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Key words: Euclidean Jordan algebras; Löwner’s operator; spectral functions; semismoothness.

MSC2000 Subject Classification: Primary: 90C33, 65K10; Secondary: 90C26, 90C31

OR/MS subject classification: Primary: Programming/nonlinear

History: Received: December 24, 2004; Revised: July 5, 2007.

1. Introduction We are interested in functions (scalar valued or vector valued) associated with
Euclidean Jordan algebras. Details on Euclidean Jordan algebras can be found in Koecher’s 1962 lecture
notes [24] and the monograph by Faraut and Korányi [15]. Here we briefly describe the properties of
Euclidean Jordan algebras that are necessary for defining our functions. For research on interior point
methods for optimization problems under the framework of Euclidean Jordan algebras, we refer to [16, 46]
and references therein, and for research on P -properties of complementarity problems, see [20, 54].

Let F be the field R or C. Let V be a finite-dimensional vector space over F endowed with a bilinear
mapping (x, y) → x·y (product) from V×V into V. The pair A := (V, ·) is called an algebra. For a given
x ∈ V, let L(x) be the linear operator of V defined by

L(x)y := x · y for every y ∈ V .

An algebra A is said to be a Jordan algebra if, for all x, y ∈ V:

(i) x · y = y · x;
(ii) x · (x2 · y) = x2 · (x · y), where x2 := x · x.

For a Jordan algebra A = (V, ·), we call x · y the Jordan product of x and y.

A Jordan algebra A is not necessarily associative. That is, x ·(y ·z) = (x ·y) ·z may not hold in general.
However, it is power associative, i.e., for any x ∈ V, xr ·xs = xr+s for all integers r, s ≥ 1 [15, Proposition
II.1.2]. If for some element e ∈ V, x · e = e · x = x for all x ∈ V, then e is called a unit element of A.
The unit element, if exists, is unique. A Jordan algebra A does not necessarily have a unit element. In
this paper A = (V, ·) is always assumed to have a unit element e ∈ V. Let F[X] denote the algebra over
F of polynomials in one variable with coefficients in F. For x ∈ V, define F(x) := {p(x) : p ∈ F[X] } and
J(x) := {p ∈ F[X] : p(x) = 0 } . (F(x), ·) is a subalgebra generated by x and e and J(x) is an ideal. Since
F[X] is a principal ring, the ideal J(x) is generated by a monic polynomial which is called the minimal
polynomial of x [24, Page 28]. For an introduction on the concepts of rings, ideals and others in algebra,
see [30, 56].
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2 Sun and Sun: Löwner’s Operator and Spectral Functions
Mathematics of Operations Research 33(0), pp. xxx–xxx, c©2008 INFORMS

For x ∈ V, let ζ(x) be the degree of the minimal polynomial of x, which can be equivalently defined as

ζ(x) := min{ k : {e, x, x2, . . . , xk} are linearly dependent }.

This number is always bounded by dim(V), the dimension of V. Then the rank of A is well defined by

r := max{ ζ(x) : x ∈ V } .

An element x ∈ V is said to be regular if ζ(x) = r. The set of regular elements is open and dense in V
and there exist polynomials a1, a2, . . . , ar : V → F, which are polynomials in the coordinates of x ∈ V for
some fixed basis, such that the minimal polynomial of every regular element x is given by

tr − a1(x)tr−1 + a2(x)tr−2 + · · ·+ (−1)rar(x) .

The polynomials a1, a2, . . . , ar are uniquely determined and aj is homogeneous of degree j, i.e., aj(ty) =
tjaj(y) for every t ∈ F and y ∈ V, j = 1, 2, . . . , r [15, Proposition II.2.1]. The polynomial tr−a1(x)tr−1 +
a2(x)tr−2 + · · · + (−1)rar(x) is called the characteristic polynomial of x. For a regular x, the minimal
polynomial and the characteristic polynomial are the same. We call tr(x) := a1(x) and det(x) := ar(x)
the trace and the determinant of x, respectively.

A Jordan algebra A = (V, ·), with a unit element e ∈ V, defined over the real field R is called a
Euclidean Jordan algebra, or formally real Jordan algebra, if there exists a positive definite symmetric
bilinear form on V which is associative; in other words, there exists on V an inner product denoted by
〈·, ·〉V such that for all x, y, z ∈ V:

(iii) 〈x · y, z〉V = 〈y, x · z〉V.

A Euclidean Jordan algebra is called simple if it is not the direct sum of two Euclidean Jordan algebras.
Every Euclidean Jordan algebra is, in a unique way, a direct sum of simple Euclidean Jordan algebras
[15, Proposition III.4.4].

Here is an example of (simple) Euclidean Jordan algebras. Let Sm be the space of m×m real symmetric
matrices. An inner product on this space is given by

〈X,Y 〉Sm := Tr(XY ) ,

where for X,Y ∈ Sm, XY is the usual matrix multiplication of X and Y and Tr(XY ) is the trace of
matrix XY . Then, (Sm, ·) is a Euclidean Jordan algebra with the Jordan product given by

X · Y =
1
2
(XY + Y X) , X, Y ∈ Sm .

In this case, the unit element is the identity matrix I in Sm.

Recall that an element c ∈ V is said to be idempotent if c2 = c. Two idempotents c and q are said to
be orthogonal if c · q = 0. One says that {c1, c2, . . . , ck} is a complete system of orthogonal idempotents
if

c2j = cj , cj · ci = 0 if j 6= i, j, i = 1, 2, . . . , k , and
k∑

j=1

cj = e .

An idempotent is said to be primitive if it is nonzero and cannot be written as the sum of two other
nonzero idempotents. We call a complete system of orthogonal primitive idempotents a Jordan frame.
Then, we have the following important spectral decomposition theorem.

Theorem 1.1 ([15, Theorem III.1.2]) Suppose that A = (V, ·) is a Euclidean Jordan algebra and the
rank of A is r. Then for any x ∈ V, there exists a Jordan frame {c1, c2, . . . , cr} and real numbers
λ1(x), λ2(x), . . . , λr(x), arranged in the decreasing order λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x), such that

x =
r∑

j=1

λj(x)cj = λ1(x)c1 + λ2(x)c2 + · · ·+ λr(x)cr .

The numbers λ1(x), λ2(x), . . . , λr(x) (counting multiplicities), which are uniquely determined by x, are
called the eigenvalues and

∑r
j=1 λj(x)cj the spectral decomposition of x. Furthermore,

tr(x) =
r∑

j=1

λj(x) and det(x) =
r∏

j=1

λj(x) .
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In fact, the above theorem is called the second version of the spectral decomposition, on which our
analysis relies. It also follows readily that a Jordan frame has exactly r elements. The arrangement
that λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x) allows us to consider the function λ : V → Rr. Strictly speaking, the
Jordan frame {c1, c2, . . . , cr} in the spectral decomposition of x also depends on x. We do not write this
dependence explicitly for the sake of simplicity in notation. Let σ(x) be the set consisting of all distinct
eigenvalues of x. Then σ(x) contains at least one element and at most r. For each µi ∈ σ(x), denote
Ji(x) := {j : λj(x) = µi} and

bi(x) :=
∑

j∈Ji(x)

cj .

Obviously, {bi(x) : µi ∈ σ(x)} is a complete system of orthogonal idempotents. From Theorem 1.1, we
obtain

x =
∑

µi∈σ(x)

µibi(x) ,

which is essentially the first version of the spectral decomposition stated in [15] as the uniqueness of
{bi(x) : µi ∈ σ(x)} is guaranteed by [15, Theorem III.1.1].

Since, by [15, Proposition III.1.5], a Jordan algebra A = (V, ·) over R with a unit element e ∈ V is
Euclidean if and only if the symmetric bilinear form tr(x · y) is positive definite, we may define another
inner product on V by 〈x, y〉 := tr(x · y), x, y ∈ V. By the associativity of tr(·) [15, Proposition II.4.3], we
know that the inner product 〈·, ·〉 is also associative, i.e., for all x, y, z ∈ V, it holds that 〈x·y, z〉 = 〈y, x·z〉.
Thus, for each x ∈ V, L(x) is a symmetric operator with respect to this inner product in the sense that

〈L(x)y, z〉 = 〈y,L(x)z〉 , ∀ y, z ∈ V .

Let ‖ · ‖ be the norm on V induced by this inner product

‖x‖ :=
√
〈x, x〉 =

( r∑
j=1

λ2
j (x)

)1/2

, x ∈ V .

Let φ : R → R be a scalar valued function. Then, it is natural to define a vector valued function
associated with the Euclidean Jordan algebra A = (V, ·) [4, 25] by

φV(x) :=
r∑

j=1

φ(λj(x))cj = φ(λ1(x))c1 + φ(λ2(x))c2 + · · ·+ φ(λr(x))cr , (1)

where x ∈ V has the spectral decomposition x =
∑r

j=1 λj(x)cj . In a seminal paper [35], Löwner initiated
the study of φV for the case V = Sm. Korányi [25] extended Löwner’s result on the monotonicity of
φSm to φV. For nonsmooth analysis of φV over the Euclidean Jordan algebra associated with symmetric
matrices, see [6, 7, 50] and over the Euclidean Jordan algebra associated with the second order cone
(SOC), see [5, 17]. In recognition of Löwner’s contribution, we call φV Löwner’s operator (function).
When φ(t) = t+ := max(0, t), t ∈ R, Löwner’s operator becomes the metric projection operator

x+ = (λ1(x))+c1 + (λ2(x))+c2 + · · ·+ (λr(x))+cr
over the convex cone

K := {y2 : y ∈ V}
under the inner product 〈·, ·〉. Actually, K is a symmetric cone [15, Theorem III.2.1], i.e., K is a self-dual
homogeneous closed convex cone.

Recall that a function f : Rr → (−∞,+∞] is said to be symmetric if for any permutation matrix P in
Rr, f(υ) = f(Pυ), i.e, the function value f(υ) does not change by permuting the coordinates of υ ∈ Rr.
Then, the spectral function f ◦ λ : V → R is defined as

(f ◦ λ)(x) = f(λ1(x), λ2(x), . . . , λr(x)) . (2)

See [33] for a survey and [41] for the latest development of the properties of f ◦λ associated with (Sm, ·).
In this paper, we shall study various differential properties of f ◦λ and φV associated with the Euclidean
Jordan algebras in a unified way.

The organization of this paper is as follows. In Section 2, we present several basic results needed for
further discussion. In section 3, we study important properties of the eigenvalues, Jordan frames and
Löwner’s operator over simple Euclidean Jordan algebras. We then investigate the differential properties
of the spectral functions in Section 4 and conclude the paper in Section 5.
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2. The Building Blocks Let V be the linear space Cn or Rn. A function g : V → F is said to be
analytic at z̄ ∈ V if there exists a neighborhood N (z̄) of z̄ such that g in N (z̄) can be expanded into an
absolutely convergent power series in z − z̄:

∞∑
j1,j2,...,jn=0

āj1j2···jn(z1 − z̄1)j1(z2 − z̄2)j2 · · · (zn − z̄n)jn ,

where all āj1j2···jn
∈ F. If g is analytic at z̄ ∈ V = Rn, then g is also called real analytic at z̄.

Let L(V) be the vector space of linear operators from V into itself. Denote by I ∈ L(V) the identity
operator, i.e., for all x ∈ V, Ix = x. For any T ∈ L(V) the spectrum σ(T ) of T is the set of complex
numbers ζ such that ζI − T is not one-to-one. By the definition of σ(T ), for any µ ∈ σ(T ), there exists
a vector 0 6= v ∈ V such that (T − µI)v = 0. The number µ is called an eigenvalue of T , and any
corresponding v is called an eigenvector. Suppose that M1,M2, . . . ,Ms are s linear subspaces in V such
that V = M1 + M2 + · · ·+ Ms and for all uj ∈ Mj such that

∑s
j=1 uj = 0 implies uj = 0, j = 1, 2, . . . , s.

Then V is the direct sum of M1,M2, . . . ,Ms and is denoted by

V = M1 ⊕M2 ⊕ · · · ⊕Ms .

Each x ∈ V can be expressed in a unique way of the form x = u1 +u2 + · · ·+us, uj ∈ Mj , j = 1, 2, . . . , s.
Denote operators Pj ∈ L(V) by

Pjx = uj , j = 1, 2, . . . , s.
The Pj is called the projection operator onto Mj along M1⊕· · ·⊕Mj−1⊕Mj+1⊕· · ·⊕Ms, j = 1, 2, . . . , s.
According to [23, Page 21], we have

P2
j = Pj , PjPi = 0 if i 6= j, i, j = 1, 2, . . . , s,

s∑
j=1

Pj = I. (3)

Conversely, let P1,P2, . . . ,Ps ∈ L(V) be operators satisfying (3). If we write Mj := Pj(V), then V is
an direct sum of Mj , j = 1, 2, . . . , s. Here for any operator T ∈ L(V), T (V) is the range space of T .

If M1,M2, . . . ,Ms are mutually orthogonal with respect to an inner product 〈·, ·〉, then V = M1 ⊕
M2 ⊕ · · · ⊕Ms is called the orthogonal direct sum of M1,M2, . . . ,Ms and Pj is the orthogonal projection
operator onto Mj with respect to the inner product 〈·, ·〉 , j = 1, 2, . . . , s. The orthogonal projection
operators {Pj : j = 1, 2, . . . , s} satisfy

Pj = P∗j ,P2
j = Pj , PjPi = 0 if i 6= j, i, j = 1, 2, . . . , s,

s∑
j=1

Pj = I , (4)

where P∗j is the adjoint (operator) of Pj , j = 1, 2, . . . , s. For details, see [23, Chapter 1].

2.1 Functions of Symmetric Operators and Symmetric Matrices Let {u1, u2, . . . , un} be an
orthonormal basis of Rn with an inner product 〈·, ·〉. Let Sn ⊂ L(Rn) be the set consisting of all symmetric
operators in L(Rn). Let X be a fixed but arbitrary symmetric operator in Sn. The representation of the
symmetric operator X with respect to the basis {u1, u2, . . . , un} is the matrix X ∈ Sn defined by

[Xu1 Xu2 · · · Xun] = [u1 u2 · · · un]X , (5)

where [u1 u2 · · · un] is the matrix of columns u1, u2, . . . , and un. Conversely, for any given X ∈ Sn, the
operator defined by (5) is a symmetric operator in Sn.

Let On be the set of n× n real orthogonal matrices. Then for any X ∈ Sn, there exist an orthogonal
matrix V ∈ On and n real values λ1(X), λ2(X), . . . , λn(X), arranged in the decreasing order λ1(X) ≥
λ2(X) ≥ · · · ≥ λn(X), such that X has the following spectral decomposition

X = V diag(λ(X))V T =
n∑

j=1

λj(X)vjv
T
j , (6)

where vj is the jth column of V , j = 1, 2, . . . , n. Denote ṽj = [u1 u2 · · · un]vj , j = 1, 2, . . . , n. Then
{ṽ1, ṽ2, . . . , ṽn} is another orthonormal basis of Rn. Let Pj be the orthogonal projection operator onto
the linear space spanned by ṽj , i.e.,

Pjx = 〈ṽj , x〉 ṽj , ∀ x ∈ Rn .
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For each j ∈ {1, 2, . . . , n}, Pj is a symmetric operator in S(V) and its matrix with respect to the basis
{u1, u2, . . . , un} is given by Pj = vjv

T
j . Hence, the symmetric operator X ∈ S(V), with matrix X as its

representation with respect to the basis {u1, u2, . . . , un}, satisfies

X =
n∑

j=1

λ̃j(X )Pj , (7)

where λ̃j(X ) := λj(X) is the jth largest eigenvalue of X (i.e., X and X share the same set of eigenvalues)
with the corresponding eigenvector ṽj , j = 1, 2, . . . , n.

Let f : Rn → (−∞,∞] be a symmetric function. Then one can define the scalar valued function
f ◦ λ : Sn → R by

(f ◦ λ)(X) := f(λ1(X), λ2(X), . . . , λn(X)) , (8)

where X ∈ Sn has the spectral decomposition (6). The composite function f ◦λ inherits many properties
of f . See Lewis [33] for a survey. In [32], Lewis showed that f is (continuously) differentiable at λ(X) if
and only f ◦ λ is (continuously) differentiable at X and

∇(f ◦ λ)(X) = V diag(∇f(λ(X)))V T , (9)

which agrees with the formula given in Tsing, Fan, and Verriest [55, Theorem 3.1] when f is analytic at
λ(X).

Let φ : R → R be a scalar function. Then the matrix valued function φSn(X) at X is defined by

φSn(X) :=
n∑

j=1

φ(λj(X))vjv
T
j = V diag(φ(λ1(X)), φ(λ2(X)), . . . , φ(λn(X)))V T . (10)

Correspondingly, one may define φSn(X ) by

φSn(X ) :=
n∑

j=1

φ(λ̃j(X ))Pj , (11)

where X is the symmetric operator with its representation given by the matrix X. By (6) and (7), we
obtain

[φSn(X )u1 φSn(X )u2 · · · φSn(X )un] = [u1 u2 · · · un]φSn(X) . (12)

The functions φSn and φSn have been well studied since Löwner [35]. See [3, 22].

Let φ be continuous in an open set containing σ(X). Let ϕφ be any function such that ϕφ is differen-
tiable at each λj(X) and

(ϕφ)′(λj(X)) = φ(λj(X)) , j = 1, 2, . . . , n.

Define fφ : Rn → R by

fφ(x) :=
n∑

i=1

ϕφ(xi) , x ∈ Rn . (13)

Then, fφ is symmetric and differentiable at λ(X), and by (9),

∇(fφ ◦ λ)(X) = φSn(X) =
n∑

j=1

φ(λj(X))vjv
T
j . (14)

Let ξ1 > ξ2 > · · · > ξn̄ be all the n̄ distinct values in σ(X). For each k = 1, 2, . . . , n̄, let Jk(X) := {j :
λj(X) = ξk}. Let Y ∈ Sn have the following spectral decomposition

Y = Wdiag(λ(Y ))WT =
n∑

j=1

λj(Y )wjw
T
j ,

with λ1(Y ) ≥ λ2(Y ) ≥ · · · ≥ λn(Y ) and W ∈ On. Define

P̃k(Y ) =
∑

j∈Jk(X)

wjw
T
j . (15)

Then, X =
∑n̄

k=1 ξkP̃k(X) and φSn(X) =
∑n̄

k=1 φ(ξk)P̃k(X).
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For each ξk ∈ σ(X), by taking φk(ζ) be identically equal to one in an open neighborhood of ξk, and
identically equal to zero in an open neighborhood of each ξj with j 6= k, we know that for all Y ∈ Sn

sufficiently close to X,
P̃k(Y ) = (φk)Sn(Y ) , k = 1, 2, . . . , n̄ . (16)

This equivalence and (14) allow us to state the analyticity of each operator P̃k at X, k = 1, 2, . . . , n̄;
and the analyticity of φSn at X when φ is analytic in an open set containing σ(X). First, we need the
following theorem from [55, Theorem 3.1].

Theorem 2.1 Let X ∈ Sn. Suppose that f : Rn → (−∞,∞] is a symmetric function. If f is real
analytic at the point λ(X), then the composite function f ◦ λ is analytic at X.

By (14), (15), (16), and Theorem 2.1, we have the following proposition, which does not require a
proof.

Proposition 2.1 Let φ : R → R be real analytic in an open set (may not be connected) containing σ(X).
Then, φSn(·) is analytic at X and for all Y ∈ Sn sufficiently close to X,

φSn(Y ) = ∇(fφ ◦ λ)(Y ) .

In particular, each P̃k(·) is analytic at X, k = 1, 2, . . . , n̄.

2.2 Hyperbolic Polynomials In order to study Löwner’s operator φV and the spectral function
f ◦λ, we need some results under the framework of hyperbolic polynomials. Let V be a finite-dimensional
inner product space over R. Suppose that p : V → R is a homogeneous polynomial of degree r on V
and q ∈ V with p(q) 6= 0. Then p is said to be hyperbolic with respect to q, if the univariate polynomial
t 7→ p(x+ tq) has only real zeros, for every x ∈ V.

Let p be hyperbolic with respect to q of degree r. Then, for each x ∈ V, t 7→ p(tq − x) has only real
roots. Let λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x) (counting multiplicities) be the r roots of p(tq − x) = 0. We say
that λj(x) is the jth largest eigenvalue of x (with respect to p and q). Then for x ∈ V,

p(tq − x) = p(q)
r∏

j=1

(t− λj(x))

and

p(x+ tq) = (−1)rp(−tq − x) = p(q)
r∏

j=1

(t+ λj(x)) .

The univariate functional t 7→ p(tq−x) is the characteristic polynomial of x (with respect to p, in direction
q). Let σk(x) :=

∑k
j=1 λj(x), 1 ≤ k ≤ r, be the sum of the k largest eigenvalues of x.

A fundamental theorem of G̊arding [18] shows that λr(·) is positively homogeneous and concave on V.
This implies that the (closed) hyperbolic cone

K(p, q) := {x : λr(x) ≥ 0 },

associated with p in direction q, is convex. By exploring G̊arding’s theorem further, Bauschke et al. [2]
showed that for each 1 ≤ k ≤ r, σk(·) is positively homogeneous and convex on V. This, by Rockafellar
[44], implies that each λj(·) is locally Lipschitz continuous and directionally differentiable. Actually, by
following Rellich’s approach [43] for Hermitian matrices, we can further show that for any fixed x ∈ V
and h ∈ V, there exist r functions ν1, ν2, . . . , νr : R → R, which are analytic at ε = 0, such that for all
ε ∈ R sufficiently small,

{ν1(ε), ν2(ε), . . . , νr(ε)} = {λ1(x+ εh), λ2(x+ εh), . . . , λr(x+ εh)} . (17)

The proof can be sketched as follows. For any ε ∈ R,

p(tq − (x+ εh)) = p(q)(tr + s1(ε)tr−1 + · · ·+ sr−1(ε)t+ sr(ε)) ,

where s1, s2, . . . , sr are polynomials of ε. Since p is hyperbolic with respect to q, all the roots of tr +
s1(ε)tr−1 + · · · + sr−1(ε)t + sr(ε) = 0 are reals when ε ∈ R. Then, by a similar argument to the proof
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in Rellich [43, Page 31], we can conclude that there exist r functions ν1, ν2, . . . , νr : R → R, which are
analytic at ε = 0, such that (17) holds for all ε ∈ R sufficiently small.

Let A = (V, ·) be a Euclidean Jordan algebra of rank r introduced in Section 1. By letting p(x) :=
det(x), x ∈ V, we see from Theorem 1.1 that p is hyperbolic with respect to e of degree r since p(e) =
det(e) = 1 6= 0. Furthermore, p is complete, i.e.,

{x ∈ V : λ(x)} = {0}.

Moreover, p is isometric in the sense of [2, Definition 5.1], i.e., for all x, y ∈ V, there exists z ∈ V such
that

λ(z) = λ(y) and λ(x+ z) = λ(x) + λ(z).

The latter fact can be shown as follows. Let x and y be arbitrary but fixed vectors in V. Then, by
Theorem 1.1, there exists a Jordan frame {c1, c2, . . . , cr} such that

x =
r∑

j=1

λj(x)cj = λ1(x)c1 + λ2(x)c2 + · · ·+ λr(x)cr .

Let z :=
∑r

j=1 λj(y)cj . Then, λ(z) = λ(y) and

x+ z =
r∑

j=1

(λj(x) + λj(y))cj ,

which, together with λ(z) = λ(y), implies that λ(x + z) = λ(x) + λ(y) = λ(x) + λ(z). The isometric
property of p thus holds. Therefore, by [2, Corollary 3.3 and Theorem 5.5] and (17), we have

Proposition 2.2 Let A = (V, ·) be a Euclidean Jordan algebra and f : Rr → (−∞,∞] be a symmetric
convex function. The following results hold.

(i) For each 1 ≤ k ≤ r, σk(·) is positively homogeneous and convex on V.

(ii) f ◦ λ is differentiable at x if and only if f is differentiable at λ(x) and

{z ∈ V : λ(z) = ∇f(λ(x)), 〈x, z〉 = λ(x)Tλ(z) } = {∇(f ◦ λ)(x)} .

(iii) For any x, h ∈ V, the eigenvalues of x+ εh, ε ∈ R can be arranged to be analytic at ε = 0.

2.3 Semismoothness Let X and Y be two finite dimensional inner product spaces over the field R.
Let O be an open set in X and Φ : O ⊆ X → Y be a locally Lipschitz continuous function on the open set
O. By Rademacher’s theorem, Φ is almost everywhere (in the sense of Lebesgue measure) differentiable
(in the sense of Fréchet) in O. Let DΦ be the set of points in O where Φ is differentiable. Let Φ′(x), which
is a linear mapping from X to Y, denote the derivative of Φ at x ∈ O if Φ is differentiable at x. Then,
the B-subdifferential of Φ at x ∈ O, denoted by ∂BΦ(x), is the set of V such that V = {limk→∞ Φ′(xk)},
where {xk} ∈ DΦ is a sequence converging to x. Clarke’s generalized Jacobian of Φ at x is the convex
hull of ∂BΦ(x) (see [10]), i.e., ∂Φ(x) = conv{∂BΦ(x)}. It follows from the work of Warga on derivative
containers [57, Theorem 4] that the set ∂Φ(x) is actually “blind” to sets of Lebesgue measure zero (see
[10, Theorem 2.5.1] for the case that Y = R), i.e., if S is any set of Lebesgue measure zero in X, then

∂Φ(x) = conv{ lim
k→∞

Φ′(xk) : xk → x , xk ∈ DΦ , xk /∈ S} . (18)

Semismoothness was originally introduced by Mifflin [36] for functionals, and was used to analyze the
convergence of bundle type methods [31, 37, 48] for nondifferentiable optimization problems. In particular,
it plays a key role in establishing the convergence of the BT-trust region method for solving optimization
problems with equilibrium constraints. For studying the superlinear convergence of Newton’s method
for solving nondifferentiable equations, Qi and Sun [42] extended the definition of semismoothness to
vector valued functions. There are several equivalent ways for defining the semismoothness. We find the
following definition of semismoothness convenient.

Definition 2.1 Let Φ : O ⊆ X → Y be a locally Lipschitz continuous function on the open set O. We
say that Φ is semismooth at a point x ∈ O if
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(i) Φ is directionally differentiable at x; and

(ii) for any y → x and V ∈ ∂Φ(y),

Φ(y)− Φ(x)− V (y − x) = o(||y − x||) . (19)

In Definition 2.1, part (i) and part (ii) do not imply each other. Condition (19) in part (ii), together
with a nonsingularity assumption on ∂Φ at a solution point, was used by Kummer [26] before [42]
to prove the superlinear convergence of Newton’s method for locally Lipschitz equations. Φ is said
to be G-semismooth at x if condition (19) holds. A stronger notion than semismoothness is γ-order
semismoothness with γ > 0. For any γ > 0, Φ is said to be γ-order G-semismooth (respectively, γ-
order semismooth) at x, if Φ is G-semismooth (respectively, semismooth) at x and for any y → x and
V ∈ ∂Φ(y),

Φ(y)− Φ(x)− V (y − x) = O(||y − x||1+γ) . (20)

In particular, Φ is said to be strongly G-semismooth (respectively, strongly semismooth) at x if Φ is 1-order
G-semismooth (respectively, 1-order semismooth) at x, We say that Φ is G-semismooth (respectively,
semismooth, p-order G-semismooth, p-order semismooth) on a set Z ⊆ O if Φ is G-semismooth (respec-
tively, semismooth, γ-order G-semismooth, γ-order semismooth) at every point of Z. G-semismoothness
was used in [19] and [40] to obtain inverse and implicit function theorems and stability analysis for
nonsmooth equations.

Lemma 2.1 Let Φ : O ⊆ X → Y be locally Lipschitz near x ∈ O. Let γ > 0 be a constant. If S is a set
of Lebesgue measure zero in X, then Φ is G-semismooth (γ-order G-semismooth) at x if and only if for
any y → x, y ∈ DΦ, and y /∈ S,

Φ(y)− Φ(x)− Φ′(y)(y − x) = o(||y − x||) (= O(||y − x||1+γ)) . (21)

Proof. By examining the proof of [51, Theorem 3.7] and making use of (18), one can prove the conclusion
without difficulty. We omit the details. �

Lemma 2.1 is useful in proving the semismoothness of Lipschitz functions. It first appeared in [51]
for the case S = ∅ and has been used in [6, 8, 41]. Next, we shall use this lemma to show that a
continuous selection of fintely many G-semismooth (respectively, γ-order G-semismooth) functions is
still G-semismooth (respectively, γ-order G-semismooth). The latter will be used to prove the strong
semismoothness of eigenvalue functions over the Euclidean Jordan algebras.

Let Φ1,Φ2, · · · ,Φm : O ⊆ X → Y be m continuous functions on the open set O. A function Φ : O ⊆
X → Y is called a continuous selection of {Φ1,Φ2, . . . ,Φm} if Φ is a continuous function on O and for
each y ∈ O,

Φ(y) ∈ {Φ1(y),Φ2(y), . . . ,Φm(y)} .
For x ∈ O, define the active set of Φ at x by

IΦ(x) := {j : Φj(x) = Φ(x) , j = 1, 2, . . . ,m}

and the essentially active set of Φ at x by

Ie
Φ(x) := {j : x ∈ cl(int{y ∈ O |Φj(y) = Φ(y)}) , j = 1, 2, . . . ,m} ,

where “cl” and “int” denote the closure and interior operations, respectively. The functions Φj , j ∈ IΦ(x)
are called active selection functions at x. An active selection function Φj is called essentially active at x
if j ∈ Ie

Φ(x). In the proof of [47, Proposition 4.1.1], Scholtes actually showed that for every x ∈ O, there
exists an open neighborhood N (x)(⊆ O) of x such that

Φ(y) ∈ {Φj(y) : j ∈ Ie
Φ(x)} , y ∈ N (x) . (22)

Proposition 2.3 Let Φ1,Φ2, . . . ,Φm : O ⊆ X → Y be m continuous functions on an open set O and
Φ : O ⊆ X → Y be a continuous selection of {Φ1,Φ2, . . . ,Φm}. Let x ∈ O and γ > 0 be a constant. If all
the essentially active selective functions Φj, j ∈ Ie

Φ(x), at x are G-semismooth (respectively,semismooth,
γ-order G-semismooth, γ-order semismooth) at x, then Φ is G-semismooth (respectively,semismooth,
γ-order G-semismooth, γ-order semismooth) at x.
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Proof. Let N (x)(⊆ O) be an open set of x such that (22) holds. Suppose that all Φj , j ∈ Ie
Φ(x) are

G-semismooth at x. By the definition of G-semismoothness, these functions Φj , j ∈ Ie
Φ(x) are locally

Lipschitz continuous functions on N (x). Then, by Hager [21] or [47, Proposition 4.12], Φ is locally
Lipschitz continuous on the open set N (x).

Let Sj := N (x)\DΦj
, j ∈ Ie

Φ(x) and

S :=
⋃

j∈Ie
Φ(x)

Sj .

Since all {Sj : j ∈ Ie
Φ(x)} are sets of Lebesgue measure zero, S is also a set of Lebesgue measure zero.

By Lemma 2.1, in order to prove that Φ is also G-semismooth at x, we only need to show that for any
y → x, y ∈ DΦ, and y /∈ S,

Φ(y)− Φ(x)− Φ′(y)(y − x) = o(||y − x||) . (23)

For the sake of contradiction, assume that (23) does not hold. Then there exist a constant δ > 0 and a
sequence {yk} converging to x with yk ∈ DΦ ∩N (x) and yk /∈ S such that

‖Φ(yk)− Φ(x)− Φ′(yk)(yk − x)‖ ≥ δ||yk − x||

for all k sufficiently large. Since yk ∈ DΦ ∩N (x) and yk /∈ S, we have for all k that

Φ′(yk)(yk − x) ∈ {(Φj)′(yk)(yk − x) : j ∈ Ie
Φ(x) } . (24)

On the other hand, by the assumption that Φj , j ∈ Ie
Φ(x) are G-semismooth at x, we have

Φj(yk)− Φj(x)− (Φj)′(yk)(yk − x) = o(||yk − x||) as k →∞ , j ∈ Ie
Φ(x) ,

which, together with (24) and the fact that Φ(x) = Φj(x), j ∈ Ie
Φ(x) implies

Φ(yk)− Φ(x)− Φ′(yk)(yk − x) ∈ {Φj(yk)− Φj(x)− (Φj)′(yk)(yk − x) : j ∈ Ie
Φ(x)}

= o(||yk − x||) as k →∞ .

So a contradiction is derived. This contradiction shows that (23) holds. Thus Φ is G-semismooth at x.

To prove that Φ is semismooth at x when all Φj , j ∈ Ie
Φ(x) are semismooth at x, we only need to show

that Φ is directionally differentiable at x if all Φj , j ∈ Ie
Φ(x) are directionally differentiable at x. The

latter can be derived from the proof of [27, Proposition 2.5]. In fact, Kuntz and Scholtes only proved
that Φ is directionally differentiable at x under the assumption that all Φj , j ∈ Ie

Φ(x) are continuously
differentiable functions. A closer examination reveals that their proof is still valid if one replaces the
derivatives of Φj , j ∈ Ie

Φ(x) at x by their directional derivatives. Also see [39, Lemma 1] for this result.

Similarly, one can prove that Φ is γ-order G-semismooth (respectively, γ-order semismooth) x if all
Φj , j ∈ Ie

Φ(x), are γ-order G-semismooth (respectively, γ-order semismooth) at x. �

3. Eigenvalues, Jordan Frames and Löwner’s Operator Let A = (V, ·) be a Jordan algebra
(not necessarily Euclidean). An important part in the theory of Jordan algebras is the Peirce decompo-
sition. Let c ∈ V be a nonzero idempotent. Then, by [15, Proposition III.1.3], we know that c satisfies
2L3(c) − 3L2(c) + L(c) = 0 and the distinct eigenvalues of the symmetric operator L(c) are 0, 1

2 and 1.
Let V(c, 1),V(c, 1

2 ), and V(c, 0) be the three corresponding eigenspaces, i.e.,

V(c, i) := {x ∈ V : L(c)x = ix } , i = 1,
1
2
, 0 .

Then V is the orthogonal direct sum of V(c, 1),V(c, 1
2 ), and V(c, 0). The decomposition

V = V(c, 1)⊕ V(c,
1
2
)⊕ V(c, 0)

is called the Peirce decomposition of V with respect to the nonzero idempotent c.

In the sequel we assume that A = (V, ·) is a simple Euclidean Jordan algebra of rank r and dim(V) = n.
Then, from the spectral decomposition theorem we know that an idempotent c is primitive if and only if
dim(V (c, 1)) = 1 [15, Page 65].
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Let {c1, c2, . . . , cr} be a Jordan frame of A. From [15, Lemma IV.1.3], we know that the operators
L(cj), j = 1, 2, . . . , r commute and admit a simultaneous diagonalization. For i, j ∈ {1, 2, . . . , r}, define
the following spaces

Vii := V(ci, 1) = Rci
and when i 6= j,

Vij := V(ci,
1
2
) ∩ V(cj ,

1
2
) .

Then, from [15, Theorem IV.2.1], we have the following proposition.

Proposition 3.1 The space V is the orthogonal direct sum of subspaces Vij (1 ≤ i ≤ j ≤ r), i.e.,
V =

⊕
i≤j Vij . Furthermore,

Vij · Vij ⊂ Vii + Vjj,

Vij · Vjk ⊂ Vik, if i 6= k,

Vij · Vkl = {0}, if {i, j} ∩ {k, l} = ∅.

For any i 6= j ∈ {1, 2, . . . , r} and s 6= t ∈ {1, 2, . . . , r}, by [15, Corollary IV.2.6], we have

dim(Vij) = dim(Vst) .

Let d denote this dimension. Then

n = r +
d

2
r(r − 1) . (25)

For x ∈ V we define
Q(x) := 2L2(x)− L(x2) .

The operator Q is called the quadratic representation of V. Let x ∈ V have the spectral decomposition
x =

∑r
j=1 λj(x)cj , where λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x) are the eigenvalues of x and {c1, c2, . . . , cr}

(depending on x) the corresponding Jordan frame. Let C(x) be the set consisting of all such Jordan
frames at x. For i, j ∈ {1, 2, . . . , r}, let Cij(x) be the orthogonal projection operator onto Vij . Then, by
[15, Theorem IV.2.1],

Cjj(x) = Q(cj) and Cij(x) = 4L(ci)L(cj) = 4L(cj)L(ci) = Cji(x) , i, j = 1, 2, . . . , r . (26)

By Proposition 3.1 and (4), the orthogonal projection operators {Cij(x) : i, j = 1, 2, . . . , r} satisfy

Cij(x) = C∗ij(x) , C2
ij(x) = Cij(x) , Cij(x)Ckl(x) = 0 if {i, j} 6= {k, l}, i, j, k, l = 1, 2, . . . , r

and ∑
1≤i≤j≤r

Cij(x) = I .

From (26), one can obtain easily that

Cjj(x)e = cj and Cij(x)e = 4ci · cj = 0 if i 6= j, i, j = 1, 2, . . . , r . (27)

From
∑r

l=1 cj = e and (26), we get for each j ∈ {1, 2, . . . , r} that

L(cj) = L(cj)I = L(cj)L(e) =
r∑

l=1

L(cj)L(cl) = L2(cj) +
1
4

r∑
l=1
l 6=j

Cjl(x) ,

which, together with the facts that Q(cj) = 2L2(cj)− L(cj) and Cjj(x) = Q(cj), implies

L(cj) = Cjj(x) +
1
2

r∑
l=1
l 6=j

Cjl(x) .

Therefore, we have the following spectral decomposition theorem for L(x), L(x2), and Q(x) (cf. [24,
Chapter V, §5 and Chapter VI, §4].)
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Theorem 3.1 Let x ∈ V have the spectral decomposition x =
∑r

j=1 λj(x)cj. Then the symmetric opera-
tor L(x) has the spectral decomposition

L(x) =
r∑

j=1

λj(x)Cjj(x) +
∑

1≤j<l≤r

1
2
(λj(x) + λl(x))Cjl(x)

with the spectrum σ(L(x)) consisting of all distinct numbers in { 1
2 (λj(x) + λl(x)) : j, l = 1, 2, . . . , r},

L(x2) has the spectral decomposition

L(x2) =
r∑

j=1

λ2
j (x)Cjj(x) +

∑
1≤j<l≤r

1
2
(λ2

j (x) + λ2
l (x))Cjl(x)

with the spectrum σ(L(x2)) consisting of all distinct numbers in { 1
2 (λ2

j (x) + λ2
l (x)) : j, l = 1, 2, . . . , r},

and Q(x) has the spectral decomposition

Q(x) =
r∑

j=1

λ2
j (x)Cjj(x) +

∑
1≤j<l≤r

λj(x)λl(x)Cjl(x)

with the spectrum σ(Q(x)) consisting of all distinct numbers in {λj(x)λl(x) : j, l = 1, 2, . . . , r}.

Let {u1, u2, . . . , un} be an orthonormal basis of V. For any y ∈ V, let L(y), Q(y), Cjl(y), ... be the
corresponding (matrix) representations of L(y), Q(y), Cjl(y), ... with respect to the basis {u1, u2, . . . , un}.
Let ẽ denote the coefficients of e with respect to the basis {u1, u2, . . . , un}, i.e.,

e =
n∑

j=1

〈e, uj〉uj = Uẽ ,

where U = [u1 u2 · · · un].

Let µ1 > µ2 > · · · > µr̄ be all the r̄ distinct values in σ(x). Then there exist 0 = r0 < r1 < r2 < · · · <
rr̄ = r such that

λri−1+1(x) = λri−1+2(x) = · · · = λri
(x) = µi , i = 1, 2, . . . , r̄ . (28)

Let ξ1 > ξ2 > · · · > ξn̄ be all the n̄ distinct values in σ(L(x)) and

Jk(L(x)) = {(j, l) :
1
2
(λj(x) + λl(x)) = ξk , 1 ≤ j ≤ l ≤ r } , k = 1, 2, . . . , n̄ .

Then, by Theorem 3.1, there exist indices n1, n2, . . . , nr̄ ∈ {1, 2, . . . , n̄} such that

µi = ξni
, i = 1, 2, . . . , r̄ .

For each i ∈ {1, 2, . . . , r̄}, denote Ji(x) := {j : λj(x) = µi}. Let y ∈ V have the spectral de-
composition y =

∑r
j=1 λj(y)cj(y) with λ1(y) ≥ λ2(y) ≥ · · · ≥ λr(y) being its eigenvalues and

{c1(y), c2(y), . . . , cr(y)} ∈ C(y) the corresponding Jordan frame. Define

bi(y) :=
∑

j∈Ji(x)

cj(y) , i = 1, 2, . . . , r̄ .

Proposition 3.2 Let x ∈ V have the spectral decomposition x =
∑r

j=1 λj(x)cj. Then,

(i) C(x) is compact and C(·) is upper semi-continuous at x. Furthermore, for each i ∈ {1, 2, . . . , r̄},
bi(·) is analytic at x.

(ii) For each m ∈ {1, 2, . . . , r}, σm(·) is positively homogeneous and convex on V.

(iii) For each i ∈ {1, 2, . . . , r̄} and ri−1 ≤ m < ri,

∂Bσm(x) =
i−1∑
j=1

bj(x) +


m∑

l=ri−1+1

c̄l : {c̄1, c̄2, . . . , c̄r} ∈ C(x)

 (29)

and the directional derivative of σm(·) at x, for any 0 6= h ∈ V, is given by

(σm)′(x;h) =
i−1∑
j=1

〈bj(x), h〉+ max
{c̄1,c̄2,...,c̄r}∈C(x)

m∑
l=ri−1+1

〈c̄l, h〉 .
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(iv) The function λ(·) is strongly semismooth on V.

Proof. (i) The compactness of C(x) follows directly from the fact that every primitive idempotent has
norm one and the upper semi-continuity of C(·) follows from the continuity of λ(·) and Theorem 1.1.

Next, we consider the analyticity of bi(·) at x, i = 1, 2, . . . , r̄. By the definitions of Ji(x) and Jni
(L(x)),

one can see that
j ∈ Ji(x) if and only if (j, j) ∈ Jni

(L(x)) , i = 1, 2, . . . , r̄ .

Hence, by (27), for each i ∈ {1, 2, . . . , r̄},

bi(y) =
∑

j∈Ji(x)

cj(y) =
( ∑

j∈Ji(x)

Cjj(y)
)
e =

( ∑
(j,l)∈Jni

(L(x))

Cjl(y)
)
e

= U
( ∑

(j,l)∈Jni
(L(x))

Cjl(y)
)
ẽ , (30)

which, together with (15), implies that for all y sufficiently close to x and for each i ∈ {1, 2, . . . , r̄},

bi(y) = U
( ∑

(j,l)∈Jni
(L(x))

Cjl(y)
)
ẽ = UP̃ni

(L(y))ẽ .

Then from Proposition 2.1 and the linearity of L(·) we know that for each i ∈ {1, 2, . . . , r̄}, bi(·) is analytic
at x.

(ii) This is a special case of part (i) of Proposition 2.2.

(iii) From part (ii) of Proposition 2.2, the definition of ∂Bσm(x), and part (i) of this proposition, we
obtain

∂Bσm(x) ⊆
i−1∑
j=1

bj(x) +


m∑

l=ri−1+1

c̄l : {c̄1, c̄2, . . . , c̄r} ∈ C(x)

 .

For any {c̄1, c̄2, . . . , c̄r} ∈ C(x), by considering

yk :=
r̄∑

j=1
j 6=i

µjbj(x) +
ri∑

l=ri−1+1

(µi − l/k)c̄l,

we can see that yk → x and from (ii) of Proposition 2.2, for all k sufficiently large,

(σm)′(yk) =
i−1∑
j=1

bj(x) +
m∑

l=ri−1+1

c̄l .

Hence, (29) holds. The form of (σm)′(x;h) can be obtained by

(σm)′(x;h) = max
v∈∂σm(x)

〈v, h〉 .

(iv) Since convex functions are semismooth [36], from part (ii) we have already known that λ(·) is
semismooth on V. By Theorem 3.1, for each x ∈ V and j ∈ {1, 2, . . . , r},

λj(x) ∈ {λ1(L(x)), λ2(L(x)), . . . , λn(L(x))} ,

where λk(L(x)) is the k-th largest eigenvalue of the symmetric matrix L(x) (note that L(x) is the matrix
representation of L(x)), k = 1, 2, . . . , n. It is known [52, Theorem 4.7] that for each k ∈ {1, 2, . . . , n},
λk(·) is strongly semismooth on Sn. Hence, by the linearity of L(·) and the continuity of λj(·), from
Proposition 2.3 we derive the conclusion that λj(·) is strongly semismooth on V, j = 1, 2, . . . , r. Thus,
λ(·) is also strongly semismooth on V. �

Remark 3.1 From part (iii) of Proposition 2.2, we know that for any given x, h ∈ V, the eigenvalues of
x+ εh, ε ∈ R can be arranged to be analytic at ε = 0. If A is the Euclidean Jordan algebra of symmetric
matrices, the eigenvectors of x+ εh can also be chosen to be analytic at ε = 0 [43, Chapter 1]. It is not
clear whether this is true for all Euclidean Jordan algebras.
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Part (i) of Proposition 3.2 says that for each i ∈ {1, 2, . . . , r̄}, bi(·) is analytic at x. In the sequel,
we establish an explicit formula of the derivative of b′i(x). Let φ : R → R be a scalar valued function
and φV(·) be Löwner’s operator defined by (1). Let τ ∈ Rr. Suppose that φ is differentiable at τi,
i = 1, 2, . . . , r. Define the first divided difference φ[1](τ) of φ at τ as the r × r symmetric matrix with its
ijth entry (φ[1](τ))ij given by [τi, τj ]φ, where

[τi, τj ]φ :=


φ(τi)− φ(τj)

τi − τj
if τi 6= τj

φ′(τi) if τi = τj

, i, j = 1, 2, . . . , r . (31)

By Proposition 3.1, the fact that dim(V (cj , 1)) = 1, 〈cj , cj〉 = 1, and the definition of the quadratic
operator Q, for any vector h ∈ V and each j ∈ {1, 2, . . . , r}, there exists αj(h) ∈ R such that

αj(h)cj = Q(cj)h = 2L2(cj)h− L(c2j )h = 2cj · (cj · h)− cj · h ,

which implies
αj(h) = 2〈cj , cj · (cj · h)〉 − 〈cj , cj · h〉 = 〈cj , cj · h〉 = 〈cj , h〉

and
2cj · (cj · h) = cj · h+ 〈cj , h〉 cj . (32)

Therefore, any vector h ∈ V can be written as

h =
r∑

j=1

Cjj(x)h+
∑

1≤j<l≤r

Cjl(x)h =
r∑

j=1

〈cj , h〉 cj +
∑

1≤j<l≤r

4cj · (cl · h) . (33)

Korányi [25, Page 74] proved the following result, which generalized Löwner’s result [35] on symmetric
matrices (see Donoghue [14, Chapter VIII] for a detailed proof on this) to Euclidean Jordan algebras.

Lemma 3.1 Let x =
∑r

j=1 λj(x)cj. Let (a, b) be an open interval in R that contains λj(x), j = 1, 2, . . . , r.
If φ is continuously differentiable on (a, b), then φV is differentiable at x and its derivative, for any h ∈ V,
is given by

(φV)′(x)h =
r∑

j=1

(φ[1](λ(x)))jj〈cj , h〉 cj +
∑

1≤j<l≤r

4(φ[1](λ(x)))jlcj · (cl · h) . (34)

By (32), we can write (34) equivalently as

(φV)′(x)h = 2
r̄∑

i=1

r̄∑
l=1

[µi, µl]φbi(x) · (bl(x) · h)−
r̄∑

i=1

φ′(µi)bi(x) · h , (35)

where the fact cj · (cl · h) = L(cj)L(cl)h = L(cl)L(cj)h = cl · (cj · h), j 6= l = 1, 2, . . . , r is used. Now, we
can calculate b′i(x), i ∈ {1, 2, . . . , r̄} is used. Pick an ε > 0 such that

(µj − ε, µj + ε) ∩ (µl − ε, µl + ε) = ∅ , 1 ≤ j < l ≤ r̄ . (36)

For each i ∈ {1, 2, . . . , r̄}, let φi be a continuously differentiable function on (−∞,∞) such that φi is
identically one on the interval (µi− ε, µi + ε) and is identically zero on all other intervals (µj − ε, µj + ε),
i 6= j = 1, 2, . . . , r̄. Then for all y sufficiently close to x, bi(y) = (φi)V(y). Hence, by Lemma 3.1 and (35),
the derivative of bi(·) at x, for any h ∈ V, is given by

b′i(x)h =
∑

1≤j<l≤r

4(φ[1]
i (λ(x)))jlcj · (cl · h) =

r̄∑
l=1
l 6=i

4
µi − µl

bi(x) · (bl(x) · h) . (37)

Based on the proof in [25, Page 74], we shall show in the next proposition that φV is (continuously)
differentiable at x if and only if φ(·) is (continuously) differentiable at λj(x), j = 1, 2, . . . , r.

Theorem 3.2 Let x =
∑r

j=1 λj(x)cj. The function φV is (continuously) differentiable at x if and only if
for each j ∈ {1, 2, . . . , r}, φ is (continuously) differentiable at λj(x). In this case, the derivative of φV(·)
at x, for any h ∈ V, is given by (34), or equivalently by (35).
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Proof. “ ⇐= ” Suppose that for each j ∈ {1, 2, . . . , r}, φ is differentiable at λj(x). As in [25, Lemma],
we first consider the special case that φ(λj(x)) = φ′(λj(x)) = 0, j = 1, 2, . . . , r. Then, by the Lipschitz
continuity of λ(·) and Proposition 3.2, for any h ∈ V with h → 0 and x + h =

∑r
j=1 λj(x + h)cj(x + h)

with λ1(x+h) ≥ λ2(x+h) ≥ · · · ≥ λr(x+h) and {c1(x+h), c2(x+h), . . . , cr(x+h)} ∈ C(x+h) we have

φV(x+ h) =
r∑

j=1

φ(λj(x+ h))cj(x+ h)

=
r∑

j=1

(φ(λj(x+ h))− φ(λj(x))) cj(x+ h)

=
r∑

j=1

(φ′(λj(x))(λj(x+ h)− λj(x)) + o(|λj(x+ h)− λj(x)|)) cj(x+ h)

=
r∑

j=1

o(|λj(x+ h)− λj(x)|)cj(x+ h) = o(‖h‖) .

Hence, φV is differentiable at x and (φV)′(x)h = 0 for all h ∈ V, which satisfies (34).

Next, we consider the general case. Let p(·) be a polynomial function such that p(λj(x)) = φ(λj(x))
and p′(λj(x)) = φ′(λj(x)), j = 1, 2, . . . , r. The existence of such a polynomial is guaranteed by the theory
on Hermite interpolation (cf. [29, Section 5.2]). Hence, by the above proof it follows that the function
(φ− p)V is differentiable at x. By noting from Lemma 3.1 that pV is differentiable at x, we know that φV
is differentiable at x and the derivative of φV(·) at x, for any h ∈ V, is given by (34), which is equivalent
to (35).

Now, we show that φV is continuously differentiable at x if for each j ∈ {1, 2, . . . , r}, φ is continuously
differentiable at λj(x). It has already been proved that φV is differentiable in an open neighborhood of
x. By (34), for any y sufficiently close to x the derivative of φV at y, for any h ∈ V, can be written by

(φV)′(y)h =
r∑

j=1

(φ[1](λ(y)))jj〈cj(y), h〉 cj(y) +
∑

1≤j<l≤r

4(φ[1](λ(y)))jlcj(y) · (cl(y) · h) ,

where y has the spectral decomposition y =
∑r

j=1 λj(y)cj(y) with λ1(y) ≥ λ2(y) ≥ · · · ≥ λr(y) and
{c1(y), c2(y), . . . , cr(y)} ∈ C(y). From the continuity of λ(·) and the assumption we know that for any
1 ≤ j ≤ l ≤ r and y → x, if λj(x) 6= λl(x), then

(φ[1](λ(y)))jl → (φ[1](λ(x)))jl;

and if λj(x) = λl(x), then from the mean value theorem,

(φ[1](λ(y)))jl = φ′(τjl(y)) → φ′(λj(x)) ,

where τjl(y) ∈ [λl(y), λj(y)]. Therefore, any accumulation point of (φV)′(y)h for y → x can be written as
r∑

j=1

(φ[1](λ(x)))jj〈c̄j , h〉 c̄j +
∑

1≤j<l≤r

4(φ[1](λ(x)))jlc̄j · (c̄l · h)

for some {c̄1, c̄2, . . . , c̄r} ∈ C(x). This, together with (34), implies that for any h ∈ V,

(φV)′(y)h→ (φV)′(x)h .

The continuity of (φV)′ at x is then proved.

“ =⇒ ” To prove that for each i ∈ {1, 2, . . . , r̄}, φ is (continuously) differentiable at µi, we consider
the composite function of φV and ui(t) := x+ tbi(x), t ∈ R. For any t ∈ R,

φV(ui(t)) =
r̄∑

j=1
j 6=i

φ(µj)bj(x) + φ(µi + t)bi(x) ,

which implies
φ(µi + t)〈bi(x), bi(x)〉 = 〈bi(x), φV(ui(t))〉 = 〈bi(x), φV(x+ tbi(x))〉 .

Since 〈bi(x), bi(x)〉 > 0 and φV is (continuously) differentiable at x, φ is (continuously) differentiable at
µi with

φ′(µi) = 〈bi(x), (φV)′(x)bi(x)〉/‖bi(x)‖2 .
The proof is completed. �
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Remark 3.2 Theorem 3.2 extends the results on the differentiability of Löwner’s function over the sym-
metric matrices in [6, 34, 50] and over SOCs [5] to all Euclidean Jordan algebras. The approach adopted
here follows the works of [35] and [25] and will be used to study the twice differentiability of the spectral
function over Euclidean Jordan algebras.

Next, we consider the (strong) semismoothness of φV at x ∈ V. We achieve this by establishing the
connection between φV(x) and φSn(L(x)). According to Theorem 3.1 and the definition of φSn ,

φSn(L(x)) =
r∑

j=1

φ(λj(x))Cjj(x) +
∑

1≤j<l≤r

φ
(1

2
(λj(x) + λl(x))

)
Cjl(x) .

Thus, by (27), we obtain
φV(x) = UφSn(L(x))ẽ . (38)

In particular, by taking φ(t) = t+ = max(0, t), t ∈ R, we get

x+ = U(L(x))+ẽ . (39)

Hence, we have the following result.

Proposition 3.3 The metric projection operator (·)+ is strongly semismooth on V.

Proof. It is proved in [51] that the metric projection operator (·)+ is strongly semismooth on Sn. Since
L(·) is a linear operator, from (39) we know that (·)+ is strongly semismooth on V. �

Let us consider another special, yet important, case. For any ε ∈ R, define φε : R → R by

φε(t) :=
√
t2 + ε2 , t ∈ < .

Then the corresponding Löwner’s operator φε
V takes the following form

φε
V(x) =

r∑
j=1

√
λ2

j (x) + ε2 cj =
√
x2 + ε2e ,

which can be treated as the smoothed approximation to the “absolute value” function |x| :=
√
x2, x ∈ V.

On the other hand,

L(x2) + ε2I =
r∑

j=1

(λ2
j (x) + ε2)Cjj(x) +

∑
1≤j<l≤r

1
2
(λ2

j (x) + λ2
l (x) + 2ε2)Cjl(x) ,

which implies

U
√
L(x2) + ε2I ẽ

= U
( r∑

j=1

√
λ2

j (x) + ε2 Cjj(x) +
∑

1≤j<l≤r

1√
2

√
λ2

j (x) + λ2
l (x) + 2ε2 Cjl(x)

)
ẽ

= U
r∑

j=1

√
λ2

j (x) + ε2 Cjj(x)ẽ =
r∑

j=1

√
λ2

j (x) + ε2 cj =
√
x2 + ε2e

= φε
V(x) . (40)

For ε ∈ R and x ∈ V, let
ψ(ε, x) := φε

V(x) =
√
x2 + ε2e .

Then, by [53] and (40), we obtain the following result directly.

Proposition 3.4 The function ψ(·, ·) is continuously differentiable at (ε, x) if ε 6= 0 and is strongly
semismooth at (0, x), x ∈ V.

Proposition 3.3 extends the strong semismoothness of (·)+ on symmetric matrices in [51] to Euclidean
Jordan algebras. To study the strong semismoothness of Löwner’s operator, we need to introduce another
scalar valued function φ̄ : R → R. Let ε > 0 be such that

(ξj − ε, ξj + ε) ∩ (ξl − ε, ξl + ε) = ∅ , 1 ≤ j < l ≤ n̄ .



16 Sun and Sun: Löwner’s Operator and Spectral Functions
Mathematics of Operations Research 33(0), pp. xxx–xxx, c©2008 INFORMS

Then define φ̄ : R → R by

φ̄(t) =

 φ(t) if t ∈
r̄⋃

j=1

(µj − ε, µj + ε)

0 otherwise .

Then, by using the fact that Cjl(y)e = 0 for j 6= l, for all y sufficiently close to x we have

φV(y) = UφSn(L(y))ẽ .

= U
( r∑

j=1

φ(λj(y))Cjj(y)
)
ẽ

= U
( r∑

j=1

φ̄(λj(y))Cjj(y)
)
ẽ

= U
[ r∑

j=1

φ̄(λj(y))Cjj(y) +
∑

1≤j<l≤r

φ̄
(1

2
(λj(y) + λl(y))

)
Cjl(y)

]
ẽ

= Uφ̄Sn(L(y))ẽ . (41)

Theorem 3.3 Let γ ∈ (0, 1] be a constant and x =
∑r

j=1 λj(x)cj. φV(·) is (γ-order) semismooth at x if
and only if for each j ∈ {1, 2, . . . , r}, φ(·) is (γ-order) semismooth at λj(x).

Proof. We only need to consider the semismoothness as the proof for the γ-order semismoothness is
similar.

“ ⇐= ” The definition of φ̄(·) and the assumption that for each j ∈ {1, 2, . . . , r}, φ(·) is semismooth at
λj(x) imply that φ̄(·) is semismooth at each 1

2 (λj(x)+λl(x)), 1 ≤ j ≤ l ≤ r. Then by [6, Proposition 4.7]
we know that φ̄Sn(·) is semismooth at L(x). This, together with (41), shows that φV(·) is semismooth at
x.

“ =⇒ ” To prove that for each j ∈ {1, 2, . . . , r}, φ(·) is semismooth at λj(x) is equivalent to prove that
for i ∈ {1, 2, . . . , r̄}, φ(·) is semismooth at µi. For each i ∈ {1, 2, . . . , r̄}, let ui(t) := x + tbi(x), t ∈ R.
For any t ∈ R,

φV(ui(t)) =
r̄∑

j=1
j 6=i

φ(µj)bj(x) + φ(µi + t)bi(x) ,

which implies
φ(µi + t)〈bi(x), bi(x)〉 = 〈bi(x), φV(ui(t))〉 = 〈bi(x), φV(x+ tbi(x))〉 .

Since φV is semismooth at x, 〈bi(x), φV(x + tbi(x)〉 is semismooth at t = 0. Therefore, φ is semismooth
at µi. �

Remark 3.3 The proof of Theorem 3.3 uses the semismoothness result of Löwner’s function over sym-
metric matrices in [6]. It also provides a new proof on Löwner’s function over SOCs considered in [5].

4. Differential Properties of Spectral Functions Let A = (V, ·) be a simple Euclidean Jordan
algebra of rank r and dim(V) = n. Let x ∈ V have the spectral decomposition x =

∑r
j=1 λj(x)cj . Let

µ1 > µ2 > · · · > µr̄ be all the r̄ distinct values in σ(x) and 0 = r0 < r1 < r2 < · · · < rr̄ = r be such that
(28) holds.

For two vectors α and β in Rr, we say that β block-refines α if αj = αl whenever βj = βl [32].

Lemma 4.1 If λ(x) block-refines α in Rr, then the function αTλ(·) is differentiable at x with ∇(αTλ)(x) =∑r
j=1 αjcj .

Proof. Since λ(x) block-refines α,

αri−1+1 = αri−1+2 = · · · = αri
, i = 1, 2, . . . , r̄ .
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Let y ∈ V have the spectral decomposition y =
∑r

j=1 λj(y)cj(y) with λ1(y) ≥ λ2(y) ≥ · · · ≥ λr(y). Let
σ0 ≡ 0. Then,

αTλ(y) =
r∑

j=1

αjλj(y) =
r̄∑

i=1

αri

ri∑
j=ri−1+1

λj(y) =
r̄∑

i=1

αri
(σri

(y)− σri−1(y)) .

By (ii) of Proposition 2.2, σri(·) is differentiable at x and

∇σri(x) =
ri∑

j=1

cj , i = 1, 2, . . . , r̄ .

Hence, αTλ(·) is differentiable at x and

∇(αTλ)(x) =
r̄∑

i=1

αri

ri∑
j=ri−1+1

cj =
r∑

j=1

αjcj .

This completes the proof. �

Let f : Rr → (−∞,∞] be a symmetric function. The properties on the symmetric function f in the
following lemma are needed in our analysis. Parts (i) and (ii) can be checked directly (cf. [34, Lemma
2.1]). Parts (iii) and (iv) are implied by the proof of Case III in [34, Lemma 4.1].

Lemma 4.2 Let f : Rr → (−∞,∞] be a symmetric function and υ := λ(x). Let P be a permutation
matrix such that Pυ = υ.

(i) If f is differentiable at υ, then ∇f(υ) = PT∇f(υ).

(ii) Let li := ri+1 − ri, i = 1, 2, . . . , r̄. If f is twice differentiable at υ, then ∇2f(υ) = PT∇2f(υ)P .
In particular,

∇2f(υ) =



η11E11 + βr1Il1×l1 η12E12 · · · η1r̄E1r̄

η21E21 η22E22 + βr2Il2×l2 · · · η2r̄E2r̄

...
...

. . .
...

ηr̄1Er̄1 ηr̄2Er̄2 · · · ηr̄r̄Er̄r̄ + βrr̄
Ilr̄×lr̄


,

where for i, j = 1, 2, . . . , r̄, Eij is the li × lj matrix with all entries equal to one, (ηij)r̄
i,j=1 is a

real symmetric matrix, β := (β1, β2, . . . , βr)T is a vector which is block refined by υ, and for each
i = 1, 2, . . . , r̄, Ili×li is the li × li identity matrix. If li = 1 for some i ∈ {1, 2, . . . , r̄}, then we
take ηii = 0.

(iii) Suppose that f is twice continuously differentiable at υ and j 6= l ∈ {1, 2, . . . , r} satisfy υj = υl.
Then for any ς ∈ Rr with ς1 ≥ ς2 ≥ · · · ≥ ςr, ςj 6= ςl, and ς → υ,

(∇f(ς))j − (∇f(ς))l

ςj − ςl
→ (∇2f(υ))jj − (∇2f(υ))jl .

(iv) Suppose that ∇f is locally Lipschitz continuous near υ with the Lipschitz constant κ > 0 and
j 6= l ∈ {1, 2, . . . , r} satisfy υj = υl. Then for any ς ∈ Rr with ς1 ≥ ς2 ≥ · · · ≥ ςr, ςj 6= ςl, and ς
sufficiently close to υ, ∣∣∣ (∇f(ς))j − (∇f(ς))l

ςj − ςl

∣∣∣ ≤ 3κ .

Theorem 4.1 1 Let f : Rr → (−∞,∞] be a symmetric function. Then f ◦ λ is differentiable at x =∑r
j=1 λj(x)cj if and only if f is differentiable at λ(x), and in this case

∇(f ◦ λ)(x) =
r∑

j=1

(∇f(λ(x)))jcj .

1When this paper was under review, Adrian S. Lewis kindly brought [1] to our attention, where Baes provided a similar

proof to Theorem 4.1 without employing the hyperbolic polynomials as we did here.
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Proof. “ ⇐= ” Let υ := λ(x). Since λ(·) is Lipschitz continuous, there exist constants τ > 0 and δ0 > 0
such that

‖λ(y)− λ(x)‖ ≤ τ‖y − x‖
for all y ∈ V satisfying ‖y − x‖ ≤ δ0. For any given ε > 0, since f is differentiable at υ = λ(x), there
exists a positive number δ(≤ δ0τ) such that for all ς ∈ Rr satisfying ‖ς − υ‖ ≤ δ it holds that

|f(ς)− f(υ)− (∇f(υ))T (ς − υ)| ≤ ε‖ς − υ‖ .
Hence, for all y ∈ V satisfying ‖y − x‖ ≤ δ/τ ,

|f(λ(y))− f(υ)− (∇f(υ))T (λ(y)− υ)| ≤ ε‖λ(y)− υ‖ ≤ τε‖y − x‖ .

On the other hand, by part (i) of Lemma 4.2, υ block-refines ∇f(υ). Then, by Lemma 4.1, we have∣∣∣(∇f(υ))Tλ(y)− (∇f(υ))Tυ −
〈 r∑

j=1

(∇f(υ))jcj , y − x
〉∣∣∣ ≤ ε‖y − x‖

for all y sufficiently close to x. By adding the two previous inequalities we obtain∣∣∣f(λ(y))− f(υ)−
〈 r∑

j=1

(∇f(υ))jcj , y − x
〉∣∣∣ ≤ (τ + 1)ε‖y − x‖

for all y sufficiently close to x. This shows that f ◦ λ is differentiable at x with

∇(f ◦ λ)(x) =
r∑

j=1

(∇f(λ(x)))jcj .

“ =⇒ ” Suppose that f ◦ λ is differentiable at x. Then it is easy to see that f must be differentiable
at λ(x) because one may write

f(ς) = (f ◦ λ)
( r∑

j=1

ςjcj

)
for all ς ∈ Rr. �

Remark 4.1 Theorem 4.1 is a direct extension of the first derivative result in [32] on the spectral function
over symmetric matrices.

Let the symmetric function f : Rr → (−∞,∞] be twice differentiable at υ := λ(x). Then by Lemma
4.2, ∇2f(λ(x)) has the form as in part (ii) of Lemma 4.2. Let ε > 0 be such that (36) holds. Define
φ̃ : R → R by

φ̃(t) =

{
β̃j(x)t if t ∈ (υj − ε, υj + ε) , j = 1, 2, . . . , r

0 otherwise ,

where β̃(x) is the vector β defined in part (ii) of Lemma 4.2, i.e., for ri−1 + 1 ≤ j ≤ ri,

β̃j(x) =
{

(∇2f(υ))jj if ri − ri−1 = 1
(∇2f(υ))ll − (∇2f(υ))ls if ri−1 + 1 ≤ l 6= s ≤ ri ,

(42)

where i = 1, 2, . . . , r̄. Then, by Theorem 3.2, φ̃V(·) is continuously differentiable at x and its derivative,
for any h ∈ V, is given by

(φ̃V)′(x)h = 2
r̄∑

i=1

r̄∑
l=1
l 6=i

β̃ri
(x)µi − β̃rl

(x)µl

µi − µl
bi(x) · (bl(x) · h)

+
r̄∑

i=1

β̃ri
(x)[2bi(x) · (bi(x) · h)− bi(x) · h] .

(43)

Define the symmetric matrix Ã(x) as follows. Let ãjl(x) be the jlth entry of Ã(x). Then for j, l =
1, 2, . . . , r,

ãjl(x) :=


0 if j = l

β̃j(x) if ri−1 + 1 ≤ j 6= l ≤ ri
(∇f(λ(x)))j − (∇f(λ(x)))l

λj(x)− λl(x)
otherwise ,

(44)

where i = 1, 2, . . . , r̄.
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Theorem 4.2 Let f : Rr → (−∞,∞] be a symmetric function and x =
∑r

j=1 λj(x)cj. Then f ◦ λ is
twice differentiable at x if and only if f is twice differentiable at λ(x). In that case, the second derivative
of f ◦ λ(·) at x, for any h ∈ V, is given by

∇2(f ◦ λ)(x)h =
r∑

j=1

r∑
l=1

[2ãjl(x)cj · (cl · h) + (∇2f(λ(x)))jl〈cl, h〉 cj ] . (45)

Proof. “ ⇐= ” By Theorem 4.1, for any 0 6= h ∈ V and h sufficiently small we have

∇(f ◦ λ)(x+ h) =
r∑

j=1

(∇f(λ(x+ h)))jcj(x+ h) ,

where x+ h =
∑r

j=1 λj(x+ h)cj(x+ h) and {c1(x+ h), c2(x+ h), . . . , cr(x+ h)} ∈ C(x+ h). Hence, by
[49] and the directional differentiability and the Lipschitz continuity of λ(·),

∇(f ◦ λ)(x+ h)−∇(f ◦ λ)(x)

=
r∑

j=1

(∇f(λ(x) + λ′(x;h) + o(‖h‖)))jcj(x+ h)−
r∑

j=1

(∇f(λ(x)))jcj

=
r∑

j=1

(∇f(λ(x) + λ′(x;h)))jcj(x+ h)−
r∑

j=1

(∇f(λ(x)))jcj + o(‖h‖)

=
r∑

j=1

(∇f(λ(x)))j(cj(x+ h)− cj) +
r∑

j=1

(∇2f(λ(x))λ′(x;h))jcj(x+ h) + o(‖h‖)

=
r̄∑

i=1

(∇f(λ(x)))ri(bi(x+ h)− bi(x)) +
r∑

j=1

(∇2f(λ(x))λ′(x;h))jcj(x+ h) + o(‖h‖) ,

which, together with the analyticity of bi(·), part (ii) of Lemma 4.2, and Proposition 3.2 gives

∇(f ◦ λ)(x+ h)−∇(f ◦ λ)(x)−
r̄∑

i=1

(∇f(λ(x)))ri
b′i(x)h− (φ̃V)′(x)h

=
r∑

j=1

(∇2f(λ(x))λ′(x;h))jcj(x+ h)− [φ̃V(x+ h)− φ̃V(x)] + o(‖h‖)

=
r̄∑

i=1

r̄∑
l=1

ηil〈bl(x), h〉 bi(x+ h) +
r̄∑

i=1

β̃ri
(x)

ri∑
l=ri−1+1

λ′l(x;h)cl(x+ h)

−[φ̃V(x+ h)− φ̃V(x)] + o(‖h‖)

=
r̄∑

i=1

r̄∑
l=1

ηil〈bl(x), h〉 (bi(x) + o(‖h‖)) +
r̄∑

i=1

β̃ri
(x)

ri∑
l=ri−1+1

[λl(x+ h)− λl(x)]cl(x+ h)

−[φ̃V(x+ h)− φ̃V(x)] + o(‖h‖)

=
r̄∑

i=1

r̄∑
l=1

ηil〈bl(x), h〉 bi(x)−
r̄∑

i=1

β̃ri
(x)

ri∑
l=ri−1+1

λl(x)cl(x+ h) + φ̃V(x) + o(‖h‖)

=
r̄∑

i=1

r̄∑
l=1

ηil〈bl(x), h〉 bi(x)−
r̄∑

i=1

β̃ri(x)µibi(x+ h) +
r̄∑

i=1

β̃ri(x)µibi(x) + o(‖h‖)

=
r̄∑

i=1

r̄∑
l=1

ηil〈bl(x), h〉 bi(x)−
r̄∑

i=1

β̃riµib
′
i(x)h+ o(‖h‖) ,

where (ηil)r̄
i,l=1 is the symmetric matrix defined in part (ii) of Lemma 4.2. Therefore, f ◦ λ is twice

differentiable at x and for any h ∈ V,

∇2(f ◦ λ)(x)h =
r̄∑

i=1

(∇f(λ(x)))ri
b′i(x)h+ (φ̃V)′(x)h

+
r̄∑

i=1

r̄∑
l=1

ηil〈bl(x), h〉 bi(x) −
r̄∑

i=1

β̃ri
(x)µib

′
i(x)h .
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By using (37) and (43) we obtain for any h ∈ V,

∇2(f ◦ λ)(x)h

= 2
r̄∑

i=1

r̄∑
l=1
l 6=i

(∇f(λ(x)))ri
− (∇f(λ(x)))rl

µi − µl
bi(x) · (bl(x) · h) + (φ̃V)′(x)(h)

+
r̄∑

i=1

r̄∑
l=1

ηil〈bl(x), h〉 bi(x)− 2
r̄∑

i=1

r̄∑
l=1
l 6=i

β̃ri(x)µi − β̃rl
(x)µl

µi − µl
bi(x) · (bl(x) · h)

= 2
r̄∑

i=1

r̄∑
l=1
l 6=i

(∇f(λ(x)))ri
− (∇f(λ(x)))rl

µi − µl
bi(x) · (bl(x) · h) + 2

r̄∑
i=1

β̃ri
(x)bi(x) · (bi(x) · h)

+
r̄∑

i=1

r̄∑
l=1

ηil〈bl(x), h〉 bi(x)−
r̄∑

i=1

β̃ri(x)bi(x) · h .

This, together with (32), (44), and part (ii) of Lemma 4.2, implies

∇2(f ◦ λ)(x)h

= 2
r∑

j=1

r∑
l=1

ãjl(x)cj · (cl · h) + 2
r̄∑

i=1

β̃ri
(x)

ri∑
j=ri−1+1

cj · (cj · h)

+
r∑

j=1

r∑
l=1

(∇2f(λ(x)))jl〈cl, h〉 cj −
r̄∑

i=1

β̃ri
(x)

ri∑
j=ri−1+1

〈cj , h〉 cj −
r̄∑

i=1

β̃ri
(x)bi(x) · h

=
r∑

j=1

r∑
l=1

[2ãjl(x)cj · (cl · h) + (∇2f(λ(x)))jl〈cl, h〉 cj ]

+
r̄∑

i=1

β̃ri(x)
ri∑

j=ri−1+1

cj · h−
r̄∑

i=1

β̃ri(x)bi(x) · h .

Thus (45) holds.

“ =⇒ ” For any ς ∈ Rr, define

y = x+
r∑

j=1

ςjcj =
r∑

j=1

(λj(x) + ςj)cj .

Then, by Theorem 4.1, for all ς ∈ Rr sufficiently small, f is differentiable at y and

∇(f ◦ λ)(y) =
r∑

j=1

(∇f(λ(x) + ς))jcj ,

which implies that
(∇f(λ(x) + ς))j = 〈∇(f ◦ λ)(y), cj〉 , j = 1, 2, . . . , r .

Thus f is twice differentiable at λ(x). �

The next theorem is about the continuity of ∇2(f ◦ λ)(x). It is a direct consequence of Theorem 4.2
and parts (ii) and (iii) of Lemma 4.2.

Theorem 4.3 Let f : Rr → (−∞,∞] be a symmetric function and x =
∑r

j=1 λj(x)cj. Then f ◦ λ is
twice continuously differentiable at x if and only if f is twice continuously differentiable at λ(x).

Remark 4.2 Theorems 4.2 and 4.3 extend the twice differentiability results in [34] on the spectral func-
tion over symmetric matrices to Euclidean Jordan algebras. This extension builds on known results of
the symmetric function and the differentiability of Löwner’s operator discussed in Section 3.

Let y ∈ V have the spectral decomposition y =
∑r

j=1 λj(y)cj(y) with λ1(y) ≥ λ2(y) ≥ · · · ≥ λr(y)
and {c1(y), c2(y), . . . , cr(y)} ∈ C(y). For any 1 ≤ j < l ≤ r, there exist d mutually orthonormal vectors
{v(i)

jl (y)}d
i=1 in V such that

Cjl(y) =
d∑

i=1

〈v(i)
jl (y), ·〉 v(i)

jl (y) ,
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where d satisfies (25). Then{
c1(y), c2(y), . . . , cr(y), v

(1)
jl (y), v(2)

jl (y), . . . , v(d)
jl (y), 1 ≤ j < l ≤ r

}
is an orthonormal basis of V. Let U(y) be the matrix formed by this basis, i.e., the first r columns of
U(y) are c1(y), c2(y), . . . , cr(y) and the rest are v(i)

jl (y), 1 ≤ j < l ≤ r, 1 ≤ i ≤ d. Let h̃ be the coefficients
of h := y − x with respect to the basis{

c1(y), c2(y), . . . , cr(y), v
(1)
jl (y), v(2)

jl (y), . . . , v(d)
jl (y), 1 ≤ j < l ≤ r

}
.

Then there exist numbers h̃j , h̃
(i)
jl ∈ R, 1 ≤ j < l ≤ r, 1 ≤ i ≤ d such that

h = U(y)h̃ =
r∑

j=1

h̃jcj(y) +
∑

1≤j<l≤r

d∑
i=1

h̃
(i)
jl v

(i)
jl (y) . (46)

Let Dλ be the set of points in V where λ(·) is differentiable.

Lemma 4.3 Let x =
∑r

j=1 λj(x)cj. Then for any 1 ≤ j < l ≤ r such that λj(x) = λl(x) and y → x with
y ∈ Dλ,

h̃
(i)
jl = O(‖h‖2) , i = 1, 2, . . . , d .

Proof. By (i) and (iv) in Proposition 3.2 and Lemma 2.1, for any y → x with y ∈ Dλ we have

0 = y − x− h =
r∑

j=1

λj(y)cj(y)−
r∑

j=1

λj(x)cj − h

=
r∑

j=1

(
λj(x) + λ′j(y)h+O(‖h‖2)

)
cj(y)−

r∑
j=1

λj(x)cj − h

=
r∑

j=1

(λj(x) + λ′j(y)h)cj(y)−
r∑

j=1

λj(x)cj − h+O(‖h‖2)

=
r̄∑

i=1

λri
(x)(bi(y)− bi(x)) +

r∑
j=1

〈cj(y), h〉 cj(y)− h+O(‖h‖2) ,

which, together with the analyticity of bi, (37), and (33), implies

0 =
r̄∑

i=1

λri
(x)b′i(y)h−

∑
1≤j<l≤r

Cjl(y)h+O(‖h‖2)

= 4
r̄∑

i=1

λri
(x)

r̄∑
s=1
s 6=i

bi(y) · (bs(y) · h)
λri

(x)− λrs
(x)

−
∑

1≤j<l≤r

Cjl(y)h+O(‖h‖2)

= 2
r̄∑

i=1

r̄∑
s=1
s 6=i

bi(y) · (bs(y) · h)−
∑

1≤j<l≤r

Cjl(y)h+O(‖h‖2)

= 2
r∑

j=1

r∑
l=1

ωjlcj(y) · (cl(y) · h)−
∑

1≤j<l≤r

Cjl(y)h+O(‖h‖2) ,

where for j, l = 1, 2, . . . , r,

ωjl =
{

0 if rt−1 + 1 ≤ j, l ≤ rt
1 otherwise ,

t = 1, 2, . . . , r̄. Therefore, for y → x with y ∈ Dλ,

0 =
∑

1≤j<l≤r

ωjlCjl(y)h−
∑

1≤j<l≤r

Cjl(y)h+O(‖h‖2)

=
∑

1≤j<l≤r

d∑
i=1

(ωjl − 1)h̃(i)
jl v

(i)
jl (y) +O(‖h‖2) ,

which implies that for 1 ≤ j < l ≤ r and 1 ≤ i ≤ d,

0 = (ωjl − 1)h̃(i)
jl 〈v

(i)
jl (y), v(i)

jl (y)〉+O(‖h‖2) = (ωjl − 1)h̃(i)
jl +O(‖h‖2) .

By observing that for any 1 ≤ j < l ≤ r, ωjl = 0 if λj(x) = λl(x), we then complete the proof. �
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Theorem 4.4 Let f : Rr → (−∞,∞] be a symmetric function. Let x =
∑r

j=1 λj(x)cj and γ ∈ (0, 1].
Then ∇(f ◦ λ) is (γ-order) G-semismooth at x if and only if ∇f is (γ-order) G-semismooth at λ(x).

Proof. “ ⇐= ” We only prove the case for the γ-order G-semismoothness. The case for the G-
semismoothness can be obtained similarly. Suppose that ∇f is γ-order G-semismooth at υ := λ(x).
By considering the convolution regularization of f (cf. [45, Section 9.K]), we can adapt the proof of [41,
Proposition 4.3] for the case of symmetric matrices and use Lemma 4.2 and Theorems 4.2 and 4.3 to
show that there exists an open set O(x) containing x such that ∇(f ◦ λ) is Lipschitz continuous on O.
For brevity, we omit the details here.

By Theorem 4.2, y ∈ D∇(f◦λ), the set of differentiable points of ∇(f ◦ λ) in O, if and only if ∇f is
differentiable at λ(y). Since λ(·) is Lipschitz continuous on O, the set S :=

⋃r
j=1 Sj is a set of Lebesgue

measure zero, where Sj := O\Dλj
, j = 1, 2, . . . , r. Then for any y ∈ D∇(f◦λ) and y /∈ S, ∇2(f ◦ λ)(y)

exists and for any h ∈ V,

∇2(f ◦ λ)(y)h =
r∑

j=1

r∑
l=1

[2ãjl(y)cj(y) · (cl(y) · h) + (∇2f(λ(y)))jl〈cl(y), h〉 cj(y)] ,

where for j, l = 1, 2, . . . , r,

ãjl(y) =

 0 if j = l
(∇f(λ(y)))j − (∇f(λ(y)))l

λj(y)− λl(y)
otherwise . (47)

Let h := y − x. By Theorem 4.1 and Lemma 2.1, for any y → x with y ∈ D∇(f◦λ) and y /∈ S,

∇(f ◦ λ)(y)−∇(f ◦ λ)(x)

=
r∑

j=1

(∇f(λ(y)))jcj(y)−
r∑

j=1

(∇f(λ(x)))jcj

=
r∑

j=1

(∇f(λ(x)) +∇2f(λ(y))(λ(y)− λ(x)))jcj(y)−
r∑

j=1

(∇f(λ(x)))jcj +O(‖h‖1+γ)

=
r̄∑

i=1

(∇f(λ(x)))ri
(bi(x+ h)− bi(x)) +

r∑
j=1

(∇2f(λ(y))λ′(y)h)jcj(y) +O(‖h‖1+γ) ,

which, together with (37) and part (iii) of Proposition 3.2, implies

∇(f ◦ λ)(y)−∇(f ◦ λ)(x)

=
r̄∑

i=1

(∇f(λ(x)))ri
b′i(y)h+

r∑
j=1

r∑
l=1

(∇2f(λ(y)))jl〈cl(y), h〉 cj(y) +O(‖h‖1+γ) .

Therefore, for any y → x with y ∈ D∇(f◦λ) and y /∈ S,

∇(f ◦ λ)(y)−∇(f ◦ λ)(x)−∇2(f ◦ λ)(y)h

= 2
r̄∑

i=1

r̄∑
s=1
s 6=i

(∇f(λ(x)))ri − (∇f(λ(x)))rs

µi − µs
bi(y) · (bs(y) · h)

−2
r∑

j=1

r∑
l=1

ãjl(y)cj(y) · (cl(y) · h) +O(‖h‖1+γ)

= 2
r∑

j=1

r∑
l=1

[ω̃jl(x)− ãjl(y)]cj(y) · (cl(y) · h) +O(‖h‖1+γ) ,

where for 1 ≤ j, l ≤ r,

ω̃jl(x) :=

 0 if ri−1 + 1 ≤ j, l ≤ ri
(∇f(λ(x)))j − (∇f(λ(x)))l

λj(x)− λl(x)
otherwise , (48)
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i = 1, 2, . . . , r̄. Let δ(h) := 2
r∑

j=1

r∑
l=1

[ω̃jl(x)− ãjl(y)]cj(y) · (cl(y) ·h). Then, by the definition of Cjl(y) and

(46), for y ∈ D∇(f◦λ) with y /∈ S,

δ(h) =
∑

1≤j<l≤r

[ω̃jl(x)− ãjl(y)]Cjl(y)h

=
∑

1≤j<l≤r

[ω̃jl(x)− ãjl(y)]
d∑

i=1

h̃
(i)
jl v

(i)
jl (y) .

We consider the following cases about δ̃(i)jl (h) := [ω̃jl(x)− ãjl(y)]h̃
(i)
jl , 1 ≤ j < l ≤ r, 1 ≤ i ≤ d:

Case 1): λj(x) = λl(x). In this case, by (48), Lemma 4.3, and part (iv) of Lemma 4.2,

δ̃
(i)
jl (h) = [ω̃jl(x)− ãjl(y)]h̃

(i)
jl = −ãjl(y)h̃

(i)
jl = O(‖h‖2) .

Case 2): λj(x) 6= λl(x). In this case, by the Lipschitz continuity of ∇f(·) and λ(·),

δ̃
(i)
jl (h) =

[
(∇f(λ(x)))j − (∇f(λ(x)))l

λj(x)− λl(x)
− (∇f(λ(y)))j − (∇f(λ(y)))l

λj(y)− λl(y)

]
h̃

(i)
jl

=
O(‖h‖)

(λj(x)− λl(x))(λj(y)− λl(y))
h̃

(i)
jl

= O(‖h‖‖h̃‖) .

Therefore, for any y → x with y ∈ D∇(f◦λ) and y /∈ S,

∇(f ◦ λ)(y)−∇(f ◦ λ)(x)−∇2(f ◦ λ)(y)h = O(‖h‖1+γ) .

This, by Lemma 2.1, shows that ∇(f ◦ λ) is γ-order G-semismooth at x.

“ =⇒ ” This direction can be done easily by following the proof in the second part of Theorem 4.2.
�

Remark 4.3 Theorem 4.4 is about the G-semismoothness of ∇(f ◦λ) rather than the semismoothness of
∇(f ◦λ) as the directional derivative of ∇(f ◦λ) is not involved. For the spectral function over symmetric
matrices, the latter has been done in [41]. It is not clear to us whether the result in [41] holds in general
for Euclidean Jordan algebras.

5. Conclusions We have studied differential properties of Löwner’s operator and spectral functions
in Euclidean Jordan algebras. The approach consists of adaptations of known arguments for symmetric
matrices and developments of new technical results. Compared to our knowledge of symmetric matrices,
more research is needed for functions in Euclidean Jordan algebras. We conclude the discussion of this
paper by listing below a few interesting questions, which we would like to know the answers in the near
future.

Question 1. The eigenvalue function λ(·) defined over Euclidean Jordan algebras is directionally
differentiable. Can we derive formulas on the directional derivative of λ(·) as was done in [28, Theorem
7] for the symmetric matrix case?

Question 2. Is that true as for the symmetric matrix case that for any given x, h ∈ V, the eigenvectors
of x+ εh can be chosen to be analytic at ε = 0 (cf. Remark 3.1)?

Question 3. For the symmetric matrix case, it is proved that C(·) is upper Lipschitz continuous at x
[7, 51, 52]. Can we extend this to Euclidean Jordan algebras? Lemma 4.3 presents a partial solution.

Question 4. Can we use the results in [11, 12, 13] for the symmetric matrix case to get explicit
formulas for the higher-order derivatives of Löwner’s operator over Euclidean Jordan algebras under
sufficient differentiability of φ?
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Question 5. The first- and second-order derivatives of the spectral function are established. What
can we say about the higher-order derivatives?

Question 6. Under what conditions about ∇f , ∇(f ◦λ) is directionally differentiable? This question
is related to Question 2.

Question 7. The metric projection operator over symmetric cones are proved to be strongly semis-
mooth. What kind of differential properties can we say about the metric projection operator over the
closed hyperbolic cone (cf. Section 2.2)? Or less ambitiously, over the closed homogeneous cone (cf. [9])?
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