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Abstract. In this paper, we aim to prove the linear rate convergence of the alternating
direction method of multipliers (ADMM) for solving linearly constrained convex com-
posite optimization problems. Under a mild calmness condition, which holds automat-
ically for convex composite piecewise linear-quadratic programming, we establish the
global Q-linear rate of convergence for a general semi-proximal ADMM with the dual
step-length being taken in (0, (1+51/2)/2). This semi-proximal ADMM, which covers the
classic one, has the advantage to resolve the potentially nonsolvability issue of the sub-
problems in the classic ADMM and possesses the abilities of handling the multi-block
cases efficiently. We demonstrate the usefulness of the obtained results when applied to
two- and multi-block convex quadratic (semidefinite) programming.
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1. Introduction
In this paper, we shall study the Q-linear rate convergence of the alternating direction method of multipliers
(ADMM) for solving the following convex composite optimization problem:

min
{
ϑ(y)+ g(y)+ϕ(z)+ h(z): A∗y +B∗z � c , y ∈Y , z ∈Z

}
, (1)

where Y and Z are two finite-dimensional real Euclidean spaces each equipped with an inner product 〈·, ·〉 and
its induced norm ‖ · ‖, ϑ: Y→(−∞,+∞] and ϕ: Z→(−∞,+∞] are two proper closed convex functions, g: Y→
(−∞,+∞) and h: Z→ (−∞,+∞) are two continuously differentiable convex functions (e.g., convex quadratic
functions), A∗: Y→ X and B∗: Z→ X are the adjoints of the two linear operators A: X →Y and B: X →Z,
respectively, with X being another real finite-dimensional Euclidean space equipped with an inner product 〈·, ·〉
and its induced norm ‖ · ‖ and c ∈ X is a given point. To avoid triviality, neither A nor B is assumed to be
vacuous. For any convex function θ : X→(−∞,+∞], we use domθ to define its effective domain, i.e., domθ :�
{x ∈X : θ(x) <∞}, epi θ to denote its epigraph, i.e., epi θ :� {(x , t) ∈X ×<: θ(x) ≤ t} and θ∗: X→(−∞,+∞] to
represent its Fenchel conjugate, respectively.
The classic ADMMwas designed by Glowinski and Marroco [23] and Gabay and Mercier [20] and its construc-

tion was much influenced by Rockafellar’s works on proximal point algorithms (PPAs) for solving the more gen-
eral maximal monotone inclusion problems (Rockafellar [37, 38]). The readers may refer to Glowinski [22] for a
note on the historical development of the classic ADMM. The convergence analysis for the classic ADMM under
certain settings was first conducted by Gabay and Mercier [20], Glowinski [21], and Fortin and Glowinski [17].
For a recent survey on this, see Eckstein and Yao [15].

Our focus of this paper is on the linear rate convergence analysis of the ADMM. This shall be conducted
under a more convenient semi-proximal ADMM (in short, sPADMM) setting proposed by Fazel et al. [16] by
allowing the dual step-length to be at least as large as the golden ratio of 1.618. This sPADMM, which covers
the classic ADMM, has the advantage to resolve the potentially nonsolvability issue of the subproblems in
the classic ADMM. But, perhaps more importantly, it possesses the abilities of handling multiblock convex
optimization problems. For example, it has been shown most recently that the sPADMM plays a pivotal role in
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solving multiblock convex composite semidefinite programming problems (Sun et al. [41], Li et al. [30], Chen
et al. [5]) of a low to medium accuracy. We shall come back to this in Section 4.
For any self-adjoint positive semidefinite linear operator M: X→X , denote ‖x‖M :�

√
〈x ,Mx〉 and distM(x ,D)�

infx′∈D ‖x′ − x‖M for any x ∈ X and any set D ⊆ X . We use I to denote the identity mapping from X to itself.
Let σ > 0 be a given parameter. Write ϑg( · ) ≡ ϑ( · )+ g( · ) and ϕh( · ) ≡ ϕ( · )+ h( · ). The augmented Lagrangian
function of problem (1) is defined by

Lσ(y , z; x) :� ϑg(y)+ϕh(z)+ 〈x ,A∗y +B∗z − c〉 + σ2 ‖A
∗y +B∗z − c‖2 , ∀ (y , z , x) ∈Y ×Z×X . (2)

Then the sPADMM may be described as follows.

sPADMM: A semi-proximal alternating direction method of multipliers for solving the convex optimization
problem (1).

Step 0. Input (y0 , z0 , x0) ∈ domϑ × domϕ × X . Let τ ∈ (0,+∞) be a positive parameter (e.g., τ ∈ (0,
(1 +
√

5)/2)), and S : Y→Y and T : Z→Z be two self-adjoint positive semidefinite, not necessarily positive
definite, linear operators. Set k :� 0.

Step 1. Set 
yk+1 ∈ arg minLσ(y , zk ; xk)+ 1

2 ‖y − yk ‖2S , (3a)
zk+1 ∈ argmin Lσ(yk+1 , z; xk)+ 1

2 ‖z − zk ‖2T , (3b)
xk+1

� xk
+ τσ(A∗yk+1

+B∗zk+1 − c). (3c)

Step 2. If a termination criterion is not met, set k :� k + 1 and go to Step 1.

The sPADMM scheme (3a)–(3c) with S � 0 and T � 0 is nothing but the classic ADMM of Glowinski and
Marroco [23] and Gabay and Mercier [20]. When B�I and A is surjective, the global convergence of the classic
ADMM with any τ ∈ (0, (1 +

√
5)/2) has been established by Glowinski [21] and Fortin and Glowinski [17].

Interestingly, in Gabay [19], Gabay has further shown that the classic ADMM with τ � 1, under the existence
condition of a solution to the Karush-Kuhn-Tucker (KKT) system of problem (1), is actually equivalent to the
Douglas-Rachford (DR) splitting method applied to a stationary system to the dual of problem (1). Moreover,
Eckstein and Berstekas [14] have proven that the DR splitting method can be equivalently represented as a
special case of PPA. This is achieved by using a splitting operator constructed by Eckstein in his PhD thesis
Eckstein [12], which we will call the Eckstein splitting operator for the convenience of reference. Thus, one may
always use known results on the DR splitting method and the PPA to study the properties of the classic ADMM
with τ � 1 (this does not apply to the case that τ , 1 of course) though the properties on the corresponding
Eckstein splitting operator can be much involved.
The above sPADMM scheme (3a)–(3c) with S � 0 and T � 0 was initiated by Eckstein [13] to make the

subproblems in (3a) and (3b) easier to solve. In the same paper, Eckstein [13] showed how the sPADMM with
S � 0 and T � 0 can be transformed into the framework of PPAs. In He et al. [26], He et al. further studied
an inexact version of Eckstein’s work in the context of monotone variational inequalities. Using essentially the
same variational techniques developed by Glowinski [21] and Fortin and Glowinski [17], Fazel et al. developed
an extremely easy-to-use convergence theorem, which covers earlier nice results of Xu and Wu [43] with S � 0
and/or T � 0, for the sPADMM (Fazel et al. [16, Appendix B]) when the dual step-length τ is chosen in
(0, (1+

√
5)/2). In Shefi and Teboulle [40], Shefi and Teboulle conducted a comprehensive study on the iteration

complexities, in particular in the ergodic sense, for the sPADMM with τ � 1 and B≡I . Related results for the
more general cases can be found, e.g., in Li et al. [28] for the case that the linear operators S and T are allowed
to be indefinite, and in Cui et al. [8] for the case that the objective function is allowed to have a coupled smooth
term. For details on choosing S and T , one may refer to the recent PhD thesis of Li [29].
Compared with the large amount of literature1 mainly being devoted to the applications of the ADMM,

there is a much smaller number of papers targeting the linear rate, in particular the Q-linear rate, convergence
analysis, though there do exist a number of classic results and several new advancements on the latter. By
using the aforementioned connections among the DR splitting method, PPAs, and the classic ADMM with
τ � 1, we can derive the corresponding R-linear rate convergence of the ADMM from the works of Lions and
Mercier [31] on the DR splitting method with a globally Lipschitz continuous and strongly monotone operator,
and Rockafellar [37, 38] and Luque [32] on the convergence rates of the PPAs under various error bound
conditions imposed on the Eckstein splitting operator. For example, within this spirit, Eckstein [12] proved
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the global R-linear convergence rate of the ADMM with τ � 1 when it is applied to linear programming. In
the same vein, one can easily obtain the similar global R-linear convergence rate of the ADMM with τ � 1
for convex piecewise linear-quadratic programming by combining the classic result of Robinson on piecewise
polyhedral multivalued mappings Robinson [35] and Sun’s subdifferential characterization of convex piecewise
linear-quadratic functions (Sun [42]).
There are some interesting new developments on the R-linear and/or Q-Linear convergence rate of the

ADMM. Apparently, unaware of the above mentioned connections, for convex quadratic programming, Boley [1]
provided a local R-linear convergence result for the ADMM with τ � 1 under the conditions of the unique-
ness of the optimal solutions to both the primal and dual problems and the strict complementarity; in Han
and Yuan [24], Han and Yuan removed the restrictive conditions imposed by Boley and established the local
Q-linear rate convergence of the generalized ADMM in the sense of Eckstein and Bertsekas [14] for the sequence
{(zk , xk)}. For the more general convex piecewise linear-quadratic programming problems, Yang and Han [44]
established the global Q-linear convergence rate for the sequence {(zk , xk)} and {(yk , zk , xk)} of the ADMM and
the linearized ADMM (a special case of sPADMM with S � 0 and T � 0) with τ� 1, respectively. We remark that
when either S � 0 or T � 0 fails to hold, the convergence analysis in Yang and Han [44] for the linearized ADMM
is no longer valid. In Deng and Yin [9], Deng and Yin provided a number of scenarios on both the R-linear and
Q-linear rate convergence for the ADMM and sPADMM with τ � 1 under the assumption that either ϑg( · ) or
ϕh( · ) is strongly convex with a Lipschitz continuous gradient in addition to the boundedness condition on the
generated iteration sequence and others. Deng and Yin also provided a detailed comparison between their most
notable R-linear rate convergence result and that of Lions and Mercier [31] on the DR splitting method when
applied to a stationary system to the dual of problem (1). Assuming an error bound condition and some others,
Hong and Luo [27] provided a global R-linear rate convergence of the multiblock ADMM and its variants with
a sufficiently small step-length τ. Theoretically, this may constitute important progress on understanding the
convergence and the linear rate of convergence of the ADMM. Computationally, however, this is far from being
satisfactory, as in practical implementations one always prefers a larger step-length for achieving numerical
efficiency.
In this paper, we aim to resolve the Q-linear rate convergence issue for the sPADMM scheme (3a)–(3c) with

τ ∈ (0, (1+
√

5)/2) under mild conditions. Special attention shall be paid to convex composite piecewise linear-
quadratic programming and quadratic semidefinite programming. Under a calmness condition only, we provide
a global Q-linear rate convergence analysis for the sPADMM with τ ∈ (0, (1 +

√
5)/2). This is made possible by

constructing an elegant inequality on the iteration sequence via reorganizing the relevant results developed in
Fazel et al. [16, Appendix B]. For convex composite piecewise linear-quadratic programming, the global Q-linear
convergence rate is obtained with no additional conditions as the calmness assumption holds automatically. By
choosing the positive semidefinite linear operators S and T properly, in particular T � 0, we demonstrate how
the established global Q-linear rate convergence of the sPADMM can be applied to multiblock convex composite
quadratic conic programming.
The remaining parts of this paper are organized as follows. In Section 2, we conduct brief discussions on the

optimality conditions for problem (1) and on both the locally upper Lipschitz continuity and the calmness for
multivalued mappings. Section 3 is divided into two parts with the first part focusing on the derivation of a
particularly useful inequality for the iteration sequence generated from the sPADMM. This inequality, which
grows out of the results in Fazel et al. [16, Appendix B], is then employed to build up a general Q-linear rate
convergence theorem under a calmness condition. Section 4 is about the applications of the Q-linear convergence
theorem of the sPADMM to important convex composite quadratic conic programming problems. We make our
final conclusions in Section 5.

2. Preliminaries
In this section, we summarize some useful preliminaries for our subsequent analysis.

2.1. Optimality Conditions
For a multifunction F: Y⇒Y, we say that F is monotone if

〈y′− y , ξ′− ξ〉 ≥ 0, ∀ ξ′ ∈ F(y′), ∀ ξ ∈ F(y). (4)

It is well known that for any proper closed convex function θ: X→(−∞,+∞], ∂θ( · ) is a monotone multivalued
function (see Rockafellar [36]), that is, for any w1 ∈ domθ and any w2 ∈ domθ,

〈ξ − ζ,w1 −w2〉 ≥ 0, ∀ ξ ∈ ∂θ(w1), ∀ ζ ∈ ∂θ(w2). (5)
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In our analysis, we shall often use the optimality conditions for problem (1). Let ( ȳ , z̄) ∈ domϑ×domϕ be an
optimal solution to problem (1). If there exists x̄ ∈X such that ( ȳ , z̄ , x̄) satisfies the following KKT system:

0 ∈ ∂ϑ(y)+∇g(y)+Ax ,
0 ∈ ∂ϕ(z)+∇h(z)+Bx ,
c −A∗y −B∗z � 0,

(6)

then ( ȳ , z̄ , x̄) is called a KKT point for problem (1). Denote the solution set to the KKT system (6) by Ω̄. The
existence of such KKT points can be guaranteed if a certain constraint qualification such as the Slater condition
holds:

∃ (y′, z′) ∈ ri(domϑ×domϕ) ∩ {(y , z) ∈Y ×Z: A∗y +B∗z � c},

where ri(S) denotes the relative interior of a given convex set S. In this paper, instead of using an explicit
constraint qualification, we make the following blanket assumption on the existence of a KKT point.

Assumption 1. The KKT system (6) has a nonempty solution set.

Denote u :� (y , z , x) for y ∈Y, z ∈Z and x ∈X . Let U :�Y ×Z×X . Define the KKT mapping R: U→U as

R(u) :� ©­«
y −Prϑ[y − (∇g(y)+Ax)]
z −Prϕ[z − (∇h(z)+Bx)]

c −A∗y −B∗z
ª®¬ , ∀ u ∈U, (7)

where for any convex function θ: X→(−∞,+∞], Prθ( · ) denotes its associated Moreau-Yosida proximal mapping
Rockafellar and Wets [39]. If θ( · )� δK( · ), the indicator function over the closed convex set K ⊆X , then Prθ( · )�
ΠK( · ), the metric projection operator over K. Then, since the Moreau-Yosida proximal mappings Prϑ( · ) and
Prϕ( · ) are both globally Lipschitz continuous with modulus one, the mapping R( · ) is at least continuous
on U and

∀ u ∈U, R(u)� 0 ⇔ u ∈ Ω̄.

2.2. Locally Upper Lipschitz Continuity and Calmness
Let X and Y be two finite-dimensional real Euclidean spaces and F: X ⇒Y be a set-valued mapping. Denote
the graph of F by gph F. Let BY denote the unit ball in Y.

Definition 1. The multivalued mapping F: X ⇒Y is said to be locally upper Lipschitz continuous at x0 ∈ X with
modulus κ0 > 0 if there exist a neighborhood V of x0 such that

F(x) ⊆ F(x0)+ κ0‖x − x0‖BY , ∀ x ∈V.

The above definition of locally upper Lipschitz continuity was first coined by Robinson [34] for the purpose
of developing an implicit function for generalized variational inequalities. In the same paper, he also stud-
ied several important properties of multivalued mappings. Recall that the multivalued mapping F is called
piecewise polyhedral if gph F is the union of finitely many polyhedral sets. In one of his seminal papers, Robin-
son [35] established the following fundamental property on the locally upper Lipschitz continuity of a piecewise
polyhedral multivalued mapping.

Proposition 1. If the multivalued mapping F: X⇒Y is piecewise polyhedral, then F is locally upper Lipschitz continuous
at any x0 ∈X with modulus κ0 independent of the choice of x0.

One important class of piecewise polyhedral multivalued mappings is the subdiffenrential of convex piecewise
linear-quadratic functions. Note that a closed proper convex function θ: X→(−∞,+∞] is said to be piecewise
linear-quadratic if domθ is the union of finitely many polyhedral sets and on each of these polyhedral sets,
θ is either an affine or a quadratic function. In his PhD thesis, J. Sun (Sun [42]) established the following key
characterization on convex piecewise linear-quadratic functions. For a complete proof about this proposition
and its extensions, see the monograph written by Rockafellar and Wets [39, Propositions 12.30 and 11.14].

Proposition 2. Let θ: X → (−∞,+∞] be a closed proper convex function. Then θ is piecewise linear quadratic if and
only if the graph of ∂θ is piecewise polyhedral. Moreover, θ is piecewise linear quadratic if and only if θ∗ is piecewise
linear quadratic.
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Next, we give the definition of calmness for F: X⇒Y at x0 for y0 with (x0 , y0) ∈ gph F.

Definition 2. Let (x0 , y0) ∈ gph F. The multivalued mapping F: X⇒Y is said to be calm at x0 for y0 with modulus
κ0 ≥ 0 if there exist a neighborhood V of x0 and a neighborhood W of y0 such that

F(x) ∩W ⊆ F(x0)+ κ0‖x − x0‖BY , ∀ x ∈V.

The above definition of calmness is taken from Dontchev and Rockafellar [11, Section 3.8(3H)]. It follows
from Proposition 1 that if F: X⇒Y is piecewise polyhedral, and in particular from Proposition 2 that F is the
subdifferential mapping of a convex piecewise linear-quadratic function, then F is calm at x0 for y0 satisfying
(x0 , y0) ∈ gph F with modulus κ0 > 0 independent of the choice of (x0 , y0). Furthermore, it is well known, e.g.,
Dontchev and Rockafellar [11, Theorem 3H.3], that for any (x0 , y0) ∈ gph F, the mapping F is calm at x0 for y0 if
and only if F−1, the inverse mapping of F, is metrically subregular at y0 for x0, i.e., there exist a constant κ′0 ≥ 0,
a neighborhood W of y0, and a neighborhood V of x0 such that

dist(y , F(x0)) ≤ κ′0 dist(x0 , F−1(y) ∩V), ∀ y ∈W. (8)

3. A General Theorem on the Q-Linear Rate Convergence
In this section, we shall establish a general theorem on the Q-linear convergence rate of the sPADMM
scheme (3a)–(3c).
First we recall the global convergence of the sPADMM from Fazel et al. [16, Appendix B]. Since both ∂ϑ and

∂ϕ are maximally monotone and g and h are two continuously differentiable convex functions, there exist two
self-adjoint and positive semidefinite linear operators Σg and Σh such that for all y′, y ∈ domϑg , ξ ∈ ∂ϑg(y) and
ξ′ ∈ ∂ϑg(y′), and for all z′, z ∈ domϕh , ζ ∈ ∂ϕh(z) and ζ′ ∈ ∂ϕh(z′),

〈ξ′− ξ, y′− y〉 ≥ ‖y′− y‖2Σg
, 〈ζ′− ζ, z′− z〉 ≥ ‖z′− z‖2Σh

. (9)

For notational convenience, let E: X →U :�Y ×Z ×X be a linear operator such that its adjoint E∗ satisfies
E∗(y , z , x) � A∗y +B∗z for any (y , z , x) ∈ Y ×Z×X and for u :� (y , z , x) ∈ U and u′ :� (y′, z′, x′) ∈ U, define the
following function to measure the weighted distance of two points:

θ(u , u′) :� (τσ)−1‖x − x′‖2 + ‖y − y′‖2S + ‖z − z′‖2T + σ‖B∗(z − z′)‖2.

Theorem 1, which will be used in the following, is adapted from Appendix B of Fazel et al. [16].

Theorem 1. Let Assumption 1 be satisfied. Suppose that the sPADMM generates a well-defined infinite sequence {uk}.
Let ū � ( ȳ , z̄ , x̄) ∈ Ω̄. For k ≥ 1, denote{

δk :� τ(1− τ+min{τ, τ−1})σ‖B∗(zk − zk−1)‖2 + ‖zk − zk−1‖2T ,
νk :� δk + ‖yk − yk−1‖2S + 2‖yk − ȳ‖2

Σg
+ 2‖zk − z̄‖2

Σh
.

(10)

Then, the following results hold:
(i) For any k ≥ 1, [

θ(uk+1 , ū)+ ‖zk+1 − zk ‖2T + (1−min{τ, τ−1})σ‖E∗(yk+1 , zk+1 , 0) − c‖2
]

−
[
θ(uk , ū)+ ‖zk − zk−1‖2T + (1−min{τ, τ−1})σ‖E∗(yk , zk , 0) − c‖2

]
≤ −

[
νk+1 + (1− τ+min{τ, τ−1})σ‖E∗(yk+1 , zk+1 , 0) − c‖2

]
. (11)

(ii) Assume that both Σg +S +σAA∗ and Σh +T +σBB∗ are positive definite so that the sequence {uk} is automatically
well defined. If τ ∈ (0, (1+

√
5)/2), then the whole sequence {(yk , zk , xk)} converges to a KKT point in Ω̄.

Theorem 1 provides global convergence results for the sPADMM under fairly general and mild conditions.
For the purpose of obtaining inequality (11) in Theorem 1, one needs to assume that the subproblems in the
sPADMM must admit optimal solutions, which can be guaranteed if both Σg +S + σAA∗ and Σh + T + σBB∗

are positive definite. Obviously one can always choose positive semidefinite linear operators S and T to ensure
Σg +S + σAA∗ � 0 and Σh + T + σBB∗ � 0 as Σg + σAA

∗ � 0 and Σh + σBB∗ � 0. In the classic ADMM, since
both S � 0 and T � 0, one needs to assume that Σg + σAA

∗ � 0 and Σh + σBB∗ � 0, which hold automatically if
the surjectivity of both A and B is assumed as in the original ADMM papers Glowinski [21] and Fortin and
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Glowinski [17]. An example was constructed by Chen et al. [6] to show that Assumption 1 itself is not enough
for ensuring the existence of solutions to all the subproblems in the sPADMM. This example also shows that
the statement made in Boyd et al. [3] on the convergence of the classic ADMM without the surjectivity of A
and B is incorrect. Interestingly, for the case that S � 0 and T � 0, the global convergence results in Theorem 1
may still be valid even if the surjectivity of A or B fails to hold if Σ f and Σg are incorporated in the analysis.
To illustrate this, let us consider the following convex composite least squares optimization problem:

min { 1
2 ‖Lx − d‖2 +φ(x)}

s.t. Ax � b ,
(12)

where d ∈ <l , b ∈ <m , L ∈ <l×n and A ∈ <m×n are two matrices and φ: <n → (−∞,+∞] is a proper closed
convex function. Without loss of generality, assume that A is of full row rank. The Lagrange dual of (12) can be
written as

max {− 1
2 ‖w − d‖2 + bT yE −φ∗(z)}

s.t. LT w +AT yE − z � 0,
which can be equivalently reformulated as

min { 1
2 ‖v‖2 − bT yE +φ

∗(z)}
s.t. LT v +AT yE − z �−LT d.

(13)

By treating (v , yE) as one-variable block and z the other, we can write problem (13) in the form of (1) with

g(v , yE) :� 1
2 ‖v‖

2 − bT yE , ∀ (v , yE) ∈ <l ×<m and h(z) :� 0, ∀ z ∈<n . (14)

Consequently, one immediately obtains

Σg ≡
(
Il 0
0 0

)
, Σh ≡ 0, (15)

where for any positive integer j, I j denotes the j by j identity matrix. Note that in this case A :�
(

L
A

)
is not

necessarily surjective though B � −In is. So the known global convergence analysis for the classic ADMM
without using Σg may be invalid. However, since both Σg + σAA

∗ and Σh + σBB∗ are positive definite, the
global convergence of the classic ADMM (both S � 0 and T � 0) for solving problem (13) follows readily from
Theorem 1. Thus, one can see the benefit of exploiting the availability of Σg or Σh .
For any self-adjoint linear operator M: X→X , we use λmax(M) to denote its largest eigenvalue. Define

κ1 :� 3‖S ‖ , κ2 :� max{3σλmax(AA∗), 2‖T ‖}, κ3 :� σ−1
+ (1− τ)2σ(3λmax(AA∗)+ 2λmax(BB∗)).

Let κ4 :� max{κ1 , κ2 , κ3}. Let H 0 be the block-diagonal linear operator defined by

H 0 :� κ4 Diag(S ,T + σBB∗ , (τ2σ)−1I). (16)

The usefulness of the block-diagonal linear operator H 0 can be found in the following lemma on deriving an
upper bound for ‖R( · )‖ computed at the sequence generated by the sPADMM.

Lemma 1. Let {uk :� (yk , zk , xk)} be the infinite sequence generated by the sPADMM scheme (3a)–(3c). Then for any
k ≥ 0,

‖uk+1 − uk ‖2H0
≥ ‖R(uk+1)‖2. (17)

Proof. The optimality condition for (3a) is

0 ∈ ∂ϑ(yk+1)+∇g(yk+1)+A[xk
+ σ(A∗yk+1

+B∗zk − c)]+S (yk+1 − yk). (18)

From the definition of xk+1, we have

xk
+ σ(A∗yk+1

+B∗zk − c)�−σB∗(zk+1 − zk)+ xk
+ τ−1(xk+1 − xk).

It then follows from (18) that

0 ∈ ∂ϑ(yk+1)+∇g(yk+1)+A[σB∗(zk − zk+1)+ xk
+ τ−1(xk+1 − xk)]+S (yk+1 − yk),
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which implies

yk+1
� Prϑ

(
yk+1 −

(
∇g(yk+1)+A[σB∗(zk − zk+1)+ xk

+ τ−1(xk+1 − xk)]+S (yk+1 − yk)
) )
. (19)

Noting that since zk+1 is a solution to the subproblem (3b), we have that

0 ∈ ∂ϕ(zk+1)+∇h(zk+1)+Bxk
+ σB(A∗yk+1

+B∗zk+1 − c)+T (zk+1 − zk),

which is equivalent to

0 ∈ ∂ϕ(zk+1)+∇h(zk+1)+B[xk
+ τ−1(xk+1 − xk)]+T (zk+1 − zk).

Thus, we have
zk+1

� Prϕ(zk+1 − (∇h(zk+1)+B[xk
+ τ−1(xk+1 − xk)]+T (zk+1 − zk))). (20)

Note that from (3c),
xk+1

� xk
+ τσ(A∗yk+1

+B∗zk+1 − c). (21)

Then, by combining (19)–(21) and noticing of the Lipschitz continuity of the Moreau-Yosida proximal mappings,
we obtain from the definition of R( · ) in (7) that

‖R(uk+1)‖2 ≤ ‖ −S (yk+1 − yk)+ σAB∗(zk+1 − zk)+ (1− τ−1)A(xk+1 − xk)‖2

+ ‖ −T (zk+1 − zk)+ (1− τ−1)B(xk+1 − xk)‖2 + (τσ)−2‖xk+1 − xk ‖2

≤
[
3‖S ‖‖yk+1 − yk ‖2S + 3σ2λmax(AA∗)‖B∗(zk+1 − zk)‖2 + 3(1− τ−1)2‖A(xk+1 − xk)‖2

]
+

[
2‖T ‖‖zk+1 − zk ‖2T + 2(1− τ−1)2‖B(xk+1 − xk)‖2 + (τσ)−2‖xk+1 − xk ‖2

]
≤ κ1‖yk+1 − yk ‖2S + κ2‖zk+1 − zk ‖2T+σBB∗ + κ3(τ2σ)−1‖xk+1 − xk ‖2 ,

which immediately implies (17). �

For any τ ∈ (0,+∞), define

sτ :� 5− τ− 3 min{τ, τ−1}
4 and tτ :�

1− τ+min{τ, τ−1}
2 .

Note that one can easily compute the following

1/4 ≤ sτ ≤ 5/4 and 0 < tτ ≤ 1/2, ∀ τ ∈ (0, (1+√5)/2). (22)

See Figure 1 for the values of sτ and tτ for τ ∈ [0, (1+
√

5)/2].
Denote the following two self-adjoint linear operators for our subsequent developments:

M :� Diag(S +Σg ,T +Σh + σBB∗ , (τσ)−1I)+ sτσEE
∗ , (23)

H :� Diag
(
S +

1
2Σg ,T +

1
2Σh + 2tττσBB∗ , tτ(τ2σ)−1I

)
+

1
4 tτσEE

∗. (24)

Figure 1. (Color online) The values of sτ and tτ for τ ∈ [0, (1+
√

5)/2].
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Then we immediately get the following relation

κ4H �min{2τ, 1}tτH 0 +
1
4κ4tτσEE

∗ , ∀ τ ∈ (0,+∞). (25)

The operator M will be used to define the weighted distance from an iterate to the KKT points while H will be
employed to measure the weighted distance between two consecutive iterates. The next proposition will answer
the needed positive definiteness of these two linear operators, which is made possible due to the introduction
of the last term in (23) and (24), respectively.

Proposition 3. Let τ ∈ (0, (1+
√

5)/2). Then

(Σg +S + σAA∗ � 0 and Σh +T + σBB∗ � 0) ⇔ M � 0 ⇔ H � 0.

Proof. Since, in view of (22), it is obvious that M � 0⇔H � 0, we only need to show that

(Σg +S + σAA∗ � 0 and Σh +T + σBB∗ � 0) ⇔ M � 0.

First, we show that Σg +S + σAA∗ � 0 and Σh + T + σBB∗ � 0⇔M � 0. Suppose that Σg +S + σAA∗ � 0 and
Σh +T + σBB∗ � 0, but there exists a vector 0 , d :� (dy , dz , dx) ∈Y ×Z×X such that 〈d ,Md〉 � 0. By using the
definition of M and (22), we have

dx � 0, (Σh +T + σBB∗)dz � 0, (Σg +S )dy � 0 and E∗(dy , dz , 0)� 0,

which, together with the assumption that Σg +S +σAA∗ � 0 and Σh +T +σBB∗ � 0, imply d �0. This contradiction
shows that M � 0.
Next, suppose that M � 0. Since sτ > 0 and for any d � (0, dz , 0) ∈ Y ×Z×X , 〈d ,Md〉 � 〈dz , (Σh +T + (1 + sτ) ·

σBB∗)dz〉, we know that Σh +T + σBB∗ � 0. Similarly, since for any d � (dy , 0, 0) ∈Y×Z×X , 〈d ,Md〉 � 〈dy , (Σg +

S + sτσAA
∗)dy〉, we know that Σg +S + σAA∗ � 0. So the proof is completed. �

Based on Proposition 3, we are ready to develop the promised key inequality needed for proving the Q-linear
rate of convergence for the sPADMM.

Proposition 4. Let τ ∈ (0, (1 +
√

5)/2] and {(yk , zk , xk)} be an infinite sequence generated by the sPADMM. Then for
any ū � ( ȳ , z̄ , x̄) ∈ Ω̄ and any k ≥ 1,

‖uk+1 − ū‖2M + ‖zk+1 − zk ‖2T ≤ (‖uk − ū‖2M + ‖zk − zk−1‖2T ) − ‖uk+1 − uk ‖2H . (26)

Consequently, we have for all k ≥ 1,

dist2M(uk+1 , Ω̄)+ ‖zk+1 − zk ‖2T ≤ (dist
2
M(uk , Ω̄)+ ‖zk − zk−1‖2T ) − ‖uk+1 − uk ‖2H . (27)

Proof. Let ū � ( ȳ , z̄ , x̄) ∈ Ω̄ be fixed but arbitrarily chosen. From part (i) of Theorem 1, we have for k ≥ 1 that

(τσ)−1‖xk+1 − x̄‖2 + ‖yk+1 − ȳ‖2S + ‖zk+1 − z̄‖2T + σ‖B∗(zk+1 − z̄)‖2 + ‖zk+1 − zk ‖2T
+ (1−min{τ, τ−1})σ‖E∗(yk+1 , zk+1 , 0) − c‖2

≤ (τσ)−1‖xk − x̄‖2 + ‖yk − ȳ‖2S + ‖zk − z̄‖2T + σ‖B∗(zk − z̄)‖2 + ‖zk − zk−1‖2T
+ (1−min{τ, τ−1})σ‖E∗(yk , zk , 0) − c‖2

−
{
σ[τ− τ2

+ τmin{τ, τ−1}]‖B∗(zk+1 − zk)‖2 + ‖zk+1 − zk ‖2T + ‖yk+1 − yk ‖2S
+ 2‖yk+1 − ȳ‖2Σg

+ 2‖zk+1 − z̄‖2Σh
+ (1− τ+min{τ, τ−1})σ‖E∗(yk+1 , zk+1 , 0) − c‖2

}
. (28)

By reorganizing the terms in (28), we obtain

(τσ)−1‖xk+1 − x̄‖2 + ‖yk+1 − ȳ‖2S + ‖zk+1 − z̄‖2T + σ‖B∗(zk+1 − z̄)‖2 + ‖zk+1 − zk ‖2T
+

1
4 (5− τ− 3 min{τ, τ−1})σ‖E∗(yk+1 , zk+1 , 0) − c‖2 + ‖yk+1 − ȳ‖2Σg

+ ‖zk+1 − z̄‖2Σh

≤ (τσ)−1‖xk − x̄‖2 + ‖yk − ȳ‖2S + ‖zk − z̄‖2T + σ‖B∗(zk − z̄)‖2 + ‖zk − zk−1‖2T
+

1
4 (5− τ− 3 min{τ, τ−1})σ‖E∗(yk , zk , 0) − c‖2 + ‖yk − ȳ‖2Σg

+ ‖zk − z̄‖2Σh
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−
{
2tτστ‖B∗(zk+1 − zk)‖2 + ‖zk+1 − zk ‖2T + ‖yk+1 − yk ‖2S + ‖yk+1 − ȳ‖2Σg

+ ‖yk − ȳ‖2Σg
+ ‖zk+1 − z̄‖2Σh

+ ‖zk − z̄‖2Σh
+

1
2 (1− τ+min{τ, τ−1})σ‖E∗(yk+1 , zk+1 , 0) − c‖2

+
1
4 (1− τ+min{τ, τ−1})σ

[
‖E∗(yk+1 , zk+1 , 0) − c‖2 + ‖E∗(yk , zk , 0) − c‖2

]}
;

or equivalently

(τσ)−1‖xk+1 − x̄‖2 + ‖yk+1 − ȳ‖2S + ‖zk+1 − z̄‖2T + σ‖B∗(zk+1 − z̄)‖2 + ‖zk+1 − zk ‖2T
+ sτσ‖E∗(yk+1 , zk+1 , 0) − c‖2 + ‖yk+1 − ȳ‖2Σg

+ ‖zk+1 − z̄‖2Σh

≤ (τσ)−1‖xk − x̄‖2 + ‖yk − ȳ‖2S + ‖zk − z̄‖2T + σ‖B∗(zk − z̄)‖2 + ‖zk − zk−1‖2T
+ sτσ‖E∗(yk , zk , 0) − c‖2 + ‖yk − ȳ‖2Σg

+ ‖zk − z̄‖2Σh

−
{
2tτστ‖B∗(zk+1 − zk)‖2 + ‖zk+1 − zk ‖2T + ‖yk+1 − yk ‖2S + ‖yk+1 − ȳ‖2Σg

+ ‖yk − ȳ‖2Σg

+ ‖zk+1 − z̄‖2Σh
+ ‖zk − z̄‖2Σh

+ tτσ‖E∗(yk+1 , zk+1 , 0) − c‖2

+
1
2 tτσ[‖E∗(yk+1 , zk+1 , 0) − c‖2 + ‖E∗(yk , zk , 0) − c‖2]

}
. (29)

Using equalities

E∗(yk+1 , zk+1 , 0) − c �A∗(yk+1 − ȳ)+B∗(zk+1 − z̄),
E∗(yk , zk , 0) − c �A∗(yk − ȳ)+B∗(zk − z̄),

E∗(yk+1 , zk+1 , 0) − c � (τσ)−1(xk+1 − xk)

and inequalities

‖yk+1 − ȳ‖2Σg
+ ‖yk − ȳ‖2Σg

≥ 1
2 ‖y

k+1 − yk ‖2Σg
, ‖zk+1 − z̄‖2Σh

+ ‖zk − z̄‖2Σh
≥ 1

2 ‖z
k+1 − zk ‖2Σh

,

‖E∗(yk+1 , zk+1 , 0) − c‖2 + ‖E∗(yk , zk , 0) − c‖2 ≥ 1
2 ‖A

∗(yk+1 − yk)+B∗(zk+1 − zk)‖2 ,

we obtain from (29) and the definitions of sτ and tτ that for any τ ∈ (0, (1+
√

5)/2],

(τσ)−1‖xk+1 − x̄‖2 + ‖yk+1 − ȳ‖2S + ‖zk+1 − z̄‖2T + σ‖B∗(zk+1 − z̄)‖2

+ ‖zk+1 − zk ‖2T + sτσ‖A∗(yk+1 − ȳ)+B∗(zk+1 − z̄)‖2 + ‖yk+1 − ȳ‖2Σg
+ ‖zk+1 − z̄‖2Σh

≤ (τσ)−1‖xk − x̄‖2 + ‖yk − ȳ‖2S + ‖zk − z̄‖2T + σ‖B∗(zk − z̄)‖2

+ ‖zk − zk−1‖2T + sτσ‖A∗(yk − ȳ)+B∗(zk − z̄)‖2 + ‖yk − ȳ‖2Σg
+ ‖zk − z̄‖2Σh

−
{
2tτστ‖B∗(zk+1 − zk)‖2 + ‖zk+1 − zk ‖2T + ‖yk+1 − yk ‖2S +

1
2 ‖y

k+1 − yk ‖2Σg

+
1
2 ‖z

k+1 − zk ‖2Σh
+ tτ(τ2σ)−1‖xk+1 − xk ‖2 + 1

4 tτσ‖A∗(yk+1 − yk)+B∗(zk+1 − zk)‖2
}
,

which shows that (26) holds. By noting that Ω̄ is a nonempty closed convex set and (26) holds for any ū ∈ Ω̄,
we immediately get (27). �

Now, we can establish the Q-linear rate of convergence of the sPADMM under a calmness condition on R−1

at the origin for some KKT point.

Theorem 2. Let τ ∈ (0, (1 +
√

5)/2). Let S and T be chosen such that Σg +S + σAA∗ � 0 and Σh + T + σBB∗ � 0.
Then there exists a KKT point ū :� ( ȳ , z̄ , x̄) ∈ Ω̄ such that the whole sequence {(yk , zk , xk)} generated by the sPADMM
converges to ū. Assume that R−1 is calm at the origin for ū with modulus η > 0, i.e., there exists r > 0 such that

dist(u , Ω̄) ≤ η‖R(u)‖ , ∀ u ∈ {u ∈U: | |u − ū‖ ≤ r}. (30)

Then there exists an integer k̄ ≥ 1 such that for all k ≥ k̄,

dist2M(uk+1 , Ω̄)+ ‖zk+1 − zk ‖2T ≤ µ[dist
2
M(uk , Ω̄)+ ‖zk − zk−1‖2T ], (31)

where
µ :� (1+ 2κ)−1(1+ κ) < 1 and κ :� min{2τ, 1}tτ(η2κ4λmax(M))−1 > 0.

Moreover, there exists a positive number ς ∈ [µ, 1) such that for all k ≥ 1,

dist2M(uk+1 , Ω̄)+ ‖zk+1 − zk ‖2T ≤ ς[dist
2
M(uk , Ω̄)+ ‖zk − zk−1‖2T ]. (32)
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Proof. From part (ii) of Theorem 1 we already know that the whole sequence {(yk , zk , xk)} generated by the
sPADMM converges to a KKT point in Ω̄, say ū � ( ȳ , z̄ , x̄). Then there exists k̄ ≥ 1 such that for all k ≥ k̄,

‖uk+1 − ū‖ ≤ r.

Thus, by using Lemma 1 and (30), we know that for all k ≥ k̄,

dist2(uk+1 , Ω̄) ≤ η2‖R(uk+1)‖2 ≤ η2‖uk+1 − uk ‖2H0
. (33)

From the definition of H , we have for all k ≥ 0,

‖zk+1 − zk ‖2T ≤ ‖uk+1 − uk ‖2H .

It follows from (25) and (33) that for all k ≥ k̄,

‖uk+1 − uk ‖2H ≥min{2τ, 1}tτκ−1
4 ‖uk+1 − uk ‖2H0

≥min{2τ, 1}tτκ−1
4 η
−2 dist2(uk+1 , Ω̄) ≥ κdist2M(uk+1 , Ω̄). (34)

Let κ5 � (1+ κ)−1. From (27) in Proposition 4 and (34), we have for all k ≥ k̄,

dist2M(uk+1 , Ω̄)+ ‖zk+1 − zk ‖2T − {dist
2
M(uk , Ω̄)+ ‖zk − zk−1‖2T } ≤ −((1− κ5)‖uk+1 − uk ‖2H + κ5‖uk+1 − uk ‖2H )

≤ −((1− κ5)‖zk+1 − zk ‖2T + κ5κdist
2
M(uk+1 , Ω̄)). (35)

Then we obtain from (35) that for all k ≥ k̄,

(1+ κ5κ)dist2M(uk+1 , Ω̄)+ (2− κ5)‖zk+1 − zk ‖2T ≤ dist
2
M(uk , Ω̄)+ ‖zk − zk−1‖2T .

By noting that 1+ κ5κ � 2− κ5 � µ
−1, we obtain the estimate (31).

By combining (31) with Lemma 1, (27) in Proposition 4 and (25), we can obtain directly that there exists a
positive number ς ∈ [µ, 1) such that (32) holds for all k ≥ 1. The proof is completed. �

Theorem 2 provides a very general result on the Q-linear rate of convergence for the sPADMM. As one can see
that the key assumption made in this theorem is the calmness condition (30), which may not hold in general (see
the next section for more detailed discussions on this). However, if R−1 is piecewise polyhedral, this calmness
condition holds automatically. Since R−1 is piecewise polyhedral if and only if R itself is piecewise polyhedral,
we can obtain the following from Proposition 1 and the proof of Theorem 2.

Corollary 1. Let τ ∈ (0, (1+
√

5)/2). Suppose that Ω̄, ∅ and that both Σg +S + σAA∗ and Σh +T + σBB∗ are positive
definite. Assume that the mapping R: U→ U is piecewise polyhedral. Then there exist a constant η̂ > 0 such that the
infinite sequence {(yk , zk , xk)} generated from the sPADMM satisfies for all k ≥ 1,

dist(uk , Ω̄) ≤ η̂‖R(uk)‖ , (36)
dist2M(uk+1 , Ω̄)+ ‖zk+1 − zk ‖2T ≤ µ̂[dist

2
M(uk , Ω̄)+ ‖zk − zk−1‖2T ], (37)

where
µ̂ :� (1+ 2κ̂)−1(1+ κ̂) < 1 and κ̂ :� min{2τ, 1}tτ(η̂2κ4λmax(M))−1 > 0.

Proof. Since Ω̄ , ∅ and R−1: U→U is piecewise polyhedral, it follows from Proposition 1 that there exist two
constants η > 0 and ρ > 0 such that

dist(u , Ω̄) ≤ η‖R(u)‖ , ∀ u ∈ {u ∈U: ‖R(u)‖ ≤ ρ}.

Moreover, from the proof of Theorem 2, we know that there exists a constant r > 0 such that the sequence
{(yk , zk , xk)} generated by the sPADMM converges to a KKT point ū ∈ Ω̄ with ‖uk − ū‖ ≤ r for all k ≥ 0. Since
for those uk such that ‖R(uk)‖ > ρ, it holds that

dist(uk , Ω̄) ≤ ‖uk − ū‖ ≤ r < r(ρ−1‖R(uk)‖), (38)

we know that (36) holds with η̂: � max{η, r/ρ}. The inequality (37) can then be proved similarly as for (31) in
Theorem 2. �
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Before we move to the next section, let us compare the results in the above corollary with those obtained in
the most recent paper by Yang and Han [44], where the authors considered the following two cases with R( · )
being a piecewise polyhedral mapping:
(1) The classic ADMM with S � 0, T � 0, and τ � 1. Both A and B are assumed to be surjective.
(2) The linearized ADMM with τ � 1 and two positive definite linear operators: S � γ1I − σAA∗ and T �

γ2I − σBB∗, where γ1 > σλmax(AA∗) and γ2 > σλmax(BB∗). Again A and B are assumed to be surjective.
For Case (1), Yang and Han [44] proved the global Q-linear rate of convergence of the sequence {(zk , xk)}

while we proved in Corollary 1 the global Q-linear rate of convergence of the sequence {(yk , zk , xk)} for any
τ ∈ (0, (1+

√
5)/2). Interestingly, the global Q-linear rate of convergence result in Corollary 1 is still valid even if

the surjectivity of A or B fails to hold as the availability of Σg and Σh can be exploited (cf. problem (13)).
For Case (2), Yang and Han [44] proved the global Q-linear convergence rate of the whole sequence
{(yk , zk , xk)}. We also proved the same thing but with one major difference: unlike Yang and Han [44] we nei-
ther need to assume the surjectivity of A or B nor we need to assume S or T to be positive definite. In fact,
the analysis in Yang and Han [44] breaks down when γ1→ σλmax(AA∗) or γ2→ σλmax(BB∗) even if both A
and B are surjective. On the other hand, it is easy to see that our results in Corollary 1 are still valid with
S � σλmax(AA∗)I − σAA∗ and T � σλmax(BB∗)I − σBB∗. Here, the main reason that we can obtain the Q-linear
convergence results as in Corollary 1 is due to the availability of the key inequality (26) proven in Proposition 4
via the construction of the two linear operators M and H in (23) and (24), respectively. More importantly, the
freedom of choices of the positive semidefinite linear operators S and T in our model allows us to efficiently
deal with even multi-block convex composite quadratic conic optimization problems as shall be demonstrated
in the next section.

4. Applications to Convex Composite Quadratic Conic Programming
In this section we shall demonstrate how the Q-linear rate convergence results proven in the last section can be
applied to the following convex composite quadratic conic programming:

min { 1
2 〈x ,Qx〉 + 〈c , x〉 +φ(x)}

s.t. Ax � b , x ∈K, (39)

where c ∈ X , b ∈ <m , Q: X → X is a self-adjoint positive semidefinite linear operator, A: X →<m is a linear
operator, K is a closed convex cone in X , and φ: X→ (−∞,+∞] is a proper closed convex function. Here, we
assume that φ∗( · ) can be computed relatively easily. If K is polyhedral and φ is piecewise linear-quadratic,
problem (39) is called the convex composite piecewise linear-quadratic programming. Note that for the latter,
the first quadratic term in the objective function of problem (39) could be absorbed in the piecewise linear-
quadratic function φ. However, this should be avoided as it is more efficient to deal with this quadratic term
separately.
By introducing an additional variable d ∈X , we can rewrite problem (39) equivalently as

min { 1
2 〈x ,Qx〉 + 〈c , x〉 + δK(x)+φ(d)}

s.t. Ax � b , x − d � 0.
(40)

Obviously, problem (40) is in the form of (1). Let the polar of K be defined by K◦ :� {x′ ∈X : 〈x′, x〉 ≤ 0, ∀ x ∈K}.
Denote the dual cone of K by K∗ :�−K◦. The Lagrange dual of problem (40) takes the form of

max {infx∈X { 1
2 〈x ,Qx〉 + 〈v , x〉}+ 〈b , y〉 −φ∗(−z)}

s.t. s +A∗y + v + z � c , s ∈K∗ ,

which is equivalent to
min {δK∗(s) − 〈b , y〉 + 1

2 〈w ,Qw〉 +φ∗(−z)}
s.t. s +A∗y −Qw + z � c , w ∈W ,

(41)

where W is any linear subspace in X containing Range Q, the range space of Q, e.g., W � X or W � Range Q.
When W � X , problem (41) is better known as the Wolfe dual to problem (40) (see Fujiwara et al. [18] for
discussions on the Wolfe dual of conventional nonlinear programming and Qi [33] on nonlinear semidefinite
programming). So when Range Q ⊆W ,X , one may call problem (41) the restricted Wolfe dual to problem (40).
One particularly useful case is the restricted Wolfe dual with W � Range Q. The dual problem (41) has four
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natural variable blocks and can be written in the form of (1) in several different ways. The cases that we are
interested in applying the sPADMM to problem (41) are the following:
Case 1. If K ,X , then (s , y ,w) is treated as one variable block and z the other block.
Case 2. If K �X , then (w , y) is treated as one variable block and z the other block.
Here we shall only discuss Case (1) as Case (2) can be done similarly in a simpler manner.

4.1. The Primal Case
First, we consider the application of the sPADMM to the primal problem (40). Let U :� X ×X ×<m ×X . The
augmented Lagrangian function LP

σ for problem (40) is defined as follows:

LP
σ (x , d; y , z) :� 1

2 〈x ,Qx〉 + 〈c , x〉 + δK(x)+φ(d)+ 〈y ,Ax − b〉 + 〈z , x − d〉
+
σ
2 (‖Ax − b‖2 + ‖x − d‖2), ∀ (x , d , y , z) ∈U.

Then the sPADMM for solving problem (40) can be stated in the following way.

sPADMM: A semi-proximal alternating direction method of multipliers for solving the convex optimization
problem (40).

Step 0. Input (x0 , d0 , y0 , z0) ∈K×dom φ×<m ×X . Let τ ∈ (0,+∞) be a positive parameter (e.g., τ ∈ (0, (1+√
5)/2)). Define S : X→X to be any self-adjoint positive semidefinite linear operator such that Q+S +σA∗A� 0.

Set k :� 0.
Step 1. Set 

xk+1 � arg minLP
σ (x , dk ; yk , zk)+ 1

2 ‖x − xk ‖2S ,
dk+1 � arg minLP

σ (xk+1 , d; yk , zk),
yk+1 � yk + τσ(Axk+1 − b) and zk+1 � zk + τσ(xk+1 − dk+1).

Step 2. If a termination criterion is not met, set k :� k + 1 and go to Step 1.

In the above sPADMM for solving the convex optimization problem (40), we need to choose S � 0 satisfying
Q + S + σA∗A � 0 such that the subproblems on the x-part are relatively easy to solve, e.g., one can take
S � λmax(Q+ σA∗A)I − (Q+ σA∗A). Note that if one takes S � γ1I − σA∗A with γ1 > σλmax(A∗A), as discussed
in Yang and Han [44], the subproblems on the x-part may still be difficult to solve unless Q is simple, e.g.,
Q� 0 or I .
To apply Theorem 2 and Corollary 1 to prove the Q-linear convergence rate of the sPADMM for solving

problem (40), we need to know under what conditions the required calmness assumption for problem (40) holds.
Next, we shall discuss this issue in two situations: (1) K is polyhedral and φ( · ) is piecewise linear quadratic;
and (2) K is the nonpolyhedral cone �n

+
, which is the cone of all n by n symmetric and positive semidefinite

matrices.
The KKT optimality conditions for problem (40) take the form of

0 ∈ Qx + c + ∂δK(x)+A∗y + z , 0 ∈ ∂φ(d) − z , Ax − b � 0, x − d � 0. (42)

Define the KKT mapping R: U→U by

R(x , d , y , z) :�
©­­­«

x −ΠK[x − (Qx + c +A∗y + z)]
d −Prφ(d + z)

b −Ax
d − x

ª®®®¬ , ∀ (x , d , y , z) ∈U. (43)

Then (x , d , y , z) ∈U satisfies (42) if and only if R(x , d , y , z)� 0.
If K is polyhedral and φ( · ) is piecewise linear quadratic, then things are much easier as in this case Propo-

sition 2 implies that both ΠK( · ) and Prφ( · ) are piecewise polyhedral, and so are R and R−1. Thus, from the
discussions in Section 2 we know that in this case, R−1 is calm at the origin for any KKT point, if exists, to
problem (40) with a modulus independent of the choice of the KKT points. Therefore, for any τ ∈ (0, (1+

√
5)/2),

as long as K is a polyhedral set, φ( · ) is a piecewise linear-quadratic convex function and problem (40) has at
least one KKT point, the infinite sequence {(xk , dk , yk , zk)} generated by the sPADMM converges to a KKT point
of problem (40) globally at a Q-linear rate.
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When K is nonpolyhedral, things are more complicated regardless of the properties of φ. This can be seen
from the following convex quadratic semidefinite programming (SDP) example constructed by Bonnans and
Shapiro [2, Example 4.54].

Example 1. Consider
min x1 + x2

1 + x2
2

s.t. X −Diag(x)� εB, X ∈�2
+
,

(44)

where x � (x1 , x2) ∈ <2, Diag(x) is the 2× 2 diagonal matrix whose ith diagonal element is xi , i � 1, 2, B is any
2 by 2 nondiagonal symmetric matrix, and ε is a scalar parameter. When ε � 0, the optimization problem (44)
has a unique KKT point (X̄, x̄ , Ȳ) ∈�2

+
×<2 × (−�2

+
) with (X̄, x̄)� (0, 0) and Ȳ � ( −1 0

0 0 ).

Bonnans and Shapiro [2, Example 4.54] showed that for any given ε ≥ 0, problem (44) has a KKT point
(X̄(ε), x̄(ε), Ȳ(ε)) ∈ S2

+
×<2 × (−�2

+
) with x̄2(ε) of the order ε2/3 as ε ↓ 0. Then, in view of Cui et al. [7, Propo-

sition 2.4], we know that R−1 cannot be calm at the origin for (X̄, x̄ , Ȳ) even if the unperturbed problem has a
strongly convex objective function with a unique KKT point.
Example 1 shows that for a nonpolyhedral set K, unlike the polyhedral case, we need additional conditions

for guaranteeing the calmness property for problem (40). At the moment, not many results are available when
K is a general nonpolyhedral cone. However, most recently several interesting results on the calmness property
have been obtained for the following convex composite quadratic semidefinite programming

min { 1
2 〈X,QX〉 + 〈C,X〉 + δP(X)}

s.t. AX � b , X ∈�n
+
,

(45)

where C ∈�n , b ∈<m , Q: �n→�n is a self-adjoint positive semidefinite linear operator, A: �n→<m is a linear
operator, P is a simple nonempty convex polyhedral set in �n , and 〈·, ·〉 is the usual trace inner product.

Firstly, in Han et al. [25], the authors proved that if problem (45) has a unique KKT point, then the mapp-
ing R−1 is calm at the origin for this KKT point if and only if the no-gap second order sufficient conditions in
terms of Bonnans and Shapiro [2] hold for both the primal and its restricted Wolfe-dual problems. Thus, the
reason for the lack of the calmness property of R−1 for Example 1 is due to the fact that the no-gap second order
sufficient condition for the dual of the unperturbed problem fails to hold. The above characterization has led
Ding et al. [10] to study the calmness property at an isolated KKT point for a class of nonconvex conic program-
ming problems with K being a C2-cone reducible set, which is rich enough to include the polyhedral set, the
second order cone, the positive semidefinite cone �n

+
, and their Cartesian products (Bonnans and Shapiro [2]).

Secondly, sufficient conditions for ensuring the metric subregularity of R or equivalently the calmness of R−1

have been provided by Cui et al. [7] even if problem (45) may admit multiple KKT points. Here, instead of
presenting these sufficient conditions in Cui et al. [7], we shall quote an example used in Cui et al. [7] to
illustrate the calmness property of R−1.

Example 2. Consider the following convex quadratic SDP problem:

min { 1
2 (〈I2 ,X〉 − 1)2}

s.t. 〈A,X〉 + x � 1, X ∈�2
+
, x ∈<+ ,

(46)

whose dual (in its equivalent minimization form) can be written as

min {−y +
1
2 w2 + w + δ�2

+
(S)+ δ<+

(s)}
s.t. yA+ wI2 + S � 0, s − y � 0,

(47)

where A � ( 1 −2
−2 1 ). Problem (47) has a unique optimal solution ( ȳ , w̄ , S̄, s̄) � (0, 0, 0, 0). The set of all optimal

solutions to problem (46) is given by

{(X, x) ∈�2
+
×<+ | 〈A,X〉 + x � 1, 〈I2 ,X〉 � 1}. (48)

One can easily check that for Example 2 the sufficient conditions made in Cui et al. [7] for ensuring the metric
subregularity of R hold. Thus, for this example R−1 is calm at the origin for any KKT point.
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4.2. The Dual Case
In this subsection we turn to the dual problem (41). As mentioned earlier, problem (41) has four natural variable-
blocks. Since the directly extended ADMM to the multi-block case may be divergent even the dual step-length
τ is taken to be as small as 10−8 (Chen et al. [4]), one needs new ideas to deal with problem (41). Here,
we will adopt the symmetric Gauss-Seidel (sGS) technique invented by Li et al. [30]. For details on the sGS
technique, see Li [29]. Most recent research has shown that it is much more efficient to solve the dual problem
(41) rather than its primal counterpart (40) in the context of semidefinite programming and convex quadratic
semidefinite programming (Chen et al., Li et al., Sun et al. [41, 30, 29, 5]). At the first glance, this seems to be
counterintuitive, as problem (41) looks much more complicated than the primal problem (40). The key point for
more efficiently dealing with the dual problem is to intelligently combine the above mentioned sGS technique
with the sPADMM.
The augmented Lagrangian function LD

σ for problem (41) is defined as follows:

LD
σ (s , y ,w , z; x) :� δK∗(s) − 〈b , y〉 + 1

2 〈w ,Qw〉 +φ∗(−z)+ 〈x , s +A∗y −Qw + z − c〉
+
σ
2 ‖s +A∗y −Qw + z − c‖2 , ∀ (s , y ,w , z , x) ∈X ×<m ×W ×X ×X .

Then the sGS technique based sPADMM, in short sGS-sPADMM, considered by Li et al. [30] for solving the
multi-block problem (41) can be stated as in the following. At the first glance, the sGS-sPADMM does not seem
to fall within the scheme (3a)–(3c). However, it has been shown in Li et al. [30] that it is indeed a special case
of (3a)–(3c) through the construction of special semi-proximal terms.

sGS-sPADMM: A symmetric Gauss-Seidel based semi-proximal alternating direction method of multipliers
for solving problem (41).

Step 0. Input (s0 , y0 ,w0 , z0 , x0) ∈ K∗ ×<m ×W × (−domφ∗) × X . Let τ ∈ (0,+∞) be a positive parameter
(e.g., τ ∈ (0, (1+

√
5)/2) ). Choose any two self-adjoint positive semidefinite linear operators S 1: <m→<m and

S 2: W →W satisfying S 1 + σAA
∗ � 0 and S 2 +Q+ σQ2 � 0. Set k :� 0.

Step 1. Set 

wk+1/2 � arg minLD
σ (sk , yk ,w , zk ; xk)+ 1

2 ‖w −wk ‖2S 2
,

yk+1/2 � arg minLD
σ (sk , y ,wk+1/2 , zk ; xk)+ 1

2 ‖y − yk ‖2S 1
,

sk+1 � arg minLD
σ (s , yk+1/2 ,wk+1/2 , zk ; xk),

yk+1 � arg minLD
σ (sk+1 , y ,wk+1/2 , zk ; xk)+ 1

2 ‖y − yk ‖2S 1
,

wk+1 � arg minLD
σ (sk+1 , yk+1 ,w , zk ; xk)+ 1

2 ‖w −wk ‖2S 2
,

zk+1 � arg minLD
σ (sk+1 , yk+1 ,wk+1 , z; xk),

xk+1 � xk + τσ(sk+1 +A∗yk+1 −Qwk+1 + zk+1 − c).
Step 2. If a termination criterion is not met, set k :� k + 1 and go to Step 1.

As mentioned earlier, the global convergence of Algorithm sGS-sPADMM is established by Li et al. [30]
through converting it into an equivalent sPADMM scheme (3a)–(3c) for solving a particular problem of the
form (1). To illustrate how this is achieved, for simplicity, we assume that A: X →<m is surjective and W �

RangeQ so that we can take S 1 � 0 and S 2 � 0, i.e., there are no proximal terms in the above Algorithm
sGS-sPADMM. Note that the self-dual linear operator Q is always positive definite from RangeQ to itself even
if it is only positive semidefinite from X to X .
Define the self-adjoint positive semidefinite linear operator (to be interpreted as in the matrix format) S : X ×
<m ×W →X ×<m ×W by

S � σ
©­«

0 0 0
A 0 0
−Q −QA∗ 0

ª®¬©­«
I 0 0
0 (AA∗)−1 0
0 0 (Q2

+ σ−1Q)−1

ª®¬©­«
0 A∗ −Q
0 0 −AQ
0 0 0

ª®¬ . (49)

Then, with (s , y ,w) being treated as one variable block and z the other block, the above sGS-sPADMM for
solving problem (41) reduces to the sPADMM scheme (3a)–(3c), where the proximal terms S being given by (49)
and T � 0 (Li et al. [30]). We remark here that although the linear operator S looks complicated, one never
needs to compute it in the numerical implementations and it is introduced only for connecting Algorithm
sGS-sPADMM to the general scheme (3a)–(3c).
One may further note that at each iteration, either the w-part or the y-part needs to be solved twice, which

seems to suggest that Algorithm sGS-sPADMM is more costly compared to the nonconvergent directly extended

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

15
8.

13
2.

17
5.

12
0]

 o
n 

12
 M

ay
 2

01
8,

 a
t 0

7:
16

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Han, Sun, and Zhang: Q-Linear Rate of ADMM
636 Mathematics of Operations Research, 2018, vol. 43, no. 2, pp. 622–637, ©2017 INFORMS

ADMM. However, the extra cost is minimum as the coefficient matrix for solving either part is identical through
all the iterations.
By using the above connection, just as for the primal case, one can use Theorem 2 and Corollary 1 to derive the

Q-linear rate convergence of the infinite sequence {(sk , yk ,wk , zk , xk)} generated by Algorithm sGS-sPADMM if
Assumption 1 and the required calmness condition hold for problem (41) and τ ∈ (0, (1+

√
5)/2). On the calmness

condition, one may conduct similar discussions as in Section 4.1, but start from the dual problem (41). For
brevity, we omit the details here. As a final note to this section, we comment that in all the above applications,
the linear operator T ≡ 0 while the linear operator S may take various values, which are often to be positive
semidefinite only.

5. Conclusions
In this paper, we have provided a road map for analyzing the Q-linear convergence rate of the sPADMM for
solving linearly constrained convex composite optimization problems. One significant feature of our approach
is that it only relies on a very mild calmness property. This allows us to obtain a more or less complete
picture on the Q-linear rate convergence analysis for solving the convex composite piecewise linear-quadratic
programming. More importantly, it also allows us to derive Q-linearly convergent results of the sPADMM for
solving convex composite quadratic semidefinite programming. Along this line, perhaps, the most important
issue left unanswered is to provide weaker sufficient conditions for ensuring the calmness property for convex
composite optimization problems with nonpolyhedral cone constraints. Another important issue is to develop
similar results for the inexact version of the sPADMM, which is often more useful in practice. Given the recent
progress made on the inexact symmetric Gauss-Seidel based sPADMM in Chen et al. [5], it does not seem to
be difficult to extend our analysis to the inexact sPADMM in a parallel way.

Acknowledgments
The authors would like to thank Ying Cui, Xudong Li, Yangjing Zhang, and the two referees for their helpful suggestions
on improving the quality of this work.

Endnote
1For example, according to Google Scholar, the survey paper by Boyd et al. [3] on the applications of the ADMM with τ � 1 has been cited
5,000 times as of May 5, 2017.
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