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Robust Tensor Completion: Equivalent Surrogates, Error Bounds and Algorithms*

Xueying Zhao!, Minru Baif, Defeng Sun®, and Libin Zheng¥

Abstract. Robust Low-Rank Tensor Completion (RTC) problems have received considerable attention in recent
years such as signal processing and computer vision. In this paper, we focus on the bound constrained
RTC problem for third-order tensors which recovers a low-rank tensor from partial observations
corrupted by impulse noise. A widely used convex relaxation of this problem is to minimize the tensor
nuclear norm for low rank and the ¢1-norm for sparsity. However, it may result in biased solutions.
To handle this issue, we propose a nonconvex model with a novel nonconvex tensor rank surrogate
function and a novel nonconvex sparsity measure for RT'C problems under limited sample constraints
and two bound constraints, where these two nonconvex terms have a difference of convex functions
(DC) structure. Then, a proximal majorization-minimization (PMM) algorithm is developed to solve
the proposed model and this algorithm consists of solving a series of convex subproblems with an
initial estimator to generate a new estimator which is used for the next subproblem. Theoretically, for
this new estimator, we establish a recovery error bound for its recoverability and give the theoretical
guarantee that lower error bounds can be obtained when a reasonable initial estimator is available.
Then, by using the Kurdyka-Lojasiewicz property exhibited in the resulting problem, we show that
the sequence generated by the PMM algorithm globally converges to a critical point of the problem.
Extensive numerical experiments including color images and multispectral images show the high
efficiency of the proposed model.

Key words. robust low-rank tensor completion, DC equivalent surrogates, proximal majorization-minimization,
error bounds, impulse noise
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1. Introduction. Multi-dimensional data is becoming prevalent in many areas such as
computer vision [27, 44], data mining [32], signal processing [10], and machine learning [39].
Tensor-based modeling has the capability of capturing these underlying multi-dimensional
structures. However, the tensor data observed may suffer from information loss and be per-
turbed by different kinds of noise originating from human errors or signal interference. The
purpose of this paper is to study Robust Low-Rank Tensor Completion (RTC) problems for
third-order tensors, in which few available entries are defiled by impulse noise.

The original model of RTC problems is to minimize an optimization problem which con-
sists of the tensor rank function plus the £y-norm under limited sample constraints, which
is a generalization of Robust Matrix Completion (RMC) [8, 22]. As the rank function is
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nonconvex, the nuclear norm is widely used to approximate the rank function. Candes et
al. [8] studied the RMC problem by solving a convex optimization problem that minimizes a
weighted combination of the nuclear norm and the ¢;-norm under limited sample constraints,
and theoretical conditions to ensure the perfect recovery in the probabilistic sense have been
analyzed. Although the nuclear norm is a convex relaxation of the rank function, this kind
of surrogate may make the solution seriously deviate from the solution of rank minimization.
To improve the recovery quality of the solution for matrix completion with fixed basis coeffi-
cient, Miao et al. [31] proposed a rank-corrected procedure to generate an estimator with a
pre-estimator and established a non-asymptotic recovery error bound. Liu et al. [28] recently
reformulated the rank regularized problem as a family of nonconvex equivalent surrogates by
establishing its global exact penalty.

Compared with RMC, RTC is more difficult to solve due to the fact that the rank of a
tensor is not unique. The two commonly used tensor ranks are the CANDECOMP /PARAFAC
(CP) rank [9] and the Tucker rank [43]. However, computing the CP rank of a given tensor
is known to be NP-hard [16]. Liu et al. [27] proposed the sum of nuclear norms of unfolding
matrices (SNN) of a tensor to approximate the Tucker rank to solve the low-rank tensor
completion problem, which has since appeared frequently in practical settings. Although the
SNN is easy to compute, Romera-Paredes et al. [36] showed that it is not the tightest convex
envelope of the sum of entries of the Tucker rank. Recently, Huang et al. [17] proposed a tensor
ring (TR) decomposition that factorizes a high-order tensor into a sequence of three-order
tensors and used a number of TR unfoldings for RTC problems. However, the matricization
of a tensor may break the intrinsic structures and correlations in the tensor data, hence the
rank defined by the unfolding matrices cannot accurately describe the low-rank property of
the tensor. Different from the rank based matricization above, Kilmer et al. [19] proposed the
tensor multi-rank and tubal rank definitions based on a tensor singular value decomposition
(t-SVD) framework [20] and Semerci et al. [37] developed a new tubal nuclear norm (TNN),
which is a convex surrogate of the multi-rank [57]. In recent years, the tubal rank and the
TNN have been widely studied for tensor recovery problems [18, 29, 45, 55]. Jiang et al. [18]
showed that one can recover a low tubal rank tensor exactly with overwhelming probability
by solving a convex program, where the objective function is a weighted combination of
the TNN and the ¢;-norm. However, as pointed out in [38], the low-rank property of most
natural images is mainly affected by a few large singular values, which present a heavy-tailed
distribution. It means that the larger singular values are expected to be penalized mildly while
the smaller ones are penalized severely. Nevertheless, the TNN treats the singular values with
the same penalty, which will over-penalize large singular values and hence get the suboptimal
performance. To address this issue, Zhang et al. [55] proposed a corrected TNN (CTNN)
model for third-order tensor recovery from partial observations corrupted by Gaussian noise
based on the rank-corrected procedure [31] and provided a non-asymptotic error bound of the
CTNN model. However, [55] is not able to address the observations with impulse noise and
the outer loop convergence of the adaptive correction procedure is unknown.

On the other hand, it is challenging to solve the £y regularization problem since it is NP-
hard [33]. As a convex relaxation of the fy-norm, the /1-norm has been widely used for sparsity
in statistics. The least absolute shrinkage and selection operator (lasso) problem is the ¢1-norm
penalized least squares method, which was proposed in [42] and has been used extensively in
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ROBUST TENSOR COMPLETION 3

high-dimensional statistics and machine learning. However, as indicated by [12], the ¢;-norm
has long been known by statisticians to yield biased estimators and cannot achieve the best
estimation performance, and might not be statistically optimal in more challenging scenarios.
Hence, to solve the above mentioned problems, some nonconvex penalties have been proposed
to substitute sparsity measures [13, 14, 41, 50, 51, 58]. In [41], a sparse semismooth Newton
based proximal majorization-minimization (PMM) algorithm for nonconvex square-root-loss
regression problems was introduced where the nonconvex regularizer has the difference of
convex functions (DC) structure. Ahn et al. [1] gave a unified DC representation for a
family of surrogate sparsity functions that are employed as approximations of the fyp-norm
in statistical learning and established some sparsity properties of the directional stationary
points. Yang et al. [51] proposed nonconvex models for RTC by the regularizing redescending
M-estimators as sparsity measures and developed the linearized and proximal block coordinate
methods to solve the nonconvex problems. Zhao et al. [58] studied a nonconvex model,
consisting of the data-fitting term combined with the TNN and the nonconvex data fidelity
term, for RTC problems and presented a Gauss-Seidel DC algorithm (GS-DCA) to solve
the resulting optimization. By numerical experiments, [51] and [58] all showed that these
nonconvex penalties outperformed the ¢1-norm penalty. Actually, the TNN is the sum of
nuclear norms of all frontal slides of the tensor in the Fourier domain, which is the #{-norm
of all singular vectors. In other words, the TNN results in a biased estimator as well as the
¢1-norm does. Therefore, some works [26, 49, 50, 54] proposed nonconvex penalties to replace
the ¢1-norm in TNN. For example, Li et al. [26] established a nonconvex £,-norm relaxation
model for low Tucker rank tensor recovery problem, which can recover the data in lower
sampling ratios compared to the convex nuclear norm relaxation model, and the alternating
direction method of multipliers (ADMM) was used to solve the resulting model. Xu et al.
[49] proposed a novel nonconvex surrogate for the tensor multi-rank based on the Laplace
function, which can more tightly approximate to the fg-norm than the tensor nuclear norm.
However, there are few works on the mechanism to produce equivalent surrogates for the
rank and the zero-norm optimization problems, although much research has been considering
the nonconvex surrogates. What’s more, prior studies mentioned above only focused on the
algorithm and its convergence analysis, but statistical error bounds of obtained solutions were
rarely discussed.

With an eye toward statistical performance, some researchers have studied the error bound
for various models. Wu [48] proposed a two-stage rank-sparsity-correction procedure to deal
with the problem of noisy low-rank and sparse matrix decomposition by adding adaptive rank-
correction terms designed in [31], and examined its recovery performance by developing an
error bound. However, [48] did not establish any theoretical guarantee that the recovery error
bound obtained by the corrected model is smaller than that of the model without correction
terms. Furthermore, it is difficult to generalize the error bound to tensor cases directly. In
the tensor algebra framework, Bai et al. [4] proposed an adaptive correction approach for
higher-order tensor completion and showed that the correction term with a suitable estimator
could reduce the error bound of the corrected model, while the corrected model mainly deals
with data missing problems without noises. In order to derive solutions with higher accuracy,
zhang et al. [55] presented the CTNN model for low-rank tensor recovery and provided a
non-asymptotic error bound, but this model could not address the sparse outliers.
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4 X. ZHAO, M. BAI, D. SUN, AND L. ZHENG

To address the above problems, in this paper, we not only pay attention to nonconvex
surrogates of the rank function and the £y-norm to overcome biased estimators yielded by the
£1-norm penalty and the TNN penalty, but also study the statistical performance analysis
of our method by establishing the recovery error bounds. We propose a bound constrained
Nonconvex Robust Tensor Completion (BCNRTC) model which aims to recover a third-order
tensor corrupted by impulse noise with partial observations. The proposed model consists
of two nonconvex regularization terms with the DC structure for low-rank and sparsity un-
der limited sample constraints and two bound constraints. These two nonconvex penalties
can be chosen as the minimax concave penalty (MCP) function, the smoothly clipped abso-
lute deviation (SCAD) function since such functions are continuous, sparsity promoting, and
nearly unbiased [12, 52]. In addition, we prove the equivalence of global solutions between the
bound constrained RTC problems and our proposed nonconvex model in theory. Recently,
some works [6, 15, 40, 46] have been proposed to solve nonconvex and nonsmooth problems.
Unfortunately, these works could not be applied to solve our proposed model directly. For
example, Bolte et al. [6] proposed a proximal alternating linearized minimization (PALM) al-
gorithm to solve the nonconvex and nonsmooth problems, but no constraints were considered.
Guo et al. [15] studied the convergence of ADMM for minimizing the sum of two nonconvex
functions with linear constraints, however, one of the nonconvex functions was required to be
differentiable. [46] analyzed the convergence of ADMM for minimizing a nonconvex problem
with coupled linear equality constraints, but the objective functions also needed to be Lips-
chitz differentiable. Therefore, for the proposed nonconvex and nonsmooth model, we design
a proximal majorization-minimization (PMM) algorithm similar to [24, 41, 53] to solve it.
The key idea of the PMM algorithm is to solve a series of convex subproblems with an initial
estimator to generate a new estimator which is used for the next subproblem. Specifically,
each subproblem solves a convex program which is to minimize a weighted combination of the
TNN and the ¢1-norm minus two linear terms, where the linear terms can be seen as the rank-
correction term and sparsity-correction term constructed on the initial estimator. Meanwhile,
we establish the recovery error bound between new estimators and initial estimators and also
discuss the impact of the correction term on recovery error. Compared with the one obtained
without these two linear terms, the error bound has a certain degree of reduction. Finally,
the convergence of the PMM algorithm is established by using the Kurdyka-Lojasiewicz prop-
erty and extensive numerical experiments are presented to demonstrate the efficiency of the
proposed BCNRTC model. Therefore, our work not only improves the tensor rank surrogate
function but also modifies the tensor sparsity measure.

The main contributions of this paper are four aspects.

e We produce and prove equivalent nonconvex surrogates with DC structures in the
sense that they have the same global optimal solution set as RT'C problems with the
tensor average rank and the £p-norm do. We also show that these equivalent surrogates
include the popular MCP function and SCAD function in statistics as special cases.

e A proximal majorization-minimization (PMM) algorithm with convergence analysis
is presented to solve the BCNRTC model, which is a nonconvex optimization prob-
lem with linear constraints and bound constraints. Each subproblem of the PMM
algorithm is to solve a convex program, where the two linear terms obtained by ma-
jorization can be seen as the tensor rank-correction term and the sparsity-correction
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ROBUST TENSOR COMPLETION 5

term constructed on the initial estimator.

e We establish a non-asymptotic recovery error bound for the subproblem of the PMM
algorithm, which gives the theoretical guarantee that under the mild condition the sub-
problem of the PMM algorithm can reduce recovery error bounds. Our results of re-
covery error bounds also suggest a criterion for constructing a suitable rank-correction
function and a sparsity-correction function. We show that rank-correction functions
and sparsity-correction functions constructed by the MCP function and SCAD func-
tion satisfy the above criterion.

e Numerically, we confirm that the error bounds decrease as the number of outer it-
erations increases. Moreover, extensive numerical experiments on color images and
multispectral images demonstrate the superiority of the proposed model over several
existing methods.

The rest of this paper is organized as follows. Some notations used throughout this paper
are introduced in Section 2. The bound constrained Nonconvex Robust Tensor Completion
(BCNRTC) model is proposed in Section 3. The PMM algorithm is presented to solve the
resulting model and its global convergence is also established in Section 4. In Section 5, we
establish a recovery error bound for the estimator generated from the PMM algorithm. Finally,
we report numerical results to validate the efficiency of our proposed model in Section 6 and
draw conclusions in Section 7.

2. Preliminaries. Throughout this paper, tensors are denoted by Euler script letters, e.g.,
X. Matrices are denoted by boldface capital letters, e.g., X. Vectors are denoted by bold
lowercase letters, e.g., «, and scalars are denoted by ordinary letters, e.g., . The fields of
real numbers and complex numbers are denoted as R and C, respectively. For a third-order
tensor X € C™"*"2X"3 we denote its (1, j, k)-th entry as &;j;. A slice of a tensor X" is a matrix
defined by fixing all indices but two. We use the notation X'(i,:,:), X'(:,4,:) and X(:,:,14) to
denote the i-th horizontal, lateral and frontal slice, respectively. Specifically, the front slice
X (:,:, 1) is also denoted by X (). A fiber of a tensor X is a vector defined by fixing all indices
but one. The fiber along the third dimension X (7, j,:) is also called as the (4, 7)-th tube of X
We denote |t] as the nearest integer less than or equal to ¢ and [¢] as the one greater than or
equal to t.

For X € Rmxm2Xn3  r(X) € R™"2" means the vector obtained by arranging the entries
of |X| in a non-increasing order, where |X'| means the tensor whose (4, j, k)-th component is
|Xijk|; and 7;(+) denotes the i-th entry of 7(-). For X € C™"*"2, ¢(X ) means the singular value
vector of X with entries arranged in a non-increasing order; and o;(-) denotes the i-th entry
of o(+). For any given vector &, Diag(x) denotes a rectangular diagonal matrix of suitable size
with the i-th diagonal entry being x;. For any matrix X, diag(X) denotes a vector of suitable
size with the i-th diagonal entry being x;;. Denote the function sign : R — R by sign(t) = 1
if t >0, sign(t) = —1if t <0, and sign(t) = 0if t =0, for t € R. For any X € R™"*"2x"3 ]et
sign(X’) be the sign tensor of X' where [sign(X)];;r = sign(Xi;x).

The inner product of two matrices X and Y in C™*"2 is defined as (X,Y) := Tr(X7Y),
where X denotes the conjugate transpose of X, and Tr(-) denotes the matrix trace. The
inner product of two tensors X', ) € C"*"2%"3 ig defined as (X,)) := 2?231<X(i), Y ®). The
Frobenius norm of a tensor X is defined as ||X||r = 1/(X, X). And the infinity norm and the
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l1-norm of a tensor are defined as || X||loo = max;x [AXyjx| and || X1 = 3702, D702, D702 |l
respectively. For any X' € C™*"2*"3the complex conjugate of X is denoted as conj(X') which
takes the complex conjugate of each entry of X'.

For any tensor X € R™*"2X"3 e denote X' € C"*"2X"3 a9 the results of the Fast
Fourier Transform (FFT) of all tubes along the third dimension. Using MATLAB command
fit, X = fit(X,[ ],3). One can also compute X from X by using the inverse FFT operation
along the third-dimension, i.c., X = ifft(X,[],3) . Let X denote the block diagonal matrix

of the tensor X , where the i-th diagonal block of X is the i-th frontal slice X\(i) of X , L.e.,
3(\(1)
/)E@)

X = bdiag(/‘?) =

We define a block circular matrix from the frontal slices X of X as

x®  xMms) x©)

x2) x® ... x6)
beire(X) =

X(‘na) X(n.3—1) .. X.(l)

It can be block diagonalized by using the FFT, i.e., (F,, ® I,,) - beire(X) - (F,‘LS1 ®I,,)=X,
where F',, is the n x n discrete Fourier matrix, I, is the n x n identity matrix, ® denotes the
Kronecker product, and (F,, ® I,,)/\/n3 is unitary. The command unfold(X) takes X into
a block nins x ny matrix:
x @
X2
unfold(X) :=

X('?"bs)

The inverse operator fold takes unfold(X) into a tensor form: fold(unfold(X)) = X. It is
showed in [29] that

). m(nyei 1
conj(X ) = X" vz':2,...,{n32+ J

The tensor spectral norm of X is defined as ||X|| := || X||, i.e., the spectral norm of the block
diagonal matrix X in the Fourier domain. The following properties will be used frequently:
L/ v 4
(X,0) = 55X, Y), | X]r= 71X
Now we give some basic definitions about tensors, which serve as the foundation for our
further analysis.

Definition 2.1 (T-product [20]). The t-product X *Y of X € C"*"2X"3 gpd Y € Cr2xnaxn3
is a tensor Z € C™*™x"3 giyen by Z = fold(bcire(X) - unfold(Y)). Moreover, we have the
following equivalence: X xY =Z < XY = Z.

This manuscript is for review purposes only.
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ROBUST TENSOR COMPLETION 7

Definition 2.2 (Tensor transpose [20]). The conjugate transpose of a tensor X € Cr>m2xns
is the tensor X € C"2X™M>"3 obtained by conjugate transposing each of the frontal slice and
then reversing the order of transposed frontal slices 2 through ns.

Definition 2.3 (F-diagonal tensor [20]). A tensor X is called f-diagonal if each frontal slice
X9 s a diagonal matriz.

Definition 2.4 (Tensor Singular Value Decomposition: t-SVD [20]). For X € R™M*"2X"  the
t-SVD of X is given by X = U xS x VH | where U € RM>X™MX"3 gnd VY € R™2X12X13 gre
orthogonal tensors, and S € R™M*"2X"3 4s o f-diagonal tensor, respectively. The entries in S
are called the singular fibers of X .

Definition 2.5 (Tubal multi-rank [19, 57]). The multi-rank of a tensor X € R™M*"2Xn3 g

a vector v € R™ with its i-th entry as the rank of the i-th frontal slice ‘/X\(l) of 5('\, i.e.,

T = rank(/}z(z)) .

Definition 2.6 (Tensor average rank [29]). For X € R"™*"2X"3  {he tensor average rank,

denoted as rank,(X), is defined as rank,(X) = = > 7%, rank(j(\(i)),

n3

Definition 2.7 (Tubal nuclear norm [29]). The tubal nuclear norm of X € R™M*"2X"3 - de-
noted as || X||rNn, is the average of the nuclear norm of all the frontal slices of X, i.e.,

| X Tnn = 7%3 >y H/)Z ' I, where || - ||« denote the nuclear norm of matriz, i.e., the sum of

all singular values of matrix.

Definition 2.8 (Tensor basis [56]). The column basis, denoted by €; is a tensor of size ny X
1 X ng with the (i,1,1)-th entry equaling to 1 and the rest equaling to 0. The row basis is the
transpose of €;, i.e., é‘iT. The tube basis, denoted by €é;, is a tensor of size 1 x 1 X n3 with the
(1,1, k)-th entry equaling to 1 and the rest equaling to 0. Hence, one can obtain a unit tensor
Ojjr € R™M*"2XM3 wyith the (i, j, k)-th nonzero entry equaling 1 via Ojj, = €; * €, * é‘jr. Now
for any tensor X € R™*"2Xn"3 jts description based on the basis form can be given as follows:
X =370 0702 Dk (Oujk, X) O

Other notations will be defined in appropriate sections if necessary.

3. The Equivalent Surrogates for Robust Tensor Completion Model. Since the tensor is
bounded in many practical applications, such as an 8-byte image with elements ranging from
0 to 255, in this section, we introduce a nonconvex optimization model for bound constrained
robust low-rank tensor completion problems.

3.1. Robust Tensor Completion Model. Given the noisy data tensor X € R™1*n2xn3
only partial entries of X are observed, and the noisy data tensor X is an unknown low-rank
tensor £L* € R™*"2X"3 corrupted by an unknown sparse noise M* € R™M*"2%X"3  Then, we
can recover the low-rank tensor £* by solving the following bound constrained Robust Tensor
Completion model:

—
min rank, (£) + A M(l

(3.1) £
s.b. Po(L+ M) =Pqa(X), [Mlso <bm, [IL]< by,

This manuscript is for review purposes only.



286

287
288
289

290

291
292
293
294
295

296

297

298

8 X. ZHAO, M. BAI, D. SUN, AND L. ZHENG

whereb;, b, > 0 are given constants, A > 0 is a regularization parameter, || - ||o denotes the
number of non-zero elements, rank, (L) is the tensor average rank, || - ||« denotes the infinity
norm, | - || is the tensor spectral norm, 2 is an index set, and Pgq is the orthogonal projection

operator on €2, i.e.,
L ngk, (iaja k) € Qa
Pa(&) = { 0, otherwise.

It is well known that the rank and zero-norm optimization problems are in general NP-hard.
Next, in terms of the variational characterization of the rank function and the zero-norm,
we give its equivalent surrogates of (3.1) and prove that they have the same global optimal
solution set as (3.1).

3.2. Equivalent Surrogates . Let ® denote the family of closed proper convex functions
¢ : R — (—o0,+oo] satisfying [0,1] C int(dom¢), #(1) = 1 and ¢(t}) = 0 where ¢} is the
unique minimizer of ¢ over [0, 1]. Let e be the vector of all ones. Then

(3.2) 2l = min{S2_, 6(w:) s.t.le —w,|z]) = 0,0 < w < e}
and
(3.3) rank(X) = min{X,6(0i(W)) st X[l — (W, X) =0, [W] < 1},

which are introduced in [28]. By the variational characterization of the zero-norm and the rank
function in (3.2) and (3.3), the rank plus zero-norm minimization problem (3.1) is equivalent
to the problem

1=

b Ly v a0 L ans o
i %Eii1zj:1¢(0j(5 ’ ) + AT, S0 50 6(Bijn)

. 1 = (1) S
G e ez -8

ng

Po(L + M) = Po(X), M|ls < bm, L] <,

I+ xe-B M) =0, 0<B<s |87 <1,

where n = min{n;,no} and &£ is the tensor of all ones. Notice that %Zyil(”i(Z)H* _
(ST 4 aE-BIM) = 0, 0 < B < & and |87 < 1if and only if |7, —
<.§(z),L(Z)> =0,(€E—-B,M])=0,0<B<E, and HS'(Z)H < 1, which can be obtained by the

definition of the dual norm.
For brevity, we denote J := {(4, 7, k)}. Now we consider the following penalty problem:

. 1 = ~ (i N1 o ~(i ~(1) =~
min DS 10(0y (8) + ASf " 0(B,) + Lwp (1B - (5.2

LMBS n3 =
(3.5) +PAE — B, |M])
st. 0<B<E 87 <1, PolL+M)=Po(X). Mo <bm. L] < by

where p > 0 is the penalty factor. Next, we show that the penalty problem (3.5) is a global
exact penalty for (3.4) in the sense that it has the same global optimal solution set as (3.4)
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does. The proof follows the line of [28, Theorem 5.1] in the matrix case by proving that the
problem (3.4) is partially calm in its optimal solution set. The partial calmness is defined in
[28], which is also given in Appendix A.

Theorem 3.1. Let ¢ € ®. The penalty problem (3.5) is a global exact penalty for (3.4).
Proof. Let (L*, M*,B*,58*) be an arbitrary global optimal solution of (3.4) and conse-
quently £* # 0 and M* # 0. For all i € {1,2,...,n3}, we write r} = rank(ﬁ(l)) and

s* = ||M*|lo. Then ar;(ﬁ(l)) > 0 and 7+ (M) > 0. By the continuity of o+ (-) and mg«(-),
there exists € > 0 such that for any (£, M) € B((L*, M*),¢),

(3.6)

(L) > 0 and 7 (M) > a with o = min(o, (D7), 7 (M*))/2 Vi € {1,2,. .. n3}.

We consider the perturbed problem of (3.4) whose feasible set takes the following form:

L g 30 o =)
Fe= {(QM,B,S) ’ %Ziil(“L e = (S L)) + MMy = (B, [M])) = e,

0<B<€ 8V <1, PalL+ M) =Pa(X), [ Mo < b |I£] < bl}.

Fix an arbitrary € € R. It suffices to consider the case € > 0. Let (£, M, B,S) be an arbitrary
point from F, B((L*, M*, B*,S8*),¢). Then, with 5 = ¢ (1)/a,

(3.7)
1

n n ~ 0] ni,na2,n ﬁ n ~ (i) ~() =~
L 160,87 )+ Amg o) + L (1Y) - 37,2

)

+ pA(IM[1 = (B, |M]))

2%2?;125:1[(;5(@(@(“)) + 50 (B7) (1 = 05 (8 )] + SIS [ (B)) + ey (M)(1 = 3(B))]
z%zﬁilzgil[aﬁ(aj(@m)) + p0v () (1 = 0,8 )] + ASE [0 (B)) + e (M)(1 — 5 (B))]
Z%E?ilﬁﬁlw(aj(?(i))) +o (1)1 - 038"y + AR (5 (B)) + ¢ (1) (1 — m;(B))]

1 1 — (i)
>(=B2r7 + As7)9(1) = —Tirank(L™ ) + AM o,
3 ns

where the first inequality is by the von Neumann’s inequality and (B, |M|) < (7(B), m(M)),
the second one is by the nonnegativity of ¢ in [0, 1], the third one is due to (3.6) and
p = ¢ (1)/a, and the last one is using ¢(t) > &(1) + ¢ (1)(t — 1) for t € [0,1]. Since

%Z?jlrank(ﬁm) + A|M*||o is exactly the optimal value of (3.4), by the arbitrariness of € in
R and that of (£, M, B,S) in F(\B((L*, M*,B*,5%), €), (3.7) shows that (3.4) is partially
calm at (L*, M*, B*,S§*), where the definition of partial calmness and its properties are intro-
duced in [28]. By the arbitrariness of (L*, M*, B*,S*) in the global optimal solution set, it is
partially calm in its optimal solution set. Since the feasible set of problem (3.5) is compact,
the penalty problem (3.5) is a global exact penalty for (3.4) follows from [28, Proposition
2.1(b)]. [ |
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Then, by letting ¢ (t) := { o), te[0.1], and using the conjugate * of ¥, i.e., *(s) :=

sup;cr{st —

400, otherwise

¥(t)}, we can obtain the following conclusion.

Corollary 3.2. Let ¢ € ®. There exists p* > 0 such that the problem (3.1) has the same
global optimal solution set as the following problem with p > p* does:

(3.8)

Let uw > 0. Denote

(3.9)

with 0(s) :=

(3.10)

min ;32"31HL ). - *2”3 S7_ 10" (poy(L

) + MM — S50 (oM, ]))

s.t. PQ(£ -I—M) = PQ( ); HMHoo < b, HEH <.

5]

0(s) := ub(ps)

—1*(|s|). Then the problem (3.8) is equivalent to the following problem:

1 i -
min — 57 G(o;(E7)) + A8, 0( M)

LM ng
s.t. Po(L+ M) =Po(X), [Mls <bm, L] <b.

It is worth noting that ¢ can be chosen as different functions satisfying ¢ € ®. In particular,
if ¢ is chosen as the one in Example 3.1, then 6 becomes the MCP function (3.14); if ¢ is
chosen as the one in Example 3.2, then 6§ becomes the SCAD function (3.16).

O a2 2 (a—2)3 .
Example 3.1. Let ¢(t) = o) with o(t) == 4t - % T, where a > 0 is
a constant. Clearly, ¢ € ® with t % Simple calculations show that ¥* takes the
following form:
(‘1*2)?|r . a—a?/2
R S if ff A0
* = 1 a’—2a a a—a*“/2 a
P (s) 7(12@(1)( 522 4 sp(1))? — 5 (1)+7 f o) < sa< oL
S — 1, if s> m
When a > 2, we have (1) =1 and 0(s) = |s| — ¥*(|s|) = %_Z%’ 5| < a, Set s := %
4 1, |s| > a v

_ s <
for some constants v > 0, we have %9(%) = %(a|s| — w*(a|s|)) = { sl =55 Isl <, If
2 :

p= %, u =% and a > 2, then the function g(s) defined in (3.9) is the MCP function.

Example 3.2. Let ¢(t) := 0 ith o(t) == %ltz +t, where a > 1 is a constant. Clearly,
¢ € . Then,

v(1)

0, s <
w*(s) = S — 1, >
e (59D — 1% oy <s

)7
1)
7).

b
S

I/\"‘
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|sl, sl < iy
Then, 0(s) = |s| — ¥*(|s]) = 1, |s] > (1) Set s :=
Is| = st (Isle() = 1% o <Isl < 5
2a—Dp(D) I8P » e =M
Ws(l) for some constants v > 0, we have
ls| Is| <
) >,
s |s] |s] (1)
0 ) = —( ) = 1, |s| > an,
Yo(1)” ve(1) Ye(1) 15| 1 12 <
E G 2(a_1)¢(1)(|3|/’7_ )%y <ls| <ay,
ol =
s s * s v“(a+1
and 72(’0(1)‘9(7@0(1)) - 72(’0(1)(“/s|0(|1) — ¥ (%L(|1))) - ,Szmiyz 5| > a7, Ifp=
N —2-n > T < |s| < ay.
L uw=72%p(1) and a > 1, then the function 0(s) defined in (3.9) is the SCAD function.
ve(1)
3.3. BCNRTC for RTC Problems. From the above discussion, the equivalent surrogates
problem (3.10) can be rewritten in a simplified bound constrained Nonconvex Robust Tensor
Completion (BCNRTC for short) form as follows:

(3.11) Iﬁn}\ﬂ I L]lran — H1(L) + (M1 — Ha(M))
st. Po(L4+ M) =Po(X), [[M|so <bm, L] <b,

where H; and Hs are defined as

1 (@)
(812) (L) = -Sg(e(L7), Ha(M) = S5 S A (M),
where g(xz) = E?i:ni(m)h(wj), h is a convex and continuous differentiable function which can be
defined as
$2
z <
(3.13) Way=1{ @ =7
[ =5, |zl >,
which is related to the MCP function wjs with h(x) = || — war(x), where
2
|CC| - La ‘$| <,
(3.14) wy(z) = 2y
3 l#>
The convex function h can also be defined as
) 0, 5 |l‘| < 7,
—27z|+
(3.15) h(a) = ¢ SRRy < a] < o,
o] = 252, o] > e,

which is related to the SCAD function wg with h(z) = |z| — wg(z), where

|:I"|72 ) |l‘| <7,
2 — —
(3.16) ws(a) = DHILN ) <z < g
W7 ‘$| > 72

This manuscript is for review purposes only.
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Remark 3.3. When H; = 0 and Hy = 0, the BCNRTC model (3.11) reduces to a convex
model (CRTC for short)

(3.17) g%l | L]|tan + Al M1
st. Po(L+M)="Pqo(X), [Mle<bm, L] <0,

which is actually a reformulation of the Robust Tensor Completion (RTC/¢;) [18] with two
bound constraints. We use the symmetric Gauss-Seidel based alternating direction method of
multipliers (sGS-ADMM) to solve the CRTC which will be illustrated in Subsection 6.2 for a
warm start of BCNRTC.

Notice that the feasible set of the problem (3.11) is bounded and closed, and the objective
function is continuous and proper, by Weierstrass Theorem, the solution set of (3.11) is
nonempty and compact.

In the next section, we will propose an algorithm to solve the BCNRTC model (3.11).

4. The Proximal Majorization-Minimization Algorithm. In this section, we will develop
a proximal majorization-minimization (PMM) algorithm to solve the BCNRTC model (3.11).

By using the indicator function, we can rewrite the BCNRTC model (3.11) to an uncon-
strained optimization problem as follows:

(4.1) g%l I £][rnn — Hi(L) + A([IM[[1 — H2(M)) + 6r, (£, M) + dp, (M) + dp, (L),

where D1 := {M | | M|lo < b}, Do :={L | |L]| < b}, T = {(L,M) | Pa(L+ M) =
Pa(X)}, and dp, (M) is the indicator function of the nonempty set D;.

The proposed PMM algorithm is to linearize the concave terms —H;(-) and —Ha(+) in the
objective function of (4.1) at each iteration with respect to the current iterate, say (£¥, M¥),
and generate the next iterate (L£¥+1, M**+1) by solving a convex subproblem inexactly:

(4.2)
mg{F<z,M;£k,Mk> = Lllexn — Hi(£F) = (VHU(LY), £ — £5) + A([ Ml — Ha(M")

»

— (VHa(MF), M = MY) + M = MY+ T2 — 241
+ 51“1 (,C,M) + 5D1 (M) + 5D2(E)}.

Let £F = U* « X% 5 (VF)H be the t-SVD, then it holds that VHy(£F) = U* + R¥ x (VF)H | where

— — 1 — 7 1
RF = ifft(R*,[],3) and Rk() = Diag(Vg(diag (zk( )))) = Diag(Vg(a(Lk( )))). For brevity,
the proximal parameter n > 0 is assumed to be a constant, although it is frequently varying
in practice to accelerate convergence.
By casting some constants, the subproblem (4.2) can be rewritten as follows:

) min | £oan = (VH1 (L), £) + MMl — (VHa(M"), M) + gllM - M|
4.3 ’
+ L = LHF + 61, (£, M) + 0p, (M) + 61, (£).
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ROBUST TENSOR COMPLETION 13

For convenience, we define W := (£, M). Note that F(W;WF) is strongly convex, by [35,
Theorem 1.9, Theorem 2.6], we obtain that F(WW;WF¥) has a unique minimizer.

Motivated by [3], we use an error criterion to describe the inexact solution in (4.3), i.e.,
we need to find WH1 and CF+1 .= (CE™, ChT?) such that

(4.4) an= 8F<£k+17Mk+1;£k7Mk) and HCkJrluF < nCHWkJrl _ WkHF,

where 0 < ¢ < % is a given constant.
Now, we summarize the PMM algorithm for solving the BCNRTC (3.11) in Algorithm 4.1.

Algorithm 4.1 The PMM algorithm for solving the BCNRTC (3.11).
1: Input: £9 M° Pq(X),\, v and 1. Set k = 0.
2: Find WFL CF*1 guch that CHHL € 9F (LR, MFHL 2R MF) and ||CFHY | < ne||[WFHE —
WE| .
3. If a termination criterion is met, set £* := L£FT1 M* := MF**1; else, set k := k+ 1, return
to 2.

4.1. Convergence Analysis. In this section, we establish the global convergence of the
PMM algorithm when h is chosen as the one in (3.13) or (3.15). Recall that the notation
W= (L, M). Let

QW) := [I£L]ltnn — Hi(£) + A([M[y = Ha(M)) + 61, (£, M) 4 dp, (M) + D, (£).

It is easy to see that F(WF; W*) = Q(W¥). Firstly, we show a descent lemma for Q(W).

Lemma 4.1. Let {W¥},en be the sequence generated by Algorithm 4.1. Then, for anyn > 0
and 0 < ¢ < %,

QW)+ (1 — 20 WH — WHI < QOV) vk 0

and furthermore, limy_, oo | W* — WH||p = 0, where |W*||p = \/H[’kﬂ% + [MFE||2.
Next, we show Q(W) satisfies the relative error condition.

Lemma 4.2. Let {W¥*}ren be the sequence generated by Algorithm 4.1, W* be a cluster
point and BF1 = (Bﬁ“,l’)’ﬂl) € 0Q(WHFHL). Then, there exist 5o > 0 and m > 0 such that

1B p < (M4 Ay + 1+ ne) W= WH g v WE WFHL € BOW*, 6).
Lemma 4.3. The function QW) is a KL function when h is chosen as the one in (3.13)
or (3.15).

The proofs of Lemma 4.1, Lemma 4.2 and Lemma 4.3 are given in Appendix C. Combining
Lemmas 4.1 - 4.3, we obtain the following convergence result of the PMM algorithm.

Theorem 4.4. Let h be chosen as the one in (3.13) or (3.15), {W¥}en be the sequence
generated by Algorithm 4.1 and W* be a cluster point. Then, for anyn >0 and 0 < ¢ < %,
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the sequence {W¥*}ren converges to W* as k goes to infinity, and W* is a critical point of
BCONRTC model (3.11), i.e., 0 € dQ(W*). Moreover, the sequence {W¥}ren has a finite
length ,i.e., Y oo g W — WH||p < 0.

Proof. As mentioned in Lemma 4.2, the sequence {W*},cn generated by Algorithm 4.1
is bounded which admits a converging subsequence, i.e., there exists a subsequence W¥i such
that Wki — W*, as kj — oo. Moreover, WF belongs to I't, Dy and Do, which leads to
or, (LR, MFi) =0, §p, (M*) = 0 and 6p,(£¥) = 0. So we have

QW) =|[L% | oxn — Hy(£5) + M| MP ||y = Ha(M™)) + op, (£%, M*9)
+8p, (MF) +0p, (LF)
= (L% |lonn — Hi(£%) + MMy — Hy(M™9))
=L lran = Hi (L") + A([|MF[|1 = Ha(M7)), as k; — oo,

(4.5)

where the last limit holds by the continuity of || - ||tax — H1(+) + A(]| - |1 — Ha(+)). Since the
sets I'1, D1 and D are closed and Wk belongs to I'y, D and Dy, we have W* belongs to I'y,
Dy and Dy, and so Q(W*) = || L*||lenn — H1(L¥) + A(||M*||1 — H2(M™)), which together with
(4.5), implies that Q(W*) — Q(W*) as kj — oo. Combining Lemma 4.1 - Lemma 4.3, the
conclusion is obtained according to [3, Theorem 2.9]. This completes the proof. |

4.2. Solving the Subproblem. In this section, the symmetric Gauss-Seidel based alter-
nating direction method of multipliers (sGS-ADMM)[25] is applied to solve the subproblem
in the PMM algorithm. Each PMM iteration solves a strongly convex subproblem of the
following form inexactly:

(4.6)

: . k o k n Coaaqkn2 Ny e pkg2
min || £l = (VHLU(ES), £) + MMl = (VH2(ME), M)) + T M = MH} + T - 253
s.b. Po(L+ M) =Pa(X), Ml <bm, L] <b.

Let £+ M = Z and add a proximal term. The problem (4.6) can be rewritten as
in[IL]lenn = (VH(EY), £) + A(IM ] = (VHy (MF), M) + gHM - ME|I%

(4.7) n gl!ﬁ—ﬁkH%ﬂr gHZ—Z’“H%Jr(SDI(M) +0p,(£)
st. L+M=2Z, Po(X)="Pa(2).

Let Ty := {Z|Pq(X) = Pa(Z)}. The augmented Lagrangian function associated with (4.7) is
defined by

L(L,M, Z:) =] Lln = (VEL(L), £) + MMy~ (VH(ME), M) + (V.2 = £ = M)
+ 2 M= MME + DL = L+ S e+ M= 27+ )2 - 24
+0p, (M) +6p, (L),
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where p > 0 is the penalty parameter and ) is a multiplier. The iterative scheme of sGS-
ADMM is given explicitly by

(4.8) ZtHs — arg min{.Z (L, M', Z; "},
Zels
(4.9) L7 = argmin{.Z (£, M, ZH%;yt)},
L
(4.10) Z — arg min{f(ﬁtﬂ,./\/lt, Z; yt)},
Zel'y
(4.11) Mt—i—l = arg min{g(ﬁﬁ_l,M, Zt+l; yt)}’
M
(4.12) YA =Y p( L M - 2,

where 7 € (0, (1 ++/5)/2) is the step-length. Next, we turn to compute the concrete forms of
solutions in each subproblem.
The optimal solution with respect to Z is given explicitly by

_ L ko
Z="Pq(X)+ g nPQ(u(E + M)+nZ"=)).

Before giving the solution of the problem (4.9), we need to present the following lemma.

Lemma 4.5. For any Y € RM*™Xm 5 0 and p > 0. Let Y =U x X VI be the t-SVD.
Then the optimal solution of the following problem

. 1
win,  {rI¥m+ J1 - VI 1121 < o}

XGRnlxn2Xn3
is given by X* =U * D, , * VI where D, , = ifft(min{max{S — 7,0}, p},[],3).

Lemma 4.5 can be proved easily. For brevity, we omit it here. It follows from Lemma 4.5
that the optimal solution with respect to £ in (4.9) can be given by

(4.13)
£ = argmin {|£llman — (VHI(£Y) = Y, £) + £ £+ Mt = 253+ D2 — 43
I£l<b 2 2

. +
R e
I£11<b,

where A = (—ﬁ/\/lt + pZte 4Lk £ Y VH(LR)/(n+ ) = Ut « St (VHH and DL, =
ifft (min{max{>* —1/(n + p),0}, b1}, 1, 3)-
On the other hand, the optimal solution with respect to (4.11) is given by

MU = arganin (MMl — (THo(M) M) = O, M)+ FIM = ME [}

+%HM Lot _Zt+1||%}

. +
= argmin {HMHl-i-n 'MHM—QH%},
M| oo <bm 22
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where G = (A\VHo(M¥) + pZH1 — uct*t 4+ pM* + Y1) /(n + p). Simple calculations show
that the closed form solution with respect to M+ can be given by

(4.14) 1 _ { sign(Giji) max{|Gij| — A/ (14 1), 0}, |Gijr| < b + A/ (1 + 1),
: ijk sign(Gijk ) om, |Gijie| > b + A (1 + ).

Now we are ready to state the sGS-ADMM for solving (4.7) in Algorithm 4.2.

Algorithm 4.2 A symmetric Gauss-Seidel ADMM for solving (4.7).

Input: 7, Q, \, v, 1, 1, Pa(X), £° MO YO, MF, £F and ZF. Set t = 0.
1 1

Compute 22 by ZiT2 = Po(X) + ﬁpg(,u(ﬁt + M) +n2k - Yh.

Compute L1 via (4.13).

Compute Z+! by ZtH! = Po(X) + ﬁpg(,u(ﬁt“'l + M) +nZk - ).

Compute M1 via (4.14).

Compute V' by (4.12).

If a termination criterion is not met, set ¢ := t 4+ 1 and return to 2.

Note that the objective function of (4.7) is nonsmooth with respect to £, M and quadratic
with respect to Z. By [25, Theorem 3], we can show the convergence of Algorithm 4.2, which
is summarized in the following theorem.

Theorem 4.6. Let {(Lt, Mt, Zt, V) }ien be generated by Algorithm 4.2. Choose p > 0 and
v € (0,(v/541)/2), then the sequence {(L', M!, Z)}ien converges to an optimal solution of
the problem (4.7) and {YV'}ien converges to an optimal solution of the dual problem of (4.7).

Proof. Notice that the problem (4.7) has a unique minimizer and the following constraint
qualification is satisfied:

There exists (L£*, M*, Z*) € ri(Dy x D1 x T'3) N E,

where € := {(L, M, Z)|L+ M = Z}. By [25, Theorem 3|, we can easily obtain the conclusion
of this theorem. ]

Remark 4.7. Actually, Algorithm 4.2 shows the process of solving the CRTC model if 7,
MPFE, £k and ZF are all equal to zero. For simplicity, we don’t give the specific algorithm
frame here.

Next we give the computational cost of algorithms. At each iteration of solving the sub-
problem of PMM algorithm, we need to calculate (4.8)-(4.12). The main cost of (4.9) is tensor
SVD. The number of the floating point operations of fft is O(nslogy(ns)), and we need to
calculate niny times, so the total cost of tensor fft is O(nglogy(ns)ning). Meanwhile the cost
of SVDs for n3 ni-by-ns matrix is O(nm?n3), where n = min{ny,no} and m = max{ny,ns}.
Therefore, the total cost of tensor SVD is O(nglogy(ng)ning + nm?n3) operations. The
complexities of computing Z/*!, M*! and Y1 are all O(ninan3) operations for the inde-
pendency that operation on each entry of the tensor. Then the total cost of the subproblem
of PMM algorithm at each iteration is O(nglogy(ng)ning + nm?ng). During the algorithm
execution, the largest data we storage is the n; X ny X ns tensor, so the memory complexity
is O(ninans).
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ROBUST TENSOR COMPLETION 17

5. Error Bounds. In this section, we establish the error bound between the optimal solu-
tion (L£¢, M€) of (4.3) and the ground-truth (£*, M*) in Frobenius norm. Meanwhile, we give
the analysis that the error bound of BCNRTC can be reduced compared with that of CRTC
as long as the given initial estimator is not far from the ground truth.

We assume that || M*||o = 5 and the tubal multi-rank of £* is » = (71, 72,...,7,3). Denote
Ag = L~ L* and Ay := M — M*. Firstly, we provide the connection among AL,
|Ap]l1 and the Frobenius norms of Az and Ay, Similar results have been studied in [55],
which established the relationship between the TNN and the Frobenius norm of the tensor
by using the tubal rank. We show a structure constructed by the average rank, which may
provide a more clear result of the error bound.

In order to display the structure, we study the subgradient of the TNN at first. Considering
the L* with the structure L* = Diag(I/}(l), I/;\*(Q), cey I//\*(ng)), where I//\*(l) € C™>*™ with the
SVD L* W U SO (v Notice that rank(f; (l)) = r;, by dividing the first r; columns
and the last n; — r; columns, we have the U®) = [Ugi),Ugi)], where ng') € C™m*" and
U e crxu=r)_ Similarly, V@ = [V V)] where VIV € Cn2x7i and V) € Crexma—ri),
From the subgradient of nuclear norm of the matrix, we have

( i i 7 i 7 n1—r; no—r; % /\*(l)
{Ug)(Vg))H+U§)W()(Vé))H|W() e clm—rixma=rs) || < 1} — 9"

We denote that U3 = [U®, 0] € croxrmas, 17,9 = (v 0] € craxrmes, T3, = [0,UY)] €
Cmx(ni— rmm) V, TAL [07 V;)] Cn2X(n2—Tmin) gnd
/\(z) — 0 0 (TL _Tmin) (n _Tmin)
W _[0 W(i)]e(cl e,
where rmax = max{ri,ro, ..., s}, Tmin = min{ry, 7, ..., 7.} and [W®| < 1. Then we
have O, (V. ) 4 T, 70w v — vy +U(’)W(Z)(V§)) co|T*|..
Since Ul( ) (C"lx"max have the same size for i = 1,2,...,n3, we can stack the matrices

to form a tensor Z/ﬁ € C™M*TmaxXN3 T ef ng, Vl, Vg and W are constructed likewise, we can
see the following proposition holds.

Proposition 5.1. Let Ij{;, Zj{;, Y)\l, Vs and W are defined as above, and U; = iﬁt(ljl; [1,3),

Us = ifftUs, [1,3), Vi = ifft(Vi,[1,3), Vo = ifft(Va, [ 1,3), W = ifft(OV, ] ],3). Then we have

(5.1)
S(L*) = {ul s VI + Uy« W VI W € Cmmmmin) X (2=rmin)xns |1y < 1} = ||L*|| 7w

The proof of the Proposition 5.1 is given in Appendix D.1. Obviously, U; € R™ *"maxx73
and V; € R"2X"™maxXN"3 haye the same tubal multi-rank with £*.

Remark 5.2. A similar work is given in [29]:
G(LY) = {Us+ VI +RIUI +R =0,R Vs =0,[|R|| <1} = || L*| on,

where £* = U, x Sy VI is the skinny t-SVD of £*. However, its proof is not given, and it is
not shown how to construct Us and V. If Uy and V, are constructed as same as those in [55]
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18 X. ZHAO, M. BAI, D. SUN, AND L. ZHENG

similarly to the skinny SVD of matrix, then S(L£*) O G(L*), and the “equality” relationship
holds when r; = rmpax for i = 1,2,...,n3. If Us; and Vs are constructed as same as ours, i.e.,
Us = Uy and Vs = Vy, then S(L*) = G(LY).

Denote the set T by
T o= {Uy * VH 4+ W V| Y € Rm2XTmacxng ) ¢ RrXTmaxxna )
and its orthogonal complement by 7. The set 7 is the tangent space with respect to the

rank-constraint tensors {X € R™*"2%"3 |rank,(X) < rpax} at L£*.

Proposition 5.3. For any tensor X € R™M*"2X"3  the orthogonal projection of X onto T
and T+ are given by

Pr(X) =ty « U s« X + X« V=« VI — g s U 5 X 5V 5 VI

Pro(X) =Us x U + X % Vo x VI

The proof of the Proposition 5.3 is given in Appendix D.2. For simplicity of subsequently
analysis, we denote

(5.2) dp = fuul*v{f VH (L)F, da = (M*) = VHy(M®)| F,

ign

\[HS g
r:zzllr’ Q] :=m, and A := Ay + Ay

Denote @”k as a unit tensor with the (7, j, k)-th nonzero entry equaling 1. Let the set of
the standard orthogonal basis of R"1*"2*"3 be denoted by © := {O;;,]1 < i <n,1 < j <
n2,1 <k < nz}. For each unit tensor ©;;), , there exists a unique index w; = j + (1 — 1)na +
(k — 1)ning such that ©,, = Ok, w; € {1,2,...,n1n2n3}, which is a bijective mapping from
{1,2,...,n1} x{1,2,...,n2} x {1,2,...,n3} to {1,2,...,n1n2ns}. Then Q be the multiset of
all sampled i.i.d. indices wy, ..., w,, mapping to the subset of {1,2,...,n1} x {1,2,...,na} x
{1,2,...,n3}.

Lemma 5.4. For any n > 0 and A > 0, we have
(5-3) 1Acllzww < pillAcle + 2l Andles 1A umlh < allAcle + all Al r,
where p1 = V2r + de/T + )| £° = L¥]|p, p2 = AdmVE + | M* = MF||p, g1 = (deyr +

nlC* = £ p) /X and g2 = V5 + daV/5 + nl| M — MF||p /A

The proof of the Lemma 5.4 is given in Appendix D.3. Let p;;r denote the probability
to observe the (i, j, k)-th entry of X', we suppose that each element is sampled with positive
probability.

Assumption 5.1. There exists a positive constant p1 > 1 such that p;ji > (,ulnlngng)_l
Note that Assumption 5.1 implies that

ny n2 n3

i=1 j=1k=1
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Define the operator Dq : R™Xm2X1s 5 R™ by Do (X) 1= ((Oy,,X),..., (0, ,X)). The
adjoint Dj, : R™ — RMX12X13 by D (D (X)) = > (O, X)Oy,. Let € = (€1,...,6,)T be
independent and identically distributed (i.i.d.) Rademacher sequence, i.e., i.i.d. sequence of
Bernoulli random variables taking the values 1 and -1 with probability % Define

(5.5) B =E H;zaaa

1
=FE||—9¢
. Bm Hm ale)

o0

The following Lemma shows that the sampling operator Pq satisfies some property spec-
ified in a certain set with high probability. Similar results can also be found in [21].

Lemma 5.5. Suppose that Assumption 5.1 holds. Given any positive numbers p1, p2, q1,
g2 and t, define

K(p,q:t) :={A = Ap+ Apml [[Acllovw < pillAcllp + p2llApmll

(5.6)
1AMl < @l Azl + @l Amlle, Ao = 1, |ALIE + [AmlF > traningns},

where p := (p1,p2) and q := (q1,q2). Denote Bs := (ﬁ%p% + B%p% + B?V(q% + Bi,tq%)% Then, it
holds that for all A € K(p,q,t),

AT + [[A Mm%

> — 2561111203 5%
Hiningng

67 Pa(d)[} > ElO.A)7 -

exp|[—mt? log(2)/64]
1—exp[—mt? log(2)/64]

probability at least 1 — m ift = 8\/W.

In particular, the inequality (5.7) holds with

with probability at least 1 —

The proof of the Lemma 5.5 is given in Appendix D.4.

Proposition 5.6. Suppose that Assumption 5.1 holds. Then, there exists Co > 0, such that,
1t holds that either

Azl + | A2 1 1
l £HF+ | MHF < 32(bm+bz)2,u1 og(ni +ng +nz+1)
n1nong mlog(2)

or

X 12 X 2 2 x _ prk 2 x _ aqk 2
13213+ 1Bml 64 [(dcﬁ+nllé LU | (Vo a4 T M ||F>]

ninong ninans
+ Co [BR(V2r + e/ 4 llL” — £4]| )

s, Bl + )17 = L4102

+ B0V + M~ MF ) 5

* k 2
+ B <\/§+dM\/§+n|M )\M ”F> ]

1
ni+nz2+ng’

with probability at least 1 —
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20 X. ZHAO, M. BAI, D. SUN, AND L. ZHENG

Proof. Let b : HAHOO Since (£, M€) is the optimal and (L*, ./\/l*) is feasible to the
problem (4.3), we have Ao < 2bm and || Azlloe < [1£°]| + I£*]] < 2b. Hence, b <
IAL]loo + | Ao < 2(by + br). We consider the following two cases:

Case 1: Suppose that [|Az]|% + |Aum]% < 832u1n1n2n3\/w. Then we im-

mlog(2)
mediately obtain that

Arl2 + 1A M]2 log(ni +na +n3 +1
A%+l M||F§32(bm_|_bl)2'u1 g(n1 +ng +n3+1)
n1nans mlog(2)

Case 2: Suppose that || Az|% + || A% > 832M1n1n2n3\/w It follows from

mlog(2)
the definition of b that A/b € K(p,q,t), where ¢t = 8\/W, and p = (p1,p2) and
q = (q1,q2) are given in Lemma 5.4. Due to (5.4) and Lemma 5.5, we obtain that with
probability at least 1 — m,
HAHF P o IALIE + 1AM 2 272
5.8 < — 256 b
(5.8) v—— —1Pa (A)F+ DriraTts + 256p1n1n2n3/35

Since (L, M¢) is the optimal solution of (4.3) and (L£*, M*) is the true tensor, we obtain
Pa(A) = 0. In addition, due to ||Az||coc < 2b;, we then derive from (5.3) that

IANE ZNALIE + 1 ArIE = 21 ALllooll Al
> AL)E + 1AmlE = 4bi(ar | Acllr + g2ll Aml )

IALIE + | Al

> Belf + |AulE - 1657(a3 + ) - -

3 - -
=5 (IALlF + [ ApmllE) — 1657 (a7 + g3)-
By combining (5.8) with (5.9), we obtain that

IALIE + 1AmllE _ 6467 (af + ¢5)

< + 1024u%n1n2n35§52.
n1Mang n1M2N3

(5.10)

Recall that Sg := (B%p% + [J’%pg + B?qu% + ﬁ%/lq%)% By plugging this together with Lemma 5.4
into (5.10) and taking Cy := 4096u3n1n9n3(by + by)?, we complete the proof. [ ]
For the third-order tensor, we need to avoid the case that each fiber is sampled with very high
probability. Let R.ji, := X pijk, Cisk 1= Z;Lilpijk, Tij. := 32 pijk, the following assumption
is used to avoid this situation.

Assumption 5.2. There exists a positive constant ps > 1 such that maX{i,jyk}{R:jk,C’i:k,
} — m1n{n1,n2,n3}

We now estimate an upper bound of E[| LD (e)||. First, we give a brief introduction about
Orlicz ¥g-norm. Given any s > 1, the Orlicz ¥s-norm of a random variable z is defined by
2]l := inf{t > O|E exp(|z|®/t*) < 2}. The proofs of the followings two lemmas are given in
Appendix D.5 and Appendix D.6, respectively.
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ROBUST TENSOR COMPLETION 21

Lemma 5.7. Under Assumption 5.2, for m > nlog((n1 + n2)n3)(log(n))?/us, there exists
a positive constant C such that

~ I

1
BN L (TR

e = | L2500

where 1 := min{ny, na}.

Lemma 5.8. There exist C > 0 and M > 0 that depend on the Orlicz ¥1-norm of € such
that 1 M(log(2m) + 1)

" og(2m) +
—% < .
Lope) < MES

[e.9]

Bm =E

We first define two fundamental terms

T = (dL\/;+7I||>\£*—5k||F)2 + (\/§'+ A3 + 77||M*;\Mk”F)2’
Yo := (V2r +dgyr +n||L*— LF|F)? + (dM\/gv)\ + || M* — MF¥|| )2

By combining Proposition 5.6 with Lemma 5.7 and Lemma 5.8, we can easily establish the
following error bound results.

Theorem 5.9. Suppose that Assumption 5.1 and Assumption 5.2 hold. Then, for m >
nlog((n1 + n2)ns)(log(n))?/pa, there exist constants C > 0, C1 > 0 and Cy > 0 such that

IALIE + 1AmIF

(5.11) ningn3
: 9 9 2
< 64b; T, 10 Ci3eps logﬁ(nl + n2)ns) T, 1 <M(log(2m) + 1)> T,
ningng nm Cm

_ 1
ni+ne+ns’

When H; =0, Hy =0 and n = 0, the error bound in Theorem 5.9 is just the error bound
of the CRTC problem (3.17). From Theorem 5.9, we can see that the second term in the
maximum of (5.11) dominates the first term. Thus, the error bound is dominated by the
second term. Now, we denote the second term as £,,. In fact, when H; = 0 and Hy = 0, we
obtain that dz = 1 and dyq = 1 according to (5.2). In this case, we denote the second term
as £ . Note that £,, < £, when dz < 1 and dp < 1.

with probability at least 1 —

— (i) — (i — (i) — (#)
Let UY ~ and V¥~ denote the first r; columns of U*  and V¥ . Next, we show that
the error bound of (4.3) is lower than that of (3.17), i.e., dp < 1 and dp < 1.
‘ — () @) ()

— ()
Theorem 5.10. Let evp, (L* ) := =

L vEn —ot v

fOT?::L-'-,n:g,

F
and assume that

=@ @) .
A —(7)

(5.12) Iz L. I < min L 1—exp | —v2ri (1 —evm (LF ) , L ,
o (D) 2

\)

then dy < 1.
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Proof. Let T* = UD SOV wigh D = U, UD] and v, = (v, V), Ul €

Craxri, ng‘) € C™*"i_for4=1,---,n3. Note that
) ) —©@)  ~(@) )
i Dy 1 rr -r — ()
1o Y o0y < - g (1o valE B e o e o (),
V2 o (D)

where the first inequality follows from the proof of [31, Theorem 3] and the second inequality
is due to the inequality (5.12). So we obtain
— (i) ; i — (i) @ (i) — (3) i i
T LT Pty 12 S L TN T\ Z R L LTS L
—(7)

<o (TF )ty = evm (T8 ) = v

On the other hand, it follows from (//'\1(“ = [Ugi),()] € CmXTmax and ‘//\1(i) = [Vgi),()] €
CnzxTmax that

1 (@) ~@G), =) 1
dz == — VH (LM% = v (b)) O v YR <« =
2= leh < Vi = VH(LYIE nglu i O <
This completes the proof. |

Theorem 5.10 guarantees that dy < 1 if the estimator £* does not deviate too much from
L.

Remark 5.11. Theorem 5.10 removes the rank constraint condition r; < W‘_,Y(TQ 44
Tng) in [54, Lemma 4.2].

Theorem 5.12. Let M* := Diag(vec(M*)), M* := Diag(vec(M¥)), and evp,(MF) :=
%HVHQ(MIC) — sign(MF)||p. Assume that

|M* — M*||p
os(M*)
where oz(M*) = min{| M || M}

< min {\}5(1 — exp(—\/2>'§(1 — EVH2(Mk))))a ;} ;

ik 0}. Then, we have dyq < 1.

Proof. We can obtain the following decomposition
M* =Diag(vec(sign(M?*)))Diag(vec(|M*|))Diag(vec(sign?(M*)))
=Diag(vec(sign(M*))) P Ps... PsDiag(m(vec(|M*])))
PEPE | PDiag(vec(sign®(M*))),
where Py, Pa,..., Py are elementary transformation matrices. Let M * = U*Z*(Vj)H be
the SVD, where U* = [U7 U3], V* = [V V3], U € RM"2™%5 and Vi € R™M"2m3X5 Thig

implies that

vpr
0

=Diag(vec(sign(M*))) P Py...PsPZ PE | . PHDiag(vec(sign?(M*)))

=Diag(vec(sign(M™))).

viv —w o |V —vrey

(5.13)
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Notice that o5(M™*) = min{| M, |[M7;, # 0}, we have
1 ) N 1 ) ) . N
dm :—NHVHQ(Mk) — sign(M™)||Fp = —~||D1ag(vec(VH2(Mk))) — Diag(vec(sign(M™)))|| ¢
V3 V3
1 . * *
=—||Diag(vec(VHy(M"))) = UT(VH) | r
V3

1 |M* — M| F K
<——1 1—-v2— <1
< - gston (1 - VLI ) o <1
where the third equation follows from (5.13), and the first inequality follows from [31, Theorem
3]. [ |

The above theorem demonstrates that dyg < 1 if M* does not deviate too much from
M*.

Now, we analyze the constructions of VH; and V H,. In order to get a small error bound,
according to Theorem 5.9, we desire dz and da4 as small as possible, i.e., VH; (L") is close to
Uy x VH and V Hy(MPF) is close to sign(M*). Firstly, let VHy(LF) = UF « RF x (VE)H | where
UF = [UF UE] and VF = [VF VE] with UF € R X Tmaxxns and PF € R2Xmmaxxns  Jf £F §s close
to £*, we desire VH; (L) is close to UF * (VF)H. Notice from (3.13) that

/ £ <
(5.14) Wy =4 v =
sign(z), |x| > 7.
It is observed from (5.14) that the function R’ is S-shaped with two inflection points at 4+~
and the parameter v mainly controls the shape of h/, the steepness of h' increase when 0%
decrease. So, there exist some 7 € (0, ;] such that the following property holds:

k Tk - .
(15)  (Volo@ ) = (@ )~ o BT i

Similarly, the SVD of M* is given by US(V)#. Let U; and V1 denote the first 5 columns

of U and V. If M* is close to M*, we desire Diag(vec(VHy(MF))) is close to l~]1‘~/fl So,
there also exist some ~ € (0, b,,] such that the following property holds:

1, MZ]- >0,
’ EN o
(5.16) W(ME)~{ —1, M <o,
0, otherwise.
Remark 5.13. Notice that if VH; and VHs are obtained from the derivative of (3.15),
ie.,
Qa ‘$| < 1,
(517) h (.I) = %lg'y?(x)v 7 < |Jf| < 72,
sign(z), |z| > 72,
then, the properties (5.15) and (5.16) hold. And the results can also be established if VH;

and V Hj are chosen as the correction function in [31].

Remark 5.14. By numerical experiments, we verify that d; < 1 and dyq < 1 when h is
chosen as the one in (3.13). The relevant results can be found in Table 1.
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6. Numerical Experiments. In this section, we present numerical experiments to show
the effectiveness of our BCNRTC method in recovering color images and multispectral images,
and compare it with the Robust Tensor Ring Completion (RTRC) [17], the Robust Tensor
Completion (RTC/;) [18] and the Nonconvex Robust Tensor Completion (NCRTC) [58]. The
RTC/¢; model is a convex model and the NCRTC model is nonconvex, which gives the non-
convex approximation of the sparse term compared to the RTC/;. The superior performance
of NCRTC compared to the RTC/; in terms of recovery quality has been demonstrated in
[58] via extensive numerical results. To show the effectiveness of the BCNRTC more clearly,
we also present results of RT'C/;. For fair comparisons, the parameters in each method are
tuned to give optimal performance. All experiments are performed on an Intel i7-2600 CPU
desktop computer with 8 GB of RAM and MATLAB R2020a.

We define the sample ratio (SR) as SR::mL?Jn3 for an m; X ny x n3 tensor, where 2 is
generated uniformly at random and || represents the cardinality of 2. Meanwhile, we use «
to represent the impulse noise level. For each tensor, we randomly add the salt-and-pepper
impulse noise with ratio «, and the observed tensor Pq(X) is generated by the given SR.

To evaluate the performance of different methods, the peak signal-to-noise ratio (PSNR)
is used to measure the quality of the recovered tensors, which is defined as follows:

ningng(max; j, £ — min, j L£*)?

PSNR(L) := 101log - ,
0 12+ — L)%

where £ and L* are the recovered tensor and the ground-truth tensor, respectively. The
relative error (RE) between the recovered and the true tensor is defined by RE := le—Lolr

6.1. Stopping Criteria.

6.1.1. The stopping criterion for the PMM algorithm. For the nonconvex BCNRTC
model (3.11), we adopt the relative KKT residual

(6.1) Mkt := max{nz, nm,npt < 3 x 1072

to measure the accuracy of an approximate optimal solution obtained by the PMM algorithm,
where

(6.2)
np £+ M= Z|F 0 ”£_PrOX||'||TNN+5D2(')(y+£+VHI(E))”F
P = s = )
1+ 1 2]F + [£llF + M ° L+ [IVIr + I£]lF + [[VHL(L)|F
B M — PrOX)\“.”l_H;Dl(.)(y + M+ AVHy(M))||F
e L+ e + [Mir + [WWH M)
with

. 1
Proxy¢(x) := arg min f(w) + ﬁHW —x|%

denoting the proximal mapping of f with parameter A [35].
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714 6.1.2. The stopping criterion for the sGS-ADMM algorithm. In order to evaluate the
715 performance of sGS-ADMM for solving convex subproblem (4.7), we use the primal infeasi-
716 bility np and relative duality gap defined by

. |pobj — dobj]
717 = - —,
’ lgap = |pobj| + |dobj|
718  where
. n
pobj = Lllran = (VH1(£F), £) + A(|M ]l — (VH2 (M*), M) + S lIM = M3
719
+ 1L = £¥F + 2112 - 2F3,
2 2
720 and
AV Hy(M* 2 Hy(£h)|)?
dobj :=X min ||M||1+1 M — ./\/lkJr—v 2MO)+ Y -7 Ek+7y+v 1(£7)
1Moo <brm 2\ sl 2 .
VH, (L) | AV Hy (M ?
721 + min ||£||TNN+”H£ <£k+y+1()> UHMMFM
12l <b 2 " A2 -
n | n U 1
: Iz = Zk _ v Zk A k2 A kjy2 _ - 2
+oomn [2 |2 (2= 2)| |+ @25+ Bkt + Jimti - 11
722 are the primal and dual objective function values, respectively. For given tolerance Tolg,
723 we will terminate the sGS-ADMM when max{ngap,np} < Tols or the number of iterations
724 reaches the maximum of 200. We initialize Tolg to be 3 x 1072 and decrease it by a ratio, i.e.,
725

Tolf*! =Tolk/1.1.

[\V]

726 6.2. The Setting of Parameters. In order to improve the convergence speed of Algo-
727 rithm 4.2, based on the KKT optimality conditions of problem (4.7), we adopt the following
728 relative residuals of £ and M to update the penalty parameter y in the augmented Lagrangian
729 function:

k| YH+VH(LF)
’ £- Prox%(H'HTNN-ﬁ-(SDz(')) (E N nl ) HF

D, = 7
1 L+ 5lIVlF + L5 F + S IVHL(LR) |
730
k| VHAVHa(MF)
HM _Prox%()\||||1+5D1()) (M ++>HF
Dy = ’

L+ S IVIE + [MF|[F + 311V Ho (MF)]| 7

731 which is a similar strategy as [23]. Let np := max{np,,np,}. Specifically, set u® = 0.1. At
t+1

732 the t-th iteration, compute y!*1 = Z{”ﬁ and then set
D

e, LT, 1.1, max {xt“, ﬁ} < 50,
733 ptt =0 &N A>T, with £=4 o max{xt“, xtl‘H} > 500,
pt, otherwise 1.5, otherwise.
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For the proximal term in the PMM algorithm, the parameter 7° is initialized as 10~* and
gradually decreased by some factors ¢ € (0,1), i.e., n*T! = ¢n¥, where * denotes the penalty
parameter value at the k-th PMM iteration.

In our following experiments, the function h in (3.13) which is related to the MCP func-
tion is used in both H; and Hs for simplicity. Meanwhile, we use 1 and 79 to denote the
parameters in H; and Hs, respectively. The parameters A, 7; and ~» are sensitive to the
recovery performance. For different sample ratios and different noise levels, we use the grid
search method to get the best values of A, 71 and 72 in terms of PSNR values of recovered
images. These best values show that the value of A depends on the sample ratio, noise level,
~vo and the size of tensors. By using the data fitting method, we obtain the fitting function
of \, i.e., \ = —L— where ¢ is chosen from {0.4,0.5,0.6,0.7} to get the best recovery

\ SR’yga’rLgT?L

performance. The parameter ; is chosen as 10(1.2 — SR) and 5 is chosen from {0.3,0.4},
respectively. For practical problems, we adjust the above parameters slightly to obtain the
best possible results. The step length 7 in (4.12) can vary in the range(0, (v/5 +1)/2) [25]. In
our numerical test, we find that the larger the step length, the faster the convergence speed.
Hence, we set 7 = 1.618 in all the experiments. In experiments, all testing images are normal-
ized to [0, 1]. Therefore, we set by, = 1 and ||£|lcc < 1. According to the equivalence between
norms, we have ||£]| < \/ninans||L||s. So we set b = /ninzng in our numerical experiments.

As mentioned in Theorem 5.10 and Theorem 5.12, a lower recovery error bound can be
obtained if the estimator (£*, M*) in the PMM algorithm does not deviate from the ground-
truth (£*, M*) too much. Therefore, we use the solution obtained from solving the CRTC
problem (3.17) as the initial estimator to warm-start our PMM algorithm. The sGS-ADMM
is implemented to solve the CRTC method and will be terminated if (6.1) is satisfied or the
number of iterations reaches the maximum of 200, where VH;(-) and VHa(+) in (6.2) vanish.
We use the grid search method to get the best choice of A, i.e., a value that gives nearly the
highest possible PSNR value. And we use a similar strategy as [23] to update the penalty
parameter (.

6.3. Error Bounds and the Performance of the PMM Algorithm. In this subsection, we
test error bounds and the performance of the PMM algorithm in different outer iterations. The
test image is Pepper, and the test results are given in Table 1 which reports d, duq, relative
error and PSNR values of the CRTC and the first three outer iterations. In all experiments in
Table 1, the stopping criterion of the PMM algorithm is achieved in the third outer iteration.

We can see from Table 1 that dz = 1 and dyq = 1 in CRTC, and dz < 1 and dy < 1
in each outer iteration of PMM algorithm, which verifies the results of Theorem 5.10 and
Theorem 5.12. The PMM algorithm substantially reduces ds and daq in the first iteration.
The first outer iteration improves the recovery quality at least 33% in terms of the relative
error with respect to the CRTC model.

Table 1 also shows that ds and d continue to decrease as the number of outer iterations
increases, which implies that the upper error bounds in (5.11) in Theorem 5.9 continue to
decrease. The PMM algorithm significantly improves the recovery quality in terms of both
the relative error and the PSNR values.
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Table 1
The values of dz, dap and the performance of the PMM algorithm for Pepper image in different outer
iterations with different sample ratios and noise levels.

[ SR | a ] [ CRTC 1 2 3]
dr 1 09432  0.923  0.9131
0.9 dm 1 0.5317  0.5153  0.5104
: RE 0.0681  0.0393  0.0294  0.0257
PSNR | 29.27 34.04 36.56 37.72
0.8 dr I 0963  0.9379  0.9262
0.3 dam 1 0.5339  0.5195  0.5146
: RE 0.094  0.0584  0.0447  0.039
PSNR | 26.47 30.6 32.93 34.12
dr 1 0.9817  0.9559  0.9451
0.4 dam 1 0.5364  0.5241  0.5195
‘ RE 0.1279  0.0866  0.0692  0.0611
PSNR 23.8 27.18 29.13 30.21
dr 1 0.952 0.935 0.926
0.9 dm 1 0.6143  0.6011  0.5968
: RE 0.0773  0.0478  0.0377  0.0334
PSNR | 28.17 32.34 34.4 35.46
o7 dr 1 09672 0.9474  0.9386
: 0.3 dam 1 0.6262  0.6201  0.619
: RE 0.1054  0.0668  0.0535  0.0491
PSNR | 2547 29.43 31.37 32.11
dr I 09802  0.963  0.9552
0.4 dpm 1 0.6253  0.6213  0.6209
‘ RE 0.1415  0.0961  0.079  0.0727
PSNR | 2291 26.28 27.98 28.7

6.4. Random data. In this section, we present the results to analyze the success ratio on
random data. We present the colormap of 3-order random tensors £ with size 100 x 100 x 30
and all entries £;j;, € [0, 1]. The tensor average ranks are 2, 5 and 8, respectively. The sample
ratio SR increases from 0.3 to 0.8 with increment 0.1 and the noise level « increases from
0.1 to 0.6 with increment 0.1. For each pair (SR, ), we simulate 100 test instances. We
consider two kinds of success ratios. One is defined by the percentage of successful entries
([Lijk — L] < 1072) from total entries. The another is defined by the relative error. If the
relative error is smaller than 1072, then the tensor recovery is regarded as successful and the
success ratio is denoted by 1(= 100%). Figure 1 reports the fraction of successful recovery
for each pair. The first row reports the success ratio defined by the percentage of successful
entries from total entries, and the second row reports the success ratio defined by relative
error. The success ratio in the second row is defined by 1 if the recovered tensor L satisfies
£ — L*|r/|1L*|F < 1072, and defined by 0 for others. Figure 1 shows: (1) the recovery
success ratio is higher when the average rank is smaller; (2) the tensor data is more difficult to
recover when the sample rate is lower and the noise level is higher; (3) in some cases, the entire
tensor is judged to be failed to recover, but there are still some entries that can be successfully
recovered. Numerical results in Figure 1 also show that the rank and noise level of tensors
greatly affect the recovery of tensors. For example, under the setting that the average rank is
8 and the noise level is 0.6, it’s hard to recover the data with sample rates from 0.3 to 0.7.
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(a) Average rank=2 (b) Average rank=5 (c) Average rank=8
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&
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(d) Average rank=2 (e) Average rank=5 (f) Average rank==8

Figure 1. The success ratio for varying sample ratio and noise level under different average ranks, where
the success ratio in the first row is defined by the percentage of successful entries from total entries, and the
success ratio in the second row is defined by relative error.

6.5. Experiments on Color Images. In this subsection, we test color images including
Pepper (512 x 512 x 3), Lena (512 x 512 x 3) ! and Flower (321 x 481 x 3)%. Although the
color images are not low-rank exactly, most information on each frontal slice of the color
images is dominated by a few top singular values. In our experiments, these testing images
are normalized on [0, 1] and are all corrupted by removing arbitrary voxels and adding salt-
and-pepper noise.

Figure 2 and Figure 3 show the recovered results and corresponding zoomed regions of
RTRC, RTC/;, NCRTC and BCNRTC. It can be observed that the BCNRTC performs better
than others in terms of PSNR values and visual quality, where the BCNRTC preserves more
details for Pepper image and many more sharp edges for Flower image than others.

In Table 2, we report the PSNR values of RTRC, RTC{¢;, NCRTC and BCNRTC for
three color images. We set SR = 0.6, 0.7 and 0.8 to illustrate the performance of methods
and noise levels are considered as a € {0.2,0.3,0.4,0.5} simultaneously. It can be observed
that the PSNR values obtained by our proposed BCNRTC model are much higher than those
obtained by RTRC, RTC/¢; and NCRTC, especially for low noise levels. The PSNR values of
the restored image by the BCNRTC increase at least 3dB relative to those of the RTC¢; model.

"http://sipi.usc.edu/database/
https://www2.eecs.berkeley.edu/Research /Projects/CS /vision/bsds/

This manuscript is for review purposes only.



ROBUST TENSOR COMPLETION 29

(b) Observation (¢) RTRC:17.07

(d) RTCt,: 22.53 (e) NCRTC: 24.31 (f) BCNRTC: 26.53

Figure 2. Recovered images (with PSNR(dB)) and zoomed regions of four different methods for the Flower
image, where SR= 0.8 and a = 0.4.

(c) RTRC:22.95

!.

(d) RTCl;: 25.16 (e) NCRTC: 29.74 (f) BONRTC: 32.12

Figure 3. Recovered images (with PSNR(dB)) and zoomed regions of four different methods for the Pepper
image, where SR= 0.7 and o = 0.3.
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Table 2
PSNR(dB) wvalues for restoring results of different methods for color images corrupted by sample
losing and salt-and-pepper noise. The boldface numbers are the best performance.

sample|noise Pepper Lena Flower

ratios |level RTRC RTC¢; NCRTC BCNRTC|RTRC RTC¢; NCRTC BCNRTC|RTRC RTC¢; NCRTC BCNRTC

0.2 [27.98 29.08 34.99 37.72 | 28.12 295 34.36 36.31 |25.92 2697 29.85 32.54

0.8 0.3 |24.15 26.09 31.24 34.12 | 24.78 26.98 31.48 33.84 |23.68 24.64 26.85 29.48

' 0.4 | 17.07 23.56 27.39 30.21 |17.41 24.96 28.44 30.6 19.62 22.5 24.25 26.37

0.5 |11.66 21.25 23.87 26.86 | 11.79 23.07 25.26 27.33 149 20.36 21.72 23.31

0.2 | 27.01 27.85 32.82 35.46 | 27.25 28.43 32.58 35.02 |25.17 26.02 28.55 30.77

0.7 0.3 122,95 25.12 29.74 32.11 |23.73 26.17 30.16 31.98 |22.84 23.84 2584 28.03

0.4 |16.11 22.71 25.98 28.7 16.44 243 27.29 29.29 |18.88 21.75 23.37 25.33

0.5 |11.48 20.51 22.94 25.1 11.67 22.51 24.62 26.48 |14.55 19.61 20.76 22.11

0.2 [ 25.86 26.56 30.69 33.31 26.3 27.34 30.98 32.92 24.3 25.01 27.15 29.07

0.6 0.3 ] 21.6 24.09 27.98 30.27 | 22.52 25.32 28.72 30.31 |21.86 22.94 248 26.67

' 0.4 | 15.17 21.82 24.77 27.05 |15.52 23.57 26.18 27.96 18.1 209 22.43 24.17

0.5 | 11.32 19.75 21.94 23.57 |11.54 21.81 23.86 25.38 |14.19 18.82 19.69 21.06

The performance of the nonconvex BCNRTC model can be improved greatly compared with
that of the convex RTC/; model. The PSNR values of the restored image by the BCNRTC
is at least 2dB higher than that of the nonconvex NCRTC model, which shows that both
low-rank and sparse terms are nonconvex better than only sparse term is nonconvex.

6.6. Experiments on Multispectral Images. In this subsection, we test the multispectral
images datasets including Cloth (521 x 521 x 31)® and the Indian Pines dataset (145 x 145 x
224)*, which is a synthetic data. Since the Cloth dataset is too large, we resize the Cloth
dataset to 128 x 128 in each image, and the size of the resulting tensor is 128 x 128 x 31.
This testing image is normalized on [0, 1]. For Multispectral Images, we compute the PSNR
values between each ground-truth band and the recovered band, and then averaged them.
This metric is denoted as mean PSNR (MPSNR).

In Figure 4, we show the 20-th band of the recovered images and corresponding zoomed
regions of different methods for the Indian dataset, where SR= 0.5 and a = 0.2. It is obvious
that the details of the zoomed region obtained by BCNRTC are more clear than those obtained
by RTRC and RTC/;. The performance of NCRTC and BCNRTC is almost the same for the
testing images in terms of visual quality. But PSNR values also show the BCNRTC is quite
effective than NCRTC.

Table 3 presents detailed comparison results of four different methods for the two multi-
spectral images with different sample ratios and noise levels, where the MPSNR values, the
relative error (RE), the number of iterations (Iter) and the CPU time (in seconds) are given.
Note that for the columns “Iter” and “Time” in the BCNRTC, we list the total inner sGS-
ADMM iterations and CPU times outside brackets. Meanwhile, the values in brackets in this
table mean the number of iterations and CPU times of CRTC for a warm start. In addition,
the outer PMM iterations in Indian are four when SR= 0.8, 0.7, and the rest of cases are
three. Table 3 shows the advantage of BCNRTC over other three methods no matter in terms
of MPSNR values (largest) or relative errors (smallest). Meanwhile, the BCNRTC takes less

3https://www.cs.columbia.edu/ CAVE/databases/multispectral /stuff/
“https://engineering. purdue.edu/biehl/MultiSpec/hyperspectral. html
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(a) Original ) Observation c) RTRC:22.19

d) RTC/1: 38.06 (e) NCRTC: 40.84 ) BCNRTC: 45.19

Figure 4. The 20-th band of recovered images (with PSNR(dB)) and zoomed regions of four different
methods for the Indian dataset, where SR= 0.5 and o = 0.2.

Table 3
Numerical results of different methods for the multispectral images dataset with different SRs and «.

RTRC RTC{y NCRTC BCNRTC
MPSNR RE IterTimeMPSNR RE Iter TimeMPSNR RE IterTimeMPSNR RE Iter Time

0.8] 23.19 1.17e-1100 308 | 38.06 3.24e-2 68 349 | 42.7 2.54e-2 55 211 | 50.47 1.3e-2 26(26) 87(78)
0.7| 22.74 1.23e-1100 291 | 37.87 3.26e-2 69 345 | 41.11 2.72e-2 57 219 | 48.66 1.46e-227(34)89(100)
0.6| 22.25 1.3e-1 100 292 | 36.33 3.67e-2 69 339 | 39.61 2.97e-2 59 225 | 45.98 1.79e-224(35)78(101)
0.5 21.67 1.39e-1100 295 | 35.39 3.92e-2 69 332 | 37.59 3.38e-2 59 225 | 43.74 2.03e-228(42)89(119)

Images| a |[SR)

Indian|0.2]

0.7 17.69 5.98e-1100 27 | 31.25 1.42e-1 57 19 | 35.84 8.5le-2 42 17 | 38.14 6.67e-236(17) 1
Cloth [0.4]

(
(
(
0.8 18.34 5.53e-1100 28 | 32.53 1.29e-1 58 20 | 37.18 7.39e-2 41 17 | 39.68 5.81e-233(15) 12()
(1
(
(

3(6)
0.6 17.45 6.14e-1100 27 | 30.24 1.64e-1 58 19 | 34.1 1.02e-1 45 18 | 36.59 7.67e-240(17) 15(5)
0.5 17.24 6.28e-1100 27 | 28.96 1.88e-1 58 19 | 31.89 1.3le-1 50 20 | 34.85 1.25e-146(17) 17(5)

CPU time and iteration numbers than the others when a suitable initial point is given. Specif-
ically, BCNRTC is able to outperform others by a factor of about 2-4 in terms of computation
times for the Indian dataset.

7. Conclusions. In this paper, we propose a BCNRTC model for the RT'C problem which
aims to recover a third-order low-rank tensor from partial observations corrupted by impulse
noise. Then, we prove the equivalence of global solutions between RTC problems and our
proposed nonconvex model, which gives the theoretical guarantee that the nonconvex penalties
are superior to convex penalties. Due to the nonconvexity, the resulting model is difficult to
solve. To tackle this problem, we devise the PMM algorithm to solve the nonconvex model and
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show that the sequence generated by the PMM algorithm globally converges to a critical point
of the problem. Next, we establish a recovery error bound and give the theoretical guarantee
that the proposed model can get lower error bounds when the initial estimator is close to
the ground truth. Extensive numerical experiments including color images and multispectral
images demonstrate that the proposed BCNRTC method outperforms several state-of-the-art
methods.

In the future, it would be of great interest to extend the BCNRTC to higher-order tensors
since some real datasets are higher-order tensors, such as color videos or traffic data.

Appendix A. Partial Calmless. The partial calmness is defined in detail in [28], which
is used in the proof of Theorem 3.1. Let 6 : R" — (—o0,+0oc] be a proper lsc function,
h : R®™ = R be a continuous function, and A be a nonempty closed set of R™. Consider the
following problem:

(MP) min{f(2) : h(z) = 0,2 € A},

Let F and F* denote the feasible set and the global optimal solution set of (MP), respectively,
and v*(MP) is the optimal value of (MP). Assume that F* # (). Consider the perturbed
problem of (MP):

(MP.) min{0(2): h(z) = ¢,z € A},

where € € R, F, denotes the feasible set of (MP,) associated to e.

Definition A.1. The problem (MP) is said to be partially calm at a solution point z* if
there exist € > 0 and p > 0 such that for all € € [—¢,¢] and all z € (2" +eB) N F, one has
0(z) — 0 (=*) + ulh(=)| = 0.

The partial calmness plays a critical role in the proof of Theorem 3.1. [28, Proposition
2.1] shows that under the compactness of feasible set of problem (3.5), the partial calmness
of (3.4) over its global optimal solution set implies the global exact penalization of (3.5).

Appendix B. The Kurdyka-tojasiewicz property. The Kurdyka-Lojasiewicz property is
defined in detailed in [3], which is used in the proof of Lemma 4.3.

Definition B.1. Let f: R™ — (—o0,+0o0| be a proper and lower semicontinuous function.

(i) The function f is said to have the KL property at x € dom(0f) if there exist n €
(0, 400], a neighborhood i of x and a continuous concave function ¢ : [0,1m) — [0, +00)
such that: (a) p(0) = 0; (b) ¢ is continuously differentiable on (0,n), and continuous at

0; (¢) ¢'(s) >0 forall s € (0,n); (d) forally € Unfy € R™": f(x) < f(y) < f(x) + 7],
the following KL inequality holds:

@' (f(y) — f(x))dist(0,0f(y)) > 1.

(ii) If f satisfies the KL property at each point of dom(0f), then f is called a KL function.

Appendix C. Proofs of the results in Section 4. This part includes the proofs of part
of results in Section 4.
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C.1. Proof of Lemma 4.1. From the definition of (), we have

(C.1)
QW) — FOW; Wh) =Hy(LF) — Hi (L) + (VH(LF), £ — £F)

+ A(Ha(MF) = Hy(M) + (VHo (M), M = MF)) = 2w = WH 3.
On the other hand, the convexity of H1 and Ho implies that
(C.2) Hy(L) > H(LF)+ (VH(LF), £ — LF), Hy(M) > Hy(MF) + (VHy(MF), M — MF).

Combining (C.1) with (C.2), we obtain that QW) — FOW; W*) < —1|[W — W¥||2.. Thus, we
obtain

n
(03) Q(Wk+1) + 5HVVkJrl o Wk”%’ < F(Wk+1;Wk).
Since CF+1 € OF (WFH1; WH), we have

Q(Wk) _ F(Wk,Wk) > F(Wk+1;Wk) + <Ck+1,Wk - Wk+1>
(C.4) > FOVELWVE) — [CH | Vet = we
> POV — e W - WH

where the last inequality follows from (4.4). Combining (C.3) with (C.4), we have
(C:5) QUVMT) 4 2(1 = 20| WM — WH|IE < QUAVR),

which completes the first part of the proof. Let N be a positive integer. Summing (C.5) from
k=0to N —1, we get

N-1 N-1
D (L5 = LR A IMP = ME[E) = D W =W < -5 (QOV) = QOVY),
k=0 k=0

where the inequality is valid since the condition 7(1 — 2¢) > 0 holds. By the inequality
(C.5), we can get the sequence {Q(W¥)}en is non-increasing. Since Q(W) is bounded be-
low, the sequence {Q(W*)}ren converges. Taking the limit as N — oo, we obtain that
S0 IWEHE - WE|12) < o0 and the sequence {|[W*H —WH|| p}ren converges to zero. There-
fore, the conclusion is obtained.

C.2. Proof of Lemma 4.2. By [2, Proposition 2.1], [35, Exercise 8.8(c)] and CF*! ¢
OF Wk WHY | we have

(C.6) Cp™t = YVEH = VH, (L) +n(L = L), CRY = 28 = VHy (M) + (MM = MP)

for some Y+ € O [|| £t +0r, (£, M) 40D, (L) lyymyrrt, Z94L € dpq[AM|[1+6r, (£, M)+
dp, (M)]yy—yyr+1. From the definition of Q, we get

QW) = c[l|L][tN + 6, (£, M) + 6p,(L)] — VH1(L),
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IMQW) = OMmAIM |1 + dr, (£, M) + 0p, (M)] — VH(M).
By the definitions of Y**! and Z**!, we obtain that
BEHL = VRV (L5 € 9,QWEHY), Bt = ZM1 T Hy(MFHY) € 9 QOVFHY),
Then, we have B**! € 9Q(W*+1). Define
(C.7) HEFL = YR W H (£F), HELY = ZF - AV Hy(MP).
We now have to estimate the norm of B¥+1. By the definitions of B¥*1 and H**!, we have
(C8)  |IBM = 1M |p = |[(VHL(LY) = VHL(LM), NV Ha(MP) = VHy (M*H))]| .

Since W* is an approximate solution of F(W;W¥#~1), by the definition of the indicator func-
tion, we get that WF¥ belongs to I'y, D and Dy. Thus, {WF},.cy is bounded and W* is a
cluster point. Then, it follows from [11, Theorem 3.10] that there exist constants dp > 0 and
m > 0 such that for any W* WHF1 € B(W*, &),

(C.9) IVHL(LY) = VHL(L5 ) |[p < ml| L5 — L85

It follows from V Hj is Lipschitz continuous with constant % that
A
(C.10) |V Hz(MP) = VHo (MM | < ;HM":“ - M| p.

By combining (C.6) with (C.7), we have that H**! = Ck+1 — n(Wk+L — WE). Moreover, by
|BFY — HEFL || p > ||BEHL|| p — ||HFTY| p, we obtain that

”BkJrIHF < ||Bk+1 . Hk+1||F + HerJrlHF
~ A
< m|| L — LM p + ;HM’““ — MH|[p +IC* | e+ VM =W
< (A4 My +n+ne) (W — W[ g,

where the second inequality holds by (C.8) and the last inequality holds by (4.4), (C.9) and
(C.10). The desired result is proven.

C.3. Proof of Lemma 4.3. It is easy to see that or,, dp, and dp, are semialgebraic [6].
On the other hand, the MCP function and the SCAD function are shown to be semialgebraic
in [50], and ||£||Tnn is also shown to be semi-algebraic in [58]. Hence, the function Q(W) is
semi-algebraic since it is the finite sum of semialgebraic functions. Since Q(WV) is also proper
lower semicontinuous, and it follows from [6, Theorem 3] that the function @ is a KL function,
which completes the proof.

Appendix D. Proofs of the results in Section 5. This part includes the proofs of part of
results in Section 5.
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D.1. Proof of Proposition 5.1. Recall that
S(L*) = {ul % V{I + Uy x W x Vf W e (C(nl_rmin)x(nQ_Tmin)XnB’ W < 1} ]
First we are going to show that S(L£*) C 9||L*||rnn. For any Z € S(L£*), we have

(Z,L%) = (Uy % VI + U« W VI U+ S 5 VT

1 —~ (1), —~ (3 ~ (1) =~ (), —~ (i ~ (i)~ (1), ~(i
_ Z<U1()(Vl())H—|—UQ()W()(Vg())H,U()S()(V())H>

It is easy to verify that ||Z|| < 1. Then, by [47], we have Z € 9||L*||tnn. So we have
S(£%) € | L7]|lTnw-

Next, we are going to prove that J||L*|[tnny € S(L£*). We argue it by contradiction.
Assume that exist G’ € 9||L*||rny but G' ¢ S(L£*). It can be verified that S(L*) is convex
and closed. Then, by Strict Separation Theorem [5], there exists R € R™*"2*"3 gatisfying
(G',R) > (H,R) for any H € S(L*). So that

max (G, R)> max (H,R).
Q€8||£*||TNN HES(E*)

Let f(L£*) := [|L*]|tnn. We use f/(L*;R) to denote the directional derivative of f at £* with
the direction R. Tt follows from [34, Theorem 23.4] that f'(L*R) = maxge|c+|n (G5 R)-
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938 Moreover,

b0 F(L5R) = Tim 1£* + yRllnn = [1£%]rwn

Y0+ Y
L* R — L*
o Y Z” E N A
7—>O+ n3 4 Y

n =@ ~0 =@
R 1y M 7k

941 = —

ng 4 1’y—>0Jr Y
942 = — max d; Z) (2) HR )v()

ng 4 Z < A€o U Z i

i)

943 = — max dy, (2 (Z R(

n3 Zd@eanawl Z:: K >
944 = — Z max (U Diag(d®)v®H I?E(i)>

ng 4 d(’)EBHU(’)Hl

945 :n—gz max <[ng') ng')]

d®ed|le® |,

Diag(dl) 0 ][(Vf))H] ﬁ(z’)>
0 Diag(dl))] [(ViHH

» () v (O\H () (%) GNH )
946 = — max U, (v + U, ’Diag(dy,. )(V , R
n3 Zd(”ea||a(l>1< 1 (Vi) 2 g(ds 1)( 5 ) >
our _ 1 Z f]\l(i)(‘;\@)) LTy —~ (i) |0 0 (I//\g(i))H R(i)
048 ng < d@)ea”a(z)\h 0 Diag(d(;zqi) ’ ’

949  where u( ) is the j-th column of the Uu® (also the j-th column of U( 2 when j < r;) and the
950 fourth equality is due to [47, Theorem 1]. Notice that \djl) | <1 when j > r;. Denote

0

DY = 0
= : (4)
0 Diag(d),)

C(nl 7Tmin) X (TL2 7Tmin) .

955 Then we have D" E {W \HW H < 1}, which means that

=~ (@)

054 (D" |diag(D"™) = (0,d9)H, d € 9o |y} < (W W) < 13
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Let AG) .= {ﬁ(i)\diag(ﬁ(i)) = (O,dg) Y2, d® € 9)lc@||;}. Then we have

max (H,R)
HEeS(L*)
= max (U * VT +Us x W VI, R)
i<t
n3 . . . . . .
1 S max <U1<2)V1(z>H 3wy R(’)>
ng “ (1)
i=1 W<
n3 . . . 5 . .
>L 3 max <U1“’v1")H GO TR R(”>
ng “— o5(4) (4)
i=1 W €A

=f'(L5R),
which implies maxycg(zr) (H, R) = maxgey||cx|jy (9> R). This contradicts the assumption.
Therefore, we have 9||L*||rnn € S(L£*). This completes the proof.

D.2. Proof of Proposition 5.3. Considering X = Diag(/)z(l),/)z@),...,/X\(ns)), Vi =

1,2,...,n3, we have

XY =l v v X v v v, v
o, o) [<U§;>H§8V§§ <U§“>H3E(”V§“] VO VO
U)XV 0

U, Uy [g (Ugi))H%(\(i)Vg)] v v

v @)X+ XV Do) XV v
+UP U)X v v

:l/]\l(i)(f]\l(i))H/X\(i) n /i(i)ﬁ(i)(‘//‘.\l(i))}[ B I/J\l(i)(l/ﬂ(i))HY(i)ﬁ(i)(ﬁ(i))H
n [/]\Q(i)(@(i))HY(i)@(i)(ﬂ(i))H,

which means that

So we have
X=U U« X+ X sV« VI Uy« U 5 X5V 5 VE 4 Uy« UTT 5 X 5 Vy 5 VI
By the definition of 7, we can see that
Pr(X) =Uy U+ X + X« Vi« VE —th « Ul 5 X 5V 5 V]
Therefore, it follows from X = Py (X) + Py (X) that
Pro(X) =Uy xUS + X % Vo x VI
This completes the proof.
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D.3. Proof of Lemma 5.4. Since (L£¢ M) is optimal and (L£*, M*) is feasible to the
problem (4.3), we have

(D.1)
0 > (1% rnn = [1£¥[lnn — (VHL(LF), Ar)) + A([ME|lL = (VH2(MP), Apg) = [|MH]1)
77 C * n C
+ 5L~ LoNE = ller = L% + S (M= MP|[F = M= MP|17).
By (5.1), we know that {Uy * VI + Uy + W V| |[W| < 1} = 9||/£L*||tan. Thus, by the
convexity of || - || NN, we have
€8]l ren — L% exn — (VHL(LF), Ag)
> Uy VI + Uy W VL Ar) — (VHL (L), Ag)

1 — [ — 1 — g =
= (U, V1 —VH(LF),AL) + —(Us W Vo' | Ag)
ns ng
1 gy 1y = =
(D.2) >— sup (W, U5 ALVa) — —| U1 Vi = VEL (LR p|Ac]r
3w <1 "3

1 g~ 1l ey — =
—— T ALVl — — T Vi = VHL(CF) | pl| ALl r
n3 n3
=|Uy * Az * V3! | onw — [[thy = VT = VH(LY)||p|| Azl F
=[Pre(A)lonn — devrl| Azl F,

where the second equality directly from the definition of dual norm.
Similarly, we know that {sign(M*) + F|Psupp,,.(F) = 0, | Fllc < 1} C 9| M*||1, where

suppy = {(4,7,k)|(Osjk, X) # 0}. Thus, by the convexity of || - ||1, we have

IME[ly = M [[y = (V Ha (M), A
Z(Sign(M*) + ,Psuppiw* (.7:), AM) — <VH2(Mk), AM>

S s (FPsuppy,. (Ban)) = sign(M") = V(M) Bl
o<1
=|[Psupps, . (Ar)ll — dp V3l A ] -
By the convexity of || - [|%, we also have

S1Le = L85 — 12 = L5%) + FIME = ME|E — | M* = ME7)
(D.4) >n((L* — LK, £° = L*) + (M* — MFE, ME — M*))
> —nlle* = L8 e Bl = nllM* = Mg Badllr

By substituting (D.2), (D.3) and (D.4) into (D.1), we get that

P2 (Az) | ran + Al Psupps,. (Aa)lh
<(devr + 0L = LY P ALlF + AdamV5 + 0 M = MF| )| A ]| -
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Thus,

max{[|PrL (A) [ rnn, M Psupps,,. (A1}

(I)'5) * k N ~ * k N
<(devr +nl|L* = L8 p)| Azl F + AdaVE + nl|M* — MF|| ) [ Al -

It follows from Proposition 5.3 that ranky(Pr(Az)) < 2r, which together with [ Psupp .«
(Ar) o < 5, we have

(D.6)
~ 1 - =~
IPr(Ag)lltnn = ;3||7’T(A£)||* <

||PsuppM*(£M)||1 S\@Hpsuppw (Am)llr < V3IAMllp.

V2rng T C ~ ~
- NP AL F = V2r|[Pr(AL) | F < V2r||AL|lF,

Note that |Az[tan < [|Pr(Az)ran + P72 (Ag)lonw and A1 < [[Psupp . (Ard)l1 +
[Psupps,. (Aa)ll1. By combining (D.5) and (D.6) together with the above inequalities, we
complete the proof.

D.4. Proof of Lemma 5.5. First, we will show that the following event holds with small

probability:
1 [ALIIF + [[Apm][F
EF:={3AecK t)such that A)||% — E[(©,A)?]| > F F
{38 € K(p.g. et that | L Pa(a)l - B0, A1 > 1SEIEE 0
+256u1n1n2n35§} .

It is clear that the complement of the interested event is included in E. Now we estimate the
probability of the event E. We decompose the set K(p,q,t) into

o

. A2 A2 .
K(p.q.t) =] {A € K(p,g,t) | 271t < 142l [ Al §2Jt}.
Hiningng

J=1

For any s > t, we define the set

2 2
g | Waclhridul ),

K(p,q,t,s) = {A € K(p,q,
Hiningng

Let

. 1
By o= {38 € K00, 20) s | L Pa(O)] ~ Elf0. 47

> 202t + 256#171,171,271,35‘29} .
Note that £ C Uj’;l E;. In the following, we estimate the probability of the event E;. Let

Zg = sup
A€K(p,q;t,s)

i

~[Pa(A)]E - E[(6, A
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we have
(0.7 [P - BIO, A7) = - S (0, A  E[(©, A)%)
=1

Since ||Aljoo = 1 for all A € K(p,q,t), it follows that
(O A)% —E[(0, A)?]| < max{(O,, A)%, E[(©,A)?]} < 1.

Thus, it follows from Massart’s Hoeffding type concentration inequality [30, Theorem 1.4] that

me?
(D.8) P(Zs > E[Zs] +¢) < exp <—2> , Ve >0.

In order to be able to apply the inequality (D.8), we need to estimate an upper bound of
E[Zs]. By (D.7), we have

1 1 &
E[Z)=E| sup |=|[Pa(Ad)F —E(©,A)°]| <2E| sup [—=> a(O,,A)
AEK (p,q,t,s) | T A€EK (p,q,t,s) | T -1
_ Lo
<8E sup — Z<€l@‘*’l ,A) | =8E sup ’
| A€K (pyait,s) | TV 15 AEK@qtﬂ
[ j— R 1,
<8E sup —D5(| || —Azl| +  sup —246)|  N1Amll
| A€K (p.g,t,s) || T n3 x  AeK(pgts) |l 0
[ 1 * 1 *
=8E | sup  |[=Dg(e)| [[Azlltan +  sup =D (e)||  [[Amlh
| AEK (p,q,t,s) || T A€K(pgpt,s) I 0o

1
<8E || —®s
<8t | -25(0

22500

( sup ||A£||TNN> + 8E
A€K(p,q,t,s)

( sup IIAM|1> :

0o \AEK(p,q,t,s)

where the first inequality is due to the symmetrization theorem [7, Theorem 14.3] and the
second inequality follows from the contraction theorem [7, Theorem 14.4]. Notice that for any
u>00>0and A € K(p,q,t,s),

Az + ||A

A A < 32 2402
ul|AzllF o[ AmllF < 32pu1ninanz(u+v7) + 12811 128

where the first inequality follows from the fact 2ab < a? + b2. Then, follows from (5.5), (5.6),
the definition of K (p,¢,t) and the above inequality, we derive that

E[Z,] 38[ sup  Be(pillAzllr + p2llAmllr) +  sup 5M(Q1|AL||F+Q2||AM|F)1
A€K(p,q,t,s) A€K(p,q,t,s)

(D.9)

S
§256u1n1n2n36§ + g

Then it follows from (D.8) and (D.9) that

9 S s ms?
P (2, > 256mmnanaf} + ) <P (2 2 E[2])+3) Sexp (1o )
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This, together with the choice of s = 27¢, implies that P(E;) < exp ( 4“2” ) Therefore, it
follows from the simple fact 4/ > log(47/) = 25 log(2) that

Nt Nt 4Imt? gmt? log(2) exp[—mt?log(2)/64]
z:: )< z:: (_ 128 ) Ze p( 64 ) S T explomi2 log(2) /64]

Then, taking t = 8\/% we obtain that P(E) <

The proof is completed.

— m +n2 +ng”

D.5. Proof of Lemma 5.7. For | = 1,...m, define the random tensor Z,, := ¢0,,.
Then %@6(6) = % >ty 2., Since ¢ is an i.i.d. Rademacher sequence, we have that |¢| < 1,
E[e;)=0 and E[e?]=1. Notice that ¢ and ©,,, are independent, we get E[Z,,] = E[¢/]E[O,,] = 0.
Since ||©y,||F = 1, we have

12l < M12ullr = lall|©®u |lF = lal-

It is easy to obtain that there exists a constant M > 0 such that ||[|Zy,||[[y, < ey, < M
and E2[|| Z,, |2 < E2[e2] = 1. Define

2

m

1
~ ;E[zg * 2,

i

0z 1= max H ZE wl*ZH

By direct calculations we can see that E[Z,, * Z[]] = E[¢]O,, * O] = E[le * O], The
calculation for E[Z‘f{ * Z,,] is similar. We obtain from Assumption 5.2 that 0% < % By
applying [48, Lemma 2.6, we obtain

H;%(G)H < {\/w +log((m +n2)n)) (¢ -+ log((n1 +na)ns)) log(7) }

)

nm m
with probability at least 1 — exp(—t). Set 7 = Jl‘s%b) Then we can derive
.

| ((m1 + no)ns)exp (22 ), 7 <77,
(D.10) P H'@g(e) > T] < Cira )

m ((nl + n2)n3) exXp _ng(ﬁ) s, T > T,
We set v = % and vy = Wg() By Holder’s inequality, we get

1 1 2log((ni1+mn2)n3) 210g((n11+n2)n3)
(D.11) E H@;g(f)H <|E H@;g(e)

m m

Combining (D.10) with (D.11), we obtain that

= 1 s TToR((n1 Frg)a)
< P (|| =D%(e)|| > rZeetnoms | dr
<{ -

(D.12) = Ve [log((n1 + na)ng))oy 5 IR log (1 + na)ng)

1
E _ *
|23

1
+2 log((nl + n2>n3)) 2log((n1+n2)n3)r(2 ]0g((n1 + n2)n3)) 2log((ny+n2)ng) )
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1057 Since the Gamma-function satisfies the inequality I'(z) < (%)xil, Ve > 2. Plugging this
1058 inequality into (D.12), we obtain that

E H;@M

< 1 log((n1+n2)n3) —10g((n1+n2)n3)21—10g((n1+n2)n3)
<Ve |(log((n1 + n2)ns)) vy

1
+ 2(log((n1 + n2)n3))210g((n1+n2)n3)U;210g((”1+n2)"3)] 2log((n1+n2)n3) )

1060 Observe that m > 7 log((n1+n2)ns)(log(n))?/us implies that vy log((n1+n2)ns)) < v3. Thus,
1061 we have

< \/36 log((n1 + n2)ns) _ Cl\/Seug log((n1 + n2)ns)

U1 n '

1
1062 E H —24(€)
nm

m

1063  This completes the proof.

1064 D.6. Proof of Lemma 5.8. For any index (i,7,k) such that 1 < i < ny, 1 < j < ng,
1065 1 <k < ngand (O,)ir # 0 for some w; € Q, let Wik = ((Owy)ijky - (@wl)ijk)T. Form [48,
1066 Lemma 2.4], we know that there exists a constant C' > 0 such that for any 7 > 0,

m
1 ijk
—E w’ e
m

=1

1067 P [

1068 By taking a union bound, we get that

> < 2me C mi m’7? T
T mexp | —C min - -
~ - P M? max |Jw™*||3" M max ||w*||s ) |’

> < 2 C . m272 mT
T ex — min — — .
= oo M2 (iR [3 MwiF]| o

3¢ i *
1069 P [H m@Q(e)

1070 where both of the maximums are taken over all such indices (i, , k). Evidently, |w"*|2 < 1
1071 and [|w¥*| 5 < 1. By letting

m27'2 mT

—t:=—Cmin (]\42’ M) + log(m)

m272 mT

M? max ||w*||3" M max ||w*|| o

1072

> —C'min ( ) + log(m),

1073 we obtain that with probability no greater than 2exp(—t),

o 1 log(m) +t log(m)+t
1074 Hmﬁﬁ(e) N > Mmax{ erZ T Cm :
1075 Set 7% = max {%, Mbn%igm))} Then we can derive that

1 1 T<r*
B, Ty < ) = )
1076 P {Hm”}DQ(e) N > T:| < { omexp (~Cmr), 7> 1.
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Then it follows that

1 __, T ° Cm M(log(2m) + 1)
— < - —
E ” Do (€) /0 1dr + /r* 2mexp ( T> dr = Cm ,

which completes the proof.
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