
Mathematical Programming (2020) 179:419–446
https://doi.org/10.1007/s10107-018-1342-9

FULL LENGTH PAPER

Series A

On the efficient computation of a generalized Jacobian of
the projector over the Birkhoff polytope

Xudong Li1 · Defeng Sun2 · Kim-Chuan Toh3

Received: 5 August 2017 / Accepted: 15 October 2018 / Published online: 27 October 2018
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2018

Abstract
We derive an explicit formula, as well as an efficient procedure, for constructing a
generalized Jacobian for the projector of a given square matrix onto the Birkhoff poly-
tope, i.e., the set of doubly stochastic matrices. To guarantee the high efficiency of our
procedure, a semismooth Newton method for solving the dual of the projection prob-
lem is proposed and efficiently implemented. Extensive numerical experiments are
presented to demonstrate the merits and effectiveness of our method by comparing its
performance against other powerful solvers such as the commercial software Gurobi
and the academic code PPROJ (Hager and Zhang in SIAM J Optim 26:1773–1798,
2016). In particular, our algorithm is able to solve the projection problem with over
one billion variables and nonnegative constraints to a very high accuracy in less than
15 min on a modest desktop computer. More importantly, based on our efficient com-
putation of the projections and their generalized Jacobians, we can design a highly
efficient augmented Lagrangianmethod (ALM) for solving a class of convex quadratic
programming (QP) problems constrained by the Birkhoff polytope. The resulted ALM
is demonstrated to be much more efficient than Gurobi in solving a collection of QP
problems arising from the relaxation of quadratic assignment problems.

Keywords Doubly stochastic matrix · Semismoothness · Newton’s method ·
Generalized Jacobian

Mathematics Subject Classification 90C06 · 90C20 · 90C25 · 65F10

The research of Defeng Sun was supported in part by a start-up research grant from the Hong Kong
Polytechnic University. The research of Kim-Chuan Toh was supported in part by the Ministry of
Education, Singapore, Academic Research Fund under Grant R-146-000-257-112.

B Kim-Chuan Toh
mattohkc@nus.edu.sg

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-018-1342-9&domain=pdf
http://orcid.org/0000-0003-0481-272X
http://orcid.org/0000-0001-7204-8933

420 X. Li et al.

1 Introduction

The Birkhoff polytope is the set of n × n doubly stochastic matrices defined by

Bn := {X ∈ �n×n | Xe = e, XT e = e, X ≥ 0},

where e ∈ �n is the vector of all ones and X ≥ 0 means that all the elements of X are
nonnegative. In this paper, we focus on the problem of projecting a matrix G ∈ �n×n

onto the Birkhoff polytope Bn , i.e., solving the following special convex quadratic
programming (QP) problem

min

{
1

2
‖X − G‖2 | X ∈ Bn

}
, (1)

where ‖·‖ denotes the Frobenius norm. The optimal solution of (1), i.e., the Euclidean
projection of G onto Bn , is denoted by �Bn (G).

The Birkhoff polytope has long been an important object in statistics, combina-
torics, physics and optimization. As the convex hull of the set of permutation matrices
[3,42], the Birkhoff polytope has frequently been used to derive relaxations of noncon-
vex optimization problems involving permutations, such as the quadratic assignment
problems [22] and the seriation problems [13,25]. Very often the algorithms that are
designed to solve these relaxed problems need to compute the projection of matrices
onto the polytope Bn [13,22]. On the other hand, the availability of a fast solver for
computing �Bn (·) can also influence how one would design an algorithm to solve
the relaxed problems. As we shall demonstrate later, indeed one can design a highly
efficient algorithm to solve QP problems involving Birkhoff polytope constraints if a
fast solver for computing �Bn (·) and its generalized Jacobian is readily available.

Let D be a nonempty polyhedral convex set. Besides the computation of the
Euclidean projector �D(·), the differential properties of the projector have long been
recognized to be important in nonsmooth analysis and algorithmic design. In [20],
Haraux showed that the projector onto a polyhedral convex set must be directionally
differentiable. Pang [30], inspired by an unpublished report of Robinson [35], derived
an explicit formula for the directional derivative and discussed the Fréchet differen-
tiability of the projector. By using the piecewise linear structure of �D(·), one may
further use the results of Pang and Ralph [31] to characterize the B-subdifferential and
the corresponding Clarke generalized Jacobian [8] of the projector. However, for an
arbitrary polyhedral convex set D, the calculations of these generalized Jacobians are
generally very difficult to accomplish numerically, if feasible at all. In order to cir-
cumvent this difficulty, Han and Sun in [17] proposed a special multi-valued mapping
as a more tractable replacement for the generalized Jacobian and used it in the design
of the generalized Newton and quasi-Newton methods for solving a class of piecewise
smooth equations. The idea of getting an element from the aforementioned multi-
valued mapping in [17] is to find certain dual multipliers of the projection problem
together with a corresponding set of linearly independent active constraints. Since the
linear independence checking can be costly, in particular when the dimension of the
underlying projection problem is large, in this paper, we aim at introducing a technique

123

On the efficient computation of a generalized Jacobian of… 421

to avoid this checking and provide an efficient computation of a generalized Jacobian
in the sense of [17] for the Euclidean projector over the polyhedral convex set with an
emphasis on the Birkhoff polytope. We achieve this goal by deriving an explicit for-
mula for constructing a special generalized Jacobian in the sense of [17]. In addition,
based on the special structure of the Birkhoff polytope, we further simplify the formula
and discuss efficient implementations for its calculation.We shall emphasize here that,
in contrast to the previous work done in [17] and as a surprising result, our specially
constructed Jacobian needs neither the knowledge of the dual multipliers associated
with the projection problem nor the set of corresponding linearly independent active
constraints.

As one can see later, the computation of the Euclidean projector �D(·) is one of
the key steps in our construction of the aforementioned special generalized Jacobian.
Hence, its efficiency is crucial to our construction. As a simple yet fundamental con-
vex quadratic programming problem, various well developed algorithms have been
used for computing the projection onto a polyhedral convex set such as the state-of-
the-art interior-point based commercial solvers Gurobi [16] and CPLEX1. Recently,
Hager and Zhang [18] proposed to compute the projector through the dual approach by
combining the sparse reconstruction by separable approximation (SpaRSA) [44] and
the dual active set algorithm. An efficient implementation called PPROJ is also pro-
vided in [18] and the comparisons between PPROJ and CPLEX indicate that PPROJ
is robust, accurate and fast. In fact, the dual approach for solving Euclidean projection
problems has been extensively studied in the literature. For example, both the dual
quasi-Newton method [26] and the dual semismooth Newton method [32] have been
developed to compute the Euclidean projector onto the intersection of an affine sub-
space and a closed convex cone. Another popular method for computing the projection
over the intersection of an affine subspace and a closed convex cone is the alternat-
ing projections method with Dykstra’s correction [11] that was proposed in [19]. It
has been shown in [26, Theorem 5.1] that the alternating projections method with
Dykstra’s correction [11] is a dual gradient method with constant step size. As can
be observed from the numerical comparison in [32], the semismooth Newton method
outperformed the quasi-Newton and Dykstra’s methods by a significant margin.

As already mentioned in the second paragraph above, the projection onto the
Birkhoff polytope has important applications in different areas. It is also by itself
a mathematically elegant problem to study. Thus in this paper, we shall focus on the
case where the polyhedral convex set D is chosen to be the Birkhoff polytope Bn .
Due to the elegant structure of Bn , we are able to derive a highly efficient procedure
to compute a special generalized Jacobian of �Bn by leveraging on its structure. As
a crucial step in our procedure, we choose to use the semismooth Newton method for
computing the projector �Bn (·) via solving the dual of the projection problem (1)
and provide a highly efficient implementation. Extensive numerical experiments are
presented to demonstrate the merits and effectiveness of our method by comparing its
performance against other solvers such as Gurobi and PPROJ. In particular, our algo-
rithm is able to solve a projection problem over the Birkhoff polytope with over one
billion variables and nonnegative constraints to a very high accuracy in less than 15min

1 https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html.

123

https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html

422 X. Li et al.

on a modest desktop computer. In order to further demonstrate the importance of our
procedure, we also propose a highly efficient augmented Lagrangian method (ALM)
for solving a class of convex QP problems with Birkhoff polytope constraints. Our
ALM is demonstrated to be much more efficient than Gurobi in solving a collection
of QP problems arising from the relaxation of quadratic assignment problems.

The remaining parts of this paper are organized as follows. The next section is
devoted to studying thegeneralized Jacobians of the projector onto ageneral polyhedral
convex set. In Sect. 3, a semismoothNewtonmethod is designed for projecting amatrix
onto the Birkhoff polytope. Then, a generalized Jacobian of the projector at the given
matrix is computed. Efficient implementations of these steps are discussed. In Sect. 4,
we show how the generalized Jacobian obtained in Sect. 3 can be employed in the
designof a highly efficient augmentedLagrangianmethod for solving convexquadratic
programming problems with Birkhoff polytope constraints. In Sect. 5, we conduct
numerical experiments to evaluate the performance of our algorithms against Gurobi
and PROJ for computing the projection onto the Birkhoff polytope. The advantage
of incorporating the second order (generalized Hessian) information into the design
of an algorithm for solving convex quadratic programming problems with Birkhoff
polytope constraints is also demonstrated. We conclude our paper in the final section.

Before we move to the next section, here we list some notation to be used later in
this paper. For any given X ∈ �m×n , we define its associated vector vec(X) ∈ �mn by

vec(X) := [x11, . . . , xm1, x12, . . . , xm2,x1n, . . . , xmn].
For any given vector y ∈ �n , we denote by Diag(y) the diagonal matrix whose i th
diagonal element is given by yi . For any given matrix A ∈ �m×n , we use Ran(A)

and Null(A) to denote the range space and the null space of A, respectively. Similar
notation is used when A is replaced by a linear operator A. We use In to denote the n
by n identity matrix in �n×n and N † to denote the Moore–Penrose pseudo-inverse of
a given matrix N ∈ �m×n .

2 Generalized Jacobians of the projector over polyhedral convex sets

In this section, we study the variational properties of the projection mapping �D(·)
for a nonempty polyhedral convex set D ⊆ �n expressed in the following form

D := {x ∈ �n | Ax ≥ b, Bx = d}, (2)

where A ∈ �m×n, B ∈ �p×n and b ∈ �m, d ∈ �p are given data. Without loss of
generality, we assume that rank(B) = p, p ≤ n.

Given x ∈ �n , from the representation of D in (2), we know that there exist
multipliers λ ∈ �m and μ ∈ �p such that

⎧⎪⎨
⎪⎩

�D(x) − x + AT λ + BTμ = 0,

A�D(x) − b ≥ 0, B�D(x) − d = 0,

λ ≤ 0, λT (A�D(x) − b) = 0.

(3)

123

On the efficient computation of a generalized Jacobian of… 423

Let M(x) be the set of multipliers associated with x , i.e.,

M(x) := {(λ, μ) ∈ �m × �p | (x, λ, μ) satisfies (3)}.

Since M(x) is a nonempty polyhedral convex set containing no lines, it has at least
one extreme point denoted as (λ̄, μ̄) [36, Corollary 18.5.3]. Denote

I (x) := {i ∈ {1, . . . ,m} | Ai�D(x) = bi }, (4)

where Ai is the i th row of the matrix A. Define a collection of index sets:

D(x) := { K ⊆ {1, . . . ,m} | ∃ (λ, μ) ∈ M(x) s.t. supp(λ) ⊆ K ⊆ I (x),

[AT
K BT] is of full column rank},

where supp(λ) denotes the support of λ, i.e., the set of indices i such that λi 	= 0
and AK is the matrix consisting of the rows of A, indexed by K . As is already noted
in [17], the set D(x) is nonempty due to the existence of the extreme point (λ̄, μ̄)

of M(x). Since it is usually difficult to calculate the B-subdifferential ∂B�D(x) or
the Clarke generalized Jacobian ∂�D(x) for a general polyhedral convex set D at a
given point x , Han and Sun in [17] introduced the following multi-valued mapping
P : �n ⇒ �n×n as a computable replacement for ∂B�D(·), namely,

P(x) :=
{
P ∈ �n×n | P = In − [ATK BT]

([
AK
B

]
[ATK BT]

)−1 [
AK
B

]
, K ∈ D(x)

}
.

(5)

The mapping P has a few important properties [17], which are summarized in the
following proposition.

Proposition 1 For any x ∈ �n, there exists a neighborhood U of x such that

D(y) ⊆ D(x), P(y) ⊆ P(x), ∀y ∈ U .

If D(y) ⊆ D(x), it holds that

�D(y) = �D(x) + P(y − x), ∀P ∈ P(y).

Thus, ∂B�D(x) ⊆ P(x).

Note that even with formula (5), for a given point x ∈ �n , it is still not easy to find
an element in P(x) as one needs to find a suitable index K ∈ D(x) corresponding
to some multiplier (λ, μ) ∈ M(x). A key contribution made in this paper is that we
are able to construct a matrix P0 ∈ �n×n such that P0 ∈ P(x) without knowing the
index set K and its corresponding multipliers. In addition, we show how to efficiently
compute the matrix P0 when the polyhedral set D possesses certain special structures.
We shall emphasize here that the efficient computation of P0 is crucial in the design

123

424 X. Li et al.

of various second order algorithms for solving optimization problems involving the
polyhedral constraint x ∈ D.

We present here a very useful lemma which will be used extensively in our later
discussions.

Lemma 1 Let H ∈ �m×n be a given matrix and Ĥ ∈ �m1×n be a full row rank matrix
satisfying Null(Ĥ) = Null(H). Then it holds that

HT (HHT)†H = Ĥ T (Ĥ Ĥ T)−1 Ĥ .

Proof By the singular value decomposition of H and the definition of the Moore–
Penrose pseudo-inverse of HHT , we can obtain through some simple calculations
that

HT (HHT)†H d = �Ran(HT)(d), ∀d ∈ �n . (6)

Meanwhile, since Ĥ is of full row rank, we know (e.g., see [41, Page 46 (6.13)]) that

Ĥ T (Ĥ Ĥ T)−1 Ĥ d = �Ran(Ĥ T)(d), ∀d ∈ �n . (7)

Equations (6) and (7), together with the fact that

Ran(HT) = Null(H)⊥ = Null(Ĥ)⊥ = Ran(Ĥ T),

imply the desired result. �

Theorem 1 For any given x ∈ �n, let I (x) be given in (4). Denote

P0 := In − [AT
I (x) B

T]
([

AI (x)

B

]
[AT

I (x) B
T]

)† [
AI (x)

B

]
. (8)

Then, P0 ∈ P(x).

Proof Let (λ̄, μ̄) be an extreme point of M(x). Denote K := supp(λ̄). Then, K ⊆
I (x). From the definition of extreme points, we observe that [AT

K
BT] has linearly

independent columns. By adding indexes from I (x) to K if necessary, one can obtain
an index set K such that K ⊆ K ⊆ I (x), [AT

K BT] has full column rank and

Ran([AT
K BT]) = Ran([AT

I (x) B
T]). (9)

That is, K ∈ D(x). Therefore,

P := In − [AT
K BT]

([
AK

B

]
[AT

K BT]
)−1 [

AK

B

]
∈ P(x).

123

On the efficient computation of a generalized Jacobian of… 425

By (9) and Lemma 1, we know that

P0 = P.

Thus, P0 ∈ P(x) and this completes the proof for the theorem. �

Remark 1 From Lemma 1, we know that the matrix B in (8) can be replaced by any
matrix B̂ satisfying Null(B) = Null(B̂). In fact, Lemma 1 and Theorem 1 together
imply that P0 is invariant with respect to the algebraic representation of the polyhedral
convex set D, i.e., it is in fact a geometric quantity corresponding to D at x .

In general, it is not clear whether P0 is a Clarke generalized Jacobian. As a computable
replacement, the matrix P0 will be referred to as the HS-Jacobian of �D at x in the
sense of [17]. Apart from the calculation of �D(x), one can observe from Theorem 1
that the key step involved in the computation of P0 is the computation of the Moore–
Penrose pseudo-inverse in (8). Next, we show that when the matrix A in the inequality
constraints in (2) is the identity matrix, the procedure for computing P0 can be further
simplified.

Proposition 2 Let θ ∈ �n be a given vector with each entry θi being 0 or 1 for all
i = 1, . . . , n. Let � = Diag(θ) and � = In − �. For any given matrix H ∈ �m×n,
it holds that

P := In − [� HT]
([

�

H

]
[� HT]

)† [
�

H

]
= � − �HT (H�HT)†H�. (10)

Proof We only consider the case when � 	= 0 as the conclusion holds trivially if
� = 0.

From Lemma 1, we observe that P is the orthorgonal projection onto Null

[
�

H

]
.

Hence Ran(P)=Null

[
�

H

]
⊂ Null(�) = Ran(�), where the last equality comes

from the definitions of � and �. From here, it is easy to show that P = �P . Since P
is a symmetric matrix, it further holds that

P = �P�. (11)

Let �̂ be the submatrix of � formed by deleting all the zero rows of �. Then, it is
readily shown that

Null(�) = Null(�̂), �̂�̂T = Ir , �̂T �̂ = �,

where r is the number of rows of �̂.

Let

[
�̂

Ĥ

]
be a full row rank matrix such that

123

426 X. Li et al.

Null

[
�̂

Ĥ

]
= Null

[
�

H

]
. Then, by Lemma 1 and (11), we know that

P = In − [�̂T Ĥ T]M−1
[

�̂

Ĥ

]
= � − [0 � Ĥ T]M−1

[
0

Ĥ�

]
,

where

M :=
[

�̂

Ĥ

]
[�̂T Ĥ T] =

[
Ir �̂Ĥ T

Ĥ�̂T Ĥ Ĥ T

]
.

Therefore, we only need to focus on the (2, 2) block of the inverse of the partitioned
matrix M . Simple calculations show that

(M−1)22 = (Ĥ Ĥ T − Ĥ�̂T �̂Ĥ T)−1 = (Ĥ� Ĥ T)−1.

Therefore,

P = � − � Ĥ T (Ĥ� Ĥ T)−1 Ĥ�.

The desired result then follows directly fromLemma 1 since Null(Ĥ�) = Null(H�).
�

Weshould emphasize that the above proposition is particularly useful for calculating
the HS-Jacobian of the projection over a polyhedral set defined by the intersection of
hyperplanes and the nonnegative orthant. In particular, wewill see how the proposition
is applied to compute the HS-Jacobian of �Bn in the next section. Here we provide
a proposition on the projection over the general polyhedral set rather than on the
Birkhoff polytope only as we believe that it can be useful in other situations.

3 Efficient procedures for computing5Bn(·) and its HS-Jacobian

In this section, we focus on the projection over the Birkhoff polytopeBn and calculate
the associated HS-Jacobian by employing the efficient procedure developed in Theo-
rem 1 and Proposition 2. As a by-product, we also describe and implement a highly
efficient algorithm for computing the projection �Bn (G), i.e., the optimal solution
for problem (1) with a given matrix G ∈ �n×n .

Let the linear operator B : �n×n → �2n be defined by

B(X) := [eT XT eT X]T , X ∈ �n×n .

Then, problem (1) can be represented as

min

{
1

2
‖X − G‖2 | BX = b, X ∈ C

}
, (12)

123

On the efficient computation of a generalized Jacobian of… 427

where b := [eT eT]T ∈ �2n and C := {X ∈ �n×n | X ≥ 0}. Note that b ∈ Ran(B)

and dim(Ran(B)) = 2n − 1.
Suppose that G := �Bn (G) has been computed. We then aim to find the HS-

Jacobian of �Bn at the given point G. Define the linear operator � : �n×n → �n×n

by

�(H) := H − �G ◦ H , H ∈ �n×n, (13)

where “◦” denotes the Hadamard product of two matrices and �G ∈ �n×n is given as
follows: for all 1 ≤ i, j ≤ n,

�G
i j =

{
1, if Gi j = 0,

0, otherwise.

Proposition 3 Given G ∈ �n×n, let � be the linear operator defined in (13). Then the
linear operator P : �n×n → �n×n given by

P(H) := �(H) − �B∗(B�B∗)†B�(H), ∀ H ∈ �n×n, (14)

is the HS-Jacobian of�Bn at G. Moreover,P is self-adjoint and positive semidefinite.

Proof Thedesired result follows directly fromTheorem1, Proposition 2 andRemark 1.
�

Next, we focus on designing an efficient algorithm for computing the optimal
solution of problem (12), i.e, the projection �Bn (G). By some simple calculations,
we can derive the dual of (12) in the minimization form as follows:

min

{
ϕ(y) := 1

2
‖�C (B∗y + G)‖2 − 〈b, y〉 − 1

2
‖G‖2 | y ∈ Ran(B)

}
. (15)

With no difficulty, we can write down the KKT conditions associated with problems
(12) and (15) as follows:

X = �C (B∗y + G), BX = b, y ∈ Ran(B). (16)

Note that the subspace constraint y ∈ Ran(B) is imposed to ensure the boundedness
of the solution set of (15). Indeed, since int(C) 	= ∅ and B : �n×n → Ran(B) is
surjective, we have from [4, Theorem 2.165] that the solution set to the KKT system
(16) is nonempty and for any τ ∈ � the level set {y ∈ Ran(B) | ϕ(y) ≤ τ } is convex,
closed and bounded.

123

428 X. Li et al.

Note that ϕ(·) is convex and continuously differentiable on Ran(B) with

∇ϕ(y) = B�C (B∗y + G) − b, ∀ y ∈ Ran(B).

Let ȳ be a solution to the following nonsmooth equation

∇ϕ(y) = 0, y ∈ Ran(B) (17)

and denote X := �C (B∗ ȳ+G). Then, (X , ȳ) solves theKKT system (16), i.e., X is the
unique optimal solution to problem (12) and ȳ solves problem (15). Let y ∈ Ran(B)

be any given point. Define the following operator

∂̂2ϕ(y) := B∂�C (B∗y + G)B∗,

where ∂�C (B∗y + G) is the Clarke subdifferential [8] of the Lipschitz continuous
mapping �C (·) at B∗y + G. From [21], we have that

∂2ϕ(y)h = ∂̂2ϕ(y)h, ∀ h ∈ �2n,

where ∂2ϕ(y) denotes the generalized Hessian of ϕ at y, i.e., the Clarke subdifferential
of∇ϕ at y. Given X ∈ �n×n , define the linear operatorU : �n×n → �n×n as follows:

U(H) := �X ◦ H , ∀ H ∈ �n×n, (18)

where “◦′′ denotes the Hadamard product of two matrices and for 1 ≤ i, j ≤ n,

�X
i j =

{
1, if Xi j ≥ 0,

0, otherwise.
(19)

From the definition of the simple polyhedral convex set C , it is easy to see that
U ∈ ∂�C (X).

Next, we present an inexact semismooth Newton method for solving problem (15)
and study its global and local convergence. Since�C (·) is strongly semismooth as it is
a Lipschitz continuous piecewise affine function [28,33], we can design a superlinearly
or even quadratically convergent semismooth Newton method to solve the nonsmooth
equation (17).

The template of the semismooth Newton conjugate gradient (CG) method for solv-
ing (15) is presented as follows.

123

On the efficient computation of a generalized Jacobian of… 429

Algorithm Ssncg1: A semismooth Newton-CG algorithm for solving (15).

Given μ ∈ (0, 1/2), η̄ ∈ (0, 1), τ1, τ2 ∈ (0, 1), τ ∈ (0, 1], and δ ∈ (0, 1), choose
y0 ∈ Ran(B). Iterate the following steps for j = 0, 1, . . . :
Step 1. Choose U j ∈ ∂�C (B∗y j + G) as given in (18). Let V j := BU jB∗ and

ε j = τ1 min{τ2, ‖∇ϕ(y j)‖}. Apply the CG algorithm with the zero vector as
the starting point to find an approximate solution d j to the following linear
system

(V j + ε j I2n)d + ∇ϕ(y j) = 0, d ∈ Ran(B) (20)

such that

‖(V j + ε j I2n)d
j + ∇ϕ(y j)‖ ≤ min(η̄, ‖∇ϕ(y j)‖1+τ).

Step 2. (Line search) Set α j = δm j , where m j is the first nonnegative integer m for
which

ϕ(y j + δmd j) ≤ ϕ(y j) + μδm〈∇ϕ(y j), d j 〉.
Step 3. Set y j+1 = y j + α j d j .

We note that at each iteration of Algorithm Ssncg1, V j is self-adjoint positive
semidefinite. Indeed, for j = 0, 1, . . ., the self-adjointness of V j follows from the
self-adjointness of U j and it further holds that

〈d, V j d〉 = 〈d, BU jB∗d〉 =
∑

(k,l)∈� j

(B∗d)2kl ≥ 0, ∀ d ∈ �2n,

where the last equation follows from the definition ofU j given in (18) and the index set
� j is defined by � j := {(k, l) | (B∗y j + G)kl ≥ 0, 1 ≤ k, l ≤ n}. The convergence
results for the above Ssncg1 algorithm are stated in the next theorem.

Theorem 2 Let {y j } be the infinite sequence generated by Algorithm Ssncg1 for solv-
ing problem (15). Then, {y j } ⊆ Ran(B) is a bounded sequence and any accumulation
point ŷ (∈ Ran(B)) of {y j } is an optimal solution to problem (15).

Proof Since ∇ϕ(y) ∈ Ran(B) for any given y ∈ �2n , from the properties of the
CG algorithm [41, Theorem 38.1], we know that for all j ≥ 0, d j ∈ Ran(B). Thus,
{y j } ⊆ Ran(B). All the other results follow directly from [45, Theorem 3.4]. �

Next, we state a theorem on the convergence rate of Algorithm Ssncg1. We shall
omit the proof here as it can be proved in the same fashion as [45, Theorem 3.5].

Theorem 3 Let ȳ be an accumulation point of the infinite sequence {y j } generated
by Algorithm Ssncg1 for solving problem (15). Assume that the following constraint
nondegeneracy condition

B lin(TC (Ĝ)) = Ran(B) (21)

123

430 X. Li et al.

holds at Ĝ := �C (B∗ ȳ + G), where lin(TC (Ĝ)) denotes the lineality space of the
tangent cone of C at Ĝ. Then, the whole sequence {y j } converges to ȳ and

‖y j+1 − ȳ‖ = O(‖y j − ȳ‖1+τ).

Remark 2 In fact, given the piecewise linear-quadratic structure in problem (15), the
results given in [12] and [39] further imply that ourAlgorithmSsncg1with theNewton
linear systems (20) solved exactly can enjoy a finite termination property. Therefore,
we can expect to obtain an approximate solution to (12) through Algorithm Ssncg1
with the error on the order of the machine precision (provided the rounding errors
introduced by the intermediate computations are not amplified significantly).

3.1 Efficient implementations

In our implementation of Algorithm Ssncg1, the key part is to solve the linear system
(20) efficiently. Note that a similar linear system is also involved in the calculation
of the HS-Jacobian in (14). Here, we propose to use the conjugate gradient method
to solve (20). In this subsection, we shall discuss the efficient implementation of the
corresponding matrix vector multiplications.

Let

V := B Diag(vec(�))BT ∈ �2n×2n,

where B ∈ �2n×n2 denotes the matrix representation of B with respect to the standard
basis of �n×n and �2n and � is given in (19). Given ε ≥ 0, we shall focus on the
following linear system

(V + ε I2n)d = r . (22)

Here, r ∈ �2n is a given vector. At the first glance, the cost of computing the matrix-
vector multiplication Vd for a given vector d ∈ �2n would be very expensive when
the dimension n is large. Fortunately, the matrix B has a special structure which we
can exploit to derive a closed form formula for V . Indeed, we have that

B =
[
eT ⊗ In
In ⊗ eT

]
,

where “⊗” denotes the Kronecker product. Therefore, we can derive the closed form
representation of V as follows:

V =
[
Diag(�e) �

(�)T Diag((�)T e)

]
.

Now it is clear that the computational cost of Vd is only of the order O(n2). Fur-
thermore, from the 0-1 structure of � and a close examination of the sparsity of �,
it is not difficult to show that the computational cost of Vd can further be reduced to
min

{
O(γ + n),O(n2 − γ + n)

}
, where γ is the number of nonzero elements in �.

Following the terminology used in [24], this sparsity will be referred to as the second

123

On the efficient computation of a generalized Jacobian of… 431

order sparsity of the underlying projection problem. Similar as is shown in [24], this
second order sparsity is the key ingredient for our efficient implementation of Algo-
rithm Ssncg1. Meanwhile, from the above representation of V , we can construct a
simple preconditioner for the coefficient matrix in (22) as follows

V̂ := Diag([eT (�)T eT�]T) + ε I2n .

Clearly, V̂ will be a good approximation for V + ε I2n when � is a sparse matrix.

4 Quadratic programming problems with Birkhoff polytope
constraints

As a demonstration on how one can take advantage of the efficient computation of the
projection �Bn and its HS-Jacobian presented in the last section, here we show how
such an efficient computation can be employed in the design of efficient algorithms
for solving the following convex quadratic programming problem:

(P) min

{
f (X) := 1

2
〈X , QX〉 + 〈G, X〉 + δBn (X)

}
,

where Q : �n×n → �n×n is a self-adjoint positive semidefinite linear operator,
G ∈ �n×n is a given matrix, δBn is the indicator function of Bn . Its dual problem in
the minimization form is given by

(D) min

{
δ∗
Bn

(Z) + 1

2
〈W , QW 〉 | Z + QW + G = 0, W ∈ Ran(Q)

}
,

where Ran(Q) denotes the range space ofQ and δ∗
Bn

is the conjugate of the indicator
function δBn . Similar to the subspace constraint y ∈ Ran(B) in problem (15), the con-
straint W ∈ Ran(Q) ensures the boundedness of the solution set of (D). Specifically,
under this subspace constraint, sinceBn is a compact set with a nonempty interior, we
know that both the primal and dual optimal solution sets are nonempty and compact.
In addition, the fact thatQ is positive definite on Ran(Q) further implies that problem
(D) has a unique optimal solution (Z∗,W ∗) ∈ �n×n × Ran(Q).

Equipped with the efficient solver (Ssncg1 developed in the last section) for com-
puting �Bn (·), it is reasonable for us to use a simple first order method to solve (P)
and (D). For example, one can adapt the accelerated proximal gradient (APG) [2,29]
method to solve (P) and the classic two block alternating direction method of multi-
pliers [14,15] method with the step-length of 1.618 to solve (D). However, these first
order methods may encounter stagnation difficulties or suffer from extremely slow
local convergence, especially when one is searching for high accuracy solutions for
(P) and (D). In order to be competitive against state-of-the-art interior point method
basedQP solvers such as those implemented in Gurobi, here we propose a semismooth
Newton based augmented Lagrangian method for solving (D), wherein we show how
one can take full advantage of the efficient computation of�Bn (·) and its HS-Jacobian
to design a fast algorithm.

Here, the main reason for using the dual ALM approach is that the subproblem in
each iteration of the dual ALM is a strongly convex minimization problem. Armed

123

432 X. Li et al.

with this critical property, as will be shown in Theorem 5 and Remark 4, one can
naturally apply the inexact semismooth Newton-CG method to solve a reduced prob-
lem in the variable W ∈ Ran(Q) ⊂ Sn and the SSNCG method is guaranteed to
converge superlinearly (or even quadratically if the inexact direction is computed
with high accuracy). In contrast, if one were to apply the ALM to the primal prob-
lem, min{ 12 〈X , QX〉 + 〈G, X〉 + δBn (X)}, one would first introduce the constraint
X−Y = 0 tomake the terms in the objective function separable, i.e.,min{ 12 〈X , QX〉+
〈G, X〉 + δBn (Y) | X − Y = 0}. Then the corresponding reduced subproblem at the
kth iteration of the primal ALM approach would take the following form:

min
{
φk(X) := 1

2
〈X , QX〉 + 〈G, X〉 + σ

2
‖(X + σ−1�k)

−�Bn (X + σ−1�k)‖2 | X ∈ Sn
}
,

where�k denotes the multiplier corresponding to the constraint X−Y = 0. However,
for this reduced subproblem in the variable X ∈ Sn , the objective function is not
necessarily strongly convex whenQ is singular (especially for the extreme case when
Q = 0). Therefore, the SSNCG method applied to this reduced subproblem in X may
not have superlinear linear convergence.

Given σ > 0, the augmented Lagrangian function associated with (D) is given as
follows:

Lσ (Z ,W ; X) = δ∗
Bn

(Z) + 1

2
〈W , QW 〉 − 〈X , Z + QW+G〉+σ

2
‖Z+QW+G‖2,

where (Z ,W , X) ∈ �n×n ×Ran(Q)×�n×n . The augmented Lagrangian method for
solving (D) has the following template. In the algorithm, the notation σk+1 ↑ σ∞ ≤ ∞
means that σk+1 ≥ σk and the limit of {σk}, denoted as σ∞, can be some constant
finite number or ∞. As one can observed later in Theorem 4, the global convergence
of Algorithm ALM can be obtained without requiring σ∞ = ∞.

Algorithm ALM: An augmented Lagrangian method for solving (D).

Let σ0 > 0 be a given parameter. Choose (W 0, X0) ∈ Ran(Q) × �n×n and Z0 ∈
dom(δ∗

Bn
). For k = 0, 1, . . ., perform the following steps in each iteration:

Step 1. Compute

(Zk+1,Wk+1) (23)

≈ argmin
{
�k(Z ,W) := Lσk (Z ,W ; Xk) | (Z ,W) ∈ �n×n × Ran(Q)

}
.

Step 2. Compute

Xk+1 = Xk − σk(Z
k+1 + QWk+1 + G). (24)

Update σk+1 ↑ σ∞ ≤ ∞.

123

On the efficient computation of a generalized Jacobian of… 433

We shall discuss first the stopping criteria for approximately solving subproblem
(23). For any k ≥ 0, define

fk(X) = −1

2
〈X , QX〉 − 〈X , G〉 − 1

2σk
‖X − Xk‖2, ∀X ∈ �n×n .

Note that fk(·) is in fact the objective function in the dual problem of (23). Let {εk}
and {δk} be two given positive summable sequences. Given Xk ∈ �n×n , we propose
to terminate solving the subproblem (23) with either one of the following two easy-
to-check stopping criteria:

(A)

{
�k(Z

k+1,Wk+1) − fk(X
k+1) ≤ ε2k/2σk,

γ (Xk+1) ≤ αkεk/
√
2σk,

(B)

{
�k(Z

k+1,Wk+1) − fk(X
k+1) ≤ δ2k‖Xk+1 − Xk‖2/2σk,

γ (Xk+1) ≤ βkδk‖Xk+1 − Xk‖/√2σk,

where γ (Xk+1) := ‖Xk+1 − �Bn (X
k+1)‖,

αk = min

{
1,

√
σk,

εk√
2σk‖∇ fk(Xk+1)‖

}

and βk = min

{
1,

√
σk,

δk‖Xk+1 − Xk‖√
2σk‖∇ fk(Xk+1)‖

}
.

From [9, Proposition 4.3] and [23, Lemma 2.2], criteria (A) and (B) can be used in
ALM to guarantee the global and local convergence of ALM. Indeed, from J. Sun’s
thesis [40] on the investigation of the subdifferentials of convex piecewise linear-
quadratic functions, we know that ∂ f is a polyhedral multifunction (see also [38,
Proposition 12.30]). The classic result of Robinson [34] on polyhedral multifunctions
further implies that Luque’s error bound condition [27, (2.1)] associated with ∂ f is
satisfied, i.e., there exist positive constants δ and κ such that

dist(z, ∂ f −1(0)) ≤ κ‖u‖, ∀ z ∈ ∂ f −1(u), ∀ ‖u‖ ≤ δ. (25)

Thus we can prove the global and local (super)linear convergence of Algorithm
ALM by adapting the proofs in [37, Theorem 4], [27, Theorem 2.1] and [9, Theorem
4.2]. The next theorem shows that for the convex QP problem (P), one can always
expect the KKT residual of the sequence generated by the ALM to converge at least
R-(super)linearly.

Let the objective function g : �n×n ×Ran(Q) → (−∞,+∞] associated with (D)
be given by

g(Z ,W) := δ∗
Bn

(Z) + 1

2
〈W , QW 〉, ∀ (Z ,W) ∈ �n×n × Ran(Q).

Theorem 4 The sequence {(Zk,Wk, Xk)} generated by Algorithm ALM under the
stopping criterion (A) for all k ≥ 0 is bounded, and {Xk} converges to an optimal

123

434 X. Li et al.

solution X∞ of (P). In addition, {(Zk,Wk)} converges to the unique optimal solution
of (D). Moreover, for all k ≥ 0, it holds that

g(Zk+1,Wk+1) − inf (D)

≤ �k(Z
k+1,Wk+1) − inf �k + (1/2σk)(‖Xk‖2 − ‖Xk+1‖2).

Let � be the nonempty compact optimal solution set of (P). Suppose that the algo-
rithm is executed under criteria (A) and (B) for all k ≥ 0. Then, for all k sufficiently
large, it holds that

dist(Xk+1,�) ≤ θkdist(X
k,�),

‖Zk+1 − QWk+1 − G‖ ≤ τkdist(X
k,�),

g(Zk+1,Wk+1) − inf (D) ≤ τ ′
kdist(X

k,�),

where 0 ≤ θk, τk, τ
′
k < 1 and θk → θ∞ = κ/

√
κ2 + σ 2∞, τk → τ∞ = 1/σ∞ and

τ ′
k → τ ′∞ = ‖X∞‖/σ∞ with κ given in (25). Moreover, θ∞ = τ∞ = τ ′∞ = 0 if

σ∞ = ∞.

Remark 3 We also note that if the ALM is used to solve an equivalent reformulation
of the primal form of (P) and the corresponding subproblems are solved exactly, then
the global linear convergence of a certain constraint norm to zero can be established
via using the results developed in [7,10].

Next, we shall discuss how to solve the subproblems (23) efficiently. Given σ > 0
and X̂ ∈ �n×n , since Lσ (Z ,W ; X̂) is strongly convex on �n×n × Ran(Q), we
have that, for any α ∈ �, the level set Lα := {(Z ,W) ∈ �n×n × Ran(Q) |
Lσ (Z ,W ; X̂) ≤ α} is a closed and bounded convex set. Moreover, the optimization
problem

min
{
Lσ (Z ,W ; X̂) | (Z ,W) ∈ �n×n × Ran(Q)

}
(26)

admits a unique optimal solution, which we denote as (Z ,W) ∈ �n×n × Ran(Q).
Define

ψ(W) := inf
Z
Lσ (Z ,W ; X̂) and Z(W) := X̂ − σ(QW + G), ∀W ∈ Ran(Q).

It is not difficult to see that infW∈Ran(Q) ψ(W) = inf Z ,W∈Ran(Q) Lσ (Z ,W ; X̂) and

σ−1(Z(W) − �Bn (Z(W))
) = argmin

Z
Lσ (Z ,W ; X̂), ∀W ∈ Ran(Q).

Therefore, (Z ,W) solves the minimization problem (26) if and only if

W = argmin {ψ(W) | W ∈ Ran(Q)} ,

Z = σ−1(Z(W) − �Bn (Z(W))
) = argmin

Z
Lσ (Z ,W ; X̂). (27)

123

On the efficient computation of a generalized Jacobian of… 435

Simple calculations show that for all W ∈ Ran(Q),

ψ(W) = 1

2
〈W , QW 〉 + 1

σ
〈Z(W), �Bn (Z(W))〉 − 1

2σ
(‖�Bn (Z(W))‖2 + ‖X̂‖2).

Note that ψ is strongly convex and continuously differentiable on Ran(Q) with

∇ψ(W) = QW − Q�Bn (Z(W)).

Thus, W , the optimal solution of (27), can be obtained through solving the following
nonsmooth piecewise affine equation:

∇ψ(W) = 0, W ∈ Ran(Q).

Given Ŵ , define the following linear operator M : �n×n → �n×n by

M(�W) := (Q + σQPQ)�W , ∀�W ∈ �n×n,

whereP is the HS-Jacobian of�Bn at Z(Ŵ) as given in (14) and it is self-adjoint and
positive semidefinite. Moreover, sinceQ is self-adjoint and positive definite on RanQ,
it follows that M is also self-adjoint and positive definite on RanQ. Similarly as in
Sect. 3, we propose to solve the subproblem (27) by an inexact semismooth Newton
method and M will be regarded as a computable generalized Hessian of ψ at Ŵ .

Algorithm Ssncg2: A semismooth Newton-CG algorithm for solving (27).

Given μ ∈ (0, 1/2), η̄ ∈ (0, 1), τ ∈ (0, 1], and δ ∈ (0, 1), choose W 0 ∈ Ran(Q).
Iterate the following steps for j = 0, 1, . . . :
Step 1. Let M j := Q + σQP jQ where P j is the HS-Jacobian of �Bn at Z(W j)

given in (14). Apply the CG algorithm to find an approximate solution dW j to the
following linear system

M j dW + ∇ψ(W j) = 0, dW ∈ Ran(Q) (28)

such that

‖M j dW
j + ∇ψ(W j)‖ ≤ min(η̄, ‖∇ψ(W j)‖1+τ).

Step 2. (Line search) Set α j = δm j , where m j is the first nonnegative integer m for
which

ψ(W j + δmdW j) ≤ ψ(W j) + μδm〈∇ψ(W j), dW j 〉.

Step 3. Set W j+1 = W j + α j dW j .

123

436 X. Li et al.

Similar to Theorem 2 and Theorem 3, it is not difficult to obtain the following
theorem on the global and local superlinear (quadratic) convergence for the above
Algorithm Ssncg2. Its proof is omitted for brevity.

Theorem 5 Let {W j } be the infinite sequence generated by Algorithm Ssncg2. Then
{W j } converges to the unique optimal solution W ∈ Ran(Q) to problem (27) and

‖W j+1 − W‖ = O(‖W j − W‖1+τ).

Remark 4 Note that in the above theorem, sinceQ is positive definite on Ran(Q), we
know that for each j ≥ 0, M j is also positive definite on Ran(Q). Therefore, we do
not need any nondegeneracy condition assumption here as is required in Theorem 3.

Remark 5 The restriction of dW ∈ Ran(Q) appears to introduce severe numerical
difficulties whenwe need to solve (28). Fortunately, we can overcome these difficulties
via a careful examination of our algorithm and some numerical techniques. Indeed,
at the j th iteration of Algorithm Ssncg2, instead of dealing with (28), we propose to
solve the following simpler linear system

(I + σPQ)dW = �Bn (Z(W j)) − W j , (29)

where I is the identity operator defined on �n×n . Then, the approximate solution
to (29) can be safely used as a replacement of dW j in the execution of Algorithm
Ssncg2. We omit the details here for brevity. Interested readers may refer to Sect. 4
in [23] for a detailed discussion on why this procedure is legitimate.

Remark 6 At the kth iteration of Algorithm ALM, given Xk and σk , we first obtain
Wk+1 via executing Algorithm Ssncg2. Then, we have that

Zk+1 = σ−1
k (Xk − σk(QWk+1 + G) − �Bn (X

k − σk(QWk+1 + G))).

Therefore, it is easy to see that the multiplier update step (24) in Algorithm ALM can
be equivalently recast as:

Xk+1 = Xk − σk(Z
k+1 + QWk+1 + G) = �Bn (X

k − σk(QWk+1 + G)).

5 Numerical experiments

In this section, we evaluate the performance of our algorithms from various aspects.
We have implemented all our algorithms in Matlab. Unless otherwise specifically
stated, all our computational results are obtained from a 12-core workstation with Intel
Xeon E5-2680 processors at 2.50GHz and 128GB memory. The experiments are run
in Matlab 8.6 and Gurobi 6.5.2 [16] (with an academic license) under the 64-bit
Windows Operating System. It is well known that Gurobi is an extremely powerful
solver for solving generic quadratic programming problems. It is our view that any
credible algorithms designed for solving a specialized class of QP problems should be
benchmarked against Gurobi and be able to demonstrate its advantage over Gurobi.
But we should note that as a general QP solver, Gurobi does not necessarily fully

123

On the efficient computation of a generalized Jacobian of… 437

exploit the specific structure of the Birkhoff polytope, although it can fully exploit the
sparsity of the constraint matrices and variables.

5.1 Numerical results for the projection onto the Birkhoff polytope

First we compare our Algorithm Ssncg1 with the state-of-the-art solver, Gurobi, for
solving large scale instances of the projection problems (12) and its dual (15). Note
that dual problem (15) is an unconstrained smooth convex optimization problem. For
solving such a problem, the accelerated proximal gradient (APG) method of Nesterov
[29] has become very popular due to its simplicity in implementation and strong
iteration complexity. As it is a very natural method for one to adopt in the first attempt
to solve (15), we also implement the APG method for solving (15) for comparison
purposes.

Recall from (15) that C = {X ∈ �n×n | X ≥ 0} and define the function h :
�n×n → � by h(Z) = 1

2‖�C (Z)‖2. Note that

∇h(Z) = �C (Z) and ‖∇h(Y) − ∇h(Z)‖ ≤ ‖Y − Z‖, ∀Y , Z ∈ �n×n .

Given ŷ ∈ �2n , the Lipschitz continuity of ∇h implies that for all y ∈ �2n ,

1

2
‖�C (B∗y + G)‖2 ≤ 1

2
‖�C (B∗ ŷ + G)‖2

+〈�C (B∗ ŷ + G), B∗(y − ŷ)〉 + 1

2
‖B∗(y − ŷ)‖2.

From the above inequality, we can derive the following simple upper bound for ϕ:

ϕ(y) ≤ ϕ̂(y; ŷ) := ϕ(ŷ) + 〈∇ϕ(ŷ), y − ŷ〉 + 1

2
‖B∗y − B∗ ŷ‖2, ∀ y ∈ �2n . (30)

The APG method we implemented here is based on (30). The detailed steps of the
APG method for solving (15) are given as follows.

Algorithm APG: An accelerated proximal gradient algorithm for (15).

Given y0 ∈ Ran(B), set z1 = y0 and t1 = 1. For j = 1, . . . , perform the following
steps in each iteration:

Step 1. Compute ∇ϕ(z j) = B�C (B∗z j + G) − b. Then compute

y j = argmin
{
ϕ̂(y; z j) | y ∈ Ran(B)

}

via solving the following linear system:

BB∗y = BB∗z j − ∇ϕ(z j), y ∈ Ran(B). (31)

Step 2. Set t j+1 = 1+
√
1+4t2j
2 , β j = t j−1

t j+1
. Compute z j+1 = y j + β j (y j − y j−1).

123

438 X. Li et al.

Note that since b ∈ Ran(B), the solution y j ∈ Ran(B) to equation (31) is in fact
unique. Hence, Algorithm APG is well defined. In our implementation, we further use
the restarting technique to accelerate the convergence of the algorithm.

In our numerical experiments, we measure the accuracy of an approximate optimal
solution (X , y) for problem (12) and its dual problem (15) by using the following
relative KKT residual:

η = max{ηP , ηC },

where

ηP = ‖BX − b‖
1 + ‖b‖ , ηC = ‖X − �C (B∗y + G)‖

1 + ‖X‖ .

We note that for the Gurobi solver, the primal infeasibility ηP associated with the
computed approximate solution is usually very small. On the other hand, for Algo-
rithm Ssncg1 and Algorithm APG, since the solution X is obtained through the dual
approach, i.e., X = �C (B∗y + G), we have that for these two algorithms, ηC = 0.

Let ε > 0 be a given tolerance. We terminate both algorithms Ssncg1 and APG
when η < ε. The algorithms will also be stopped when they reach the maximum
number of iterations (1000 iterations for Ssncg1 and 20,000 iterations for APG) or
the maximum computation time of 3 h. For the Gurobi solver, we use the default
parameter settings, i.e., using the default stopping tolerance and all 12 computing
cores.

In this subsection, we test 17 instances of the given matrix G for (12) with dimen-
sions n ranging from 103 to 3.2 × 104. Among these test instances, 6 of them are
similarity matrices derived from the LIBSVM datasets [6]: gisette,mushrooms, a6a,
a7a, rcv1 and a8a. Similarly as in [43], we first normalize each data point to have a
unit l2-norm and use the following Gaussian kernel to generate G, i.e.,

Gi j = exp
(
−‖xi − x j‖2

)
, ∀ 1 ≤ i, j ≤ n.

The other 11 instances are randomly generated using the Matlab command: G =
randn(n).

In Table 1, we report the numerical results obtained by Ssncg1, APG and Gurobi
in solving various instances of the projection problem (12). Here, we terminate
algorithms APG and Ssncg1 when η < 10−9. In order to further demonstrate the
ability of Ssncg1 in computing highly accurate solutions, we also report the results
obtained by Ssncg1 in solving the instances to the accuracy of 10−15. In the table,
the first two columns give the name of problems and the size of G in (12). The num-
ber of iterations, the relative KKT residual η and computation times (in the format
hours:minutes:seconds) are listed in the last twelve columns. For Gurobi, we also list
the relative primal feasibility ηP . As one can observe, although Gurobi can produce a
very small ηP , the corresponding relative KKT residual η can only reach the accuracy
about 10−5 to 10−6. In other words, comparing to Gurobi, the solutions produced by
Ssncg1 and APG with the tolerance of ε = 10−9 are already more accurate.

123

On the efficient computation of a generalized Jacobian of… 439

Ta
bl
e
1

T
he

pe
rf
or
m
an
ce

of
Ss

n
cg

1,
A
PG

,
an
d
G
ur
ob

i
on

th
e
pr
oj
ec
tio

n
pr
ob

le
m

(1
2)

an
d
its

du
al

(1
5)
.I
n
th
e
ta
bl
e,

“a
”
an
d
“c
1”

st
an
d
fo
r
A
PG

an
d
Ss

n
cg

1
w
ith

th
e

to
le
ra
nc
e

ε
=

10
−9

;
“b
”
st
an
ds

fo
r
G
ur
ob

i;
“c
2”

st
an
ds

fo
r
Ss

n
cg

1
w
ith

ε
=

10
−1

5
.
T
he

en
tr
y
“*
”
in
di
ca
te
s
ou

t
of

m
em

or
y.

T
he

co
m
pu

ta
tio

n
tim

e
is
in

th
e
fo
rm

at
of

“h
ou
rs
:m

in
ut
es
:s
ec
on
ds
”

It
er

η
T
im

e

pr
ob

le
m

n
a

|b
|c
1

|c
2

a
|b

(η
P
)
|c
1

|c
2

a
|b

|c
1

|c
2

ra
nd

1
10

00
13

50
|1

5
|1

2
|1

3
9.
7–

10
|4

.1
–5

(1
.2
–1

5)
|8

.7
–1

2
|5

.2
–1

6
18

|0
6

|0
1

|0
1

ra
nd

2
20

00
26

30
|1

7
|1

3
|1

4
9.
9–

10
|2

.4
–5

(1
.5
–1

5)
|4

.4
–1

2
|4

.5
–1

6
2:
21

|3
1

|0
2

|0
2

ra
nd

3
40

00
35

44
|2

1
|1

4
|1

5
9.
9–

10
|8

.4
–6

(2
.5
–1

5)
|2

.2
–1

3
|4

.1
–1

6
12

:3
1

|2
:3
0

|0
7

|0
8

ra
nd

4
80

00
64

54
|2

5
|1

4
|1

6
9.
9–

10
|2

.3
–6

(1
.8
–1

4)
|4

.2
–1

0
|4

.3
–1

6
1:
30

:0
5

|1
3:
02

|2
7

|3
4

ra
nd

5
10

00
0

82
34

| 2
5

|1
4

|1
6

3.
1–

7
|6

.2
–6

(3
.4
–1

5)
|8

.6
–1

1
|4

.5
–1

6
3:
00

:0
0

|2
1:
27

|4
4

|5
8

ra
nd

6
12

00
0

55
65

|2
5

|1
5

|1
7

2.
6–

4
|4

.6
–6

(3
.8
–1

5)
|2

.0
–1

1
|4

.6
–1

6
3:
00

:0
0

|3
3:
31

|1
:1
4

|1
:3
3

ra
nd

7
16

00
0

30
61

|∗
|1

5
|1

6
1.
6–

3
|

∗
|3

.7
–1

2
|5

.9
–1

6
3:
00

:0
2

|
∗

|2
:2
6

|2
:5
5

ra
nd

8
20

00
0

16
46

|∗
|1

6
|1

7
6.
8–

3
|

∗
|1

.7
–1

1
|9

.5
–1

6
3:
00

:0
7

|
∗

|4
:0
8

|4
:4
5

ra
nd

9
24

00
0

10
14

|∗
|1

6
|1

7
1.
9–

2
|

∗
|2

.9
–1

3
|4

.9
–1

6
3:
00

:0
4

|
∗

|6
:1
4

|7
:1
5

ra
nd

10
30

00
0

62
2

|∗
|1

6
|1

7
4.
9–

2
|

∗
|3

.8
–1

2
|5

.9
–1

6
3:
00

:1
4

|∗
|9

:5
3

|1
2:
01

ra
nd

11
32

00
0

55
9

|∗
|1

6
|1

8
6.
3–

2
|

∗
|2

.0
–1

1
|4

.8
–1

6
3:
00

:1
7

|∗
|1

1:
57

|1
4:
10

gi
se
tte

60
00

92
8

|2
4

|1
1

|1
2

9.
8–

10
|3

.3
–6

(2
.5
–1

5)
|9

.1
–1

2
|6

.5
–1

6
7:
19

|6
:5
8

|1
4

|1
6

m
us
hr
oo

m
s

81
24

76
3

|2
0

|1
1

|1
3

9.
8–

10
|9

.5
–5

(4
.8
–1

5)
|2

.8
–1

0
|1

.9
–1

6
11

:0
7

|1
1:
58

|2
7

|3
2

a6
a

11
22

0
12

27
|2

6
|1

3
|1

4
9.
9–

10
|4

.7
–6

(4
.0
–1

5)
|5

.4
–1

2
|3

.8
–1

6
34

:2
9

|3
1:
21

|5
9

|1
:0
3

a7
a

16
10

0
13

77
|∗

|1
4

|1
5

9.
9–

10
|

∗
|7

.5
–1

3
| 2

.9
–1

6
1:
28

:1
4

|
∗

|2
:1
4

|2
:3
4

rc
v1

20
24

2
15

83
|∗

|1
7

|1
8

1.
3–

6
|

∗
|2

.0
–1

2
|1

.9
–1

6
3:
00

:0
3

|
∗

|4
:3
3

|5
:0
2

a8
a

22
69

6
13

30
|∗

|1
4

|1
6

2.
7–

4
|

∗
|9

.7
–1

0
|2

.5
–1

6
3:
00

:0
3

|
∗

|5
:1
2

|6
:1
5

123

440 X. Li et al.

One can also observe from Table 1 that only our algorithm Ssncg1 can solve all
the test problems to the required accuracies of η < 10−9 and η < 10−15. Indeed,
APG can only solve 8 smaller instances out of 17 to the desired accuracy after 3 h and
Gurobi reported out of memory when the size of G is larger than 12,000. Moreover,
Ssncg1 is much faster than APG and Gurobi for all the test instances. For example,
for the instance rand4, Ssncg1 is at least 26 times faster than Gurobi and 180 times
faster than APG. In addition, Ssncg1 can solve rand11, a quadratic programming
problem with over 1 billion variables and nonnegative constraints, to the extremely
high accuracy of 5×10−16 in about 14minwhile APG consumed 3 h to only produce a
solution with an accuracy of 6×10−2. We also emphasize here that from the accuracy
of 10−9 to the much higher accuracy of 10−15, Ssncg1 only needs one or two extra
iterations and consumes insignificant additional time. The latter observation truly
confirmed the power of the quadratic (or at least superlinear) convergence property of
Algorithm Ssncg1 and the power of exploiting the second order sparsity property of
the underlying projection problem within the algorithm.

Since the worst-case iteration complexity of APG is only sublinear, it is not sur-
prising that the performance of APG is relatively poor compared to Ssncg1. We also
note that comparing to small scale problems, APG needs much more iterations to
obtain relatively accurate solutions for large scale problems. For example, for the
instance rand6, APG took 3 h and 5565 iterations to only generate a relatively inac-
curate solution with an accuracy of 3 × 10−4. Despite this, for small scale instances
(especially the instances gisette, mushrooms and a6a), APG, although much slower
than Ssncg1, can obtain accurate solutions with computation time comparable to the
powerful commercial solver Gurobi. Thus, as a first-order method, it is already quite
powerful.

Figure 1a plots the KKT residual η against the iteration count of Ssncg1 for solv-
ing the instance a8a. Clearly, our algorithm Ssncg1 exhibits at least a superlinear
convergence behavior when approaching the optimal solution. In Fig. 1b, we compare
the computational complexities of Ssncg1 and Gurobi when used to solve the 17
projection problems in Table 1. It shows that the time t (in s) taken to solve a problem
of dimension n is given by t = exp(−16)n2.1 for Ssncg1 and t = exp(−14)n2.3 for
Gurobi. One can further observe that on the average, for a given n in the range from
[exp(6), exp(11)], our algorithm is at least 7n0.2 times faster than Gurobi.

In Table 2, we report the detailed results obtained by our algorithm Ssncg1 and
a recently developed algorithm (called PPROJ) in [18]. PPROJ is an extremely fast
implementation of an algorithm which utilizes the sparse reconstruction by separable
approximation [44] and the dual active set algorithm (DASA).We used the code down-
loaded from the authors’ homepage2. Since PPROJ is implemented in C and it depends
on some C libraries for linear system solvers, we have to compile PPROJ under the
Linux system. Therefore, we compare the performance of Ssncg1 and PPROJ on the
high performance computing (HPC3) cluster at the National University of Singapore.
Due to the memory limit imposed for each user, we are only able to test instances with
the matrix dimensions less than 21,000. Default parameter values for PPROJ are used

2 https://www.math.lsu.edu/~hozhang/Software.html.
3 https://comcen.nus.edu.sg/services/hpc/about-hpc/.

123

https://www.math.lsu.edu/~hozhang/Software.html
https://comcen.nus.edu.sg/services/hpc/about-hpc/

On the efficient computation of a generalized Jacobian of… 441

0 3 6 9 12 15
iterations

-17

-14

-11

-8

-5

-2

1

4
lo
g 1

0(
η
)

Convergence behaviour (problem:a8a)

SSNCG1

6 7 8 9 10 11
Dimension: x = log(n)

-5

0

5

10

15

T
im

e:
y
=

lo
g(

t)

Complexities: Dimension VS. Time

SSNCG1
y = 2.1*x-16
Gurobi
y = 2.3*x-14

(a) (b)

Fig. 1 Performance evaluations of Ssncg1. a Convergence behaviour (problem:a8a). b Complexities:
dimension versus time

Table 2 The performance of
Ssncg1 and PPROJ on the
projection problems (12) and its
dual (15). In the table, “pp”
stands for PPROJ; “c2” stands
for Ssncg1 with ε = 10−15.
The computation time is in the
format of
“hours:minutes:seconds”

η Time

problem n pp | c2 pp | c2
rand1 1000 7.5–14 | 5.2–16 03 | 00
rand2 2000 2.9–12 | 4.4–16 07 | 02
rand3 4000 1.5–11 | 4.0–16 32 | 05
rand4 8000 4.0–13 | 4.3–16 2:32 | 22
rand5 10000 5.8–12 | 4.5–16 3:45 | 39
rand6 12000 1.6–12 | 4.7–16 5:31 | 59
rand7 16000 5.8–13 | 5.9–16 19:34 | 1:20
rand8 20000 4.3–13 | 9.5–16 34:01 | 2:10
gisette 6000 1.4–14 | 6.5–16 2:39 | 11
mushrooms 8124 6.9–7 | 2.0–16 16:22:46 | 21
a6a 11220 3.3–14 | 3.8–16 14:32 | 39
a7a 16100 3.7–14 | 2.9–16 43:53 | 1:21
rcv1 20242 1.3–13 | 1.9–16 2:01:32 | 2:19

during the experiments. Note that since the stopping criterion of PPROJ is slightly
different from ours, we report the accuracy measure η corresponding to the solutions
obtained by PPROJ. One can observe that, except the instance mushrooms, PPROJ
can obtain highly accurate solutions. In fact, we observe from the detailed output file of
PPROJ that it does not solve the instancemushrooms to the required accuracy while
spending excessive amount of time on the DASA in computing Cholesky factoriza-
tions. One can also observe from Table 2 that Ssncg1 is much faster than PPROJ,
especially for large scale problems. For example, for the instance rcv1, Ssncg1 is at
least 52 times faster than PPROJ. Therefore, one can safely conclude that Ssncg1 is
robust and highly efficient for solving projections problems over theBirkhoff polytope.
However, we should emphasize here that PPROJ is a solver aiming at computing the

123

442 X. Li et al.

projection onto a general polyhedral convex set and does not necessarily fully exploit
the specific structure of the Birkhoff polytope. In fact, it would be an interesting future
research topic to investigate whether PPROJ can take advantage of both the sparsity
of the constraint matrix B and the second order sparsity of the underlying problem to
further accelerate its performance.

5.2 Numerical results for quadratic programming problems arising from
relaxations of QAP problems

Given matrices A, B ∈ Sn , the quadratic assignment problem (QAP) is given by

min{〈X , AXB〉 | X ∈ {0, 1}n×n ∩ Bn},

where {0, 1}n×n denotes the set of matrices with only 0 or 1 entries. It has been shown
in [1] that a reasonably good lower bound for the above QAP can often be obtained
by solving the following convex QP problem:

min{〈X , QX〉 | X ∈ Bn}, (32)

where the self-adjoint positive semidefinite linear operator Q is defined by

Q(X) := AXB − SX − XT , ∀X ∈ �n×n,

and S, T ∈ Sn are given as follows. Consider the eigenvalue decompositions, A =
VADAV T

A , B = VBDBV T
B , where VA and DA = diag(α1, . . . , αn) correspond to the

eigenvectors and eigenvalues of A, and VB and DB = diag(β1, . . . , βn) correspond
to the eigenvectors and eigenvalues of B, respectively. We assume that α1 ≥ . . . ≥ αn

and β1 ≤ . . . ≤ βn . Let (s̄, t̄) be an optimal solution to the LP: max{eT s + eT t |
si + t j ≤ αiβ j , i, j = 1, . . . , n}, whose solution can be computed analytically as
shown in [1]. Then S = VAdiag(s̄)V T

A and T = VBdiag(t̄)V T
B . In our numerical

experiments, the test instances A and B are obtained from the QAP Library [5]. We
measure the accuracy of an approximate optimal solution X for problem (32) by using
the following relative KKT residual:

η = ‖X − �Bn (X − QX)‖
1 + ‖X‖ + ‖QX‖ .

Table 3 reports the performance of the ALM designed in Sect. 4 against Gurobi
in solving the QP (32). In the fourth and fifth columns of Table 3, “alm (itersub)”
denotes the number of outer iterations with itersub in the parenthesis indicating the
number of inner iterations of ALM. One can observe from Table 3 that our algorithm
is much faster than Gurobi, especially for large scale problems. For example, for the
instance tai150b, ALM only needs 13 s to reach the desired accuracy while Gurobi
needs about two and half hours. One can easily see that Algorithm ALM is highly
efficient because each of its subproblems can be solved by the powerful semismooth
Newton-CG algorithm Ssncg2 based on the efficient computations of �Bn and its

123

On the efficient computation of a generalized Jacobian of… 443

Table 3 The performance of ALM and Gurobi on the quadratic programming problems (32). In the table,
“gu” stands for Gurobi; “alm” stands for ALM (accuracy η < 10−7). The entry “*” indicates out ofmemory.
The computation time is in the format of “hours:minutes:seconds”. “00” in the time column means less
than 0.5 s

Iter η Time

problem n gu | alm (itersub) gu | alm gu | alm
lipa50a 50 11 | 21 (58) 1.8–6 | 7.3–8 11 | 01
lipa50b 50 11 | 17 (123) 2.2–6 | 5.0–8 11 | 05
lipa60a 60 11 | 19 (54) 1.4–6 | 6.7–8 30 | 01
lipa60b 60 11 | 18 (104) 1.7–6 | 9.9–8 29 | 05
lipa70a 70 11 | 19 (52) 1.7–6 | 6.0–8 1:17 | 01
lipa70b 70 11 | 19 (103) 1.4–6 | 6.0–8 1:20 | 06
lipa80a 80 11 | 25 (68) 1.3–6 | 7.3–8 2:46 | 01
lipa80b 80 12 | 18 (141) 6.3–7 | 9.3–8 2:52 | 14
lipa90a 90 11 | 20 (54) 2.7–6 | 8.8–8 5:32 | 01
lipa90b 90 12 | 19 (134) 5.5–7 | 2.5–8 5:46 | 15
sko100a 100 14 | 26 (95) 8.5–6 | 8.5–8 2:06 | 11
sko100b 100 14 | 27 (93) 8.3–6 | 7.9–8 2:06 | 10
sko100c 100 15 | 27 (93) 4.5–6 | 9.0–8 2:11 | 11
sko100d 100 15 | 26 (91) 4.8–6 | 8.8–8 2:06 | 10
sko100e 100 14 | 27 (98) 5.8–6 | 8.5–8 2:06 | 11
sko100f 100 16 | 27 (93) 6.1–6 | 9.6–8 2:15 | 09
sko64 64 13 | 27 (91) 7.3–6 | 9.0–8 13 | 04
sko72 72 13 | 26 (86) 8.1–6 | 7.6–8 22 | 04
sko81 81 14 | 26 (89) 4.4–6 | 7.6–8 43 | 06
sko90 90 14 | 26 (95) 4.4–6 | 7.8–8 43 | 08
tai100a 100 11 | 18 (52) 1.3–6 | 9.5–8 10:31 | 02
tai100b 100 11 | 27 (98) 1.3–6 | 9.1–8 10:31 | 13
tai50a 50 11 | 20 (55) 1.1–6 | 6.1–8 09 | 01
tai50b 50 13 | 25 (89) 5.9–6 | 8.5–8 10 | 03
tai60a 60 10 | 19 (54) 5.4–6 | 9.6–8 27 | 01
tai60b 60 10 | 28 (102) 5.4–6 | 6.6–8 27 | 06
tai80a 80 11 | 21 (59) 1.2–6 | 7.9–8 2:36 | 01
tai80b 80 11 | 27 (98) 1.2–6 | 8.5–8 2:36 | 07
tai256c 256 ∗ | 2 (4) ∗ | 2.1–16 ∗ | 00
tai150b 150 19 | 27 (94) 4.3–7 | 9.3–8 2:46:17 | 13
tho150 150 16 | 24 (96) 5.6–6 | 9.9–8 18:52 | 22
wil100 100 13 | 25 (82) 9.1–6 | 8.8–8 2:14 | 07
wil50 50 13 | 29 (99) 3.9–6 | 8.4–8 05 | 03
esc128 128 17 | 2 (4) 8.2–11 | 2.2–16 09 | 00

123

444 X. Li et al.

correspondingHS-Jacobian. Note that problem (32) is in fact a quadratic programming
with n2 variables. It is thus not surprising that the interior-point method based solver
Gurobi reports out of memory for problem tai265c with n = 256.

6 Conclusion

In this paper, we study the generalized Jacobians in the sense of Han and Sun [17]
of the Euclidean projector over a polyhedral convex set with an emphasis on the
Birkhoff polytope. A special element in the set of the generalized Jacobians, referred
as the HS-Jacobian, is successfully constructed. Armed with its simple and explicit
formula, we are able to provide a highly efficient procedure to compute the HS-
Jacobian. To ensure the efficiency of our procedure, a dual inexact semismoothNewton
method is designed and implemented to find the projection over the Birkhoff polytope.
Numerical comparisons between the state-of-the-art solvers Gurobi and PPROJ have
convincingly demonstrated the remarkable efficiency and robustness of our algorithm
and implementation. To further demonstrate the importance of the fast computations
of the projector and its corresponding HS-Jacobian, we also incorporate them in the
augmented Lagrangian method for solving a class of Birkhoff polytope constrained
convexQP problems. Extensive numerical experiments on a collection ofQP problems
arising from the relaxation of quadratic assignment problems show the large benefits
of our second order nonsmooth analysis based procedure.

Acknowledgements We would like to thank Professor Jong-Shi Pang at University of Southern California
for his helpful comments on an early version of this paper and the referees for helpful suggestions to improve
the quality of this paper.

References

1. Anstreicher, K.M., Brixius, N.W.: A new bound for the quadratic assignment problem based on convex
quadratic programming. Math. Program. 89, 341–357 (2001)

2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci. 2, 183–202 (2009)

3. Birkhoff, G.: Three observations on linear algebra. Universidad Nacional de Tucumán, Revista, Serie
A 5, 147–151 (1946)

4. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York
(2000)

5. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB—a quadratic assignment problem library. J. Glob.
Optim. 10, 391–403 (1997)

6. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst.
Technol. 2, 27:1–27:27 (2011)

7. Chiche, A., Gilbert, JCh.: How the augmented Lagrangian algorithm can deal with an infeasible convex
quadratic optimization problem. J. Convex Anal. 23, 425–459 (2016)

8. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
9. Cui, Y., Sun, D.F., Toh, K.-C.: On the asymptotic superlinear convergence of the augmented Lagrangian

method for semidefinite programming with multiple solutions (2016). arXiv:1610.00875
10. Delbos, F., Gilbert, JCh.: Global linear convergence of an augmented Lagrangian algorithm to solve

convex quadratic optimization problems. J. Convex Anal. 12, 45–69 (2005)
11. Dykstra, R.L.: An algorithm for restricted least squares regression. J. Am. Stat. Assoc. 78, 837–842

(1983)

123

http://arxiv.org/abs/1610.00875

On the efficient computation of a generalized Jacobian of… 445

12. Fischer, A., Kanzow, C.: On finite termination of an iterative method for linear complementarity
problems. Math. Program. 74, 279–292 (1996)

13. Fogel, F., Jenatton, R., Bach, F., d’Aspremont, A.: Convex relaxations for permutation problems. In:
Advances in Neural Information Processing Systems, pp. 1016–1024 (2013)

14. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite
element approximations. Comput. Math. Appl. 2, 17–40 (1976)

15. Glowinski, R., Marroco, A.: Sur approximation, par elements finis dordre un, et la resolution, par
penalisation-dualite, dune classe de problemes de Dirichlet non lineares. Revue Francaise dAutoma-
tique, Informatique et Recherche Operationelle 9(R–2), 41–76 (1975)

16. Optimization, I. Gurobi: Gurobi Optimizer Reference Manual (2016)
17. Han, J.Y., Sun, D.F.: Newton and quasi-Newton methods for normal maps with polyhedral sets. J.

Optim. Theory Appl. 94, 659–676 (1997)
18. Hager, W.W., Zhang, H.: Projection onto a polyhedron that exploits sparsity. SIAM J. Optim. 26,

1773–1798 (2016)
19. Higham, N.: Computing the nearest symmetric correlation matrix-a problem from finance. IMA J.

Numer. Anal. 22, 329–343 (2002)
20. Haraux, A.: How to differentiate the projection on a convex set in Hilbert space. Some applications to

variational inequalities. J. Math. Soc. Jpn. 29, 615–631 (1977)
21. Hiriart-Urruty, J.-B., Strodiot, J.-J., Nguyen, V.H.: Generalized Hessian matrix and second-order opti-

mality conditions for problems with C1,1 data. Appl. Math. Optim. 11, 43–56 (1984)
22. Jiang, B., Liu, Y.F., Wen, Z.W.: L p-norm regularization algorithms for optimization over permutation

matrices. SIAM J. Optim. 26, 2284–2313 (2016)
23. Li, X.D., Sun, D.F., Toh, K.-C.: QSDPNAL: a two-phase augmented Lagrangian method for convex

quadratic semidefinite programming. Math. Program. Comput. 10, 703–743 (2018)
24. Li, X.D., Sun, D.F., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method

for solving Lasso problems. SIAM J. Optim. 28, 433–458 (2018)
25. Lim, C.H., Wright, S.J.: Beyond the Birkhoff polytope: convex relaxations for vector permutation

problems. In: Advances in Neural Information Processing Systems, pp. 2168–2176 (2014)
26. Malick, J.: A dual approach to semidefinite least-squares problems. SIAM J. Matrix Anal. Appl. 26,

272–284 (2004)
27. Luque, F.J.: Asymptotic convergence analysis of the proximal point algorithm. SIAM J. Control Optim.

22, 277–293 (1984)
28. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control

Optim. 15, 959–972 (1977)
29. Nesterov, Y.: A method of solving a convex programming problem with convergence rate O(1/k2).

Sov. Math. Dokl. 27, 372–376 (1983)
30. Pang, J.-S.: Newton’s method for B-differentiable equations. Math. Oper. Res. 15, 311–341 (1990)
31. Pang, J.-S., Ralph, D.: Piecewise smoothness, local invertibility, and parametric analysis of normal

maps. Math. Oper. Res. 21, 401–426 (1996)
32. Qi, H., Sun, D.F.: A quadratically convergent Newton method for computing the nearest correlation

matrix. SIAM J. Matrix Anal. Appl. 28, 360–385 (2006)
33. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)
34. Robinson, S.M.: Some continuity properties of polyhedral multifunctions. In: Mathematical Program-

ming at Oberwolfach, vol. 14 of Mathematical Programming Studies, pp. 206–214 . Springer, Berlin
Heidelberg (1981)

35. Robinson, S.M.: Implicit B-differentiability in generalized equations. Technical Report #2854, Math-
ematics Research Center, University of Wisconsin, Madison (1985)

36. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
37. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex

programming. Math. Oper. Res. 1, 97–116 (1976)
38. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, New York (1998)
39. Sun, D.F., Han, J.Y., Zhao, Y.: On the finite termination of the damped-Newton algorithm for the linear

complementarity problem. Acta Math. Appl. Sin. 21, 148–154 (1998)
40. Sun, J.:OnMonotropic Piecewise Quadratic Programming. Ph.D. thesis, Department of Mathematics,

University of Washington (1986)
41. Trefethen, L.N., Bau III, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)

123

446 X. Li et al.

42. Von Neumann, J.: A certain zero-sum two-person game equivalent to an optimal assignment problem.
Ann. Math. Stud. 28, 5–12 (1953)

43. Wang, F., Li, P., Konig, A.C.: Learning a bi-stochastic data similarity matrix. In: 2010 IEEE 10th
International Conference on Data Mining (ICDM), pp 551–560

44. Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation.
IEEE Trans. Signal Process. 57, 2479–2493 (2009)

45. Zhao, X., Sun, D.F., Toh, K.-C.: A Newton-CG augmented Lagrangian method for semidefinite pro-
gramming. SIAM J. Optim. 20, 1737–1765 (2010)

Affiliations

Xudong Li1 · Defeng Sun2 · Kim-Chuan Toh3

Xudong Li
lixudong@fudan.edu.cn

Defeng Sun
defeng.sun@polyu.edu.hk

1 School of Data Science and Shanghai Center for Mathematical Sciences, Fudan University,
Shanghai, China

2 Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong
Kong

3 Department of Mathematics and Institute of Operations Research and Analytics, National
University of Singapore, 10 Lower Kent Ridge Road, Singapore, Singapore

123

http://orcid.org/0000-0003-0481-272X
http://orcid.org/0000-0001-7204-8933

	On the efficient computation of a generalized Jacobian of the projector over the Birkhoff polytope
	Abstract
	1 Introduction
	2 Generalized Jacobians of the projector over polyhedral convex sets
	3 Efficient procedures for computing ΠmathfrakBn(cdot) and its HS-Jacobian
	3.1 Efficient implementations

	4 Quadratic programming problems with Birkhoff polytope constraints
	5 Numerical experiments
	5.1 Numerical results for the projection onto the Birkhoff polytope
	5.2 Numerical results for quadratic programming problems arising from relaxations of QAP problems

	6 Conclusion
	Acknowledgements
	References

