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The Metric Projector over the PSD Cone

@ Let S™ be set of n by n symmetric matrices in R™*™ and S be the cone of positive
semidefinite matrices in S™.
@ Let X € 8™ have the following spectral decomposition

X =PAP" =" X\ipip;,
=1

where A is the diagonal matrix of eigenvalues A\q,..., A\, of X and P is a corresponding
orthogonal matrix of orthonormal eigenvectors. Then

n

Xy = Hgn(X) = PALPT =" (M) 4pip].

i=1

Here Ilsn (X) is the unique optimal solution to

1
min §||Z - X||%
st. Ze€8Y.



Lowner Operators

@ Let f: R — R be a scalar function. The corresponding Lowner operator F' : 8™ — S™ is
defined by!

F(X):=> f(\)pp;, Xe8&"
i=1

@ Let g: R — R be an odd scalar function satisfying g(—t) = —g(t) for all ¢ > 0 (naturally

¢(0) = 0). One may define Lowner's operator G : R™*™ — R™*"™ (assuming m < n) by

G(Z):=> gloi(Z)uw], ZeR™",
i=1
where for any given Z € R™*", ¢1(Z) > 02(Z) > ... > om(Z) denotes the singular
values of Z (always nonnegative and counting multiplicity) and o(Z) denotes the vector of

the singular values of Z; Q™" (Z) denotes the set of matrix pairs (U,V) € O™ x Q™
satisfying the singular value decomposition

Z=U[x(z) 0V,

where X(Z) is an m x m diagonal matrix whose i-th diagonal entry is 0,(Z) > 0.
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Beyond Lowner Operators

Let X € R™*™ admit the following singular value decomposition:

X=TUEX) 0V =T 0V, V" =Us(xX)V] (1)

where U € O™,V € O™ and V1 € R"*™ V4 € RX(n=m) 3nd TV = [Vi Va]. The set of
such matrices (U, V) in the singular value decomposition (1) is denoted by O™ "(X), i.e.,

Om(X) = {(U, V) € R™™ x R | X = U[S(X) 0]VT}.



For any positive constant € > 0, denote the closed convex cone D5, by
DE = {(t,r) ERxR"|e 't > a;, i=1,...,n}. (2)

Let IIp: (-) be the metric projector over Dj, under the Euclidean inner product in R™. That is,

for any (¢,z) € R x R, IIp: (t,z) is the unique optimal solution to the following convex
optimization problem

o1 2 2
min 5(( —1) +||y_37||) (3)



For any = € R™, let 2+ be the vector of components of = being arranged in the non-increasing
order 2t > ... > z}. Let sgn(z) be the sign vector of z, i.e., (sgn);(z) =1 if z; > 0 and —1
otherwise. We use “o” to denote the Hadamard product operation either for two vectors or
two matrices of the same dimensions.

Proposition

Assume that € > 0 and (t,z) € R x R™ are given. Let w be a permutation of {1,...,n} such
that z¥ =z, i.e., mf =Tru), t=1,...,m and 71 the inverse of . For convenience, write

z§ = 400 and xiﬂ = —o0. Let Kk be the smallest integer k € {0,1,...,n} such that

k
xk_H (Z j%—st) k—|—52)<xt. (4)



Define y € R™ and 7 € R, respectively, by

K
- (ij+et)/(k+eﬂ) if1<i<r,
i - =1
i

T} otherwise

7

and :
T =l :s(ij+6t>/(lz;+52).
=1

The metric projection Ilp: (t,x) is computed by Ilp: (t,2) = (7, §—1).



For any positive constant € > 0, define the matrix cone M:, in 8™ as the epigraph of the
convex function eApax(+), i.e.,

M = {(£,X) €R X 8" e > A (X)) - (5)

Proposition
Assume that (t, X) € R x 8™ is given. Let X have the eigenvalue decomposition

X = Pdiag(\(X))P" , (6)

where P € O". Let e (-, ) be the metric projector over M, under Frobenius norm in S™.
Then, -
M (¢, X) = (&, Pdiag(@P") V (£, X) eR xS, (7)

where (t,7) = IIp: (t, \(X)) € R x R".




For any positive constant € > 0, denote the closed convex cone C;, by
CEi={(t,x) ERxR" |7 > ||z]oo } - (8)

Let Ic: (-, ) be the metric projector over C;, under the Euclidean inner product in R™. That is,
for any (t,z) € R x R, Il¢: (¢, ) is the unique optimal solution to the following convex
optimization problem
. 1
min 5((7—75)24- ly — z|?) 9)
st e 17> ||1ylloo -

In the following discussions, we frequently drop n from C; when its size can be found from the
context.



Assume that e > 0 and (¢,2) € R x R™ are given. Let m be a permutation of {1,...,n} such
that |z[¥ = |z, i.e., |.’17|;L = |2|r@4), i =1,...,n and 71 be the inverse of 7. Let 2] = +oo
and |:v|iJr1 =0. Let s =0 and s; = Zle |ac|f k=1,...,n+1. Let k be the smallest

integer k € {0,1,...,n} such that
2]y < (s +et)/(k +€2) < |al} (10)

or k =n + 1 if such an integer does not exist. Denote

0% (t,z) := (s +et)/(k +&2). (11)



Let o, B and v be the index sets of |z|* as
a:={illalf > 6°(t,0)}, B:={illaf} = 6°(t,2)} (12)

and
=il el < 0°(t,2)} . (13)

Define y € R™ and 7 € R, respectively, by

g = { max{6¢(¢t,z),0} ifi€a,

|z|¥ otherwise

and
7T :=emax{0°(¢t,z),0}.



Assume that e > 0 and (t,x) € R x R™ are given. The metric projection l¢=(t,x) of (¢,x)
onto C¢ can be computed as follows

Ie- (t,z) = (T,sgn(z) o Gr-1) . (14)

Theorem

Assume that (t,X) € R x R™*" js given. Let X have the singular value decomposition (1).
Let - (-,-) be the metric projector over K¢ under Frobenius norm in R™*", where

K2 = {(t, X) € R x R™" |71t > || X[|5} . (15)

For any (t,X) € R x R™*"™, we have
- — . _ —T
M- (t, X) = (.U [diag(y) 0]V ), (16)

where
(t,g) =He=(t,0(X)) € R x ™.



Matrix Optimization

@ Lowner operators are inadequate for applications

@ For a given unitarily invariant proper closed convex function f : X — (—o0, 00], in matrix
optimization one often considers the proximal mapping of f at X:

Pf(X) := argminy ¢ y {f(Y)+;|Y—X||2}, Xex, (17)

where X is either the real vector subspace S™ of m x m real symmetric (or complex)
Hermitian matrices, or the real vector subspace V"*™ of m x n

© For example, for f(Y) =||Y]|]2 = omax(Y), the spectral norm of Y, P(-) is no longer the
Léwner operator [it is the Lowner operator for f(Y) = ||Y||. = Y12, 0s(Y)].

@ If f(-) is the indicator function of a matrix cone, then the proximal mapping Ps(-) is the
metric projector over the corresponding matrix cone.



The Setting

Let s be a positive integer and 0 < sy < s be a nonnegative integer. For given positive integers

mi,...,ms and ng,41,...,ns, define the real vector space X' by
X =S x xS0 x YMeot X Mol 5 YT X (18)
Without loss of generality, we assume that my < ng, k=so+1,...,s.

Forany X = (X3,...,X;) € X, we have for 1 <k < sg, X € S™ and sp+1 <k <,
X € V™eX"k - Denote

YV:=R"™ x ... xR™o0 xR™0 x ... xR™. (19)
For any X € X, define k(X) € Y by

K(X) = (AX1),s - A(Xag)s 0(Xsggn)s s 0(X5)) .



Define the set P by
P={(Q1,...,Qs) | Qr € P 1<k <spand Q) € £P™, 50+ 1 <k < s}.

Let g : Y — Y be a given mapping. For any = = (x1,...,x5) € Y with 2 € R™*, we write
g(x) € Y in the form g(z) = (g1(x), ..., gs(z)) with gi(x) € R™* for 1 < k < s.

Definition
The given mapping g : Y — ) is said to be mixed symmetric, with respect to P, at
x=(21,...,25) €Y with z, € R™* if

g(lel,"'7stS) = (ngl(x)ﬂ"wngs(x)) v <Q17‘-‘7QS> eP. (20)

The mapping g is said to be mixed symmetric, with respect to P, over a set D C Y if (20)
holds for every = € D. We call g a mixed symmetric mapping, with respect to P, if (20) holds
for every x € ).




Spectral Operators

Note that for each k € {1,..., s}, the function value g;(xz) € R™* is dependent on all
Z1,...,Ts. When there is no danger of confusion, in later discussions we often drop the phrase
“with respect to P" from Definition 1. Let N be a given nonempty set in X. Define

kn = {K(X) € Y | X € N'}. The following definition of the spectral operator with respect to
a mixed symmetric mapping g.

Definition
Suppose that g : Y — ) is mixed symmetric on k. The spectral operator G : N/ — X with
respect to g is defined as G(X) := (G1(X),...,Gs(X)) for X = (X1,...,X,) € N such that

Py Diag (gr(#(X))) Py if 1<k < s,

e { U [Ding(gx(s(X))) O]V ifsp+1<k<s

where P, € O™ (Xy), 1 <k < sq, (Ug, Vi) € Q™" (X}), so+1 <k <s.



Spectral Operators

Next, we will focus on the study of spectral operators for the case that X = V™*". The
corresponding extensions for the spectral operators defined on the general Cartesian product of
several matrix spaces can be considered in a similar fashion.

Let A be a given nonempty open set in V"™ Suppose that g : R™ — R™ is mixed
symmetric with respect to P = £P™ (i.e., absolutely symmetric), on an open set gx in R™
containing o := {o(X) | X € N'}. The spectral operator G : N’ — V™>™ with respect to g
then takes the form of

G(X) = U [Diag(g(c(X))) 0VT, X eWN,

where (U, V) € 0™"(X). For a given X € \, consider the singular value decomposition
(SVD) of X, i.e.,

X=U[xX) oV, (21)
where X(X) is an m x m diagonal matrix whose i-th diagonal entry is 04(X), U € O™ and
V=[Vi V3] €0"withV; € V**™ and V, € yx(n=m),



A brief review on nonsmooth Newton methods

@ Let X, )Y be two finite-dimensional real Euclidean spaces
@ F:X — Y alocally Lipschitz continuous function.

Since F' is almost everywhere differentiable [Rademacher, 1912], we can define
OpF(z) == {im F'(z"): 2* —» 2, 2% € Dy} .
Here Dy is the set of points where F' is differentiable. Hence, Clarke's generalized Jacobian of

F at x is given by
OF (z) = conv OpF(x).



A brief review on nonsmooth Newton methods

Definition

Let £ : X = L(X,)) be a nonempty, compact valued and upper-semicontinous multifunction.
We say that F is semismooth & € X with respect to K if (i) F is directionally differentiable at
x; and (ii) for any Az € X and V € K(z + Ax) with Az — 0,

F(z + Az) — F(z) — V(Az) = o(||Az|]) (9—semismooth). (22)
Furthermore, if (22) is replaced by
F(o+ Az) — F(z) - V(Az) = O(||Aal ), (23)

where v > 0 is a constant, then F is said to be vy-order (strongly if v = 1) semismooth at x
with respect to K.



Nonsmooth (local) Newton's method

Assume that F(z) = 0.

Given 2° € X. For k =0,1,...
Main Step Choose an arbitrary Vj, € K(2¥). Solve

F(a:k) + Vk(mlﬂ'1 — mk) =0

Rates of Convergence: Assume that K(Z) is nonsingular and that z¥ is sufficiently close to Z.
If F'is g-semismooth at z, then

l2*+t — 2

| V' [F@") = F(z) = Vi(z" = 2)]|| = o(|]=" — Z|)).
——

bounded g-semismooth superlinear

It takes o(||z* — z|'*7) if F is y-order g-semismooth at Z [the directional differentiability of
F' is not needed in the above local convergence analysis]
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Nonsmooth Equations

@ The nonsmooth equation approach is popular in the complementarity and variational
inequalities (nonsmooth equations) community (Robinson, Pang, ...)

@ Josephy (1979) introduced Newton and quasi-Newton methods for generalized equations
(in terms of Robinson).

© Kojima and Shindo (1986) investigated Newton's method for piecewise smooth equations.

@ Kummer (1988, 1992) gave a sufficient condition (22) to extend Kojima and Shindo’s
work.

@ L. Qi and J. Sun (1993) proved what we know now.

@ Since then, many exciting developments, in particular in the large-scale settings ...

Why nonsmooth Newton methods important in solving large-scale optimization problems? We
illustrate this with an example.
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The nearest correlation matrix problem: An example

Consider the nearest correlation matrix (NCM) problem:

1
min{2X—G||2F|X§0, Xii=1,¢=1,...,n}.

The dual of the above problem can be written as (in its minimization format)

min 3 [E[* = (b, y) — 51IG?

st. S—E4+Ay=-G, S=0
or via eliminating = and S = 0, the following
. 1 X 2 L2
min { o(y) = 3 [Tsp (A% + G — (b, 9) — 3 IGI”
which is equivalent to the strongly semismooth system (S. & Sun, 02) of equations

V(y) = Allsy (A*y + G) —b = 0.

bl



Numerical results for the NCM

Test the second order nonsmooth Newton-CG method [H.-D. Qi & S. 06] ([X,y] =
CorrelationMatrix(G,b,tau,tol) in Matlab from Sun’s webpage) and two popular first order
methods (FOMs) [APG of Nesterov; ADMM of Glowinski (steplength 1.618)] all to the dual
forms for the NCM with real financial data:

G: Cor3120, n = 3,120, obtained from [N. J. Higham & N. Strabi¢, SIMAX, 2016] [Optimal
sol. rank = 3,025, high rank]

n=3,120 Newton-CG | ADMM | APG
Rel. KKT Res. 2.7-8 2.9-7 9.2-7
time (s) 26.8 246.4 | 459.1
iters 4 58 111
avg-time/iter 6.7 4.3 4.1

Newton's method only takes at most 40% time more than ADMM & APG (or FISTA) per
iteration (Newton will take less time on average per iteration if it took more iterations).

bk}



Spectral Operators

Suppose that X € N has the SVD (21). The spectral operator G is continuous at X if and
only if g is continuous at o(X).

Theorem

Suppose that X has the SVD (21). The spectral operator G is locally Lipschitz continuous
near X if and only if g is locally Lipschitz continuous near & = o (X).
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Divided Difference, Addition and Division Matrices

Let n(o) € R™ be the vector defined by (i € {1,...,m})

Define the corresponding divided difference matrix £, (o) €
€ R™*™ the division matrix F (o) €

() ={ Z

52(0’)

(F(0)ij = {
(gwmi

if 35 e {1,...,
otherwise ,

R™*(n=m) respectively, by

gi(o) QJ( ) ) )
o —crj if o5 705, i,je{l,...,m},
otherwise ,
o)+glo) .
fo; ; , o
Uz+0] ne +O—J7é0 Zvje{la"'vm}a
otherwise,
ifoi 70, ie{l,....m}, je{l,....,n—m}.
otherwise,

m} and j # i such that o; = 03,

. (24)

R™X™ the divided addition matrix

(25)

(26)

(27)
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Divided Difference, Addition and Division Matrices (2)

Define the matrix C(o) € R™*™ to be the difference between ¢’(c) and Diag(n(o)), i.e.,

C(0) :=g'(0) — Diag(n(c)) . (28)

When the dependence of 7, &1, &, F and C on o is clear from the context, we often drop o
from the corresponding notations. Note that the divided difference matrix £; () is the same
with the commonly defined for the symmetric matrix case. The divided addition matrix & (o)
and the division matrix F (o) are particular to general non-Hermitian matrices.

Denote 77 = n(a) € R™ to be the vector defined by (24). Let £, £2, F and C be the real
matrices defined in (25)—(28) with respect to G.
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Differentiability

Theorem

Suppose that the given matrix X € N has the SVD (21). Then the spectral operator G is
F-differentiable at X if and only if g is F-differentiable at o. In that case, the derivative of G
at X is given by

G'(X)H = U[€, 0 S(A) + Diag (Cdiag(S(A))) + E20T(A) FoB[V' V¥ H e V™", (29)

where A := ﬁTHVL B:= ﬁTHVQ and for any X € V™*™  diag(X) denotes the column
vector consisting of all the diagonal entries of X being arranged from the first to the last.

Here the two linear matrix operators S : VP*P — §P and T': VP*P — VP*P gre given by

S(Y):= %(Y +Yh, T(Y):= %(Y YT, vyevyrp, (30)



B(ouligand)-Differentiability

Let Z be a finite dimensional real Euclidean space equipped with an inner product (-, -) and its
induced norm || - ||. Let O be an open set in Z and Z’ be another finite dimensional real
Euclidean space. The function F: O C Z — Z’ is said to be B(ouligand)-differentiable at

z € O if for any h € Z with h — 0,

F(z+h) = F(z) = F'(z:h) = o([[1]})-

A stronger notion than B-differentiability is p-order B-differentiability with p > 0. The function
F:0C Z — Z'is said to be p-order B-differentiable at z € O if for any h € Z with h — 0,

F(z+h) = F(z) = F'(:h) = O(|[a]|'7).

Theorem
Suppose that X € N has the SVD (21). Let 0 < p < 1 be given.
(i) If g is locally Lipschitz continuous near o(X) and p-order B-differentiable at o(X), then

G is p-order B-differentiable at X . B
(it) If G is p-order B-differentiable at X, then g is p-order B-differentiable at o(X).



Semismoothness

Suppose that X € N has the singular value decomposition (21). Let 0 < p <1 be given. G is
p-order g-semismooth at X if and only if g is p-order g-semismooth at G.



Characterizations of the Generalized Jacobians

Assume that g is locally Lispchitz continuous. Then since the spectral operator G is locally
Lipschitz continuous near X, ¥ = G’(X;-) is globally Lipschitz continuous if exists. In that
case, dp¥(0) and ¥ (0) are well-defined. Furthermore, we have the following characterization
of the B-subdifferential and Clarke's subdifferential of the spectral operator G at X.

Theorem

Suppose that the given X € N has the decomposition (21). Suppose that there exists an open
neighborhood B C R™ of @ in oar such that g is differentiable at o € B if and only if ¢'(7;-) is
differentiable at 0 — o. Assume further that the function d : R™ — R™ defined by

d(h) :=g(@+h) —g(@) —g'(@;h), heR™ (31)
is strictly differentiable at zero. Then, we have

0pG(X) =0p¥(0) and IG(X) = 0¥ (0).

Many more to be developed ...
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