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Abstract. Matrix optimization problems (MOPSs) involving the Ky Fan k-norm arise frequently
from many applications. In order to design algorithms to solve large scale MOPs involving the Ky
Fan k-norm, we need to understand the first and second order properties of the Moreau—Yosida
regularization of the Ky Fan k-norm function and the indicator function of the Ky Fan k-norm ball.
According to the general theory on spectral functions, in this paper we shall conduct a thorough study
on the Moreau—Yosida regularization of the vector k-norm function and the indicator function of the
vector k-norm ball. In particular, we show that the proximal mappings associated with these two
vector k-norm related functions both admit fast and analytically computable solutions. Moreover,
we propose algorithms of low computational cost to compute the directional derivatives of these two
proximal mappings and then completely characterize their Fréchet differentiability. The work here
thus builds the fundamental tools needed in the design of proximal point based algorithms for solving
large scale MOPs involving the Ky Fan k-norm as well as in the study of the sensitivity and stability
analysis of these problems.
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1. Introduction. Let f : Z — (—o0,+0o0] be a closed proper convex function
defined on a finite dimensional real Euclidean space Z equipped with an inner product
(-, )z and its induced norm || - ||z. The Moreau—Yosida regularization of f at x € Z
is defined by

) v =min{ 1)+ 3l - el

The unique optimal solution Ps(x) to (1) is called the proximal point of x associated
with f, and Py : Z — Z is called the proximal mapping. It is known that Py(-)
is globally Lipschitz continuous with modulus 1 [36, Proposition 12.19] and x(-) is
continuously differentiable on Z [26] (see also [35, Theorem 31.5]) with

(2) Vxilz) =z —Ps(z), xz€2Z.

Denote the Fenchel conjugate of f by f*(z) :=sup,cz {(z,2)z— f(2)} for any z € Z.
A particularly useful property for the Moreau—Yosida regularization is the following
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Moreau decomposition [26] (see also [35, Theorem 31.5]): any = € Z can be uniquely
decomposed into

3) & = Py(x) + Py (2).

Note that if f is an indicator function of some closed convex set C C Z, then Py(-) =
II¢ () is the metric projector over C.

Let R"*™ (assuming n < m) denote the linear space of all n x m real matrices
equipped with the inner product (X,Y) := Tr(X7Y) for X and Y in R"*™, where
“Tr” denotes the trace of a squared matrix. Let k be a given integer satisfying
1 < k < n. We are interested in the Moreau—Yosida regularization of the following
two Ky Fan k-norm related functions:

1) fC¢) ="l the Ky Fan k-norm, defined as the sum of its k largest singular

values of any matrix Z € R™ ™ i.e.,

K
1Zl @y =D 0ilZ),
=1

where 01(Z) > 02(Z) > - -+ > 0,(Z) are the singular values of Z arranged in
nonincreasing order;

(ii) f(-) = dpr (), the indicator function of the Ky Fan k-norm ball with radius
r >0, where

Bl = {2 € RV 2]y < 1}

The above two Ky Fan k-norm related functions appear frequently in matrix
optimization problems (MOPs) of the following form:

min  h(X)+ f(X)

@ st A(X) =0,

where h : R™*™ — R is a continuously differentiable function, f is one of the two
Ky Fan k-norm related functions defined on R™"*™ A : R™™™ — RP is a linear
operator, and b € R? is a given vector. Suppose that A is onto and that X € R™"*™
solves problem (4). Then according to [36, Theorems 8.15 and 6.14], there exist some
multipliers y € RP and I' € R™™™ such that the following Karush—Kuhn—Tucker
(KKT) conditions hold:

Vh(X)— Ay —T =0,
AX)—-b=0,
0eT+0f(X),
which, due to [26] (see also [35, Theorem 31.5]), can be equivalently rewritten as
Vh(X)—-A*y-T
F(X,y,T) = AX) b =0
X — Py(X — 7T
for any given 7 > 0, where A* is the adjoint of 4. This close connection reveals that

solving problem (4) relies on our understanding of the proximal mappings associated
with the Ky Fan k-norm related functions.
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The MOPs involving the Ky Fan k-norm function have many important appli-
cations arising from different areas such as engineering, statistics, finance, scientific
computing, and machine learning. One typical example is to minimize the Ky Fan
k-norm of a continuously differentiable matrix-valued function for the symmetric case
[28, 31] and the nonsymmetric case [41]. Another example is the problem of finding
the fastest mixing Markov chain (FMMC) on an undirected graph studied in [6, 7].
The FMMC problem can be posed as minimizing the second largest singular value
of a symmetric and doubly stochastic matrix with a given sparse pattern. Since the
largest singular value of any symmetric stochastic matrix is 1, the objective function
in the FMMC problem is equivalent to the Ky Fan 2-norm function. More examples
involving the Ky Fan k-norm function come from recent research on solving structured
low rank matrix approximation problems [10], which aim to find an optimal matrix
whose rank is not greater than a given positive integer. One may refer to [14, 16]
to see how the Ky Fan k-norm function arises naturally in their proposed majorized
penalty approach for solving the latter. For the special case that k = 1 or k = n,
one can refer to the introduction of [13] and references therein for more examples of
MOPs with the spectral or nuclear norm.

It is well known (cf. [3, section 4.2]) that the Ky Fan k-norm function is semidef-
inite representable (SDr); i.e., for any (¢, X) € R x R™*™,

t—k2—<Z,In+m>20,
0 X
HXH(/C)St — Z_|:XT 0 ]+Zln+m>_0a

Z eS8 and z € R.

As a consequence, one popular approach for solving MOPs with the Ky Fan k-norm
is to reformulate these problems as semidefinite programming (SDP) problems with
expanded dimensions (cf. [28, 1]) and to apply the well-developed interior point meth-
ods (IPMs) based SDP solvers, such as SeDuMi [37] and SDPT3 [39]. This approach
is fine as long as the sizes of the reformulated problems are not large. For large scale
problems, this approach becomes impractical, if possible at all. This is particularly
the case when m > n (or n > m assuming m < n). Even if m =~ n (e.g., the
symmetric case), the expansion of variable dimensions will inevitably lead to extra
computational costs. Thus, approaches other than IPMs for solving MOPs with the
Ky Fan k-norm are needed.

Our ideas for solving these problems are built on our experiences in using semi-
smooth Newton-CG based methods to solve the nearest correlation matrix problems
[32, 15] and the large scale SDP problems [43, 44]. The success of these methods de-
pends heavily on the efficient computability of the closed form solution and the explicit
directional derivative of the metric projector over the cone of symmetric and positive
semidefinite matrices (SDP cone) or, equivalently, the proximal mapping associated
with the SDP cone indicator function. Moreover, these semismooth Newton-CG based
methods [32, 15, 43, 44] also exploit another important property—the strong semi-
smoothness of this metric projector established in [38]. Therefore, in order to develop
efficient semismooth Newton-CG based methods for solving MOPs involving the Ky
Fan k-norm, the most natural step for one to take is to study the analogues of the
proximal mappings associated with the Ky Fan k-norm related functions as for the
metric projector over the SDP cone. Another equally important motivation for study-
ing the proximal mappings associated with the Ky Fan k-norm related functions is
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about the sensitivity and stability analysis of problem (4). In particular, the study on
the Lipschitz-like properties such as the strong regularity [34] of the solution mapping
for the perturbed version of problem (4) inevitably needs the variational properties
of these proximal mappings.

For dealing with the above-mentioned computational and theoretical issues in
solving MOPs with the Ky Fan k-norm, we must understand the proximal mappings
associated with the Ky Fan k-norm related functions. In particular, we need

e to efficiently compute the proximal mapping P, ) and the metric projector
HB:L m?

e to obtain explicit formulas for the directional derivatives of Py, and Hpr s
and

e to characterize the Fréchet differentiability and establish the strong semi-
smoothness of P, and Igr .

For a given positive integer ¢, denote the set of all ¢ X ¢ orthogonal matrices by
O4. For any given X € R"™™ (n < m), consider its singular value decomposition
(SVD):

X=T[EX) OV =T[S(X)0][Vh V] =Ts(x)V; ,

where 0(X) := (01(X),...,0,(X))T € R", ¥(X) := Diag(c(X)) € R**" U € O,
and V = [V V3] € O™ with Vi € R™™ and Vy € R™X(m=n) Let f: R™™ —
(=00, +-00] represent either the Ky Fan k-norm function || - || (5 or the Ky Fan k-norm
ball indicator function ds; . Correspondingly, let g : R™ — (—o0, +-00] be either the
vector k-norm function g(}g) defined as the sum of the k largest entries in absolute
value of any vector in R™ or the vector k-norm ball indicator function 53&)' Since f is

unitarily invariant (cf. [22]), according to the von Neumann trace inequality [27], it is
not difficult to see that x7(X) = x4(c(X)) for any X € R™*™. This implies that x s is
a nonsymmetric spectral function and x4 is the corresponding absolutely symmetric
function (cf. [22]). From (2), we can see that the study on the proximal mapping
Py and its first order differential property is equivalent to the study on the first and
second order differential properties of the nonsymmetric spectral function x ;. Before
we proceed further, let us recall some basic results on spectral functions. For the
symmetric case, the first and second order differential properties of spectral functions
have been comprehensively studied in the literature. In particular, Lewis [23] showed
that a symmetric spectral function is differentiable at a symmetric matrix if and only
if the corresponding symmetric function is differentiable at the vector of eigenvalues,
in which case the gradient of the symmetric spectral function is determined by that
of the corresponding symmetric function. Subsequently, Lewis and Sendov [24] fur-
ther proved that similar equivalence also holds for the second order differentiability.
Furthermore, Qi and Yang [33] established that the gradient of a differentiable sym-
metric spectral function is directionally differentiable at a symmetric matrix provided
that the gradient of the corresponding symmetric function is Hadamard directionally
differentiable at the vector of eigenvalues. It was also proved in [33] that the gradient
of a differentiable symmetric spectral function is (strongly) semismooth at a sym-
metric matrix if and only if the gradient of the corresponding symmetric function is
(strongly) semismooth at the vector of eigenvalues. For the nonsymmetric case, the
similar first order differential property of spectral functions was studied by Lewis [22,
Theorem 3.1]. This, together with (2), implies that the proximal point P¢(X) of X
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associated with f is given by

P(X) = T [diag (P,(0(X))) 0]V .

Then, according to the general results in [12, Theorems 3.4 and 3.6], we can obtain the
explicit formulas for the directional derivatives and characterize the Fréchet differen-
tiability of the proximal mapping Py, and the metric projector Ilz, by studying
their vector counterparts Py, and Iy . Moreover, since Py, and Ilg; —are both
piecewise affine, we know from [12, Theorem 3.12] that P. llwy and Ilg, = are both
strongly semismooth everywhere. From these observations, in this paper we shall
e show that the proximal mapping Py, , together with its directional derivative,
and the metric projector Hg&) admit fast and exactly computable solutions;
e propose algorithms of low computational cost to compute the directional
derivative of Hgr 5 and
e characterize the Fréchet differentiability of Py, and Ils; .

Though our study on the Moreau—Yosida regularization of the vector k-norm
related functions is mainly for the purpose of solving MOPs with the Ky Fan k-norm,
the research on the vector case is also of interest itself. For example, in a recent work
[2], the authors studied the Moreau—Yosida regularization of the square of the k-
support norm, whose dual norm is the ¢;-norm of the k largest entries in the absolute
value of a vector.

The remainder of this paper is organized as follows. In section 2, we give some
preliminaries, mainly on the vector k-norm function. In sections 3 and 4, we study the
proximal mapping Py, of the vector k-norm function g() and the metric projector
Hg&) over the vector k-norm ball B, respectively. From these two sections, we
will see that given o(X), the computational cost for Py, (¢(X)) and sy (oc(X)) is
significantly lower than that for computing an SVD of X, which is extremely crucial
from the computational point of view. In section 5, we make our conclusions including
several possible extensions of our work done in this paper.

Notation. Without causing any ambiguity, denote by || - [|) both the Ky Fan
k-norm and the vector k-norm, and by || - || 1)~ both of their dual norms if the context
is clear. In addition, we also use g(x) to denote the vector k-norm function. For
any given positive integer n, denote [n] := {1,...,n}. For any z € R", let 2+ be
the vector of entries of z being arranged in the nonincreasing order zf > >k
We use |z| to denote the vector in R™ whose ith entry is |z;]. Let sgn(z) be the
sign vector of z given by (sgn);(z) = 1 if z; > 0 and —1 otherwise for i = 1,...,n.
For any index set Z C {1,...,n}, we use |Z| to represent the cardinality of Z, i.e.,
the number of elements contained in Z. Moreover, we use zz € RZl to denote the
subvector of z obtained by removing all the entries of z not in Z. The standard inner
product between two vectors € R™ and y € R™ is defined as (z,y) := > ;y;.
For any = and y € R", the notation z < y (x < y) means that z; < y; (z; < y;)
for all i = 1,...,n, and the notation L y means that (x,y) = 0. The Hadamard
product between vectors is denoted by “o”; i.e., for any x and y € R™ the ith entry
of w:=xoy € R" is w; = x;y;- Let e be the vector of all ones, whose dimension
should be clear from the context. For any closed convex set C' in a finite dimensional
real Euclidean space Z, let II(+) be the metric projector over C' under the standard
inner product in Z. That is, for any x € Z, IIz(z) is the unique optimal solution to
the convex optimization problem min {1y — z||% |y € C}.
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2. Preliminaries. In this section, we will collect some preliminary results for
the vector k-norm functions. Let k be a given integer satisfying 1 < k£ < n. The
vector k-norm of any z € R" is defined as [|z||() := Zle |z|F. The vector k-norm
includes the ¢o.-norm (k = 1) and the ¢;-norm (k = n). Direct calculation shows that
the dual norm of the vector k-norm (cf. [5, Exercises IV.1.18 and IV.2.12]) is given by
2]l (k)= = max{||z[|1), %HzH(n)} = max{||2||co, %HZHl} for any z € R™. In addition, let
5(k)(2) denote the sum of the k largest entries of any z € R", i.e., 51 (2) := Zle zj
Define the following four convex sets: ¢,k = {w € R"|0 < w < e, (e,w) = k},
Y ={w eR"w=u—-v,0<u<e0<v<e (e,u+v) =k}, ¢§,k ={w e
R"[0 <w < e, (e,w) <k}, and ¢, = {w € R"|0 < w < ¢, (e,w) > k}. With
these notations, it is not difficult to check that (cf. [28]) for any z € R,

() sy (2) = sup { {1, 2) | 1 € i},
(6) 2]l () = sup { (s, 2) | 1 € Pri} -

The following lemma gives the relationship between the convex sets defined above.
LEMMA 2.1. ‘bik C Y and ¢, Nhn i = 0. Consequently, for any w € RY,
w € Py i if and only if w € ¢§,k'
Proof. We need only show that qﬁs & € Yn.k- Suppose that w € qﬁs e D0 wy =
k, it is obvious that w € v, ;. If i?zl w; < k, it is easy to see t7hat J ={j €
]| S7_, 20 —w) > k=", w;} # 0. Let jo := min 7. Define u € R* and v € R"
by

u; =1, vii=1—w;, 1=1,...,50— 1,
{ Ujg 1= ij+A, Vjo 1= A,
U; = Wy, v; =0, t=jJo+1,...,n,

where A = [k — X0 wi — Y27 2(1 — wi)]/2 € (0,1 — wj,]. Then, we have w =
U—V € Yn k. O

Suppose that z € R™ satisfies z = z+. We may assume that z has the following
structure:

(7) TN 2 2k > Bho4l == 2k == 2y > B4l 20 2 2,

where kg and k; are integers such that 0 < kg < k < k; < n with the conventions
that kg = 0 if 21 = 2 and k1 = n if 2z = z,. Then, the following lemma completely
characterizes the subdifferential of s (-) at such z (cf. [28]).

LEMMA 2.2. Suppose that z € R" satisfies z = 2+ with structure (7). Then

88(k)(2):{ﬂ€Rn ,Uzzl, Z:175k07 ,u’L:Oa Z:k1+157n7 }

and (frg+1, - - -5 ey ) € Phy—ko k—ko
Assume that z € R™ satisfies z = |z|* with the structure
(B) 21> 22k > kel = = 2R = = 2k > 2kl 200 2 2 20,
where kg and k; are integers such that 0 < kg < k < k; < n with the conventions

that ko = 0 if 21y = 2, and ky = n if zx = 2,. Then, the subdifferential of || - ||(x) at
such z is characterized by the following lemma (cf. [40, 28]).
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LEMMA 2.3. Suppose that z € R" satisfies z = |z|¥ with structure (8). If z;, > 0,
then

,uizl, izl,...,ko, ,ulz(), i:k1—|—1,...,n,}

0 = eR"
”ZH(k) { K and (:uko-i-la e a,uk1) € d)/ﬂ—ko,k—ko

Otherwise, i.e., if z, =0, then

Nzl ={weR™ | wi=1, i=1,...,ko, (Kkot1:---»Mn) € Yn—kok—ko } -

The next three lemmas are useful for simplifying problems in the subsequent
sections. The first is an inequality concerning the rearrangement of two vectors [18,
Theorems 368 and 369].

LEMMA 2.4. For x,y € R",

(@,y) < (z5y),

where the inequality holds if and only if there exists a permutation 7 of {1,...,n}
such that T, = z¥ and Yo = yi.

LEMMA 2.5. Suppose that w € ¢ with w = wb = (wg,,wp,, wp,), where
{B1, B2, B3} is a partition of {1,...,n} such that w; =1 for i € B, w; € (0,1) for
i € B2, and w; =0 fori € B3. Then |B1] < k < |B1] + |B2| and

{z e R"|s(1)(2) < (w,2)}
={z€R" |2, > 25, = 2y > 23, V i1 € B1, ia, in€ Pa, i3€ P3}.
Proof. We need only show that the relation “C” holds. Since for any z € R"”

satisfying s(;)(2) < (w, 2), w solves problem (5), we obtain from the KKT conditions
for (5) that

28, =&p +Aep,,  zp, = Aep,, and  zg, = —Ep, + Aeg,

for some &g, € R‘fl‘, &p, € R‘f?", and A € R. Then the conclusion follows. O

LEMMA 2.6. Suppose that w € ¢§,k with w = wv = (wg,,ws,,ws,), where
{B1, B2, B3} is a partition of {1,...,n} such that w; =1 for i € B, w; € (0,1) for
i€ P, and w; =0 forie B3. If > w; =k, then |B1| <k < |B1] + |B2| and

{z e R"||zllwy < (w, 2)}
= {Z (S Rn|2’i1 > Ziy = Z1/2 > |Z13| > ov 11 € ﬁl, iz,ilg S 62, i3€ ﬁg}

Otherwise, i.e., if Y i w; <k, then
{z eR"|||z]l k) < (w,z)} = {z ER" |25 >0, 23, =0, 23, = O} .

Proof. We need only show that the relation “C” holds in both cases. Assume that
z € R satisfies ||z]|(x) < (w,2). From (6) and Lemma 2.1, we know that w solves the
following problem:

(9) sup {(, 2) | € ¢, } -
Then the KKT conditions for (9) yield that

(10) 2B = 531 + /\6,31 ) BBy = )‘632 , and 2By = _5133 + )‘633
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for some &g, € ]lell, s, € R‘f?", and A satisfying 0 < (k — (e,w)) L XA € Ry. Define
2 € R™ by Zp,up, = 28,08, and Zg, := —zg,. Then [|Z] ) < (w,2). The same way
we obtained (10), we derive that

(11) Z8, = &8, + ;\651 , 28, = 5\652 , and Zg, = _éﬁs + 5\653

for some &3, € ]lell, 553 € R‘f?", and )\ satisfying 0 < (k — (e,w)) L A € Ry. Then
the conclusions follow from (10) and (11). O

In order to discuss the differentiability of the metric projectors over the polyhedral
convex sets B(},. (defined in section 3) and epi g(x), we need the following proposition,
which characterizes the directional derivative of the metric projector over a polyhedral
convex set [17, 29].

PROPOSITION 2.1. Let C CR™ be a polyhedral convez set and Il¢ () be the metric
projector over C. Assume that © € R™ is given. Let T := ll¢(z). Denote the critical
cone of C at x by C := Te(Z) N (v — T)*, where Tc(z) is the tangent cone of C at T.
Then for any h € R™, the directional derivative of Il () at x along h is given by

0, (2 h) = Tz (h) .

3. The proximal mapping of the vector k-norm function. In this section,
we will study the proximal mapping Py, associated with the vector k-norm function
9(k), where k is a given integer with 1 < k < n. As a consequence of the Moreau

decomposition (3) and the fact that 9 = 53%“*, it is evident that for any = € R,
(@),

where B(k)* is the ball with radius » > 0 defined by the dual norm of the vector
k-norm, 1.e.,

(12) Py (@) =2 —PF5,, (z) =21z

(k) .
(e ()

Bihy- ={zeR" | [[zlw <7} ={z€R" [ [|lz]loc <7, |2t < Fr}.

From (12), we can see that all the research on the proximal mapping Py, () associ-
ated with the vector k-norm function g, is equivalent to that on the metric projector
sy . (+) over B(lk)*. Thus, we will mainly focus on studying Is; . (+) in the following
discussion. We first point out that Ils; (-) can be computed via solving a well-
studied quadratic program within O(n) arithmetic operations. Then in order to use
Proposition 2.1 to derive the directional derivative and to characterize the Fréchet
differentiability of HB(rk)* (1) at any given x € R™, we will provide a complete charac-
terization of the critical cone of B(Tk)* at this point. From this characterization, we will
see that the directional derivative of Hg(rk)* () at z, i.e., the metric projector over the

corresponding critical cone, can also be computed within O(n) arithmetic operations.

3.1. Computing Ilg-

O%
optimal solution to the convex optimization problem

(+). For any given z € R™, sy . (x) is the unique

1
min = |ly - |

st lyllee <7 flylle < kr,

(13)

which can be equivalently rewritten as

1
min [}y — [z

st. 0<y<re, (e,y) <kr

(14)
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in the sense that § € R™ solves problem (14) if and only if sgn(x) o g solves problem
(13).

Remark 3.1. Note that (14) is a special case of projecting a vector onto a simple
polyhedral set consisting of one linear equality (or inequality) constraint with lower
and upper bounds. Specialized algorithms for this kind of problem, which aim at
solving its KKT system by finding a Lagrange multiplier corresponding to the linear
constraint based on breakpoint searching (BPS), have already been well studied in
the literature. Among these BPS algorithms, the O(nlogn) methods [19, 20] sort the
breakpoints initially, while the O(n) methods [8, 9, 30, 25, 21] make use of medians
of breakpoint subsets.

From Remark 3.1, we can see that the computational cost of computing HB(Tk)* (x)

can be achieved within O(n) arithmetic operations.

3.2. The differentiability of ng‘k)* (+). In this subsection, we proceed to con-
sider the directional derivative and the Fréchet differentiability of sy . (). Note that
B(k)* is a polyhedral convex set. In order to make use of Proposition 2.1, we first need
to characterize the critical cone of B(Tk)* at a given point.

Assume that € R™ is given. Let 7 be a permutation of {1,...,n} such that
lz|¥ = |z|., ie., |x|f = 2|z, i =1,...,n, and let 71 be the inverse of 7. By using
Lemma 2.4, one can equivalently reformulate problem (13) as

. 1
min o [ly — o2
st ylloe <7yl < b

(15)

in the sense that § € R" solves problem (15) (note that § = |g|* > 0 in this case) if
and only if sgn(x) o -1 solves problem (13). The KKT conditions for (15) are given
as follows:

(16) { 0=y — |zt + A\p+ v for some p € 9||y||oo and v € J||y|1,

0< (r—|yllo) LA >0, and 0< (kr—|[lyllr) L A2 >0,

where A\; and \s are the corresponding Lagrange multipliers. Note that the constraints
of problem (15) can be equivalently replaced by finitely many linear constraints. Then,
by using [35, Corollary 28.3.1] and the fact that problem (15) has a unique solution, we
know that the KKT system (16) has a solution (7, A1, A\2) and 7 is the unique optimal
solution to problem (15). Let fi € 9||y||c and 7 € J||g|l1 such that (g, A1, Ao, i, ¥)
satisfies (16).

For convenience, we will use B, to denote B(k)* in the following discussion. Let

7 :=1lp, (). Then y = |Z|¥ and z = sgn(x) o §,-1. Denote the critical cone of B, at
x by C, i.e.,

C:=7Ts.(T)N(z—2)*,

where 75, (Z) is the tangent cone of B, at z. Let g(z) := ||2][(k)+» goo(2) := ||2]|o0, and
g91(z) == ||z]l1, z € R™. Note that g(z) = max{go(2), g1(2)/k}. From [11, Theorem
2.4.7], we know that for any z € R™ with g(z) = r, it holds that

(17) Ts.(2) ={deR" | g'(z:d) <0},

where for any d € R", ¢'(z; d) is the directional derivative of g at z along d. Moreover,
since goo and gy are finite convex functions, from [35, Theorem 23.4], we know that
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for any d € R",

(18) goo(z3d) = sup { (i, d) | 11 € Dgoo(2) }
(19) 91(z;d) = sup { (i, d) | p € dgi1(2)} -
Denote

d:=sgn(z)od, deR".

We characterize the critical cone C of B, at x by considering the following four cases.
Case 1: ||Z||oo < 7 and ||Z||; < kr. In this case, T = x and C = T, (z) = R".
Case 2: ||Z||oo = r and ||Z||; < kr. In this case, Ao = 0 and ¢(Z) = goo(T) = 7.

Thus, ¢'(z;-) = g, (T;-). Let

a:={ien]||zi=r} and B:=[n]\a.
Note that o # 0. By using Lemma 2.3, (5), (17), and (18), we obtain that
(20) Ts.(Z) ={deR" | dy <0}.

Case 2.1: T =x. Then C = Tp,(z) = {d € R" | d, <0}.

Case 2.2: ¥ # x. Then from (16) and Lemma 2.3, we know that A\; > 0 and
|z| — |Z| = Aifi, where i := fir-1 € |||Z]|| satisfying 0 < fia € @jof,1 and g = 0.
Since ||Z|lcoc = r, we obtain that Ay =Y ., |z|; — |a|r. Hence, we can derive ji from
i = (|z| —|z|)/A1. Then we have

i€

(z = 2)" = (sgn(e) o (jal s — sen(@) o (2")51) " = (sen(@) o) ",
which, together with (20), yields that
(21) C={deR"|dya <0, (fin,ds)=0}={deR" | dy, =0, da, <0},
where
ap:={i€a|i>0} and oag:=a\a;.

Case 3: ||Z||ooc < v and ||Z||; = kr. In this case, \; = 0, g(z) = g1(%)/k = 7.
Thus, ¢'(z;-) = ¢1(@;-)/k. Let

a:={ien]||z; >0} and B:=[n]\a.
By using Lemma 2.3, (5), (6), (17), and (19), we obtain that

i {deR" | (e, d) <0} if B=0,

(22) Ti. (7) = e d=h |
(d e | {ea, da) + sl <O} I 5 £0.

Case 3.1: Z = x. Then C = Tp,(Z), which is given by (22).
- Case 3.2: T # x. Then from (16), Lemma 2.3, and Lemma 2.1, we know that
A2 > 0 and |z| — |Z| = A\o¥, where ¥ := U,-1 € O|||Z]||1, satisfying that & = e if
B =0, and that 7, = eq and 0 < D5 < ep if 3 # (). Since ||Z||; = kr, we obtain that
A2 = ([lzlly —kr)/nif =0, and Ay = >, (|z|: — [Z[:)/|a] if B # 0 (note that z # 0
and thus « # (). Hence, we can derive 0 from ¥ = (Jz| — |Z|)/A2. Then we have
)J_

(v = 2)* = (sen(x) o (|a]")amr —sgn(a) o (|2")5mr) " = (sen(x) 09) ",
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which, together with (22), yields that

= {deR"|(e,d)=0} if 8=10,
{deR" | ||ds|ly < (7, ds), (ea,ds)+ (75, ds) =0} otherwise.

Let
Bl :{l€ﬂ|ﬁl:1} and ﬂg Z:ﬂ\ﬁl.

Then by Lemma 2.6, we have

8_{{deR"|<e,d>=0} if =0,
0

{deR"|(e,d)=0, ds, >0, dg, =0} otherwise.

Case 4: ||Z||coc = r and ||Z||1 = kr. Let
a={illz;=r}, B:={i|0<|zl;<r}, and 7y:=[n]\(eUp).

Note that o # (. From (16), Lemma 2.3, and Lemma 2.1, we know that |z| — |z| =
AMfi+ XD, where fi := [i,—1 € O|||Z||| o, satisfying that 0 < fiq € ¢|a),1 and fguy = 0,
and ¥ := U,-1 € 9|||Z||1, satisfying that o = e if v = ), and that Doug = equp and
0 <, <e,if y# 0. Thus we have

(23)

rea = |Tla = Mfla = Aoea, [Tl = |2[s — Aoep, 0= 2]y — Aoy,
0<fia <ear Yjeqhti=1, 0<Dy<ey, A >0, X>0, AF+A#0

and

(24)

(x_x)L:{{dER"|)\1<ﬂa76§a>+)\2<e,d>:9} A if v = 0,
{deR" | \i{fia, do) + X2 ({eaus  daug) + (D, dy)) = 0} otherwise.

Denote

ap:={i€alp>0}, a=ac\a1, m={ievy|y=1}, and v :=9\1.

Since in this case ¢(Z) = 9o (Z) = ¢1(T)/k = r, we know that ¢'(Z; ) = max{g.,(Z; "),
91(Z;+)/k}. Then by using Lemma 2.3, (5), (6), (17), (18), and (19), we obtain that

{deR"|d, <0, (e,d) <0} ify=10,
{deR" | dy <0, (eaup, daup) + ||dy]l1 <0} otherwise.

(25)  Ts.(z) = {

If B # 0, we obtain from (23) that A\y = Y. |z|i — |a|(r + A2) and Xy =
> icpllzli = |20:)/18]. If B =0, from (23) we know that A=Y ea |zl — o (r 4+ A2).
In order to derive A; and Ay from |z| and |Z| for the latter case according to (23), we
need to consider the following five cases.

(a) A1 =X ;c, |2li — |alr and Ay = 0. For this case, it is sufficient and necessary
that A1 > 0, 0 < fiq < €4, and |z|, = 0, which are equivalent to the conditions that
<Y icalzli/|al, r <minjeq 2], maxieq 2] <37, 2] — (Ja| = 1)r, and |z[, = 0.
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(b) At =0 and Ay = >, |#[;/|er| —r. For this case, it is sufficient and necessary
that Ao > 0, |z]o = (r + A2)eq, and 0 < 0, < ey, which are equivalent to the
conditions that » < >, |z|i/|al, [z]; = >, [#|i/|af for j € o, and max;ey |2[; <
Y req l2li/la] = . ‘

(€) M = Y icq I7li — [a| mingeq |z]; and Ay = minseq |z]; — 7. For this case, it
is sufficient and necessary that Ay > 0, Ao > 0, as # 0, 0 < fia < €4, and 0 <
Uy < e, which are equivalent to the conditions that r < minjeq |2]; < Y ;. 12]i/]a,
maXieq |2i <D icq 12 — (Ja| = 1)7, and max;e, [2]; < mingeq |z]; — 7.

(d) M =D ,cq |2li — || (r + max;e [2];) and Ay = max;e |x|;. For this case, it is
sufficient and necessary that Ay > 0, Ao >0, 71 # 0, 0 < fiq < €q, and 0 < 0, < e,
which are equivalent to the conditions that 0 < max;e, |2z]s <>, |2]i/|a| =7, v # 0,
max;ey |z]; < miteq [2]; — 7, and maxieq |zf; < 324, [2]i — (Jof = 1)(r + maxe, [2]:).

(€) A = Dicalzli — laf(r + A2) and Xy € (AB™, AP®*) # (), where AJ"" :=
max{0, max;e~ |z|;} and A5'** := min;eq |x|; — r. For this case, it is sufficient and
necessary that as = vy = 0 and max{0, max;c, |z[;} < min;eq |z|; — 7 (it is not
difficult to see that A\; > 0 and Ay > 0).

Therefore, in all the cases, A\; and Ay can be derived from |x| and |Z|, which implies
that i and ¥ can be determined by |z| and |Z|. Then we consider the following four
subcases.

Case 4.1: Ay = A\ =0 (i.e., T = ). Then C = Tp, (), which is given by (25).
Case 4.2: \; > 0 and Ay = 0. Then from (24), (25), and the fact that fi, > 0,
we obtain

: {deR" | dy, =0, dg,
{deR" | dy, =0, da,

(e, d) <0} ity =0,
(eaup daug) + [|dy]l1 <0} otherwise.

<0,

— o

Case 4.3: A\; = 0 and A2 > 0. Then from (24), (25), the structure of 7., and
Lemma 2.6, we derive that

- {{deRn|da<0,<e,cZ>=0} if v =0,

{deR" | dy, <0, dy, >0, dy,=0, (e,d) =0} otherwise.

R Case 4.4: A\ >0 and ;\% > 0. Let d € C be arbitrarily chosen. ASince flo, > 0 and
do < 0, we know that (fia, do) < 0. If v = ), by noting that (e, d) < 0 in (25), we
can see that \i{fia , do) + A2{e, d) = 0 if and only if (i, , do) = 0 and (e, d) = 0. If

v # 0, by using (6) and the structure of i, we obtain (eaus, daug) + (U5, dy) <0

from (25). Hence in this case, A (i , do) + A2 ({eaus » daup) + Dy, ciﬁ) = 0 if and

only if (fio , do) = 0 and (equp , daug) + (7, dy) = 0. Then from (24), (25), the fact
that jio > 0, the structure of 7., and Lemma 2.6, we derive that

,<e,02>:0} ify=0,

= {dE]Rn|dOl1:07CzozzS
C:
, dy, >0,dy, =0, (e,d)y=0} otherwise.

{dE€R" | dyy, =0, da, <

From the characterization of the critical cone C of B, at z described in the above
four cases, it is not difficult to see that the BPS algorithms mentioned in Remark 3.1
can be used to compute II5(-) within O(n) arithmetic operations. Since B, is a

polyhedral convex set, by Proposition 2.1, we know that for any h € R™ the directional
derivative of I, (-) at = along h is given by

Mg, (23 h) =T (h) .
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The complete characterization of the critical cone C and the directional derivative
of IIp, () allow us to derive the sufficient and necessary conditions for the Fréchet
differentiability of I, () in the following theorem. Since its proof can be obtained in
a similar way to that of Theorem 4.2 in subsection 4.2, we omit it here.

THEOREM 3.1. Let xz € R™ be given. The metric projector llg,(+) is differentiable
at z if and only if x satisfies one of the following eight conditions, where & = g, (x):

(1) |1Z]leo < 7 and ||Z]]1 < kr;
(ii) [|Zlco =7, [|Z]l1 < kr, T # x, and r < min;eq |@);, where a = {i € [n] | |Z]; =
r}:
(iil) |Z)lco <7, [|Z|l1 = kr, T # z, and |z| > 0;

(iv) Zllee < 7, lIZIh = kr, T # @, mini<i<, |Z|; = 0, and maxg, |z]; <
Yicallzli = |2:)/]al, where o = {i € [n] | |Z]; > 0} (note that o #
since T #0);

V) NZlloo =7, |2/l = kr, & # 2, [2] >0, B#0, and r+ 325l — [2]:) /18] <
min;eq @);, where a = {i € n] | |2l =7} and B={i€[n] | 0 < |T]; <r};
(Vi) Z £ 2 and T; =7 fori=1,...,n (note that this condition holds only when
k=n);
(vil) ||Z]|oo =7, [|Z]|1 = kr, T # @, mini<i<y |[Z]; =0, B # 0, and max;¢qup |z] <
Yicpllzli = 120:)/|8] < minjeq |z]; —7, where a and B are the index sets given
in (v);
(viil) [|Z]|oo =7, [|Z[l1 = k7, T # 2, mini<i<n |Z]; =0, f =0, and max;gqup || <
min;e, |x|; — r, where « and B are the index sets given in (v).
4. Projection over the vector k-norm ball. Let k£ be an integer satisfying

1 <k <n, and let r be a positive number. In this section, we will study the metric
projector Hg(rk) over the vector k-norm ball B(Tk) with radius r, i.e.,

By ={z€R" | |lzllw) <7}

First, we design a fast algorithm to exactly compute the solution of Hg&) (). Second,
we completely characterize the critical cone of B(Tk) at any given point and then make
use of Proposition 2.1 to obtain an explicit formula for the directional derivative and
the characterization for the Fréchet differentiability of HB&) (). Finally, we propose
algorithms of low computational cost for computing the metric projectors over four
basic polyhedral convex cones that come from the characterization of the critical
cone of B(Tk) at the given point. These algorithms allow us to efficiently compute the

directional derivative of sy ().
4.1. Computing gy, (+). For any given z € R", Hg(rk)(x) is the unique opti-
mal solution to the following convex optimization problem:

1
26 i 2y — x| < .
(20 min {5l =al? | ollay < v}
Let m be a permutation of {1,...,n} such that |z[* = |z[x, Le., [2]} = |2|,@), i =
1,...,n, and let 7=! be the inverse of 7. Denote |x|$ = 400 and |x|ﬁ+1 = 0. Then

we have the following algorithm for computing sy, (x).
ALGORITHM 1. Computing s, (x).
Step 0 (Preprocessing). If ||x||x) < 7, output Hg(rk>(x) =z and stop. Otherwise, sort

|z| in nonincreasing order to obtain |z|‘, and set ko =k —1. If ko > 0, go to
Step 1; if kg =0, set flag =0 and k1 = k, and go to Step 2.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/01/14 to 137.132.123.69. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

M-Y REGULARIZATION OF k-NORM RELATED FUNCTIONS 779

Step 1 (Searching for the case that g, = 0). Compute A = (Zfil 2} —7)/ko. If
A>0,A>30 el /(k— ko), and |afy, > X > [aff, . set ko = ko,
A=)\, and

gi =zt =X, i=1,... ko,
¥i =0, Z':]EQ—I—L...,TL,

and go to Step 3. Otherwise, if ko =1, set flag=10, kg =k—1, and k; =k,
and go to Step 2; if ko > 1, replace ko by ko — 1 and repeat Step 1.
Step 2 (Searching for the case that g > 0). Compute p = ko(k1 — ko) + (k — ko)? and

kl kO
0= (ko Y Jalf = (k= ko) (3 lelt = 7)) /o,
i=ko+1 i=1
kl kO
A= ((k=ko) D2 ot + (b = ko) (Y lalf 1)) /-
i=ko+1 i=1

If ko = 0 and k1 = n, set flag = 1. Otherwise, if A > 0, |ac|t0 >0+ A>
Lx|J,;O+1, and |;1c|Jé1 >0 > |x|i1+1, set flag = 1. If flag = 1, set ko = ko,
ki=Fk,0=0, A=), and

gi= x|l =X, i=1,...,k,
7 =0, i=ko+1,... ki,
i = ||}, i=ki+1,...,n,

and go to Step 3. If flag = 0 and k1 < n, replace k1 by k1 + 1 and repeat
Step 2; if flag = 0, kg > 0, and k1 = n, replace ko by ko — 1, set k1 = k,
and repeat Step 2.

Step 3. OQutput g, (x) = sgn(z) o Jr—1 and \. Then stop.

The following proposition validates Algorithm 1 and shows its low complexity by
considering the KKT system of a reformulation of problem (26).

PRrROPOSITION 4.1. Assume that x € R™ is given. Then the metric projection
Hg(rk) (x) of x onto B(Tk) can be computed by Algorithm 1 at a computational cost of
O(nlogn + k(n — k + 1)), where the sorting cost is O(nlogn) and the searching cost
is O(k(n — k+1)).

Proof. By applying Lemma 2.4, we can equivalently reformulate (26) as

1
. - _ \L 2 <
(27) ;23{%{ 5 Iy = l=[1% iyl < 7’}

in the sense that §j € R" solves problem (27) (note that § = |g|* > 0 in this case) if
and only if sgn(z) o g,-1 solves problem (26). The KKT conditions for (27) take the
form of

0=y — |z]¥ +Ap for some u € ||y )
(28) { et + A p p € Alyll )

0<(r—Illyllg) LA=0,

where A is the corresponding Lagrange multiplier. Note that the constraint of problem
(27) can be equivalently replaced by finite many linear constraints. Then from [35,
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Corollary 28.3.1] and the fact that the optimal solution to problem (26) is unique, we

know that the KKT system (28) has a unique solution (7, ) and y is also the unique
solution to problem (27). If |||/ < r, then (g, A) = (|z[*,0). Thus, without loss of
generality, we may assume that ||z|[) > 7. Consequently,

(29) A>0 and 9wy =17
We next consider the following two cases. -

Case 1: 7, = 0. In this case, there exists an index 0 < kg < k — 1 such that
(30) glz...zg%>g%0+1:...:gk:...:gn:0’

with the convention that ko = 0 if 7; = 7. Then according to Lemma 2.3, (29), and
(30), the KKT system (28) is equivalent to

g=lel¥ = Mo with gg, > Ggop1 = =9n =0,

(31) ﬂizzzlo for i=1,...;k0, (st s fin) € Cnohoio s
r:Z|a:|Ji’—f€05\ and A >0.
=1
By solving (31), we obtain that
Gi=lzlf =X, i=1,... ko,
(32) gi=lzly —Mai =0, i=ko+1,...,n,
A= (T8 falt =) /ko.

From Lemma 2.1 and the observation that g > 0, we know that

_ _\T . . _ _\T <
(33) (Bggt1>--->lin) € Yy fon-o if and only if (fig, 1, fin) € e Fo k—Fo

Thus, (31) is equivalent to

n

- - - 1
(34) A>0, |x|J]—;0>x\2|x|£0+l, and )\Zk—fm Z ||t

l:EQ+1

with (7, \) being given by (32). From (32), (34), and the compatibility of the KKT
system (28), we can see that Algorithm 1 is well defined for the case that g, = 0; that
is, Step 1 of Algorithm 1 produces the unique solution to the KKT system (28) when
yr = 0. ~ ~

Case 2: gy, > 0. In this case, there exist some indices ko and k; satisfying
0<ky<k-—1andk < ki <n such that

(35) Y1> 205 > pgr1 = == =Yg, > Upyp1 = = Un >0,

with the conventions that kg = 0 if 1 = g and that ky = n if Jx = §». Denote
0 := §r. Then by using Lemma 2.3, (29), and (35), we can equivalently rewrite the
KKT system (28) as
(36) ) _ _ _ _

y=lzl* — Ao with gz, >0> gz, and 4, =0, i=ko+1,... ki,

_ ) . _ _\T _ .

/J'i:}a i=1,..., ko, (u,;oJrl,...,u,;l) € Py ko k—kos Bi=0, 1=k +1,....,n,

ko

r=Ylalf —koA+ (k—ko)f, and A>0.

=1
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By solving (36), we obtain that
p = ko(ky — ko) + (k — ko)?,

- - k1 - ko
0= (ko > |x|%—(k—ko)<§j|a:|%—r)>/p,

(37) i=ko+1
- - k1 - - ko
A= ((k—ko) S falt + (hy —ko>(Z|x|% —r))/p,
i=ko+1 i=1
and
i = ||} — X, i=1,..., ko,
i = ||}, i=ki+1,...,n.

Then due to the structure of |z|¥, (36) is equivalent to

(39) A>0, |aly >0+ A>aff . and |2} >60> |2ly |,
with 6 and (7,)) being given by (37) and (38). From (37), (38), (39), and the
compatibility of the KKT system (28), we can see that Algorithm 1 is well defined
for the case that g > 0; that is, Step 2 of Algorithm 1 gives the unique solution to
the KKT system (28) when g5 > 0.

Therefore, by combining Cases 1 and 2, we prove that Algorithm 1 solves the
KKT system (28) with the solution (7,)). Consequently, 7 is the unique optimal
solution to problem (27) and sy, (z) = sgn(z) o Jy—1. Furthermore, the complexity
of Algorithm 1 can be readily derived by analyzing the sorting cost and the searching
cost. O

Remark 4.1. The computational cost of computing Tls;, (x) can be further re-
duced to only O(k(n — k 4 1)) arithmetic operations if x = |z|*, where this is always
true for x being the vector of singular values arranged in nonincreasing order.

4.2. The differentiability of HB(k)(')’ In this subsection, we consider the
directional derivative and the Fréchet differentiability of HB&)(-). Without causing
any ambiguity, we will use B to denote B(Tk) for convenience.

For any given = € R", let Z := IIg(x). Note that B is a polyhedral convex set.

By taking into account Proposition 2.1, we first need to characterize the critical cone
D of B at x, which is defined by

D:=T3Z)N(z—z)*,
where 73(Z) is the tangent cone of B at Z. Denote
a:=1{1,....ko}, B:={ko+1,....k1}, and ~:={k +1,...,n},
where ko and &y are integers such that 0 < ko <k <k <nand
ol = = Jalf, > o] = el = = el > el 22l 20,

o v
ko+1 ki+1 —

with the conventions that ko = 0 if |Z]} = |5c|t and k= n if |z} = |Z|%. Recall that
9 (2) = ||2ll(r), 2 € R". By using [11, Theorem 2.4.7], we know that

(40) Ts(2) = {d €R" | giz)(2:d) <0},

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/01/14 to 137.132.123.69. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

782 BIN WU, CHAO DING, DEFENG SUN, AND KIM-CHUAN TOH

Moreover, from [35, Theorem 23.4], we know that for any d € R,

(41) iy (z:d) =sup {(p, d) | 1 € Dgry(2)} -
Let 7 be a permutation of {1,...,n} such that |z|* = |z|., i.e., |x|¢ 1T (), @ =
1,...,n, and let 7—! be the inverbe of m. Denote

d:= (sgn(z) od),, deR".
We characterize the critical cone D of B at x by considering the following five cases.
Case 1: ||z||(5y < r. In this case, Z =z and D = T5(z) = R".
Case 2: ||z||(x) = r and |Z|f = 0. In this case, Z = « and D = T5(z). From (40),
(41), (6), and Lemma 2.3, we have
D="Ts(@)={deR" | (ea, da) + |dsll -7, <O}

Case 3: ||z||(x) = 7 and |£|i > 0. In this case, = 2 and D = T5(Z). By using
(40), (41), (5), and Lemma 2.2, we obtain that

D="Ts(z)={deR" | (e, da) + s_k)(ds) <O}

Case 4: ||z||x) > 7 and |§:|i = 0. In this case, Z = sgn(z) o (|Z|"),-1 with
7 = |zI* and X > 0 being given by (32). From Lemma 2.3, (31), and (33), we know
that (sgn(z) o (z — &)= = |z|* — |[Z[¥ = Afi, where i = (eq,w) € 9|||Z[*||(x) and

w=lwl*€¢>_ Fo iy Then we have
(z—2)" ={deR" | Xsgn(z)ofi,—1,d) =0}
(42) = {deR" | (ea, da) + (w,dg) =0}

We note that 75(Z) is obtained in Case 2. This, together with (42), yields that

D={deR"| {ea,da) + ldsll(s-7p) <O, (ea,da) + (w, ds) =0}

= {d e R" | |[dsll (o) < (w, ds), (ea,da) + (w, ds) =0}.

Case 5: |x||(y > r and |Z|} > 0. In this case, Z = sgn(z) o (|Z[") -1 with § = |z|*
and A\ > 0 being given by (37) and (38). From Lemma 2.3 and (36), we know that
(sgn(z) o (x — Z))r = |z|* — |2} = A, where i = (eq,w,0,) € 9|||Z|[*||(x) and
w = |w|* € ¢g, g, k_k,- Since Tp(Z) is obtained in Case 3 and (z — Z)* is given by
(42), we have

D= {dGR”Hea, >+3(k ko)(dﬁ)<0 (s du) + <w dAﬁ :O}
= {deR" | s(_t0)(ds) < (w, ds), (ea, da) +(w, ds) =0}.

Based on the above complete characterization of the critical cone D of B at any
given z € R™, we define the polyhedral convex cones D1, D3, D3, and Dy by

(43)  Di:={(y,2) e RV xR | (ea, y) + 2ll(q) <0},
(44) Dy:={(y,2) eR" P xR | (eqa, y) + 5(¢)(2) <0},
(45)  Dy:={(y,2) eR™" P xR | |[z](g) < (w, 2), {€a,y) + (w,z) =0},
(46)  Da:={(y,2) eR™ PV XRY | 5)(2) < (w, 2), (€a,y) + (w, 2) =0},
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where m := |a| + |B| = k1, p := |B| = k1 — ko, ¢ := k — ko, ea € R™7P is the vector of
all ones, and w € RP is given in Case 4 or Case 5. More specifically, w = |w|* € d%q
in (45) for Case 4, while w = |w|* € ¢, 4 in (46) for Case 5. In any case, we may
assume that w = (wg, , wg,,wgs, ), where {B1, B2, A3} is a partition of {1,...,p} such
that w; = 1 for i € 1, w; € (0,1) for i € B, and w; = 0 for ¢ € B5. Furthermore, if
(eg, w) < ¢, we can use Lemma 2.6 to simplify (45) as

(47) Dgz{(y,z)ERm*pxRp | (e, y) + (w, 2) =0, zg, >0, 23, =0, 233:0}.

For this simple case, the BPS algorithms discussed in Remark 3.1 can be used to com-
pute the metric projector over the polyhedral convex cone (47) within O(m) arithmetic
operations. For the general cases, we develop algorithms of low computational cost
for computing the metric projectors over the polyhedral convex cones (43), (44), (45),
and (46) in subsection 4.3. By applying Proposition 2.1, we derive the directional
derivative of IIg(+) in the following theorem.

THEOREM 4.1. Assume that x € R™ is given. For any h € R™, denote h =
(sgn(x) o h)r. The directional derivative of Ilg(-) at x along the direction h is given

by
s (5 h) = (k) = h,

with h € R™ satisfying

(P> g, hy) if Nzl <7,

(Tp, (b hg), oy) i N|llry = 7 and |z]; =0,
(sgn(x)oh), = h= (ﬁa, iLB, iLV) = (HD2 (iza,izﬁ),iz,y) if |zl =17 and |£|i >0,

(Tpy (has hig), hy) if @l > 7 and |2]; =0,

(p, (has hg) b)) if ||zlly > 7 and |z[} > 0.

According to Theorem 4.1 and the complete characterization of the critical cone
D, we are now ready to characterize the Fréchet differentiability of IIz(-) in the
following theorem.

THEOREM 4.2. For any given x € R", let T := Ilg(z) and \ be computed by
Algorithm 1. The metric projector IIg(-) is differentiable at x if and only if x satisfies
one of the following four conditions:

() lllwy <7

(i) eliry > 7, 2[5 =0, icplaly /A <k —ko, and X > |2f;

(i) [y > 7, k < k1, and max{0, |aly ., — A} < |25 < |2y, ;

(iv) ||zl > 7, k = ki, and |Z[};, > 0.

Proof. “<=" Suppose that x € R™ satisfies one of the four conditions. Since
I15(-) is Lipschitz continuous on R™, the Fréchet differentiability and the Géteaux
differentiability of IIz(-) coincide (cf. [11]). From Theorem 4.1, we know that IIz(-)
is directionally differentiable at z. Therefore, we need only show that the operator
ITs(x;-) : R™ — R™ is linear by using Theorem 4.1 and the complete characterization
of the critical cone D. We consider the following four cases.

Case 1: ||z|) < r. Then Iz(x;h) = h for any h € R™. Hence, Iy (z;-) is
linear.
Case 2: ||z >, |5c|t =0, s lz|¥ /A < k—ko, and X > |x|£0+1. In this case,

w = |x|é/5\ and v = (). Then, {eg, w) < k — ko and w < eg (i.e., 81 = (). From the
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characterization Case 4 and Lemma 2.6, we have D = {d € R" | (eq, ds) + (w,dg) =
0, dgl >0, cim =0, ciﬁs =0}. Since B; = 0, it is obvious that D is a subspace in R".
Consequently, ITjz(z; ) is linear.

Case 3: ||z||x) > 7, k < ki, and max{0, |;1c|£OJrl -2} < |z} < |ac|£1 In this
case, D is given by the characterization Case 5. Since w = (|x|j§ — |Z|tes)/A, then
0 <w< eg,ie, f1UpPs=10. Then from Lemma 2.5, we know that D is a subspace
in R™. This shows that ITjz(x;-) is linear.

Case 4: ||z||y > 7, k = ki, and |Z[{ > 0. In this case, D is given by the
characterization Case 5 with w € ¢ _g .5, (i.e., w = eg). This implies that D can
be further simplified as D = {d € R" | (eq,ds) + (w,ds) = 0}. Therefore, D is a
subspace in R™ and IIz(x;-) is linear.

“—=" Let x € R™ be given. Without loss of generality, we may assume that
x = |z[¥. Then it suffices to show that IIz(x;(+)) is not linear in the following four
cases.

Case 1: |z||() = r. Then D is given by the characterization Case 2 with v = ()
if |5c|t = 0 or the characterization Case 3 if |Z|f > 0. Choose h = (e4,03,0,) € R™.
From Theorem 4.1, (52), and (58), we obtain that IIx(x;h) = 0 if |§:|i = 0 and
s(z;h) = (1 — Aea, —Ai,04) if |z}, > 0. Since a # § in the former case and
AL # 0g in the latter case, it is obvious that ITz(z; —h) = (—eq, 08,0,) # —IIx(z; h).
Hence, ITjz(z; ) is not linear.

Case 2: ||z||x) > T, Z|t = 0, and > ies lz|Y /A = k — ko. In this case, a # 0,
v =10, and w = |x|i§/5\ Since (eg, w) = k — ko, we know that D is given by the
characterization Case 4 with w = |w|* € ¢,, 3, x_,- The proof for this case can be
completed by following the similar argument in Case 1 and applying Theorem 4.1
with Algorithm 4.

Case 3: ||z||x) > T, |k =0, Y ies lz|Y /X < k — ko, and X = |x|£0+1. In this
case,a # 0,7 =0, and w = |a:|é/;\ Since {eg , w) < k— ko, from the characterization
Case 4 and Lemma 2.6, we know that D = {d € R" | (eq,dys) + (w,dg) = 0, dg, >
0, 6532 =0, 6533 = 0} with 8; # (. By following the similar argument in Case 1
and applying Theorem 4.1 with the BPS algorithms discussed in Remark 3.1, we can
complete the proof for this case.

Case 4: ||| k) > 7, k < k1, |£|i > 0, and either ||} = |z|*

Fo+1
In this case, D is given by the characterization Case 5. Since w = (|x|j§ — |Z[Lep) /A,
we know that $; U B3 # 0. Moreover, k < ki implies that 81 # 3, while w # 0
implies that 83 # 8. The proof for this case can be completed by following the similar
argument in Case 1 and applying Theorem 4.1 with Algorithm 5. o

—X or[Z[; = |aly,-

4.3. Projections over four basic polyhedral convex cones. In this sub-
section, we will focus on computing the metric projectors over the polyhedral convex
cones Dy, Dy, D3, and Dy (defined in (43), (44), (45), and (46)), which are closely
related to the critical cone of Bf;,. As can be seen from subsection 4.2, the results
obtained in this subsection are crucial and indispensable for studying the differential
properties of the metric projector Ugr . Since the developments of these results are
highly technical, this subsection could be skipped on the first reading.

To propose our algorithms to compute the metric projectors over these four poly-
hedral convex cones, we need the following two subroutines. In the algorithms for
computing the metric projectors over D; and D3, Subroutine 1 and Subroutine 2
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aim to check whether z; = 0 and z, > 0, respectively, where z, is the gth entry of
the variable z of the optimal solution to problem (51) or problem (63). In addition,
Subroutine 2 also serves as a main step in the algorithms for computing the metric
projectors over Dy and Dy.
SUBROUTINE 1. function (g, z, flag) = S3(u, v, 7, qo, §, opt).
o Input: (u,v) € R™ P xXRP, v is a (q+ 1)-tuple, qo is an integer satisfying 0 < qo <
g—1,5€ Rt and opt =1 or 0.
e Main Step: Set (y, z,flag) = (u,v,0). Compute

A= (g0 + {e; w)/(llel® + q0) -

Ifopt =1, A >0, Oy > A > Ugo11, and A > (8p—34,)/(¢—qo), set flag = 1.
If opt = 0, Tgy > A > Tggy1, and X\ > (3p — 34,)/(q — qo), set flag = 1. If
flag=1, set A = X and

N
Il

— e,
i_Xa izla"'aqf)a

U
i v
0, i1=qo+1,...,p.

Zi =
SUBROUTINE 2. function (¥, %z, flag) = S4(u, v, ,9", qo, q1, 3, opt).
e Input: (u,v) € R™™P X RP, o~ and 0" are tuples of length ¢+ 1 and p—q+2, qo
and qi are integers satisfying 0 < qo < ¢ < q1 < p, § € RP*! and opt =1 or
0

e Main Step: Set (3, z,flag) = (u,v,0). Compute p = (q1 —qo)(|l€]|*+q0) + (¢ — q0)*
and

{ 0= ((Ilell*+ q0) (3, — 5q0) — (¢ — q0) (g0 + (e, 1)) /p
A= ((q - QO)(§q1 - §¢10) + (Q1 - QO)(§q0 + <€, u}))/p

If g0 = 0 and q1 = p, set flag = 1. Otherwise, if opt = 1, A > 0, 0, >
0+ A>7, ., and T >0 > f);ﬁl, set flag = 1; if opt =0, 0y > 0+ X>
Vg1 and T >0 > 6;4_1, set flag=1. Ifflag=1, set0 =0, A=\, and

gjzu—Xe,

Zi=vi—\, i=1,...,qo,
21-:9, it=qo+1,...,q,
Zi =, t=q+1,...,p.

In the rest of this subsection, we present algorithms of low complexity for com-
puting the metric projectors over the polyhedral convex cones D1, Ds, D3, and Dy.
Since all the proofs are essentially similar to that of Proposition 4.1, we omit them
due to the space limitation.

4.3.1. Projection over D;. For any given (u,v) € R™ P xRP, Ilp, (u,v) is the
unique optimal solution to the following convex optimization problem:

. 1
min §(Hy —ul® + [l = vl|*)

st. (e, y) + |zl <0.

(48)
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Let m be a permutation of {1,...,p} such that [v|* = |v|.,, i.e., |v|li = [v]r )5

i=1,...,p, and let 71~ be the inverse of 7;. Denote |v|$ = 400 and |v|iJrl = 0.
Define § € RP+! by

J
(49) 50:=0, §j::Z|v|f, ji=1,...,p.
i=1
Let o~ and o7 be two tuples of length ¢ 4+ 1 and p — g + 2 such that

(50)

S S O N
Ty =400, T =y, i=1,....q,
~+ T PR A
Uy =0, 0 =, i=q,...,p.

According to Lemma 2.4, problem (48) can be equivalently reformulated as

. 1
min §(||y—u||2+|\2— lol*?)
s.t. <6, y) + ”ZH(q) <0

(51)

in the sense that (i,z) € R™P x RP solves problem (51) (note that z = |z|* > 0 in
this case) if and only if (g, sgn(v) o Z,,-1) solves problem (48). The KKT conditions
for (51) have the following form:

0=y —u+ e,
(52) 0=2z—|v]* + Au for some p € 9|z (g,
0<(=(e,y) —llzll@) LA=0,

where A is the corresponding Lagrange multiplier. It is not difficult to see that the con-
straint of problem (51) can be equivalently replaced by finitely many linear constraints.
Then from [35, Corollary 28.3.1] and the fact that the optimal solution to problem
(51) is unique, we know that the KKT system (52) has a unique solution (7, z, A) and
(,%) is also the unique optimal solution to problem (51). If (e, u) + |[v||(4) < 0, then
(4,2, A) = (u, |v[*,0). Otherwise, i.e., if (e, u) + [|v]|(4) > 0, we have that

(53) A>0 and <€7Z]>+”5H(q):0'

By using Lemma 2.3, (53), and the fact that z = |Z[¥, we can solve the KKT system
(52) to obtain the following two lemmas.

LEMMA 4.1. Assume that (u,v) € R™™? x RP is given, where (e, u)+ |v]|q) > 0.
Then, (§,z,\) € R™ P xRP xRy solves the KKT system (52) with Z; = 0 if and only
if (9,%,flag) = Sy(u,|v[¥, 97, qo, 8,1) with £lag = 1 for some integer Gy satisfying
0<q <qg-—1.

LEMMA 4.2. Assume that (u,v) € R™™P x RP is given, where (e, u)+ |[v]| g > 0.
Then, (§,z,A) € R™™P xRP xR solves the KKT system (52) with Z4 > 0 if and only
if (7, 2, flag) = Sa(u, |v|¥, 97,97, o, @1, 5, 1) with flag = 1 for some integers Go and
q1 satisfying 0 < go <g—1and ¢ < q < p.

By combining Lemmas 4.1 and 4.2, we have the following algorithm for comput-
ing the projector over D; and the following proposition for justifying the proposed
algorithm.
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ALGORITHM 2. Computing Ip, (u,v).

Step 0 (Preprocessing). If (e, u) + ||[v][(q) < 0, output Ilp, (u,v) = (u,v), and stop.
Otherwise, sort |v| to obtain |v|*, precompute 5 by (49), evaluate v~ and o+
by (50), set go = q — 1, and go to Step 1.

Step 1 (Searching for the case that zZ, = 0). Call Subroutine 1 with (g, z,flag) =
S3(u, [v|¥, 97, qo,5,1). If flag = 1, go to Step 3. Otherwise, if o = 0, set
go =q—1 and q1 = q, and go to Step 2; if qo > 0, replace qo by qo — 1, and
repeat Step 1.

Step 2 (Searching for the case that z, > 0). Call Subroutine 2 with (g, z,flag) =
Sa(u, [v|¥, 97,07, qo,q1,5,1). If flag = 1, go to Step 3. Otherwise, if g1 < p,
replace ¢1 by q1 + 1, and repeat Step 2; if gqo > 0 and q1 = p, replace qo by
qo — 1, set ¢1 = q, and repeat Step 2.

Step 3. Output Ilp, (u,v) = (¥, sgn(v) o Z,,-1) and stop.

PROPOSITION 4.2. Assume that (u,v) € R™™P x RP is given. Then the metric
projection Ilp, (u,v) of (u,v) onto D1 can be computed by Algorithm 2. Moreover, the
computational cost of Algorithm 2 is O(plogp + q(p — ¢+ 1) + m), where the initial
sorting cost is O(plog p), the searching cost is O(q(p—q+1)), and the final evaluation
cost is O(m).

4.3.2. Projection over D,. For any given (u,v) € R™ P xRP, IIp, (u,v) is the
unique optimal solution to the following convex optimization problem:

. 1
min g(Hy —ul® + ||z = v]|*)

(54)
st. (e, y) +s(2) <0.
Let 72 be a permutation of {1,...,p} such that v* = v,,, i.e., vj =Uny), i =1,...,p,
and let 3! be the inverse of 5. Denote vé = 400 and U;’H := —00. Define § € RPH!
by
J
(55) S0:=0, §:=> vy, j=1....p.

Let o~ and o7 be two tuples of length ¢ 4+ 1 and p — g + 2 such that

(56) o+ A

= S S
vy = +00, v, =v;,1=1,...,q,
Uppq 1= —00, 0; =v7,1=¢q,...,D.

Then by using Lemma 2.4, one can equivalently reformulate problem (54) as

. 1
min L (ly—ul? + 12— ')
st. (e, y) +5(2) <0

(57)

in the sense that (7,Z) € R™ P x RP solves problem (57) (note that z = z* in this
case) if and only if (g, Z,,-1) solves problem (54). The KKT conditions for (57) are
given as follows:

O=y—u+de,
(58) 0=z—vt+ A for some p1 € dsy)(2)
0< (={e,v) —s(q(2) LA=0,
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where A is the corresponding Lagrange multiplier. Note that the constraint of problem
(57) can be equivalently replaced by finitely many linear constraints. Then by using
[35, Corollary 28.3.1] and the fact that problem (57) has a unique solution, we know
that the KKT system (58) has a unique solution (¢, 2, ) and (¢, 2) is also the unique
optimal solution to problem (57). If (e, u) + s(4)(v) < 0, then (¥, 2, A) = (u,v",0).
Otherwise, i.e., if (e, u) + s(4)(v) > 0, we have that

(59) A>0 and (e, §) +5.4(2) =0.

By solving the KKT system (58) with Lemma 2.2, (59), and the fact that z = z}, we

obtain the following lemma.

LEMMA 4.3. Let (u,v) € R™7P x RP be given, where (e, u) + s(q)(v) > 0. Then,
(7,2z,A) € R™P x RP x Ry solves the KKT system (58) if and only if (§,z,flag) =
So(u, v+, 97,0%, o, q1, 8,1) with £lag = 1 for some integers Go and q, satisfying 0 <
do<g—1landqg<q <p.

According to Lemma 4.3, we propose the following algorithm for computing the
projector over Ds. This algorithm and its low computational cost are justified in the
next proposition.

ALGORITHM 3. Computing Ip, (u,v).

Step 0 (Preprocessing). If (e, u) + 5()(v) <0, output Ilp,(u,v) = (u,v), and stop.
Otherwise, sort v to obtain v*, precompute § by (55), evaluate v~ and v+ by
(56), set go =q—1 and ¢1 = q, and go to Step 1.

Step 1 (Searching). Call Subroutine 2 with (7,2, flag) = S4(u,v*, 97,97, qo,q1,
5,1). If flag = 1, go to Step 2. Otherwise, if g1 < p, replace 1 by ¢1 + 1,
and repeat Step 1; if qo > 0 and q1 = p, replace qo by qo — 1, set g1 = q, and
repeat Step 1.

Step 2. Output Ilp, (u,v) = (¥, Zr,—1), and stop.

PROPOSITION 4.3. Assume that (u,v) € R™™P x RP is given. Then the metric
projection Ilp, (u,v) of (u,v) onto Dy can be computed by Algorithm 3. Moreover, the
computational cost of Algorithm 3 is O(plogp + q(p — ¢+ 1) +m), where the initial
sorting cost is O(plog p), the searching cost is O(q(p—q+1)), and the final evaluation
cost is O(m).

4.3.3. Projection over Ds. Let w = w' € ¢,, be given. For any given
(u,v) € R™P x RP, IIp, (u,v) is the unique optimal solution to the following convex
optimization problem:

. 1
min g(Hy —ul*+ |z = v]]?)
(60) st 2l < (w, 2),
(e, y)+(w, z) =0.

Due to the structure of w, we may assume that w = (wg, , wg,, wg, ), where {51, B2, B3}
is a partition of {1,...,p} such that w; = 1 for i € 81, w; € (0,1) for i € B, and
w; = 0 for i € B3. Let psgn(v) € RP be the vector such that psgn,(v) =1, ¢ € 81 U s,
and psgn;(v) = sgn;(v), i € B3. Let w3 be a permutation of {1,...,p} such that
(8, )Y = (Umg) 51> Vs = (Vg ), and |vp,[¥ = |(vms)s], and let 3~ be the inverse
of m3. Let 0 := (psgn(v) o U)ﬂ_3, ie., v; = (psgn(v) o U)ﬂ_3(i), i =1,...,p. Denote
¥ := 400 and ¥pt1 := 0. Define § € RPH! by

(61) S0:=0, 8= 0, j=1,...,p.
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Let o~ and o7 be two tuples of length ¢ 4+ 1 and p — g + 2 such that

(62)
Ug =400, 17‘?31‘_‘_1:17; =—00, U, =0;,1=1,...,q, 1#|5|+1andgq,
6;:17‘—21‘+|52| ::+OO, 17;_-!,-1 ::05 17:’_ ::ﬁiv i:qv"wpv Z%qa’nd |Bl|+|62|

Then by using Lemma 2.4, Lemma 2.6, and the assumption that w = w* € ®p,q, ONE
can equivalently reformulate problem (60) as

min 2 (ly — ul® + |z~ 9]]?)
St oz >zg, i=1,...,|5],
(63) zi=zq, 1= ||+ 1,... [Bi] +|Ba], i #q,
zi < zg, i= ||+ 82| +1,...,p,
zp >0, (e, y)+(w, 2z) =0

in the sense that (i, 2) € R™P x RP solves problem (63) (note that z = |Z|* in this
case) if and only if (g, psgn(v) o 2773_1) solves problem (60). Note that |81 < ¢ <
|81] + 82|, and q = |B1|+|B2] if and only if ¢ = |B1], i.e., B2 = 0. The KKT conditions
for (63) have the following form:

0=y —u+ de,
q—1 _ P '
Ozz—f)—z&(el—eq)— Z &i(e? —e€') — &eP + Aw,
i=1 i=q+1

Zi:Zq, Z:|Bl|+1av|ﬁl|+|62|a Z#Qa
OS(Zq_z’L)J-fZ>07 Z:|ﬁ1|+|62|+157p5

0<z,1&>0, (e,y)+(w,z) =0,

where A € R and § = (&,&1,...,84-1,8g+1,---, &) € RP are the corresponding La-
grange multipliers, and e* € RP, i = 1,...,p, is the ith standard basis whose entries
are all 0 except its ith entry, which is 1. Since problem (63) has only finitely many
linear constraints, by using [35, Corollary 28.3.1] and the fact that the optimal so-
lution to problem (63) is unique, we know that the KKT system (64) has a unique
solution (7,%,£,\) and (7, Z) is the unique optimal solution to problem (63). Then
by exploiting the structure of w and z, we can solve the KKT system (64) to obtain
the following two lemmas.

LEMMA 4.4. Assume that (u,v) € R™™P x RP is given. Then, (4,%,&,N)
R™PxRP xRP xR solves the KK T system (64) with Z, = 0 if and only if (3, Z, £1ag)
S1(u, 9,97, do, 8,0) with flag = 1 for some integer Gy satisfying 0 < go < min{q —
1) |ﬁ1 |}

LEMMA 4.5. Assume that (u,v) € R™™P x RP is given. Then, (4,%,&,N)
R™ P xRPxRP xR solves the KK T system (64) with Z, > 0 if and only if (g, Z, £1lag)
So(9,07,9%, qo, q1, 3,0) with £lag = 1 for some integers qo and q; satisfying 0 < o
min{q — 1, |51|} and max{q, |B1| + [B2]} < @1 < p.

By combining Lemmas 4.4 and 4.5, we have the following algorithm for comput-
ing the projector over D3 and the following proposition for justifying the proposed
algorithm.

I m

IAN I m
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ALGORITHM 4. Computing IIp, (u,v) for the case that (eg, w) = g¢.

Step 0 (Preprocessing). Calculate © = (psgn(v)ov) iy precompute § by (61), evaluate
07 and v by (62), set go = min{q — 1,|B1|}, and go to Step 1.

Step 1 (Searching for the case that zZ, = 0). Call Subroutine 1 with (g, z,flag) =
Ss3(u, 0,07, 490,8,0). If flag = 1, go to Step 3. Otherwise, if g0 = 0, set
qo = mln{q - 17|61|} and q1 = IIlELX{q, |Bl| + |ﬁ2|}7 and go to Step 27' Zf
qo > 0, replace qo by qo — 1, and repeat Step 1.

Step 2 (Searching for the case that z, > 0). Call Subroutine 2 with (g, z,flag) =
Sa(u, 9,097,097, qo,q1,5,0). If flag = 1, go to Step 3. Otherwise, if g1 < p,
replace ¢1 by q1 + 1, and repeat Step 2; if gqo > 0 and q1 = p, replace qo by
qo — 1, set g1 = max{q, |B1| + |B2|}, and repeat Step 2.

Step 3. Output Ilp, (u,v) = (7, psgn(v) o Z,,-1), and stop.

PROPOSITION 4.4. Let (u,v) € R™™P x RP be given. Then the metric projection
IIp, (u,v) of (u,v) onto D3 can be computed by Algorithm 4. Moreover, the computa-
tional cost of Algorithm 4 is O(|f1]log |B1]+ |P3]log| B3|+ q(p— g+ 1) +m), where the
ingtial sorting cost is O(|f1]log |B1]+|83|1log|Bs]), the searching cost is O(q(p—q+1)),
and the final evaluation cost is O(m).

4.3.4. Projection over D4. Let w = w' € ¢,, be given. For any given
(u,v) € R™™P x RP, TIp, (u,v) is the unique optimal solution to the following convex
optimization problem:

min 2 (ly— ul? + 12— o)
(65) st sg(z) < (w, 2),
() + (w, 2) = 0.

Due to the structure of w, we may assume that w = (wg, , wg,, wg, ), where {31, B2, B3}
is a partition of {1,...,p} such that w; = 1 for ¢ € 81, w; € (0,1) for i € Bo2, and
w; = 0 for i € B3. Let m4 be a permutation of {1,...,p} such that (vs,)* = (vr,)s,,
Vg, = (Ury)ps, and (v ) = (vr,)gs, and let w41 be the inverse of 4. Let © := vy,
i.e., U; = Ur, (), = 1,...,p. Denote 9 := +00 and 9,41 := —0o. Define s € RPH! by

(66) S0:=0, &= i, j=1,...,p.

Let o~ and T be two tuples of length ¢ + 1 and p — g + 2 such that
(67)
{ Vg = —l—oo,f)';l'H =10, = —00, 0 =10, =1,...,¢,9# |f1] + 1 and ¢,

of = ﬁ\—g1\+|ﬁ2| = —|—oo,17;+1 = —00, O :=10;,i=gq,...,p,i# qand |B1| + |Bal.
Then by using Lemma 2.4, Lemma 2.5, and the structure of w, one can equivalently
reformulate problem (65) as

min 2 (ly — ull® + 12— o)
St oz >zg, i=1,...,|5],
(68) zi=zq, i= Bl + 1, 1B+ |Bal, i £ g,
2 < zq, i =B+ B2l +1,...,p,
(e, y) + (w, 2) =0
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in the sense that (i,2) € R™P x RP solves problem (68) (note that z = z* in this
case) if and only if (g, 271_4—1) solves problem (65). Note that |81] < q < |B1]| + 82|, and
q = |B1| + |B2| if and only if ¢ = |34], i.e., B2 = 0. The KKT conditions for (68) are
given as follows:

0=y —u+ e,
q—1 . P ‘
O:z—ﬁ—zg(ez—eq)— Z &i(e?—e')+ Aw,
i=1 i=q+1

OS(Zl_Zq)J—ngO7zeﬂla
OS(Zq_Zl)J—ngO7zEB37
Zi = Zq, iEBZ\{q}v <e,y>—|—<w,z>:0,

where A € R and &€ = (&1,...,&-1,8441,---,&)T € RP™! are the corresponding

Lagrange multipliers, and e* € RP, 4 = 1,...,p, is the ith standard basis. Since

problem (68) has only finitely many linear constraints, by using [35, Corollary 28.3.1]

and the fact that problem (68) has a unique solution, we know that the KKT system

(69) has a unique solution (7, z,&,\) and (g, 2) is the unique optimal solution to

problem (68). Then by taking the structure of w and Z into account, we can solve the

KKT system (69) to obtain the following lemma.

LEMMA 4.6. Let (u,v) € R™7P x R? be given. Then, (7,%,,\) € R™™P x RP x
RP~1 x R solves the KKT system (69) if and only if (y,z,flag) = Sao(u, 0,0 ,07,
do, @1, 8,0) with £lag = 1 for some integers Go and q1 satisfying 0 < Go < min{q —
L |A1l} and max{q,|B1] + |B2|} < @1 < p.

According to Lemma 4.6, we propose the following algorithm for computing the
projector over Dy. This algorithm and its low computational cost are justified in the
next proposition.

ALGORITHM 5. Computing Ip, (u,v).

Step 0 (Preprocessing). Calculate © = v,,, precompute § by (66), evaluate 0~ and
5+ by (67), set go = min{g — 1,|8:[} and g1 = max{g, 8] + |8}, and go to
Step 1.

Step 1 (Searching). Call Subroutine 2 with (y,z,flag) = S4(n,u,d,0~,0%,qo, q1,
5,0). If flag = 1, go to Step 2. Otherwise, if g1 < p, replace q1 by q1 + 1,
and repeat Step 1; if qo > 0 and 1 = p, replace qo by qo — 1, set g1 =
max{q, | 51| + |B2|}, and repeat Step 1.

Step 2. Output Ilp, (u,v) = (¥, Zr,—1), and stop.

PROPOSITION 4.5. Let (u,v) € R™™P x RP be given. Then the metric projection
IIp, (u,v) of (u,v) onto Dy can be computed by Algorithm 5. Moreover, the computa-
tional cost of Algorithm 5 is O(|B1]log|81]+ 83| log|Bs|+ q(p — ¢+ 1) +m), where the
initial sorting cost is O(|B1]log|B1|+|83]log |Bs|), the searching cost is O(q(p—q+1)),
and the final evaluation cost is O(m).

5. Conclusions. In this paper, we have conducted a thorough study on the
first and second order properties of the Moreau—Yosida regularization of the vector
k-norm function and the indicator function of the vector k-norm ball. This research
constitutes the backbone for designing efficient algorithms to solve MOPs involving
the Ky Fan k-norm and also for studying the sensitivity and stability analysis of these
problems. The work in this paper can be extended to many other situations. Below
we briefly list some of them.

(i) All the corresponding properties for the metric projector over the vector k-
norm epigraph cone can be obtained in a similar way to those for the metric projector
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over the vector k-norm ball. One may refer to the first version of this paper [42] for
more details.

(ii) Consider the function defined by g(z) := s(;(z) for z € R". It is easy to verify
that the Fenchel conjugate g* is the indicator function of ¢, ;. Then, the similar
results on the proximal mappings associated with the function g and the indicator
functions of its level sets can be derived in a similar but simpler way to those obtained
in this paper.

(ili) Define g(z) := ||z[[(x) + drr (2) for = € R™. Simple calculations show that
the Fenchel conjugate g* is the indicator function of {z € R" | [|zy[|(x)~ < 1}, where
zy = llgn (2). Consequently, the Moreau-Yosida regularization of the function g
and the indicator functions of its level sets at any given x € R™ can be obtained
by considering the counterparts of the related functions defined in Rl?l at z,, where
a:={i€ [n]|z; >0}

(iv) Consider the weighted vector k-norm function defined by Hz||fk) = Zle wz|z|li

for z € R™, where w = (w1, ...,ws) € R¥, satisfying wy > -+ > wy > 0. This function
is indeed a norm, and its dual norm is given by
z z 2| (e z
2], = max [EIIE) ’ 121l (2) 20l k=) ’ 121l (n) ’
w1 Wi + w2 Wit T Wp—1 W Wy

which can be readily derived from linear programming theory. In general, the proximal
mappings associated with the weighted vector k-norm related functions are much
more complicated, and further study will be needed. However, for the special case
that wy =+ = wk_1 > wg > 0, it is not difficult to see that these proximal mappings
have similar properties to those obtained in this paper. Also note that for this simple
case, the weighted vector k-norm and its dual norm were also considered in robust
optimization [4]. Furthermore, it is worth mentioning that the more general setting,
where the standard inner product between two vectors x € R™ and y € R™ is replaced
by the weighted inner product in the sense that (x,y)g := (x, Qy) for some symmetric
and positive definite matrix @), also deserves further study.
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