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ABSTRACT
We consider the problem of learning a graph under the Laplacian
constraint with a non-convex penalty: minimax concave penalty
(MCP). For solving the MCP penalized graphical model, we design
an inexact proximal difference-of-convex algorithm (DCA) and prove
its convergence to critical points. We note that each subproblem
of the proximal DCA enjoys the nice property that the objective
function in its dual problem is continuously differentiable with a
semismooth gradient. Therefore, we apply an efficient semismooth
Newton method to subproblems of the proximal DCA. Numerical
experiments on various synthetic and real data sets demonstrate the
effectiveness of the non-convex penalty MCP in promoting sparsity.
Compared with the existing state-of-the-art method, our method is
demonstrated to be more efficient and reliable for learning graph
Laplacian with MCP.
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1. Introduction

Inmodernmultivariate data analysis, one of themost important problems is the estimation
of the precision matrix (or the inverse covariance matrix) of a multivariate distribution
via an undirected graphical model. A Gaussian graphical model for a Gaussian random
vector � ∼ Nn(μ,�) is represented by a graph G = (V , E), where V is a collection of n
vertices corresponding to the n random variables (features), and an edge (i, j) is absent, i.e.
(i, j) /∈ E , if and only if the ith and jth random variables are conditionally independent of
each other, given all other variables. The conditional independence is further equivalent to
having the (i, j)th entry of the precision matrix (�−1)ij being zero [34]. Thus, finding the
graph structure of a Gaussian graphical model is equivalent to the identification of zeros
in the corresponding precision matrix.

Let S
n+ (Sn++) denote the cone of positive semidefinite (definite) matrices in the space

of n× n real symmetric matrices Sn. Given a Gaussian random vector� ∼ Nn(μ,�) and
its sample covariance matrix S ∈ S

n+, a notable way of learning a precision matrix from
the data matrix S is via the following �1-norm penalized maximum likelihood approach
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[4,20,46,63]

min
�∈Sn++

− log det�+ 〈S,�〉 + λ‖�‖1,off , (1)

where ‖�‖1,off =
∑

i�=j |�ij| and λ is a non-negative penalty parameter. The solutions
to (1) are only constrained to be positive definite, and both positive and negative edge
weights are allowed in the estimated graph. However, one may further require all edge
weights to be non-negative. A negative edge weight implies a negative partial correla-
tion between the two connected random variables, which might be difficult to interpret
in some applications. For certain types of data, one feature is likely to be predicted by non-
negative linear combinations of other features. Under such application settings, the extra
non-negative constraints on the edge weights can provide a more accurate estimation of
the graph than (1) and thus one prefers to estimate a graph Laplacian matrix from the
data. More broadly, graph Laplacian matrices are desirable for a large majority of studies
and applications, for example, spectral graph theory [11], clustering and partition problems
[40,48,50], dimensionality reduction and data representation [5], and graph signal process-
ing [49]. Therefore, it is essential to learn graph Laplacianmatrices fromdata. In fact, many
researchers have recently considered Gaussian graphical models that is multivariate totally
positive of order 2 (MTP2), namely, all partial correlations are required to be non-negative.
A Gaussian graphical model is said to be MTP2 if the (i, j)th entry of the precision matrix
(�−1)ij is non-positive for all i �= j. We refer the readers to [13,15,17,33,51,55,56,59] for
properties of MTP2 Gaussian graphical models and efficient algorithms for estimating the
MTP2 Gaussian graphical models.

We start by giving the definition of a graph Laplacianmatrix formally. For an undirected
weighted graph G = (V , E) with V being the set of vertices and E the set of edges, the
weight matrix of G is defined asW ∈ Sn whereWij = w(ij) ∈ R+ is the weight of the edge
(i, j) ∈ E andWij = 0 if (i, j) /∈ E . Therefore, the weightmatrixW consists of non-negative
off-diagonal entries and zero diagonal entries. The graph Laplacian matrix, also known as
the combinatorial graph Laplacian matrix, is defined as

L = D−W ∈ S
n,

where D is the diagonal matrix such that Dii =
∑n

j=1Wij. The connectivity (adjacency)
matrix A ∈ Sn is defined as the sparsity pattern ofW, i.e. Aij = 1 ifWij > 0, and Aij = 0 if
Wij = 0. The set of graph Laplacian matrices then consists of matrices with non-positive
off-diagonal entries and zero row-sum

L = {� ∈ S
n |�1 = 0,�ij ≤ 0 for i �= j}. (2)

Here, 1 (0) denotes the vector of all ones (zeros). If the graph connectivity matrix A is
known a priori, then the constrained set of graph Laplacian matrices is

L(A) =
{
� ∈ S

n |�1 = 0, �ij ≤ 0 if Aij = 1
�ij = 0 if Aij = 0 if i �= j

}
. (3)

As we know, a Laplacian matrix is diagonally dominant and positive semidefinite, and
it has a zero eigenvalue with the associated eigenvector 1. If the graph is connected,
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then the null space of the Laplacian matrix is one-dimensional and spanned by the
vector 1 [11].

Starting from the earlier work of imposing the Laplacian structure (2) on the estima-
tion of precision matrix in [30], this line of research has seen a recent surge of interest in
[14,15,22,23,25,28,65]. To handle the singularity issue of a Laplacian matrix in the calcula-
tion of the log-determinant term, Lake andTenenbaum [30] considered a regularized graph
Laplacian matrix �+ αI (hence, full rank) by adding a positive scalar α to the diagonal
entries of the graph Laplacian matrix �. More recently, by considering connected graphs,
Egilmez et al. [15] and Hassan-Moghaddam et al. [22] used a modified version of (1) by
adding the constant matrix J = (1/n)11T to the graph Laplacian matrix to compensate
for the null space spanned by the vector 1. Moreover, Egilmez et al. [15] incorporated the
connectivity matrix A into the model to exploit any prior structural information about the
graph. Given the connectivity matrix A and a data matrix S (typically a sample covariance
matrix), Egilmez et al. [15] proposed the following �1-normpenalized combinatorial graph
Laplacian (CGL-L1) estimation model

min {− log det (�+ J)+ 〈S,�〉 + λ‖�‖1,off |� ∈ L(A)}. (CGL-L1)

When the prior knowledge of the structural information A is not available, especially for
real data sets, one can take the fully connected matrix as the connectivity matrix, i.e. A =
11T − I, with I being an identity matrix. In this case, the model (CGL-L1) involves esti-
mating both the graph structure and graph edge weights. The model (CGL-L1) is a natural
extension of the classicalmodel (1) due to the equality log det (�+ J) = log pdet� for any
Laplacian matrix � of a connected graph. Here pdet (·) denotes the pseudo-determinant
of a square matrix, i.e. the product of all non-zero eigenvalues of the matrix.

The model (CGL-L1) naturally extends the classical model (1) to incorporate the graph
Laplacian constraint. However, themodel (CGL-L1) has been proved to have the drawback
that the �1 penalty may lose its power in promoting sparsity in the estimated graph [61].
In fact, an intuitive explanation of this phenomena is by the zero row-sum constraint of a
valid Laplacian matrix � ∈ L(A), which satisfies

λ‖�‖1,off = −λ
∑
i�=j

�ij = λ
∑
i

�ii = 〈λI,�〉.

Thus the �1 penalty term in (CGL-L1) simply penalizes the diagonal entries of � but not
the individual entries�ij. Hence adjusting λmay not affect the sparsity level of the solution
of (CGL-L1).

Motivated by the observation above, the work [61] proposed to apply a non-convex
penalty function to promote sparsity. Non-convex penalties can generally reduce estima-
tion bias, and they have been applied in sparse precision matrix estimation in [32,47]. In
this paper, we aim to propose an efficient algorithm to learn a graph Laplacianmatrix as the
precision matrix from the constrained maximum likelihood estimation with the minimax
concave penalty (MCP) [64]

min {− log det (�+ J)+ 〈S,�〉 + P(�) |� ∈ L(A)}, (CGL-MCP)
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where the MCP function P is given as follows (we omit its dependence on the parameters
γ and λ for brevity):

P(�) =
∑
i�=j

pγ (�ij; λ), γ > 1, for � ∈ S
n,

pγ (x; λ) =
{

λ|x| − x2
2γ , if |x| ≤ γ λ,

1
2γ λ2, if |x| > γλ,

for x ∈ R, λ > 0.
(4)

It is known that the MCP can be expressed as the difference of two convex (d.c.) functions
[2, Section 6.2]. Therefore, we can design a d.c. algorithm (DCA) for solving (CGL-MCP)
by using the d.c. property of the MCP function. DCA is an important tool for solving d.c.
programs, and numerous research has been conducted on this topic; see [35,42,54,57], to
name only a few. Specifically in this paper, we aim to develop an inexact proximal DCA for
solving (CGL-MCP).We solve approximately a sequence of convexminimization subprob-
lems by finding an affineminorization of the second d.c. component. Allowing inexactness
for solving the subproblem is crucial since computing the exact solution of the subprob-
lem is generally impossible. The novel step of our algorithm is to introduce a proximal
term for each subproblem. With the proximal terms, we can obtain a convex and continu-
ously differentiable dual problem of the subproblem. Due to the nice property of the dual
formulation, we can apply a highly efficient semismooth Newton (SSN)method [29,43,53]
for solving the dual of the subproblem. For completeness, we also prove the convergence
of the inexact proximal DCA to a critical point.

Summary of contributions: (1) We propose an inexact proximal DCA for solving the
model (CGL-MCP), and prove its convergence to a critical point. (2) As the subroutine
for solving the proximal DCA subproblems, we design a semismooth Newton method for
solving the dual form of the subproblems. (3) The effectiveness of the proposed model
(CGL-MCP) and the efficiency of the inexact proximal DCA for solving (CGL-MCP) are
comprehensively demonstrated via various experiments on both synthetic and real data
sets. (4) More generally, both the model and algorithm can be extended directly to other
non-convex penalties, such as the smoothly clipped absolute deviation (SCAD) function
[18].

Outline: The remainder of the paper is organized as follows. The inexact proximal DCA
for solving (CGL-MCP), together with its convergence property, is given in Section 2.
Section 3 presents the semismooth Newton method for solving the subproblems of the
proximal DCA. Numerical experiments are presented in Section 4. Finally, Section 5
concludes the paper.

2. Inexact proximal DCA for (CGL-MCP)

We propose an inexact proximal DCA for solving (CGL-MCP) in this section and prove
its convergence to a critical point.

2.1. Reformulation of (CGL-MCP)

In order to take full advantage of the sparsity of the graph via the connectivity matrix, we
reformulate themodel (CGL-MCP)with the vector of edgeweights as the decision variable.
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This formulation eliminates the extra computation incurred by non-existence edges
(Aij = 0).

Given an undirected graph G and its connectivity matrix A, we know that the edge set
can be characterized by the connectivity matrix: E = {(i, j) |Aij = 1, i < j}. LetR|E | be the
vector space such that for any w ∈ R|E |, the components of w are indexed by the elements
of E , i.e. [w(ij)](i,j)∈E . We also let B ∈ Rn×|E | be the node-arc incidence matrix such that
the (ij)th column is given by B(ij) = ei − ej, where ei, i = 1, . . . , n are the standard unit
vectors in Rn. It is well known that the Laplacian matrix of the graph G can also be given
by BDiag(w)BT with w being the vector of edge weights. Thus, we define a linear map
A∗ : R|E | → Sn:

A∗w = BDiag(w)BT , ∀w ∈ R
|E |.

We can see thatA∗w ∈ L(A) if w ∈ R|E | is a non-negative weight vector by noting that

(A∗w)ij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
(i,k)∈E

w(ik) +
∑

(k,i)∈E
w(ki), if i = j,

−w(ij), if (i, j) ∈ E
−w(ji), if (j, i) ∈ E ,
0, otherwise.

It is easy to obtain from the definition that the adjoint map A : Sn→ R|E | is given by
AX = diag(BTXB), ∀X ∈ Sn. With the relationship between the Laplacian matrix and
the weight vector, the model (CGL-MCP) can be reformulated as follows:

min
w

− log det (A∗w+ J)+ 〈S,A∗w〉 + P(A∗w)

s.t. w ∈ R
|E |
+ .

(5)

We note that the constraint � ∈ L(A) in the original model (CGL-MCP) is reformulated
as a linear constraint and a non-negative constraint, namely, � = A∗w and w ∈ R

|E |
+ .

2.2. Inexact proximal DCA for solving (eqn5)

The function pγ (·; λ) defined in (4) can be expressed as the difference of two convex
functions [2, Section 6.2] as follows:

pγ (x; λ) = λ|x| − hγ (x; λ),

where γ and λ are given positive parameters, and

hγ (x; λ) =
{

x2
2γ , if |x| ≤ γ λ,
λ|x| − 1

2γ λ2, if |x| > γλ,
for x ∈ R, λ > 0.

Its gradient is given by ∇xhγ (x; λ) = min(
|x|
γ
, λ)sign(x). sign(·) is defined such that

sign(t) = 1 if t>0, sign(t) = 0 if t = 0, and sign(t) = −1 if t<0. Therefore, the MCP
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function P in (4) can also be written as the difference of two convex functions

P(�) = λ‖�‖1,off − h(�),

h(�) =
∑
i�=j

hγ (�ij; λ), for � ∈ S
n. (6)

Note that h : Sn→ R is a convex and continuously differentiable functionwith its gradient
given by

[∇h(�)]ij =
{
min

( |�ij|
γ

, λ
)
sign(�ij), if i �= j,

0, if i = j.
(7)

With the above preparation, we can now propose an inexact proximal DCA (Algorithm 1)
for solving (5). We adopt an approximate solution of the (CGL-L1) as the initial point.
Note that the (CGL-L1) can be solved by the alternating direction method of multipliers;
see Appendix 3 for its implementation. It is important to note that Step 0 is not a necessary
component ofAlgorithm1. Instead, one can simply initializewith an arbitrary valuew0 and
proceed with Steps 1 and 2. However, we include Step 0 in order to establish connections
between the non-convex problem (CGL-MCP) and the convex problem (CGL-L1).

Wemotivate the choice of the initial point in Step 0 with the following observation. If we
choose a simple and natural initialization of w0 = 0 ∈ R|E | and perform Step 1 at k = 0,
the resulting subproblem (8) takes an approximate form of (CGL-L1) with proximal terms:

min
w

{− log det (A∗w+ J)+ 〈S+ λI,A∗w〉 + 〈δ0,w〉

+ σ0

2
‖w‖2 + σ0

2
‖A∗w‖2

∣∣∣w ∈ R
|E |
+
}
,

where δ0 is the error vector and σ0 > 0 is a given constant. This problem is equivalent to
(CGL-L1) with proximal terms. Therefore, we approximately solve (CGL-L1) to obtain
an initial point. Lastly, for the inexactness condition (9), we make the convention that
σk
4 ‖wk+1 − wk‖ + σk‖A∗wk+1−A∗wk‖2

2‖wk+1−wk‖ = 0 when wk+1 = wk. It is natural because this term

goes to zero as ‖wk+1 − wk‖ → 0. Ifwk+1 = wk and δk = 0, it follows from the optimality
condition of (8) that wk is a critical point of (10).

2.3. Convergence analysis of the inexact proximal DCA

In this section, we prove that the limit point of the sequence generated by our inexact
proximal DCA (Algorithm 1) will converge to a critical point of the non-convex prob-
lem (5). We also establish the sequential convergence and convergence rate results under
additional assumptions. Although there exist convergence results of d.c. algorithms, we
delicately designed proximal terms and stopping conditions in our framework which may
be different from existing works. Therefore we give a complete proof of convergence here.
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Algorithm 1 Inexact proximal DCA for solving (CGL-MCP)
Given λ > 0, γ > 1, and σ0 > 0.

Step 0.Solve (CGL-L1) approximately

w0 ≈ argmin
w

{
− log det (A∗w+ J)+ 〈S+ λI,A∗w〉

∣∣∣ w ∈ R
|E |
+
}
.

Go to Step 1.

Step 1.Solve the following problem with Gk := S+ λI −∇h(A∗wk)

wk+1 = argmin
w

{
− log det (A∗w+ J)+ 〈Gk,A∗w〉 + 〈δk,w〉

+ σk

2
‖w− wk‖2 + σk

2
‖A∗w−A∗wk‖2

∣∣∣w ∈ R
|E |
+
}
, (8)

such that the error vector δk satisfies the stopping condition

‖δk‖ ≤ σk

4
‖wk+1 − wk‖ + σk‖A∗wk+1 −A∗wk‖2

2‖wk+1 − wk‖ . (9)

Step 2.If a prescribed stopping criterion is satisfied, terminate; otherwise update σk+1←
ρkσk with ρk ∈ (0, 1] and return to Step 1 with k← k+ 1.

We can rewrite our problem in the form

inf{f (w) := g(w)− h(A∗w)}, (10)

where h is defined in (6) and

g(w) := − log det (A∗w+ J)+ 〈S+ λI,A∗w〉 + δ(w |R|E |+ ), w ∈ R
|E |.

Here δ(· |C) denotes the indicator function of any convex set C. The function g is lower
semi-continuous (l.s.c) and convex, and the function h is continuously differentiable and
convex. A point w is said to be a critical point of (10) if

A∇h(A∗w) ∈ ∂g(w),

where ∂g(w) is the subdifferential of the convex function g at w. At each iteration k, we
define the following function which majorizes f

f k(w) := g(w)− h(A∗wk)− 〈∇h(A∗wk),A∗w−A∗wk〉 + σk

2
‖w− wk‖2

+ σk

2
‖A∗w−A∗wk‖2. (11)

One can observe that the majorized subproblem (8) can be expressed equivalently as

wk+1 = argmin
w

{
f k(w)+ 〈δk,w〉

∣∣∣w ∈ R
|E |
+
}
. (12)

The following lemma gives the descent property of the objective function f.
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Lemma 2.1: Let wk+1 be an approximate solution to problem (8) such that the stopping
condition (9) holds. Then we have that

f (wk+1) ≤ f (wk)− σk

4
‖wk+1 − wk‖2.

If the sequence {f (wk)} is bounded below, then the sequence {f (wk)} converges to a finite
number.

Proof: By the update rule of the algorithm, we have

f (wk) = f k(wk) ≥ f k(wk+1)+ 〈δk,wk+1 − wk〉 by (9)

≥ f k(wk+1)− σk

4
‖wk+1 − wk‖2 − σk

2
‖A∗wk+1 −A∗wk‖2 by (9)

≥ f (wk+1)+ σk

4
‖wk+1 − wk‖2 (by (11) and the convexity of h).

�

The next theorem states the convergence of the inexact proximalDCA to a critical point.
Wenote that when the function h is continuously differentiable, the notion of criticality and
d-stationarity coincide, see, e.g.[42, Section 3.2].

Theorem 2.2: Suppose that the d.c. function f is bounded below. Assume that the sequence
{σk} is convergent to σ∞ > 0. Let {wk} be the sequence generated by Algorithm 1. Then every
limit point of {wk}, if exists, is a critical point of (10).

Proof: Since f is bounded below, it follows from Lemma 2.1 that limk→∞ f (wk) exists and

lim
k→∞

[f (wk)− f (wk+1)] = lim
k→∞
‖wk+1 − wk‖ = 0.

Let {wk}k∈κ be a sequence converging to a limit w∞. Then {wk+1}k∈κ also converges to
w∞. By (12), we have for any w

f k(w) ≥ f k(wk+1)+ 〈δk,wk+1 − w〉 ≥ f k(wk+1)− ‖δk‖‖wk+1 − w‖.
Using the definition (11) and taking limit k(∈ κ)→∞ yield that for any w

g(w) ≥ g(w∞)+ 〈∇h(A∗w∞),A∗w−A∗w∞〉 − σ∞
2
‖w− w∞‖2

− σ∞
2
‖A∗w−A∗w∞‖2,

where σ∞ = limk→∞ σk. This is equivalent to saying that

w∞ = argmin
w

{
g(w)− 〈∇h(A∗w∞),A∗w−A∗w∞〉

+ σ∞
2
‖w− w∞‖2 + σ∞

2
‖A∗w−A∗w∞‖2

}
.

Thus, 0 ∈ ∂g(w∞)−A∇h(A∗w∞). The proof is completed. �



OPTIMIZATION METHODS & SOFTWARE 577

In fact, when the data matrix S is positive definite, we can prove that f is bounded below
and the sequence {wk} has a limit point.

Theorem 2.3: When S ∈ S
n++, the level set of (10) {w | f (w) ≤ α} is bounded for every α ∈

R. It further implies that f is bounded below and there exists a limit point of the sequence {wk}
generated by Algorithm 1.

Proof: See Appendix 1. �

Theorem 2.2 gives the subsequential convergence of Algorithm 1. Sequential conver-
gence and convergence rate can be established under additional assumptions, including
isolatedness of limit point and the KL (Kurdyka-Łojasiewicz) property. In fact, in the liter-
ature, they are many works on the analysis of the convergence rate of DCA and its variants;
see, e.g.[1,3,8,41,52].Nextwe establish sequential convergence and convergence rate results
for Algorithm 1 with the assumption of the KL property. Our main result, Theorem 2.6, is
mainly based on [8, Proposition 4]. For completeness, we give its proof in the Appendix.
As a first step, we recall the definition of limiting subdifferential from [45].

Definition 2.4 (Subdifferentials): Let f : Rn→ (−∞,+∞] be a proper lower semicon-
tinuous function and x ∈ dom f := {x ∈ Rn | f (x) < +∞}. The Fréchet subdifferential of
f at x is defined as

∂̂f (x) =
{
v ∈ R

n
∣∣∣∣ lim inf
y→x,y �=x

f (y)− f (x)− 〈v, y− x〉
‖x− y‖ ≥ 0

}
.

The limiting subdifferential of f at x is defined as

∂f (x) = {v ∈ R
n | ∃ xk→ x, f (xk)→ f (x), vk ∈ ∂̂f (xk), vk→ v as j→∞}.

Next, we present the definition of the KL property [3,6,7], which is a key tool in
our convergence analysis. For α ∈ (0,+∞], we denote by �α the class of functions φ :
[0,α)→ R that satisfy the following conditions: (a) φ(0) = 0; (b) φ is positive, concave
and continuous; (c) φ is continuously differentiable on (0,α), with φ′ > 0.

Definition 2.5 (KL property): Let f : Rn→ (−∞,+∞] be a proper lower semicontinu-
ous function. The function f is said to have the KL property at x̄ ∈ dom ∂f := {x ∈ dom f |
∂f (x) �= ∅}, if there exist α ∈ (0,+∞], a neighbourhood V of x̄ and a function φ ∈ �α

such that

φ′(f (x)− f (x̄))dist(0, ∂f (x)) ≥ 1, ∀x ∈ V and f (x̄) < f (x) < f (x̄)+ α,

where dist(x,C) = min{‖x− y‖ | y ∈ C} denotes the distance function to a closed set C.
The function f is said to be a KL function if it has the KL property at each point of dom ∂f .

When φ is of the form φ(s) = cs1−θ with c>0 and θ ∈ [0, 1), the number θ is called a
Łojasiewicz exponent and we say f has the KL property with exponent θ . Next we can give
the sequential convergence and convergence rate results of Algorithm 1.
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Theorem 2.6: Suppose that the d.c. function f in (10) is bounded below. Assume that the
sequence {σk} is convergent to σ∞ > 0. Let {wk} be the sequence generated by Algorithm 1.
Let B∞ be the set of limit points of {wk}.

(I) (Convergence result) The whole sequence {wk} converges to some critical point of (10) if
one of the following two conditions holds:
(1) B∞ contains an isolated point;
(2) {wk} is bounded, and for every w∞ ∈ B∞, f has the KL property at w∞.

(II) (Rate of convergence) If condition (2) holds, wk→ w∞, and the function f has the KL
property at w∞ with exponent θ ∈ [0, 1), then the following estimations hold:
(a) if θ = 0, then the sequence {wk} converges in a finite number of steps;
(b) if θ ∈ (0, 12 ], then there exit c>0 and q ∈ [0, 1) such that

‖wk − w∞‖ ≤ cqk, ∀ k ≥ 1;

(c) if θ ∈ ( 12 , 1), then there exits c>0 such that

‖wk − w∞‖ ≤ ck−(1−θ)/(2θ−1), ∀ k ≥ 1.

Proof: See Appendix 2. �

3. Semismooth Newtonmethod for the subproblems

In this section, we design a semismooth Newton (SSN) method for solving the subprob-
lem (8). Equivalently, we aim to solve the following problem for given K, �̃, w̃, and
σ

min − log det (�+ J)+ 〈K,�〉 + σ

2
‖�− �̃‖2 + σ

2
‖w− w̃‖2

s.t. � = A∗w,
w ∈ R

|E |
+ .

(13)

3.1. Properties of proximalmappings

The properties of the proximalmappings associatedwith the log-determinant function and
that of the indicator of the non-negative cone will be used subsequently in designing the
SSN method. Therefore, we summarize the properties in this section.

Let X be a finite-dimensional real Hilbert space, f : X → (−∞,+∞] be a closed
proper convex function, and σ > 0. The Moreau-Yosida regularization [39,62] of f is
defined by

Mσ
f (x) := min

z

{
f (z)+ σ

2
‖z − x‖2

}
, ∀ x ∈ X . (14)

The unique optimal solution of (14), denoted by Proxσ
f (x), is called the proximal point

of x associated with f, and Proxσ
f : X → X is called the associated proximal mapping.

Moreover,Mσ
f : X → R is a continuously differentiable convex function [36,45], and its
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gradient is given by

∇Mσ
f (x) = σ(x− Proxσ

f (x)), ∀ x ∈ X . (15)

For notational simplicity, we denote �(·) := − log det (·). As the log-determinant function
� is an important part in our problem, we summarize the following results concerning the
Moreau-Yosida regularization of �, see e.g. [58, Lemma 2.1(b)] [60, Proposition 2.3].

Proposition3.1: Letσ > 0. For anyX ∈ Sn with its eigenvalue decompositionX = U�UT.

Let D be a diagonal matrix with Dii = (

√
�2

ii + 4/σ +�ii)/2, i = 1, 2, . . . , n. Thenwe have
that Proxσ

� (X) = UDUT. Besides, the proximal mapping Proxσ
� : Sn→ Sn is continuously

differentiable, and its directional derivative at X for any H ∈ Sn is given by

(Proxσ
� )′(X)[H] = U[� � (UTHU)]UT ,

where� denotes the Hadamard product, and � ∈ Sn is defined by

�ij = 1
2

[
1+ (�ii +�jj)/(

√
�2

ii + 4/σ +
√

�2
jj + 4/σ)

]
, i, j = 1, 2, . . . , n.

Next, we handle the indicator function δ+(·) of the non-negative cone R
|E |
+ defined by

δ+(w) = 0 if w ∈ R
|E |
+ , and δ+(w) = +∞ otherwise. For any given vector c ∈ R|E |, the

proximal mapping of δ+(·) is the projection onto the non-negative cone, which is given by

�+(c) := Prox1δ+(c) = argmin
w

{
δ+(w)+ 1

2
‖w− c‖2

}
= max{c, 0}.

Here max{·, 0} is defined in a component-wise fashion such that max{t, 0} = t if t ≥ 0,
and max{t, 0} = 0 if t<0. The Clarke generalized Jacobian [12, Definition 2.6.1] of �+ :
R|E | → R|E | is given by

∂�+(c) :=
⎧⎨⎩Diag(d) ∈ S

|E |
+

∣∣∣∣∣∣
di = 1, if ci > 0;

0 ≤ di ≤ 1, if ci = 0;
di = 0, if ci < 0;

∀ i = 1, 2, . . . , |E |
⎫⎬⎭ , ∀ c ∈ R

|E |.

We denote by Diag(d) the diagonal matrix whose diagonal elements are the components
of d.

3.2. Semismooth Newtonmethod for (eqn13)

The dual of problem (13) admits the following form

max
Y
{�(Y) := min

�,w
L(�,w;Y)}, (16)

where L is the Lagrangian function associated with (13) and it is given by

L(�,w;Y)

= − log det (�+ J)+ 〈K,�〉 + σ

2
‖�− �̃‖2 + σ

2
‖w− w̃‖2 + 〈�−A∗w,Y〉 + δ+(w)
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= − log det(�+ J)+ σ

2
‖�− �̃+ 1

σ
(K + Y)‖2 − 1

2σ
‖K + Y‖2 + 〈�̃,K + Y〉

+ δ+(w)+ σ

2
‖w− w̃− 1

σ
AY‖2 − 1

2σ
‖AY‖2 − 〈w̃,AY〉,

× (�,w,Y) ∈ S
n ×R

|E |
+ × S

n. (17)

By theMoreau-Yosida regularization (14) and (15), we can obtain the following expression
of � by minimizing L w.r.t. (�,w)

�(Y) :=Mσ
�

(
�̃+ J − 1

σ
(K + Y)

)
+ σM1

δ+

(
w̃+ 1

σ
AY

)
〈Y , �̃−A∗w̃〉 − 1

2σ
‖K + Y‖2 − 1

2σ
‖AY‖2 + 〈�̃,K〉,

and it is continuously differentiable with the gradient

∇�(Y) = Proxσ
�

(
�̃+ J − 1

σ
(K + Y)

)
−A∗�+

(
w̃+ 1

σ
AY

)
− J.

To find the optimal solution of the unconstrained maximization problem (16), we can
equivalently solve the following nonlinear nonsmooth equation

∇�(Y) = 0. (18)

In this paper, we apply a globally convergent and locally superlinearly convergent SSN
method [29,43,53] to solve the above nonsmooth equation. To apply the SSN, we need the
following generalized Jacobian of ∇� at Y, which is the multifunction ∂̂2�(Y) : Sn ⇒ Sn

defined as follows:{
V ∈ ∂̂2�(Y) if and only if there exists D ∈ ∂�+

(
w̃+ 1

σ
AY

)
such that

V[H] = − 1
σ
(Proxσ

� )′(�̃+ J − 1
σ
(K + Y))[H]− 1

σ
A∗DAH, ∀H ∈ Sn. (19)

Each element V ∈ ∂̂2�(Y) is negative definite. The implementation of the SSN method is
given in Algorithm 2. For its convergence, see [38, Theorem 3].

Algorithm 2 Semismooth Newton method for solving (18)
Input: σ > 0, (�̃, w̃) ∈ Sn ×R|E |, Y0 ∈ Sn, η̄ ∈ (0, 1), τ ∈ (0, 1], μ ∈ (0, 0.5), ρ ∈ (0, 1).
j = 0. Repeat until convergence

Step 1. Find Vj ∈ ∂̂2�k(Yj). Solve Vj[D] = −∇�(Yj) inexactly to obtain Dj such that
‖Vj[Dj]+∇�(Yj)‖ ≤ min(η̄, ‖∇�(Yj)‖1+τ ).

Step 2. Find mj as the smallest non-negative integer m for which �(Yj + ρmDj) ≥
�(Yj)+ μρm〈∇�(Yj),Dj〉. Set αj = ρmj .

Step 3. Yj+1 = Yj + αjDj. j← j+ 1.
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Lastly, we can recover the optimal solution (�, w̄) to the primal problem (13) via the
optimal solution to the dual problem Y := argmax�(Y) by

� = Proxσ
�

(
�̃+ J − 1

σ
(K + Y)

)
− J, w̄ = �+(w̃+ 1

σ
AY).

Remark 3.1: We claim that the stopping condition (9) is achievable under appropriate
implementation of Algorithm 2. For solving subproblem (8), we implement Algorithm 2
with σ = σk, �̃ = A∗wk, w̃ = wk, and K = Gk, and then it will return an approximate
solution Yk+1 of (18) with some error term Ek := −∇�(Yk+1), namely,

Proxσk
�

(
A∗wk + J − 1

σk
(Gk + Yk+1)

)
−A∗�+

(
wk + 1

σk
AYk+1

)
− J + Ek = 0.

(20)
We let

wk+1 := �+
(
wk + 1

σk
AYk+1

)
(21)

be the solution to (8). Next we justify thatwk+1 is an approximate solution to (8) satisfying
the stopping condition (9) as long as ‖Ek‖2 is smaller than a certain value, where ‖ · ‖2 is
the spectral norm of a matrix.

The Equation (20) implies that A∗wk+1 + J − Ek ∈ S
n++. We further require that r :=

‖(A∗wk+1 + J − Ek)−1Ek‖2 < 1 such that the matrixA∗wk+1 + J is also positive definite
[21, Theorem 2.3.4]. We know that (20) is equivalent to that

0 ∈ A∗(wk+1 − wk)− Ek + 1
σk

(Gk + Yk+1)+ 1
σk

∂�(A∗wk+1 + J − Ek), (22)

and (21) is equivalent to that

0 ∈ wk+1 − wk − 1
σk

AYk+1 + ∂δ+(wk+1). (23)

Since � is differentiable on S
n++, we can obtain by combining (22) and (23) that

A[σkEk + (A∗wk+1 − Ek + J)−1 − (A∗wk+1 + J)−1]

∈−A(A∗wk+1 + J)−1 +AGk + σk(wk+1 − wk)+ σkAA∗(wk+1 − wk)+∂δ+(wk+1).

By noting the optimality condition of (8), we can let the error vector in (9) be

δk := −A[σkEk + (A∗wk+1 − Ek + J)−1 − (A∗wk+1 + J)−1].

We can observe that δk→ 0 as ‖Ek‖2→ 0 and therefore the stopping condition is
achievable. Specifically, it follows from [21, Theorem 2.3.4] that

‖δk‖ ≤ ‖A‖2
[
σk‖Ek‖2 + ‖(A∗wk+1 − Ek + J)−1 − (A∗wk+1 + J)−1‖2

]
≤ ‖A‖2‖Ek‖2

[
σk +

‖(A∗wk+1 − Ek + J)−1‖22
1− r

]
,
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where ‖A‖2 := sup{‖A�‖ | ‖�‖2 ≤ 1}. Therefore, the stopping condition (9) holds if the
following two checkable inequalities hold:

r := ‖(A∗wk+1 + J − Ek)−1Ek‖2 < 1,

‖A‖2‖Ek‖2
[
σk +

‖(A∗wk+1 − Ek + J)−1‖22
1− r

]
≤ σk

4
‖wk+1 − wk‖

+ σk‖A∗wk+1 −A∗wk‖2
2‖wk+1 − wk‖ .

4. Numerical results

In this section, we conduct experiments to evaluate the performance of our graph learn-
ing model (CGL-MCP) from two perspectives. First of all, we compare the effectiveness of
our model (CGL-MCP) on synthetic data with the convex model (CGL-L1) and the gen-
eralized graph learning (GGL) model [15, p. 828]. The GGL model refers to the problem
min{− log det (�)+ 〈S,�〉 + λ‖�‖1,off |� ∈ Lg(A)}, where the set of generalized graph
LaplacianLg(A) is the set (3) without the row-sum constraint�1 = 0. Secondly, we com-
pare the efficiency of our inexact proximal DCA (Algorithm 1) for solving (CGL-MCP)
with themethod in [61, Algorithm 1], which solves a sequence of weighted �1-norm penal-
ized subproblems by a projected gradient descent algorithm.1 Our method is terminated
if

‖wk − wk−1‖
1+ ‖wk−1‖ < ε, or

‖objk − objk−1‖
1+ ‖objk−1‖ < ε.

Here, objk denotes the objective function value of (10) at the kth iteration. The method
[61, Algorithm 1] is terminated by their default condition, which also uses certain relative
successive changes. In addition, we set the parameter γ in (4) to be 1.5.

4.1. Performance of differentmodels

In this section, we compare our model (CGL-MCP) with the model (CGL-L1) and the
model (GGL). We refer to the solution of (CGL-L1) obtained by the alternating direction
method of multipliers (see Appendix 3 for its implementation) as an L1 solution. We call
A∗w̃ as an MCP solution, where w̃ is the approximate solution obtained by our inexact
proximal DCA presented in Algorithm 1.

4.1.1. Synthetic graphs
We simulate graphs from three standard ensembles of random graphs: 1) Erdős-Rényi
G(n,p)
ER , where two nodes are connected independently with probability p; 2) Grid graph,

G(n)
grid, consisting of n nodes connected to their four nearest neighbours; 3) Random mod-

ular graph, G(n,p1,p2)
M , with n nodes and four modules (subgraphs) where the probability of

an edge connecting two nodes across modules and within modules are p1 and p2, respec-
tively. Given any graph structure from one of these three ensembles, the edge weights are
uniformly sampled from the interval [0.1, 3]. Then we obtain a valid Laplacian matrix as
the true precision matrix.
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For the diversity of comparisons, we test the performance of different models with var-
ious connectivity constraints: 1) A = Atrue, where Atrue is the true connectivity matrix; 2)
A = Acoarse, where Acoarse is a coarse estimation of the truth, i.e.{(i, j) | (Acoarse)ij = 1} ⊇
{(i, j) | (Atrue)ij = 1}. Specifically, in our experiments we set the cardinality of the former
as 1.5 times that of the latter by randomly changing some zero entries in Atrue into ones; 3)
A = Afull, where Afull is the full connectivity matrix; 4) A = Ad%, where Ad% is an inaccu-
rate estimation of the truth and is obtained by randomly replacing d% of the ones in Atrue
by zero entries. Different connectivity constraints are reasonable since in some cases the
true graph topology might not be available while one can obtain its coarse or inaccurate
estimation based on some prior knowledge. Even without any prior knowledge, one can
assume that the graph is fully connected and will estimate both the graph structure and
edge weights. To measure the performance of different models, we adopt two metrics:

(1) recovery error ‖�−Ltrue‖‖Ltrue‖ , which is the relative error between the true precision matrix
Ltrue and the estimated one �;

(2) F1 score 2(precision·recall)
precision+recall = 2tp

2tp+fp+fn , which is a standardmetric to evaluate the perfor-
mance on detecting edges. Here tp denotes true positive (themodel correctly identifies
an edge); fp denotes false positive (themodel incorrectly identifies an edge); fn denotes
false negative (the model fails to identify an edge).

We first compare L1, MCP, and GGL solutions on Erdős-Rényi graph, G(100,0.1)
ER . We set

ε = 10−6 and the sample size k = 5000n, and the results reported are the average over 10
simulations. Figures 1–4 plot the number of edges, F1 score, and recovery errorwith respect
to a sequence of λ under different connectivity constraints. As shown in Figure 1, with the
true sparsity pattern, both MCP and L1 solutions can perfectly identify the edges; while
GGL solutions only achieve the F1 score of 0.9 mainly due to its violation of the constraint
�1 = 0. In terms of the recovery error which compares the edge weights of the true and
estimated graphs, MCP solutions perform well while the other two tend to be biased for
most values of λ. Figure 1 shows that MCP solutions can be better than the other two
models for estimating the edge weights when the true sparsity pattern is given. If the true
connectivity matrix is unknown and only a coarse estimation of the connectivity matrix
is available, we can see from Figure 2 that only the MCP solution with λ roughly in the
interval (10−2, 10−1) can detect most of the edges and achieve the recovery error of 10−2.
This has demonstrated the ability of the MCP for promoting sparsity and avoiding bias. In
addition, we can see from Figure 3 that without any estimation of the sparsity pattern, the
results will deteriorate greatly compared to the results in Figures 1 and 2. Even though the
problem becomes much more difficult in this case, there still exists an MCP solution for
which the F1 score is nearly 1, i.e. it can almost recover the true sparsity pattern.Meanwhile,
the recovery error of the MCP solution is better than that of L1 or GGL solutions. We can
also see from the left panel of Figure 3 that the number of edges of L1 solutions change
approximately from 1000 to 5000 when λ changes from 10−4 to 10−1, and this number is
always larger than the truth value of around 500. The number of edges of theGGL solutions
is slightly lower than the truth and tends to zero as λ increases, which can happen because
GGL does not impose the row-sum constraint �1 = 0. Figure 3 shows that without any
prior knowledge of the true sparsity pattern, the MCP solutions are likely to be closer to
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Figure 1. On Erdős-Rényi graph, G(100,0.1)
ER . The true connectivity matrix A = Atrue is used.

Figure 2. On Erdős-Rényi graph, G(100,0.1)
ER . We use a coarse estimation of the true sparsity pattern and

A = Acoarse.

Figure 3. On Erdős-Rényi graph, G(100,0.1)
ER . We use a full connectivity matrix and A = Afull is input.

the truth with a proper choice of λ; L1 solution can hardly recover the ground truth; and
GGL solutions can detect most of the true edges when λ is small but the solutions’ values
are greatly biased. Therefore, when prior knowledge about the connectivity matrix is not
available, the MCP solutions are generally far more superior than the L1 or GGL solutions
in terms of both structure inference and edgeweights estimation.As can be seen in Figure 4,
the recovery error suffers from the incorrect prior information on the connectivity matrix,
but the error is consistent with the percentage (10%) of wrongly eliminated edges in the
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Figure 4. On Erdős-Rényi graph, G(100,0.1)
ER . We use a rough estimation of the true sparsity pattern and

A = A10% which is not exactly accurate.

input connectivity matrix. The results in Figure 4 suggest that when the sample size is
large enough (k = 5000n), a fully connected prior connectivity matrix is preferable to an
inaccurate estimation of the graph structure.

Additional numerical results for grid graph G(100)
grid and random modular graph

G(100,0.05,0.3)
M are given in Appendix 4.

4.1.2. Real data
In this section, we test on a collection of real data sets: animals, senate, and temperature.
Again, we run through a sequence of parameter values for λ starting from a small scalar to
a large enough number such that the resulting graph is almost fully connected or empty.
We set ε = 10−4.

Animals: The animals data set [26] consists of binary values assigned to k = 102 fea-
tures for n = 33 animals. Each feature denotes a true-false answer to a question, such as
‘has lungs?’, ‘is warm-blooded?’, ‘live in groups?’. The left panel of Figure 5 plots the num-
ber of edges against the penalty parameter λ of the threemodels considered in the previous
subsection on the animalsdata set. The blue curve shows that increasing the penalty param-
eter λ cannot promote sparsity in the L1 solutions, due to the presence of the constraint
�1 = 0. In fact, when λ is large, the majority of the edge weights�ij of the L1 solution are
small non-zero numbers satisfying the zero row-sum constraints. Therefore, the learned
graph is almost fully connected when λ is large. On the other hand, we can see from the red
curve that tuning the penalty parameter λ will result in MCP solutions with various spar-
sity levels. It offers sparser solutions compared to L1 solutions, which are especially useful
when the data contains a large number of nodes and a sparser graph is desired for better
interpretability. Even though the ground truth is not available for real data, MCP solutions
can provide solutions with a wider range of sparsity levels compared with L1 solutions
and therefore MCP solutions will be preferable in real applications. The middle and right
panels of Figure 5 illustrate the dependency networks of theMCP solution without the reg-
ularization term (λ = 0) and the sparsest dependency network among the MCP solutions
(λ = 10−0.25), respectively. The right graph contains 39 edges, which is more interpretable
compared to the middle one with 114 edges. We can clearly see from the right panel that
similar animals, such as gorilla and chimp, dolphin and whale, are connected with edges
of large weights, which coincides with one’s expectations.
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Figure 5. On animals data set. Left: the number of edges against the penalty parameter λ. Middle:
dependency graph of the MCP solution with λ = 0. Right: dependency graph of the MCP solution with
λ = 10−0.25.

Senate: The senate data set [31, Section 4.5] contains 98 senators and their 696 voting
records for the 111th United States Congress, from January 2009 to January 2011. Similar
to the animals data, the senate data consists of binary values, where 0’s or 1’s correspond
to no or yes votes, respectively. There exist some missing entries when one senator is not
present for certain votings. To avoid missing entries, we select a submatrix (50× 293) of
the original data matrix (98× 696) consisting of 50 senators and 293 voting records with-
out missing entries. We then run through a sequence of λ and plot the number of edges of
estimated solutions in the left panel of Figure 6. Additionally, we illustrate the dependency
networks of MCP solutions with λ = 0 and λ = 10−0.25 (the sparsest one) in the middle
and right panels of Figure 6, respectively. As can be seen, the middle graph, containing 218
edges, is relatively dense andnot easy to interpret. In the right panel of Figure 6, the nodes at
the bottom left (resp. top right) of the black dotted line representDemocrats (resp. Republi-
cans). The figure clearly shows the divide betweenDemocrats and Republicans, andwe can
see that the two components are only connected by one edge between Democrat Nelson
and Republican Corker. In addition to the use of a small subset of the senate data to avoid
missing data, we note that a generalized sample covariance matrix S can be constructed
according to the procedure in [27, Equation (2)] and [9, Equation (7)] to handle missing
data in the area of inverse covariance estimation. Therefore, we can analyze the relation-
ships among all of the 98 senators. Table 1 compares the resulting graph without penalty
(λ = 0) and the sparsest graph offered by MCP solutions. We can see that without penalty,
there are 2.45% edges across the nodes representing Democrats and nodes representing
Republicans. In contrast, the use of the MCP decreased this number to 1.56%. We believe
that fewer edges across Democrats and Republicans might be more reasonable as the two
parties are rarely correlated. Therefore, the (CGL-MCP) model can be a reasonable model
to analyze the senate data.

Temperature: The temperature data set2 we use contains the daily temperature measure-
ments collected from 45 states in the US over 16 years (2000–2015) [24]. Therefore, there
are k = 5844 samples for each of the n = 45 states. Figure 7 plots the number of edges of
the graphs learned by three different models against the penalty parameter λ, the depen-
dency networks of the MCP solution without regularization (λ = 0) and the sparsest one
among theMCP solutions (λ = 0.1). As can be seen from the middle panel of Figure 7, the
graph without regularization is quite sparse, and it is not much difference from the sparsest
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Figure 6. On senate data set. Left: the number of edges against the penalty parameter λ. Middle:
dependency graph of the MCP solution with λ = 0. Right: dependency graph of the MCP solution with
λ = 10−0.25. The nodes at the top right (resp. bottom left) of the black dotted line represent Republicans
(resp. Democrats).

Table 1. nnz: the number of edges; nnzD: the number of edges connecting
two nodes representing Democrats; nnzR: the number of edges connect-
ing two nodes representing Republicans; nnzCross: the number of edges
connecting one node representing Democrats and one node representing
Republicans.

λ (nnzD, nnzD/nnz) (nnzR, nnzR/nnz) (nnzCross, nnzCross/nnz)

0 (211, 36.95%) (346, 60.60%) (14, 2.45%)

10−0.25 (51, 39.84%) (75, 58.59%) (2, 1.56%)

Figure 7. On temperature data set. Left: the number of edges against the penalty parameter λ. Middle:
dependency graph of the MCP solution with λ = 0. Right: dependency graph of the MCP solution with
λ = 10−1.

graph offered by MCP solutions shown in the right panel. As plotted in the two networks,
the states that are geographically close (especially contiguous) to each other are generally
connected, since temperature values tend to be similar in nearby areas. On the temperature
data set, MCP and L1 solutions seem to be similar, as indicated by the left panel. One possi-
ble explanation could be that the temperature data admits certain sparsity intrinsically and
it would result in a fairly sparse solution even without regularization.
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Table 2. Performances of DCA and NGL on modular graph G(n,0.005,0.25)
M .

Nodes Edges Time F1 score Recovery error Objective value

n DCA NGL DCA NGL DCA NGL DCA NGL DCA NGL

160 829 1078 20.3 15.0 0.99 0.85 7.3e−03 5.1e−03 −2.5607e+02 −2.5566e+02
240 1684 23832 12.6 0.8 0.94 0.14 1.7e−02 1.0e+01 −6.3314e+01 2.2850e+03
320 2810 – 15.9 – 0.91 – 2.2e−02 – −1.0257e+02 –
400 4149 – 46.6 – 0.89 – 2.7e−02 – −1.4570e+02 –

Notes: λ = 0.005. ε = 10−6. ‘–’ means the method stops due to internal errors.

4.2. Computational efficiencies of differentmethods

In this section, we compare our inexact proximal DCA (Algorithm 1) with the method in
[61, Algorithm 1], which is implemented in a R package referred to as ‘NGL’, for solving a
special case of (CGL-MCP) for which A is restricted to be the full connectivity matrix.

4.2.1. Synthetic graphs
We generate graphs from the ensemble of random modular graphs described in
Section 4.1.1 to evaluate the efficiency of the two methods. We set p1 = 0.005, p2 = 0.25,
λ = 0.005 and ε = 10−6. The graphs are of different dimensions n ∈ {160, 240, 320, 400}
and the sample size k is set to be 5000n. Note that our algorithm can use the information
of the true graph topology A; while the NGL will not incorporate A in their solver. For a
fair comparison, we merely input a full connectivity matrix into our algorithm.

Table 2 compares the computational time, F1 score, recovery error, and objective value
of problem (5) of the two methods DCA and NGL for solving instances with different
numbers of nodes n. Table 2 shows that our DCA can successfully solve all instances with
satisfactory F1 score and recovery error. In contrast, the NGL only succeeded in solving
the problem when n = 160; and it terminated prematurely when n = 240 as shown by the
fairly low F1 score, unreasonably large recovery error and objective value. For relatively
large dimensions with n = 320 and n = 400, the NGL does not return reasonable solu-
tions as it terminates prematurely due to internal errors caused by the singularity of certain
matrices. It seems that the NGL might not be reliable for solving the model (CGL-MCP)
on randommodular graphs. FromTable 2 we can conclude that our inexact proximal DCA
is fairly efficient for solving the model on random modular graphs.

4.2.2. Real data
We compare the two methods on the real data set animals, senate, and temperature. We
encountered numerical issue due tomatrix singularity when the NGL is applied for solving
the senate and temperature data sets. We run through a sequence of parameters λ used in
Section 4.1.2 which result in sparse graphs. Table 3 compares the number of edges of the
resulting graphs, the computational time, and the objective value of problem (5) of the two
methods. It can be seen that bothDCAandNGL can solve the instances on the animalsdata
within several seconds, and the objective values are comparable. For senate and temperature
data, only DCA can return reasonable solutions.

In addition, we test on genetic real data sets lymph (n = 587) and estrogen (n = 692)
from [37, Section 4.2], and the model (CGL-MCP) can extract dependency relationships
among the genes. The results are also presented in Table 3. Due to the relatively large
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Table 3. Performances of DCA and NGL on real data.

Edges Time Objective value

DCA NGL DCA NGL DCA NGL

10−0.5 65 53 1.1 0.3 −3.7797e+01 −3.8267e+01
10−1.0 105 68 1.3 0.5 −4.6493e+01 −4.6232e+01

animals 10−1.5 115 85 1.0 1.1 −4.7896e+01 −4.7759e+01
(n = 33) 10−2.0 118 96 0.8 1.0 −4.8053e+01 −4.8070e+01

10−2.5 119 102 0.4 1.3 −4.8052e+01 −4.8115e+01
10−0.5 119 – 5.1 – −9.3342e+01 –
10−1.0 243 – 10.3 – −1.1016e+02 –

senate 10−1.5 250 – 8.7 – −1.1345e+02 –
(n = 50) 10−2.0 245 – 5.8 – −1.1383e+02 –

10−2.5 232 – 6.8 – −1.1409e+02 –
100.5 127 – 5.7 – 1.2958e+02 –
100 97 – 2.0 – 1.0489e+02 –

temperature 10−0.5 79 – 3.5 – 8.8216e+01 –
(n = 45) 10−1.0 78 – 3.8 – 8.3571e+01 –

10−1.5 78 – 4.2 – 8.2770e+01 –
100 7956 – 62.6 – 8.5260e+02 –

10−0.5 1631 – 370.9 – 3.6811e+02 –
lymph 10−1.0 2014 – 296.8 – 2.0798e+02 –
(n = 587) 10−1.5 3155 – 226.2 – 1.7707e+02 –

10−2 3949 – 136.4 – 1.7248e+02 –
100 8805 – 111.6 – 9.4494e+02 –

10−0.5 1514 – 897.1 – 5.8620e+01 –
estrogen 10−1.0 2145 – 521.3 – −1.0362e+02 –
(n = 692) 10−1.5 2939 – 511.9 – −1.3415e+02 –

10−2 3461 – 369.5 – −1.3833e+02 –

Notes: ε = 10−4. ‘–’ means the method stops due to internal errors.

dimensions, the computational time on genetic real data sets increased correspondingly
compared to the animals, senate, and temperature data sets.

The numerical results in Tables 2 and 3 show that our inexact proximal DCA is a fairly
efficient and robust method for solving the (CGL-MCP) model.

5. Conclusion

In this paper, we have designed an inexact proximal DCA for solving the MCP penal-
ized graphical model with Laplacian structural constraints (CGL-MCP). We also prove
that any limit point of the sequence generated by the inexact proximal DCA is a criti-
cal point of (CGL-MCP). Each subproblem of the proximal DCA is solved by an efficient
semismoothNewtonmethod. Numerical experiments have demonstrated the effectiveness
of the model (CGL-MCP) and the efficiency of the inexact proximal DCA, together with
the semismooth Newton method, of solving the model. More generally, both the model
and algorithm can be applied directly to other non-convex penalties, such as the smoothly
clipped absolute deviation (SCAD) function.

Notes

1. Codes are available at https://github.com/mirca/sparseGraph.
2. NCEP Reanalysis data is provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA,

from their Web site at https://www.esrl.noaa.gov/psd/.

https://github.com/mirca/sparseGraph
https://www.esrl.noaa.gov/psd/
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Appendices

Appendix 1. Proof of Theorem 2.3

Lemma A.1: Consider the following problem

min {− log det (A∗w+ J)+ 〈S,A∗w〉 + δ(w |R|E|+ )}. (A1)

(i) The level set (A2) of problem (A1)

{w ∈ R
|E| | − log det (A∗w+ J)+ 〈S,A∗w〉 + δ(w |R|E|+ ) ≤ α} (A2)

is closed for every α ∈ R. Namely, the essential objective function of problem (A1)

g(w) := − log det (A∗w+ J)+ 〈S,A∗w〉 + δ(w |R|E|+ ), w ∈ R
|E|

is lower semi-continuous on R|E|.
(ii) Suppose the condition {w ∈ R

|E|
+ | 〈S,A∗w〉 ≤ 0} = {0} holds (it holds if the given matrix S is

positive definite). Then the level set (A2) of problem (A1) is bounded for every α ∈ R and the
solution set of problem (A1) is a non-empty bounded set.

Proof: (i) It suffices to prove the condition that

α ≥ − log det (A∗w+ J)+ 〈S,A∗w〉 + δ(w |R|E|+ ) (A3)

wheneverα = limαk andw = limwk for sequences {αk} and {wk} such thatαk ≥ − log det (A∗wk +
J)+ 〈S,A∗wk〉 + δ(wk |R|E|+ ) for every k. If α = +∞, (A3) holds automatically. Next we focus on
the case where α is finite. We claim that ν := λmin(A∗w+ J) > 0 if α is finite.

Proof of the claim: If λmin(A∗w+ J) = 0, then for every i, there exists ki such that
λmin(A∗wki + J) < 1

i and λmax(A∗wki + J) < λmax(A∗w+ J)+ 1. Then,− log det (A∗wki + J) >

−(n− 1) log (λmax(A∗w+ J)+ 1)+ log i. By letting i→+∞, we obtain that α = +∞, which is
contradictory to the finiteness of α. Therefore, the claim is proved.

By the continuity of − log det(·) on {� |� � νI} and the closedness of the set R
|E|
+ , we can

obtain (A3) by letting k→+∞. The lower semi-continuity of g follows from [Theorem 7.1][44].
(ii) By [Theorem 8.5][44], the recession function g0+ of g is given as follows: for w ∈ R

|E|
+ ,

(g0+)(w) = lim
t→+∞

g(1+ tw)− g(1)
t

= lim
t→+∞

− log det (A∗1+ J + tA∗w)+ log det (A∗1+ J)
t

+ 〈S,A∗w〉.
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SinceA∗w ∈ S
n+, it is easy to obtain that

lim
t→+∞

− log det (A∗1+ J + tA∗w)+ log det (A∗1+ J)
t

= 0.

Therefore, (g0+)(w) = 〈S,A∗w〉 if w ∈ R
|E|
+ ; (g0+)(w) = +∞ otherwise. The recession cone of g

is given by {w | (g0+)(w) ≤ 0} = {w ∈ R
|E|
+ | 〈S,A∗w〉 ≤ 0}. Then (ii) follows from [Theorem 8.4,

Theorem 8.7, & Theorem 27.1][44] and the proof is completed. �

Proof of Theorem 2.3.: The boundedness of the level set follows from Lemma A.1 (ii) and the
following inclusion

{w | f (w) ≤ α} = {w ∈ R
|E|
+ | − log det (A∗w+ J)+ 〈S,A∗w〉 + P(A∗w) ≤ α}

⊆ {w ∈ R
|E|
+ | − log det (A∗w+ J)+ 〈S,A∗w〉 ≤ α}.

The rest results follow from [Theorem 1.9][45] and that Algorithm 1 is a descent algorithm. The
proof is completed. �

Appendix 2. Proof of Theorem 2.6

Proof of Theorem 2.6.: Wefirst prove (I). Suppose that there exists k0 such thatwk0+1 = wk0 , imply-
ing δk0 = 0, it follows from the optimality condition of (8) that wk0 is a critical point of (10). Now
we suppose that ‖wk+1 − wk‖ > 0 for all k ≥ 0.

We show in Theorem 2.3 that limk→∞ ‖wk+1 − wk‖ = 0. If condition (1) holds, then the
convergence of {wk} follows immediately from [16, Proposition 8.3.10].

Now we assume condition (2) holds. It follows from (11) and (12) that 0 ∈ ∂g(wk+1)−
A∇h(A∗wk)+ σk(wk+1 − wk)+ σkAA∗(wk+1 − wk)+ δk. Namely,

ξ k+1 := A∇h(A∗wk)−A∇h(A∗wk+1)− σk(wk+1 − wk)− σkAA∗(wk+1 − wk)− δk

∈ ∂g(wk+1)−A∇h(A∗wk+1) ⊆ ∂f (wk+1).

Moreover, we can see from the definition (7) that ∇h(·) is globally Lipschitz continuous. Therefore,
there exists K > 0 such that ‖ξ k+1‖ ≤ K‖wk+1 − wk‖ for all k. That is,

dist(0, ∂f (wk+1)) ≤ K‖wk+1 − wk‖ for all k. (A4)

Since {wk} is bounded under condition (2), there exits a limit point w∞ ∈ B∞ of {wk}. By
Lemma 2.1, we have that limk→∞ f (wk) = f (w∞). Without loss of generality, we assume that
f (w∞) = 0. Since f has the KL property at w∞, there exit δ > 0, α ∈ (0,+∞], and φ ∈ �α such
that φ′(f (w))dist(0, ∂f (w)) ≥ 1 for all w such that ‖w− w∞‖ ≤ δ and 0 < f (w) < α.

By Lemma 2.1 and the fact that σk ≥ σ∞, we obtain that

f (wk+1) ≤ f (wk)− σ∞
4
‖wk+1 − wk‖2 ≤ f (wk)− σ∞

4
‖wk+1 − wk‖2
‖wk − wk−1‖ ‖w

k − wk−1‖. (A5)

By (A4), we further have that

f (wk+1) ≤ f (wk)− σ∞
4K
‖wk+1 − wk‖2
‖wk − wk−1‖ dist(0, ∂f (w

k)).

Let r ≥ s ≥ 1 be some integers and assume that the points ws, . . . ,wr belong to B(w∞, δ) := {w |
‖w− w∞‖ ≤ δ} with f (ws) < α. From the monotonicity and concavity of φ, we obtain that

φ(f (wk+1)) ≤ φ(f (wk))− φ′(f (wk))
σ∞
4K
‖wk+1 − wk‖2
‖wk − wk−1‖ dist(0, ∂f (w

k)),
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thus by the KL property, for k ∈ {s, . . . , r},

φ(f (wk+1)) ≤ φ(f (wk))− σ∞
4K
‖wk+1 − wk‖2
‖wk − wk−1‖ . (A6)

By the inequality 2(a− b) ≥ a2−b2
a , ∀ a > 0, b ∈ R and (A6), we have for k ∈ {s, . . . , r},

‖wk − wk−1‖ = ‖w
k+1 − wk‖2
‖wk − wk−1‖ +

‖wk − wk−1‖2 − ‖wk+1 − wk‖2
‖wk − wk−1‖

≤ ‖w
k+1 − wk‖2
‖wk − wk−1‖ + 2(‖wk − wk−1‖ − ‖wk+1 − wk‖)

≤ 4K
σ∞

(φ(f (wk))− φ(f (wk+1)))+ 2(‖wk − wk−1‖ − ‖wk+1 − wk‖)

Hence, by summation
r∑

k=s
‖wk − wk−1‖ ≤ 4K

σ∞
(φ(f (ws))− φ(f (wr+1)))+ 2(‖ws − ws−1‖ − ‖wr+1 − wr‖). (A7)

Next we show the sequence remains in the neighbourhood and converges. Since φ is continuous and
f (wk) ↓ 0, we can find a sufficiently large N such that

‖wN − w∞‖ ≤ δ

4
(A8)

4K
σ∞

φ(f (wN)) ≤ δ

4
(A9)√

4
σ∞

f (wN) < min

(
δ

4
,

√
4α
σ∞

)
(A10)

It follows from (A5) that

‖wk+1 − wk‖ ≤
√

4
σ∞

(f (wk)− f (wk+1)) ≤
√

4
σ∞

f (wk) <
δ

4
, ∀ k ≥ N. (A11)

Let us prove that wr ∈ B(w∞, δ) for r ≥ N. We proceed by induction on r. By (A8), wN ∈ B(w∞, δ).
By (A10), f (WN) < α. Suppose that r ≥ N + 1, and wN , . . . ,wr−1 ∈ B(w∞, δ), then

‖wr − w∞‖ ≤ ‖wr − wr−1‖ + ‖wr−1 − wN‖ + ‖wN − w∞‖

<
δ

4
+

r−1∑
k=N+1

‖wk − wk−1‖ + δ

4

≤ δ

2
+ 4K

σ∞
(φ(f (wN+1))− φ(f (wr)))+ 2(‖wN+1 − wN‖ − ‖wr − wr−1‖)

≤ δ

2
+ 4K

σ∞
φ(f (wN+1))+ 2‖wN+1 − wN‖ ≤ δ,

where the second inequality follows from (A8) and (A11); the third inequality follows from (A7); and
the last inequality follows from (A9) and (A11). Hence wN , . . . ,wr ∈ B(w∞, δ) and the induction
proof is complete. Therefore, wr ∈ B(w∞, δ) for r ≥ N. Using (A7) again, we obtain that the series∑ ‖wk − wk−1‖ converges, hence wk also converges by Cauchy’s criterion.

The secondpart (II) is proved as in [3, Theorem2].Hereφ can be chosen of the formφ(s) = cs1−θ

with c> 0 and θ ∈ [0, 1). Then (A7), the KL property, and (A4) yield a similar result as in [3, (11)],
which therefore leads to the same estimates. �
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Appendix 3. ADMM for solving (CGL-L1)

In this part, we briefly describe the alternating direction method of multipliers (ADMM) for solving
(CGL-L1) and refer the readers to [10,19] for its convergence properties. First we reformulate the
model (CGL-L1) as follows:

min
�,w,x

− log det (�+ J)+ 〈K,�〉

s.t. � = A∗x,
w− x = 0,

� ∈ S
n, w ∈ R

|E|
+ , x ∈ R

|E|,

(A12)

where K := S+ λI. It is easy to derive the following dual problem of (A12):

max log det (Y + K)− 〈J,Y + K〉 + n

s.t. AY + ζ = 0,

ζ ∈ R
|E|
+ , Y ∈ S

n.

(A13)

The Karush-Kuhn-Tucker (KKT) optimality conditions associated with (A12) and (A13) are given
as follows:

�−A∗x = 0, w− x = 0, w ∈ R
|E|
+ ,

AY + ζ = 0, ζ ∈ R
|E|
+ ,

(�+ J)(Y + K) = I, �+ J ∈ S
n
++, 〈w, ζ 〉 = 0.

(A14)

The iteration scheme of our ADMM for solving (A12) can be described as follows: given τ ∈ (0, (1+√
5)/2), and an initial point (x0,�0,w0,Y0, ζ 0), the (k+ 1)th iteration is given by⎧⎪⎪⎨⎪⎪⎩

xk+1 = (I +AA∗)−1[A(�k + σk
−1Yk)+ wk + σk

−1ζ k],
�k+1 = Proxσk

� (J +A∗xk+1 − σk
−1Yk − σk

−1K)− J,
wk+1 = �+(xk+1 − σk

−1ζ k),
Yk+1 = Yk + τσk(�

k+1 −A∗xk+1), ζ k+1 = ζ k + τσk(wk+1 − xk+1).

(A15)

We measure the optimality of an estimated primal-dual solution obtained from ADMM by the
relative KKT residual max{ηp, ηd, ηg}, where
pobj = − log det (A∗w+ J)+ 〈K,A∗w〉, dobj = log det (Y + K)− 〈J,Y + K〉 + n,

ηp = max
{
max{‖�−A∗x‖, ‖w− x‖}

1+ ‖x‖ ,
‖�+(−w)‖
1+ ‖w‖

}
, ηd = max{‖AY + ζ‖, ‖�+(−ζ )‖}

1+ ‖ζ‖ ,

ηg = |pobj− dobj|/(1+ |pobj| + |dobj|).
The ADMM is terminated if max{ηp, ηd, ηg} < ε, for a given tolerance ε > 0.

Next, we discuss efficient techniques to solve the |E | × |E | linear system in the first step of the
above iteration: (I +AA∗)x = b, for any given b ∈ R|E|. Obviously, the linear system can be solved
inexactly by an iterative method such as the conjugate gradient method. However, when the linear
system is of moderate dimension, say |E | < 5000, it is generally more efficient to solve it by a direct
method via a pre-computed Cholesky decomposition. Since the direct method requires the explicit
matrix form of the linearmapAA∗, we derive itsmatrix representation in the following proposition.

Proposition A.2: Let G = (V ,E) be a given graph with |V| = n, and B ∈ Rn×|E| be the node-arc
incidence matrix of G. We define a linear map A∗ : R|E| → Sn as A∗w = BDiag(w)BT , w ∈ R|E|.
Then the matrix representation ofAA∗ : R|E| → R|E| is 2I + |B|T |B|.

Proof: By the property of incidence matrices, we know that the diagonal entries of BTB are 2 and
the off-diagonal entries of BTB are 0 or ±1. Thus we can split BTB into two parts: BTB = 2I + C.
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Note that C := BTB− 2I has all its diagonal entries equal to 0 and the off-diagonal entries are either
0 or±1. For any w ∈ R|E|, we have that

AA∗w = diag(BTBDiag(w)BTB) = 4w+ diag(−2CDiag(w)− 2Diag(w)C + CDiag(w)C).

It follows from simple computations that diag(CDiag(w)C) = (C� C)w, where� denotes element-
wise product. Together with the fact that diag(C) = 0, we haveAA∗w = 4w+ (C� C)w. By noting
the properties of B and C, we can deduce thatC� C = |C| = |BTB| − 2I = |B|T |B| − 2I, where | · |
means taking elementwise absolute value. Therefore, AA∗w = (2I + |B|T |B|)w, ∀w. The proof is
completed. �

By Proposition A.2, we know that the linear system (I +AA∗)x = b becomes

(3I + |B|T |B|)x = b. (A16)

In the case where the number of edges |E | is moderate (say |E | < 5000), we can solve the
Equation (A16) exactly by computing theCholesky decomposition of the sparsematrix 3I + |B|T |B|.
The sparse Cholesky decomposition will merely be performed once at the beginning of the ADMM.
With the pre-computed Cholesky decomposition, the solution of (A16) can be computed via solving
of two triangular systems of linear equations withO(|E |2) operations. In it is the case that |E | is large
but the number of nodesn ismoderate (sayn< 5000), we can use the Sherman-Morrison-Woodbury
formula [(2.1.3)][21] to get:

(3I + |B|T |B|)−1 = 1
3
(
I − |B|T(3I + |B||B|T)−1|B|).

Therefore, to solve (A16), one only needs to solve an n× n linear system of the form (3I +
|B||B|T)x̃ = b̃. Moreover, it is easy to see that the coefficient matrix has the same sparsity pattern
as the Laplacian matrix of the graph defined by B, which is likely to be sparse for our problem. For
the case when both |E | and n are too large to perform efficient Cholesky decompositions, we have
to resort to an iterative solver such as the conjugate gradient method to solve (A16). Each iteration
of the conjugate gradient method requires the multiplication of 3I + |B|T |B| by a vector in R|E|. By
taking advantage of the sparsity of B, each matrix-vector multiplication requires O(|E |) operations.

Appendix 4. Additional numerical results

This section presents additional numerical results to complement those in Section 4.1.1. We test on
grid graph, G(100)

grid and random modular graph, G(100,0.05,0.3)
M . We set the sample size k = 5000n and

the results are the average over 10 simulations. Figures A1–A4 plot the number of edges, F1 score,
and recovery error with respect to a sequence of λ with different connectivity constraints on G(100)

grid .
Figures A5–A8 plot the number of edges, F1 score, and recovery error with respect to a sequence of
λ with different connectivity constraints on G(100,0.05,0.3)

M .
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Figure A1. Results for grid graph, G(100)
grid . Scenario: the true connectivity matrix A = Atrue is used.

Figure A2. Results for grid graph, G(100)
grid . Scenario: we have a coarse estimation of the true sparsity

pattern and A = Acoarse.

Figure A3. Results for grid graph,G(100)
grid . Scenario: the true sparsity pattern is unknown and A = Afull is

the input.
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Figure A4. Results grid graph,G(100)
grid . Scenario: we have a rough estimation of the true sparsity pattern

and A = A10% is not exactly accurate.

Figure A5. Results for randommodular graph,G(100,0.05,0.3)
M . Scenario: the true connectivity matrix A =

Atrue is used.

Figure A6. Results for random modular graph, G(100,0.05,0.3)
M . Scenario: we have a coarse estimation of

the true sparsity pattern and A = Acoarse.



600 Y. ZHANG ET AL.

Figure A7. Results for random modular graph, G(100,0.05,0.3)
M . Scenario: the true sparsity pattern is

unknown and A = Afull is the input.

Figure A8. Results for random modular graph, G(100,0.05,0.3)
M . Scenario: we have a rough estimation of

the true sparsity pattern and A = A10% is not exactly accurate.
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