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Abstract The nuclear norm minimization problem is to find a matrix with the
minimum nuclear norm subject to linear and second order cone constraints. Such a
problem often arises from the convex relaxation of a rank minimization problem with
noisy data, and arises in many fields of engineering and science. In this paper, we study
inexact proximal point algorithms in the primal, dual and primal-dual forms for solving
the nuclear norm minimization with linear equality and second order cone constraints.
We design efficient implementations of these algorithms and present comprehensive
convergence results. In particular, we investigate the performance of our proposed
algorithms in which the inner sub-problems are approximately solved by the gradient
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projection method or the accelerated proximal gradient method. Our numerical results
for solving randomly generated matrix completion problems and real matrix comple-
tion problems show that our algorithms perform favorably in comparison to several
recently proposed state-of-the-art algorithms. Interestingly, our proposed algorithms
are connected with other algorithms that have been studied in the literature.

Keywords Nuclear norm minimization · Proximal point method ·
Rank minimization · Gradient projection method · Accelerated proximal gradient
method

Mathematics Subject Classification (2000) 46N10 · 65K05 · 90C22 · 90C25

1 Introduction

Let �n1×n2 be the linear space of all n1 × n2 real matrices equipped with the inner
product 〈X,Y 〉 = Tr(X T Y ) and its induced norm ‖ · ‖, i.e., the Frobenius norm. Let
Sn ⊂ �n×n be the space of n × n symmetric matrices. For any X ∈ �n1×n2 , the
nuclear norm ‖X‖∗ of X is defined as the sum of its singular values and the operator
norm ‖X‖2 of X is defined as the largest singular value. Let Q := {0}m1 ×Km2 , where
the notation Km2 stands for the second order cone (or ice-cream cone, or Lorentz cone)
of dimension m2, defined by

Km2 :=
{

x = (x0; x̄) ∈ � × �m2−1 : ‖x̄‖ ≤ x0

}
. (1)

In particular, K1 is the set of nonnegative reals �+.
In this paper, we are interested in the following nuclear norm minimization (NNM)

problem with linear equality and second order cone constraints:

min f0(X) := ‖X‖∗
s.t. X ∈ FP := {X ∈ �n1×n2 : A(X) ∈ b + Q

}
, (2)

where the linear transformation A : �n1×n2 → �m and the vector b ∈ �m are given.
Here, m = m1 + m2. We should emphasize that for the ease of presentation, we have
considered the cone Q = {0}m1 × Km2 . But the theory and algorithms developed
in this paper can easily be extended to the more general cone which has the form:
Q = {0}m1 × Kp1 × · · · × Kpt , where for each 1 ≤ j ≤ t, Kp j is a second order
cone. In particular, since K1 = �+, the case of linear inequality constraints of the form
A(X) ≥ b also fits the analysis in our framework by considering Q = �+ ×· · ·×�+.

The NNM problem (2) often arises from the convex relaxation of a rank minimi-
zation problem with noisy data, and arises in many fields of engineering and science,
see, e.g., [1,3,17,18,21,27]. The rank minimization problem refers to finding a matrix
X ∈ �n1×n2 to minimize rank(X) subject to linear constraints, i.e.,

min
{
rank(X) : A(X) = b, X ∈ �n1×n2

}
. (3)
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Problem (3) is NP-hard in general and it is computationally hard to directly solve
it in practice. Recent theoretical results (see, e.g., [3,14,40]), which were built upon
recent breakthroughs in the emerging field of compressed sensing or compressive sam-
pling pioneered by Candès and Tao [11] and Donoho [15], showed that under certain
conditions, the rank minimization problem (3) may be solved via its tightest convex
approximation:

min
{‖X‖∗ : ‖b − A(X)‖ ≤ δ, X ∈ �n1×n2

}
, (4)

where δ > 0 estimates the uncertainty about the observation b if it is contaminated
with noise. It can be readily seen that problem (4) is a special application of problem
(2), see, e.g., [2]. A frequent alternative to (4) is to consider solving the following
nuclear norm regularized linear least squares problem (see, e.g., [31,45]):

min

{
1

2
‖A(X)− b‖2 + μ‖X‖∗ : X ∈ �n1×n2

}
, (5)

where μ > 0 is a given parameter. For problems where a reasonable estimation of δ is
possible, problem (4) is often preferred over problem (5). By checking the optimality
conditions for problems (4) and (5), we can easily see that these two problems are
equivalent to each other if δ and μ are chosen suitably. But, in in general it is difficult
to determine δ a priori given μ or vice versa without knowing the solutions to prob-
lems (4) and (5). Therefore, it is more natural to consider solving (4) directly if δ is
known, rather than solving (5). To the best of our knowledge, however, there has been
no work developing algorithms for directly solving (4) when δ may be known. This is
the main motivation of the paper to present the results concerning the proximal point
algorithms for solving problem (2), which includes problem (4) as a special case.

The NNM problem (2) can equivalently be reformulated as the following semidef-
inite programming (SDP) problem (see, e.g., [28,40]):

min
{
(Tr(W1)+ Tr(W2))/2 : A(X) ∈ b + Q,

[
W1, X; X T ,W2

]
� 0
}
, (6)

whose dual is:

max
{

bT y : y ∈ Q∗,
[

In1 ,A∗(y);A∗(y)T , In2

]
� 0
}
, (7)

where X ∈ �n1×n2 ,W1 ∈ Sn1 ,W2 ∈ Sn2 , Q∗ (:= �m1 × Km2) is the dual cone of
Q, and A∗ denotes the adjoint of A. Here, the notation “� 0” means positive semidef-
initeness. This suggests that one can use well developed SDP solvers based on interior
point methods, such as SeDuMi [44] and SDPT3 [47], to solve (6) or (7) and therefore,
solve (2), see, e.g., [14,40] for this approach in solving (2) with only linear equality
constraints. However, these SDP solvers usually cannot solve (6) or (7) when both n1
and n2 are much larger than 100 or m is larger than 5,000 since they need to solve
large systems of linear equations to compute Newton directions.
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Due to the difficulties in solving the SDP reformulation (6) or (7), several methods
have been proposed to solve (2) directly with only linear equality constraints. In [40],
Recht, Fazel and Parrilo considered the projected subgradient method. However, the
convergence of the projected subgradient method in [40] is not known since problem
(2) is a nonsmooth problem. Recht, Fazel and Parrilo [40] also made use of the low
rank factorization technique introduced by Burer and Monteiro [8,9] to solve (2) with
only linear equality constraints. The potential difficulty of this method is that the low
rank factorization formulation is no longer convex and the rank of the optimal matrix
is generally unknown a priori. Recently, Cai, Candès and Shen [10] introduced the
singular value thresholding (SVT) algorithm to solve a regularized version of (2), i.e.,

min

{
λ‖X‖∗ + 1

2
‖X‖2 : A(X) = b, X ∈ �n1×n2

}
, (8)

where λ > 0 is a given parameter.1 The SVT algorithm is actually a gradient method
applied to the dual problem of (8).

In this paper, we develop three proximal point algorithms for solving (2) in the
primal, dual and primal-dual forms, all of which are based on the classic ideas of the
general proximal point method studied in [32,42]. In addition, we show that some
of the recently proposed fast methods for solving (2) are actually either truncated or
special cases of these three algorithms.

The first algorithm for solving (2), namely, the primal proximal point algorithm
(PPA), is the application of the general proximal point method to the primal problem
(2). Given a sequence of positive parameters λk such that

0 < λk ↑ λ∞ ≤ +∞ (9)

and an initial point X0 ∈ �n1×n2 , the primal PPA for solving (2) generates a sequence
{Xk} by the following scheme:

Xk+1 ≈ arg min
X∈FP

{
f0(X)+ 1

2λk

∥∥∥X − Xk
∥∥∥

2
}
. (10)

Here, (9) means that {λk} is a nondecreasing sequence of positive parameters that
converges to λ∞, which is allowed to take the +∞ value.

The second algorithm, namely, the dual PPA, is the application of the general proxi-
mal point method to the dual problem of (2), which, as a by-product, yields an optimal
solution to problem (2). The dual problem associated with (2) is as follows:

max
y∈Q∗ g0(y), (11)

1 The SVT algorithm has been applied to the corresponding regularized counterpart of problem (4) with
noise in the revised version of [10].
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where g0 is the concave function defined by

g0(y) = inf
{

f0(X)+ 〈y, b − A(X)〉 : X ∈ �n1×n2
}
.

Given a sequence {λk} satisfying (9) and an initial point y0 ∈ Q∗, the sequence {yk} ⊂
Q∗ generated by the dual PPA is as follows:

yk+1 ≈ argmax
y∈Q∗

{
g0(y)− 1

2λk

∥∥∥y − yk
∥∥∥

2
}
. (12)

The third algorithm, namely, the primal-dual PPA, is the application of the general
proximal point method to the monotone operator corresponding to the convex-concave
Lagrangian function, which generates a sequence

{(
Xk, yk

)}
by taking

(
Xk+1, yk+1

)
to be an approximate solution to the following problem:

min
X∈�n1×n2

max
y∈Q∗

{
f0(X)+ 〈y, b − A(X)〉 + 1

2λk

∥∥∥X − Xk
∥∥∥

2 − 1

2λk

∥∥∥y − yk
∥∥∥

2
}
,

(13)

where a sequence {λk} satisfying (9) and an initial point (X0, y0) ∈ �n1×n2 × Q∗ are
given.

A key issue in the PPAs mentioned above for solving (2) is how to solve the regu-
larized problems (10, 12) and (13) efficiently. Based on the duality theory for convex
programming, we develop the Moreau-Yosida regularization of the functions in (10)
and (12) (see Sect. 2), which is important for the realizations of the general proxi-
mal point method for maximal monotone operators. It turns out that these algorithms
require solving an inner sub-problem per iteration, which is a nonsmooth unconstrained
convex optimization problem or a smooth convex optimization problem with simple
constraints (see Sect. 3). Another aspect of the PPAs for solving (2) is how to formulate
an implementable stopping criterion for approximately solving the inner sub-problems
that still guarantees the global convergence and the rate of local convergence of these
algorithms. In [42], Rockafellar introduced two criteria for inclusion problems with
maximal monotone operators (see (39a) and (39b)). We will put these criteria in con-
crete and implementable forms in the context of problem (2) (see Remarks 3.1 and
3.4), and present comprehensive convergence results.

Besides the theoretic results on the PPAs for solving (2), we also investigate the
performance of the aforementioned algorithms in which the inner sub-problems are
solved by either the gradient projection method or the accelerated proximal gradient
method. We design efficient implementations for these algorithms and present numer-
ical results for solving randomly generated matrix completion problems and matrix
completion problems arising from real applications. Our numerical results show that
our algorithms perform favorably in comparison to recently proposed state-of-the-art
algorithms in the literature including the SVT algorithm [10], the fixed point algo-
rithm and the Bregman iterative algorithm [31], and an accelerated proximal gradient
algorithm [45].
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Our contribution in this paper is three fold. First, we provide a proximal point
algorithmic framework for the NNM problem with complete convergence analysis.
Our algorithms, which can handle conic constraints as well as linear equality con-
straints, are the applications of the general proximal point method to the primal,
dual and primal-dual forms, respectively. We establish the connections between our
algorithms and other algorithms that have been studied in the literature recently. In
particular, the SVT algorithm [10] is just one gradient step of the primal PPA for solv-
ing the NNM problem (see Remark 3.2), and the Bregman iterative algorithm [31]
is a special case of the dual PPA with a fixed parameter at each iteration for solving
the NNM problem without second order cone constraints (see Remark 3.5). Second,
we introduce checkable stopping criteria applied to our algorithms for solving (2).
An important feature of the proposed stopping criteria is that they can be efficiently
implemented in practice. These stopping criteria are extendable to more general cases.
Third, our algorithms are proposed to solve the NNM problem with second order cone
constraints, which are more applicable to practical problems with noisy data. Con-
sequently, our algorithms are often able to obtain a more accurate solution when the
practical problem is contaminated with noise.

The rest of this paper is organized as follows. In Sect. 2, we review and develop
some results related to the Moreau-Yosida regularization for subsequent discussions.
In Sect. 3, we propose inexact PPAs for solving (2) in the primal, dual, and primal-dual
forms and present comprehensive convergence results for our proposed algorithms.
In Sect. 4, we discuss implementation issues of the PPAs, including the first-order
methods applied to the inner sub-problems of the PPAs and the efficient computation
of singular value decompositions. Numerical results for large matrix completion prob-
lems including the randomly generated examples and the real data from the Netflix
Prize Contest are reported in Sect. 5. We make final conclusions and list possible
directions for future research in Sect. 6.

2 The Moreau-Yosida regularization

For the sake of subsequent analysis, in this section we review and develop some results
related to the Moreau-Yosida regularization.

Assume that X is a finite-dimensional real Hilbert space. Let φ : X → (−∞,+∞]
be a proper, lower semicontinuous, convex function (cf. [41]). We wish to solve the
following (possibly nondifferentiable) convex program:

min
x∈X

φ(x). (14)

For a given parameter λ > 0, we denote by �λ the Moreau [33]-Yosida [48] regular-
ization of φ associated with λ, which is defined by

�λ(x) = min
z∈X

{
φ(z)+ 1

2λ
‖z − x‖2

}
, x ∈ X . (15)
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Let pλ(x) be the unique minimizer to (15), i.e.,

pλ(x) = arg min
z∈X

{
φ(z)+ 1

2λ
‖z − x‖2

}
. (16)

Then pλ is called the proximal point mapping associated with φ.
We summarize below some well-known properties (see, e.g., [23]) of �λ and pλ

without proofs. For additional properties, see, e.g., [23,25].

Proposition 2.1 Let�λ and pλ be defined as in (15) and (16), respectively. Then, the
following properties hold for any λ > 0:

1. �λ is a continuously differentiable convex function defined on X with its gradient
being given by

∇�λ(x) = 1

λ
(x − pλ(x)) ∈ ∂φ(pλ(x)), (17)

where ∂φ is the subdifferential mapping of φ (cf. [41]). Moreover, ∇�λ(·) is
globally Lipschitz continuous with modulus 1/λ.

2. For any x, x ′ ∈ X , one has

〈
pλ(x)− pλ

(
x ′) , x − x ′〉 ≥ ‖pλ(x)− pλ

(
x ′) ‖2.

It follows that pλ(·) is globally Lipschitz continuous with modulus 1.
3. The set of minimizers of (14) is exactly the set of minimizers of

min
x∈X

�λ(x),

and x∗ minimizes φ if and only if ∇�λ(x∗) = 0 or equivalently pλ(x∗) = x∗.

The following two examples on the Moreau-Yosida regularization are very useful
for our subsequent development.

Example 2.1 (The metric projection onto closed convex sets) Let C ⊆ X be a closed
convex set. Then, the metric projection of x ∈ X onto C, denoted by �C(x), is the
unique minimizer of the following convex program in the variable u ∈ X :

min
u∈X

{
χC(u)+ 1

2
‖u − x‖2

}
,

where χC is the indicator function over C. Note that�C(·) is exactly the proximal point
mapping associated with χC(·). In particular,�Km2 (·) is the metric projector onto the
second order cone Km2 . For any x = (x0; x̄) ∈ �×�m2−1, by a direct calculation we
have (cf. [16])

�Km2 (x) =

⎧⎪⎪⎨
⎪⎪⎩

1
2

(
1 + x0‖x̄‖

)
(‖x̄‖; x̄) if |x0| < ‖x̄‖,

(x0; x̄) if ‖x̄‖ ≤ x0,

0 if ‖x̄‖ ≤ −x0.
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Example 2.2 (The proximal mapping of the nuclear norm function) Let Pλ(·) be the
proximal point mapping associated with f0(·). That is, for any X, Pλ(X) is the unique
minimizer to

Sλ(X) := min
Y∈�n1×n2

{
f0(Y )+ 1

2λ
‖Y − X‖2

}
. (18)

Then, by Proposition 2.1, we know that Sλ(X) is continuously differentiable with

∇Sλ(X) = 1

λ
(X − Pλ(X))

and

〈
Pλ(X)− Pλ(X ′), X − X ′〉 ≥ ∥∥Pλ(X)− Pλ(X ′)

∥∥2
, ∀X, X ′ ∈ �n1×n2 ,

and thus Pλ(·) is globally Lispchitz continuous with modulus 1.
For any given X ∈ �n1×n2 , Pλ(X) admits an analytical solution. In fact, assume

that X is of rank r and has the following singular value decomposition (SVD):

X = U	V T , 	 = diag
({σi }r

i=1

)
, (19)

where U ∈ �n1×r and V ∈ �n2×r have orthonormal columns, respectively, and the
positive singular values σi are arranged in descending order. Then, from (18), one can
easily derive (see, e.g., [10,31])2 that

Pλ(X) = Udiag(max{σi − λ, 0})V T, (20)

and hence

Sλ(X) = 1

2λ

(
‖X‖2 − ‖Pλ(X)‖2

)
. (21)

In order to develop the PPAs for solving (2), we need the following related concepts.
Let l : �n1×n2×�m → �be the ordinary Lagrangian function for (2) in the extended

form:

l(X, y) :=
{

f0(X)+ 〈y, b − A(X)〉 if y ∈ Q∗,
−∞ if y /∈ Q∗. (22)

The essential objective function in (2) is

f (X) := sup
y∈�m

l(X, y) =
{

f0(X) if X ∈ FP ,

+∞ if X /∈ FP ,
(23)

2 Donald Goldfarb first reported the formula (20) at the “Foundations of Computational Mathematics
Conference’08” held at the City University of Hong Kong, Hong Kong, China, June 2008.
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while the essential objective function in (11) is

g(y) := inf
X∈�n1×n2

l(X, y) =
{

inf X { f0(X)+ 〈y, b − A(X)〉} if y ∈ Q∗,
−∞ if y /∈ Q∗. (24)

In the following, we calculate the Moreau-Yosida regularizations of f and g, which
play an important role in the analysis of the PPAs for solving (2).

We first calculate the Moreau-Yosida regularization of f . Let Fλ be the Moreau-
Yosida regularization of f in (23) associated with λ, i.e.,

Fλ(X) = min
Y∈�n1×n2

{
f (Y )+ 1

2λ
‖Y − X‖2

}
. (25)

Then, from (23), we obtain that

Fλ(X) = min
Y∈�n1×n2

sup
y∈�m

{
l(Y, y)+ 1

2λ
‖Y − X‖2

}

= sup
y∈�m

min
Y∈�n1×n2

{
l(Y, y)+ 1

2λ
‖Y − X‖2

}
(26)

= sup
y∈Q∗

min
Y∈�n1×n2

{
‖Y‖∗ + 〈y, b − A(Y )〉 + 1

2λ
‖Y − X‖2

}
,

where the interchange of minY and supy follows from the growth properties in Y [41,
Theorem 37.3] and the third equality holds from (22). Note that

�λ(y; X) := min
Y∈�n1×n2

{
‖Y‖∗ + 〈y, b − A(Y )〉 + 1

2λ
‖Y − X‖2

}

= 〈b, y〉 + 1

2λ
‖X‖2 − 1

2λ

∥∥(X + λA∗(y)
)∥∥2

+ min
Y

{
‖Y‖∗ + 1

2λ

∥∥Y − (X + λA∗(y)
)∥∥2
}

= 〈b, y〉 + 1

2λ
‖X‖2 − 1

2λ

∥∥Pλ
[
X + λA∗(y)

]∥∥2
. (27)

Thus

Fλ(X) = sup
y∈Q∗

�λ(y; X). (28)

By the Saddle Point Theorem (see, e.g., [41, Theorem 28.3]), combining (26) with
Example 2.2, we know that Pλ[X + λA∗(yλ(X))] is the unique solution to (25) for
any yλ(X) such that

yλ(X) ∈ arg sup
y∈Q∗

�λ(y; X), (29)
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where �λ(y; X) is defined as in (27). Consequently, we have that

Fλ(X) = �λ(yλ(X); X) (30)

and

∇Fλ(X) = 1

λ

(
X − Pλ

[
X + λA∗(yλ(X))

])
. (31)

Next, we turn to the Moreau-Yosida regularization of g. Let Gλ be the Moreau-
Yosida regularization of g associated with λ, i.e.,

Gλ(y) = max
z∈�m

{
g(z)− 1

2λ
‖z − y‖2

}
. (32)

Then, from (24), we obtain that

Gλ(y) = max
z∈Q∗ inf

X∈�n1×n2

{
‖X‖∗ + 〈z, b − A(X)〉 − 1

2λ
‖z − y‖2

}

= inf
X∈�n1×n2

max
z∈Q∗

{
‖X‖∗ + 〈z, b − A(X)〉 − 1

2λ
‖z − y‖2

}

= inf
X∈�n1×n2

{
‖X‖∗ + 1

2λ

(
‖�Q∗ [y + λ(b − A(X))]‖2 − ‖y‖2

)}
, (33)

where the interchange of maxz and inf X again follows from the growth properties in z
[41, Theorem 37.3] and the third equality is due to Example 2.1. By the Saddle Point
Theorem again, we also know that�Q∗ [y + λ(b − A(Xλ(y)))] is the unique optimal
solution to (32) for any Xλ(y) satisfying

Xλ(y) ∈ arg inf
X∈�n1×n2

{‖X‖∗ +�λ(X; y)} , (34)

where �λ(X; y) is defined by

�λ(X; y) := 1

2λ

(
‖�Q∗ [y + λ(b − A(X))]‖2 − ‖y‖2

)
. (35)

Consequently, we have that

Gλ(y) = ‖Xλ(y)‖∗ +�λ(Xλ(y); y) (36)

and

∇Gλ(y) = 1

λ

(
�Q∗ [y + λ(b − A(Xλ(y)))] − y

)
, (37)

where Xλ(y) satisfies (34).
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3 The proximal point algorithm in three forms

In this section, we present the proximal point algorithm for solving (2) in the primal,
dual and primal-dual forms.

Our approach is based on the classic idea of the proximal point method for solving
inclusion problems with maximal monotone operators [42,43]. We briefly review it
below. Let X be a finite-dimensional real Hilbert space with inner product 〈·, ·〉 and
T : X → X be a, possibly multi-valued, maximal monotone operator. Given x0 ∈ X ,
the idea of the proximal point method for solving the inclusion problem 0 ∈ T (x) is
to solve iteratively a sequence of regularized inclusion problems:

xk+1 approximately solves 0 ∈ T (x)+ λ−1
k

(
x − xk

)
,

or equivalently,

xk+1 ≈ pλk

(
xk
)

:= (I + λkT )−1
(

xk
)
, (38)

where the given sequence {λk} satisfies (9). Two convergence criteria for (38) intro-
duced by Rockafellar [42] are as follows:

∥∥∥xk+1 − pλk

(
xk
)∥∥∥ ≤ εk, εk > 0,

∞∑
k=0

εk < ∞, (39a)

∥∥∥xk+1 − pλk

(
xk
)∥∥∥ ≤ δk‖xk+1 − xk‖, δk > 0,

∞∑
k=0

δk < ∞. (39b)

In [42], Rockafellar showed that under mild assumptions, condition (39a) ensures the
global convergence of

{
xk
}
, i.e., the sequence

{
xk
}

converges to a particular solution
x to 0 ∈ T (x), and if in addition (39b) holds and T −1 is Lipschitz continuous at the
origin, then the sequence

{
xk
}

locally converges at a linear rate whose ratio is, roughly
speaking, proportional to 1/λ∞ and in particular, if λ∞ = +∞, the convergence is
superlinear. For details on the convergence of the general proximal point method, see
[42, Theorem 1 & 2].

The proximal point algorithm in three different forms studied in this paper corre-
sponds, respectively to the one applied to the maximal monotone operators T f , Tg

and Tl , which can be defined as in Rockafellar [43] by:

⎧⎪⎨
⎪⎩

T f (X) = {Y ∈ �n1×n2 : Y ∈ ∂ f (X)
}
, X ∈ �n1×n2 ,

Tg(y) = {z ∈ �m : −z ∈ ∂g(y)} , y ∈ �m,

Tl(X, y) = {(Y, z) ∈ �n1×n2 × �m : (Y,−z) ∈ ∂l(X, y)
}
, (X, y) ∈ �n1×n2 ×�m .
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From the definition of T f , we can easily see that for any Y ∈ �n1×n2 ,

T −1
f (Y ) = arg min

X∈�n1×n2
{ f (X)− 〈Y, X〉}.

Similarly, we have that for any z ∈ �m ,

T −1
g (z) = arg max

y∈�m
{g(y)+ 〈z, y〉}

and for any (Y, z) ∈ �n1×n2 × �m ,

T −1
l (Y, z) = arg min

X∈�n1×n2
max
y∈�m

{l(X, y)− 〈Y, X〉 + 〈z, y〉}.

3.1 The primal form

In this subsection, we shall present the proximal point algorithm applied to the primal
form of the NNM problem (2).

Given X0 ∈ �n1×n2 , the exact primal PPA can be described as

Xk+1 = pλk

(
Xk
)
, (40)

where pλk

(
Xk
)

is defined by

pλk

(
Xk
)

:= (I + λkT f
)−1
(

Xk
)

= arg min
X∈�n1×n2

{
f (X)+ 1

2λk

∥∥∥X − Xk
∥∥∥

2
}

(41)

and the sequence {λk} satisfying (9) is given. It can be seen easily from (40, 41), and
(17) that

Xk+1 = Xk − λk∇Fλk

(
Xk
)
. (42)

From the computational point of view, the cost of computing the exact solution
pλk

(
Xk
)

could be prohibitive. This motivates to consider an inexact primal PPA.
Combining (31) with (29), we can introduce an inexact primal PPA to solve (2), which
has the following template:

123



An implementable proximal point algorithmic framework 411

The Primal PPA. Given a tolerance ε > 0. Input X0 ∈ �n1×n2 and λ0 > 0. Set
k := 0. Iterate:

Step 1. Find an approximate maximizer

Q∗ � yk+1 ≈ arg sup
y∈�m

{
θk(y) := �λk

(
y; Xk

)
− χQ∗(y)

}
, (43)

where �λk

(
y; Xk

)
is defined as in (27).

Step 2. Compute

Xk+1 = Pλk

[
Xk + λkA∗ (yk+1

)]
.

Step 3. If
∥∥(Xk − Xk+1

)/
λk
∥∥ ≤ ε; stop; else; update λk such that (9) holds; end.

In the primal PPA stated above, we introduce the following stopping criteria to
terminate (43):

sup θk − θk

(
yk+1

)
≤ ε2

k

2λk
, εk > 0,

∞∑
k=0

εk < ∞, (44a)

sup θk − θk

(
yk+1

)
≤ δ2

k

2λk

∥∥∥Xk+1 − Xk
∥∥∥

2
, δk > 0,

∞∑
k=0

δk < ∞, (44b)

dist
(

0, ∂θk

(
yk+1

))
≤ δ′k

∥∥∥Xk+1 − Xk
∥∥∥ , 0 ≤ δ′k → 0. (45)

It should be noted that one has

Fλk

(
Xk
)

= sup θk, θk

(
yk+1

)
= �λk

(
yk+1; Xk

)
.

Remark 3.1 Note that in the stopping criteria (44a) and (44b), the unknown value
sup θk can be replaced by any of its upper bounds converging to it. One particular choice

is to let θ̂k := ∥∥X̂ k+1
∥∥∗ + (1/2λk)

∥∥X̂ k+1 − Xk
∥∥2

, where X̂ k+1 := �FP

(
Xk+1

)
. It

follows from (25) and (26) that

θ̂k =
∥∥∥X̂ k+1

∥∥∥∗ + (1/2λk)

∥∥∥X̂ k+1 − Xk
∥∥∥

2 ≥ Fλk

(
Xk
)

= sup θk .

Consequently, the stopping criteria (44a) and (44b) can be replaced by the following
implementable conditions:

θ̂k − θk

(
yk+1

)
≤ ε2

k

2λk
, εk > 0,

∞∑
k=0

εk < ∞, (46a)

θ̂k − θk

(
yk+1

)
≤ δ2

k

2λk

∥∥∥Xk+1 − Xk
∥∥∥

2
, δk > 0,

∞∑
k=0

δk < ∞. (46b)
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We emphasize that for the matrix completion problem (see (79)), it is easy to compute
the projection �FP (·) onto the feasible set.

The following result establishes the relation between the estimates (44, 45) and (39),
which plays a key role in order to apply the convergence results in [42, Theorem 1]
and [42, Theorem 2] for the general proximal point method to the primal PPA. Our
proof closely follows the idea used in [43, Proposition 6].

Proposition 3.1 Let pλk be given as in (41), �λk be given as in (27), and Xk+1 =
Pλk

[
Xk + λkA∗ (yk+1

)]
. Then, one has

∥∥∥Xk+1 − pλk

(
Xk
)∥∥∥

2
/(2λk) ≤ Fλk

(
Xk
)

− θk

(
yk+1

)
. (47)

Proof Since

∇X�λk

(
yk+1; Xk

)
= λ−1

k

(
Xk − Xk+1

)
, (48)

we obtain from the convexity of �λ(y; X) in X that the following inequality is valid
for any Y ∈ �n1×n2 :

�λk

(
yk+1; Xk

)
+
〈
λ−1

k

(
Xk − Xk+1

)
,Y − Xk

〉

≤ �λk

(
yk+1; Y

)
≤ sup

y∈Q∗

{
�λk (y; Y )

}

= sup
y∈�m

min
X∈�n1×n2

{
l(X, y)+ 1

2λk
‖X − Y‖2

}

= min
X∈�n1×n2

sup
y∈�m

{
l(X, y)+ 1

2λk
‖X − Y‖2

}

= min
X∈�n1×n2

{
f (X)+ 1

2λk
‖X − Y‖2

}
≤ f

(
pλk

(
Xk
))

+ 1

2λk

∥∥∥pλk

(
Xk
)
−Y
∥∥∥

2
.

(49)

It follows from (30) and (25) that

sup
y∈Q∗

{
�λk

(
y; Xk

)}
= Fλk

(
Xk
)

= min
X∈�n1×n2

{
f (X)+ 1

2λk

∥∥∥X − Xk
∥∥∥

2
}

= f
(

pλk

(
Xk
))

+ 1

2λk

∥∥∥pλk

(
Xk
)

− Xk
∥∥∥

2
,
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which, together with (49) and the fact that θk
(
yk+1

) = �λk

(
yk+1; Xk

)
, implies that

Fλk

(
Xk
)

− θk

(
yk+1

)

≥
[∥∥∥pλk

(
Xk
)

− Xk
∥∥∥

2 −
∥∥∥pλk

(
Xk
)

− Y
∥∥∥

2 − 2
〈
Xk+1 − Xk,Y − Xk

〉]/
(2λk)

=
[

2
〈
pλk

(
Xk
)

− Xk+1,Y − Xk
〉
−
∥∥∥Y − Xk

∥∥∥
2
]/

(2λk). (50)

Since this holds for all Y ∈ �n1×n2 , and

∥∥∥Xk+1 − pλk

(
Xk
)∥∥∥

2 = max
Y∈�n1×n2

{
2
〈
pλk

(
Xk
)

− Xk+1,Y − Xk
〉
−
∥∥∥Y − Xk

∥∥∥
2
}
,

we can obtain the estimate (47) by taking the maximum of (50). This completes the
proof. ��

For convergence analysis, we need the following condition for the NNM problem
(2):

{ {Ai }m1
i=1 are linearly independent and ∃ X̂ ∈ �n1×n2 such that

Ai
(
X̂
) = bi , i = 1, . . . ,m1 and

(
Ai
(
X̂
)− bi

)m
i=m1+1 ∈ int (Km2) ,

(51)

where “int(Km2)” denotes the interior of Km2 .
We now state the global convergence and local linear convergence of the primal

PPA for solving problem (2).

Theorem 3.1 (Global convergence) Assume FP �= ∅. Let the primal PPA be exe-
cuted with stopping criterion (44a). Then the generated sequence {Xk} is bounded
and Xk → X, where X is some optimal solution to problem (2), and {yk} is asymp-
totically minimizing for problem (11).

If problem (2) satisfies condition (51), then the sequence {yk} is also bounded, and
any of its accumulation points is an optimal solution to problem (2).

Proof Since the nuclear norm function is coercive, together with FP �= ∅ due to our
hypothesis, we conclude that there exists at least an optimal solution to problem (2).
Moreover, Proposition 3.1 shows that (44a) implies the more general criterion (39a)
for T f . It follows from [42, Theorem 1] that the sequence {Xk} is bounded and con-
verges to a solution X to 0 ∈ T f (X), i.e., a particular optimal solution to problem (2).
The remainder of the conclusions follows from the proof of [43, Theorem 4] without
difficulty. We omit it here. ��
Theorem 3.2 (Local convergence) Assume FP �= ∅. Let the primal PPA be executed
with stopping criteria (44a) and (44b). If T −1

f is Lipschitz continuous at the origin

with modulus a f , then Xk → X, where X is the unique optimal solution to problem
(2), and

∥∥∥Xk+1 − X
∥∥∥ ≤ ηk

∥∥∥Xk − X
∥∥∥ , for all k sufficiently large,
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where

ηk =
[

a f

(
a2

f + λ2
k

)−1/2 + δk

]
(1 − δk)

−1 → η∞ = a f

(
a2

f + λ2∞
)−1/2

< 1.

Moreover, the conclusions of Theorem 3.1 about {yk} are valid.
If in addition to (44b) and the condition on T −1

f , one has (45) and T −1
l is Lipschitz

continuous at the origin with modulus al (≥ a f ), then Xk → X, where X is the unique
optimal solution to problem (2), and one has

∥∥∥yk+1 − y
∥∥∥ ≤ η′

k

∥∥∥Xk+1 − Xk
∥∥∥ , for all k sufficiently large,

where η′
k = al

(
1 + δ′k

)
/λk → η′∞ = al/λ∞.

Proof The proof can be obtained by following the ideas used in the proof of
[43, Theorem 5] combining with Proposition 3.1. We omit it here. ��
Remark 3.2 Recall that the Tikhonov regularization method solves a sequence of sub-
problems of the form:

min

{
‖X‖∗ + 1

2λk
‖X‖2 : A(X) ∈ b + Q, X ∈ �n1×n2

}

with the positive sequence {λk}→+∞. The primal PPA is to replace the term 1
2λk

‖X‖2

in the Tikhonov regularization method by 1
2λk

∥∥X − Xk
∥∥2

. The benefit of making this
change is that in the primal PPA the sequence {λk} is no longer required to tend
to +∞.

From the exact primal PPA, we can see that if X0 = 0 and λ0 = λ−1 > 0, then X1

solves the following regularized problem:

min

{
λ‖X‖∗ + 1

2
‖X‖2 : A(X) ∈ b + Q, X ∈ �n1×n2

}
. (52)

That is, the SVT algorithm considered in [10] solves (52) by applying the gradient
method to its dual problem (43) and thus it is just one gradient step of the exact primal
PPA, i.e., k = 0 in (42), with X0 = 0.

3.2 The dual form

In this subsection, we shall discuss the proximal point algorithm applied to the dual
problem (11). This algorithm solves the dual problem (11).

Given y0 ∈ �m , the exact dual PPA can be described as

yk+1 = pλk

(
yk
)
, (53)
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where pλk

(
yk
)

is defined by

pλk

(
yk
)

= (I + λkTg
)−1
(

yk
)

= arg max
y∈�m

{
g(y)− 1

2λk

∥∥∥y − yk
∥∥∥

2
}
, (54)

and the sequence {λk} satisfying (9) is given. It follows from (53, 54), and (17) that

yk+1 = yk + λk∇Gλk

(
yk
)
.

Just like the primal PPA, it is impractical to solve (54) exactly. So we consider an
inexact dual PPA in which (54) is solved approximately. In view of (37) and (34), we
can state the following inexact dual PPA to solve (11):

The Dual PPA. Given a tolerance ε > 0. Input y0 ∈ �m and λ0 > 0. Set k := 0.
Iterate:

Step 1. Find an approximate minimizer

Xk+1 ≈ arg inf
X∈�n1×n2

{
ψk(X) := ‖X‖∗ +�λk

(
X; yk

)}
, (55)

where �λk

(
X; yk

)
is defined as in (35).

Step 2. Compute

yk+1 = �Q∗
[

yk + λk

(
b − A

(
Xk+1

))]
.

Step 3. If
∥∥(yk − yk+1

)/
λk
∥∥ ≤ ε; stop; else; update λk such that (9) holds; end.

In the dual PPA, we shall consider the following stopping criteria introduced by
Rockafellar [42,43] to terminate (55):

ψk

(
Xk+1

)
− inf ψk ≤ ε2

k

2λk
, εk > 0,

∞∑
k=0

εk < ∞, (56a)

ψk

(
Xk+1

)
− inf ψk ≤ δ2

k

2λk

∥∥∥yk+1 − yk
∥∥∥

2
, δk > 0,

∞∑
k=0

δk < ∞, (56b)

dist
(

0, ∂ψk

(
Xk+1

))
≤ δ′k

∥∥∥yk+1 − yk
∥∥∥ , 0 ≤ δ′k → 0. (57)

It follows from (26) and (55) that

Gλk

(
yk
)

= inf ψk, ψk

(
Xk+1

)
=
∥∥∥Xk+1

∥∥∥∗ +�λk

(
Xk+1; yk

)
.

Remark 3.3 Note that the dual PPA stated above actually corresponds to the method
of multipliers considered in [43, Sect. 4] applied to problem (2).
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Remark 3.4 The unknown value inf ψk used in stopping criteria (56a) and (56b) can
be replaced by any of its lower bounds converging to it. For example, one can choose

ψ̌k := 〈b, y̌k+1
〉− (1/2λk)

∥∥y̌k+1 − yk
∥∥2

, where y̌k+1 := yk+1 if
∥∥A∗ (yk+1

)∥∥
2 ≤ 1

and otherwise y̌k+1 := yk+1
/∥∥A∗ (yk+1

)∥∥
2. Then, by using the fact that y̌k+1 is

feasible to the dual problem (11), one can obtain from (24, 32), and (33) that

ψ̌k =
〈
b, y̌k+1

〉
− 1

2λk

∥∥∥y̌k+1 − yk
∥∥∥

2

= g
(

y̌k+1
)

− 1

2λk

∥∥∥y̌k+1 − yk
∥∥∥

2 ≤ Gλk

(
yk
)

= inf ψk .

Therefore, the stopping criteria (56a) and (56b) can be replaced by the following
implementable conditions:

ψk

(
Xk+1

)
− ψ̌k ≤ ε2

k

2λk
, εk > 0,

∞∑
k=0

εk < ∞, (58a)

ψk

(
Xk+1

)
− ψ̌k ≤ δ2

k

2λk

∥∥∥yk+1 − yk
∥∥∥

2
, δk > 0,

∞∑
k=0

δk < ∞. (58b)

We are ready to state the global convergence and local linear convergence of the
dual PPA for solving problem (2).

Theorem 3.3 (Global convergence) Let the dual PPA be executed with stopping cri-
terion (56a). If condition (51) holds for problem (2), then the sequence {yk} ⊂ Q∗
generated by the dual PPA is bounded and yk → y, where y is some optimal solu-
tion to problem (11). Moreover, the sequence {Xk} is also bounded, and any of its
accumulation points is an optimal solution to problem (2).

Proof This corresponds to [43, Theorem 4]. ��
Theorem 3.4 (Local convergence) Let the dual PPA be executed with stopping cri-
terion (56a) and (56b). Assume that condition (51) holds for problem (2). If T −1

g is

Lipschitz continuous at the origin with modulus ag, then yk → y, where y is the
unique optimal solution to problem (11), and

∥∥∥yk+1 − y
∥∥∥ ≤ ηk

∥∥∥yk − y
∥∥∥ , for all k sufficiently large,

where

ηk =
[

ag

(
a2

g + λ2
k

)−1/2 + δk

]
(1 − δk)

−1 → η∞ = ag

(
a2

g + λ2∞
)−1/2

< 1.

Moreover, the conclusions of Theorem 3.3 about {Xk} are valid.
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If in addition to (56b) and the condition on T −1
g , one has (57) and T −1

l is Lipschitz

continuous at the origin with modulus al (≥ ag), then yk → y, where y is the unique
optimal solution to problem (11), and one has

∥∥∥Xk+1 − X
∥∥∥ ≤ η′

k

∥∥∥yk+1 − yk
∥∥∥ , for all k sufficiently large,

where η′
k = al

(
1 + δ′k

)
/λk → η′∞ = al/λ∞.

Proof The conclusions can be obtained by applying the results of [43, Theorem 5] to
problem (2). ��

Remark 3.5 From the dual PPA, we observe that if y0 = 0, then

y1 = λ0�Q∗
[
b − A(X1)

]
,

where X1 (approximately) solves the following penalized problem of (2):

min

{
1

2
‖�Q∗ [b − A(X)]‖2 + λ0

−1‖X‖∗ : X ∈ �n1×n2

}
. (59)

For the special case of (2) with equality constraints only, then with y0 = 0,

y1 = λ0

(
b − A

(
X1
))
,

where X1 (approximately) solves the following penalized problem:

min

{
1

2
‖A(X)− b‖2 + λ−1

0 ‖X‖∗ : X ∈ �n1×n2

}
. (60)

Again, this says that y1 is the result for one outer gradient iteration of the dual PPA.
The problem (60) corresponds to the nuclear norm regularized linear least squares
problems considered in [31,45].

The Bregman iterative method considered in [31] for solving problem (2) with
equality constraints only can be described as:

{
bk+1 = bk + (b − A

(
Xk
))

Xk+1 = arg minX∈�n1×n2

{
1
2

∥∥A(X)− bk+1
∥∥2 + μ‖X‖∗

} (61)

for some fixed μ > 0. By noting that bk+1 = μyk+1 with μ = λk
−1, we know that

in this case the Bregman iterative method [31] is actually a special case of the exact
dual PPA with λk ≡ μ−1.
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3.3 The primal-dual form

In this subsection, we shall discuss the proximal point algorithm applied to compute
a saddle point of the Lagrangian function l.

Given
(
X0, y0

) ∈ �n1×n2 × �m , the exact primal-dual PPA can be described as

(
Xk+1, yk+1

)
= pλk

(
Xk, yk

)
, (62)

where pλk (X
k, yk) is defined by

pλk

(
Xk, yk

)
= (I + λkTl)

−1
(

Xk, yk
)

= arg min
X∈�n1×n2

max
y∈�m

{
l(X, y)+ 1

2λk

∥∥∥X − Xk
∥∥∥

2− 1

2λk

∥∥∥y − yk
∥∥∥

2
}
,

(63)

and the sequence {λk} satisfying (9) is given.
We see that in the kth step of the primal-dual PPAs, one needs to obtain the saddle

point of lk(X, y), where lk(X, y) is defined by

lk(X, y) := l(X, y)+ 1

2λk

∥∥∥X − Xk
∥∥∥

2 − 1

2λk

∥∥∥y − yk
∥∥∥

2
.

By the Saddle Point Theorem, it can be easily verified that in order that
(
Xk+1, yk+1

)
is the saddle point of lk(X, y), it is sufficient and necessary that one of the following
statements is valid:

(i) Xk+1 = Pλk

[
X + λkA∗ (yk+1

)]
, where yk+1 satisfies

yk+1 = arg max
y∈Q∗

{
�λk

(
y; Xk

)
− 1

2λk
‖y − yk‖2

}
.

(ii) yk+1 = �Q∗
[
yk + λk

(
b − A

(
Xk+1

))]
, where Xk+1 satisfies

Xk+1 = arg min
X∈�n1×n2

{
‖X‖∗ +�λk

(
X; yk

)
+ 1

2λk

∥∥∥X − Xk
∥∥∥

2
}
.

The above results lead to two versions of the inexact primal-dual PPA. The first
version of the inexact primal-dual PPA based on part (i) can be stated as follows:

123



An implementable proximal point algorithmic framework 419

The Primal-Dual PPA-I. Given a tolerance ε > 0. Input X0 ∈ �n1×n2 , y0 ∈ �m ,
and λ0 > 0. Set k := 0. Iterate:

Step 1. Approximately find the unique maximizer

Q∗ � yk+1 ≈ arg max
y∈�m

{
θk(y) := �λk

(
y; Xk

)
− χQ∗(y)− 1

2λk

∥∥∥y − yk
∥∥∥2
}
. (64)

Step 2. Compute

Xk+1 = Pλk

[
Xk + λkA∗ (yk+1

)]
.

Step 3. If
∥∥(Xk − Xk+1

)/
λk
∥∥ ≤ ε; stop; else; update λk such that (9); end.

In the primal-dual PPA-I stated above, one does not need to solve problem (64)
exactly. Two stopping criteria to terminate them are treated as follows:

dist
(

0, ∂θk

(
yk+1

))
≤ εk

λk
, εk > 0,

∞∑
k=0

εk < ∞, (65a)

dist
(

0, ∂θk

(
yk+1

))
≤ δk

λk

∥∥∥
(

Xk+1, yk+1
)

−
(

Xk, yk
)∥∥∥ , δk > 0,

∞∑
k=0

δk < ∞.

(65b)

We next apply the general convergence results [42] to the primal-dual PPA-I. The
following proposition is crucial for this purpose.

Proposition 3.2 Let pλk be given by (63) and Xk+1 = Pλk

[
Xk + λkA∗ (yk+1

)]
.

Then, one has

∥∥∥
(

Xk+1, yk+1
)

− pλk

(
Xk, yk

)∥∥∥ ≤ λkdist
(

0, ∂θk

(
yk+1

))
. (66)

Proof We first note that

∂θk

(
yk+1

)
= ∂φk

(
yk+1

)
− λ−1

k

(
yk+1 − yk

)
,

whereφk(y) = �λk

(
y; Xk

)−χQ∗(y). Therefore, for anyw ∈ ∂θk
(
yk+1

)
, one hasw+

λ−1
k

(
yk+1 − yk

) ∈ ∂φk
(
yk+1

)
, and hencew+λ−1

k

(
yk+1 − yk

) ∈ ∂yl
(
Xk+1, yk+1

)
.

On the other hand, from (23) and (31), we have that λ−1
k

(
Xk − Xk+1

) ∈
∂Xl
(
Xk+1, yk+1

)
. Consequently, we obtain that

(
λ−1

k

(
Xk − Xk+1

)
,−w + λ−1

k

(
yk − yk+1

))
∈ Tl

(
Xk+1, yk+1

)
,
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or equivalently,
(
Xk,−λkw + yk

) ∈ (I + λkTl)
(
Xk+1, yk+1

)
, which implies that(

Xk+1, yk+1
) = pλk

(
Xk,−λkw + yk

)
. Since pλk is nonexpansive [42], we have

∥∥∥
(

Xk+1, yk+1
)

− pλk

(
Xk, yk

)∥∥∥ ≤
∥∥∥
(

Xk,−λkw + yk
)

−
(

Xk, yk
)∥∥∥ ≤ λk‖w‖.

Since this holds for any w ∈ ∂θk
(
yk+1

)
, we obtain the estimate (66). This completes

the proof. ��

We are ready to state the convergence results for the primal-dual PPA-I.

Theorem 3.5 (Global convergence) Assume that FP �= ∅ and condition (51) holds
for problem (2). Let the primal-dual PPA-I be executed with stopping criterion (65a).
Then, the generated sequence

{(
Xk, yk

)} ⊂ �n1×n2×Q∗ is bounded, and
(
Xk, yk

)→(
X , y

)
, where X is an optimal solution to problem (2) and y is an optimal solution to

problem (11).

Proof Combining Proposition 3.2 with [42, Theorem 1], we know that
(
Xk, yk

)
con-

verges to some (X , y) such that (0, 0) ∈ Tl(X , y), which means that (X , y) is a saddle
point of the Lagrangian function l and hence X is an optimal solution to problem (2)
and y is an optimal solution to problem (11). This completes the proof. ��

Theorem 3.6 (Local convergence) Assume that FP �= ∅ and condition (51) holds
for problem (2). Let the primal-dual PPA-I be executed with stopping criterion (65a)
and (65b). If T −1

l is Lipschitz continuous at the origin with modulus al > 0, then{(
Xk, yk

)}
is bounded and

(
Xk, yk

)→ (
X , y

)
, where X is the unique optimal solu-

tion to problem (2) and y is the unique optimal solution to problem (11). Furthermore,
one has

∥∥∥
(

Xk+1 − yk+1
)

− (X , y
)∥∥∥ ≤ ηk

∥∥∥
(

Xk, yk
)

− (X , y
)∥∥∥ , for all k sufficiently large,

where

ηk =
[

al

(
a2

l + λ2
k

)−1/2 + δk

]
(1 − δk)

−1 → η∞ = al

(
a2

l + λ2∞
)−1/2

< 1.

Proof By using Proposition 3.2, we get the conclusions from [42, Theorem 2]. ��

The second version of the inexact primal-dual PPA based on part (ii) takes the
following form:
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The Primal-Dual PPA-II. Given a tolerance ε > 0. Input X0 ∈ �n1×n2 , y0 ∈ �m ,
and λ0 > 0. Set k := 0. Iterate:

Step 1. Approximately find the unique minimizer

Xk+1 ≈ arg min
X∈�n1×n2

{
ψk(X) := ‖X‖∗ +�λk

(
X; yk

)
+ 1

2λk

∥∥∥X − Xk
∥∥∥2
}
. (67)

Step 2. Compute

yk+1 = �Q∗
[

yk + λk

(
b − A

(
Xk+1

))]
.

Step 3. If
∥∥(yk − yk+1

)/
λk
∥∥ ≤ ε; stop; else; update λk such that (9); end.

From the computational point of view, in the primal-dual PPA-II, one only needs
to approximately solve (67). Two implementable stopping criteria to terminate them
are suggested here:

ψk

(
Xk+1

)
− ψ̌k ≤ ε2

k

4λk
, εk > 0,

∞∑
k=0

εk < ∞, (68a)

ψk

(
Xk+1

)
− ψ̌k ≤ δ2

k

4λk

∥∥∥
(

Xk+1, yk+1
)

−
(

Xk, yk
)∥∥∥ , δk > 0,

∞∑
k=0

δk < ∞,

(68b)

where ψ̌k := �λk

(
yk+1; Xk

)− (1/2λk)
∥∥yk+1 − yk

∥∥2
. Note that

ψ̌k ≤ max
y∈Q∗

{
�λk

(
y; Xk

)
− 1

2λk

∥∥∥y − yk
∥∥∥

2
}

= inf ψk . (69)

Remark 3.6 Note that the primal-dual PPA-II is actually the proximal method of
multipliers developed in [43, Sect. 5] applied to problem (2).

Before applying the general convergence results of the proximal point method [42]
to the primal-dual PPA-II, we need the following property.

Proposition 3.3 Let pλk be given as in (63) and yk+1 = �Q∗
[
yk +λk(b−A(Xk+1))

]
.

Then, one has

∥∥∥
(

Xk+1, yk+1
)

− pλk

(
Xk, yk

)∥∥∥
2
/
(4λk) ≤ ψk

(
Xk+1

)
− inf ψk . (70)
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Proof Let us denote pλk

(
Xk, yk

)
by
(

X
k+1
, yk+1

)
. Then, the same argument as in

[43, Proposition 6] or in Proposition 3.1 implies that

∥∥∥yk+1 − yk+1
∥∥∥

2
/
(2λk) ≤ ψk

(
Xk+1

)
− inf ψk . (71)

Since ψk is strongly convex in X with modulus 1/λk , we know (see, e.g., [42, Propo-
sition 6]) that

∥∥∥Xk+1 − X
k+1
∥∥∥

2
/
(2λk) ≤ ψk

(
Xk+1

)
− inf ψk,

which, together with (71), yields (70). This completes the proof. ��

Theorem 3.7 (Global convergence) Assume that FP �= ∅ and condition (51) holds
for (2). Let the primal-dual PPA-II be executed with stopping criterion (68a). Then, the
generated sequence

{(
Xk, yk

)} ⊂ �n1×n2 ×�m is bounded, and
(
Xk, yk

)→ (
X , y

)
,

where X is an optimal solution to problem (2) and y is an optimal solution to problem
(11).

Proof Combining Proposition 3.3 with [42, Theorem 1], we know that
(
Xk, yk

)
con-

verges to some (X , y) such that (0, 0) ∈ Tl(X , y), which means that (X , y) is a saddle
point of the Lagrangian function l and hence X is an optimal solution to problem (2)
and y is an optimal solution to problem (11). This completes the proof. ��

Theorem 3.8 (Local convergence) Assume that FP �= ∅ and condition (51) holds
for problem (2). Let the primal-dual PPA-II be executed with stopping criterion (68a)
and (68b). If T −1

l is Lipschitz continuous at the origin with modulus al > 0, then{(
Xk, yk

)}
is bounded and

(
Xk, yk

)→ (
X , y

)
, where X is the unique optimal solu-

tion to problem (2) and y is the unique optimal solution to problem (11). Furthermore,
one has

∥∥∥
(

Xk+1 − yk+1
)

− (X , y
)∥∥∥ ≤ ηk

∥∥∥
(

Xk, yk
)

− (X , y
)∥∥∥ , for all k sufficiently large,

where

ηk =
[

al

(
a2

l + λ2
k

)−1/2 + δk

]
(1 − δk)

−1 → η∞ = al

(
a2

l + λ2∞
)−1/2

< 1.

Proof By virtue of (68a) and (68b), from Proposition 3.3, we can easily obtain the
conclusions by applying the convergence rate of the general proximal point method
[42, Theorem 2] to the case of Tl . ��
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4 Implementation issues

For the PPAs to be practical, we need to be able to solve the inner sub-problems and
evaluate the proximal mapping Pλ(·) efficiently. Here we describe our implementa-
tions to achieve these goals.

4.1 First-order methods for the inner sub-problems

In this subsection, we describe the application of first-order methods to solve the inner
sub-problems in the PPAs. In particular, we propose to solve the inner sub-problems
of the primal PPA and the primal-dual PPA-I by the gradient projection method, and
the inner sub-problems of the dual PPA and the primal-dual PPA-II by an accelerated
proximal gradient method.

First, we consider the gradient projection method to solve the inner sub-problems
of the primal PPA and the primal-dual PPA-I. For some fixed X ∈ �n1×n2 , z ∈ �m ,
and λ > 0, the inner sub-problems in these PPAs have the following form:

min
{
h(y) : y ∈ Q∗}, (72)

where h is continuously differentiable and its gradient is Lipshitz continuous with
modulus L > 0. Actually, from (43) and (64), we know that for the primal PPA,
h(y) = −�λ(y; X), ∇h(y) = APλ[X + λA∗(y)] − b and L = λ‖A‖2

2; and for
the primal-dual PPA-I, h(y) = −�λ(y; X) + ‖y − z‖2/(2λ), ∇h(y) = APλ[X +
λA∗(y)] − b + (y − z)/λ and L = λ‖A‖2

2 + 1
λ

, where ‖A‖2 denotes the operator
norm of A.

One of the simplest methods for solving (72) is the following gradient projection
(GP) method:

y j+1 = �Q∗
[

y j − α j∇h
(

y j
)]
, (73)

where y0 ∈ Q∗ is given, and α j > 0 is the steplength which can be determined by
various rules, e.g., the Armijo line search rule. In particular, if y j − α j∇h(y j ) is
feasible, the GP iteration reduces to the standard steepest descent iteration. Let s >
0, ρ ∈ (0, 1), and γ ∈ (0, 1) be given. The Armijo line search rule is to choose α j =
sρi j , where i j is the smallest nonnegative integer i such that

h
(
�Q∗

[
y j − sρi∇h

(
y j
)])

− h
(

y j
)

≤ γ
〈
∇h
(

y j
)
,�Q∗

[
y j − sρi∇h

(
y j
)]

− y j
〉
. (74)

Alternatively, since ∇h is Lipschitz continuous with modulus L , one can choose the
constant steplength rule

α j = s with s ∈ (0, 2/L), (75)
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which was first proposed by Goldstein [22] and Levitin and Poljak [26]. The constant
steplength choice is, however, too conservative and the convergence is typically slow.
In our implementation, we use the Armijo line search rule, which is shown to be better
than the constant steplength rule (see Subsect. 5.1). The global convergence of the
GP method with the Armijo line search rule (74) was originally shown by Bertsekas
[6] for (72) in which h is continuously differentiable and Q∗ is replaced by bound
constraints. In 1984, Gafni and Bertsekas [20] proved the global convergence of the
GP method with the Armijo line search rule (74) for a general closed convex set. The
following theorem gives the results on the complexity iteration of the GP method with
the constant steplength rule. For the details, see, e.g., [36, Theorem 2.2.14].

Theorem 4.1 Let {y j } be generated by the GP method with the steplength α j chosen
by the constant steplength rule (75). Then, for every j ≥ 1, one has

h
(

y j
)

− inf h ≤ O(L/j),

and hence O(L/εsub) iterations suffice to achieve within εsub > 0 of the optimal value.

Note that theoretically, the accuracy tolerance εsub needed for solving the inner
subproblem (72) should depend on the stopping conditions (46a, 46b) and (45). In our
practical implementation of the primal PPA, for the subproblem at the kth iteration,
we find that choosing εsub to be 10−2

∥∥(Xk+1 − Xk
)
/λk
∥∥ is usually good enough for

the overall algorithm to attain the required accuracy.
For a comprehensive study on the GP methods in general, we refer to Bertsekas

[7, Chapter 2] and references therein.

Remark 4.1 In our implementation of the primal PPA and the primal-dual PPA-I where
the inner sub-problems are solved by the GP method with Armijo line search, the initial
steplength estimate s in (74) at the j iteration is chosen as follows:

s =
{

1.11α j−1 if i j−1 = 0,
α j−1 otherwise.

In our numerical experiments of the primal PPA and the primal-dual PPA-I on NNM
problems arising from random matrix completion problems, such an initial estimate
is typically accepted as the steplength α j .

Next, we turn to consider an accelerated proximal gradient method to solve the
inner sub-problems of the dual PPA and the primal-dual PPA-II. For some fixed Z ∈
�n1×n2 , y ∈ �m , and λ> 0, in the dual PPA and the primal-dual PPA-II, the inner
sub-problems have the following form:

min
{

H(X) := ‖X‖∗ + h(X) : X ∈ �n1×n2
}
. (76)

It is readily seen from (55) and (64) that h is proper, convex, continuously differen-
tiable on �n1×n2 , and ∇h is globally Lipschitz continuous with (different) modulus
L > 0. In fact, for the dual PPA, h(X) = �λ(X; y), ∇h(X) = −A∗�Q∗ [y + λ
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(b − A(X))] and L = λ‖A‖2
2; and for the primal-dual PPA-II, h(X) = �λ(X; y) +

‖X − Z‖2/(2λ), ∇h(X) = −A∗�Q∗ [y + λ(b − A(X))] + (X − Z)/λ and L =
λ‖A‖2

2 + 1
λ

.
Recently, Toh and Yun [45] proposed an accelerated proximal gradient (APG) algo-

rithm for solving a more general form of (76) and reported good performances of the
APG algorithm on large scale matrix completion problems. (The APG algorithm is
in the class of accelerated first-order methods studied by Nesterov, Nemirovski, and
others; see [34–38,46] and references therein.) A few recent papers have also reported
promising numerical results using improved variants of the APG method for some
large scale convex optimization problems, see, e.g., [5,30,45] and related works. This
motivates us to consider APG methods for solving (76).

For given τ0 = τ−1 = 1 and X0 = X−1 ∈ �n1×n2 , the APG algorithm applied to
solving (76) can be expressed as:

⎧⎪⎪⎨
⎪⎪⎩

Y j = X j + τ−1
j (τ j−1 − 1)

(
X j − X j−1

)
,

X j+1 = PL−1
[
Y j − L−1∇h

(
Y j
)]
,

τ j+1 =
(√

1 + 4τ 2
j + 1

)/
2,

(77)

where L is the Lipschitz modulus of ∇h.
The following theorem shows that the APG algorithm given in (77) has an attractive

iteration complexity of O
(√

L/εsub
)

for achieving εsub-optimality for any εsub > 0.
For the more general discussions, see, e.g., [46, Corollary 2].

Theorem 4.2 Let {Y j }, {X j }, {τ j } be generated by the APG algorithm (77). Then,
for any X ∈ �n1×n2 such that H(X) ≤ inf X∈�n1×n2 {H(X)} + εsub, we have

min
i=0,1,..., j+1

{
H
(

Xi
)}

≤ H(X)+ εsub whenever j ≥
√

4L
∥∥X − X0

∥∥2

εsub
− 2.

Remark 4.2 Notice that L−1 in the second step of (77) plays the role of the steplength,
and the default steplength of L−1 could be too conservative. The APG method in (77)
can generally be accelerated by using a smaller L . As explained in [46], one chooses
an initial under estimate of L and increasing the estimate by a pre-specified constant
factor and repeating the iteration whenever the following condition is violated:

h
(

X j+1
)

≤ h
(

Y j
)

+
〈
∇h
(

Y j
)
, X j+1 − Y j

〉
+ L

2

∥∥∥X j+1 − Y j
∥∥∥

2
. (78)

We use the linesearch-like scheme stated above in our implementation, which has been
shown in [45] to greatly accelerate the convergence of the APG algorithm.

Again, the accuracy tolerance εsub in solving the subproblem (76) should theoret-
ically be dependent on the stopping conditions (58a, 58b) and (57). In our practical
implementation of the dual PPA, we choose εsub = 2 × 10−2

∥∥(yk − yk+1
)/
λk
∥∥

when solving the subproblem at the k iteration.
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Remark 4.3 We should mention that the APG method (see, e.g., [46, Algorithm 2])
applied to the inner sub-problems of the primal PPA and the primal-dual PPA-I requires
two SVDs per iteration if the linesearch-like strategy in (78) is employed. Since the
iteration complexities of the GP method and the APG method are O(L/εsub) and
O
(√

L/εsub
)
, respectively, it seems that one may still benefit more from the APG

method than from the GP method. However, our numerical results show that the num-
ber of iterations taken by the GP method is at most twice that of iterations taken by the
APG method.3 Therefore, the total computational cost consumed by the APG method
is more than that consumed by the GP method since the latter (with the line search)
only requires slightly more than one SVD per iteration on the average.

4.2 Evaluation of singular value decompositions

The main computational cost at each iteration of the GP method and the APG algorithm
is to compute a partial SVD (see (19) and (20)) so as to compute Pλ

[
X + λA∗ (y j

)]
or PL−1

[
Y j − L−1∇h

(
Y j
)]

. In particular, in the j th iteration of the GP method, for
given X and λ, we need to know those singular values of X + λA∗ (y j

)
exceeding

λ and their corresponding singular vectors; and in the j th iteration of the APG algo-
rithm, for given y and λ, we need to know those singular values of Y j − L−1∇h

(
Y j
)

exceeding L−1 and their corresponding singular vectors.
As in [10,45], we use the PROPACK package (see [24]) based on the Lanczos

bidiagonalization algorithm with partial reorthogonalization to compute a partial SVD.
Note that PROPACK cannot automatically compute only those singular values of a
matrix greater than a given constant but it can compute a specified number sv of the
largest or smallest singular values and their corresponding singular vectors. Hence,
we must specify the number svk of the largest singular values to compute beforehand
at the kth iteration. We use the following procedure given in [45] to update svk . Input
sv0 = 5, for k = 0, 1, . . . , update svk+1 by

svk+1 =
{

svpk + 1 if svpk < svk,

svpk + 5 if svpk = svk,

where svpk is the rank of Xk . In our experiments, the above procedure appears to work
well.

In addition, we use the truncation technique introduced in [45] in the implemen-
tation of the GP method and the APG algorithm. For the details on the description
of the truncation technique, see [45, Section 3.4]. The benefit of using the truncation
technique is that the rank of the iterate Xk is kept as low as possible without severely
affecting the convergence of the algorithms. The main motivation for keeping the rank
of Xk low is to reduce the cost of computing the partial SVD of Xk + λA∗(yk) or
Y k − L−1∇h(Y k), where Y k is linear combination of Xk and Xk−1.

3 Such an observation is possible because the O(L/εsub) and O
(√

L/εsub
)

iteration complexities are for
the worst cases.
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5 Numerical experiments

In this section, we report some numerical results on the application of the PPAs to
NNM problems arising in minimum rank matrix completion problems.

In the matrix completion problem, the goal is to recover an unknown matrix from
a sampling of its entries by solving the following problem:

min
{
rank(X) : Xi j = Mi j , (i, j) ∈ �}, (79)

where X is the decision variable, M is the unknown matrix with m available sampled
entries, and� is the set of indices of the observed entries. This is a special case of the
rank minimization problem (3) for which one has

A(X) = X�, (80)

where X� ∈ �|�| is the vector consisting of elements selected from X whose indices
are in �.

We have implemented the primal PPA, the dual PPA and the primal-dual PPA-I
(-II) in MATLAB, using PROPACK package to evaluate partial SVDs. All runs are
performed on an Intel Xeon 3.20 GHz PC with 4 GB memory, running Linux and
MATLAB (Version 7.6). In our experiments, the initial point for the primal PPA, the
dual PPA and the primal-dual PPA-I (-II) is set to be X0 = 0, y0 = 0,

(
X0, y0

) =
(0, 0), respectively.

We first consider random matrix completion problems, which are generated as in
[14]. For each triple (n, r,m), where n (we set n1 = n2 = n) is the dimension of
matrix, r is the predetermined rank, and m is the number of sampled entries, we first
generate M = ML MT

R , where ML and MR are n × r matrices with i.i.d. standard
Gaussian entries. Then we select a subset � uniformly at random among all sets of
cardinality m. Note that from (80), we have b = A(M).

We also consider random matrix completion problems with noisy sampled entries.
For the random matrix completion problem with noisy data, the matrix M is contam-
inated with a noisy matrix �, and

b = A(M + ω�),

where � is a matrix with i.i.d. standard Gaussian random entries and ω is set to be

ω = κ
‖A(M)‖
‖A(�)‖ ,

and κ is a given noise factor.
In our experiments, the primal PPA or the primal-dual PPA-I is stopped when any

of the following conditions is satisfied:
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(i)

∥∥b − A
(
Xk
)∥∥

max{1, ‖b‖} < Tol,

(ii)

∣∣∣∣∣

∥∥b − A
(
Xk
)∥∥

∥∥b − A
(
Xk−1

)∥∥ − 1

∣∣∣∣∣ < 10−2 and

∥∥Xk − Xk−1
∥∥

max
{
1,
∥∥Xk

∥∥} < 10−1.

where Tol is a given tolerance. The dual PPA or the primal-dual PPA-II is stopped
when the following condition is satisfied:

1

λk

∥∥∥yk − yk−1
∥∥∥ < Tol.

Unless otherwise specified, in our experiments, Tol is set to be 10−4. In addition, the
accuracy of the recovery solution X sol of the PPAs is measured by the relative error
defined by:

error :=
∥∥X sol − M

∥∥
‖M‖ , (81)

where M is the pre-generated low-rank matrix.

5.1 Sensitivity of the primal PPA to the parameter λ

Here we investigate the benefits of the primal PPA for solving (2) as opposed to the
SVT algorithm in [10] applied to the regularized problem (52). For simplicity, we only
consider the case without second order cone constraints, i.e., Q = {0}m1 .

In this experiment, we use the stopping criterion in the SVT algorithm (downloaded
from [12] in April 2009) for the primal PPA, i.e.,

∥∥b − A
(
Xk
)∥∥

max{1, ‖b‖} < 10−4.

Table 1 reports the number of iterations for one random instance without noise and
gives the ratio (m/dr ) between the number of sampled entries (m) and the degrees
of freedom (dr := r(2n − r)) of an n × n rank-r matrix. Table 1 also presents the
results on the performance of the SVT algorithm with different constant steplengths
δ = 1.0/p, 1.2/p, 1.5/p, where p := m/n2 is the proportion of observed entries.
From Table 1, we can see that when λ is set to n/2 or n, the primal PPA recovers
the matrix M , whereas the SVT algorithm fails to recover it. In addition, the number
of iterations of the SVT algorithm varies greatly with the constant steplength δ. This
behavior is consistent with the fact that the SVT algorithm used a heuristic choice
of constant steplength which may be overly optimistic and it has no known conver-
gence guarantee, whereas the primal PPA incorporated the Armijo line search rule to
guarantee convergence by ensuring sufficient descent in the objective function at each
iteration.
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Table 1 Numerical results for the primal PPA versus the SVT algorithm

n/r/(m/dr ) Method λ = n/2 λ = n λ = 5n λ = 10n

1,000/50/4 PPA 64 60 88 169

SVT (δ = 1.0/p) Fail Fail 135 250

SVT (δ = 1.2/p) Fail Fail 112 208

SVT (δ = 1.5/p) Fail Fail 89 165

5,000/50/5 PPA 70 72 86 141

SVT (δ = 1.0/p) Fail Fail 129 239

SVT (δ = 1.2/p) Fail Fail 108 199

SVT (δ = 1.5/p) Fail Fail 86 159

Table 2 Numerical results for the primal PPA on random matrix completion problems without noise

Unknown M λ−1 Results

n m r m/dr Iter #sv Time Error

1,000 119,560 10 6 1.00e−03 54 10 5.77e+00 7.02e−05

389,638 50 4 1.00e−03 61 50 3.19e+01 7.42e−05

569,896 100 3 1.00e−03 77 100 1.03e+02 5.34e−05

5,000 599,936 10 6 2.00e−04 57 10 2.23e+01 6.11e−05

2487,739 50 5 2.00e−04 72 50 2.13e+02 4.12e−05

3,960,882 100 4 2.00e−04 83 100 6.94e+02 1.04e−04

10,000 1200730 10 6 1.00e−04 52 10 4.40e+01 1.43e−04

4,985,869 50 5 1.00e−04 81 50 5.61e+02 3.05e−05

7,959,722 100 4 1.00e−04 82 100 1.48e+03 8.35e−05

20,000 2,400,447 10 6 5.00e−05 66 10 1.07e+02 1.20e−04

30,000 3,599,590 10 6 3.33e−05 72 10 1.86e+02 5.90e−05

50,000 5,995,467 10 6 2.00e−05 70 10 3.49e+02 5.59e−04

100,000 11,994,813 10 6 1.00e−05 99 10 9.85e+02 8.58e−05

5.2 Performance of PPAs on random matrix completion problems

In this section, we report the performance of the PPAs for solving randomly generated
matrix completion problems without and with noise.

Notice that for the primal PPA, we fixed the parameter λ to be λ = max{103, n}.
The performance of the primal PPA on random matrix completion problems without
noise is displayed in Table 2. In this table, we give the ratio (m/dr ), the mean value
of the parameter (λ), the average number of iterations (iter), the average number of
positive singular values of the recovered matrix (# sv), the average CPU time (in s),
and the average error (as defined in (81)) of the recovered matrix, of five runs. As can
be seen from Table 2, the maximum average number of iterations is 99 for the case
of n = 105 and r = 10, and for all the other cases, the average number of iterations
are at most 83. Notice that all the errors are smaller than or roughly equal to 10−4,
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Table 3 Numerical results for the primal PPA on random matrix completion problems with noise

Unknown M λ−1 Results

n /κ m r m/dr Iter #sv Time Error

1,000 /0.10 119,560 10 6 1.00e−03 38 10 5.10e+00 5.62e−02

389,638 50 4 1.00e−03 47 51 3.16e+01 7.74e−02

569,896 100 3 1.00e−03 45 100 5.80e+01 7.94e−02

5,000 /0.10 599,936 10 6 2.00e−04 45 10 2.38e+01 5.02e−02

2,487,739 50 5 2.00e−04 53 50 2.23e+02 5.93e−02

3,960,882 100 4 2.00e−04 47 100 4.93e+02 7.72e−02

10,000 /0.10 1,200,730 10 6 1.00e−04 45 10 5.59e+01 4.89e−02

4,985,869 50 5 1.00e−04 36 50 3.62e+02 5.84e−02

7,959,722 100 4 1.00e−04 57 100 1.24e+03 6.82e−02

20,000 /0.10 2,400,447 10 6 5.00e−05 47 10 9.32e+01 5.60e−02

30,000 /0.10 3,599,590 10 6 3.33e−05 53 10 1.69e+02 4.80e−02

50,000 /0.10 5,995,467 10 6 2.00e−05 58 10 3.33e+02 5.24e−02

100,000 /0.10 11,994,813 10 6 1.00e−05 67 10 7.53e+02 5.42e−02

The noise factor κ is set to 0.1

except for the case n = 50, 000 and r = 10. In addition, the primal PPA can recover
a 100, 000 × 100, 000 matrix of rank 10 from about 0.12% of the sampled entries in
less than 1,000 s with an error of 8.58 × 10−5.

The performance of the primal PPA on random matrix completion problems with
noise is displayed in Table 3. We report the same results as in Table 2. As can be
seen from Table 3, the primal PPA takes at most 67 iterations on the average to
recover the unknown matrices. More importantly, the relative errors are all smaller
than 7.94 × 10−2, which is smaller than the given noise level of κ = 0.1.

In Tables 4 and 5, we report the performance of the dual PPA on random matrix
completion problems without and with noise, respectively. Note that for the dual PPA,
we fixed λ to be λ = 104/ ‖A∗(b)‖2. As shown in the tables, we can see that the dual
PPA works well with relatively small values of λ.

Comparing the performance of the primal PPA and the dual PPA on random matrix
completion problems without/with noise, we observe that the dual PPA outperforms
the primal PPA.4 For the case n = 105 and r = 10 without noise, the dual PPA solves
the problem in 519 s whereas the primal PPA takes 985 s. There are two possible rea-
sons to explain this difference. First, the inner sub-problems of the dual PPA are solved
by an APG method, while those of the primal PPA are solved by a gradient projection
method. Second, the former works well with relatively small values of λ, while the
latter requires larger values of λ. However, a larger value of λ often leads to a slower
rate of convergence for the outer iteration in the PPA.

4 Here our conclusion is based on using the gradient-type methods to solve the corresponding sub-problems.
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Table 4 Numerical results for the dual PPA on random matrix completion problems without noise

Unknown M λ−1 Results

n m r m/dr Iter #sv Time Error

1,000 119,560 10 6 1.44e−02 35 10 3.90e+00 1.05e−04

389,638 50 4 5.37e−02 51 50 2.95e+01 6.21e−05

569,896 100 3 8.66e−02 56 100 7.78e+01 2.41e−05

5,000 599,936 10 6 1.38e−02 42 10 1.71e+01 7.34e−05

2,487,739 50 5 6.08e−02 50 50 1.47e+02 6.50e−05

3,960,882 100 4 1.02e−01 56 100 4.32e+02 9.68e−05

10,000 1,200,730 10 6 1.37e−02 40 10 2.96e+01 1.40e−04

4,985,869 50 5 5.93e−02 51 50 3.19e+02 6.54e−05

7,959,722 100 4 9.88e−02 56 100 9.05e+02 1.04e−04

20,000 2,400,447 10 6 1.35e−02 45 10 6.72e+01 1.50e−04

30,000 3,599,590 10 6 1.35e−02 54 10 1.21e+02 1.41e−04

50,000 5,995,467 10 6 1.34e−02 58 10 2.46e+02 4.83e−05

100,000 11,994,813 10 6 1.34e−02 55 10 5.19e+02 1.04e−04

Table 5 Numerical results for the dual PPA on random matrix completion problems with noise

Unknown M λ−1 Results

n /κ m r m/dr Iter #sv Time Error

1,000 /0.10 119,560 10 6 1.44e−02 29 10 3.95e+00 4.49e−02

389,638 50 4 5.37e−02 31 50 1.52e+01 5.49e−02

569,896 100 3 8.67e−02 39 100 4.36e+01 6.39e−02

5,000 /0.10 599,936 10 6 1.38e−02 39 10 2.20e+01 4.51e−02

2,487,739 50 5 6.08e−02 39 50 1.09e+02 4.96e−02

3,960,882 100 4 1.02e−01 41 100 2.71e+02 5.67e−02

10,000 /0.10 1,200,730 10 6 1.37e−02 44 10 4.73e+01 4.53e−02

4,985,869 50 5 5.93e−02 39 50 2.26e+02 4.99e−02

7,959,722 100 4 9.89e−02 47 100 6.92e+02 5.73e−02

20,000 /0.10 2,400,447 10 6 1.35e−02 44 10 9.65e+01 4.52e−02

30,000 /0.10 3,599,590 10 6 1.35e−02 45 10 1.45e+02 4.53e−02

50,000 /0.10 5,995,467 10 6 1.34e−02 47 10 2.70e+02 4.53e−02

100,000 /0.10 11,994,813 10 6 1.34e−02 43 10 5.42e+02 4.53e−02

The noise factor κ is set to 0.1

Remark 5.1 Here we do not report the numerical results for the primal-dual PPA-I
and PPA-II for the sake of saving some space. Indeed, in our experiments, we observe
that the performance of the primal-dual PPA-I is similar to that of the primal PPA, and
the performance of the primal-dual PPA-II is similar to that of the dual PPA.
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5.3 Performance of the dual PPA on real matrix completion problems

Now we consider the well-known matrix completion problem in the Netflix Prize
Contest [39]. Three data sets are provided in the Contest.

1. training set: consists of about 100 million ratings from 480,189 randomly
chosen users on 17,770 movie titles. The ratings are integers on a scale from 1 to
5.

2. qualifying set: contains over 2.8 million user/movie pairs but with the rat-
ings withheld. The qualifying set is further randomly divided into two
disjoint subsets called quiz and test subsets.

3. probe set: this is a subset of the training set consisting of about 1.4
million user/movie pairs with known ratings. This subset is constructed to have
similar properties as the qualifying set.

For convenience, we assume that the users are enumerated from 1 to 480,189, and
the movies are enumerated from 1 to 17,770. We define

�t = {(i, j) : user i has rated movie j in the trainingset} ,
�q = {(i, j) : user i has rated movie j in the qualifyingset} ,
�p = {(i, j) : user i has rated movie j in the probeset} .

The Netflix Prize Contest solicits algorithms that can make predictions for all the
withheld ratings for the user/movie pairs in the qualifying set. The quality of
the predictions is measured by the root mean squared error:

RMSE =
⎡
⎣ 1

|�q |
∑

(k, j)∈�q

(
xpred

k j − x true
k j

)2

⎤
⎦

1/2

,

where xpred
k j , x true

k j are the predicted and actual ratings for the kth user on the j th movie.
For any predictions submitted to the Contest, the RMSE for the quiz subset will
be reported publicly on [39] whereas the RMSE for the test subset is withheld
but will be employed for the purpose of selecting the winner in the Contest. At the
start of the Contest, the RMSE of Netflix’s proprietary Cinematch algorithm on the
quiz and test subsets, based on the training data set alone, were 0.9514 and 0.9525,
respectively. The RMSE obtained by the Cinematch algorithm on the probe set is
0.9474.

Due to memory constraint, in our numerical experiment, we divide the
training set and probe set, respectively into 5 disjoint subsets according to
the users’ id as follows:

training− k = {(i, j) ∈ �t\�p : (k − 1)100, 000 < i ≤ (k + 1)100, 000
}
,

probe− k = {(i, j) ∈ �p : (k − 1)100, 000 < i ≤ (k + 1)100, 000
}
,

k = 1, . . . , 5.
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Table 6 Numerical results for the dual PPA on matrix completion problems arising from Netflix Contest

Unknown M Results

n m λ−1 Iter #sv Time training probe
RMSE RMSE

training-1 100,000 2.08e+07 2.92e+00 35 10 3.9e+02 0.8148 0.9309

training-2 100,000 2.08e+07 2.93e+00 35 10 4.0e+02 0.8126 0.9292

training-3 100,000 2.09e+07 2.93e+00 35 10 4.0e+02 0.8131 0.9278

training-4 100,000 2.07e+07 2.94e+00 35 10 3.9e+02 0.8152 0.9331

training-5 80,189 1.66e+07 2.64e+00 35 10 2.9e+02 0.8136 0.9366

training\probe 160,378 9.98e+07 1.9e+03 0.8139 0.9313

The number of movies is 17,770

Note that we removed the data in the probe set from the training set in the
experiments.

We apply the dual PPA to (4) for all the 5 subsets to predict the ratings of all the
users on all the movies. As the noise level δ for these problems are not known, we
estimate δ dynamically from (outer) iteration to iteration. That is, for the kth outer
iteration in the dual PPA, we set δ = 0.5

∥∥b − A(Xk)
∥∥. In addition, as the optimal

solutions of these problems are not necessarily low-rank, we truncate the rank of
X j+1 = PL−1

[
Y j − L−1∇h(Y j )

]
in the APG algorithm (77) to 10 in each iteration

of the APG algorithm. We have tested truncating the rank to 50, but the results were
slightly worse.

For each of the subsets training-k, we compute the RMSE for the correspond-
ing probe subsets probe-k. Table 6 shows the results we obtained. We should note
that in our experiment, we do not preprocess the data sets via any statistical means,
except to center the partially observed matrix Mk corresponding to training-k
such that the modified matrix M̄k has all its rows and columns each having zero sum.
That is,

M̄k
i j = Mk

i j − di − f j , ∀ i, j

and di , f j are determined so that
∑

j M̄k
i j = 0 and

∑
i M̄k

i j = 0 for all i and j .
As we can observe from Table 6, the training set (with probe set removed)

RMSE is much lower than the probe set RMSE, and this reflects that the dual PPA
on (4) over trains the data. Despite that, the probe setRMSE of 0.9313 we obtained
is better than that obtained by Netflix’s Cinematch algorithm. The computed RMSE
for the quiz subset is 0.9416.

6 Conclusions and discussions

In this paper, we have proposed implementable proximal point algorithms in the
primal, dual and primal-dual forms for solving the nuclear norm minimization problem
with linear equality and second order cone constraints, and presented comprehensive
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convergence results. These algorithms are efficient and competitive to state-of-the-art
alternatives when the inner sub-problems of these algorithms are solved by either the
gradient projection method or the accelerated proximal point method.

Before closing this paper, we would like to discuss future research directions related
to this work. Firstly, our algorithms achieve linear rate of convergence under the con-
dition that T −1

f or T −1
g or T −1

l is Lipschitz continuous at the origin. It is then inter-
esting to know whether one can characterize these conditions as in [50]. Secondly,
it would be worth exploring the performance of these algorithms in which the inner
sub-problems are solved by second-order methods such as semismooth Newton and
smoothing Newton methods, where applicable. Finally, we plan to study how the gen-
eral framework presented in this paper can help solve more general nuclear norm
optimization problems, see, e.g., [49] for the nuclear norm constrained optimization
problem.
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