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Abstract. In this paper we discuss second-order properties of the Moreau-Yosida regularizafiarpiece-

wise twice continuously differentiable convex functibnWe introduce a new constraint qualification in order

to prove that the gradient df is piecewise continuously differentiable. In addition, we discuss conditions,
depending on the Hessians of the pieces, that guarantee positive definiteness of the generalized Jacobians of
the gradient of-.
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1. Introduction

Consider the following minimization problem:
min f(x), (1)

wheref is a finite-valued convex function defined @.
Throughout this paper, we uge || to denote the Euclidean norm &. Let M be
a symmetric positive definite x n matrix. For anyx € %", let

2 T
IX]Iy = X" Mx.

We letF be the Moreau [8]-Yosida [18] regularization bf associated wittM, defined
by

1
F(u) = min{f(x) + =[x — u3,} forue R". (2)
xenn 2

It is well known thatF is a continuously differentiable convex function defined on all
of " even thoughf may be nondifferentiable. The gradient®fatu is

G(w) = VF(U) = M(u — p(w) € af(pu)),
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wherep(u) is the unique solution of (2) aritf is the subdifferential mapping df[14].
Here, p(u) is called the proximal point ofi. FurthermoreG is globally Lipschitz
continuous with modulug M| and the set of minimizers of (1) is exactly the set of
minimizers of

min F(x). (3

See [5] for basic properties &f.

Recently, several authors have considered second-order propeRidsmadxample,
see [4,5,12,15]. In the original version of [12], Qi conjectured tBas semismooth
under a regularity condition if is the maximum of several twice continuously diffe-
rentiable convex functions. In [16], Sun and Han gave a proof of this conjecture under
a constant rank constraint qualification for the case whkre (1/1)1 andA is a po-
sitive constant. In this paper we will consider the case wHeiepiecewiseC? in the
sense that for eache R"

f(x) e {(fj(0):j € J), (4)

J = {1,...,]J]} is a finite index set and for eaghe J, fj is a twice continuously
differentiable function. Such a function is a generalization of a maximum of convex
C? functions. To see this, let : %t — % be defined by

fi(x) if x > 2,
fx) =1 fox)if0 <x <2,
fa(x) if x <0,
where f1(x) = x2 — x, fa(x) = x and f3(x) = —x3. Then f is of the form (4) with

J = {1, 2,3} and f is convex, but not differentiable at the solution pot 0. It is

clear thatfz(x) is not convex wherx > 0, andf(x) < max{ f1(x), fo(x), f3(x)} when

x < 0. Under the so called affine independence preserving constraint qualification given
below in Section 2, we prove that abawthere is an open neighborhodfu) such
thatG is piecewise smooth oN(u) [6,10,17], i.e., there exist a family of finitely many
continuously differentiable vector-valued functio®s, ..., GX defined onN(u) such

that for anyv € N(u),

G(v) € {Gl(v), ..., GK()).

Our constraint qualification is weaker than the constant rank constraint qualification
used in [16]. It was proved in Qi [12] that all of the generalized Jacobiar@ afe
positive definite au if and only only if f is strongly convex aboup(u). Here we

will discuss conditions depending on the Hessians off{f@which imply this positive
definiteness result. To accomplish this we give an expression, as in [7], for a generalized
Jacobian ofp which depends on a basis matrix for a certain subspace and on a convex
combination ofv? f; for j in a subset ofl.
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2. Constraint qualifications

Let
JX) ={j € J: fj(x)= f(X)}.

Definition 1. Affine Independence Constraint Qualification (AICQ): The affine inde-
pendence qualification is said to holdatf the vectors

Vi
{( Jl ).jEJ(X)}

Definition 2. [3] Constant Rank Constraint Qualification (CRCQ): The constant rank
constraint qualification is said to hold atif there exists a neighbourhoadd of x such
that for every subsdf < J(x), the family of the vectors

(1) 121

has the same rank (which dependskonfor all vectorsz € V.

are linearly independent.

Definition 3. Affine Independence Preserving Constraint Qualification (AIPCQ): The
affine independence preserving constraint qualification is said to hotdfdbr every
subset < J(x) for which there exists a sequenjoé} with {xX} — x, K < J(x) and

the vectors .
{(Vfgx >) e K}

being linearly independent, it follows that the vectors
VEH®XY .
[SEWREL

From the above definitions it can be shown that AICQ implies CRCQ and CRCQ
implies AIPCQ, but not vice versa. In fact it is easy to give an example to show that the
CRCQ holds, but AICQ does not hold. For an example where AIPCQ holds, but CRCQ
does not hold, lef : ) — 9N be defined by

f(X) = max{ f1(x), f2(x)},

wheref;(x) = ix?fori = 1, 2. Note that,J(0) = {1, 2}, and for anyy # 0, J(y) = {2}.
So, clearly, AIPCQ holds at = 0. However(V f1(0), 1) and(V f2(0), 1) are linearly
dependent, and for any # 0, (V f1(y), 1) and (V f2(y), 1) are linearly independent,
so the CRCQ does not hold at= 0. So even for this simple maximum function, the
fact thatVF is piecewise smooth does not follow from the result of Sun and Han [16].
However,F is actually twice continuously differentiable.

Throughout this paper we will use & int Sand convS to denote the closure,
interior and convex hull of a se®, respectively. For any locally Lipschitz continuous

are linearly independent.
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functionH : %" — R™M, we denote the generalized Jacobiartoby oH as defined
in [1]. aH(x) is the convex hull obgH(x), where as in [11],

dgH(X) = {lim VH(x*) : {xX] — x andH is differentiable ak}.

If m= 1 andH is convex,0H is the subdifferential oH.
For eachj € J let
Dj={yeq":jedy}

By definition, f is finite-valued everywhere. Sincdeis convex, f is also continuous.
Hence,Dj is closed for eaclj. Let

Then

For anyx € %", let .
I(x) ={j € J:xe Dj}.

Then, we havd(x) € J(x). But equality does not hold in some cases. For the above
two-piece exampld,(0) = {2} C {1, 2} = J(0).

Lemma 1. [10] Ifeachf; for j € Jis continuously differentiable, then
BIX) ={VIHiX:jelX}
Then, sincd (x) € J(x), we have
af(x) =conv{Vfj(x): j e I(X)} S conv{Vfj(x):je X} (5)

The latter set can be regarded as an overestimatiori(@j, because, in generdlx)
may not equall(x). In fact, the example in the introduction ha$(0) = [0, 1] #
[—1,1] =conkV fj(0) : j € JO) = {1, 2,3}}.

Lemma 2. If f is a convex function and eachy for j € J is twice continuously
differentiable, then all the matriceg? fj (x) for j € I(x) are positive semidefinite.

Proof. SinceUjcyDj = %" andJ is finite, Ujcjint Dj is a dense, open subset®f.
Note that ~

UjeaDj = R,
So, for anyx € %", 1(x) is nonempty. Supposge 1(x). Thenx € Dj. Let Nj be an
arbitrary open ball contained in ifj. Then we have

f(y) = fj(y) fory e N;. (6)

The convexity of f and (6) imply thatfj is convex onNj, so V2fj(y) is positive
semidefinite for any € N;. This means thav? fj(y) is positive definite for any in
int D;. Sincex € Dj, it follows thatV? f; (x) is positive semidefinite.

o
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Let M (u) denote the set of multiplier vectosgu) such that

Gu) =Mu—pu)= > ajWVfi(pw),
j€I(p(w)
()
aj(u) > 0forjedpw) and Y eju=L1
jeI(p(u)

The nonemptiness af1(u) follows from (2), the definitions ofo(u) and G(u) and
Lemmal.

For a nonnegative vectar € 9i/Y!, we let supid), called the support o, be the
subset of] consisting of all the indiceisfor whichd; > 0. Define3(u) as a family of
subsets ofl(p(u)) as follows:K € B(u) if and only if supfga(u)) € K € J(p(u)) for
somex(u) € M(u) and the vectors

{(ij(lp(u))> e K}

are linearly independent. This fami§(u) is nonempty, becauskt(u) has an extreme
point which easily yields a desired index $etvith the stated properties. F&r € B(u)

let ak (u) be the correspondinid< |-dimensional subvector ef(u) obtained by dele-
ting from a(u) elementsyj(u) for j € J(p(u))\K. Due to the linear independence
assumptionrk (u) is uniquely determined by

-1

Vi (pw)\ " [V fk(pu)) V(pu)\ ' /G
ak (U) = (8)
eX eX eX 1

whereV fi (p(u)) is ann x |K| matrix with columnsV f;(p(u)) for j € K andeX is
a|K|-dimensional row vector of ones. Note that it is possible éhat) = 0, for some,
butnotall,j € K.

The following lemma is similar to a result of [10] for normal maps.

Lemma 3. Suppose that eachy for j € J is a continuously differentiable function
and the affine independence preserving constraint qualification holds at the proxi-
mal point p(u). Then aboutu there exists an open neighbourhobldu) such that
B(v) € B(u) for all v € N(u).

Proof. If the conclusion of this lemma does not hold, then there exists a seqi€fice
converging tau such that for alk, there is an index sk ¢ B(uk)\B(u). Since there

are only finitely many such index sets, by taking a subsequence if necessary, we may
assume that these index s&t$ are the same for ak. By letting K be this common

index set, we have that for eaklthe vectors

[V jex] ©
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are linearly independent and there exists) € M (u¥) such that sup(u¥)) € K <
J(p(uk)), butK ¢ B(u). ClearlyK € J(p(u)). By AIPCQ, the vectors

{(ij(lp(U))> e K}

must be linearly independent. So the only wayKokt B(u) is that there does not exist
a(u) € M(u) such that supe(u)) € K. Since{ak (u¥)} is bounded (0< «j (u¥) < 1,
j € K), it produces at least one accumulation point, egyu). Definea(u) by

a(u) = {0' ifi e J(p(u)\K.

Clearly,a(u) € M(u) and supgx(u)) € K. This is a contradiction.

3. The piecewise smoothness of G

In this section we will discuss the piecewise smoothnes affu under the assumption
that the affine independence preserving constraint qualification hofiisat

From Lemma 3 we know that there exists a neighbourhoad dénoted byN; (u),
such that

B(v) € B(u), Yv € Ny(u). (10)

For everyv € R", from Lemma 1 and the definition & (v) we know that there exists
K € B(v) such thaiK C I(p(v)). Define

B'(v) = {K : K € B(v) andK < I(p(v))}.

Forv close tau, 1(p(v)) C I(p(u)), so from (10) we know that there exists a neighbour-
hood ofu, denoted byN2(u), such that

B'(v) € B'(u), Yv € Na(u). (12)
In the following discussion we set up certain definitions in order to obtain relevant
consequences of the Implicit Function Theorem under the assumptions of Lemmas 2

and 3.
Suppose&K € B'(u). Choose somee K and let

K = K\(i}

with K being empty if[K| = 1. Also, letarg (u) be the (possibly vacuous) subvector of
ak (u) obtained by deleting; (u) fromak (u). Relative to these definitions consider the
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following vector function and corresponding system of equations

HK(x, g, v)

MO gV EH® + @Y Vi) +x— v

jek jek

wherev € i" is a parameter vector arig, g) € %" x %! Kl are vectors of variables with
q vacuous if K| = 1. If we setx® = p(u), q° = ag (u), andv® = u, then, by (7) and
the definition ofJ(p(u)), we have

HK(xX®, ¢, v = 0.

The matrix of partial derivatives dfi K (x, g, v) with respect tax, q) is

Vig' 0
AKX, Q) = I H (X, g, v) = , (139)
BK(x,q) M~V Tz (%)

where forj € K, V fj(x) := Vfj(x) — V fi(x) is the j-th column ofV f (x) and

BXx. o) = 1 + M1 O qi V20 + (1 - Y qpVv2ix). (13
jeK jeK

If |[K| = 1thengis vacuous, the to[K | rows of (12) are vacuous and the summations
overK in (12) and (13b) are vacuous, so that

AX(x,q) = BK(x,g) = | + M71V2f;(x) with K = {i}.

Lemma 4. Suppose that each; for j € J is twice continuously differentiabld, is
convex, and the affine independence preserving constraint qualification holds at the
proximal pointp(u). Then for eactK e B'(u), there exist an open neighbourhod

of v2(= u) and an open neighbourhod®X of (x°, g% such that when e cl UK,

the equationdd K (x, g, v) = 0 have a unique solutiotxX (v), g¥ (v)) € cl WK where

g (v) is vacuous if K| = 1. Moreover,(xX (v), g¥ (v)) is continuously differentiable
onUK and

vxK (v)

dxgHK K ), ¥ (), v) (VqK(U)

) = -3, HK XX (v), g% (), v),

vxK 0
A< gk o (yaxi ) == (%) (14
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Proof. We consider the case wheil¢| > 1 as the case whef&| = 1 is similar, but
simpler, sincex (u) = 1 andq is vacuous whei is empty.

From Lemma 2 and the fact thg? = ag (u) > 0and 1- ZjeR q? =qaj(u) >0,
there exists a neighbourhood 6£%, q°, v9), denoted byNK (x%, q°, v9), such that
BX(x, ) is a positive definite matrix whetx, g, v) € NK(x%, g%, v9). SinceK ¢

B'(u) € B(u), the vectors .
(7705 x)

are linearly independent and, by continuity, there exists a neighbourhgg® of, v°)
(which we also denote b{X (x, °, v9)) such that the vectors

{(Vfi(x)>:jer<} (15)

are linearly independent wheRr, g, v) € NK(x°, g%, v9). Since the vectors in (15) are
linearly independent, it follows that the vectors

(VI :jeK} (16)

are linearlyindependent. ThusX (x, q) is nonsingular whetx, g, v) € NK(x9, q°, v9),
and the desired results follow from the Implicit Function Theorem [9].
O

ForK e B'(u) andxX : UK — 9" as defined in Lemma 4, defi@* : UK — %"
by
GK@w) = M(v — xXX(v)) forv e UK, (17)
ThenGK (v) is continuously differentiable od X. So far, we have obtained a family of
finitely many continuously differentiable functions:
GK:UK 5", KeBu.

Remark 1.If K is in the less restrictive sé(u) similar corresponding functiong® (v)
and GK(v) can be shown to exist provided? fj (p(u)) is positive semidefinite for
eachj e J(p(u)\I(p(u)). This extra condition is required to imply thBK (x°, q°) is
positive definite wherk € B(u) 2 B’(u), because Lemma 2 only covers the indices in
(p(u)).

The following theorem on the piecewise smoothness @ the main result of this
section.

Theorem 1. Suppose that eachy for j € J is twice continuously differentiabld;, is
convex, and the affine independence preserving constraint qualification holds at the
proximal point p(u). Then aboutu there exists an open neighbourhobdldu) such
that G, the gradient function of the Moreau-Yosida regularizatiorf p$atisfies

G € {GXWw): K eB(u)), veNu),

i.e., G is piecewise smooth ax(u).
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Proof. By (7) and (11), for any € Na(u), there existK € B'(v) € B'(u) such that
G(v) = M(v — p() = Y aj )V fj(pw)),

jeK
Zozj(v) =1
jeK
and for allj € K we have
f(p(v)) = fj(p(v).

LetN(u) € {Nkep W)Y K11 N2 (u) be an open neighbourhooddX(= u) such that
for anyv € N(u) andK € B'(v)

(p(v), ag (v)) € cl WK (18)

whereag (v) is vacuous iff K|=1. Relation (18) can be satisfied due to the facts that as
v— U
p(v) — pu) and ak (v) — ax (U)

whereak (-) is defined by (8).
ForK e B'(u), letVK(u) = {v e Nu) : K € B'(v)}. Then

N(U) = Uk eprw V). (19)

So, for anyv € N(u) there existK € B'(u) such that € VK (u). But in this case we
know that

HX (p(v), ag (v),v) =0 (20)

and
(p(v), ag (v) € cl WK,

S0, it follows that
(p(v), g (1)) = XK (), g% () (21)

from the uniqueness of the solution in\WIK of the equationdHX (x, g, v) = 0 for
v e VK(u) c clUK. So, by (17), fow € VK (u)

G(v) = M(v — p(v))
= M@ — xX )

= GX ).
This means that for any € N(u), there exists at least one continuously differentiable
functionGK : UK D N(u) — %" such that
G(v) = GK ).

This shows that in a neighbourhood wf G is piecewise smooth, and completes the
proof.
O
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When eachf; for j € Jis an affine function, AIPCQ holds automatically, so we
have the following:

Corollary 1. Suppose thatthe functiofigfor j € J are affine andf is convex. The(,
the gradient function of the Moreau-Yosida regularizationfofis a piecewise affine
function on the whole space’.

Proof. Since in this case the AIPCQ holds everywheké,(x, g) is independent ok
andq, and there are only finitely many choices #¢rfrom B(v), v € %", it follows
from (13a), (13b), (14) and (17) th& is a piecewise affine function on the whole
spacen”.

O

Corollary 2. Suppose that eachy for j € J is twice continuously differentiabld, is
convex, and the affine independence preserving constraint qualification holds at the
proximal point p(u). If B’(u) contains only one index set (in particular, the AICQ
holds atp(u), and for alla(u) € M(u), aj(u) > 0O, for eachj e I(p(u))), thenG is
continuously differentiable in a neighbourhooduof

Corollary 2 may be regarded as a generalization of the result obtained in [7] where
f is the maximum of twaC? convex functionsf; and f with the assumptions that
a1(U), az(u) > 0andV fi(p(w)) # V f2(p(u)).

4. Conditions for positive definiteness

From Theorem 1 we know that if eadl for j € J is twice continuously differentiable,

f is convex, and the affine independence preserving constraint qualification holds at the
proximal pointp(u), then abouti there exist an open neighbourhadg¢l) and a family

of finitely many continuously differentiable functio@<, K € B'(u) defined onN(u)

such that for each € N(u)

G() € {(GK(): K e B(u)}.

Hence G is also semismooth at[13]. Recall that given an initial point®, an approxi-
mate Newton method for solving a nonsmooth equa@gn) = 0 is:

Ut = kv GWN, k=01, ..,

whereV is an approximation of an element G (u¥) (or 9sG(U¥)) andG(u¥) is an
approximation ofG(u¥). In order to obtain superlinear (quadratic) convergence of the
approximate Newton method for minimizirfg, as in [11] and [2], we need all the
matrices indG (or dgG) to be positive definite. It was proved in [12] that all such
matrices are positive definite if and only ffis strongly convex on a ball abopi(u).
Here we give conditions depending on the Hessians of the functiofts j € J, that
guarantee that the elements of the generalized Jacobi@nané positive definite. In
order to do this let

D) = {VGKX W) : K € Bu)}. (22)
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and
D'(u) = {VGK) : K € B'(u))}. (23)

Theorem 2. Suppose that each; for j € J is twice continuously differentiabld, is
convex, and the affine independence preserving constraint qualification holds at the
proximal pointp(u). If for eachK e B'(u), CK(u) := ZjEKOlj(U)szj(p(U)) is
positive definite on the subspace

L% :={d: Vj(pw)Td=0,j € K},

whereK = K\{i} for some € K andLK(u) = %" if |K| = 1, then allV € D’(u) are
positive definite. As a consequence, all matri¢es dG(u) are positive definite.

Proof. SinceG is piecewise smooth in a neighbourhoodipfve can easily show that
aG(u) < convD/(u). (24)

So we only need to prove that all matricése D’(u) are positive definite. For each
V e D'(u), there existX e B'(u) such thaVV = VGK (u). From (17), we know that

V = vGK(u)
= Ml — vxKu)). (25)

LetV be the (possibly vacuous) matrix with linearly independent coluﬁ‘lﬁﬁ( p(u))
for j € K. Letld be a matrix with linearly independent columns spanning the subspace
LKX(u). Then

Viu =o. (26)

We will useBX andCX to represenBX (xK (u), gX (u)) andCX (u), respectively. From
(13a), (13b) and (16) we have

Yyt o vxK (u) 0
BX Mm~1y vaX (u) - A
VIvxKw)y =0 (27)
and
BKvxK ) + M~ vvg¥) = 1. (28)

Now, by thei" spanning property df andV, VxX (u) can be decomposed into

VxS () = UV ) + vvxs ),
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whereVx$ (u) is an(n — |[K|) x n matrix andvx{5 (u) is a|K | x n matrix. Multiplying
this expression on the left By" and using (26) and (27) gives

0=VTVVx{(u),

which implies
Vi (u) = 0.

So,
VXK (u) = UV (). (29)
Multiplying (28) on the left byM and using the definition & in (13b), gives
(M + CH VxR W) + vvgku) = M.
Multiplying this expression on the left ByT and using (26) and (29) gives
UTM + COUVXTU) +0=UTM.

Therefore,
~1
VXK W) = Uvxs ) =u (uT(M " cK)u) UM, (30)

From Lemma 1 of [7], the positive definiteness@f implies thatvxX (u) has all of
its eigenvalues in the interv@0, 1). So the positive definiteness bf follows easily

from (25).
O

In practice,l (p(u)) may not be known. So next, in view of Remark 1, we consider
a stronger condition, depending &ne B(u) 2 B’(u), that guarantees the nonsingula-
rity of G (u) without assuming knowledge of p(u)).

Corollary 3. Suppose that eaclij for j € J is twice continuously differentiable,

f is convex, and the affine independence preserving constraint qualification holds at
the proximal pointp(u). If all matrices szj(p(u)) for j € J(p(u)) are positive
semidefinite, and for eack e B(u), CK() := ek aj(U)V2fj(p(u)) is positive
definite on the subspace

LK) :={d: VT (puyd =0, j e K},

whereK = K\{i} forsomea € K andLK (u) = %" if |K| = 1, then allV € D(u) are
positive definite. As a consequence\ake dG(u) are positive definite.
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5. Conclusions

In this paper we have discussed second-order properties of the Moreau-Yosida regula-
rization of a piecewis€? convex function. This function is of a special form, but it

is useful for gaining insight into what is needed for attempting to design better than
linearly convergent algorithms for minimizin§ based on approximate Newton and
guasi-Newton methods for minimizing. We believe that the results given here can
lead to a deeper understanding of the Moreau-Yosida regularization of a general convex
function.
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