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Abstract For a symmetric positive semidefinite linear system of equations Qx = b,
where x = (x1, ..., xy) is partitioned into s blocks, with s > 2, we show that each
cycle of the classical block symmetric Gauss—Seidel (sGS) method exactly solves the
associated quadratic programming (QP) problem but added with an extra proximal
term of the form %Hx —xk ||ZT, where 7 is a symmetric positive semidefinite matrix
related to the sGS decomposition of Q and x* is the previous iterate. By leveraging on
such a connection to optimization, we are able to extend the result (which we name as
the block sGS decomposition theorem) for solving convex composite QP (CCQP) with
an additional possibly nonsmooth term in xp, i.e., min{p(x1) + %(x, Ox) — (b, x)},
where p(-) is a proper closed convex function. Based on the block sGS decomposition
theorem, we extend the classical block sGS method to solve CCQP. In addition, our
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extended block sGS method has the flexibility of allowing for inexact computation in
each step of the block sGS cycle. At the same time, we can also accelerate the inexact
block sGS method to achieve an iteration complexity of O(1/k?) after performing
k cycles. As a fundamental building block, the block sGS decomposition theorem
has played a key role in various recently developed algorithms such as the inexact
semiproximal ALM/ADMM for linearly constrained multi-block convex composite
conic programming (CCCP), and the accelerated block coordinate descent method for
multi-block CCCP.

Keywords Convex composite quadratic programming - Block symmetric Gauss—
Seidel - Schur complement - augmented Lagrangian method

Mathematics Subject Classification 90C06 - 90C20 - 90C25 - 65F10

1 Introduction

It is well known that the classical block symmetric Gauss—Seidel (sGS) method [1,
15,17,34] can be used to solve a symmetric positive semidefinite linear system of
equations Qx = b where x = (xy; ...; xy) is partitioned into s blocks with s > 2. In
this paper, we show that each cycle of the classical block sGS method exactly solves the
corresponding convex quadratic programming (QP) problem but added with an extra
proximal term depending on the previous iterate (say x¥). Through such a connection
to optimization, we are able to extend the result (which we name as the block sGS
decomposition theorem) to convex composite QP (CCQP) with an additional possibly
nonsmooth term in x1, and subsequently extend the classical block sGS method to
solve CCQP. We can also extend the classical block sGS method to the inexact setting,
where the underlying linear system for each block of the new iterate x**! need not
be solved exactly. Moreover, by borrowing ideas in the optimization literature, we
are able to accelerate the classical block sGS method and provide new convergence
results. More details will be given later.

Assume that X; = R"% fori =1,...,s,and X = XA} x --- x X, where s > 2 is
a given integer. Consider the following symmetric positive semidefinite block linear
system of equations:

Ox =b, (D
where x = [x1; ...; x;] € X,b=1[by; ...; bg] € X, and
O11-.- Q15
9=| : : @)
T,s'-'Qx,x

with Q; ; € R" " for 1 < i, j < s.Itis well known that (1) is the optimality
condition for the following unconstrained QP:
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1
(QP) min [q(x) = Slr Qn = (b x) | x € X}. 3)

Note that even though our problem is phrased in the matrix-vector setting for con-
venience, one can consider the setting where each A; is a real n;-dimensional inner
product space and Q; ; is a linear map from A; to X;. Throughout the paper, we make
the following assumption:

Assumption 1 Q is symmetric positive semidefinite and each diagonal block Q; ; is
symmetric positive definite fori =1, ..., s.

From the following decomposition of O:

Q=U+D+U", 4)
where
0012... Ois 011
: 022
U= , D= . , ©)
Q 7]’ o
SO ' Qs,s

the classical block sGS iteration in numerical analysis is usually derived as a natural
generalization of the classical pointwise sGS for solving a symmetric positive definite
linear system of equations, and the latter is typically derived as a fixed-point iteration
for the sGS matrix splitting based on (4); see for example [34, Sect. 4.1.1], [17, Sect.
4.5]. Specifically, the block sGS fixed-point iteration in the third normal form (in the
terminology used in [17]) reads as follows:

Q! —xf) = b — Oxf, (©6)

where O = (D + U)D~1(D + U*).

In this paper, we give a derivation of the classical block sGS method (6) from the
optimization perspective. By doing so, we are able to extend the classical block sGS
method to solve a structured CCQP problem of the form:

1
(CCQP) min [ F(x) i= p(en) + 3. Qx) = (b x) | x = [vis...ix] € X},
)

where p : X1 — (—00, oo] is a proper closed convex function such as p(x1) = ||x1 |1
or p(x1) = 8pm (x1) (the indicator function of R defined by §pm (x1) = 0ifx; € R’
+ +
and dpr1 (x1) = oo otherwise). Our specific contributions are described in the next
+

few paragraphs. We note that the main results presented here are parts of the thesis of
the first author [25].

First, we establish the key result of the paper, the block sGS decomposition theo-
rem, which states that each cycle of the block sGS method, say at the kth iteration,
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corresponds exactly to solving (7) with an additional proximal term %||x — xk||%_Q
added to its objective function, i.e.,

1 1
min { pCr) + 3G, Qx) — (b, x) + 5 Ix =1, | x € X, ®)

where Tg = UD~'U*, and ||x||%-Q = (x, Tgox). It is clear that when p(-) = 0, the
problem (7) is exactly the QP (3) associated with the linear system (1). Therefore, we
can interpret the classical block sGS method as a proximal-point minimization method
for solving the QP (3), and each cycle of the classical block sGS method solves exactly
the proximal subproblem (8) associated with the QP (3). As far as we are aware of, this
is the first time in which the classical block sGS method (6) (and also the pointwise
sGS method) is derived from an optimization perspective.

Second, we also establish a factorization view of the block sGS decomposition
theorem and show its equivalence to the Schur complement based (SCB) reduction
procedure proposed in [24] for solving a recursively defined variant of the proximal
subproblem (8). The SCB reduction procedure in [24] is derived by inductively finding
an appropriate proximal term to be added to the objective function of (7) so that the
block variables x;, xs—1, ..., X2 can be eliminated in a sequential manner and thus
ending with a minimization problem involving only the variable x;. In a nutshell,
we show that the SCB reduction procedure sequentially eliminates the blocks (in the
reversed order starting from x;) in the variable x of the proximal subproblem (8) by
decomposing the proximal term %Hx —xk ||%-Q also in a sequential manner. In turn,
each of the reduction step corresponds exactly to one step in a cycle of the block sGS
method.

Third, based on the block sGS decomposition theorem, we are able to extend the
classical block sGS method for solving the QP (3) to solve the CCQP (7), and each
cycle of the extended block sGS method corresponds precisely to solving the proximal
subproblem (8). Our extension of the block sGS method has thus overcome the limita-
tion of the classical method by allowing us to solve the nonsmooth CCQP which often
arises in practice, for example, in semidefinite programming where p(x;) = 6811 (x1)

and S'_? is the cone of n1 x n; symmetric positive semidefinite matrices. Moreover,
our extension also allows the updates of the blocks to be inexact. As a consequence,
we also obtain an inexact version of the classical block sGS method, where the iterate
x¥*1 need not be computed exactly from (6). We should emphasize that the inexact
block sGS method is potentially very useful when a diagonal block, say Q; ;, in (2)
is large and the computation of xf.‘Jr] must be done via an iterative solver rather than
a direct solver. Note that even for the linear system (6), our systematic approach (in
Sect. 4) to derive the inexact extension of the classical block sGS method appears
to be new. The only inexact variant of the classical block sGS method for (6) with
a convergence proof we are aware of is the pioneering work of Bank et al. in [4]. In
[4], the authors showed that by modifying the diagonal blocks in D, the linear system
involved in each block can be solved by a given fixed number of pointwise sGS cycles.

Fourth, armed with the optimization interpretation of each cycle of the block sGS
method, it becomes easy for us to adapt ideas from the optimization literature to
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A block symmetric Gauss-Seidel decomposition theorem 399

establish the iteration complexity of O (||x° — x* HZQ / k) for the extended block sGS
method as well as to accelerate it to obtain the complexity of O (||x® —x*|| 2@ J(k+1)3),

after running for k cycles, where x* is an optimal solution for (7). We note that the
classical block sGS method for solving linear systems can be accelerated via semi-
iterative or variable extrapolation techniques; see [45] and [42, Chapter 5] for more
discussions. But these techniques do not appear to be applicable to the problem (CCQP)
when p = 0. Just as in the classical block sGS method, we can obtain a linear rate of
convergence for our extended inexact block sGS method under the assumption that Q
is positive definite. With the help of an extensive optimization literature on the linear
convergences of proximal gradient methods, we are further able to relax the positive
definiteness assumption on Q to a mild error bound assumption on the function F
in (7) and derive at least R-linear convergence results for our extended block sGS
method. The error bound assumption in fact holds automatically for many interesting
applications, including the important case when p(-) is a piecewise linear-quadratic
function [33,38]. We note that there is active research in studying the convergence of
proximal gradient methods for a convex composite minimization problem of the form
min{f(x) + g(x) | x € X}, with f being a smooth convex function and g a proper
closed convex function whose proximal map is easy to compute; see for example [35]
and the references therein. In each iteration of a typical proximal gradient method, a
simple proximal term %Hx — x||?, where L is a Lipschitz constant for the gradient of
f, is added to the objective function. Our extended block sGS method for (CCQP)
differs from those proximal gradient methods in the literature in that the proximal term
we add comes from the sophisticated positive semidefinite linear operator associated
with the sGS decomposition of Q.

Recent research works in [10,23,24,36,37] have shown that our block sGS decom-
position theorem for the CCQP (7) can play an essential role in the design of
efficient algorithms for solving various convex optimization problems such as con-
vex composite quadratic semidefinite programming problems. Indeed, the block sGS
decomposition based ADMM algorithms designed in [10,24,37] have found appli-
cations in various recent papers such as [2,3,7-9,13,22,46]. Leveraging on this sGS
decomposition theorem, Han, Sun and Zhang have recently established the linear rate
of convergence of multi-block sGS-ADMM in [18]. Our experiences have shown that
the inexact block sGS cycle can provide the much needed computational efficiency
when one is designing an algorithm based on the framework of the proximal augmented
Lagrangian (ALM) or proximal alternating direction method of multipliers (ADMM)
for solving important classes of large scale convex composite optimization problems.
As a concrete illustration of the application of our block sGS decomposition theorem,
we will briefly describe in Sect. 5 on how to utilize the theorem in the design of the
proximal augmented Lagrangian method for solving a linearly constrained convex
composite quadratic programming problem.

The idea of sequentially updating the blocks of a multi-block variable, either in the
Gauss—Seidel fashion or the successive over-relaxation (SOR) fashion, has been incor-
porated into quite a number of optimization algorithms [6] and in solving nonlinear
equations [30]. Indeed the Gauss—Seidel (also known as the block coordinate descent)
approach for solving optimization problems has been considered extensively; we refer
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400 X. Lietal.

the readers to [5,16] for the literature review on the recent developments, especially
for the case where s > 2. Here we would like to emphasize that even for the case of
an unconstrained smooth convex minimization problem min{f(x) | x € X'}, whose
objective function f(x) (not necessarily strongly convex) has a Lipschitz continuous
gradient of modulus L, it is only proven recently in [5] that the block coordinate (gradi-
ent) descent method is globally convergent with the iteration complexity of O (Ls/k)
after k cycles, where s is the number of blocks. We also note that recently there
are many advances in the study of randomized block coordinate descent methods,
for example [11,12,28,29,31,39,44], to name only a few. In particular, Fercoq and
Richtarik in [11,12] proposed a flexible and accelerated randomized coordinate gradi-
ent descent method with O (1/k?) iteration-complexity for solving convex composite
optimization problems. Also, an inexact version of the randomized block coordinate
descent method is recently developed in [39]. When f(x) is the quadratic function in
(3), the block coordinate descent method is precisely the classical block Gauss—Seidel
(GS) method. In contrast to the block sGS method, each cycle of the classical block
GS method does not appear to correspond to a proximal-point quadratic minimization
problem like the one in (8). Despite the extensive work on the Gauss—Seidel approach
for solving convex optimization problems, little is known about the symmetric Gauss—
Seidel approach for solving the same problems except for the recent paper [36] which
utilized our block sGS decomposition theorem to design an inexact accelerated block
coordinate descent method to solve a problem of the form min{p(x1)+ f(x) | x € X'}.

The remaining parts of the paper are organized as follows. The next section is
devoted to the block sGS decomposition theorem for the CCQP (7). In section 3,
we present a factorization view of the block sGS theorem and prove its equivalence
to the SCB reduction procedure proposed in [24,25]. In the following section, we
derive the block sGS method from an optimization perspective and extend it to solve
the CCQP (7). The convergence results for our extended block sGS method are also
presented in this section. In Sect. 5, the application of our block sGS decomposition
theorem is demonstrated in the design of a proximal augmented Lagrangian method for
solving a linearly constrained convex composite quadratic programming problem. The
extension of the classical block symmetric SOR method for solving (7) is presented
in Sect. 6. We conclude our paper in the final section.

We end the section by giving some notation. For a symmetric matrix Q, the notation
Q > 0(Q > 0) means that the matrix Q is symmetric positive semidefinite (definite).
The spectral norm of Q is denote by || Q||>.

2 Derivation of the block sGS decomposition theorem for (7)

In this section, we present the derivation of one cycle of the block sGS method for (7)
from the optimization perspective as mentioned in the introduction.
Recall the decomposition of Q in (4), U,D in (5) and the sGS linear operator
defined by
To =UD'U*. ©)

Given x € X, corresponding to problem (7), we consider solving the following sub-
problem
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1
x* = argmingcy { ) + () + Sk~ - (AL O] (10)

where §’, § € X are two given error vectors with 8’1 = 41, and
AW, 8) =8+UD (S —8). (11)

We note that the vectors &', 8 need not be known a priori. We should view xt as an
approximate solution to (10) without the perturbation term (x, A(§’, §)). Once x™ has
been computed, the associated error vectors can then be obtained, and x* is then the
exact solution to the perturbed problem (10).

The following theorem shows that x™ can be computed by performing exactly one
cycle of the block sGS method for (7). In particular, if p(x;) = 0 and §' = 0 = §,
then the computation of x™ corresponds exactly to one cycle of the classical block
sGS method. For the proof, we need to define the following notation for a given
X =(X1;...5%s),

X = (X5 ... X)), X<g=(x15...5%x), i=1,...,s.
We also define x>441 = @.

Theorem 1 (sGS Decomposition) Assume that Assumption 1 holds. Then, it holds
that
0:=0+Tg=D+UD ' D+U") >0. (12)

Fori =s, ..., 2, suppose that we have computed x; € X; defined by

x; = argmin p(X1) +qF<i—1: x5 x%;) — (5, xi)

X,'E.)(,‘
i—1 s (13)
=0,/ (i +8 =) 05,5~ Y Qijx))
j=1 Jj=i+1

Then the optimal solution x™ for (10) can be computed exactly via the following steps:

x;" =argmin p(x1) + q(x1; x15) — (81, x1),
xleXl
xt = argmin p(x}") +q(x<t X xl ) — (8 xi)
xieX; (14)
=0 (bi +8 — ZQHI ZQ,,x i=2,...,s.
Jj=i+1

Proof Since D > 0, we know that D, D + U and D + U* are all nonsingular. Then,
(12) can easily be obtained from the following observation

Q+To=D+U+U +UD'U* = (D +UD (D +U"). (15)
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402 X. Lietal.

Next we show the equivalence between (10) and (14). By noting that §; = 81 and
Q1.1 > 0, we can define x; as follows:

x) = argmin p(x1) + g (x1; x2,) — (8], x1)

X]EX|
, / . (16)
=argmin p(x1) +q(x15x5,) — (81, x1) = x{".
xleXl
The optimality conditions corresponding to x| and xl+ in (16) can be written as
N
Qi1x; =b1 —y1 +8) — ZQi,jx}, (17a)
j=2
s
Quixi =bi—yi+8 — Y 0ijx}, (17b)
j=2

where y; € dp (x{) =aJdp (x1+ ). Simple calculations show that (17a) together with (13)
can equivalently be rewritten as

DP+Ux' =b—y+§ —U'x,
where y = (y1; 0; ..., 0) € X, while (14) can equivalently be recast as
D+UxT =b—y+8—Ux.

By substituting x’ = (D +U) "' (b —y + 8 —U*¥) into the above equation, we obtain
that

DP+UNT =b—y+8-UD+U) B —y+8§ —U])
=DO+U G-y +UD+U ' UT+§—UD+U)'S,

which, together with (15), (11) and the definition of 7¢ in (9), implies that
(Q+Toxt =b—y+Tox+ A®F,8). (18)

In the above, we have used the fact that (D + U)D~'UMD +U)~' = UD!. By
noting that (18) is in fact the optimality condition for (10) and Q + 79 > 0, we have
thus obtained the equivalence between (10) and (14). This completes the proof of the
theorem. O

We shall explain here the roles of the error vectors 8’ and § in the above block sGS
decomposition theorem. There is no need to choose these error vectors in advance. We
emphasize that xl./ and xl.+ obtained from (13) and (14) should be viewed as approximate
solutions to the minimization problems without the terms involving §; and §;. Once
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these approximate solutions have been computed, they would generate §; and §; auto-
matically. With these known error vectors, we know that the computed approximate
solutions are the exact solutions to the minimization problems in (13) and (14).

The following proposition is useful in estimating the error term A(§’, 8) in (10).

Proposition 1 Denote 0 = 0+ To, which is positive definite. Let & =
1Q~12A(8, 8)|. It holds that

£<D7V2E -8 +127 128
Proof Recall that @ = (D +U)D~ (D + U*). Thus, we have
@—1 — (D—i—u*)_lD(D—i—Z/{)_] — (D+u*)—1D1/2D1/2(D+u)—1’
which, together with the definition of A(§’, §) in (11), implies that
£=D'2@+w) '8 +D72@E -8 < IDVAD + )78 + 1D - 8.

The desired result then follows. O

Theorem 1 shows that instead of solving the QP subproblem (10) directly with an
N-dimensional variable x, where N = Zf: | ni, the computation can be decomposed
into s pieces of smaller dimensional problems involving only the variable x; for each
i =1,...,s.Such adecomposition is obviously highly useful for dealing with a large
scale CCQP of the form (7) when N is very large. The benefit is especially important
because the computation of x; fori = 2, ..., s involves only solving linear systems of
equations. Of course, one would still have to solve a potentially difficult subproblem
involving the variable x| due to the presence of the possibly nonsmooth term p(x1),
ie.,

. 1
x) = al‘gmm{p(xl) + E(Xl, O1,1x1) — {c1, x1) | x1 € Xl},

where ¢ is a known vector depending on the previously computed x, ..., x5. How-

ever, in many applications, p(x1) is usually a simple nonsmooth function such as

lxtllt, lIx1lloos OF gni (x1) for which the corresponding subproblem is not difficult
+

to solve. As a concrete example, suppose that Q1,1 = I,,. Then x1+ = Prox,(c1)
and the Moreau—Yosida proximal map Prox(c1) can be computed efficiently for var-
ious nonsmooth function p(-) including the examples just mentioned. In fact, one can
always make the subproblem easier to solve by (a) adding an additional proximal
term (lx; — %11|3, to (10), where J; = uily, — Q11 with g = [|Q1,1]l2; and (b)
modifying the sGS operator to uﬁ”u*, where D = D + diag(J1, 0, ..., 0). With
the additional proximal term involving Ji, the subproblem corresponding to x; then
becomes

. 1 1 _
x1+ = argmln{p(xl) + §<xl’ O1.1x1) — {c1, x1) + §||x1 — X1 ||31 | x| € R"l}
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404 X. Lietal.

= argmin{ p(r) + 51 x1, x1) = (o1 + L, ) |3 € R

= Prox,/u, (uf] (c1 + Jl)fl)).

In fact, more generally, one can also modify the other diagonal blocks in D
to make the linear systems involved easier to solve by adding the proximal term
%Hx — )E||éiag(11 Fo ) to (10), where J; > 0,7 = 1,...,s are given symmetric
matrices. Correspondingly, the sGS linear operator for the proximal term to be added
to the problem (10) then becomes TQJFdiag(hw”m = UD'U*, where D = D +

diag(J1, Ja, ..., J5), and Qin (12) becomes O = Q + diag(Jy, ..., J;) + UD~u*.
There are many suitable choices for J;, i = 2, ..., s. A conservative choice would be
Ji = 11Q;.ill21n; — Qi,i, in which case the linear system to be solved has its coefficient

matrix given by Q; ; + Ji = [1Q;.ill21y;. Another possible choice of J; is the sGS lin-
ear operator associated with the matrix Q; ;, in which case the linear system involved
has its coefficient matrix given by Q;; + 7p,, and its solution can be computed by
using one cycle of the sGS method. The latter choice has been considered in [4] for its
variant of the classical block sGS method. Despite the advantage of simplifying the
linear systems to be solved, one should note that the price to pay for adding the extra
proximal term %||x — i”ziiag Tiond) is worsening the convergence rate of the overall

block sGS method.

3 A factorization view of the block sGS decomposition theorem and its
equivalence to the SCB reduction procedure

In this section, we present a factorization view of the block sGS decomposition theorem
and show its equivalence to the Schur complement based (SCB) reduction procedure
developed in [24,25].

Let ®; be the zero matrix in R"*" and Ny := n;. For j = 2,...,s5,let N; :=
>°/_, ni and define @j € RNi-1>Nj=1 and ®; € RNi*N; as follows:

01,j
= . —1
=1 1 |9 I:QTJ" Q?—w]
Qj-1j
and
Q12
0 1
Oj=| . |0 [0 0 ... 0]+
0
01,j
. —1 * *
+ ¢ ot [Q,,j, e OO, o}. (19)
Qj61,j
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A block symmetric Gauss-Seidel decomposition theorem 405

Then, the above definitions indicate that, for2 < j <,
©; = diag(®;_1,0,,) + diag(®;, 0,,) € RN/ >Ny (20)

In [24,25], the SCB reduction procedure corresponding to problem (7) is derived
through the construction of the above self-adjoint linear operator ®; on X'. Now we
recall the key steps in the SCB reduction procedure derived in the previous work. For
j=1,...,s,define

Qi1 - Q1j 01, .
. . . . 01,
Lj—1 - Qj-1j-1 Qj-1; 01
* * L. J—L1J
1,j j-1.j Qj.j
Note that ®; = R; QJ_;R;‘ It is easy to show that
. 1 _
min { p(r) + (vt x) + 5 Ix —E13, 13 € ¥
p(x1) + %(-fo*lv stlesfw — (b<s—1, X<5—1) + %fosfl — X<s-1 ”Z‘)s—l
= min
Xzi-1€ X5 +minxx€X5 {%(xx» Qx,:xs) - (b: - R;F X<s—1, xx) + %“xfsfl - )Egsfl ”%S}

21

By first solving the inner minimization problem with respect to x;, we get the solution
as a function of xq, ..., xy_1 as follows:

x5 = Q55 (bs — R} x=5-1). 22)
And the minimum value is given by

—l(b — R*x 0 by — R¥x5_1)) +l||x — Xes1ll%
) s s A<s—1» 5,5 s sA<s—1 ) <s—1 <s—1 8,

1 B : ~ _ _
= —5(bs, 01 bs) + = (X1, OgXs—1) + (Ry Qs (by — RiX<y—1), x<5-1).

[N R

Thus (21) reduces to a problem involving only the variables x, ..., x;—1, which, up
to a constant, is given by

1
min p(x1) + f('xSS*]a stlesfﬂ - <b§s71 - Rsx;’ xfsfl)
1 = 2
X<s—1€X<5-1 +§”x§s—l _xfs—l”@kl
. . 1 -
= min  fpe0+aana) +Hxa —Enld ) @3)
xg.vfle)(gxfl

where x| = Q;sl (bs — R¥x<4—1). Observe that (23) has exactly the same form as (21).
By repeating the above procedure to sequentially eliminate the variables x;_1, ..., x2,
we will finally arrive at a minimization problem involving only the variable x;. Once

@ Springer



406 X. Lietal.

that minimization problem is solved, we can recover the solutions for x», ..., x; in a
sequential manner.

Now we will prove the equivalence between the block sGS decomposition theorem
and the SCB reduction procedure in the subsequent analysis by proving that ®; = 7o,
where 7g is given in (9). For j = 2, ..., s, define the block matrices 9j € RN *N;
and V; € RN*N by

In, 01,07
V= : P e RN Y= diag(V, Iv-wy) e RV,
Inj_1 Qj—l,ij‘j
Iy,
(24)
where Inj is the n; x n; identity matrix. Note that f)\s = Vs. Given j > 2, we have,
by simple calculations, that for any £ < j,

Q1. Q1.k 01, 0
17 IS I and V7| | =] (25)
Qk—1,k Qk—1,k Qj-1,j
0 0 Qj.j Qj.j
From (19) and (25), we have that
Vile,vihr =0, j=2,....s. (26)
Lemma 1 Let U and D be given in (5). It holds that
Vi V=DM D+U), Vi Vo=D+UD
Proof 1t can be verified directly that
1
ViV = .QZ_’IZQT’Z I — D\ (D +U").
olor, - oilor,, 1
The second equality follows readily from the first. O

In the proof of the next lemma, we will make use of the well known fact that for
given symmetric matrices A, C such that C > Oand M := A — BC~1B* = 0, we

have that
A B I BCc'l[m 071 0
[B* C]Z[O I ][0 c} [c—lB* 1}' 27)
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Theorem 2 [t holds that
Qs+ O, =Vs---W\DV5---Vf and O, =Tg.
Proof By using (27), for j =2, ..., s, we have that
Qj =V diag(M, 1, 0, NV},
where
O11 ... Q1j-1
Mj—l = .
T,j—l s Q11
01,
. -1 o)
B : 001 - Q1] = Qi1-6;
Qj-1,j
Thus, from (26), we know that for2 < j <,
Q; +0; = V;(diagM,_1, 0;,)) + V; 0,V 1))V
= 17j(diag(/\/qu, 0j.j)+ 61)9;‘
For 2 < j < s, by (20), we have that
diag(M;_1, Q; ;) +©; = diagIM; 1 +0O;_| + @j, ()
= diag(Q;—1 +0©;_1,Q; )
and consequently,
Q; +0; =V;diag(Qj_1 + 0,1, 0; ) V. (28)

Thus, by recalling the definitions of TJ} and V; in (24) and using (28), we obtain

through simple calculations that

Qs + Oy =V, diag(Qs—1 + Os_1, Oy 5) VS*

=V Vo diag(Q1 + 01, 022, ..., Qs5) V5 -+ V5.

Thus, by using the fact that Q) + ©1 = Q1,1, we get

Qs + 0y =V - Wy diag(Q1,1, 02,2, ... Qs5) V5 - Vi
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By Lemma 1, it follows that
Qs + O, = D+UD DD D+ U*) = D+UDT' D +U*) = Q+ T,

where the last equation follows from (12) in Theorem 1. Since Q; = Q, we know
that

0, =Tg.

This completes the proof of the theorem. O

4 An extended block sGS method for solving the CCQP (7)

With the block sGS decomposition theorem (Theorem 1) and Proposition 1, we can
now extend the classical block sGS method to solve the CCQP (7). The detail steps
of the algorithm for solving (7) are given as follows.

Algorithm 1: An sGS based inexact proximal gradient method for (7).

Input ¥' = x° € dom(p) x R" x ... x R™, 1; = | and a summable sequence
of nonnegative numbers {€;}. For k = 1,2, ..., perform the following steps in each
iteration.

Step I.  Compute

. 1 ~ ~k
* = argmincy {pee) +q(0) + Sl —F 15, - e AG L SN] @)

. .. . . ~k
via the sGS decomposition procedure described in Theorem 1, where §°, skex
are error vectors such that

~k €k
max{||8" ||, 6%} < o (30)

Step 2.  Choose #¢+1 such that t,f 11— I < tk and set By = ”‘ 1 . Compute

%k-’-l :xk + ﬂk(xk _xk—l)'

We have the following iteration complexity convergence results for Algorithm 1.

Proposition 2 Suppose that x* is an optimal solution of problem (7). Let {(xX} be the
sequence generated by Algorithm 1. Define M = 2||D~ /2|, + || Q 172,.

14,/ 14412
(@) If tip1 = —5 % forall k > 1, it holds that

k 0 2
0<Feb) — Fx (e = x*lg+&) .

k+1)2
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where O = Q + Tg and & = 2M S e
(b) If ty = 1 for all k > 1 and {€}} is non-increasing, it holds that

0< F(xk) —F@*) < i(”xo —x*|lz+ Ek)z
- = 2%k Q ’

where €, = 4M Zf-;l i€;.

Proof (a) The result can be proved by applying Theorem 2.1 in [19]. In order to apply
the theorem, we need to verify that the error e := y + oxk — b+ T¢ fo) (ck — % ),
where y = (y1;0;...;0) and y; € 8p(xlf), incurred for solving the subproblem

(without the perturbation term A(Ek, 8%)) in Step 1 inexactly is sufficiently small.
From Theorem 1, we know that

ei=y+ 0 —b+ Toe —7) = AG". 8.

The theorem is proved via Theorem 2.1 in [19] if we can show that ||@’1/ ZA
(gk, 9N < Mf—]’:. But from (30) and Proposition 1, we have that

19712AG", 81 < ID7128 ) + D728 + 10748 < Mew/n,

thus the required inequality indeed holds true, and the proof is completed.
(b) There is no straightforward theorem for which we can apply to prove the result,
we will provide the proof in the Appendix.
]

Remark 1 Tt is not difficult to show that if p(-) =0, 7 = 1, and 8k = Ek = 0 for all
k > 1, then Algorithm 1 exactly coincides with the classical block sGS method (6);

and if & s Ek are allowed to be non-zero but satisfy the condition (30) for all k > 1,
then we obtain the inexact extension of the classical block sGS method.

Remark 2 Proposition 2 shows that the classical block sGS method for solving (1) can
be extended to solve the convex composite QP (7). It also demonstrates the advantage
of interpreting the block sGS method from the optimization perspective. For example,
one can obtain the O(1/k) iteration complexity result for the classical block sGS
method without assuming that Q is positive definite. To the best of our knowledge,
such a complexity result for the classical block sGS is new. More importantly, inexact
and accelerated versions of the block sGS method can also be derived for (1).

Remark 3 In solving (29) via the sGS decomposition procedure to satisfy the error
condition (30), let x’ = [x{; ...; x.] be the intermediate solution computed during

the backward GS sweep (in Theorem 1) and the associated error vector be Ek =

5% ..., SZ?]. In the forward GS sweep, one can often save computations by using the

computed x; to estimate xf‘“ for i > 2, and the resulting error vector will be given
k _ Tk i—1 ~k

by 8; = 6; + ijl Q;‘.i(x} —x. If we have that
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i—1
1D 0%5&; =H1 < p, 31)

j=1

where p = JL} ||gk || and ¢ > 0 is some given constant, then clearly ||811.‘ ||2 < 2||:3;’.‘ ||2 +
2p2. When all the error components || 8;‘ Ik
regardless of whether xf“
V2(1 4+ c2) ||Ek |I. Consequently the error condition (30) can be satisfied with a slightly
larger error tolerance v/2(1 + ¢2) €,/ tx. It is easy to see that one can use the condition

in (31) to decide whether xf *+1 can be estimated from x/ without contributing a large

satisfy the previous bound fori =1, ..., s,
is estimated from x or computed afresh, we get ||6k | <

error to ||8|| foreachi =2, ..., s.

Besides the above iteration complexity results, one can also study the linear con-
vergence rate of Algorithm 1. Indeed, just as in the case of the classical block sGS
method, the convergence rate of our extended inexact block sGS method for solving
(7) can also be established when Q > 0. The precise result is given in the next theorem.

Theorem 3 Suppose that the relative interior of the domain of p, ri(dom(p)), is non-
empty, @ > 0and ty =1 forallk > 1. Then

k
172 — x| < IBINO 2" —x*) | + MIBIS D 1Bl ;. (32)

j=1

where B = I — @_I/ZQ@_I/Z, and M is defined as in Proposition 2. Note that
0<B<1I.

Proof For notational convenience, we let A = A(Ej, 8/ ) in this proof.

Define Ey : X — &) by Ei(x) = x; and p: X — (=00, 0] by px) =
p(E1Q_1/2x). Since QA> 0, it is clear that range(E| 012y = X, and hence
ri(dom(p)) Nrange(E; Q~/2) # (3. By [32, Theorem 23.9], we have that

9px) = O 2Efop(E;Q %x) VxeX. (33)

From the optimality condition of x/, we have that

0=y + 00 —x/ " —b+0Ox/~' — A
o 021 L 0120 — oxi Ny + O-12A) = §12y) 4 O/,

where y/ = (ylj;O;...;O) with ylj € 8p(x{). Let #/ = OY2x/ and /7! =
Q2xi=1, Then we have that

#3120 — oy 4+ O 2AT € (14 9P)@)
& 2/ = Proxp(B/ ' + Q712% + O712AV).
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Similarly if x* is an optimal solution of (7), then we have that
x* = Proxp(Bx" + o~ '/2p).
By using the nonexpansive property of Proxz, we have that

1% — & || = [|Proxp(B&' ! 4+ Q726 + Q712 A7) — Proxp(Bx* + Qb
< 1B+ 07+ Q7 12AT) — (B + Q7))
< IBIIR/ ™" = &%)l + Me;.

By applying the above inequality sequentially for j = k,k — 1,..., 1, we get the
required result in (32). O

Remark 4 In fact, one can replace the positive definiteness assumption of Q in the
above theorem by a mild error bound condition [26,27] on F and still expect a linear
rate of convergence. As a simple illustration, we only discuss here the exact version of

Algorithm 1, i.e., 5 =8 =o0. By combining the fundamental results of S.M. Robin-
son on piecewise polyhedral multi-valued mappings [33] and J. Sun’s sub-differential
characterization of convex piecewise linear-quadratic functions [38], the error bound
condition on F holds automatically if p is a convex piecewise linear-quadratic/linear
function such as p(x1) = ||x1l1, p(x1) = SRT (x1). When t;, = 1 for all k > 1,

one can prove that {F(x¥)} converges at least Q-linearly and {x*} converges at least
R-linearly to an optimal solution of problem (7) by using the techniques developed in
[26,27]. Interested readers may refer to [41,47] for more details. For the accelerated
case, with the additional fixed restarting scheme incorporated in Algorithm 1, both the
R-linear convergences of { F (xk)} and {xk} can be obtained from [43, Corollary 3.8].

5 An illustration on the application of the block sGS decomposition
theorem in designing an efficient proximal ALM

In this section, we demonstrate the usefulness of our block sGS decomposition theorem
as a building block for designing an efficient proximal ALM for solving a linearly
constrained convex composite QP problem given by

1
min { p(r) + (. Px) = (g x) | Ax = d. (34)

where P is a positive semidefinite linear operator on X', A : X — ) is a given linear
map,andg € X,d € ) are given data. Here X’ and ) are two finite dimensional inner
product spaces. Specifically, we show how the block sGS decomposition theorem given
in Theorem 1 can be applied within the proximal ALM. We must emphasize that our
main purpose here is to briefly illustrate the usefulness of the block sGS decomposition
theorem but not to focus on the proximal ALM itself. Indeed, simply being capable
of handling the nonsmooth function p(-) has already distinguished our approach from
other approaches of using the sGS technique in optimization algorithms, e.g, [20,21],
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where the authors incorporated the pointwise sGS splitting as a preconditioner within
the Douglas—Rachford splitting method for a convex-concave saddle point problem.

In depth analysis of various recently developed ADMM-type algorithms and accel-
erated block coordinate descent algorithms employing the block sGS decomposition
theorem as a building block can be found in [10,22-24,36]. Thus we shall not elabo-
rate here again on the essential role played by the block sGS decomposition theorem
in the design of those algorithms.

Although the problem (34) looks deceivingly simple, in fact it is a powerful model
which includes the important class of standard convex quadratic semidefinite pro-
gramming (QSDP) in the dual form given by

1
min{z(W, HW)—(h, &) | Z+BE+HW =C, § eRP, Z €S, WeW},
(35)

where h € RP, C € S" are given data, 5 : §" — RP? is a given linear map that is
assumed to be surjective, H : S — S” is a self-adjoint positive semidefinite linear
operator, and V¥ C §" is any subspace containing Range(7), the range space of .
Here S" denotes the space of n x n symmetric matrices and S’} denotes the cone of
symmetric positive semidefinite matrices in S"”. One can obviously express the QSDP
problem (35) in the form of (34) by definingx = (Z;&; W), X = §" x R? x W,
p(xy) = Sgi(Z), P = diag(0, 0, H), and A = (Z, B*, H).
We begin with the augmented Lagrangian function associated with (34):

1 o _ 1
Lo (x; y) = p(a) + 5 (6, Px) — (g, %) + S IlAx —d + 07yl = — Iy,
(36)
where o > 0 is a given penalty parameter and y € ) is the multiplier associated with

the equality constraint. The template for a proximal ALM is given as follows. Given
7 >0,x0 € X and yo € Y. Perform the following steps in each iteration.

Step 1. Compute

k+1

. k 1 k2
x =argm1n{Lg(x;y )—i—zllx—x ||T|xeX}

1 1
- argmin{p(x1)+§(x, (P+0 A" A)x) = (b, x) + 5 x =517 | x € X},
(37
where b = g + A*(od — yb).
Step 2. Compute y**! = y* 4+ 70 (Ax* — d), where 7 € (0, 2) is the step-length.

It is clear that the subproblem (37) has the form given in (7). Thus, one can apply the
block sGS decomposition theorem to efficiently solve the subproblem if we choose
T = TpioArA, 1€, the sGS operator associated with Q := P + o A* A. For the
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QSDP problem (35) with VW := Range(H), we have that

I B* H
O=o0|B BB* BH
H HB* o 'H+H?

and that the subproblem (37) can be efficiently solved by one cycle of the extended

block sGS method explicitly as follows, given the iterate (Z¥, £X, HW*) and multiplier

-

Step la. Compute HW' as the solution of (0 ~'Z + H)HW' = o ~'by — HZF —
HB*EX, where by = H(o C — yb).

Step 1b. Compute &' from BB*¢' = o~ 'bs —BZ¥ —BHW', where b = h+B(c C —
).

Step lc. Compute ZF! = argmin{(Sgi(Z) + S1Z + BE + HW' — a—lbzuz},
where by = 0C — yk.

Step 1d. Compute *! from BB*&**+! = o~1by — BZKH! — BHW'.

Step le. Compute HW*t! from (677 + HYHW ! = o~ lby — HZHT —
HB*Sk-H_

From the above implementation, one can see how simple it is for one to apply the
block sGS decomposition theorem to solve the complicated subproblem (37) arising
from QSDP. Note that in Step 1a and Step le, we only need to compute HW’ and
HWHF1, respectively, and we do not need the values of W’ and W**! explicitly. Here,
for simplicity, we only write down the exact version of a proximal ALM by using our
exact block sGS decomposition theorem. Without any difficulty, one can also apply
the inexact version of the block sGS decomposition theorem to derive a more practical
inexact proximal ALM for solving (34), say when the linear systems involved are large
scale and have to be solved by a Krylov subspace iterative method.

6 Extension of the classical block symmetric SOR method for solving (7)

In a way similar to what we have done in Sect. 2, we show in this section that the classi-
cal block symmetric SOR (sSOR) method can also be interpreted from an optimization
perspective.

Given a parameter w € [1, 2), the kth iteration of the classical block sSOR method
in the third normal form is defined by

O —xky = b — OxF, (38)
where

Qu = @D +U)(pD) "' D + U*),

T = 1/w, and p = 27 — 1. Note that for w € [1, 2), we have that T € (1/2, 1] and
p € (0, 1]. We should mention that the classical block sSOR method is typically not
derived in the form given in (38), see for example [17, p.117], but one can show with
some algebraic manipulations that (38) is an equivalent reformulation.
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Denote
Tisor = (1 =)D +U)(pD) "' ((1 =)D + U*).

In the next proposition, we show that @w can be decomposed as the sum of Q and
Tssor. Similar to the linear operator 7¢ in section 2, Zgsor is the key ingredient which
enables us to derive the block sSSOR method from the optimization perspective, and
to extend it to solve the CCQP (7).

Proposition 3 Let w € [1,2), and denote v = 1/w € (1/2, 1], p = 27 — 1. It holds
that

O, = Q + Tisor. (39)
Proof Lett :=1 — % >0andU =U + %D. Note that p = 27 and
0, =GED+UQID) 'GD+U")
1 _ _ 1 . _
= S ED U + @)U = S(D+U + U+ UGED)U
1 _ _
= E(Q +ID+UGED) U
1 — —
=0+ E(f:DJrz/f(fD)—lu - Q).
Now

IDHUED) U —Q = D+ UED) U ~U-U
= @D -UED)'GED U = (1 —)D+U)ED) (A — 0D +U¥).

From here, we get the required expression for @w in (39). O

Given two error tolerance vectors § and 8’ with §; = (Si, let
Assor(8',8) := &' + (D +U)(pD) (5 - §).

Given ¥ € X, similar to Theorem 1, one can prove without much difficulty that the
optimal solution of the following minimization subproblem

. I :
min {p(x0) +q ) + 5 ¥ = g, — (v, Assor(®. ). (40)

can be computed by performing exactly one cycle of the block sSOR method. In
particular, when p(-) = 0and § = §' = 0, the optimal solution to (40) can be computed
by (38), i.e., setx = x¥, then x¥*1 obtained from (38) is the optimal solution to (40).
By replacing 79 and A(-, -) in Algorithm 1 with Zgsor and Agsor (-, -), respectively,
one can obtain a block sSOR based inexact proximal gradient method for solving (7)
and the convergence results presented in Proposition 2 and Theorem 3 still remain
valid with @ replaced by @w
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Remark 5 For the classical pointwise sSOR method, it was shown in [17, Theorem
4.8.14] that if there exist positive constants y and I such that

1 1 r
0<yD=<Q, <§D+u> D! (§D+u*> =< ZQ’

. . _ol2a-1p1/2 _ 2T
then its convergence rate is || — Q'/~Q_ Q7| < 1 Sy e
1/w — 1/2. Interestingly, for the convergence rate of our block sSOR method as in

Theorem 3, we also have a similar estimate given by

where T =

~ N 27
-0 V20012 <« o
1= Q51005 Pl = 1 = oy
In order to minimize the upper bound, we can choose w, = 2/(1 4+ /yI') and then
we get

I —3:1708: 1), < 1= vV/T
S N

7 Conclusion

In this paper, we give an optimization interpretation that each cycle of the classical
block sGS method is equivalent to solving the associated multi-block convex QP prob-
lem with an additional proximal term. This equivalence is fully characterized via our
block sGS decomposition theorem. A factorization view of this theorem and its equiv-
alence to the SCB reduction procedure are also established. The classical block sGS
method, viewed from the optimization perspective via the block sGS decomposition
theorem, is then extended to the inexact setting for solving a class of multi-block con-
vex composite QP problems involving nonsmooth functions. Moreover, we are able to
derive O(1/k) and O(1/ k?) iteration complexities for our inexact block sGS method
and its accelerated version, respectively. These new interpretations and convergence
results, together with the incorporation of the (inexact) sGS decomposition techniques
in the design of efficient algorithms for core optimization problems in [10,22-24,36],
demonstrate the power and usefulness of our simple yet elegant block sGS decom-
position theorem. We believe this decomposition theorem will be proven to be even
more useful in solving other optimization problems and beyond.
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Appendix: Proof of part (b) of Proposition 2

To begin the proof, we state the following lemma from [35].
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Lemma 2 Suppose that {uy} and {Ar} are two sequences of nonnegative scalars,
and {si} is a nondecreasing sequence of scalars such that sy > u%. Suppose that

for all k > 1, the inequality u,% < sr + 2Zf-‘=1 Aiu; holds. Then for all k > 1,
up < hi ++/sk + )_»%, where A = Zle A

Proof Inthis proof, welet A/ = A(Sj, 7). Note that under the assumption that7; = 1
forall j > 1,%/ = x/~!. Note also that from (30), we have that ||Q~!/2A/|| < Me;,
where M is given as in Proposition 2.

For j > 1, from the optimality of x/ in (29), one can show that for all x € X

F) = F&/) = Sl =/ I = (Tot/ =77, x /) + (a7, x )

1 , 1 , 1 . , )
Sl =2l + Sl = I, — Sl =M, 4+ (A7, x - x)

v

1 ; 1 . . .
e — x/ 12 — e — /112 J oy — )
22||x ) 2||x G (AT x —x))
1. . PO . .
= S =G+ T —x, Q2T (A, X — ).
(41)
Lete/ = x/ —x*. By setting x = x/~! and x = x* in (41), we get
j-1 iy s Ligi _pim1p2 J pil _ g
F(x )—F(x)22||e e/l + (A e e’), (42)
; 1 . 1 . L
*Y J el 2 — Ziled =12 — (AT e
F(x*) — F(x') > 2||e I5 2||e I5 — (A7, ¢/). (43)

By multiplying j — 1 to (42) and combining with (43), we get

(aj + b)) < (@j—1 +b7_) = (= Dle! =/ 75 +2(A0, jel —(j = De/ ™)
< (ajo1+b5_ ) +2107 A |l jel = (G- Del g
@j1 +b5_) + 21972 AINI(jbj + (j = Dbj-1)

=<
=

J
ay+b7+2) Mei(ibi + (i — Dbi—1)
i=2

IA

i
<bj+2) 2Mieib;, (44)
i=1

where a; = 2j[F(x/)— F(x*)]and b; = |le/| 5. Note that the last inequality follows
J J Q

from (43) with j = 1, the fact that the sequence {¢;} is non-increasing, and some
simple manipulations.
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To summarize, we have b? < b(z) +2 le: | 2Mi€;b;. By applying Lemma 2, we

get

bj < hj+/bg+245 < bo+24;,

where X j= Z{: | Ai with &; = 2Mie;. Applying the above result to (44), we get

J
aj < b§+2) MiQhi+bo) = (bo+2%))%

i=1

From here, the required result in Part (b) of Proposition 2 follows. O
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