(1) , if a−a2/2

ϕ(1) < s ≤ a
ϕ(1) ,

s− 1, if s > a
ϕ(1) .

338

When a ≥ 2, we have ϕ(1) = 1 and θ(s) = |s| − ψ∗(|s|) =

{
2|s|
a −

s2

a2
, |s| ≤ a,

1, |s| > a.
Set s := as

γ339

for some constants γ > 0, we have γ
2θ(

as
γ ) = γ

2 (a|s|γ − ψ
∗(a|s|γ )) =

{
|s| − s2

2γ , |s| ≤ γ,
γ
2 , |s| > γ.

If340

ρ = a
γ , u = γ

2 and a ≥ 2, then the function θ̃(s) defined in (3.9) is the MCP function.341

Example 3.2. Let φ(t) := ϕ(t)
ϕ(1) with ϕ(t) := a−1

2 t2 + t, where a > 1 is a constant. Clearly,342

φ ∈ Φ. Then,343

ψ∗(s) =


0, s ≤ 1

ϕ(1) ,

s− 1, s > a
ϕ(1) ,

1
2(a−1)ϕ(1)(sϕ(1)− 1)2, 1

ϕ(1) < s ≤ a
ϕ(1) .

344
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Then, θ(s) = |s| − ψ∗(|s|) =


|s|, |s| ≤ 1

ϕ(1) ,

1, |s| > a
ϕ(1) ,

|s| − 1
2(a−1)ϕ(1)(|s|ϕ(1)− 1)2, 1

ϕ(1) < |s| ≤
a

ϕ(1) .

Set s :=345

s
γϕ(1) for some constants γ > 0, we have346

θ(
s

γϕ(1)
) =

|s|
γϕ(1)

− ψ∗( |s|
γϕ(1)

) =


|s|

γϕ(1) , |s| ≤ γ,
1, |s| > aγ,

|s|
γϕ(1) −

1
2(a−1)ϕ(1)(|s|/γ − 1)2, γ < |s| ≤ aγ,

347

and γ2ϕ(1)θ( s
γϕ(1)) = γ2ϕ(1)( |s|

γϕ(1) − ψ
∗( |s|
γϕ(1))) =


γ|s|, |s| ≤ γ,

γ2(a+1)
2 , |s| > aγ,

−s2+2a|s|γ−γ2
2(a−1) , γ < |s| ≤ aγ.

If ρ =348

1
γϕ(1) , u = γ2ϕ(1) and a > 1, then the function θ̃(s) defined in (3.9) is the SCAD function.349

3.3. BCNRTC for RTC Problems. From the above discussion, the equivalent surrogates350

problem (3.10) can be rewritten in a simplified bound constrained Nonconvex Robust Tensor351

Completion (BCNRTC for short) form as follows:352

min
L,M

‖L‖TNN −H1(L) + λ(‖M‖1 −H2(M))

s.t. PΩ(L+M) = PΩ(X ), ‖M‖∞ ≤ bm, ‖L‖ ≤ bl,
(3.11)353

where H1 and H2 are defined as354

(3.12) H1(L) =
1

n3
Σn3
i=1g(σ(L̂

(i)
)), H2(M) = Σn1

i=1Σn2
j=1Σn3

k=1h(Mijk),355

where g(x) = Σ
dim(x)
j=1 h(xj), h is a convex and continuous differentiable function which can be356

defined as357

(3.13) h(x) :=

{
x2

2γ , |x| ≤ γ,
|x| − γ

2 , |x| > γ,
358

which is related to the MCP function $M with h(x) = |x| −$M (x), where359

(3.14) $M (x) =

{
|x| − x2

2γ , |x| ≤ γ,
γ
2 , |x| > γ.

360

The convex function h can also be defined as361

(3.15) h(x) :=


0, |x| ≤ γ1,

x2−2γ1|x|+γ21
2(γ2−γ1) , γ1 < |x| ≤ γ2,

|x| − γ1+γ2
2 , |x| > γ2,

362

which is related to the SCAD function $S with h(x) = |x| −$S(x), where363

(3.16) $S(x) =


|x|, |x| ≤ γ1,

2γ2|x|−x2−γ21
2(γ2−γ1) , γ1 < |x| ≤ γ2,
γ1+γ2

2 , |x| > γ2.

364
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Remark 3.3. When H1 ≡ 0 and H2 ≡ 0, the BCNRTC model (3.11) reduces to a convex365

model (CRTC for short)366

min
L,M

‖L‖TNN + λ‖M‖1

s.t. PΩ(L+M) = PΩ(X ), ‖M‖∞ ≤ bm, ‖L‖ ≤ bl,
(3.17)367

which is actually a reformulation of the Robust Tensor Completion (RTC`1) [18] with two368

bound constraints. We use the symmetric Gauss-Seidel based alternating direction method of369

multipliers (sGS-ADMM) to solve the CRTC which will be illustrated in Subsection 6.2 for a370

warm start of BCNRTC.371

Notice that the feasible set of the problem (3.11) is bounded and closed, and the objective372

function is continuous and proper, by Weierstrass Theorem, the solution set of (3.11) is373

nonempty and compact.374

In the next section, we will propose an algorithm to solve the BCNRTC model (3.11).375

4. The Proximal Majorization-Minimization Algorithm. In this section, we will develop376

a proximal majorization-minimization (PMM) algorithm to solve the BCNRTC model (3.11).377

By using the indicator function, we can rewrite the BCNRTC model (3.11) to an uncon-378

strained optimization problem as follows:379

(4.1) min
L,M
‖L‖TNN −H1(L) + λ(‖M‖1 −H2(M)) + δΓ1(L,M) + δD1(M) + δD2(L),380

where D1 := {M | ‖M‖∞ ≤ bm}, D2 := {L | ‖L‖ ≤ bl}, Γ1 := {(L,M) | PΩ(L +M) =381

PΩ(X )}, and δD1(M) is the indicator function of the nonempty set D1.382

The proposed PMM algorithm is to linearize the concave terms −H1(·) and −H2(·) in the383

objective function of (4.1) at each iteration with respect to the current iterate, say (Lk,Mk),384

and generate the next iterate (Lk+1,Mk+1) by solving a convex subproblem inexactly:385

min
L,M

{
F (L,M;Lk,Mk) :=‖L‖TNN −H1(Lk)− 〈∇H1(Lk),L − Lk〉+ λ(‖M‖1 −H2(Mk)

− 〈∇H2(Mk),M−Mk〉) +
η

2
‖M−Mk‖2F +

η

2
‖L − Lk‖2F

+ δΓ1(L,M) + δD1(M) + δD2(L)

}
.

(4.2)

386

Let Lk = Uk ∗Σk ∗ (Vk)H be the t-SVD, then it holds that ∇H1(Lk) = Uk ∗Rk ∗ (Vk)H , where387

Rk = ifft(R̂k, [ ], 3) and R̂k
(i)

= Diag(∇g(diag (Σ̂k
(i)

))) = Diag(∇g(σ(L̂k
(i)

))). For brevity,388

the proximal parameter η > 0 is assumed to be a constant, although it is frequently varying389

in practice to accelerate convergence.390

By casting some constants, the subproblem (4.2) can be rewritten as follows:391

min
L,M
‖L‖TNN − 〈∇H1(Lk),L〉+ λ(‖M‖1 − 〈∇H2(Mk),M〉) +

η

2
‖M−Mk‖2F

+
η

2
‖L − Lk‖2F + δΓ1(L,M) + δD1(M) + δD2(L).

(4.3)392
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For convenience, we define W := (L,M). Note that F (W;Wk) is strongly convex, by [35,393

Theorem 1.9, Theorem 2.6], we obtain that F (W;Wk) has a unique minimizer.394

Motivated by [3], we use an error criterion to describe the inexact solution in (4.3), i.e.,395

we need to find Wk+1 and Ck+1 := (Ck+1
L , Ck+1

M ) such that396

(4.4) Ck+1 ∈ ∂F (Lk+1,Mk+1;Lk,Mk) and ‖Ck+1‖F ≤ ηc‖Wk+1 −Wk‖F ,397

where 0 ≤ c < 1
2 is a given constant.398

Now, we summarize the PMM algorithm for solving the BCNRTC (3.11) in Algorithm 4.1.399

Algorithm 4.1 The PMM algorithm for solving the BCNRTC (3.11).

1: Input: L0,M0,PΩ(X ), λ, γ and η. Set k = 0.
2: Find Wk+1, Ck+1 such that Ck+1 ∈ ∂F (Lk+1,Mk+1;Lk,Mk) and ‖Ck+1‖F ≤ ηc‖Wk+1 −
Wk‖F .

3: If a termination criterion is met, set L∗ := Lk+1,M∗ :=Mk+1; else, set k := k+1, return
to 2.

4.1. Convergence Analysis. In this section, we establish the global convergence of the400

PMM algorithm when h is chosen as the one in (3.13) or (3.15). Recall that the notation401

W := (L,M). Let402

Q(W) := ‖L‖TNN −H1(L) + λ(‖M‖1 −H2(M)) + δΓ1(L,M) + δD1(M) + δD2(L).403

It is easy to see that F (Wk;Wk) = Q(Wk). Firstly, we show a descent lemma for Q(W).404

Lemma 4.1. Let {Wk}k∈N be the sequence generated by Algorithm 4.1. Then, for any η > 0405

and 0 ≤ c < 1
2 ,406

Q(Wk+1) +
η

2
(1− 2c)||Wk+1 −Wk||2F ≤ Q(Wk) ∀k ≥ 0,407

and furthermore, limk→∞ ‖Wk+1 −Wk‖F = 0, where ‖Wk‖F =
√
‖Lk‖2F + ‖Mk‖2F .408

Next, we show Q(W) satisfies the relative error condition.409

Lemma 4.2. Let {Wk}k∈N be the sequence generated by Algorithm 4.1, W∗ be a cluster410

point and Bk+1 := (Bk+1
L ,Bk+1

M ) ∈ ∂Q(Wk+1). Then, there exist δ0 > 0 and m̃ > 0 such that411

‖Bk+1‖F ≤ (m̃+ λ/γ + η + ηc)‖Wk+1 −Wk‖F ∀ Wk,Wk+1 ∈ B(W∗, δ0).412

Lemma 4.3. The function Q(W) is a KL function when h is chosen as the one in (3.13)413

or (3.15).414

The proofs of Lemma 4.1, Lemma 4.2 and Lemma 4.3 are given in Appendix C. Combining415

Lemmas 4.1 - 4.3, we obtain the following convergence result of the PMM algorithm.416

Theorem 4.4. Let h be chosen as the one in (3.13) or (3.15), {Wk}k∈N be the sequence417

generated by Algorithm 4.1 and W∗ be a cluster point. Then, for any η > 0 and 0 ≤ c < 1
2 ,418
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the sequence {Wk}k∈N converges to W∗ as k goes to infinity, and W∗ is a critical point of419

BCNRTC model (3.11), i.e., 0 ∈ ∂Q(W∗). Moreover, the sequence {Wk}k∈N has a finite420

length ,i.e.,
∑∞

k=0 ||Wk+1 −Wk||F <∞.421

Proof. As mentioned in Lemma 4.2, the sequence {Wk}k∈N generated by Algorithm 4.1422

is bounded which admits a converging subsequence, i.e., there exists a subsequence Wkj such423

that Wkj → W∗, as kj → ∞. Moreover, Wk belongs to Γ1, D1 and D2, which leads to424

δΓ1(Lkj ,Mkj ) = 0, δD1(Mkj ) = 0 and δD2(Lkj ) = 0. So we have425

Q(Wkj ) =‖Lkj‖TNN −H1(Lkj ) + λ(‖Mkj‖1 −H2(Mkj )) + δΓ1(Lkj ,Mkj )

+δD1(Mkj ) + δD2(Lkj )
=‖Lkj‖TNN −H1(Lkj ) + λ(‖Mkj‖1 −H2(Mkj ))

→‖L∗‖TNN −H1(L∗) + λ(‖M∗‖1 −H2(M∗)), as kj →∞,

(4.5)426

where the last limit holds by the continuity of ‖ · ‖TNN −H1(·) + λ(‖ · ‖1 −H2(·)). Since the427

sets Γ1, D1 and D2 are closed and Wk belongs to Γ1, D1 and D2, we have W∗ belongs to Γ1,428

D1 and D2, and so Q(W∗) = ‖L∗‖TNN−H1(L∗) +λ(‖M∗‖1−H2(M∗)), which together with429

(4.5), implies that Q(Wkj ) → Q(W∗) as kj → ∞. Combining Lemma 4.1 - Lemma 4.3, the430

conclusion is obtained according to [3, Theorem 2.9]. This completes the proof.431

4.2. Solving the Subproblem. In this section, the symmetric Gauss-Seidel based alter-432

nating direction method of multipliers (sGS-ADMM)[25] is applied to solve the subproblem433

in the PMM algorithm. Each PMM iteration solves a strongly convex subproblem of the434

following form inexactly:435

min
L,M

‖L‖TNN − 〈∇H1(Lk),L〉+ λ(‖M‖1 − 〈∇H2(Mk),M〉) +
η

2
‖M−Mk‖2F +

η

2
‖L − Lk‖2F

s.t. PΩ(L+M) = PΩ(X ), ‖M‖∞ ≤ bm, ‖L‖ ≤ bl.

(4.6)

436

Let L+M = Z and add a proximal term. The problem (4.6) can be rewritten as437

min
L,M,Z

‖L‖TNN − 〈∇H1(Lk),L〉+ λ(‖M‖1 − 〈∇H2(Mk),M〉) +
η

2
‖M−Mk‖2F

+
η

2
‖L − Lk‖2F +

η

2
‖Z − Zk‖2F + δD1(M) + δD2(L)

s.t. L+M = Z, PΩ(X ) = PΩ(Z).

(4.7)438

Let Γ2 := {Z|PΩ(X ) = PΩ(Z)}. The augmented Lagrangian function associated with (4.7) is439

defined by440

L (L,M,Z;Y) :=‖L‖TNN − 〈∇H1(Lk),L〉+ λ(‖M‖1 − 〈∇H2(Mk),M〉) + 〈Y,Z − L−M〉

+
η

2
‖M−Mk‖2F +

η

2
‖L − Lk‖2F +

µ

2
‖L+M−Z‖2F +

η

2
‖Z − Zk‖2F

+ δD1(M) + δD2(L),

441
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where µ > 0 is the penalty parameter and Y is a multiplier. The iterative scheme of sGS-442

ADMM is given explicitly by443

Zt+
1
2 = arg min

Z∈Γ2

{L (Lt,Mt,Z;Yt)},(4.8)444

Lt+1 = arg min
L
{L (L,Mt,Zt+

1
2 ;Yt)},(4.9)445

Zt+1 = arg min
Z∈Γ2

{L (Lt+1,Mt,Z;Yt)},(4.10)446

Mt+1 = arg min
M

{L (Lt+1,M,Zt+1;Yt)},(4.11)447

Yt+1 = Yt − τµ(Lt+1 +Mt+1 −Zt+1),(4.12)448449

where τ ∈ (0, (1 +
√

5)/2) is the step-length. Next, we turn to compute the concrete forms of450

solutions in each subproblem.451

The optimal solution with respect to Z is given explicitly by452

Z = PΩ(X ) +
1

µ+ η
PΩ(µ(L+M) + ηZk − Y).453

Before giving the solution of the problem (4.9), we need to present the following lemma.454

Lemma 4.5. For any Y ∈ Rn1×n2×n3, τ > 0 and ρ > 0. Let Y = U ∗Σ ∗ VH be the t-SVD.455

Then the optimal solution of the following problem456

min
X∈Rn1×n2×n3

{
τ‖X‖TNN +

1

2
‖X − Y‖2F | ‖X‖ ≤ ρ

}
457

is given by X ∗ = U ∗ Dτ,ρ ∗ VH , where Dτ,ρ = ifft(min{max{Σ̂− τ, 0}, ρ}, [ ], 3).458

Lemma 4.5 can be proved easily. For brevity, we omit it here. It follows from Lemma 4.5459

that the optimal solution with respect to L in (4.9) can be given by460

Lt+1 = arg min
‖L‖≤bl

{
‖L‖TNN − 〈∇H1(Lk)− Yt1,L〉+

µ

2
‖L+Mt −Zt+

1
2 ‖2F +

η

2
‖L − Lk‖2F

}
= arg min
‖L‖≤bl

{
‖L‖TNN +

η + µ

2
‖L −A‖2F

}
= U t ∗ Dtτ,ρ ∗ (Vt)H ,

(4.13)

461

462

where A = (−µMt + µZt+
1
2 + ηLk + Yt1 +∇H1(Lk))/(η + µ) = U t ∗ Σt ∗ (Vt)H and Dtτ,ρ =463

ifft(min{max{Σ̂t − 1/(η + µ), 0}, bl}, [ ], 3).464

On the other hand, the optimal solution with respect to (4.11) is given by465

Mt+1 = arg min
‖M‖∞≤bm

{
λ(‖M‖1 − 〈∇H2(Mk),M〉)− 〈Yt1,M〉+

η

2
‖M−Mk‖2F

+
µ

2
‖M+ Lt+1 −Zt+1‖2F

}
= arg min
‖M‖∞≤bm

{
‖M‖1 +

η + µ

2λ
‖M− G‖2F

}
,

466

467
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16 X. ZHAO, M. BAI, D. SUN, AND L. ZHENG

where G = (λ∇H2(Mk) + µZt+1 − µLt+1 + ηMk + Yt1)/(η + µ). Simple calculations show468

that the closed form solution with respect to Mt+1 can be given by469

Mt+1
ijk =

{
sign(Gijk) max{|Gijk| − λ/(µ+ η), 0}, |Gijk| ≤ bm + λ/(µ+ η),

sign(Gijk)bm, |Gijk| > bm + λ/(µ+ η).
(4.14)470

Now we are ready to state the sGS-ADMM for solving (4.7) in Algorithm 4.2.471

Algorithm 4.2 A symmetric Gauss-Seidel ADMM for solving (4.7).

1: Input: τ , Ω, λ, γ, µ, η, PΩ(X ), L0, M0, Y0, Mk, Lk and Zk. Set t = 0.

2: Compute Zt+
1
2 by Zt+

1
2 = PΩ(X ) + 1

µ+ηPΩ(µ(Lt +Mt) + ηZk − Yt).
3: Compute Lt+1 via (4.13).
4: Compute Zt+1 by Zt+1 = PΩ(X ) + 1

µ+ηPΩ(µ(Lt+1 +Mt) + ηZk − Yt).
5: Compute Mt+1 via (4.14).
6: Compute Yt+1 by (4.12).
7: If a termination criterion is not met, set t := t+ 1 and return to 2.

Note that the objective function of (4.7) is nonsmooth with respect to L,M and quadratic472

with respect to Z. By [25, Theorem 3], we can show the convergence of Algorithm 4.2, which473

is summarized in the following theorem.474

Theorem 4.6. Let {(Lt,Mt,Zt,Yt)}t∈N be generated by Algorithm 4.2. Choose µ > 0 and475

γ ∈ (0, (
√

5 + 1)/2), then the sequence {(Lt,Mt,Zt)}t∈N converges to an optimal solution of476

the problem (4.7) and {Yt}t∈N converges to an optimal solution of the dual problem of (4.7).477

Proof. Notice that the problem (4.7) has a unique minimizer and the following constraint478

qualification is satisfied:479

There exists (L∗,M∗,Z∗) ∈ ri(D2 ×D1 × Γ2) ∩ C,480

where C := {(L,M,Z)|L+M = Z}. By [25, Theorem 3], we can easily obtain the conclusion481

of this theorem.482

Remark 4.7. Actually, Algorithm 4.2 shows the process of solving the CRTC model if η,483

Mk, Lk and Zk are all equal to zero. For simplicity, we don’t give the specific algorithm484

frame here.485

Next we give the computational cost of algorithms. At each iteration of solving the sub-486

problem of PMM algorithm, we need to calculate (4.8)-(4.12). The main cost of (4.9) is tensor487

SVD. The number of the floating point operations of fft is O(n3 log2(n3)), and we need to488

calculate n1n2 times, so the total cost of tensor fft is O(n3 log2(n3)n1n2). Meanwhile the cost489

of SVDs for n3 n1-by-n2 matrix is O(ñm̃2n3), where ñ = min{n1, n2} and m̃ = max{n1, n2}.490

Therefore, the total cost of tensor SVD is O(n3 log2(n3)n1n2 + ñm̃2n3) operations. The491

complexities of computing Zt+1, Mt+1 and Yt+1 are all O(n1n2n3) operations for the inde-492

pendency that operation on each entry of the tensor. Then the total cost of the subproblem493

of PMM algorithm at each iteration is O(n3 log2(n3)n1n2 + ñm̃2n3). During the algorithm494

execution, the largest data we storage is the n1 × n2 × n3 tensor, so the memory complexity495

is O(n1n2n3).496
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5. Error Bounds. In this section, we establish the error bound between the optimal solu-497

tion (Lc,Mc) of (4.3) and the ground-truth (L?,M?) in Frobenius norm. Meanwhile, we give498

the analysis that the error bound of BCNRTC can be reduced compared with that of CRTC499

as long as the given initial estimator is not far from the ground truth.500

We assume that ‖M?‖0 = s̃ and the tubal multi-rank of L? is r = (r1, r2, . . . , rn3). Denote501

∆̃L := Lc − L? and ∆̃M :=Mc −M?. Firstly, we provide the connection among ‖∆̃L‖TNN,502

‖∆̃M‖1 and the Frobenius norms of ∆̃L and ∆̃M. Similar results have been studied in [55],503

which established the relationship between the TNN and the Frobenius norm of the tensor504

by using the tubal rank. We show a structure constructed by the average rank, which may505

provide a more clear result of the error bound.506

In order to display the structure, we study the subgradient of the TNN at first. Considering507

the L? with the structure L? = Diag(L̂?
(1)
, L̂?

(2)
, . . . , L̂?

(n3)
), where L̂?

(i)
∈ Cn1×n2 with the508

SVD L̂?
(i)

= U (i)S(i)(V (i))H . Notice that rank(L̂?
(i)

) = ri, by dividing the first ri columns509

and the last n1 − ri columns, we have the U (i) = [U
(i)
1 ,U

(i)
2 ], where U

(i)
1 ∈ Cn1×ri and510

U
(i)
2 ∈ Cn1×(n1−ri). Similarly, V (i) = [V

(i)
1 ,V

(i)
2 ], where V

(i)
1 ∈ Cn2×ri and V

(i)
2 ∈ Cn2×(n2−ri).511

From the subgradient of nuclear norm of the matrix, we have512 {
U

(i)
1 (V

(i)
1 )H +U

(i)
2 W

(i)(V
(i)
2 )H |W (i) ∈ C(n1−ri)×(n2−ri), ‖W (i)‖ ≤ 1

}
= ∂‖L̂?

(i)
‖∗.513

We denote that Û1
(i)

= [U
(i)
1 , 0] ∈ Cn1×rmax , V̂ 1

(i)
= [V

(i)
1 , 0] ∈ Cn2×rmax , Û2

(i)
= [0,U

(i)
2 ] ∈514

Cn1×(n1−rmin), V̂ 2
(i)

= [0,V
(i)
2 ] ∈ Cn2×(n2−rmin) and515

Ŵ
(i)

=

[
0 0

0 W (i)

]
∈ C(n1−rmin)×(n2−rmin),516

517

where rmax = max{r1, r2, . . . , rn3}, rmin = min{r1, r2, . . . , rn3} and ‖W (i)‖ ≤ 1. Then we518

have Û1
(i)

(V̂ 1
(i)

)H + Û2
(i)
Ŵ

(i)
(V̂ 2

(i)
)H = U

(i)
1 (V

(i)
1 )H +U

(i)
2 W

(i)(V
(i)
2 )H ∈ ∂‖L̂?

(i)
‖∗.519

Since Û1
(i)
∈ Cn1×rmax have the same size for i = 1, 2, . . . , n3, we can stack the matrices520

to form a tensor Û1 ∈ Cn1×rmax×n3 . Let Û2, V̂1, V̂2 and Ŵ are constructed likewise, we can521

see the following proposition holds.522

Proposition 5.1. Let Û1, Û2, V̂1, V̂2 and Ŵ are defined as above, and U1 = ifft(Û1, [ ], 3),523

U2 = ifft(Û2, [ ], 3), V1 = ifft(V̂1, [ ], 3), V2 = ifft(V̂2, [ ], 3),W = ifft(Ŵ, [ ], 3). Then we have524

(5.1)

S(L?) :=
{
U1 ∗ VH1 + U2 ∗W ∗ VH2 |W ∈ C(n1−rmin)×(n2−rmin)×n3 , ‖W‖ ≤ 1

}
= ∂‖L?‖TNN.525

The proof of the Proposition 5.1 is given in Appendix D.1. Obviously, U1 ∈ Rn1×rmax×n3526

and V1 ∈ Rn2×rmax×n3 have the same tubal multi-rank with L?.527

Remark 5.2. A similar work is given in [29]:

G(L?) :=
{
Us ∗ VHs +R | UHs ∗ R = 0,R ∗ Vs = 0, ‖R‖ ≤ 1

}
= ∂‖L?‖TNN,

where L? = Us ∗ Ss ∗ VHs is the skinny t-SVD of L?. However, its proof is not given, and it is528

not shown how to construct Us and Vs. If Us and Vs are constructed as same as those in [55]529
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18 X. ZHAO, M. BAI, D. SUN, AND L. ZHENG

similarly to the skinny SVD of matrix, then S(L?) ⊇ G(L?), and the “equality” relationship530

holds when ri = rmax for i = 1, 2, ..., n3. If Us and Vs are constructed as same as ours, i.e.,531

Us = U1 and Vs = V1, then S(L?) = G(L?).532

Denote the set T by533

T := {U1 ∗ YH +W ∗ VH1 | Y ∈ Rn2×rmax×n3 ,W ∈ Rn1×rmax×n3},534

and its orthogonal complement by T ⊥. The set T is the tangent space with respect to the535

rank-constraint tensors {X ∈ Rn1×n2×n3 |ranka(X ) ≤ rmax} at L?.536

Proposition 5.3. For any tensor X ∈ Rn1×n2×n3, the orthogonal projection of X onto T537

and T ⊥ are given by538

PT (X ) = U1 ∗ UH1 ∗ X + X ∗ V1 ∗ VH1 − U1 ∗ UH1 ∗ X ∗ V1 ∗ VH1 ,539

540
PT ⊥(X ) = U2 ∗ UH2 ∗ X ∗ V2 ∗ VH2 .541

The proof of the Proposition 5.3 is given in Appendix D.2. For simplicity of subsequently542

analysis, we denote543

(5.2) dL :=
1√
r
‖U1 ∗ VH1 −∇H1(Lk)‖F , dM :=

1√
s̃
‖sign(M?)−∇H2(Mk)‖F ,544

r :=
∑n3
i=1 ri
n3

, |Ω| := m, and ∆̃ := ∆̃L + ∆̃M.545

Denote Θijk as a unit tensor with the (i, j, k)-th nonzero entry equaling 1. Let the set of546

the standard orthogonal basis of Rn1×n2×n3 be denoted by Θ := {Θijk|1 ≤ i ≤ n1, 1 ≤ j ≤547

n2, 1 ≤ k ≤ n3}. For each unit tensor Θijk , there exists a unique index ωl = j + (i− 1)n2 +548

(k − 1)n1n2 such that Θωl = Θijk, ωl ∈ {1, 2, . . . , n1n2n3}, which is a bijective mapping from549

{1, 2, . . . , n1}×{1, 2, . . . , n2}×{1, 2, . . . , n3} to {1, 2, . . . , n1n2n3}. Then Ω be the multiset of550

all sampled i.i.d. indices ω1, . . . , ωm mapping to the subset of {1, 2, . . . , n1} × {1, 2, . . . , n2} ×551

{1, 2, . . . , n3}.552

Lemma 5.4. For any η > 0 and λ > 0, we have553

(5.3) ‖∆̃L‖TNN ≤ p1‖∆̃L‖F + p2‖∆̃M‖F , ‖∆̃M‖1 ≤ q1‖∆̃L‖F + q2‖∆̃M‖F ,554

where p1 :=
√

2r + dL
√
r + η‖L? − Lk‖F , p2 := λdM

√
s̃ + η‖M? −Mk‖F , q1 := (dL

√
r +555

η‖L? − Lk‖F )/λ and q2 :=
√
s̃+ dM

√
s̃+ η‖M? −Mk‖F /λ.556

The proof of the Lemma 5.4 is given in Appendix D.3. Let pijk denote the probability557

to observe the (i, j, k)-th entry of X , we suppose that each element is sampled with positive558

probability.559

Assumption 5.1. There exists a positive constant µ1 ≥ 1 such that pijk ≥ (µ1n1n2n3)−1.560

Note that Assumption 5.1 implies that561

(5.4) E[〈Θ,X〉2] =

n1∑
i=1

n2∑
j=1

n3∑
k=1

pijkX 2
ijk ≥ (µ1n1n2n3)−1‖X‖2F .562

This manuscript is for review purposes only.



ROBUST TENSOR COMPLETION 19

Define the operator DΩ : Rn1×n2×n3 → Rm by DΩ(X ) := (〈Θω1 ,X〉, . . . , 〈Θωm ,X〉)T . The563

adjoint D∗Ω : Rm → Rn1×n2×n3 by D∗Ω(DΩ(X )) =
∑m

l=1〈Θωl ,X〉Θωl . Let ε = (ε1, . . . , εm)T be564

independent and identically distributed (i.i.d.) Rademacher sequence, i.e., i.i.d. sequence of565

Bernoulli random variables taking the values 1 and -1 with probability 1
2 . Define566

(5.5) βL := E
∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥ , βM := E
∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥
∞
.567

The following Lemma shows that the sampling operator PΩ satisfies some property spec-568

ified in a certain set with high probability. Similar results can also be found in [21].569

Lemma 5.5. Suppose that Assumption 5.1 holds. Given any positive numbers p1, p2, q1,570

q2 and t, define571

K(p, q,t) := {∆ = ∆L + ∆M| ‖∆L‖TNN ≤ p1‖∆L‖F + p2‖∆M‖F ,
‖∆M‖1 ≤ q1‖∆L‖F + q2‖∆M‖F , ‖∆‖∞ = 1, ‖∆L‖2F + ‖∆M‖2F ≥ tµ1n1n2n3},

(5.6)572

where p := (p1, p2) and q := (q1, q2). Denote βS := (β2
Lp

2
1 + β2

Lp
2
2 + β2

Mq
2
1 + β2

Mq
2
2)

1
2 . Then, it573

holds that for all ∆ ∈ K(p, q, t),574

(5.7)
1

m
‖PΩ(∆)‖2F ≥ E[〈Θ,∆〉2]−

‖∆L‖2F + ‖∆M‖2F
2µ1n1n2n3

− 256µ1n1n2n3β
2
S575

with probability at least 1 − exp[−mt2 log(2)/64]
1−exp[−mt2 log(2)/64]

. In particular, the inequality (5.7) holds with576

probability at least 1− 1
n1+n2+n3

if t = 8
√

log(n1+n2+n3+1)
m log(2) .577

The proof of the Lemma 5.5 is given in Appendix D.4.578

Proposition 5.6. Suppose that Assumption 5.1 holds. Then, there exists C2 > 0, such that,579

it holds that either580

‖∆̃L‖2F + ‖∆̃M‖2F
n1n2n3

≤ 32(bm + bl)
2µ1

√
log(n1 + n2 + n3 + 1)

m log(2)
581

or582

‖∆̃L‖2F + ‖∆̃M‖2F
n1n2n3

≤ 64b2l
n1n2n3

[
(dL
√
r + η‖L? − Lk‖F )2

λ2
+

(√
s̃+ dM

√
s̃+

η‖M? −Mk‖F
λ

)2
]

+ C2

[
β2
L(
√

2r + dL
√
r + η‖L? − Lk‖F )2

+ β2
L(λdM

√
s̃+ η‖M? −Mk‖F )2 +

β2
M(dL

√
r + η‖L? − Lk‖F )2

λ2

+ β2
M

(√
s̃+ dM

√
s̃+

η‖M? −Mk‖F
λ

)2
]

583

with probability at least 1− 1
n1+n2+n3

.584
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Proof. Let b̃ := ‖∆̃‖∞. Since (Lc,Mc) is the optimal and (L?,M?) is feasible to the585

problem (4.3), we have ‖∆̃M‖∞ ≤ 2bm and ‖∆̃L‖∞ ≤ ‖Lc‖ + ‖L?‖ ≤ 2bl. Hence, b̃ ≤586

‖∆̃L‖∞ + ‖∆̃M‖∞ ≤ 2(bm + bl). We consider the following two cases:587

Case 1: Suppose that ‖∆̃L‖2F + ‖∆̃M‖2F ≤ 8b̃2µ1n1n2n3

√
log(n1+n2+n3+1)

m log(2) . Then we im-588

mediately obtain that589

‖∆̃L‖2F + ‖∆̃M‖2F
n1n2n3

≤ 32(bm + bl)
2µ1

√
log(n1 + n2 + n3 + 1)

m log(2)
.590

Case 2: Suppose that ‖∆̃L‖2F + ‖∆̃M‖2F ≥ 8b̃2µ1n1n2n3

√
log(n1+n2+n3+1)

m log(2) . It follows from591

the definition of b̃ that ∆̃/b̃ ∈ K(p, q, t), where t = 8
√

log(n1+n2+n3+1)
m log(2) , and p = (p1, p2) and592

q = (q1, q2) are given in Lemma 5.4. Due to (5.4) and Lemma 5.5, we obtain that with593

probability at least 1− 1
n1+n2+n3

,594

(5.8)
‖∆̃‖2F
n1n2n3

≤ µ1

m
‖PΩ(∆̃)‖2F +

‖∆̃L‖2F + ‖∆̃M‖2F
2n1n2n3

+ 256µ2
1n1n2n3β

2
S b̃

2.595

Since (Lc,Mc) is the optimal solution of (4.3) and (L?,M?) is the true tensor, we obtain596

PΩ(∆̃) = 0. In addition, due to ‖∆̃L‖∞ ≤ 2bl, we then derive from (5.3) that597

‖∆̃‖2F ≥‖∆̃L‖2F + ‖∆̃M‖2F − 2‖∆̃L‖∞‖∆̃M‖1
≥‖∆̃L‖2F + ‖∆̃M‖2F − 4bl(q1‖∆̃L‖F + q2‖∆̃M‖F )

≥‖∆̃L‖2F + ‖∆̃M‖2F − 16b2l (q
2
1 + q2

2)−
‖∆̃L‖2F + ‖∆̃M‖2F

4

=
3

4
(‖∆̃L‖2F + ‖∆̃M‖2F )− 16b2l (q

2
1 + q2

2).

(5.9)598

By combining (5.8) with (5.9), we obtain that599

(5.10)
‖∆̃L‖2F + ‖∆̃M‖2F

n1n2n3
≤

64b2l (q
2
1 + q2

2)

n1n2n3
+ 1024µ2

1n1n2n3β
2
S b̃

2.600

Recall that βS := (β2
Lp

2
1 +β2

Lp
2
2 +β2

Mq
2
1 +β2

Mq
2
2)

1
2 . By plugging this together with Lemma 5.4601

into (5.10) and taking C2 := 4096µ2
1n1n2n3(bm + bl)

2, we complete the proof.602

For the third-order tensor, we need to avoid the case that each fiber is sampled with very high603

probability. Let R:jk := Σn1
i=1pijk, Ci:k := Σn2

j=1pijk, Tij: := Σn3
k=1pijk, the following assumption604

is used to avoid this situation.605

Assumption 5.2. There exists a positive constant µ2 ≥ 1 such that max{i,j,k}{R:jk, Ci:k,606

Tij:} ≤ µ2
min{n1,n2,n3} .607

We now estimate an upper bound of E‖ 1
mD∗Ω(ε)‖. First, we give a brief introduction about608

Orlicz ψs-norm. Given any s ≥ 1, the Orlicz ψs-norm of a random variable z is defined by609

‖z‖ψs := inf{t > 0|E exp(|z|s/ts) ≤ 2}. The proofs of the followings two lemmas are given in610

Appendix D.5 and Appendix D.6, respectively.611
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Lemma 5.7. Under Assumption 5.2, for m ≥ ñ log((n1 + n2)n3)(log(ñ))2/µ2, there exists
a positive constant C1 such that

βL = E
∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥ ≤ C1

√
3eµ2 log((n1 + n2)n3)

ñm
,

where ñ := min{n1, n2}.612

Lemma 5.8. There exist C > 0 and M > 0 that depend on the Orlicz ψ1-norm of εl such
that

βM = E
∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥
∞
≤ M(log(2m) + 1)

Cm
.

We first define two fundamental terms613 {
Υ1 := (dL

√
r+η‖L?−Lk‖F

λ )2 + (
√
s̃+ dM

√
s̃+ η‖M?−Mk‖F

λ )2,

Υ2 := (
√

2r + dL
√
r + η‖L? − Lk‖F )2 + (dM

√
s̃λ+ η‖M? −Mk‖F )2.

614

By combining Proposition 5.6 with Lemma 5.7 and Lemma 5.8, we can easily establish the615

following error bound results.616

Theorem 5.9. Suppose that Assumption 5.1 and Assumption 5.2 hold. Then, for m ≥617

ñ log((n1 + n2)n3)(log(ñ))2/µ2, there exist constants C > 0, C1 > 0 and C2 > 0 such that618

‖∆̃L‖2F + ‖∆̃M‖2F
n1n2n3

≤
64b2l
n1n2n3

Υ1 + C2

[
C2

13eµ2 log((n1 + n2)n3)

ñm
Υ2 +

(
M(log(2m) + 1)

Cm

)2

Υ1

](5.11)619

with probability at least 1− 1
n1+n2+n3

.620

When H1 ≡ 0, H2 ≡ 0 and η ≡ 0, the error bound in Theorem 5.9 is just the error bound621

of the CRTC problem (3.17). From Theorem 5.9, we can see that the second term in the622

maximum of (5.11) dominates the first term. Thus, the error bound is dominated by the623

second term. Now, we denote the second term as Lm. In fact, when H1 ≡ 0 and H2 ≡ 0, we624

obtain that dL = 1 and dM = 1 according to (5.2). In this case, we denote the second term625

as L
′
m. Note that Lm < L

′
m when dL < 1 and dM < 1.626

Let Ûk
1

(i)

and V̂ k
1

(i)

denote the first ri columns of Ûk
(i)

and V̂ k
(i)

. Next, we show that627

the error bound of (4.3) is lower than that of (3.17), i.e., dL < 1 and dM < 1.628

Theorem 5.10. Let ε∇H1(L̂k
(i)

) := 1√
ri

∥∥∥∥ ̂∇H1(Lk)
(i)
− Ûk

1

(i)

(V̂ k
1

(i)

)H
∥∥∥∥
F

for i = 1, · · · , n3,629

and assume that630

(5.12)
‖L̂k

(i)

− L̂?
(i)
‖F

σri(L̂
?

(i)
)

< min

{
1√
2

(
1− exp

(
−
√

2ri

(
1− ε∇H1(L̂k

(i)

)

)))
,
1

2

}
,631

then dL < 1.632
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Proof. Let L̂?
(i)

= U (i)S(i)(V (i))H with U (i) = [U
(i)
1 ,U

(i)
2 ] and V i = [V

(i)
1 ,V

(i)
2 ], U

(i)
1 ∈633

Cn1×ri , V
(i)
1 ∈ Cn2×ri , for i = 1, · · · , n3. Note that634

‖Ûk
1

(i)

(V̂ k
1

(i)

)H −U (i)
1 (V

(i)
1 )H‖F ≤ −

1√
2

log

(
1−
√

2
‖L̂k

(i)

− L̂?
(i)
‖F

σri(L̂
?

(i)
)

)
<
√
ri(1− ε∇H1(L̂k

(i)

)),635

where the first inequality follows from the proof of [31, Theorem 3] and the second inequality636

is due to the inequality (5.12). So we obtain637

‖ ̂∇H1(Lk)
(i)

−U (i)
1 (V

(i)
1 )H‖F ≤‖ ̂∇H1(Lk)

(i)

− Ûk
1

(i)

(V̂ k
1

(i)

)H‖F + ‖Ûk
1

(i)

(V̂ k
1

(i)

)H −U (i)
1 (V

(i)
1 )H‖F

<
√
riε∇H1(L̂k

(i)

) +
√
ri(1− ε∇H1(L̂k

(i)

)) =
√
ri.

638

On the other hand, it follows from Û1
(i)

= [U
(i)
1 , 0] ∈ Cn1×rmax and V̂ 1

(i)
= [V

(i)
1 , 0] ∈639

Cn2×rmax that640

d2
L =

1

r
‖U1 ∗ VH1 −∇H1(Lk)‖2F =

1

rn3

n3∑
i=1

‖ ̂∇H1(Lk)
(i)
− Û1

(i)
(V̂ 1

(i)
)H‖2F <

1

rn3

n3∑
i=1

ri = 1.641

This completes the proof.642

Theorem 5.10 guarantees that dL < 1 if the estimator Lk does not deviate too much from643

L?.644

Remark 5.11. Theorem 5.10 removes the rank constraint condition r1 <
6

4n3−7(r2 + · · ·+645

rn3) in [54, Lemma 4.2].646

Theorem 5.12. Let M? := Diag(vec(M?)), Mk := Diag(vec(Mk)), and ε∇H2(Mk) :=647
1√
s̃
‖∇H2(Mk)− sign(Mk)‖F . Assume that648

‖Mk −M?‖F
σs̃(M

?)
< min

{
1√
2

(1− exp(−
√

2s̃(1− ε∇H2(Mk)))),
1

2

}
,649

where σs̃(M
?) := min{|M?

ijk||M?
ijk 6= 0}. Then, we have dM < 1.650

Proof. We can obtain the following decomposition651

M? =Diag(vec(sign(M?)))Diag(vec(|M?|))Diag(vec(sign2(M?)))

=Diag(vec(sign(M?)))P 1P 2...P s̃Diag(π(vec(|M?|)))
PH
s̃ P

H
s̃−1...P

H
1 Diag(vec(sign2(M?))),

652

where P 1,P 2, . . . ,P s̃ are elementary transformation matrices. Let M? = U?Σ?(V ?)H be653

the SVD, where U? = [U?
1 U

?
2], V ? = [V ?

1 V
?
2], U?

1 ∈ Rn1n2n3×s̃ and V ?
1 ∈ Rn1n2n3×s̃. This654

implies that655

U?
1(V ?

1)H =[U?
1 0]

[
(V ?

1)H

0

]
= U?(V ?)H

=Diag(vec(sign(M?)))P 1P 2...P s̃P
H
s̃ P

H
s̃−1...P

H
1 Diag(vec(sign2(M?)))

=Diag(vec(sign(M?))).

(5.13)656
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Notice that σs̃(M
?) = min{|M?

ijk||M?
ijk 6= 0}, we have657

dM =
1√
s̃
‖∇H2(Mk)− sign(M?)‖F =

1√
s̃
‖Diag(vec(∇H2(Mk)))−Diag(vec(sign(M?)))‖F

=
1√
s̃
‖Diag(vec(∇H2(Mk)))−U?

1(V ?
1)H‖F

≤− 1√
2s̃

log

(
1−
√

2
‖Mk −M?‖F

σs̃(M
?)

)
+ ε∇H2(Mk) < 1,

658

where the third equation follows from (5.13), and the first inequality follows from [31, Theorem659

3].660

The above theorem demonstrates that dM < 1 if Mk does not deviate too much from661

M?.662

Now, we analyze the constructions of ∇H1 and ∇H2. In order to get a small error bound,663

according to Theorem 5.9, we desire dL and dM as small as possible, i.e., ∇H1(Lk) is close to664

U1 ∗ VH1 and ∇H2(Mk) is close to sign(M?). Firstly, let ∇H1(Lk) = Uk ∗ Rk ∗ (Vk)H , where665

Uk = [Uk1 Uk2 ] and Vk = [Vk1 Vk2 ] with Uk1 ∈ Rn1×rmax×n3 and Vk1 ∈ Rn2×rmax×n3 . If Lk is close666

to L?, we desire ∇H1(Lk) is close to Uk1 ∗ (Vk1 )H . Notice from (3.13) that667

(5.14) h
′
(x) :=

{ x
γ , |x| ≤ γ,

sign(x), |x| > γ.
668

It is observed from (5.14) that the function h
′

is S-shaped with two inflection points at ±γ669

and the parameter γ mainly controls the shape of h
′
, the steepness of h

′
increase when γ670

decrease. So, there exist some γ ∈ (0, bl] such that the following property holds:671

(5.15) (∇g(σ(L̂k
(i)

)))j = h
′
(σj(L̂

k
(i)

)) ≈
{

1, 1 ≤ j ≤ ri,
0, otherwise,

∀i = 1, . . . , n3.672

Similarly, the SVD ofMk is given by ŨΣ̃(Ṽ )H . Let Ũ1 and Ṽ 1 denote the first s̃ columns673

of Ũ and Ṽ . If Mk is close to M?, we desire Diag(vec(∇H2(Mk))) is close to Ũ1Ṽ
H

1 . So,674

there also exist some γ ∈ (0, bm] such that the following property holds:675

(5.16) h
′
(Mk

jj) ≈


1, Mk

jj > 0,

−1, Mk
jj < 0,

0, otherwise.

676

Remark 5.13. Notice that if ∇H1 and ∇H2 are obtained from the derivative of (3.15),677

i.e.,678

(5.17) h
′
(x) :=


0, |x| ≤ γ1,

x−γ1sign(x)
γ2−γ1 , γ1 < |x| ≤ γ2,

sign(x), |x| > γ2,

679

then, the properties (5.15) and (5.16) hold. And the results can also be established if ∇H1680

and ∇H2 are chosen as the correction function in [31].681

Remark 5.14. By numerical experiments, we verify that dL < 1 and dM < 1 when h is682

chosen as the one in (3.13). The relevant results can be found in Table 1.683
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6. Numerical Experiments. In this section, we present numerical experiments to show684

the effectiveness of our BCNRTC method in recovering color images and multispectral images,685

and compare it with the Robust Tensor Ring Completion (RTRC) [17], the Robust Tensor686

Completion (RTC`1) [18] and the Nonconvex Robust Tensor Completion (NCRTC) [58]. The687

RTC`1 model is a convex model and the NCRTC model is nonconvex, which gives the non-688

convex approximation of the sparse term compared to the RTC`1. The superior performance689

of NCRTC compared to the RTC`1 in terms of recovery quality has been demonstrated in690

[58] via extensive numerical results. To show the effectiveness of the BCNRTC more clearly,691

we also present results of RTC`1. For fair comparisons, the parameters in each method are692

tuned to give optimal performance. All experiments are performed on an Intel i7-2600 CPU693

desktop computer with 8 GB of RAM and MATLAB R2020a.694

We define the sample ratio (SR) as SR:= |Ω|
n1n2n3

for an n1 × n2 × n3 tensor, where Ω is695

generated uniformly at random and |Ω| represents the cardinality of Ω. Meanwhile, we use α696

to represent the impulse noise level. For each tensor, we randomly add the salt-and-pepper697

impulse noise with ratio α, and the observed tensor PΩ(X ) is generated by the given SR.698

To evaluate the performance of different methods, the peak signal-to-noise ratio (PSNR)699

is used to measure the quality of the recovered tensors, which is defined as follows:700

PSNR(L) := 10 log10

n1n2n3(maxi,j,k L? −mini,j,k L?)2

‖L? − L‖2F
,701

where L and L? are the recovered tensor and the ground-truth tensor, respectively. The702

relative error (RE) between the recovered and the true tensor is defined by RE := ‖L−L?‖F
‖L?‖F .703

6.1. Stopping Criteria.704

6.1.1. The stopping criterion for the PMM algorithm. For the nonconvex BCNRTC705

model (3.11), we adopt the relative KKT residual706

(6.1) ηkkt := max{ηL, ηM, ηP } ≤ 3× 10−3
707

to measure the accuracy of an approximate optimal solution obtained by the PMM algorithm,708

where709

ηP :=
‖L+M−Z‖F

1 + ‖Z‖F + ‖L‖F + ‖M‖F
, ηL :=

‖L − Prox‖·‖TNN+δD2
(·)(Y + L+∇H1(L))‖F

1 + ‖Y‖F + ‖L‖F + ‖∇H1(L)‖F
,

ηM :=
‖M− Proxλ‖·‖1+δD1

(·)(Y +M+ λ∇H2(M))‖F
1 + ‖Y‖F + ‖M‖F + ‖λ∇H2(M)‖F

(6.2)

710

with711

Proxλf (x) := arg min
w∈Rp

f(w) +
1

2λ
‖w − x‖2F712

denoting the proximal mapping of f with parameter λ [35].713

This manuscript is for review purposes only.



ROBUST TENSOR COMPLETION 25

6.1.2. The stopping criterion for the sGS-ADMM algorithm. In order to evaluate the714

performance of sGS-ADMM for solving convex subproblem (4.7), we use the primal infeasi-715

bility ηP and relative duality gap defined by716

ηgap :=
|pobj− dobj|

1 + |pobj|+ |dobj|
,717

where718

pobj :=‖L‖TNN − 〈∇H1(Lk),L〉+ λ(‖M‖1 − 〈∇H2(Mk),M〉) +
η

2
‖M−Mk‖2F

+
η

2
‖L − Lk‖2F +

η

2
‖Z − Zk‖2F ,

719

and720

dobj :=λ min
‖M‖∞≤bm

[
‖M‖1 +

η

2λ

∥∥∥∥M− (Mk +
λ∇H2(Mk) + Y

η

)∥∥∥∥2

F

]
− η

2

∥∥∥∥Lk +
Y +∇H1(Lk)

η

∥∥∥∥2

F

+ min
‖L‖≤bl

[
‖L‖TNN +

η

2

∥∥∥∥L − (Lk +
Y +∇H1(Lk)

η

)∥∥∥∥2

F

]
− η

2

∥∥∥∥Mk +
λ∇H2(Mk) + Y

η

∥∥∥∥2

F

+ min
PΩ(X )=PΩ(Z)

[
η

2

∥∥∥∥Z − (Zk − Y
η

)∥∥∥∥2

F

]
+ 〈Y,Zk〉+

η

2
‖Lk‖2F +

η

2
‖Mk‖2F −

1

2η
‖Y‖2F

721

are the primal and dual objective function values, respectively. For given tolerance Tols,722

we will terminate the sGS-ADMM when max{ηgap, ηP } ≤ Tols or the number of iterations723

reaches the maximum of 200. We initialize Tol0s to be 3× 10−2 and decrease it by a ratio, i.e.,724

Tolk+1
s =Tolks/1.1.725

6.2. The Setting of Parameters. In order to improve the convergence speed of Algo-726

rithm 4.2, based on the KKT optimality conditions of problem (4.7), we adopt the following727

relative residuals of L andM to update the penalty parameter µ in the augmented Lagrangian728

function:729

ηD1 =

∥∥∥L − Prox 1
η

(‖·‖TNN+δD2
(·))

(
Lk + Y+∇H1(Lk)

η

)∥∥∥
F

1 + 1
η‖Y‖F + ‖Lk‖F + 1

η‖∇H1(Lk)‖F
,

ηD2 =

∥∥∥M− Prox 1
η

(λ‖·‖1+δD1
(·))

(
Mk + Y+λ∇H2(Mk)

η

)∥∥∥
F

1 + 1
η‖Y‖F + ‖Mk‖F + λ

η ‖∇H2(Mk)‖F
,

730

which is a similar strategy as [23]. Let ηD := max{ηD1 , ηD2}. Specifically, set µ0 = 0.1. At731

the t-th iteration, compute χt+1 =
ηt+1
P

ηt+1
D

and then set732

µt+1 =


ξµt, χt+1 > 7,
ξ−1µt, 1

χt+1 > 7,

µt, otherwise

with ξ =


1.1, max

{
χt+1, 1

χt+1

}
≤ 50,

2, max
{
χt+1, 1

χt+1

}
> 500,

1.5, otherwise.

733
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For the proximal term in the PMM algorithm, the parameter η0 is initialized as 10−4 and734

gradually decreased by some factors ς ∈ (0, 1), i.e., ηk+1 = ςηk, where ηk denotes the penalty735

parameter value at the k-th PMM iteration.736

In our following experiments, the function h in (3.13) which is related to the MCP func-737

tion is used in both H1 and H2 for simplicity. Meanwhile, we use γ1 and γ2 to denote the738

parameters in H1 and H2, respectively. The parameters λ, γ1 and γ2 are sensitive to the739

recovery performance. For different sample ratios and different noise levels, we use the grid740

search method to get the best values of λ, γ1 and γ2 in terms of PSNR values of recovered741

images. These best values show that the value of λ depends on the sample ratio, noise level,742

γ2 and the size of tensors. By using the data fitting method, we obtain the fitting function743

of λ, i.e., λ = c̃√
SRγ2αn3m̃

, where c̃ is chosen from {0.4, 0.5, 0.6, 0.7} to get the best recovery744

performance. The parameter γ1 is chosen as 10(1.2 − SR) and γ2 is chosen from {0.3, 0.4},745

respectively. For practical problems, we adjust the above parameters slightly to obtain the746

best possible results. The step length τ in (4.12) can vary in the range(0, (
√

5 + 1)/2) [25]. In747

our numerical test, we find that the larger the step length, the faster the convergence speed.748

Hence, we set τ = 1.618 in all the experiments. In experiments, all testing images are normal-749

ized to [0, 1]. Therefore, we set bm = 1 and ‖L‖∞ ≤ 1. According to the equivalence between750

norms, we have ‖L‖ ≤ √n1n2n3‖L‖∞. So we set bl =
√
n1n2n3 in our numerical experiments.751

As mentioned in Theorem 5.10 and Theorem 5.12, a lower recovery error bound can be752

obtained if the estimator (Lk,Mk) in the PMM algorithm does not deviate from the ground-753

truth (L?,M?) too much. Therefore, we use the solution obtained from solving the CRTC754

problem (3.17) as the initial estimator to warm-start our PMM algorithm. The sGS-ADMM755

is implemented to solve the CRTC method and will be terminated if (6.1) is satisfied or the756

number of iterations reaches the maximum of 200, where ∇H1(·) and ∇H2(·) in (6.2) vanish.757

We use the grid search method to get the best choice of λ, i.e., a value that gives nearly the758

highest possible PSNR value. And we use a similar strategy as [23] to update the penalty759

parameter µ.760

6.3. Error Bounds and the Performance of the PMM Algorithm. In this subsection, we761

test error bounds and the performance of the PMM algorithm in different outer iterations. The762

test image is Pepper, and the test results are given in Table 1 which reports dL, dM, relative763

error and PSNR values of the CRTC and the first three outer iterations. In all experiments in764

Table 1, the stopping criterion of the PMM algorithm is achieved in the third outer iteration.765

We can see from Table 1 that dL = 1 and dM = 1 in CRTC, and dL < 1 and dM < 1766

in each outer iteration of PMM algorithm, which verifies the results of Theorem 5.10 and767

Theorem 5.12. The PMM algorithm substantially reduces dL and dM in the first iteration.768

The first outer iteration improves the recovery quality at least 33% in terms of the relative769

error with respect to the CRTC model.770

Table 1 also shows that dL and dM continue to decrease as the number of outer iterations771

increases, which implies that the upper error bounds in (5.11) in Theorem 5.9 continue to772

decrease. The PMM algorithm significantly improves the recovery quality in terms of both773

the relative error and the PSNR values.774

This manuscript is for review purposes only.



ROBUST TENSOR COMPLETION 27

Table 1
The values of dL, dM and the performance of the PMM algorithm for Pepper image in different outer

iterations with different sample ratios and noise levels.

SR α CRTC 1 2 3

0.8

0.2

dL 1 0.9432 0.923 0.9131
dM 1 0.5317 0.5153 0.5104
RE 0.0681 0.0393 0.0294 0.0257

PSNR 29.27 34.04 36.56 37.72

0.3

dL 1 0.963 0.9379 0.9262
dM 1 0.5339 0.5195 0.5146
RE 0.094 0.0584 0.0447 0.039

PSNR 26.47 30.6 32.93 34.12

0.4

dL 1 0.9817 0.9559 0.9451
dM 1 0.5364 0.5241 0.5195
RE 0.1279 0.0866 0.0692 0.0611

PSNR 23.8 27.18 29.13 30.21

0.7

0.2

dL 1 0.952 0.935 0.926
dM 1 0.6143 0.6011 0.5968
RE 0.0773 0.0478 0.0377 0.0334

PSNR 28.17 32.34 34.4 35.46

0.3

dL 1 0.9672 0.9474 0.9386
dM 1 0.6262 0.6201 0.619
RE 0.1054 0.0668 0.0535 0.0491

PSNR 25.47 29.43 31.37 32.11

0.4

dL 1 0.9802 0.963 0.9552
dM 1 0.6253 0.6213 0.6209
RE 0.1415 0.0961 0.079 0.0727

PSNR 22.91 26.28 27.98 28.7

6.4. Random data. In this section, we present the results to analyze the success ratio on775

random data. We present the colormap of 3-order random tensors L with size 100× 100× 30776

and all entries Lijk ∈ [0, 1]. The tensor average ranks are 2, 5 and 8, respectively. The sample777

ratio SR increases from 0.3 to 0.8 with increment 0.1 and the noise level α increases from778

0.1 to 0.6 with increment 0.1. For each pair (SR, α), we simulate 100 test instances. We779

consider two kinds of success ratios. One is defined by the percentage of successful entries780

(|Lijk − L?ijk| < 10−2) from total entries. The another is defined by the relative error. If the781

relative error is smaller than 10−2, then the tensor recovery is regarded as successful and the782

success ratio is denoted by 1(= 100%). Figure 1 reports the fraction of successful recovery783

for each pair. The first row reports the success ratio defined by the percentage of successful784

entries from total entries, and the second row reports the success ratio defined by relative785

error. The success ratio in the second row is defined by 1 if the recovered tensor L satisfies786

‖L − L?‖F /‖L?‖F < 10−2, and defined by 0 for others. Figure 1 shows: (1) the recovery787

success ratio is higher when the average rank is smaller; (2) the tensor data is more difficult to788

recover when the sample rate is lower and the noise level is higher; (3) in some cases, the entire789

tensor is judged to be failed to recover, but there are still some entries that can be successfully790

recovered. Numerical results in Figure 1 also show that the rank and noise level of tensors791

greatly affect the recovery of tensors. For example, under the setting that the average rank is792

8 and the noise level is 0.6, it’s hard to recover the data with sample rates from 0.3 to 0.7.793
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(a) Average rank=2 (b) Average rank=5 (c) Average rank=8

(d) Average rank=2 (e) Average rank=5 (f) Average rank=8

Figure 1. The success ratio for varying sample ratio and noise level under different average ranks, where
the success ratio in the first row is defined by the percentage of successful entries from total entries, and the
success ratio in the second row is defined by relative error.

6.5. Experiments on Color Images. In this subsection, we test color images including794

Pepper (512 × 512 × 3), Lena (512 × 512 × 3) 1 and Flower (321 × 481 × 3)2. Although the795

color images are not low-rank exactly, most information on each frontal slice of the color796

images is dominated by a few top singular values. In our experiments, these testing images797

are normalized on [0, 1] and are all corrupted by removing arbitrary voxels and adding salt-798

and-pepper noise.799

Figure 2 and Figure 3 show the recovered results and corresponding zoomed regions of800

RTRC, RTC`1, NCRTC and BCNRTC. It can be observed that the BCNRTC performs better801

than others in terms of PSNR values and visual quality, where the BCNRTC preserves more802

details for Pepper image and many more sharp edges for Flower image than others.803

In Table 2, we report the PSNR values of RTRC, RTC`1, NCRTC and BCNRTC for804

three color images. We set SR = 0.6, 0.7 and 0.8 to illustrate the performance of methods805

and noise levels are considered as α ∈ {0.2, 0.3, 0.4, 0.5} simultaneously. It can be observed806

that the PSNR values obtained by our proposed BCNRTC model are much higher than those807

obtained by RTRC, RTC`1 and NCRTC, especially for low noise levels. The PSNR values of808

the restored image by the BCNRTC increase at least 3dB relative to those of the RTC`1 model.809

1http://sipi.usc.edu/database/
2https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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(a) Original (b) Observation (c) RTRC:17.07

(d) RTC`1: 22.53 (e) NCRTC: 24.31 (f) BCNRTC: 26.53

Figure 2. Recovered images (with PSNR(dB)) and zoomed regions of four different methods for the Flower
image, where SR= 0.8 and α = 0.4.

(a) Original (b) Observation (c) RTRC:22.95

(d) RTC`1: 25.16 (e) NCRTC: 29.74 (f) BCNRTC: 32.12

Figure 3. Recovered images (with PSNR(dB)) and zoomed regions of four different methods for the Pepper
image, where SR= 0.7 and α = 0.3.
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Table 2
PSNR(dB) values for restoring results of different methods for color images corrupted by sample

losing and salt-and-pepper noise. The boldface numbers are the best performance.

sample noise Pepper Lena Flower
ratios level RTRC RTC`1 NCRTC BCNRTC RTRC RTC`1 NCRTC BCNRTC RTRC RTC`1 NCRTC BCNRTC

0.8

0.2 27.98 29.08 34.99 37.72 28.12 29.5 34.36 36.31 25.92 26.97 29.85 32.54
0.3 24.15 26.09 31.24 34.12 24.78 26.98 31.48 33.84 23.68 24.64 26.85 29.48
0.4 17.07 23.56 27.39 30.21 17.41 24.96 28.44 30.6 19.62 22.5 24.25 26.37
0.5 11.66 21.25 23.87 26.86 11.79 23.07 25.26 27.33 14.9 20.36 21.72 23.31

0.7

0.2 27.01 27.85 32.82 35.46 27.25 28.43 32.58 35.02 25.17 26.02 28.55 30.77
0.3 22.95 25.12 29.74 32.11 23.73 26.17 30.16 31.98 22.84 23.84 25.84 28.03
0.4 16.11 22.71 25.98 28.7 16.44 24.3 27.29 29.29 18.88 21.75 23.37 25.33
0.5 11.48 20.51 22.94 25.1 11.67 22.51 24.62 26.48 14.55 19.61 20.76 22.11

0.6

0.2 25.86 26.56 30.69 33.31 26.3 27.34 30.98 32.92 24.3 25.01 27.15 29.07
0.3 21.6 24.09 27.98 30.27 22.52 25.32 28.72 30.31 21.86 22.94 24.8 26.67
0.4 15.17 21.82 24.77 27.05 15.52 23.57 26.18 27.96 18.1 20.9 22.43 24.17
0.5 11.32 19.75 21.94 23.57 11.54 21.81 23.86 25.38 14.19 18.82 19.69 21.06

The performance of the nonconvex BCNRTC model can be improved greatly compared with810

that of the convex RTC`1 model. The PSNR values of the restored image by the BCNRTC811

is at least 2dB higher than that of the nonconvex NCRTC model, which shows that both812

low-rank and sparse terms are nonconvex better than only sparse term is nonconvex.813

6.6. Experiments on Multispectral Images. In this subsection, we test the multispectral814

images datasets including Cloth (521× 521× 31)3 and the Indian Pines dataset (145× 145×815

224)4, which is a synthetic data. Since the Cloth dataset is too large, we resize the Cloth816

dataset to 128 × 128 in each image, and the size of the resulting tensor is 128 × 128 × 31.817

This testing image is normalized on [0, 1]. For Multispectral Images, we compute the PSNR818

values between each ground-truth band and the recovered band, and then averaged them.819

This metric is denoted as mean PSNR (MPSNR).820

In Figure 4, we show the 20-th band of the recovered images and corresponding zoomed821

regions of different methods for the Indian dataset, where SR= 0.5 and α = 0.2. It is obvious822

that the details of the zoomed region obtained by BCNRTC are more clear than those obtained823

by RTRC and RTC`1. The performance of NCRTC and BCNRTC is almost the same for the824

testing images in terms of visual quality. But PSNR values also show the BCNRTC is quite825

effective than NCRTC.826

Table 3 presents detailed comparison results of four different methods for the two multi-827

spectral images with different sample ratios and noise levels, where the MPSNR values, the828

relative error (RE), the number of iterations (Iter) and the CPU time (in seconds) are given.829

Note that for the columns “Iter” and “Time” in the BCNRTC, we list the total inner sGS-830

ADMM iterations and CPU times outside brackets. Meanwhile, the values in brackets in this831

table mean the number of iterations and CPU times of CRTC for a warm start. In addition,832

the outer PMM iterations in Indian are four when SR= 0.8, 0.7, and the rest of cases are833

three. Table 3 shows the advantage of BCNRTC over other three methods no matter in terms834

of MPSNR values (largest) or relative errors (smallest). Meanwhile, the BCNRTC takes less835

3https://www.cs.columbia.edu/CAVE/databases/multispectral/stuff/
4https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html
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(a) Original (b) Observation (c) RTRC:22.19

(d) RTC`1: 38.06 (e) NCRTC: 40.84 (f) BCNRTC: 45.19

Figure 4. The 20-th band of recovered images (with PSNR(dB)) and zoomed regions of four different
methods for the Indian dataset, where SR= 0.5 and α = 0.2.

Table 3
Numerical results of different methods for the multispectral images dataset with different SRs and α.

Images α SR
RTRC RTC`1 NCRTC BCNRTC

MPSNR RE IterTimeMPSNR RE IterTimeMPSNR RE IterTimeMPSNR RE Iter Time

Indian 0.2

0.8 23.19 1.17e-1 100 308 38.06 3.24e-2 68 349 42.7 2.54e-2 55 211 50.47 1.3e-2 26(26) 87(78)
0.7 22.74 1.23e-1 100 291 37.87 3.26e-2 69 345 41.11 2.72e-2 57 219 48.66 1.46e-227(34)89(100)
0.6 22.25 1.3e-1 100 292 36.33 3.67e-2 69 339 39.61 2.97e-2 59 225 45.98 1.79e-224(35)78(101)
0.5 21.67 1.39e-1 100 295 35.39 3.92e-2 69 332 37.59 3.38e-2 59 225 43.74 2.03e-228(42)89(119)

Cloth 0.4

0.8 18.34 5.53e-1 100 28 32.53 1.29e-1 58 20 37.18 7.39e-2 41 17 39.68 5.81e-233(15) 12(8)
0.7 17.69 5.98e-1 100 27 31.25 1.42e-1 57 19 35.84 8.51e-2 42 17 38.14 6.67e-236(17) 13(6)
0.6 17.45 6.14e-1 100 27 30.24 1.64e-1 58 19 34.1 1.02e-1 45 18 36.59 7.67e-240(17) 15(5)
0.5 17.24 6.28e-1 100 27 28.96 1.88e-1 58 19 31.89 1.31e-1 50 20 34.85 1.25e-146(17) 17(5)

CPU time and iteration numbers than the others when a suitable initial point is given. Specif-836

ically, BCNRTC is able to outperform others by a factor of about 2-4 in terms of computation837

times for the Indian dataset.838

7. Conclusions. In this paper, we propose a BCNRTC model for the RTC problem which839

aims to recover a third-order low-rank tensor from partial observations corrupted by impulse840

noise. Then, we prove the equivalence of global solutions between RTC problems and our841

proposed nonconvex model, which gives the theoretical guarantee that the nonconvex penalties842

are superior to convex penalties. Due to the nonconvexity, the resulting model is difficult to843

solve. To tackle this problem, we devise the PMM algorithm to solve the nonconvex model and844
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show that the sequence generated by the PMM algorithm globally converges to a critical point845

of the problem. Next, we establish a recovery error bound and give the theoretical guarantee846

that the proposed model can get lower error bounds when the initial estimator is close to847

the ground truth. Extensive numerical experiments including color images and multispectral848

images demonstrate that the proposed BCNRTC method outperforms several state-of-the-art849

methods.850

In the future, it would be of great interest to extend the BCNRTC to higher-order tensors851

since some real datasets are higher-order tensors, such as color videos or traffic data.852

Appendix A. Partial Calmless. The partial calmness is defined in detail in [28], which
is used in the proof of Theorem 3.1. Let θ : Rn → (−∞,+∞] be a proper lsc function,
h : Rn → R be a continuous function, and ∆ be a nonempty closed set of Rn. Consider the
following problem:

(MP) min
z
{θ(z) : h(z) = 0, z ∈ ∆}.

Let F and F∗ denote the feasible set and the global optimal solution set of (MP), respectively,
and v∗(MP) is the optimal value of (MP). Assume that F∗ 6= ∅. Consider the perturbed
problem of (MP):

(MPε) min
z
{θ(z) : h(z) = ε, z ∈ ∆},

where ε ∈ R, Fε denotes the feasible set of (MPε) associated to ε.853

Definition A.1. The problem (MP) is said to be partially calm at a solution point z∗ if854

there exist ε > 0 and µ > 0 such that for all ε ∈ [−ε, ε] and all z ∈ (z∗ + εB) ∩ Fε, one has855

θ(z)− θ (z∗) + µ|h(z)| ≥ 0.856

The partial calmness plays a critical role in the proof of Theorem 3.1. [28, Proposition857

2.1] shows that under the compactness of feasible set of problem (3.5), the partial calmness858

of (3.4) over its global optimal solution set implies the global exact penalization of (3.5).859

Appendix B. The Kurdyka- Lojasiewicz property. The Kurdyka- Lojasiewicz property is860

defined in detailed in [3], which is used in the proof of Lemma 4.3.861

Definition B.1. Let f : Rn → (−∞,+∞] be a proper and lower semicontinuous function.862

(i) The function f is said to have the KL property at x ∈ dom(∂f) if there exist η ∈
(0,+∞], a neighborhood U of x and a continuous concave function ϕ : [0, η)→ [0,+∞)
such that: (a) ϕ(0) = 0; (b) ϕ is continuously differentiable on (0, η), and continuous at
0; (c) ϕ′(s) > 0 for all s ∈ (0, η); (d) for all y ∈ U∩[y ∈ Rn : f(x) < f(y) < f(x) + η],
the following KL inequality holds:

ϕ′(f(y)− f(x)) dist(0, ∂f(y)) > 1.

(ii) If f satisfies the KL property at each point of dom(∂f), then f is called a KL function.863

Appendix C. Proofs of the results in Section 4. This part includes the proofs of part864

of results in Section 4.865
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C.1. Proof of Lemma 4.1. From the definition of Q, we have866

Q(W)− F (W;Wk) =H1(Lk)−H1(L) + 〈∇H1(Lk),L − Lk〉

+ λ(H2(Mk)−H2(M) + 〈∇H2(Mk),M−Mk〉)− η

2
‖W −Wk‖2F .

(C.1)

867

On the other hand, the convexity of H1 and H2 implies that868

(C.2) H1(L) ≥ H1(Lk) + 〈∇H1(Lk),L−Lk〉, H2(M) ≥ H2(Mk) + 〈∇H2(Mk),M−Mk〉.869

Combining (C.1) with (C.2), we obtain that Q(W)−F (W;Wk) ≤ −η
2‖W −W

k‖2F . Thus, we870

obtain871

(C.3) Q(Wk+1) +
η

2
‖Wk+1 −Wk‖2F ≤ F (Wk+1;Wk).872

Since Ck+1 ∈ ∂F (Wk+1;Wk), we have873

Q(Wk) = F (Wk;Wk) ≥ F (Wk+1;Wk) + 〈Ck+1,Wk −Wk+1〉
≥ F (Wk+1;Wk)− ‖Ck+1‖F ‖Wk+1 −Wk‖F
≥ F (Wk+1;Wk)− ηc‖Wk+1 −Wk‖2F ,

(C.4)874

where the last inequality follows from (4.4). Combining (C.3) with (C.4), we have875

(C.5) Q(Wk+1) +
η

2
(1− 2c)||Wk+1 −Wk||2F ≤ Q(Wk),876

which completes the first part of the proof. Let N be a positive integer. Summing (C.5) from877

k = 0 to N − 1, we get878

N−1∑
k=0

(‖Lk+1−Lk‖2F +‖Mk+1−Mk‖2F ) =
N−1∑
k=0

‖Wk+1−Wk‖2F ≤
2

η(1− 2c)
(Q(W0)−Q(WN )),879

where the inequality is valid since the condition η(1 − 2c) > 0 holds. By the inequality880

(C.5), we can get the sequence {Q(Wk)}k∈N is non-increasing. Since Q(W) is bounded be-881

low, the sequence {Q(Wk)}k∈N converges. Taking the limit as N → ∞, we obtain that882 ∑∞
k=0 ‖Wk+1−Wk‖2F <∞ and the sequence {‖Wk+1−Wk‖F }k∈N converges to zero. There-883

fore, the conclusion is obtained.884

C.2. Proof of Lemma 4.2. By [2, Proposition 2.1], [35, Exercise 8.8(c)] and Ck+1 ∈885

∂F (Wk+1;Wk), we have886

(C.6) Ck+1
L = Ỹ k+1−∇H1(Lk)+η(Lk+1−Lk), Ck+1

M = Z̃k+1−∇H2(Mk)+η(Mk+1−Mk)887

for some Ỹ k+1 ∈ ∂L[‖L‖TNN+δΓ1(L,M)+δD2(L)]W=Wk+1 , Z̃k+1 ∈ ∂M[λ‖M‖1+δΓ1(L,M)+888

δD1(M)]W=Wk+1 . From the definition of Q, we get889

∂LQ(W) = ∂L[‖L‖TNN + δΓ1(L,M) + δD2(L)]−∇H1(L),890
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891

∂MQ(W) = ∂M[λ‖M‖1 + δΓ1(L,M) + δD1(M)]−∇H2(M).892

By the definitions of Ỹ k+1 and Z̃k+1, we obtain that893

Bk+1
L := Ỹ k+1 −∇H1(Lk+1) ∈ ∂LQ(Wk+1), Bk+1

M := Z̃k+1 −∇H2(Mk+1) ∈ ∂MQ(Wk+1).894

Then, we have Bk+1 ∈ ∂Q(Wk+1). Define895

(C.7) Hk+1
L := Ỹ k+1 −∇H1(Lk), Hk+1

M := Z̃k+1 − λ∇H2(Mk).896

We now have to estimate the norm of Bk+1. By the definitions of Bk+1 and Hk+1, we have897

(C.8) ‖Bk+1 −Hk+1‖F = ‖(∇H1(Lk)−∇H1(Lk+1), λ(∇H2(Mk)−∇H2(Mk+1)))‖F .898

Since Wk is an approximate solution of F (W;Wk−1), by the definition of the indicator func-899

tion, we get that Wk belongs to Γ1, D1 and D2. Thus, {Wk}k∈N is bounded and W∗ is a900

cluster point. Then, it follows from [11, Theorem 3.10] that there exist constants δ0 > 0 and901

m̃ > 0 such that for any Wk,Wk+1 ∈ B(W∗, δ0),902

(C.9) ‖∇H1(Lk)−∇H1(Lk+1)‖F ≤ m̃‖Lk+1 − Lk‖F .903

It follows from ∇H2 is Lipschitz continuous with constant 1
γ that904

(C.10) λ‖∇H2(Mk)−∇H2(Mk+1)‖F ≤
λ

γ
‖Mk+1 −Mk‖F .905

By combining (C.6) with (C.7), we have that Hk+1 = Ck+1 − η(Wk+1 −Wk). Moreover, by906

‖Bk+1 −Hk+1‖F ≥ ‖Bk+1‖F − ‖Hk+1‖F , we obtain that907

‖Bk+1‖F ≤ ‖Bk+1 −Hk+1‖F + ‖Hk+1‖F

≤ m̃‖Lk+1 − Lk‖F +
λ

γ
‖Mk+1 −Mk‖F + ‖Ck+1‖F + η‖Wk+1 −Wk‖F

≤ (m̃+ λ/γ + η + ηc)‖Wk+1 −Wk‖F ,

908

where the second inequality holds by (C.8) and the last inequality holds by (4.4), (C.9) and909

(C.10). The desired result is proven.910

C.3. Proof of Lemma 4.3. It is easy to see that δΓ1 , δD1 and δD2 are semialgebraic [6].911

On the other hand, the MCP function and the SCAD function are shown to be semialgebraic912

in [50], and ‖L‖TNN is also shown to be semi-algebraic in [58]. Hence, the function Q(W) is913

semi-algebraic since it is the finite sum of semialgebraic functions. Since Q(W) is also proper914

lower semicontinuous, and it follows from [6, Theorem 3] that the function Q is a KL function,915

which completes the proof.916

Appendix D. Proofs of the results in Section 5. This part includes the proofs of part of917

results in Section 5.918
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D.1. Proof of Proposition 5.1. Recall that919

S(L?) :=
{
U1 ∗ VH1 + U2 ∗W ∗ VH2 | W ∈ C(n1−rmin)×(n2−rmin)×n3 , ‖W‖ ≤ 1

}
.920

First we are going to show that S(L?) ⊆ ∂‖L?‖TNN. For any Z ∈ S(L?), we have921

〈Z,L?〉 =
〈
U1 ∗ VH1 + U2 ∗W ∗ VH2 ,U ∗ S ∗ VH

〉
922

=
1

n3

n3∑
i=1

〈
Û1

(i)
(V̂ 1

(i)
)H + Û2

(i)
Ŵ

(i)
(V̂ 2

(i)
)H , Û

(i)
Ŝ

(i)
(V̂

(i)
)H
〉

923

=
1

n3

n3∑
i=1

〈
U

(i)
1 (V

(i)
1 )H +U

(i)
2 W

(i)(V
(i)
2 )H ,U (i)S(i)(V (i))H

〉
924

=
1

n3

n3∑
i=1

〈
U (i)

(
Iri 0

0 W (i)

)
(V (i))H ,U (i)

(
Diag(σ(L̂?

(i)
)) 0

0 0

)
(V (i))H

〉
925

=
1

n3

n3∑
i=1

‖L̂?
(i)
‖∗926

= ‖L?‖TNN.927928

It is easy to verify that ‖Z‖ ≤ 1. Then, by [47], we have Z ∈ ∂‖L?‖TNN. So we have929

S(L?) ⊆ ∂‖L?‖TNN.930

Next, we are going to prove that ∂‖L?‖TNN ⊆ S(L?). We argue it by contradiction.931

Assume that exist G′ ∈ ∂‖L?‖TNN but G′ /∈ S(L?). It can be verified that S(L?) is convex932

and closed. Then, by Strict Separation Theorem [5], there exists R ∈ Rn1×n2×n3 satisfying933

〈G′,R〉 > 〈H,R〉 for any H ∈ S(L?). So that934

max
G∈∂‖L?‖TNN

〈G,R〉 > max
H∈S(L?)

〈H,R〉.935

Let f(L?) := ‖L?‖TNN. We use f ′(L?;R) to denote the directional derivative of f at L? with936

the direction R. It follows from [34, Theorem 23.4] that f ′(L?;R) = maxG∈∂‖L?‖TNN
〈G,R〉.937

This manuscript is for review purposes only.



36 X. ZHAO, M. BAI, D. SUN, AND L. ZHENG

Moreover,938

f ′(L?;R) = lim
γ→0+

‖L? + γR‖TNN − ‖L?‖TNN

γ
939

= lim
γ→0+

1

n3

n3∑
i=1

‖ ̂L? + γR
(i)
‖∗ − ‖L̂?

(i)
‖∗

γ
940

=
1

n3

n3∑
i=1

lim
γ→0+

‖L̂?
(i)

+ γR̂
(i)
‖∗ − ‖L̂?

(i)
‖∗

γ
941

=
1

n3

n3∑
i=1

max
d(i)∈∂‖σ(i)‖1

n1∑
j=1

d
(i)
j (u

(i)
j )HR̂

(i)
v

(i)
j942

=
1

n3

n3∑
i=1

max
d(i)∈∂‖σ(i)‖1

〈
n1∑
j=1

d
(i)
j u

(i)
j (v

(i)
j )H , R̂

(i)
〉943

=
1

n3

n3∑
i=1

max
d(i)∈∂‖σ(i)‖1

〈U (i)Diag(d(i))V (i)H , R̂
(i)
〉944

=
1

n3

n3∑
i=1

max
d(i)∈∂‖σ(i)‖1

〈[
U

(i)
1 U

(i)
2

] [Diag(d
(i)
≤ri) 0

0 Diag(d
(i)
>ri)

][
(V

(i)
1 )H

(V
(i)
2 )H

]
, R̂

(i)

〉
945

=
1

n3

n3∑
i=1

max
d(i)∈∂‖σ(i)‖1

〈
U

(i)
1 (V

(i)
1 )H +U

(i)
2 Diag(d

(i)
>ri)(V

(i)
2 )H , R̂

(i)
〉

946

=
1

n3

n3∑
i=1

max
d(i)∈∂‖σ(i)‖1

〈
Û1

(i)
(V̂ 1

(i)
)H + Û2

(i)

[
0 0

0 Diag(d
(i)
>ri)

]
(V̂ 2

(i)
)H , R̂

(i)

〉
,947

948

where u
(i)
j is the j-th column of the U (i) (also the j-th column of Û

(i)
when j ≤ ri) and the949

fourth equality is due to [47, Theorem 1]. Notice that |d(i)
j | ≤ 1 when j > ri. Denote950

D̂
(i)

:=

[
0 0

0 Diag(d
(i)
>ri)

]
∈ C(n1−rmin)×(n2−rmin).951

952

Then we have D̂
(i)
∈ {Ŵ

(i)
|‖Ŵ

(i)
‖ ≤ 1}, which means that953

{D̂
(i)
|diag(D̂

(i)
) = (0,d

(i)
>ri)

H , d(i) ∈ ∂‖σ(i)‖1} ⊆ {Ŵ
(i)
|‖Ŵ

(i)
‖ ≤ 1}.954
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Let Λ(i) := {D̂
(i)
|diag(D̂

(i)
) = (0,d

(i)
>ri)

H , d(i) ∈ ∂‖σ(i)‖1}. Then we have955

max
H∈S(L?)

〈H,R〉956

= max
‖W‖≤1

〈
U1 ∗ VH1 + U2 ∗W ∗ VH2 ,R

〉
957

=
1

n3

n3∑
i=1

max
‖Ŵ

(i)
‖≤1

〈
Û1

(i)
V̂ 1

(i)H
+ Û2

(i)
Ŵ

(i)
(V̂ 2

(i)
)H , R̂

(i)
〉

958

≥ 1

n3

n3∑
i=1

max
Ŵ

(i)
∈Λ(i)

〈
Û1

(i)
V̂ 1

(i)H
+ Û2

(i)
Ŵ

(i)
(V̂ 2

(i)
)H , R̂

(i)
〉

959

=f ′(L?;R),960961

which implies maxH∈S(L?) 〈H,R〉 ≥ maxG∈∂‖L?‖TNN
〈G,R〉. This contradicts the assumption.962

Therefore, we have ∂‖L?‖TNN ⊆ S(L?). This completes the proof.963

D.2. Proof of Proposition 5.3. Considering X = Diag(X̂
(1)
, X̂

(2)
, . . . , X̂

(n3)
), ∀i =964

1, 2, . . . , n3, we have965

X̂
(i)

=[U
(i)
1 ,U

(i)
2 ][U

(i)
1 ,U

(i)
2 ]HX̂

(i)
[V

(i)
1 ,V

(i)
2 ][V

(i)
1 ,V

(i)
2 ]H966

=[U
(i)
1 ,U

(i)
2 ]

[
(U

(i)
1 )HX̂

(i)
V

(i)
1 (U

(i)
1 )HX̂

(i)
V

(i)
2

(U
(i)
2 )HX̂

(i)
V

(i)
1 0

]
[V

(i)
1 ,V

(i)
2 ]H+967

[U
(i)
1 ,U

(i)
2 ]

[
0 0

0 (U
(i)
2 )HX̂

(i)
V

(i)
2

]
[V

(i)
1 ,V

(i)
2 ]H968

=U
(i)
1 (U

(i)
1 )HX̂

(i)
+ X̂

(i)
V

(i)
1 (V

(i)
1 )H −U (i)

1 (U
(i)
1 )HX̂

(i)
V

(i)
1 (V

(i)
1 )H969

+U
(i)
2 (U

(i)
2 )HX̂

(i)
V

(i)
2 (V

(i)
2 )H970

=Û1
(i)

(Û1
(i)

)HX̂
(i)

+ X̂
(i)
V̂ 1

(i)
(V̂ 1

(i)
)H − Û1

(i)
(Û1

(i)
)HX̂

(i)
V̂ 1

(i)
(V̂ 1

(i)
)H971

+ Û2
(i)

(Û2
(i)

)HX̂
(i)
V̂ 2

(i)
(V̂ 2

(i)
)H ,972973

which means that974

X = U1 U1
H
X +X V 1 V 1

H −U1 U1
H
X V 1 V 1

H
+U2 U2

H
X V 2 V 2

H
.975

So we have976

X = U1 ∗ UH1 ∗ X + X ∗ V1 ∗ VH1 − U1 ∗ UH1 ∗ X ∗ V1 ∗ VH1 + U2 ∗ UH2 ∗ X ∗ V2 ∗ VH2 .977

By the definition of T , we can see that978

PT (X ) = U1 ∗ UH1 ∗ X + X ∗ V1 ∗ VH1 − U1 ∗ UH1 ∗ X ∗ V1 ∗ VH1 .979

Therefore, it follows from X = PT (X ) + PT ⊥(X ) that980

PT ⊥(X ) = U2 ∗ UH2 ∗ X ∗ V2 ∗ VH2 .981

This completes the proof.982
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D.3. Proof of Lemma 5.4. Since (Lc,Mc) is optimal and (L?,M?) is feasible to the983

problem (4.3), we have984

0 ≥(‖Lc‖TNN − ‖L?‖TNN − 〈∇H1(Lk), ∆̃L〉) + λ(‖Mc‖1 − 〈∇H2(Mk), ∆̃M〉 − ‖M?‖1)

+
η

2
(‖Lc − Lk‖2F − ‖L? − Lk‖2F ) +

η

2
(‖Mc −Mk‖2F − ‖M? −Mk‖2F ).

(D.1)

985

By (5.1), we know that {U1 ∗ VH1 + U2 ∗ W ∗ VH2 | ‖W‖ ≤ 1} = ∂‖L?‖TNN. Thus, by the986

convexity of ‖ · ‖TNN, we have987

‖Lc‖TNN − ‖L?‖TNN − 〈∇H1(Lk), ∆̃L〉

≥〈U1 ∗ VH1 + U2 ∗W ∗ VH2 , ∆̃L〉 − 〈∇H1(Lk), ∆̃L〉

=
1

n3
〈U1 V 1

H −∇H1(Lk), ∆̃L〉+
1

n3
〈U2 W V 2

H
, ∆̃L〉

≥ 1

n3
sup
‖W ‖≤1

〈W ,U2
H

∆̃LV 2〉 −
1

n3
‖U1 V 1

H −∇H1(Lk)‖F ‖∆̃L‖F

=
1

n3
‖U2

H
∆̃LV 2‖∗ −

1

n3
‖U1 V 1

H −∇H1(Lk)‖F ‖∆̃L‖F

=‖U2 ∗ ∆̃L ∗ VH2 ‖TNN − ‖U1 ∗ VH1 −∇H1(Lk)‖F ‖∆̃L‖F
=‖PT ⊥(∆̃L)‖TNN − dL

√
r‖∆̃L‖F ,

(D.2)988

where the second equality directly from the definition of dual norm.989

Similarly, we know that {sign(M?) + F|PsuppM? (F) = 0, ‖F‖∞ ≤ 1} ⊆ ∂‖M?‖1, where990

suppX := {(i, j, k)|〈Θijk,X〉 6= 0}. Thus, by the convexity of ‖ · ‖1, we have991

‖Mc‖1 − ‖M?‖1 − 〈∇H2(Mk), ∆̃M〉

≥〈sign(M?) + PsuppcM?
(F), ∆̃M〉 − 〈∇H2(Mk), ∆̃M〉

≥ sup
‖F‖∞≤1

〈F ,PsuppcM?
(∆̃M)〉 − ‖sign(M?)−∇H2(Mk)‖F ‖∆̃M‖F

=‖PsuppcM?
(∆̃M)‖1 − dM

√
s̃‖∆̃M‖F .

(D.3)992

By the convexity of ‖ · ‖2F , we also have993

η

2
(‖Lc − Lk‖2F − ‖L? − Lk‖2F ) +

η

2
(‖Mc −Mk‖2F − ‖M? −Mk‖2F )

≥η(〈L? − Lk,Lc − L?〉+ 〈M? −Mk,Mc −M?〉)

≥− η‖L? − Lk‖F ‖∆̃L‖F − η‖M? −Mk‖F ‖∆̃M‖F .

(D.4)994

By substituting (D.2), (D.3) and (D.4) into (D.1), we get that995

‖PT ⊥(∆̃L)‖TNN + λ‖PsuppcM?
(∆̃M)‖1

≤(dL
√
r + η‖L? − Lk‖F )‖∆̃L‖F + (λdM

√
s̃+ η‖M? −Mk‖F )‖∆̃M‖F .

996
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Thus,997

max{‖PT ⊥(∆̃L)‖TNN, λ‖PsuppcM?
(∆̃M)‖1}

≤(dL
√
r + η‖L? − Lk‖F )‖∆̃L‖F + (λdM

√
s̃+ η‖M? −Mk‖F )‖∆̃M‖F .

(D.5)998

It follows from Proposition 5.3 that ranka(PT (∆̃L)) ≤ 2r, which together with ‖PsuppM?999

(∆̃M)‖0 ≤ s̃, we have1000

‖PT (∆̃L)‖TNN =
1

n3
‖PT (∆̃L)‖∗ ≤

√
2rn3

n3
‖PT (∆̃L)‖F =

√
2r‖PT (∆̃L)‖F ≤

√
2r‖∆̃L‖F ,

‖PsuppM? (∆̃M)‖1 ≤
√
s̃‖PsuppM? (∆̃M)‖F ≤

√
s̃‖∆̃M‖F .

(D.6)

1001

Note that ‖∆̃L‖TNN ≤ ‖PT (∆̃L)‖TNN + ‖PT ⊥(∆̃L)‖TNN and ‖∆̃M‖1 ≤ ‖PsuppM? (∆̃M)‖1 +1002

‖PsuppcM?
(∆̃M)‖1. By combining (D.5) and (D.6) together with the above inequalities, we1003

complete the proof.1004

D.4. Proof of Lemma 5.5. First, we will show that the following event holds with small1005

probability:1006

E :=

{
∃∆ ∈ K(p, q, t)such that

∣∣∣∣ 1

m
‖PΩ(∆)‖2F − E[〈Θ,∆〉2]

∣∣∣∣ ≥ ‖∆L‖2F + ‖∆M‖2F
2µ1n1n2n3

+256µ1n1n2n3β
2
S
}
.

1007

It is clear that the complement of the interested event is included in E. Now we estimate the1008

probability of the event E. We decompose the set K(p, q, t) into1009

K(p, q, t) =

∞⋃
j=1

{
∆ ∈ K(p, q, t)

∣∣ 2j−1t ≤
‖∆L‖2F + ‖∆M‖2F

µ1n1n2n3
≤ 2jt

}
.1010

For any s ≥ t, we define the set1011

K(p, q, t, s) :=

{
∆ ∈ K(p, q, t)

∣∣ ‖∆L‖2F + ‖∆M‖2F
µ1n1n2n3

≤ s
}
.1012

Let1013

Ej :=

{
∃∆ ∈ K(p, q, t, 2jt) s.t.

∣∣∣∣ 1

m
‖PΩ(∆)‖2F − E[〈Θ,∆〉2]

∣∣∣∣ ≥ 2j−2t+ 256µ1n1n2n3β
2
S

}
.1014

Note that E ⊆
⋃∞
j=1Ej . In the following, we estimate the probability of the event Ej . Let1015

Zs := sup
∆∈K(p,q,t,s)

∣∣∣∣ 1

m
‖PΩ(∆)‖2F − E[〈Θ,∆〉2]

∣∣∣∣ ,1016
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we have1017

(D.7)
1

m
‖PΩ(∆)‖2F − E[〈Θ,∆〉2] =

1

m

m∑
l=1

(〈Θωl ,∆〉
2 − E[〈Θ,∆〉2]).1018

Since ‖∆‖∞ = 1 for all ∆ ∈ K(p, q, t), it follows that1019

|〈Θωl ,∆〉
2 − E[〈Θ,∆〉2]| ≤ max{〈Θωl ,∆〉

2,E[〈Θ,∆〉2]} ≤ 1.1020

Thus, it follows from Massart’s Hoeffding type concentration inequality [30, Theorem 1.4] that1021

(D.8) P(Zs ≥ E[Zs] + ε) ≤ exp

(
−mε

2

2

)
, ∀ε > 0.1022

In order to be able to apply the inequality (D.8), we need to estimate an upper bound of1023

E[Zs]. By (D.7), we have1024

E[Zs] =E

[
sup

∆∈K(p,q,t,s)

∣∣∣∣ 1

m
‖PΩ(∆)‖2F − E[〈Θ,∆〉2]

∣∣∣∣
]
≤ 2E

[
sup

∆∈K(p,q,t,s)

∣∣∣∣∣ 1

m

m∑
l=1

εl〈Θωl
,∆〉2

∣∣∣∣∣
]

≤8E

[
sup

∆∈K(p,q,t,s)

∣∣∣∣∣ 1

m

m∑
l=1

〈εlΘωl
,∆〉

∣∣∣∣∣
]

= 8E

[
sup

∆∈K(p,q,t,s)

∣∣∣∣ 1

m
〈D∗Ω(ε),∆〉

∣∣∣∣
]

≤8E

[
sup

∆∈K(p,q,t,s)

∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥∥∥∥∥ 1

n3
∆L

∥∥∥∥
∗

+ sup
∆∈K(p,q,t,s)

∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥
∞
‖∆M‖1

]

=8E

[
sup

∆∈K(p,q,t,s)

∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥ ‖∆L‖TNN + sup
∆∈K(p,q,t,s)

∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥
∞
‖∆M‖1

]

≤8E
∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥
(

sup
∆∈K(p,q,t,s)

‖∆L‖TNN

)
+ 8E

∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥
∞

(
sup

∆∈K(p,q,t,s)

‖∆M‖1

)
,

1025

where the first inequality is due to the symmetrization theorem [7, Theorem 14.3] and the1026

second inequality follows from the contraction theorem [7, Theorem 14.4]. Notice that for any1027

u ≥ 0,v ≥ 0 and ∆ ∈ K(p, q, t, s),1028

u‖∆L‖F +v‖∆M‖F ≤ 32µ1n1n2n3(u2+v2)+
‖∆L‖2F + ‖∆M‖2F

128µ1n1n2n3
≤ 32µ1n1n2n3(u2+v2)+

s

128
,1029

where the first inequality follows from the fact 2ab ≤ a2 + b2. Then, follows from (5.5), (5.6),1030

the definition of K(p, q, t) and the above inequality, we derive that1031

E[Zs] ≤8

[
sup

∆∈K(p,q,t,s)

βL(p1‖∆L‖F + p2‖∆M‖F ) + sup
∆∈K(p,q,t,s)

βM(q1‖∆L‖F + q2‖∆M‖F )

]
≤256µ1n1n2n3β

2
S +

s

8
.

(D.9)1032

Then it follows from (D.8) and (D.9) that1033

P
(
Zs ≥ 256µ1n1n2n3β

2
S +

s

4

)
≤ P

(
Zs ≥ E[Zs] +

s

8

)
≤ exp

(
−ms

2

128

)
.1034
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This, together with the choice of s = 2jt, implies that P(Ej) ≤ exp
(
−4jmt2

128

)
. Therefore, it1035

follows from the simple fact 4j > log(4j) = 2j log(2) that1036

P(E) ≤
∞∑
j=1

P(Ej) ≤
∞∑
j=1

exp

(
−4jmt2

128

)
≤
∞∑
j=1

exp

(
−jmt

2 log(2)

64

)
≤ exp[−mt2 log(2)/64]

1− exp[−mt2 log(2)/64]
.1037

Then, taking t = 8
√

log(n1+n2+n3+1)
m log(2) , we obtain that P(E) ≤ 1

n1+n2+n3
. The proof is completed.1038

D.5. Proof of Lemma 5.7. For l = 1, . . .m, define the random tensor Zωl := εlΘωl .1039

Then 1
mD∗Ω(ε) = 1

m

∑m
l=1Zωl . Since εl is an i.i.d. Rademacher sequence, we have that |εl| ≤ 1,1040

E[εl]=0 and E[ε2l ]=1. Notice that εl and Θωl are independent, we get E[Zωl ] = E[εl]E[Θωl ] = 0.1041

Since ‖Θωl‖F = 1, we have1042

‖Zωl‖ ≤ ‖Zωl‖F = |εl|‖Θωl‖F = |εl|.1043

It is easy to obtain that there exists a constant M > 0 such that ‖‖Zωl‖‖ψ1 ≤ ‖εl‖ψ1 ≤ M1044

and E
1
2 [‖Zωl‖2] ≤ E

1
2 [ε2l ] = 1. Define1045

σZ := max


∥∥∥∥∥ 1

m

m∑
l=1

E[Zωl ∗ Z
H
ωl

]

∥∥∥∥∥
1
2

,

∥∥∥∥∥ 1

m

m∑
l=1

E[ZHωl ∗ Zωl ]

∥∥∥∥∥
1
2

 .1046

By direct calculations we can see that E[Zωl ∗ ZHωl ] = E[ε2l Θωl ∗ ΘH
ωl

] = E[Θωl ∗ ΘH
ωl

]. The1047

calculation for E[ZHωl ∗ Zωl ] is similar. We obtain from Assumption 5.2 that σ2
Z ≤

µ2
ñ . By1048

applying [48, Lemma 2.6], we obtain1049 ∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥ ≤ C1

{√
µ2(t+ log((n1 + n2)n3))

ñm
,
(t+ log((n1 + n2)n3)) log(ñ)

m

}
1050

with probability at least 1− exp(−t). Set τ∗ = µ2C1

ñ log(ñ) . Then we can derive1051

(D.10) P
[∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥ > τ

]
≤

 ((n1 + n2)n3) exp
(
− τ2ñm
C2

1µ2

)
, τ ≤ τ∗,

((n1 + n2)n3) exp
(
− τm
C1 log(ñ)

)
, τ > τ∗.

1052

We set v1 = ñm
C2

1µ2
and v2 = m

C1 log(ñ) . By Hölder’s inequality, we get1053

(D.11) E
∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥ ≤
[
E
∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥2 log((n1+n2)n3)
] 1

2 log((n1+n2)n3)

.1054

Combining (D.10) with (D.11), we obtain that1055

E
∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥ ≤(∫ ∞
0

P
(∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥ > τ
1

2 log((n1+n2)n3)

)
dτ

) 1
2 log((n1+n2)n3)

=
√
e
[
log((n1 + n2)n3))v

− log((n1+n2)n3)
1 Γ(log((n1 + n2)n3))

+2 log((n1 + n2)n3))v
−2 log((n1+n2)n3)
2 Γ(2 log((n1 + n2)n3))

] 1
2 log((n1+n2)n3)

.

(D.12)1056
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Since the Gamma-function satisfies the inequality Γ(x) ≤
(
x
2

)x−1
, ∀x ≥ 2. Plugging this1057

inequality into (D.12), we obtain that1058

E
∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥ ≤√e [(log((n1 + n2)n3))log((n1+n2)n3)v
− log((n1+n2)n3)
1 21−log((n1+n2)n3)

+ 2(log((n1 + n2)n3))2 log((n1+n2)n3)v
−2 log((n1+n2)n3)
2

] 1
2 log((n1+n2)n3) .

1059

Observe that m ≥ ñ log((n1+n2)n3)(log(ñ))2/µ2 implies that v1 log((n1+n2)n3)) ≤ v2
2. Thus,1060

we have1061

E
∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥ ≤
√

3e log((n1 + n2)n3)

v1
= C1

√
3eµ2 log((n1 + n2)n3)

ñm
.1062

This completes the proof.1063

D.6. Proof of Lemma 5.8. For any index (i, j, k) such that 1 ≤ i ≤ n1, 1 ≤ j ≤ n2,1064

1 ≤ k ≤ n3 and (Θωl)ijk 6= 0 for some ωl ∈ Ω, let ωijk := ((Θω1)ijk, . . . , (Θωl)ijk)
T . Form [48,1065

Lemma 2.4], we know that there exists a constant C > 0 such that for any τ > 0,1066

P

[∣∣∣∣∣ 1

m

m∑
l=1

ωijkl εl

∣∣∣∣∣ > τ

]
≤ 2 exp

[
−C min

(
m2τ2

M2‖ωijk‖22
,

mτ

M‖ωijk‖∞

)]
.1067

By taking a union bound, we get that1068

P
[∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥
∞
> τ

]
≤ 2m exp

[
−C min

(
m2τ2

M2 max ‖ωijk‖22
,

mτ

M max ‖ωijk‖∞

)]
,1069

where both of the maximums are taken over all such indices (i, j, k). Evidently, ‖ωijk‖22 ≤ 11070

and ‖ωijk‖∞ ≤ 1. By letting1071

−t : = −C min

(
m2τ2

M2
,
mτ

M

)
+ log(m)

≥ −C min

(
m2τ2

M2 max ‖ωijk‖22
,

mτ

M max ‖ωijk‖∞

)
+ log(m),

1072

we obtain that with probability no greater than 2 exp(−t),1073 ∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥
∞
> M max

{√
log(m) + t

Cm2
,
log(m) + t

Cm

}
.1074

Set τ∗ = max
{
M
m ,

M(log(2m))
mC

}
. Then we can derive that1075

P
[∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥
∞
> τ

]
≤
{

1, τ ≤ τ∗,
2m exp

(
−Cm

M τ
)
, τ > τ∗.

1076
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Then it follows that1077

E
∥∥∥∥ 1

m
D∗Ω(ε)

∥∥∥∥
∞
≤
∫ τ∗

0
1dτ +

∫ +∞

τ∗
2m exp

(
−Cm
M

τ

)
dτ =

M(log(2m) + 1)

Cm
,1078

which completes the proof.1079
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