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CONSIDER 
minf ( x 1, ( 1  

where f : Rn + [ - a, + ] is an extended valued closed proper convex function. The More- 
au-Yosida approximation FA of f is defined by 

where A is a positive parameter and 1 1  . 1 1  denotes the Euclidean norm. 
From ref. [ 1 I we know that FA is a differentiable convex function defined in the whole 

space of Rn . The derivative of FA is 
1 

= y ( x  - P, (x ) )  € g ( p , ( x ) ) ,  (3)  

where g = a j' is the subdifferential mapping of f and p, ( x ) is the unique minimizer of eq. 
( 2 ) .  An often discussed case is 

f ( x >  = maxi f i ( x ) :  i E I t ,  (4 )  
where J is a finite index set and fi, i € 1 ,  are proper convex functions. When fi, i E J ,  are 

linear functions, ~ i ' )  proved that G, is piecewise affine, hence semismooth, under a regular 

1 )  Qi, L.  , Second-order analysis of the Moreau-Yosida approximation of a convex function, Mathematical Programming, 

1997 ( to appear) . 
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assumption. When j; ,  i E J ,  are twice continuously differentiable nonlinear convex func- 

tions, ~ i ' )  posed a question: will GA be piecewise smooth[21, hence semismooth, under a simi- 
lar regularity condition? We will give a positive answer to this question under a more relaxed 
condition here. 

Define J ( p A ( x > >  = E J :  f , ( p A ( x ) )  = f ( p A ( x ) ) / .  
Constant Rank Constraint Qualification (CRCQ) . CRCQ is said to hold at p, ( x )  if there 

exists a neighborhood V of p, ( x ) such that for every subset K C J ( pA ( x ) ) , the family of 
the vectors 

has the same rank (which depends on K )  for all vectors z E V. 
Remark 1 .  CRCQ will hold if I J ( p, ( x ) ) 1 = 1 or the linear independence constraint 

qualification (LICQ) holds. CRCQ holds automatically if all f i ,  i E J ,  are linear functions. 
Let A ( x )  denote the set of all multipliers a ( x  ) such that 

a x  0 ,  j E J a x  = 0, i E J J X  C a , ( x )  = I .  
z E J ( p A ( z ) )  

For a nonnegative vector d E R I I , let supp( d ) be the subset of { 1, .-- , I J I 1 consisting of 
the indexes i for d ,  > 0 .  Define the family 28( x ) of subsets of J as follows: K € g( x ) if and 

only if s u p p ( a ( x ) ) L K C J ( p A ( x ) )  for some a ( x ) E A ( x )  and the vectors 

are linearly independent. This family 9 (  x ) is nonempty because A( x ) has an extreme point 
which easily yields a desired index set K with the stated properties. 

Theorem 1 .  Suppose that fi, i E J,  are twice continuously differentiable convex func- 
tions and CRCQ holds a t  p, ( x ) . Then there exists an  open neighborhood N of x such that 

GA ( x ) , the derivative of the Moreau- Yosida approximation off ,  is piecewise smooth in N . 
Proof. First we can prove that there exists a neighborhood U of x such that 

9 ( y )  L g ( x )  for all y E U .  (7) 
For y close to x ,  J ( P , ( ~ ) ) C J ( P ~ ( X ) ) .  Hence if I ~ ( p A ( x ) )  I = 1 ,  then G A ( x )  is contin- 
uously differentiable in a neighborhood of x .  In the following, we assume that 

I J ( P , ( x ) )  I >1. By eqs. (6) and ( 7 ) ,  for any y E  U and K € g ( y ) ,  there exist a K ( y ) E  
~ R ( Y ) , s u p p ( a K ( y ) ) ~ ~ ,  such that 

For all i E K , we have 

f (pA(y) )  = f t (pA(y) ) .  (9) 
Without loss of generality, for K E g( x ) , we will assume that K = 1 1, . a + ,  m I , m = I K I . 
Consider the following systems: 

1) See footnate 1 ) on page 1423. 
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where ( z ,  q ,  Y ) E R "  x R m - l x R n .  If we set z O = p A ( x ) ,  q :=aF(x) ,  i=1,  .a*, m -1, 

and yo = x ,  then from eqs. (8) and (9) we have H~ ( zO, qO, = 0 .  Denote 

where o f i ( z ) =  V j ; ( z )  - V f r n ( z ) ,  iEK, and K= 11, ---, m - 11.  Denote 

Since f i ,  i E J ,  are twice continuously differentiable convex functions and q: = a;( x ) >0, i 

= I ,  ..., IKI, 1 -  X i E m P = l -  C i E ~ ; ( x ) = a , ( x ) > O ,  thereexistsaneighborhood vK 
of ( zO, q" such that B~ ( z , q , y )  is a symmetric positive definite matrix when ( z ,  q ,  
y E vK . By CRCQ and since the vectors 

are linearly independent, there exists a neighborhood (we still denote it by v K )  of ( z O ,  qO, 
such that the vectors 

are linearly independent when ( z ,  q , y ) E vK . Then it follows that the vectors 1 vfi ( z ) : 

i € K I are linearly independent. So the nonsingularity of ( z ,  q ,  y ) follows easily when 
( 2 ,  q ,  y )  E VK. By the implicit function theorem, there exist an open neighborhood uK of 
yo( = 3 )  and an open neighborhood wK of ( zO,  qO)  such that when y E c l u K ,  the equation 
HK ( z , q , y ) = O has a unique solution ( zK ( y ) , qK ( y ) ) E cl wK , where clS denotes the clo- 
sure of a set S . Moreover, ( zK ( y 1, qK ( y ) ) is continuously differentiable in uK. Define 

1 G : uK+lRn as G" ( y ) = I ( y - zK ( y ) ) , y € uK. Then G~ ( y ) is continuously differen- 

tiable in uK. 
Let N L  1 f' uK / r) U be an open neighborhood of = s) such that for any y E 

N a n d  K f  g ( x ) ,  
K 

( P A ( Y ) ,  Q ~ ( Y ) ) E  C J W ~ .  (10) 

The above relation ( 10) can be satisfied due to the facts that aK ( y )+ aK ( x ) and pA ( y 1- 
p A ( x )  as y - s .  For K E L % ( r ) ,  denote N ~ =  I y E  N: K E 2 d ( y ) t .  Then from eq. ( 7 )  
N =  U K E ? J ( r ) ~ K .  SO for any y E  N,  there exists K E g ( x )  such that  EN^. But from 

eqs. (8) and (9) we know that 
K 

rrK(pA(y),  a,-(y), Y ) =  0. 

Then it follows that 
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K 
( A  + Y ) )  = ( ~ ~ ( ~ 1 ,  p K ( y ) )  

from eq. (10) and the uniqueness of the solution of the equation H~ ( z ,  q ,  y ) = 0 in cl wK 
for y E ~ K ~ ~ l ~ K .  Sofor 

which means that for any y E N, there exists at least a continuously differentiable function 
cK : uK2 N+IRn such that GA ( y ) = G~ ( y ) . This shows that in the neighborhood N of x , 
GA is piecewise smooth. 

When f,, i E J ,  are linear functions, CRCQ holds automatically, so we have 
Theorem 2. Suppose that fi, i E J,  are linear functions. Then G A ,  the derivative of 

the Moreau-Yosida approximation o f f ,  is a piecewise a ffine function, hence a semismooth 
function in a neighborhood of' any x E R" . 
( Received January 27, 1997) 
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