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Summary

In this thesis, we design and implement specialized algorithms for solving various

large scale optimization problems arising from literature. It is mainly divided

into three parts.

For the first part of the thesis, we study a binary classification problem arising

from the field of statistics and machine learning. High dimension low sample

size statistical analysis is important in a wide range of applications. In such

situations, the highly appealing discrimination method, support vector machine

(SVM), can be improved to alleviate data piling at the margin. This leads

naturally to the development of distance weighted discrimination (DWD), which

can be modeled as a second-order cone programming problem and solved by

interior-point methods when the scale (in sample size and feature dimension)

of the data is moderate. Here we design a scalable and robust algorithm for

solving large scale generalized DWD problems. Numerical experiments on real

data sets from the UCI repository demonstrate that our algorithm is highly

efficient in solving large scale problems, and sometimes even more efficient than

the highly optimized LIBLINEAR and LIBSVM for solving the corresponding

SVM problems.

In the second part of the thesis, we turn our focus on a problem of special

structure. We propose a semi-proximal augmented Lagrangian based decom-

position method for convex composite quadratic conic programming problems

xi



with primal block angular structures. Using our algorithmic framework, we

can naturally derive several well-known augmented Lagrangian based decom-

position methods for stochastic programming such as the diagonal quadratic

approximation method of Mulvey and Ruszczyński. Moreover, we derive novel

enhancements and generalizations of these well-known methods. We also propose

a semi-proximal symmetric Gauss-Seidel based alternating direction method of

multipliers for solving the corresponding dual problem. Numerical results show

that our algorithms can perform well even for very large instances of primal

block angular convex QP problems. For example, one instance with more than

300, 000 linear constraints and 12, 500, 000 nonnegative variables is solved in less

than a minute whereas Gurobi took more than 3 hours, and another instance

qp-gridgen1 with more than 331, 000 linear constraints and 986, 000 nonnega-

tive variables is solved in about 5 minutes whereas Gurobi took more than 35

minutes.

A natural extension of the second part of this study is to look at optimization

problems having dual block angular structure. Thus in the last part of this the-

sis, we design an inexact proximal augmented Lagrangian based decomposition

methods for convex composite conic programming problems with dual block an-

gular structures. Similarly, the algorithmic framework is based on the recently

developed symmetric Gauss-Seidel (sGS) decomposition theorem for solving a

proximal convex composite quadratic programming problem. Besides the guar-

anteed convergence, the advantage of our algorithm is that the computation

of subproblems are easy to be parallelized, thus it possesses great potential for

solving optimization models with a huge number of constraints and/or variables.

Our methods are particularly well suited for convex quadratic conic program-

ming problems arising from stochastic programming models. Furthermore, we

present an application of the proposed algorithms to the doubly nonnegative

relaxations of uncapacitated facility location problems.

xii



Chapter 1 Section 1.1

Chapter 1
Introduction

In this thesis, we focus on designing and implementing efficient algorithms for

solving various large scale optimization models arising from the literature. In

particular, we are interested in solving structured convex programming problem

with huge numbers of constraints and/or variables.

1.1 Motivation and related methods

We examine several methods that are popular nowadays for solving large scale

optimization problem. Firstly, we investigate several variants of the alternat-

ing direction method of multipliers (ADMM), which is an algorithm that solves

convex optimization problems by breaking them into smaller pieces, each of

which is then easier to handle. It has been applied widely into a number of

statistical problems, such as constrained sparse regression, image restoration,

etc. The classical ADMM was originally proposed by Glowinski and Marroco

(1975) and Gabay and Mercier (1976) for solving a 2-block convex optimization

problem with a collection of coupling linear constraints. Over the years, there

have been many variations of ADMM proposed and applied to a great variety of

optimization problems. A natural modification is to extend the original ADMM

from two-block to multi-block settings. However, in Chen et al. (2016), it was

shown that the directly extended ADMM may not be convergent. Thus it is

necessary to make some modifications to the directly extended ADMM in order

to get a convergent algorithm. In Sun et al. (2015), the authors proposed a

1



Chapter 1 Section 1.1

semi-proximal ADMM for solving a convex conic programming problem with 3

blocks of variables and 4 types of constraints. The algorithm is a convergent

modification of the ADMM with an additional inexpensive step in each itera-

tion. In Li et al. (2016), the authors proposed a Schur complement based (SCB)

convergent semi-proximal ADMM for solving a multi-block linearly constrained

convex programming problem whose objective function is the sum of two proper

closed convex functions plus an arbitrary number of convex quadratic or lin-

ear functions. One of the key contributions in Li et al. (2016) is the discovery

of the Schur complement based decomposition method which allows the multi-

block subproblems to be solved efficiently while ensuring the convergence of the

algorithm. More recently, Li et al. (2015) generalized the SCB decomposition

method in Li et al. (2016) to the inexact symmetric Gauss-Seidel decomposition

method, which provides an elegant framework and simpler derivation of the SCB

decomposition method. Based on this previous research, in Chen et al. (2017),

the authors proposed an inexact symmetric Gauss-Seidel based multi-block semi-

proximal ADMM for solving a class of high-dimensional convex composite conic

optimization problems, which has been demonstrated to have much better per-

formance than the possibly non-convergent directly extended ADMM in solving

high dimensional convex quadratic semidefinite programming problems.

Inspired by the above research, we find that ADMM is a potentially powerful

tool in application for solving high dimensional structured convex programming

problems, henceforth our work will depend heavily on this method. In the sub-

sections below, we elaborate in details the motivations and related methods for

each class of problems that we consider.

1.1.1 Generalized distance weighted discrimination

In the first part of this thesis, we consider the problem of finding a (kernelized)

linear binary classifier for a training data set. By far, the most popular and suc-

cessful method for getting a good linear classifier from the training data is the

support vector machine (SVM), originally proposed by Vapnik (1995). Indeed,

it has been demonstrated in Fernández-Delgado et al. (2014) that the kernel

2



Chapter 1 Section 1.1

SVM is one of the best performers in the pool of 179 commonly used classi-

fiers. Despite its success, it has been observed in Marron et al. (2007) that SVM

may suffer from a “data-piling” problem in the high-dimension-low-sample size

(HDLSS) setting (where the sample size is smaller than the feature dimension).

The authors proposed a new linear classifier, called “Distance Weighted Dis-

crimination” (DWD), as a superior alternative to the SVM. DWD has become

a workhorse method for a number of statistical tasks, including data visual-

ization (Marron and Alonso 2014), hypothesis testing linked with visualization

in very high dimensions (Wei et al. 2016), and adjustment for data biases and

heterogeneity (Benito et al. 2004; Liu et al. 2009).

It is well known that there is a strong need for efficient HDLSS methods for

the settings where the feature dimension is large, say in the order of 104–105,

especially in the area of genetic molecular measurements (usually having a small

sample size, where many gene level features have been measured), chemometrics

(typically a small sample of high dimensional spectra) and medical image analysis

(a small sample of 3-d shapes represented by high-dimensional vectors). On the

other hand, given the advent of a huge volume of data collectible through various

sources, especially from the internet, it is also important for us to consider the

case where the sample size is large, while the feature dimension may be moderate.

Thus in this thesis, we are interested in the problem of finding a linear classifier

through DWD for data instances where sample size and/or feature dimension

are large.

In Marron et al. (2007), DWD is formulated as a second-order cone program-

ming (SOCP) problem, and the resulting model is solved by using a primal-dual

interior-point method for SOCP problems implemented in the software SDPT3

(Toh et al. 1999). However, the IPM based solver employed for DWD in Marron

et al. (2007) is computationally very expensive for solving problems where sam-

ple size or feature dimension is large, thus making it impractical for large scale

problems. A recent approach to overcome such a computational bottleneck has

appeared in Wang and Zou (2015), where the authors proposed a novel reformu-

lation of the primal DWD model which consists of minimizing a highly nonlinear

convex objective function subject to a ball constraint. The resulting problem is

3



Chapter 1 Section 1.1

solved via its dual and an MM (minimization-majorization) algorithm is designed

to compute the Lagrangian dual function for each given dual multiplier. The

algorithm appears to be quite promising in theory for solving large scale DWD

problems. However, the current numerical experiments and implementation of

the proposed algorithm in Wang and Zou (2015) are preliminary and limited to

small scale data instances, and it appears that substantial work must be done

to make it efficient for large scale instances. As it is premature to compare our

proposed algorithm with the one in Wang and Zou (2015), we will not consider

the latter algorithm any further in this thesis.

1.1.2 Primal block angular convex composite quadratic conic

programming problems

In the second part of the thesis, we focus on solving convex composite quadratic

conic programming problems with a primal block angular structure, i.e. opti-

mization problems with a separable convex objective function and conic con-

straints but the variables are coupled by linking linear constraints across differ-

ent variables. Without specially designed strategies to exploit the underlying

block angular structure, it is expected that the computational inefficiency of a

generic algorithm for solving such a class of problems will be severe because the

constraints cannot be decomposed completely.

In practical applications, quadratic and linear problems with primal block

angular structure appear in many contexts, such as multicommodity flow prob-

lems (Assad, 1978) and statistical disclosure control (Hundepool et al., 2012).

These problems are often very large scale in practice, and standard interior

point methods such as those implemented in Gurobi or Mosek may not be ef-

ficient enough to solve such problems. In the literature, specialized algorithms

designed to solve these problems have been studied extensively. Three of the

most widely known algorithmic classes are (i) decomposition methods based on

augmented Lagrangian and proximal-point algorithms, see for example Mulvey

and Ruszczyński (1992); Rockafellar and Wets (1991); Ruszczyński (1986, 1989,

1995, 1999); (ii) interior-point log-barrier Lagrangian decomposition methods

4



Chapter 1 Section 1.1

such as those studied in Zhao (1999, 2001, 2005); Mehrotra and Özevin (2007,

2009a); and (iii) standard interior-point methods which incorporate novel numer-

ical linear algebraic techniques to exploit the underlying block angular structures

when solving the large linear systems arising in each iteration, for example in

Birge and Qi (1988); Choi and Goldfarb (1993); Gondzio et al. (1997); Schultz

and Meyer (1991); Todd (1988).

Besides quadratic and linear problems, semidefinite programming (SDP) prob-

lems with primal block angular structures are beginning to appear in the litera-

ture more frequently. It is gaining more attention as practitioners become more

sophisticated in using SDP to model their application problems. For example,

Hanasusanto and Kuhn (2017) reformulated a two-stage distributionally robust

linear program as a completely positive cone program which bears a block an-

gular structure and applied the reformulation to solve a multi-item newsvendor

problem. Although linear programming problems with primal block angular

structures have been studied extensively, the more complicated SDP version is

still in its infancy stage. Apart from Mehrotra and Özevin (2007), Sivaramakr-

ishnan (2010) and Zhu and Ariyawansa (2011), we are not aware of other works.

By focusing on designing efficient algorithms for solving general conic pro-

gramming problems with primal block angular structures, we can in general also

use the same algorithmic framework to solve the primal block angular linear

and quadratic programming problems efficiently through designing novel nu-

merical linear algebraic techniques to exploit the underlying structures. In this

thesis, our main objective is to design efficient and robust (distributed) algo-

rithms for solving large scale conic programming problems with block angular

structures. Specifically, we will design an inexact semi-proximal augmented La-

grangian method (ALM) for the primal problem which attempts to exploit the

block angular structure to solve the problem in parallel. Our algorithm is mo-

tivated by the recent theoretical advances in inexact semi-proximal ALM that

is embedded in Chen et al. (2017). In contrast to most existing augmented

Lagrangian based decomposition algorithms where the solution for each sub-

problem must be computed exactly or to very high accuracy, our algorithm has

the key advantage of allowing the subproblems to be solved approximately with

5



Chapter 1 Section 1.1

progressive accuracy. We will also elucidate the connection of our algorithm to

the well-known diagonal quadratic approximation (DQA) algorithm of Mulvey

and Ruszczyński Mulvey and Ruszczyński (1992).

In the pioneering work in Kontogiorgis et al. (1996), an ADMM based frame-

work was designed for the primal block angular problem (PBA) wherein the

variables are duplicated and auxiliary variables are introduced to make the first

ADMM subproblem in each iteration solvable in a distributed fashion and that

the succeeding second ADMM subproblem is a sufficiently simple quadratic pro-

gram which is assumed to be easy to solve. However, the problem might still

be difficult to solve if the scale of the original problem gets very large. To over-

come the potential computational inefficiency induced by the extra variables and

constraints, and also the relatively expensive step of having to solve a QP sub-

problem in each iteration in the primal approach, in this thesis we will adopt

the dual approach of solving PBA. Specifically, we will design and implement

a semi-proximal symmetric Gauss-Seidel based alternating direction method of

multipliers (sGS-ADMM) to directly solve the dual problem, which will also solve

the primal problem as a by-product. The advantage of tackling the dual problem

directly is that no extra variables are introduced to decouple the constraints and

no coupled QP subproblems are needed to be solved in each iteration. We note

that the sGS-ADMM is an algorithm designed based on the recent advances in

Chen et al. (2017); more details will be presented later.

1.1.3 Dual block angular convex composite conic programming

problems

In the final part of the thesis, we study a another structured problem that can

be considered as the dual of those studied in the second part. In this case, the

structure it bears is a dual block angular (DBA) instead of primal block angular.

The DBA problem generally has a separable convex objective function and conic

constraints but the linear constraints are coupled by a linking variable across

diferent constraints. The dimension of these problems can grow large easily

especially when the number of blocks increases, thus it is advisable to devise a

6



Chapter 1 Section 1.1

specialized algorithm to fully exploit the block angular structure; otherwise the

computational inefficiency will be severe.

In practical applications, optimization problem with DBA structure arised in

many contexts. One of the most common problem class is the two-stage stochas-

tic conic programming problems. The deterministic equivalence of this kind of

problem is a typical example class of DBA problems. In the literature, some com-

monly used methods are interior point log-barrier decomposition algorithms such

as those implemented by Mehrotra and Özevin (2009a,b); Zhao (2001), which

successfully decompose the two stage stochastic problems by solving the two

stages subproblem separately instead of solving the entire deterministic equiva-

lence model. While this may work well for small problem, when the scale of the

problem gets larger, the Newton systems arised in solving the subproblem might

become more time consuming to be solved.

Another problem class having DBA structure is the uncapacitated facility

location (UFL) problem. This is a model used to determine a subset of facility

locations to open and to allocate each customer to opened facilities so that

the cost of facility opening as well as customer allocation are minimized. This

binary integer program is usually solved by Benders Decomposition such as those

implemented in Fischetti et al. (2017). However, it is well known that directly

solving an integer program is hard and is often time consuming, not to mention

when the problem size is big. Thus relaxation is often needed in the process

to gain some information about the solution to the original integer problem. In

the context of this thesis, we study the doubly nonnegative relaxations of UFL

problems and solve the resulting dual block angular semidefinite problem using

our specialized algorithmic framework.

Our main objective here is to design and implement an efficient and robust

(distributed) algorithms for solving large scale conic programming problems with

dual block angular structures. We propose an inexact symmetric Gauss-Seidel

based proximal ADMM (sGS-ADMM) to solve the dual problem which attempts

to exploit the block angular structure and hence enable us to solve the subprob-

lems efficiently. The advantage of using sGS-ADMM is that when the dimension

7



Chapter 1 Section 1.2

of the linear system of equation arising from the subproblem get larger, we can

simply add a symmetric positive semidefinite proximal term so that the linear

system of equation can be decomposed and solved in parallel. This method is

particularly well-suited for convex composite problem with multiple blocks of

variables, and is again inspired by the recent theoretical advances in inexact

sGS-ADMM that is proposed in Chen et al. (2017).

1.2 Contributions

In the first part of the thesis, the main contribution is to design a new method

for solving large scale DWD problems, where we target to solve a problem with

the sample size n ≈ 104–106 and/or the dimension d ≈ 104–105. Our method is

a convergent 3-block semi-proximal alternating direction method of multipliers

(ADMM), which is designed based on the recent advances in research on con-

vergent multi-block ADMM-type methods (Sun et al. 2015; Li et al. 2016; Chen

et al. 2017) for solving convex composite quadratic conic programming problems.

To be more specific, the first contribution we make is in reformulating the

primal formulation of the generalized DWD model (using the terminology from

Wang and Zou (2015)) and adapting the powerful inexact sGS-ADMM frame-

work for solving the reformulated problem. This is in contrast to numerous

SVM algorithms which are primarily designed for solving the dual formulation

of the SVM model. The second contribution we make is in designing highly

efficient numerical techniques to solve the subproblems in each of the inexact

sGS-ADMM iterations. If n or d is moderate, then the complexity at each iter-

ation is O(nd) +O(n2) or O(nd) +O(d2) respectively. If both n and d are large,

then we employ the conjugate gradient iterative method for solving the large

linear systems of equations involved. We also devise various strategies to speed

up the practical performance of the sGS-ADMM algorithm in solving large scale

instances (with the largest instance having n = 256, 000 and d ≈ 3 × 106) of

DWD problems with real data sets from the UCI machine learning repository

(Lichman 2013). We should emphasize that the key in achieving high efficiency

in our algorithm depends very much on the intricate numerical techniques and

8
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sophisticated implementation we have developed.

In the second part of the thesis, our first contribution is in proposing several

variants of augmented Lagrangian based algorithms for directly solving the pri-

mal form (PBA) of the convex composite quadratic conic programming problem

with a primal block angular structure. We also show that they can be considered

as generalizations of the well-known DQA method. Our second contribution is

in the design and implementation of a specialized algorithm for solving the dual

problem of (PBA). The algorithm is easy to implement and highly amenable to

parallelization. Hence we expect it to be highly scalable for solving large scale

problems with millions of variables and constraints.

In the third part of the thesis, our first contribution is to design an efficient

and scalable algorithm for solving the dual block angular (DBA) form of the

convex composite conic programming problem. Besides conducting numerical

experiments on various practical dataset, we also generate some random DBA

problems. Our numerical results show that our algorithm performs well on the

random DBA problems. As a side products, we also derived concrete DBA

convex composite conic programming problems arising from doubly nonnegative

relaxations of common mixed integer programming problems such as uncapaci-

tated facility location problems.

In every problem we mentioned, we implement the code in MATLAB and

conduct comprehensive numerical experiments to evaluate the performance of

our algorithms against other highly competitive state-of-the-art solvers such as

Gurobi. Numerical results show that our algorithms can achieve good perfor-

mance and sometimes much better than the state-of-the-art solvers.

1.3 Thesis organization

The rest of this thesis is organized as follows. In Chapter 2, we present some pre-

liminaries that are related to our subsequent discussions, which includes the in-

troduction of the symmetric Gauss-Seidel (sGS) decomposition theorem and the

sGS based alternating direction method of multipliers. In Chapter 3, we design

an efficient algorithm for solving the large scale generalized distance weighted

9
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discrimination problems. We provide the convergence theorem of our proposed

algorithm as well as the numerical experiment. Next, we solve primal block

angular convex composite quadratic conic programming problems in chapter 4.

Algorithms are presented in details for both primal and dual formulation. In

chapter 5, we present an algorithmic framework for solving dual block angular

convex composite conic programming problems. In particular, we focus on its

dual formulation and the possible application in solving the SDP relaxation of

uncapacitated facility location problem. Finally, we give conclusion of this thesis

and discuss several possible future research directions in the last chapter.
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Chapter 2
Preliminaries

2.1 Notations

We would like to emphasize that the meaning of a symbol might differ in each

chapter. For example, y is a class label in chapter 3, but it is just an ordinary dual

variable in chapter 4. On the other hand, the following mathematical notations

are used throughout the entire thesis:

• We denote the 2-norm of a vector x by ‖x‖, and the Frobenius norm of a

matrix M by ‖M‖F . The inner product of two vectors x, y is denoted by

〈x, y〉.

• If S is a symmetric positive semidefinite matrix, then we denote the weighted

norm of a vector x with the weight matrix S by ‖x‖S :=
√
〈x, Sx〉.

• We denote [P ;Q] or (P ;Q) as the matrix obtained by appending the matrix

Q to the last row of the matrix P , whereas we denote [P,Q] or (P,Q) as the

matrix obtained by appending Q to the last column of matrix P , assuming

that they have the same number of columns or rows respectively. We also

use the same notation symbolically for P and Q which are linear maps

with compatible domains and co-domains.

• For any linear map T : X → Y, we denote its adjoint as T ∗. If X = Y,

and T is self-adjoint and positive semidefinite, then for any x ∈ X we have

the notation ‖x‖T :=
√
〈x, T x〉.

11
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• Let f : X → (−∞,+∞] be an arbitrary closed proper convex function. We

denote domf as its effective domain and ∂f as its subdifferential mapping.

The Fenchel conjugate function of f is denoted as f∗.

• The Moreau-Yosida proximal mapping of f is defined by Proxf (y) :=

arg minx{f(x) + 1
2‖x− y‖

2}.

2.2 The symmetric Gauss-Seidel (sGS) decomposi-

tion theorem

In this section, we discuss the sGS decomposition theorem, which is an important

theorem that our algorithms rely heavily on.

Let Q : X → X be a given self-adjoint positive semidefinite linear operator,

and η ∈ X . Suppose that Q is partitioned according to X1 × · · · × Xs as

Q =


Q1,1 . . . Q1,s

...
...

...

Q∗1,s . . . Qs,s

 = U +D + U∗, (2.1)

where D and U denote the block diagonal part and the strictly upper block

triangular part of Q, respectively. That is,

U =



0 Q1,2 . . . Q1,s

. . .
...

. . . Qs−1,s

0


, D =



Q1,1

Q2,2

. . .

Qs,s


. (2.2)

Assuming that Qii is positive definite for all i = 1, . . . , s. Then we can define the

following symmetric Gauss-Seidel linear operator associated with Q:

sGS(Q) = UD−1U∗.

12
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For a given x = (x1; . . . ;xs), we define

x≥i = (xi; . . . ;xs), x≤i = (x1; . . . ;xi), i = 1, . . . , s.

We also define x≥s+1 = ∅.

Theorem 2.1. (sGS decomposition theorem) Let u ∈ X be given. Suppose

δ′, δ ∈ X are two given error vectors with δ′1 = δ1. Define

∆(δ′, δ) := δ + UD−1(δ − δ′). (2.3)

Let p : X1 → (−∞,∞] be a proper closed convex function and h(x) =

1
2〈x, Qx〉 − 〈η, x〉 ∀ x ∈ X . Consider the following convex composite quadratic

programming problem:

x+ := argmin
{
p(x1) + h(x) +

1

2
‖x− u‖2S − 〈x, ∆(δ′, δ)〉 | x ∈ X

}
, (2.4)

where S = sGS(Q) is the symmetric Gauss-Seidel linear operator associated

with Q. Then x+ can be computed in the following symmetric Gauss-Seidel

fashion. For i = s, . . . , 2, compute x′i ∈ Xi defined by

x′i := argmin
xi∈Xi

p(u1) + h(u≤i−1;xi;x
′
≥i+1)− 〈δ′i, xi〉

= Q−1
i,i

(
ηi + δ′i −

∑i−1
j=1Q

∗
j,iuj −

∑s
j=i+1Qi,jx

′
j

)
.

(2.5)

Then the optimal solution x+ for (2.4) can be computed exactly via the following

steps:



x+
1 = argmin

x1∈X1

p(x1) + h(x1;x′≥2)− 〈δ1, x1〉,

x+
i = argmin

xi∈Xi

p(x+
1 ) + h(x+

≤i−1;xi;x
′
≥i+1)− 〈δi, xi〉

= Q−1
i,i

(
ηi + δi −

∑i−1
j=1Q

∗
j,ix

+
j −

∑s
j=i+1Qi,jx

′
j

)
, i = 2, . . . , s.

(2.6)

Proof. See (Li et al., 2018a, Theorem1).
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Note that the role of the error vectors δ′ and δ in the above block sGS de-

composition theorem is to allow for inexact computation in (2.5) and (2.6).

There is no need to know these error vectors in advanced. We should view

the computed x′i and x+
i from (2.5) and (2.6) as approximate solutions to the

minimization subproblems without the terms involving δ′i and δi. Once these

approximate solutions have been computed, they would generate δ′i and δi auto-

matically. With these known error vectors, we know that the computed approx-

imate solutions are the exact solutions to the slightly perturbed minimization

problems in (2.5) and (2.6). In particular, for i = s, . . . , 2, we know that δ′i

is the residual vector obtained when we solve the linear system of equations

Qiix
′
i = ηi−

∑i−1
j=1Q

∗
j,iuj −

∑s
j=i+1Qi,jx

′
j in (2.5). Similar δi (i = 2, . . . , s) is the

residual vector obtained when we solve the linear system of equations in (2.6).

2.3 The inexact sGS-ADMM

Now we shall describe briefly the inexact sGS based majorized semiproximal

ADMM (sGS-imsPADMM) that was introduced in Chen et al. (2017).

Let Z, X1, . . . ,Xs (s ≥ 2) and Y1, . . . ,Yt (t ≥ 2) be given finite-dimensional

inner product spaces. Also, define X := X1 × · · · × Xs and Y := Y1 × · · · × Yt.

Consider the following general convex composite programming model:

(GCCP) minx∈X ,y∈Y p1(x1) + f(x1, ..., xs) + q1(y1) + g(y1, ..., yt)

s.t. A∗x+ B∗y = c,

where p1 : X1 → (−∞,∞] and q1 : Y1 → (−∞,∞] are two closed proper

convex functions, f : X → (−∞,∞) and g : Y → (−∞,∞) are continuously

differentiable convex functions whose gradients are Lipschitz continuous. The

linear mappings A : Z → X and B : Z → Y are defined such that their adjoints

are given by A∗x =
∑s

i=1A∗ixi for x = (x1, · · · , xs) ∈ X , and B∗y =
∑t

j=1 B∗j yj

for y = (y1, · · · , yt) ∈ Y, where A∗i : Xi → Z, i = 1, · · · , s and B∗j : Yj →

Z, j = 1, ..., t are the adjoints of the linear maps Ai : Z → Xi and Bj : Z →

Yi respectively. For notational convenience, we define the functions p : X →

(−∞,∞] and q : Y → (−∞,∞] by p(x) := p1(x1) and q(y) := q1(y1).
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The augmented Lagrangian function of (GCCP) is given by

Lσ(x, y; z) := p(x) + f(x) + q(y) + g(y) + 〈z, A∗x+ B∗y − c〉+
σ

2
‖A∗x+ B∗y − c‖2.

(GCCP) could be solved by many methods in the literature; one of the most

popular algorithm is the alternating direction method of multipliers (ADMM).

As mentioned in section 1.1, the direct extension of the original ADMM from

two-block to multi-block setting may not be convergent and hence various en-

hancements have been done to improve the convergence; see for example Sun

et al. (2015); Li et al. (2016, 2015); Chen et al. (2017). In particular, based on

the sGS decomposition theorem, by applying the corresponding sGS operator,

the simplified version of the algorithmic framework for solving (GCCP) described

by Chen et al. (2017) has the following template:
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sGS-imsPADMM: An inexact sGS based majorized semi-proximal ADMM

for solving (GCCP). Suppose Sxi , i = 1, ..., s and Syj , j = 1, ..., t are self-

adjoint positive semidefinite linear operators. Let τ ∈ (0, 1+
√

5
2 ) be the step-

length and {ε̃k}k≥0 be a summable sequence of nonnegative numbers. Choose

(x0, y0, z0) ∈ domp× domq ×Z. For k = 0, 1, ..., perform the following steps:

Step 1a. (Backward GS sweep) Compute for i = s, ..., 2

x̄k+1
i ≈ argmin

xi∈Xi

{Lσ(xk≤i−1, xi, x̄
k+1
≥i+1, y

k; zk) +
1

2
‖xi − xki ‖2Sxi},

such that there exists

δ̄ki ∈ ∂xiLσ(xk≤i−1, x̄
k+1
i , x̄k+1

≥i+1, y
k; zk) + Sxi(x̄k+1

i − xki )

satisfying ‖δ̄ki ‖ ≤ ε̃k.

Step 1b. (Forward GS sweep) Compute for i = 1, ..., s

xk+1
i ≈ argmin

xi∈Xi

{Lσ(xk+1
≤i−1, xi, x̄

k+1
≥i+1, y

k; zk) +
1

2
‖xi − xki ‖2Sxi},

such that there exists

δki ∈ ∂xiLσ(xk+1
≤i−1, x

k+1
i , x̄k+1

≥i+1, y
k; zk) + Sxi(xk+1

i − xki )

with ‖δki ‖ ≤ ε̃k.

Step 2a. (Backward GS sweep) Compute for j = t, ..., 2

ȳk+1
j ≈ argmin

yj∈Yj
{Lσ(xk+1, yk≤j−1, yj , ȳ

k+1
≥j+1; zk) +

1

2
‖yj − ykj ‖2Syj },

such that there exists

γ̄kj ∈ ∂yjLσ(xk+1, yk≤j−1, ȳ
k+1
j , ȳk+1

≥j+1; zk) + Syj (ȳk+1
j − ykj )

with ‖γ̄kj ‖ ≤ ε̃k.

Step 2b. (Forward GS sweep) Compute for j = 1, ..., t

yk+1
j ≈ argmin

yj∈Yj
{Lσ(xk+1, yk+1

≤j−1, yj , ȳ
k+1
≥j+1; zk) +

1

2
‖yj − ykj ‖2Syj },

such that there exists

γkj ∈ ∂yjLσ(xk+1, yk+1
≤j−1, y

k+1
j , ȳk+1

≥j+1; zk) + Syj (yk+1
j − ykj )

with ‖γkj ‖ ≤ ε̃k.

Step 3. Compute zk+1 = zk + τσ(A∗x+ B∗y − c).
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In short, by adding an inexpensive step in step 1a and step 2a respectively

(note that these are the steps that do not involve the expensive computation

of the possibly nonsmooth objective p and q), we can improve the convergence

of the directly extended ADMM in multi-block setting. In the following parts

of the thesis, most of our problems will have a multiblock setting and hence it

would be useful to apply this sGS-imsPADMM framework. We defer the details,

including the specific applications and the corresponding convergence theorems

to later chapters.
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Chapter 3
Fast algorithms for large scale

generalized distance weighted

discrimination

In this chapter, we focus on designing a new method for solving the generalized

distance weighted discrimination model to find a linear classifier for a training

data set {(xi, yi)}ni=1 with xi ∈ Rd and the class label yi ∈ {−1, 1} for all i =

1, . . . , n for data instances. Here we target to solve a problem with the sample size

n ≈ 104–106 and/or the dimension d ≈ 104–105. Our method is a convergent 3-

block semi-proximal alternating direction method of multipliers (ADMM), which

is designed based on the recent advances in research on convergent multi-block

ADMM-type methods (Sun et al. 2015; Li et al. 2016; Chen et al. 2017) for

solving convex composite quadratic conic programming problems.

We will conduct extensive numerical experiments to evaluate the performance

of our proposed algorithm against a few other alternatives. Relative to the

primal-dual interior-point method used in Marron et al. (2007), our algorithm

is vastly superior in terms of computational time and memory usage in solving

large scale problems, where our algorithm can be a few thousands times faster.

By exploiting all the highly efficient numerical techniques we have developed

in the implementation of the sGS-ADMM algorithm for solving the generalized
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DWD problem, we can also get an efficient implementation of the possibly non-

convergent directly extended ADMM for solving the same problem. On the

tested problems, our algorithm generally requires fewer iterations compared to

the directly extended ADMM even when the latter is convergent. On quite a

few instances, the directly extended ADMM actually requires many more itera-

tions than our proposed algorithm to solve the problems. We also compare the

efficiency of our algorithm in solving the generalized DWD problem against the

highly optimized LIBLINEAR (Fan et al. 2008) and LIBSVM (Chang and Lin

2011) in solving the corresponding dual SVM problem. Surprisingly, our algo-

rithm can even be more efficient than LIBSVM in solving large scale problems

even though the DWD model is more complex, and on some instances, our algo-

rithm is 50–100 times faster. Our DWD model is also able to produce the best

test (or generalization) errors compared to LIBLINEAR and LIBSVM among

the tested instances.

The remaining parts of this chapter are organized as follows. In section 3.1, we

present the DWD formulation in full detail. In section 3.2, we propose our inexact

sGS-based ADMM method for solving large scale DWD problems. We also

discuss some essential computational techniques used in our implementation. We

report our numerical results in section 3.3. We will also compare the performance

of our algorithm to other solvers on the same data sets in this particular section.

3.1 Generalized distance weighted discrimination

This section gives details on the optimization problems underlying the distance

weighted discrimination. Let (xi, yi), i = 1, . . . , n, be the training data where

xi ∈ Rd is the feature vector and yi ∈ {+1,−1} is its corresponding class label.

We letX ∈ Rd×n be the matrix whose columns are the xi’s, and y = [y1, . . . , yn]T .

In linear discrimination, we attempt to separate the vectors in the two classes

by a hyperplane H = {x ∈ Rd | wTx+ β = 0}, where w ∈ Rd is the unit normal

and |β| is its distance to the origin. Given a point z ∈ Rd, the signed distance

between z and the hyperplane H is given by wT z + β. For binary classification
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where the label yi ∈ {−1, 1}, we want

yi(β + xTi w) ≥ 1− ξi ∀ i = 1, ..., n,

where we have added a slack variable ξ ≥ 0 to allow the possibility that the pos-

itive and negative data points may not be separated cleanly by the hyperplane.

In matrix-vector notation, we need

r := ZTw + βy + ξ ≥ 1, (3.1)

where Z = Xdiag(y) and 1 ∈ Rn is the vector of ones.

In SVM, w and β are chosen by maximizing the minimum residual, i.e.,

max
{
δ − C〈1, ξ〉 | ZTw + βy + ξ ≥ δ1, ξ ≥ 0, wTw ≤ 1

}
, (3.2)

where C > 0 is a tuning parameter to control the level of penalization on ξ.

For the DWD approach introduced in Marron et al. (2007), w and β are chosen

instead by minimizing the sum of reciprocals of the ri’s, i.e.,

min
{ n∑
i=1

1

ri
+ C〈1, ξ〉 | r = ZTw + βy + ξ, r > 0, ξ ≥ 0, wTw ≤ 1, w ∈ Rd

}
.(3.3)

Detailed discussions on the connections between the DWD model (3.3) and the

SVM model (3.2) can be found in Marron et al. (2007). The DWD optimization

problem (3.3) is shown to be equivalent to a second-order cone programming

problem in Marron et al. (2007) and hence it can be solved by interior-point

methods such as those implemented in the solver SDPT3 (Toh et al. 1999).

Here we design an algorithm which is capable of solving large scale generalized

DWD problems of the following form:

min
{

Φ(r, ξ) :=
n∑
i=1

θq(ri) + C〈e, ξ〉 | ZTw + βy + ξ − r = 0, ‖w‖ ≤ 1, ξ ≥ 0
}
,(3.4)

where e ∈ Rn is a given positive vector such that ‖e‖∞ = 1 (the last condition

is for the purpose of normalization). The exponent q can be any given positive

21



Chapter 3 Section 3.1

number, though the values of most interest are likely to be q = 0.5, 1, 2, 4, and

θq(ri) is the function defined by

θq(t) =
1

tq
if t > 0, and θq(t) =∞ if t ≤ 0.

Observe that in addition to allowing for a general exponent q in (3.4), we also

allow for a nonuniform weight ei > 0 in the penalty term for each ξi. By a simple

change of variables and modification of the data vector y, (3.4) can also include

the case where the terms in
∑n

i=1
1
rqi

are weighted non-uniformly. For brevity,

we omit the details.

Proposition 1. Let κ = q+1
q q

1
q+1 . The dual of problem (3.4) is given as follows:

−min
α

{
Ψ(α) := ‖Zα‖ − κ

n∑
i=1

α
q

q+1

i | 0 ≤ α ≤ Ce, 〈y, α〉 = 0
}
, (3.5)

Proof. Consider the Lagrangian function associated with (3.4):

L(r, w, β, ξ;α, η, λ)

=
∑n

i=1θq(ri) + C〈e, ξ〉 − 〈α, ZTw + βy + ξ − r〉+
λ

2
(‖w‖2 − 1)− 〈η, ξ〉

=
∑n

i=1θq(ri) + 〈r, α〉+ 〈ξ, Ce− α− η〉 − β〈y, α〉 − 〈w, Zα〉+
λ

2
(〈w, w〉 − 1),

where r ∈ Rn, w ∈ Rd, β ∈ R, ξ ∈ Rn, α ∈ Rn, λ, η ≥ 0. Now

inf
ri

{
θq(ri) + αiri

}
=

 κα
q

q+1

i if αi ≥ 0,

−∞ if αi < 0;

inf
w

{
− 〈Zα, w〉+

λ

2
‖w‖2

}
=


− 1

2λ‖Zα‖
2 if λ > 0,

0 if λ = 0, Zα = 0,

−∞ if λ = 0, Zα 6= 0;

inf
ξ

{
〈ξ, Ce− α− η〉

}
=

 0 if Ce− α− η = 0,

−∞ otherwise;

inf
β

{
− β〈y, α〉

}
=

 0 if 〈y, α〉 = 0,

−∞ otherwise.
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Let FD = {α ∈ Rn | 0 ≤ α ≤ Ce, 〈y, α〉 = 0}. Hence

min
r,w,β,ξ

L(r, w, β, ξ;α, η, λ) =


κ
∑n

i=1 α
q

q+1

i − 1
2λ‖Zα‖

2 − λ
2 , if λ > 0, α ∈ FD,

κ
∑n

i=1 α
q

q+1

i , if λ = 0, Zα = 0, α ∈ FD,

−∞, if λ = 0, Zα 6= 0, α ∈ FD, or α 6∈ FD.

Now for α ∈ FD, we have

maxλ≥0,η≥0

{
minr,w,β,ξ L(r, w, β, ξ;α, η, λ)

}
= κ

∑n
i=1 α

q
q+1

i − ‖Zα‖.

From here, we get the required dual problem.

It is straightforward to show that the feasible regions of (3.4) and (3.5) both

have nonempty interiors. Thus optimal solutions for both problems exist and

they satisfy the following KKT (Karush-Kuhn-Tucker) optimality conditions:

ZTw + βy + ξ − r = 0, 〈y, α〉 = 0,

r > 0, α > 0, α ≤ Ce, ξ ≥ 0, 〈Ce− α, ξ〉 = 0,

αi = q

rq+1
i

, i = 1, . . . , n, either w = Zα
‖Zα‖ , or Zα = 0, ‖w‖2 ≤ 1.

(3.6)

Let (r∗, ξ∗, w∗, β∗) and α∗ be an optimal solution of (3.4) and (3.5), respec-

tively. Next we analyse some properties of the optimal solution. In particular,

we show that the optimal solution α∗ is bounded away from 0.

Proposition 2. There exists a positive δ such that α∗i ≥ δ ∀ i = 1, . . . , n.

Proof. For convenience, let FP = {(r, ξ, w, β) | ZTw + βy + ξ − r = 0, ‖w‖ ≤

1, ξ ≥ 0} be the feasible region of (3.4). Since (1,1, 0, 0) ∈ FP , we have that

Ceminξ
∗
i ≤ C〈e, ξ∗〉 ≤ Φ(r∗, ξ∗, w∗, β∗) ≤ Φ(1,1, 0, 0) = n+C

∑n
i=1ei ∀ i = 1, . . . , n,

where emin = min1≤i≤n{ei}. Hence we have 0 ≤ ξ∗ ≤ %1, where % :=
n+C

∑n
i=1 ei

Cemin
.

Next, we establish a bound for |β∗|. Suppose β∗ > 0. Consider an index i

such that yi = −1. Then 0 < β∗ = ZTi w
∗ + ξ∗i − r∗i ≤ ‖Zi‖‖w∗‖ + ξ∗i ≤ K + %,

where Zi denotes the ith column of Z, K = max1≤j≤n{‖Zj‖}. On the other
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hand, if β∗ < 0, then we consider an index k such that yk = 1, and 0 < −β∗ =

ZTk w
∗ + ξ∗k − r∗k ≤ K + %. To summarize, we have that |β∗| ≤ K + %.

Now we can establish an upper bound for r∗. For any i = 1, . . . , n, we have

that

r∗i = ZTi w
∗ + β∗yi + ξ∗i ≤ ‖Zi‖‖w∗‖+ |β∗|+ ξ∗i ≤ 2(K + %).

From here, we get α∗i = q
(r∗i )q+1 ≥ δ := q

(2K+2%)q+1 ∀ i = 1, . . . , n. This completes

the proof of the proposition.

3.2 An inexact SGS-based ADMM for large scale DWD

problems

We can rewrite the model (3.4) as:

min


n∑
i=1

θq(ri) + C〈e, ξ〉+ δB(w) + δRn
+

(ξ)
∣∣∣ ZTw + βy + ξ − r = 0,

w ∈ Rd, r, ξ ∈ Rn

 ,

where B = {w ∈ Rd | ‖w‖ ≤ 1}. Here, both δB(w) and δRn
+

(ξ) are infinity

indicator functions. In general, an infinity indicator function over a set C is

defined by:

δC(x) :=


0, if x ∈ C;

+∞, otherwise.

The model above is a convex minimization problem with three nonlinear

blocks. By introducing an auxiliary variable u = w, we can reformulate it as:

min
∑n

i=1 θq(ri) + C〈e, ξ〉+ δB(u) + δRn
+

(ξ)

s.t. ZTw + βy + ξ − r = 0,

D(w − u) = 0, w, u ∈ Rd, β ∈ R, r, ξ ∈ Rn,

(3.7)

where D ∈ Rd×d is a given positive scalar multiple of the identity matrix which

is introduced for the purpose of scaling the variables.
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For a given parameter σ > 0, the augmented Lagrangian function associated

with (3.7) is given by

Lσ(r, w, β, ξ, u;α, ρ)

=
∑n

i=1 θq(ri) + C〈e, ξ〉+ δB(u) + δRn
+

(ξ) + σ
2 ‖Z

Tw + βy + ξ − r − σ−1α‖2

+σ
2 ‖D(w − u)− σ−1ρ‖2 − 1

2σ‖α‖
2 − 1

2σ‖ρ‖
2.

The algorithm which we will design later is based on recent progress in algorithms

for solving multi-block convex conic programming. In particular, our algorithm

is designed based on the inexact ADMM algorithm in Chen et al. (2017) and we

made essential use of the inexact symmetric Gauss-Seidel decomposition theorem

in Li et al. (2016) to solve the subproblems arising in each iteration of the

algorithm.

We can view (3.7) as a linearly constrained nonsmooth convex programming

problem with three blocks of variables grouped as (w, β), r, (u, ξ). The template

for our inexact sGS based ADMM is described next. Note that the subproblems

need not be solved exactly as long as they satisfy some prescribed accuracy.

Algorithm 1. An inexact sGS-ADMM for solving (3.7).

Let {εk} be a summable sequence of nonnegative nonincreasing numbers.

Given an initial iterate (r0, w0, β0, ξ0, u0) in the feasible region of (3.7),

and (α0, ρ0) in the dual feasible region of (3.7), choose a d× d symmetric

positive semidefinite matrix T , and perform the following steps in each

iteration.

Step 1a. Compute

(w̄k+1, β̄k+1) ≈ argminw,β

{
Lσ(rk, w, β, ξk, uk;αk, ρk) +

σ

2
‖w − wk‖2T

}
.

In particular, (w̄k+1, β̄k+1) is an approximate solution to the following
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(d+ 1)× (d+ 1) linear system of equations:

ZZT +D2 + T Zy

(Zy)T yT y


︸ ︷︷ ︸

A

w
β



= h̄k :=

−Z(ξk − rk − σ−1αk) +D2uk +D(σ−1ρk) + T wk

−yT (ξk − rk − σ−1αk)

 .
(3.8)

We require the residual of the approximate solution (w̄k+1, β̄k+1) to satisfy

‖h̄k −A[w̄k+1; β̄k+1]‖ ≤ εk. (3.9)

Step 1b. Compute rk+1 ≈ argminr∈Rn Lσ(r, w̄k+1, β̄k+1, ξk, uk;αk, ρk). Specif-

ically, by observing that the objective function in this subproblem is actu-

ally separable in ri for i = 1, . . . , n, we can compute rk+1
i as follows:

rk+1
i ≈ arg minri

{
θq(ri) + σ

2 ‖ri − c
k
i ‖2
}

= arg minri>0

{
1
rqi

+ σ
2 ‖ri − c

k
i ‖2
}
∀ i = 1, . . . , n,

(3.10)

where ck = ZT w̄k+1 + yβ̄k+1 + ξk − σ−1αk. The details on how the above

one-dimensional problems are solved will be given later. The solution rk+1
i

is deemed to be sufficiently accurate if

∣∣∣− q

(rk+1
i )q+1

+ σ(rk+1
i − cki )

∣∣∣ ≤ εk/√n ∀ i = 1, . . . , n.

Step 1c. Compute

(wk+1, βk+1) ≈ argminw,β

{
Lσ(rk+1, w, β, ξk, uk;αk, ρk) +

σ

2
‖w − wk‖2T

}
,

which amounts to solving the linear system of equations (3.8) but with

rk in the right-hand side vector h̄k replaced by rk+1. Let hk be the new

right-hand side vector. We require the approximate solution to satisfy the

accuracy condition that

‖hk −A[wk+1;βk+1]‖ ≤ 5εk.
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Observe that the accuracy requirement here is more relaxed than that

stated in (3.9) of Step 1a. The reason for doing so is that one may hope to

use the solution (w̄k+1, β̄k+1) computed in Step 1a as an approximate solu-

tion for the current subproblem. If (w̄k+1, β̄k+1) indeed satisfies the above

accuracy condition, then one can simply set (wk+1, βk+1) = (w̄k+1, β̄k+1)

and the cost of solving this new subproblem can be saved.

Step 2. Compute (uk+1, ξk+1) = argminu,ξ Lσ(rk+1, wk+1, βk+1, ξ, u;αk, ρk).

By observing that the objective function is actually separable in u and

ξ, we can compute uk+1 and ξk+1 separately as follows:

uk+1 = arg min
{
δB(u) +

σ

2
‖D(u− gk)‖2

}
=


gk if ‖gk‖ ≤ 1,

gk/‖gk‖ otherwise;

ξk+1 = ΠRn
+

(
rk+1 − ZTwk+1 − yβk+1 + σ−1αk − σ−1Ce

)
,

where gk = wk+1−σ−1D−1ρk, and ΠRn
+

(·) denotes the projection onto Rn+.

Step 3. Compute

αk+1 = αk − τσ(ZTwk+1 + yβk+1 + ξk+1 − rk+1),

ρk+1 = ρk − τσD(wk+1 − uk+1),

where τ ∈ (0, (1 +
√

5)/2) is the steplength which is typically chosen to be

1.618.

In our implementation of Algorithm 1, we choose the summable sequence

{εk}k≥0 to be εk = c/(k + 1)1.5 where c is a constant that is inversely pro-

portional to ‖Z‖F . Next we discuss the computational cost of Algorithm 1. As

we shall see later, the most computationally intensive steps in each iteration of

the above algorithm are in solving the linear systems of equations of the form

(3.8) in Step 1a and 1c. The detailed analysis of their computational costs will

be presented in subsection 3.2.3. All the other steps can be done in at most

O(n) or O(d) arithmetic operations, together with the computation of ZTwk+1,

which costs 2dn operations if we do not take advantage of any possible sparsity
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in Z.

3.2.1 Convergence results

We have the following convergence theorem for the inexact sGS-ADMM, estab-

lished by Chen, Sun and Toh in Chen et al. (2017, Theorem 1). This theorem

guarantees the convergence of our algorithm to optimality, as a merit over the

possibly non-convergent directly extended semi-proximal ADMM.

Theorem 3.1. Suppose that the system (3.6) has at least one solution. Let

{(rk, wk, βk, ξk, uk;αk, ρk)} be the sequence generated by the inexact sGS-ADMM

in Algorithm 1. Then the sequence {(rk, wk, βk, ξk, uk)} converges to an optimal

solution of problem (3.7) and the sequence {(αk, ρk)} converges to an optimal

solution to the dual of problem (3.7).

Proof. In order to apply the convergence result in Chen et al. (2017), we need

to express (3.7) as follows:

min
{
p(r) + f(r, w, β) + q(ξ, u) + g(ξ, u) | A∗1r +A∗2[w;β] +B∗[ξ;u] = 0

}
, (3.11)

where

p(r) =
∑n

i=1 θq(ri), f(r, w, β) ≡ 0, q(ξ, u) = δB(u) + C〈e, ξ〉+ δRn
+

(ξ), g(ξ, u) ≡ 0,

A∗1 =

 −I
0

 , A∗2 =

 ZT y

D 0

 , B∗ =

 I 0

0 −D

 .

Next we need to consider the following matrices:

 A1

A2

(A∗1, A∗2)+


0 0 0

0 T 0

0 0 0

 =

 I [−ZT ,−y]

[−ZT ,−y]T M

 ,

BB∗ =

 I 0

0 D2

 ,
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where

M =

 ZZT +D2 + T Zy

(Zy)T yT y

 � 0.

One can show that M is positive definite by using the Schur complement lemma.

With the conditions that M � 0 and BB∗ � 0, the conditions in Proposition

4.2 of Chen et al. (2017) are satisfied, and hence the convergence of Algorithm

1 follows by using Theorem 1 in Chen et al. (2017).

We note here that the convergence analysis in Chen et al. (2017) is highly

nontrivial. But it is motivated by the proof for the simpler case of an exact

semi-proximal ADMM that is available in Appendix B of the paper by Fazel

et al. (2013). In that paper, one can see that the convergence proof is based

on the descent property of a certain function, while the augmented Lagrangian

function itself does not have such a descent property.

3.2.2 Numerical computation of the subproblem (3.10) in Step

1b

In the presentation of Algorithm 1, we have described how the subproblem in

each step can be solved except for the subproblem (3.10) in Step 1b. Now we

discuss how it can be solved. Observe that for each i, we need to solve a one-

dimensional problem of the form:

min
{
ϕ(s) :=

1

sq
+
σ

2
(s− a)2 | s > 0

}
, (3.12)

where a is given. It is easy to see that ϕ(·) is a convex function and it has a

unique minimizer in the domain (0,∞). The optimality condition for (3.12) is

given by

s− a =
qσ−1

sq+1
,

where the unique minimizer s∗ is determined by the intersection of the line

s 7→ s − a and the curve s 7→ qσ−1

sq+1 for s > 0. We propose to use Newton’s

method to find the minimizer, and the template is given as follows. Given an
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initial iterate s0, perform the following iterations:

sk+1 = sk − ϕ′(sk)/ϕ′′(sk) = sk

(
q(q + 2)σ−1 + asq+1

k

q(q + 1)σ−1 + sq+2
k

)
, k = 0, 1, . . .

Since ϕ′′(s∗) > 0, Newton’s method would have a local quadratic convergence

rate, and we would expect it to converge in a small number of iterations, say

less than 20, if a good initial point s0 is given. In solving the subproblem (3.10)

in Step 1b, we always use the previous solution rki as the initial point to warm-

start Newton’s method. If a good initial point is not available, one can use the

bisection technique to find one. In our tests, this technique was however never

used.

Observe that the computational cost for solving the subproblem (3.10) in Step

1b is O(n) if Newton’s method converges within a fixed number of iterations

(say 20) for all i = 1, . . . , n. Indeed, in our experiments, the average number of

Newton iterations required to solve (3.12) for each of the instances is less than

10.

3.2.3 Efficient techniques to solve the linear system (3.8)

Observe that in each iteration of Algorithm 1, we need to solve a (d+1)×(d+1)

linear system of equations (3.8) with the same coefficient matrix A. For large

scale problems where n and/or d are large, this step would constitute the most

expensive part of the algorithm. In order to solve such a linear system efficiently,

we design different techniques to solve it, depending on the dimensions n and d.

We consider the following cases.

(1) The case where d� n and d is moderate

This is the most straightforward case where we set T = 0, and we solve (3.8) by

computing the Cholesky factorization of the coefficient matrix A. The cost of

computing A is 2nd2 arithmetic operations. Assuming that A is stored, then we

can compute its Cholesky factorization at the cost of O(d3) operations, which

needs only to be performed once at the very beginning of Algorithm 1. After
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that, whenever we need to solve the linear system (3.8), we compute the right-

hand-side vector at the cost of 2nd operations and solve two (d + 1) × (d + 1)

triangular systems of linear equations at the cost of 2d2 operations.

(2) The case where n� d and n is moderate

In this case, we also set T = 0. But solving the large (d+ 1)× (d+ 1) system of

linear equations (3.8) requires more thought. In order to avoid inverting the high

dimensional matrix A directly, we make use of the Sherman-Morrison-Woodbury

formula to get A−1 by inverting a much smaller (n+1)×(n+1) matrix as shown

in the following proposition.

Proposition 3. The coefficient matrix A can be rewritten as follows:

A = D̂ + UEUT , U =

 Z 0

yT ‖y‖

 , E = diag(In,−1), (3.13)

where D̂ = diag(D, ‖y‖2). It holds that

A−1 = D̂−1 − D̂−1UH−1UT D̂−1, (3.14)

where

H = E−1 + UT D̂−1U =

 In + ZTD−1Z + yyT /‖y‖2 y/‖y‖

yT /‖y‖ 0

 . (3.15)

Proof. It is easy to verify that (3.13) holds and we omit the details. To get (3.14),

we only need to apply the Sherman-Morrison-Woodbury formula in Golub and

Loan (1996, p.50) to (3.13) and perform some simplifications.

Note that in making use of (3.14) to compute A−1h̄k, we need to find H−1.

A rather cost effective way to do so is to express H as follows and use the

Sherman-Morrison-Woodbury formula to find its inverse:

H = J + ȳȳT , J = diag(In + ZTD−1Z,−1), ȳ = [y/‖y‖; 1].
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With the above expression for H, we have that

H−1 = J−1 − 1

1 + ȳTJ−1ȳ
(J−1ȳ)(J−1ȳ)T .

Thus to solve (3.8), we first compute the n×n matrix In+ZTD−1Z in (3.15) at

the cost of 2dn2 operations. Then we compute its Cholesky factorization at the

cost of O(n3) operations. (Observe that even though we are solving a (d+ 1)×

(d + 1) linear system of equations for which d � n, we only need to compute

the Cholesky factorization of a much smaller n × n matrix.) Also, we need to

compute J−1ȳ at the cost of O(n2) operations by using the previously computed

Cholesky factorization. These computations only need to be performed once at

the beginning of Algorithm 1. After that, whenever we need to solve a linear

system of the form (3.8), we can compute h̄k at the cost of 2nd operations, and

then make use of (3.14) to get A−1h̄k by solving two n × n triangular systems

of linear equations at the cost of 2n2 operations, and performing two matrix-

vector multiplications involving Z and ZT at a total cost of 4nd operations. To

summarize, given the Cholesky factorization of the first diagonal block of H, the

cost of solving (3.8) via (3.14) is 6nd+ 2n2 operations.

(3) The case where d and n are both large

The purpose of introducing the proximal term 1
2‖w−w

k‖2T in Steps 1a and 1c is

to make the computation of the solutions of the subproblems easier. However,

one should note that adding the proximal term typically will make the algorithm

converge more slowly, and the deterioration will become worse for larger ‖T ‖.

Thus in practice, one would need to strike a balance between choosing a sym-

metric positive semidefinite matrix T to make the computation easier while not

slowing down the algorithm by too much.

In our implementation, we first attempt to solve the subproblem in Step 1a

(similarly for 1c) without adding a proximal term by setting T = 0. In particular,

we solve the linear system (3.8) by using a preconditioned symmetric quasi-

minimal residual (PSQMR) iterative solver (Freund 1997) when both n and d

are large. Basically, it is a variant of the Krylov subspace method similar to the
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idea in GMRES (Saad 2003). For more details on the PSQMR algorithm, the

reader is referred to the appendix. In each step of the PSQMR solver, the main

cost is in performing the matrix-vector multiplication with the coefficient matrix

A, which costs 4nd arithmetic operations. As the number of steps taken by an

iterative solver to solve (3.8) to the required accuracy (3.9) is dependent on the

conditioning of A, in the event that the solver requires more than 50 steps to

solve (3.8), we would switch to adding a suitable non-zero proximal term T to

make the subproblem in Step 1a easier to solve.

The most common and natural choice of T to make the subproblem in Step

1a easy to solve is to set T = λmaxI − ZZT , where λmax denotes the largest

eigenvalue of ZZT . In this case the corresponding linear system (3.8) is very easy

to solve. More precisely, for the linear system in (3.8), we can first compute β̄k+1

via the Schur complement equation in a single variable followed by computing

w̄k as follows:

(
yT y − (Zy)T (λmaxI +D)−1(Zy)

)
β = h̄kd+1 − (Zy)T (λmaxI +D)−1h̄k1:d,

w̄k+1 = (λmaxI +D)−1(h̄k1:d − (Zy)β̄k+1),

(3.16)

where h̄k1:d denotes the vector extracted from the first d components of h̄k. In our

implementation, we pick a T which is less conservative than the above natural

choice as follows. Suppose we have computed the first ` largest eigenvalues of

ZZT such that λ1 ≥ . . . ≥ λ`−1 > λ`, and their corresponding orthonormal set

of eigenvectors, v1, . . . , v`. We pick T to be

T = λ`I +
∑`−1

i=1(λi − λ`)vivTi − ZZT , (3.17)

which can be proved to be positive semidefinite by using the spectral decomposi-

tion of ZZT . In practice, one would typically pick ` to be a small integer, say 10,

and compute the first ` largest eigenvalues and their corresponding eigenvectors

via variants of the Lanczos method. The most expensive step in each iteration

of the Lanczos method is a matrix-vector multiplication, which requires O(d2)

operations. In general, the cost of computing the first few largest eigenvalues of

ZZT is much cheaper than that of computing the full eigenvalue decomposition.
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In Matlab, such a computation can be done by using the routine eigs. To

solve (3.8), we need the inverse of ZZT +D+ T . Fortunately, when D = µId, it

can easily be inverted with

(ZZT +D + T )−1 = (µ+ λ`)
−1Id +

∑`−1
i=1

(
(µ+ λi)

−1 − (µ+ λ`)
−1
)
viv

T
i .

One can then compute β̄k and w̄k as in (3.16) with (λmaxI +D)−1 replaced by

the above inverse.

3.3 Numerical experiments

In this section, we test the performance of our inexact sGS-ADMM method on

several publicly available data sets. The numerical results presented in the sub-

sequent subsections are obtained from a computer with processor specifications:

Intel(R) Xeon(R) CPU E5-2670 @ 2.5GHz (2 processors) and 64GB of RAM,

running on a 64-bit Windows Operating System.

3.3.1 Tuning the penalty parameter

In the DWD model (3.7), we see that it is important to make a suitable choice

of the penalty parameter C. In Marron et al. (2007), it has been noticed that a

reasonable choice for the penalty parameter when the exponent q = 1 is a large

constant divided by the square of a typical distance between the xi’s, where

the typical distance, dist, is defined as the median of the pairwise Euclidean

distances between classes. We found out that in a more general case, C should

be inversely proportional to distq+1. On the other hand, we observed that a

good choice of C also depends on the sample size n and the dimension of fea-

tures d. In our numerical experiments, we empirically set the value of C to be

10q+1 max
{

1, 10q−1 log(n) max{1000,d}
1
3

distq+1

}
, where log(·) is the natural logarithm.

3.3.2 Scaling of data

A technique which is very important in implementing ADMM based methods in

practice to achieve fast convergence is the data scaling technique. Empirically, we
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have observed that it is good to scale the matrix Z in (3.7) so that the magnitude

of all the blocks in the equality constraint would be roughly the same. Here we

choose the scaling factor to be Zscale =
√
‖X‖F , where ‖ · ‖F is the Frobenius

norm. Hence the optimization model in (3.7) becomes:

min
∑n

i=1
1
rqi

+ C〈e, ξ〉+ δ
B̃

(ũ) + δRn
+

(ξ)

s.t. Z̃T w̃ + βy + ξ − r = 0, r > 0,

D(w̃ − ũ) = 0, w̃, ũ ∈ Rd, r, ξ ∈ Rn,

(3.18)

where Z̃ = Z
Zscale

, w̃ = Zscalew, ũ = Zscaleu, and B̃ = {w̃ ∈ Rd | ‖w̃‖ ≤ Zscale}.

Therefore, if we have computed an optimal solution (r∗, w̃∗, β∗, ξ∗, ũ∗) of (3.18),

then (r∗, Z−1
scalew̃

∗, β∗, ξ∗, Z−1
scaleũ

∗) would be an optimal solution of (3.7).

3.3.3 Stopping condition for inexact sGS-ADMM

We measure the accuracy of an approximate optimal solution (r, w, β, ξ, u, α, ρ)

for (3.18) based on the KKT optimality conditions (3.6) by defining the following

relative residuals:

ηC1 = |yTα|
1+C , ηC2 = |ξT (Ce−α)|

1+C , ηC3 = ‖α−s‖2
1+C with si = q

rq+1
i

,

ηP1 = ‖Z̃T w̃+βy+ξ−r‖
1+C , ηP2 = ‖D(w̃−ũ)‖

1+C , ηP3 = max{‖w̃‖−Zscale,0}
1+C ,

ηD1 = ‖min{0,α}‖
1+C , ηD2 = ‖max{0,α−Ce}‖

1+C ,

where Zscale is a scaling factor which has been discussed in the last subsection.

Additionally, we calculate the relative duality gap by:

ηgap :=
|objprimal − objdual|

1 + |objprimal|+ |objdual|
,

where objprimal =
∑n

i=1
1
rqi

+C〈e, ξ〉, objdual = κ
∑n

i=1 α
q

q+1

i −Zscale‖Z̃α‖, with κ =

q+1
q q

1
q+1 . We should emphasize that although for machine learning problems, a

high accuracy solution is usually not required, it is important however to use

the KKT optimality conditions as the stopping criterion to find a moderately

accurate solution in order to design a robust solver.
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We terminate the solver when max{ηP , ηD} < 10−5, min{ηC , ηgap} <
√

10−5,

and max{ηC , ηgap} < 0.05. Here, ηC = max{ηC1 , ηC2 , ηC3}, ηP = max{ηP1 , ηP2 , ηP3},

and ηD = max{ηD1 , ηD2}. Furthermore, the maximum number of iterations is

set to be 2000.

3.3.4 Adjustment of Lagrangian parameter σ

Based upon some preliminary experiments, we set our initial Lagrangian param-

eter σ to be σ0 = min{10C, n}q, where q is the exponent in (3.7), and adapt the

following strategy to update σ to improve the convergence speed of the algorithm

in practice:

Step 1. Set χ = ηP
ηD

, where ηP and ηD are defined in subsection 3.3.3;

Step 2. If χ > θ, set σk+1 = ζσk; elseif 1
χ > θ, set σk+1 = 1

ζσk.

Here we empirically set θ to be 5 and ζ to be 1.1. Nevertheless, if we have

either ηP � ηD or ηD � ηP , then we would increase ζ accordingly, say 2.2 if

max{χ, 1
χ} > 500 or 1.65 if max{χ, 1

χ} > 50.

3.3.5 Performance of the sGS-ADMM on UCI data sets

In this subsection, we test our algorithm on instances from the UCI data repos-

itory (Lichman 2013). The datasets we have chosen here are all classification

problems with two classes. However, the size for each class may not be balanced.

To tackle the case of uneven class proportions, we use the weighted DWD model

discussed in Qiao et al. (2010). Specifically, we consider the model (3.4) using

e = 1 and the term
∑n

i=1 1/rqi is replaced by
∑n

i=1 τ
q
i /r

q
i , with the weights τi

given as follows:

τi =


τ−

max{τ+,τ−} if yi = +1,

τ+
max{τ+,τ−} if yi = −1,

where τ± =
(
|n±|K−1

) 1
1+q . Here n± is the number of data points with class

label ±1 respectively and K := n/log(n) is a normalizing factor.
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Data n d C Iter Time (s) psqmr|double Train-error (%)

a8a 22696 123 6.27e+02 201 2.28 0|201 15.10

a9a 32561 123 6.49e+02 201 2.31 0|201 14.93

covtype 581012 54 3.13e+03 643 104.34 0|191 23.74

gisette 6000 4972 1.15e+04 101 39.69 0| 49 0.17

gisette-scale 6000 4956 1.00e+02 201 59.73 0|201 0.00

ijcnn1 35000 22 4.23e+03 401 3.16 0|401 7.77

mushrooms 8124 112 3.75e+02 81 1.09 0| 81 0.00

real-sim 72309 20958 1.55e+04 210 47.69 875|210 1.45

w7a 24692 300 5.95e+02 701 4.84 0|701 1.17

w8a 49749 300 6.36e+02 906 9.43 0|906 1.20

rcv1 20242 44505 9.18e+03 81 9.18 234| 49 0.63

leu 38 7129 1.00e+02 489 2.84 0|489 0.00

prostate 102 6033 1.00e+02 81 3.19 0| 81 0.00

farm-ads 4143 54877 3.50e+03 81 6.92 792| 81 0.14

dorothea 800 88120 1.00e+02 51 4.44 0| 51 0.00

url-svm 256000 685896 1.18e+06 121 294.55 364|121 0.01

Table 3.1: The performance of our inexact sGS-ADMM method on the UCI data
sets.

Table 3.1 presents the number of iterations and runtime required, as well as

training error produced when we perform our inexact sGS-ADMM algorithm to

solve 16 data sets. Here, the running time is the total time spent in reading the

training data and in solving the DWD model. The timing for getting the best

penalty parameter C is excluded. The results are generated using the exponent

q = 1. In the table, “psqmr” is the iteration count for the preconditioned

symmetric quasi-minimal residual method for solving the linear system (3.8). A

‘0’ for “psqmr” means that we are using a direct solver as mentioned in subsection

3.2.3. Under the column “double” in Table 3.1, we also record the number of

iterations for which the extra Step 1c is executed to ensure the convergence of

Algorithm 1.
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Denote the index set S = {i | yi[sgn(β + xTi w)] ≤ 0, i = 1, . . . , n} for which

the data instances are categorized wrongly, where sgn(x) is the sign function.

The training and testing errors are both defined by |S|n × 100%, where |S| is the

cardinality of the set S.

Our algorithm is capable of solving all the data sets, even when the size of

the data matrix is huge. In addition, for data with unbalanced class size, such

as w7a and w8a, our algorithm is able to produce a classifier with small training

error.

3.3.6 Comparison with other solvers

In this subsection, we compare our inexact sGS-ADMM method for solving (3.4)

via (3.7) with the primal-dual interior-point method implemented in Toh et al.

(1999) and used in Marron et al. (2007). We also compare our method with

the directly extended (semi-proximal) ADMM (using the aggressive step-length

1.618) even though the latter’s convergence is not guaranteed. Note that the

directly extended ADMM we have implemented here follows exactly the same

design used for sGS-ADMM, except that we switch off the additional Step 1c

in the Algorithm 1. We should emphasize that our directly extended ADMM is

not a simple adaption of the classical ADMM, but instead incorporates all the

sophisticated techniques we have developed for sGS-ADMM.

We will report our computational results for two different values of the expo-

nent, q = 1 and q = 2, in Tables 3.2 and 3.3, respectively.

exponent q = 1 sGS-ADMM directADMM IPM

Data n d C Time(s) Iter Error(%) Time(s) Iter Error(%) Time(s) Iter Error(%)

a8a 22696 123 6.27e+02 2.28 201 15.10 2.01 219 15.10 1321.20 47 15.09

a9a 32561 123 6.49e+02 2.31 201 14.93 2.12 258 14.93 2992.60 43 14.93

covtype 581012 54 3.13e+03 104.34 643 23.74 100.26 700 23.74 - - -

gisette 6000 4972 1.15e+04 39.69 101 0.17 33.14 70 0.25 2403.40 62 20.50*

gisette-scale 6000 4956 1.00e+02 59.73 201 0.00 152.05 2000 0.00 49800.58 84 17.80*

ijcnn1 35000 22 4.23e+03 3.16 401 7.77 2.95 501 7.77 1679.34 34 7.77

mushrooms 8124 112 3.75e+02 1.09 81 0.00 1.42 320 0.00 136.67 50 0.00

real-sim 72309 20958 1.55e+04 47.69 210 1.45 89.55 702 1.42 - - -

38



Chapter 3 Section 3.3

exponent q = 1 sGS-ADMM directADMM IPM

Data n d C Time(s) Iter Error(%) Time(s) Iter Error(%) Time(s) Iter Error(%)

w7a 24692 300 5.95e+02 4.84 701 1.17 8.52 2000 1.16 4474.13 53 1.17

w8a 49749 300 6.36e+02 9.43 906 1.20 13.58 2000 1.16 - - -

rcv1 20242 44505 9.18e+03 9.18 81 0.63 16.07 245 0.63 9366.41 43 0.17

leu 38 7129 1.00e+02 2.84 489 0.00 5.35 2000 0.00 1.33 11 0.00

prostate 102 6033 1.00e+02 3.19 81 0.00 4.13 2000 0.00 7.73 19 0.00

farm-ads 4143 54877 3.50e+03 6.92 81 0.14 4.20 61 0.14 642.79 54 0.24

dorothea 800 88120 1.00e+02 4.44 51 0.00 37.31 2000 0.00 15.53 23 0.00

url-svm 256000 685896 1.18e+06 294.55 121 0.01 264.52 195 0.00 - - -

Table 3.2: Comparison between the performance of our inexact sGS-ADMM,
directly extended ADMM “directADMM”, and the interior point method “IPM”
on the UCI data sets. A ‘*’ next to the error in the table means that the problem
set cannot be solved properly by the respective solver; ‘-’ means the algorithm
cannot solve the dataset due to insufficient computer memory.

Table 3.2 reports the runtime, number of iterations required as well as the

training error of 3 different solvers for solving the UCI data sets. We can ob-

serve that the interior point method is almost always the slowest to achieve

optimality compared to the other two solvers, despite requiring the least num-

ber of iterations, especially when the sample size n is large. The inefficiency of

the interior-point method is caused by its need to solve an n × n linear system

of equations in each iteration, which could be very expensive if n is large. In

addition, it cannot solve the DWD problem where n is huge due to the excessive

computer memory needed to store the large n× n matrix.

On the other hand, our inexact sGS-ADMM method outperforms the directly

extended (semi-proximal) ADMM for 9 out of 16 cases in terms of runtime. For

the other cases, we are only slower by a relatively small margin. Furthermore,

when our algorithm outperforms the directly extended ADMM, it often shortens

the runtime by a large margin. In terms of number of iterations, for 14 out of

16 cases, the directly extended ADMM requires at least the same number of

iterations as our inexact sGS-ADMM method. We can say that our algorithm

is remarkably efficient and it further possesses a convergence guarantee. In
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contrast, the directly extended ADMM is not guaranteed to converge although

it is also very efficient when it does converge. We can observe that the directly

extended ADMM sometimes would take many more iterations to solve a problem

compared to our inexact sGS-ADMM, especially for the instances in Table 3.3,

possibly because the lack of a convergence guarantee makes it difficult for the

method to find a sufficiently accurate approximate optimal solution.

To summarize, our inexact sGS-ADMM method is an efficient yet convergent

algorithm for solving the primal form of the DWD model. It is also able to solve

large scale problems which cannot be handled by the interior point method.

exponent q = 2 sGS-ADMM directADMM IPM

Data n d C Time(s) Iter Error(%) Time(s) Iter Error(%) Time(s) Iter Error(%)

a8a 22696 123 1.57e+04 2.77 248 15.10 2.97 533 15.11 7364.34 45 15.17

a9a 32561 123 1.62e+04 2.92 279 14.94 5.78 1197 14.94 16402.05 48 14.95

covtype 581012 54 1.52e+05 81.63 368 23.74 275.29 2000 23.74 - - -

gisette 6000 4972 1.01e+06 39.72 101 0.03 28.42 81 0.03 2193.74 55 0.00

gisette-scale 6000 4956 1.00e+03 88.89 439 0.00 147.80 2000 1.20 31827.33 53 0.00

ijcnn1 35000 22 2.69e+05 2.76 233 7.94 4.80 1056 7.87 1959.68 38 7.98

mushrooms 8124 112 7.66e+03 1.59 301 0.00 3.63 2000 0.17 594.33 52 0.00

real-sim 72309 20958 1.10e+06 43.20 180 1.51 23.56 181 1.51 - - -

w7a 24692 300 1.44e+04 3.96 473 1.15 7.83 2000 2.69 5448.78 48 1.18

w8a 49749 300 1.54e+04 7.07 543 1.13 13.57 2000 2.68 - - -

rcv1 20242 44505 4.69e+05 9.47 81 1.16 7.54 101 1.16 8562.76 47 0.24*

leu 38 7129 1.00e+03 1.72 204 0.00 4.52 2000 0.00 2.82 23 0.00

prostate 102 6033 1.00e+03 3.32 111 0.00 3.87 2000 0.00 8.33 21 0.00

farm-ads 4143 54877 5.21e+04 37.79 401 0.19 8.31 146 0.19 343.13 43 0.27

dorothea 800 88120 1.00e+03 4.39 51 0.00 31.49 2000 0.00 16.84 25 0.00

url-svm 256000 685896 5.49e+07 452.81 205 0.02 587.46 490 0.02 - - -

Table 3.3: Same as Table 3.2 but for q = 2.

Table 3.3 reports the runtime, number of iterations required as well as the

training error of 3 different solvers for solving the UCI data sets for the case

when q = 2. Again, we can see that the interior point method is almost always
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the slowest to converge to optimality.

Our sGS-ADMM algorithm outperforms the directly extended ADMM algo-

rithm in 12 out of 16 data sets in terms of runtime. In terms of the number of

iterations, it has the best performance among almost all the data sets. On the

other hand, for 8 data sets, the number of iterations required by the directly

extended ADMM hits the maximum iterations allowed, probably implying non-

convergence of the method. For the interior point method, it takes an even

longer time to solve the problems compared to the case when q = 1. This is due

to an increase in the number of constraints generated in the second-order cone

programming formulation of the DWD model with q = 2.

The numerical result we obtained in this case is consistent with the one we

obtained for the case q = 1. This further shows the merit of our algorithm in a

more general setting. We could also expect the similar result when the exponent

is 4 or 8.

3.3.7 Comparison with LIBSVM and LIBLINEAR

In this subsection, we will compare the performance of our DWD model to

the state-of-the-art model support vector machine (SVM). We apply our sGS-

ADMM algorithm as the DWD model and use LIBSVM in Chang and Lin (2011)

as well as LIBLINEAR in Fan et al. (2008) to implement the SVM model. LIB-

SVM is a general solver for solving SVM models with different kernels; while

LIBLINEAR is a solver highly specialized in solving SVM with linear kernels.

LIBLINEAR is a fast linear classifier; in particular, we would apply it to the

dual of L2-regularized L1-loss support vector classification problem. We would

like to emphasize that the solution given by LIBSVM using linear kernel and

that given by LIBLINEAR is not exactly the same. This may be due to the

reason that LIBLINEAR has internally preprocessed the data and assumes that

there is no bias term in the model.

The parameters used in LIBSVM are chosen to be the same as in Ito et al.

(2015), whereas for LIBLINEAR, we make use of the default parameter C = 1

for all the datasets.
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Table 3.4 shows the runtime and number of iterations needed for solving the

binary classification problem via the DWD and SVM models respectively on the

UCI datasets. It also gives the training and testing classification error produced

by the three algorithms. Note that the training time excludes the time for com-

puting the best penalty parameter C. The stopping tolerance for all algorithms

is set to be 10−5. For LIBLINEAR, we observed that the default maximum num-

ber of iteration is breached for many datasets. Thus we increase the maximum

number of iteration from the default 1000 to 20000.

In terms of runtime, LIBLINEAR is almost always the fastest to solve the

problem, except for the two largest datasets (rcv1,url-svm) for which our algo-

rithm is about 2-3 times faster. Note that the maximum iteration is reached for

these two datasets. On the other hand, LIBSVM is almost always the slowest

solver. It may only be faster than sGS-ADMM for small datasests (3 cases).

Our algorithm can be 50-100 times faster than LIBSVM when solving large data

instances. Furthermore, LIBSVM may have the risk of not being able to handle

extremely large-scaled datasets. For example, it cannot solve the biggest dataset

(url-svm) within 24 hours.

In terms of training and testing error, we may observe from the table that

the DWD and SVM models produced comparable training classification errors,

although there are some discrepancies due to the differences in the models and

penalty parameters used. On the other hand, the testing errors vary across

different solvers. For most datasets, the DWD model (solved by sGS-ADMM)

produced smaller (sometimes much smaller) testing errors than the other algo-

rithms (8 cases); whereas the SVM model (solved by LIBLINEAR) produced the

worst testing errors among all algorithms (5 cases). The discrepancy between the

testing errors given by LIBSVM and LIBLINEAR may be due to the different

treatment of the bias term in-built into the algorithms.

It is reasonable to claim that our algorithm is more efficient than the extremely

fast solver LIBLINEAR in solving large data instances even though our algorithm

is designed for the more complex DWD model compared to the simpler SVM

model. Moreover, our algorithm for solving the DWD model is able to produce
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testing errors which are generally better than those produced by LIBLINEAR

for solving the SVM model.

DWD via sGS-ADMM SVM via LIBLINEAR SVM via LIBSVM

Data n d ntest Time IterErrtr Errtest Time Iter Errtr Errtest Time Iter Errtr Errtest

a8a 22696 123 9865 2.28 201 15.10 14.67 0.69 20000 15.32 14.87 50.45 34811 15.44 14.80

a9a 32561 123 16281 2.31 201 14.93 15.19 0.79 6475 15.01 15.02 93.91 25721 15.24 15.03

covtype 581012 54 / 104.34 643 23.74 / 23.53 20000 23.69 / 19641.19 224517 23.70 /

gisette 6000 4972 1000 39.69 101 0.17 3.00 4.34 132 0.00 10.70 85.93 14818 0.40 14.30

gisette-scale 6000 4956 1000 59.73 201 0.00 2.50 33.07 484 0.00 2.30 152.27 15738 0.40 2.20

ijcnn1 35000 22 91701 3.16 401 7.77 7.82 0.55 11891 8.70 8.35 27.04 10137 9.21 8.76

mushrooms 8124 112 / 1.09 81 0.00 / 0.19 326 0.00 / 0.64 1003 0.00 /

real-sim 72309 20958 / 47.69 210 1.45 / 7.56 1190 1.07 / 3846.07 52591 1.37 /

w7a 24692 300 25057 4.84 701 1.17 1.30 0.43 1689 1.28 10.12 14.79 62830 1.37 1.38

w8a 49749 300 14951 9.43 906 1.20 1.31 2.45 13095 1.18 9.64 63.27 124373 1.36 1.43

rcv1 20242 44505 677399 9.18 81 0.63 5.12 33.98 20000 0.15 5.17 819.32 33517 0.62 13.82

leu 38 7129 34 2.84 489 0.00 5.88 0.30 27 0.00 20.59 0.59 184 0.00 17.65

prostate 102 6033 / 3.19 81 0.00 / 2.73 353 0.00 / 2.54 1063 0.00 /

farm-ads 4143 54877 / 6.92 81 0.14 / 6.11 5364 0.14 / 10.34 15273 0.14 /

dorothea 800 88120 350 4.44 51 0.00 5.14 0.83 11 0.00 8.86 7.48 4553 0.00 7.71

url-svm 256000 685896 / 294.55 121 0.01 / 660.39 20000 0.01 / - - - -

Table 3.4: Comparison between the performance of our inexact sGS-ADMM on
DWD model with LIBLINEAR and LIBSVM on SVM model. ntest is the size of
testing sample, Errtr is the percentage of training error; while Errtest is that of
the testing error. ‘-’ means the result cannot be obtained within 24 hours, and
‘/’ means test sets are not available.

43





Chapter 4 Section 4.0

Chapter 4
A semi-proximal augmented

Lagrangian based decomposition

method for primal block angular

convex composite quadratic conic

programming problems

In this chapter, we will focus on designing efficient and robust (distributed)

algorithms for solving large scale convex composite quadratic conic programming

problems with a primal block angular structure, i.e. optimization problems with

a separable convex objective function and conic constraints but the variables are

coupled by linking linear constraints across different variables.
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We consider the following primal block-angular optimization problem:

(PBA-P) min
∑N

i=0 fi(xi) := θi(xi) + 1
2〈xi, Qixi〉+ 〈ci, xi〉

s.t.



A0 A1 . . . AN

D1
...

. . .
...

DN


︸ ︷︷ ︸

B



x0

x1

...

xN


=



b0

b1

...

bN


,

xi ∈ Ki, i = 0, 1, . . . , N,

where for each i = 0, 1, . . . , N , θi : Xi → (−∞,∞] is a proper closed convex

function, Qi : Xi → Xi is a positive semidefinite linear operator, Ai : Xi → Y0

and Di : Xi → Yi are given linear maps, ci ∈ Xi and bi ∈ Yi are given data,

Ki ⊂ Xi is a closed convex set that is typically a cone but not necessarily so, and

Xi,Yi are real finite dimensional Euclidean spaces each equipped with an inner

product 〈·, ·〉 and its induced norm ‖ · ‖. Note that the addition of the proper

closed convex functions in the objective gives us the flexibility to add nonsmooth

terms such as `1 regularization terms. We should also mention that a constraint

of the form bi − Dixi ∈ Ci, where Ci is a closed convex set can be put in the

form in (PBA-P) by introducing a slack variable si so that [Di, I](xi; si) = bi

and (xi; si) ∈ Ki × Ci.

Without loss of generality, we assume that the constraint matrix B in (PBA-

P) has full row-rank. Let ni = dim(Xi) and mi = dim(Yi). Observe that

the problem (PBA-P) has
∑N

i=0mi linear constraints and the dimension of the

decision variable is
∑N

i=0 ni. Thus even if mi and/or ni are moderate numbers,

the overall dimension of the problem can easily get very large when N is large.

In the important special case of a block angular linear programming problem

for which Qi = 0 and θi = 0 for all i = 0, . . . , N , the Dantzig-Wolfe decomposi-

tion method (which may be viewed as a dual method based on the Lagrangian

function
∑N

i=0〈ci, xi〉 − 〈u, b0 −
∑N

i=0Aixi〉) is a well known classical approach

for solving such a problem. The Dantzig-Wolfe decomposition method has the

attractive property that in each iteration, xi can be computed individually from

46



Chapter 4 Section 4.1

a smaller linear program (LP) for i = 1, . . . , N . However, it is generally ac-

knowledged that an augmented Lagrangian approach has a number of important

advantages over the usual Lagrangian dual method. For example, Ruszczyński

stated in Ruszczyński (1995) that the dual approach based on the ordinary La-

grangian can suffer from the nonuniqueness of the solutions of subproblems. In

addition, solving the subproblem of the augmented Lagrangian approach would

be more stable. In that paper, the well-known diagonal quadratic approximation

(DQA) method is introduced. The DQA method is a very successful decomposi-

tion method and it has been a popular tool in stochastic programming. Thus it

would be a worthwhile effort to analyse it again to see whether further enhance-

ments are possible.

This chapter is organized as follows. We will derive the dual of (PBA-P) in

section 4.1. In section 4.2, we will present our inexact semi-proximal augmented

Lagrangian methods for the primal problem (PBA-P). In section 4.3, we will

propose a semi-proximal symmetric Gauss-Seidel based ADMM for the dual

problem of (PBA-P). For all algorithms we introduce, we conduct numerical

experiments to evaluate their performance and the numerical results are reported

in section 4.4.

4.1 Derivation of the dual of (PBA-P)

For notational convenience, we define

X = X0 ×X1 × · · · × XN , Y = Y0 × Y1 × · · · × YN , K = K0 ×K1 × · · · × KN . (4.1)

For each x ∈ X , y ∈ Y , and c ∈ X , b ∈ Y , we can express them as

x = (x0;x1; · · · ;xN ), y = (y0; y1; · · · ; yN ),

c = (c0; c1; · · · ; cN ), b = (b0; b1; · · · ; bN ).

(4.2)

We also define A, Q and θ as follows:

A = [A0,A1, . . . ,AN ], Q(x) =
(
Q0(x0);Q1(x1); . . . ;QN (xN )

)
, θ(x) =

∑N
i=0 θi(xi). (4.3)
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Using the notation in (4.1)–(4.3), we can write (PBA-P) compactly in the form

of a general convex composite quadratic conic programming problem:

min
{
θ(x) + 1

2〈x, Qx〉+ 〈c, x〉 | Bx− b = 0, x ∈ K
}
. (4.4)

By introducing auxiliary variables u, v ∈ X , problem (4.4) can equivalently be

written as the following model:

min θ(u) + 1
2〈x, Qx〉+ 〈c, x〉+ δK(v)

s.t. Bx− b = 0, u− x = 0, v − x = 0.

(4.5)

To derive the dual of (4.4), consider the following Lagrangian function for (4.5):

L(x, u, v; y, s, z)

= θ(u) +
1

2
〈x, Qx〉+ 〈c, x〉+ δK(v)− 〈y, Bx− b〉 − 〈s, x− u〉 − 〈z, x− v〉

=
1

2
〈x, Qx〉+ 〈c− B∗y − s− z, x〉+ θ(u) + 〈s, u〉+ δK(v) + 〈z, v〉+ 〈y, b〉,

where x, u, v, s, z ∈ X , y ∈ Y . Now for a given subspace W ⊂ X containing

Range(Q), the range space of Q, we have

inf
x
L(x, u, v; y, s, z) = inf

x

{1

2
〈x, Qx〉+ 〈c− B∗y − s− z, x〉

}

=


−1

2〈w, Qw〉, if c− B∗y − s− z = −Qw for some w ∈ W,

−∞, otherwise.

Also,

inf
u
L(x, u, v; y, s, z) = inf

u

[
θ(u) + 〈s, u〉

]
= −θ∗(−s);

inf
v
L(x, u, v; y, s, z) = inf

v

[
δK(v) + 〈z, v〉

]
= −δ∗K(−z).

Hence the dual of (4.5) is given by

max
y,s,z

inf
x,u,v
L(x, u, v; y, s, z)
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= max
y,s,z,w

−θ∗(−s)− 1

2
〈w, Qw〉+ 〈y, b〉 − δ∗K(−z)

∣∣∣ −Qw + B∗y + s+ z = c,

w ∈ W

 ,

or equivalently,

−min θ∗(−s) + 1
2〈w, Qw〉 − 〈b, y〉+ δ∗K(−z)

s.t. −Qw + B∗y + s+ z = c,

s ∈ X , y ∈ Y , w ∈ W.

(4.6)

It is not difficult to check that for all z = (z0; z1; . . . ; zN ), s = (s0; s1; . . . ; sN ) ∈

X , we have

δ∗K(−z) =
∑N

i=0 δ
∗
Ki

(−zi), θ∗(−s) =
∑N

i=0 θ
∗
i (−si). (4.7)

Assume that both the primal and dual problems satisfy the (generalized)

Slater’s condition. Then the optimal solutions for both problems exist and they

satisfy the following Karush-Kuhn-Tucker (KKT) optimality conditions:



Bx− b = 0,

−Qw + B∗y + s+ z − c = 0, Qw −Qx = 0, w ∈ W,

−s ∈ ∂θ(x) ⇔ x− Proxθ(x− s) = 0,

x−ΠK(x− z) = 0.

(4.8)

By applying the structures in (4.1)–(4.3) and (4.7) to (4.6), we get explicitly the

dual of (PBA-P):

(PBA-D) −min
∑N

i=0 θ
∗
i (−si) + δ∗Ki

(−zi) + 1
2〈wi, Qi(wi)〉 − 〈bi, yi〉

s.t.



A∗0

A∗1
...

A∗N


y0 +



−Q0w0 + s0 + z0

D∗1y1 −Q1w1 + s1 + z1

...

D∗NyN −QNwN + sN + zN


= c,

wi ∈ Wi, i = 0, 1, . . . , N,

(4.9)
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where for each i = 0, 1, . . . , N ,Wi ⊂ Xi is a given subspace containing Range(Qi).

4.2 Inexact semi-proximal augmented Lagrangian meth-

ods for the primal problem (PBA-P)

First we rewrite (PBA-P) in the following form:

min
{ N∑
i=0

fi(xi) + δFi(xi) | Ax = b0, x = (x0;x1; . . . ;xN ) ∈ X
}
, (4.10)

where F0 = K0, and Fi = {xi ∈ Xi | Dixi = bi, xi ∈ Ki}, i = 1, . . . , N . For a

given parameter σ > 0, we consider the following augmented Lagrangian function

associated with (4.10):

Lσ(x; y0) =
∑N

i=0 fi(xi) + δFi(xi) + σ
2 ‖Ax− b0 − σ

−1y0‖2 − 1
2σ‖y0‖2. (4.11)

The augmented Lagrangian method for solving (4.10) has the following template.

ALM. Given σ > 0 and y0
0 ∈ Y0. Perform the following steps in each iteration.

Step 1. xk+1 ≈ argminx Lσ(x; yk0 ).

Step 2. yk+1
0 = yk0 + τσ(b0 −Axk+1), where τ ∈ (0, 2) is the step-length.

As one may observe from Step 1 of the ALM, an undesirable feature in the

method is that it destroys the separable structure in the Dantzig-Wolfe decompo-

sition method. Although the feasible sets for the xi’s are separable, the objective

function has a quadratic term which couples all the xi’s.

Here we propose to add a semi-proximal term to the augmented Lagrangian

function to overcome the difficulty of non-separability. In this case, the function

Lσ(x; yk0 ) in Step 1 of the ALM is majorized by an additional semi-proximal term

at the point xk, i.e.,

Lσ(x; yk0 ) +
σ

2
‖x− xk‖2T ,

where T is a given positive semidefinite self-adjoint linear operator which should
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be chosen appropriately to decompose the computation of the xi’s in Step 1 of

the ALM while at the same time the added proximal term should be as small as

possible. In this section, we choose T to be the following positive semidefinite

linear operator:

T = diag(J0, . . . ,JN )−A∗A, (4.12)

where Ji � βiI + A∗iAi, with βi =
∑N

j=0,j 6=i ‖A∗iAj‖2 for each i = 0, 1, . . . , N.

Such a choice is generally less conservative than the usual choice of T̂ that will

be given later in (4.20). It is especially a good choice when Ai and Aj are nearly

orthogonal to one another for most of the index pairs (i, j).

With the choice in (4.12), we get

Lσ(x; yk0 ) +
σ

2
‖x− xk‖2T

=
N∑
i=0

(
fi(xi) + δFi(xi)

)
+
σ

2
‖Ax− b0 − σ−1y0‖2 −

1

2σ
‖y0‖2 +

σ

2
‖x− xk‖2T

=
N∑
i=0

(
fi(xi) + δFi(xi) +

σ

2

[
〈xi, Jixi〉 − 2〈xi, A∗i (b0 + σ−1y0 −Axk) + Jixki 〉

])
+
σ

2

[
‖b0 + σ−1y0‖2 + ‖xk‖T

]
− 1

2σ
‖y0‖2.

The inexact semi-proximal ALM (sPALM) we consider for solving the primal

block angular problem (PBA-P) through (4.10) is given as follows.
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sPALM. Given σ > 0 and y0
0 ∈ Y0. Let {εk} be a given summable sequence of

nonnegative numbers. Perform the following steps in each iteration.

Step 1. Compute

xk+1 ≈ x̂k+1 := argmin{Lσ(x; yk0 ) +
σ

2
‖x− xk‖2T }, (4.13)

with residual

dk+1 ∈ ∂xLσ(xk+1; yk0 ) + σT (xk+1 − xk), (4.14)

satisfying ‖dk+1‖ ≤ εk. Let Gi = Qi+σJi, gki = Qixki +ci+σA∗i (Axk−b0−

σ−1yk0 ) − Gixki . Due to the separability of the variables in (4.13) because

of the specially chosen T , one can compute in parallel for i = 0, 1, . . . , N ,

xk+1
i ≈ x̂k+1

i := argmin
{
θi(xi) +

1

2
〈xi, Gixi〉+ 〈gki , xi〉 | xi ∈ Fi

}
,(4.15)

with the residual dk+1
i := vk+1

i + Gixk+1
i + gki for some vk+1

i ∈ ∂(θi +

δFi)(x
k+1
i ) and satisfying

‖dk+1
i ‖ ≤ 1√

N + 1
εk. (4.16)

Step 2. yk+1
0 = yk0 + τσ(b0 −Axk+1), where τ ∈ (0, 2) is the steplength.

Observe that with the introduction of the semi-proximal term σ
2 ‖x− x

k‖2T to

the augmented Lagrangian function in Step 1 of the sPALM, we have decomposed

the large coupled problem involving x in ALM into N + 1 smaller independent

problems that can be solved in parallel. For the case of a quadratic or linear

program, we can employ a powerful solver such as Gurobi or Mosek to efficiently

solve these smaller problems.

In order to judge how accurately the decomposed subproblems in Step 1 must

be solved, we need to analyse the stopping condition for (4.15) in detail. In

particular, we need to find vk+1
i ∈ ∂(θi + δFi)(x

k+1
i ) for i = 0, 1, . . . , N . This

can be done by considering the dual of the subproblem (4.15), which could be
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written as:

−min θ∗i (−si) + 1
2〈wi, Giwi〉 − 〈bi, yi〉+ δ∗Ki

(−zi)

s.t. −Giwi +D∗i yi + si + zi = gki ,

si ∈ Xi, yi ∈ Yi, wi ∈ Wi, i = 1, . . . , N.

(4.17)

Note that for i = 0, we have a similar problem as the above but the terms

involving yi are absent. For the discussion below, we will just focus on the case

where i = 1, . . . , N , the case for i = 0 can be derived similarly. One can estimate

vk+1
i to be −D∗i y

k+1
i −sk+1

i −zk+1
i for a computed dual solution (yk+1

i , sk+1
i , zk+1

i )

and the residual dk+1
i is simply the residual in the dual feasibility constraint in

the above problem.

Remark 1. In the sPALM, some of the dual variables for (PBA-D) are not

explicitly constructed. Here we describe how they can be estimated. Recall that

for (PBA-D), we want to get

−Qixi +A∗i y0 +D∗i yi + si + zi − ci = 0 ∀ i = 0, 1, . . . , N.

Note that for convenience, we introduced D∗0 = 0. From the KKT conditions for

(4.15) and (4.17), we have that

−Giwk+1
i +D∗i y

k+1
i + sk+1

i + zk+1
i − gki =: Rdi ≈ 0,

Giwk+1
i − Gixk+1

i ≈ 0.

By using the expression for Gi, gki and yk+1
0 , we get

−Qixk+1
i +A∗i yk+1

0 +D∗i yk+1
i + sk+1

i + zk+1
i − ci

= Rdi + (Giwk+1
i − Gixk+1

i ) + σJi(xk+1
i − xki ) + σA∗iA(xk − xk+1)

+(τ − 1)σA∗i (b0 −Axk+1).

Note that the right-hand-side quantity in the above equation will converge to

0 based on the convergence of sPALM and the KKT conditions for (4.15) and
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(4.17). Thus by using the dual variables computed from solving (4.17), we can

generate the dual variables for (PBA-D).

4.2.1 Convergence of the inexact sPALM

The convergence of the inexact sPALM for solving (4.10) can be established

readily by using known results in Chen et al. (2018). To do that, we need to

first reformulate (4.10) into the form required in Chen et al. (2018) as follows:

min
{
h(x) + ψ(x) | Ax = b0, x = (x0;x1; . . . ;xN ) ∈ X

}
, (4.18)

where h(x) =
∑N

i=0
1
2〈xi, Qixi〉 + 〈ci, xi〉 and ψ(x) =

∑N
i=0 θi(xi) + δFi(xi). Its

corresponding KKT residual mapping is given by

R(x, y0) =

 b0 −Ax

x− Proxψ(x−Qx− c−A∗y0)

 ∀ x ∈ X , y0 ∈ Y0. (4.19)

Note that (x, y0) is a solution of the KKT system of (4.18) if and only R(x, y0) =

0.

Now we state the global convergence theorem here for the convenience of the

readers. Define the self-adjoint positive definite linear operator V : X → X by

V := τσ
(
Q+ σT +

2− τ
6

σA∗A
)
.

We have the following convergence result for the inexact sPALM.

Theorem 4.1. Assume that the solution set to the KKT system of (4.10) is

nonempty and (x, y0) is a solution. Then, the sequence {(xk, yk0 )} generated by

sPALM is well-defined such that for any k ≥ 1,

‖xk+1 − x̂k+1‖2Q+σT +σA∗A ≤ 〈dk+1, xk+1 − x̂k+1〉,
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and for all k = 0, 1, . . .,

(
‖xk+1 − x‖2

V̂1/2
+ ‖yk+1

0 − y0‖2
)
−
(
‖xk − x‖2

V̂1/2
+ ‖yk0 − y0‖2

)
≤ −

(
2−τ
3τ ‖y

k
0 − y

k+1
0 ‖2 + ‖xk+1 − xk‖2V − 2τσ〈dk, xk+1 − x〉

)
,

where V̂ = V + 2−τ
6 τσ2A∗A. Moreover, the sequence {(xk, yk0 )} converges to a

solution to the KKT system of (4.10).

Proof. The result can be proved directly from the convergence result in (Chen

et al., 2018, Theorem 1). �

The local linear convergence of sPALM can also be established if the KKT

residual mapping R satisfies the following error bound condition: there exist

positive constants κ and r such that dist((x, y0),Ω) ≤ κ‖R(x, y0)‖ for all (x, y0)

satisfying ‖(x, y0) − (x∗, y∗0)‖ ≤ r, where Ω is the solution set of (4.18) and

(x∗, y∗0) is a particular solution of (4.18). In order to save some space, we will

not state the theorem here but refer the reader to (Chen et al., 2018, Theorem

2).

4.2.2 Comparison of sPALM with the diagonal quadratic ap-

proximation method and its recent variants

Let ρ := (N + 1)−1. Consider the following linear operator

T̂ = diag(E0, . . . , EN )−A∗A, (4.20)

where Ei � ρ−1A∗iAi for all i = 0, 1, . . . , N . It is not difficult to show that T̂ � 0.

If instead of (4.12), we choose T to be the linear operator given in (4.20), then

instead of sPALM, we get the following variant of the inexact sPALM.
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sPALM-b. Given σ > 0 and y0
0 ∈ Y0. Let {εk} be a given summable sequence

of nonnegative numbers. Perform the following steps in each iteration.

Step 1. Let gki = Qixki + ci +σA∗i (Axk− b0−σ−1yk0 )− (Qi +σEi)xki . Compute

(in parallel) for i = 0, 1, . . . , N ,

xk+1
i ≈ argmin

{
θi(xi) +

1

2
〈xi, (Qi + σEi)xi〉+ 〈gki , xi〉 | xi ∈ Fi

}
,(4.21)

with the residual dk+1
i := vk+1

i + (Qi + σEi)xk+1
i + gki for some vk+1

i ∈

∂(θi + δFi)(x
k+1
i ) and satisfying ‖dk+1

i ‖ ≤ 1√
N+1

εk.

Step 2. yk+1
0 = yk0 + τσ(b0 −Axk+1), where τ ∈ (0, 2) is the steplength.

In Ruszczyński (1989), Ruszczyński proposed the diagonal quadratic approxi-

mation (DQA) augmented Lagrangian method that aims to solve a problem of

the form (PBA-P). As already mentioned, the DQA method is a very successful

decomposition method that is frequently used in stochastic programming. Al-

though it was not derived in our way in Ruszczyński (1989), we shall see later

that the DQA method can roughly be derived as the augmented Lagrangian

method described in ALM where the minimization problem in Step 1 is solved

approximately by a proximal gradient method, with the proximal term chosen

specially using the linear operator T̂ in (4.20) to make the resulting subproblem

separable.
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ALM-DQA-mod. Given σ > 0, y0
0 ∈ Y0 and x0 ∈ X . Let {εk} be a given

summable sequence of nonnegative numbers. Perform the following steps in each

iteration.

Step 1. Starting with x̂0 = xk, iterate the following step for s = 0, 1, . . . until

convergence:

• Compute x̂s+1 ≈ argmin
{
Lσ(x; yk0 ) + σ

2 ‖x − x̂
s‖2
T̂
| x ∈ X

}
. As the

problem is separable, one can compute in parallel for i = 0, 1, . . . , N ,

x̂s+1
i ≈ argmin

{ fi(xi) + σ
2 〈xi − x̂

s
i , Ei(xi − x̂si )〉

+〈xi − x̂si , ĝsi 〉
| xi ∈ Fi

}

= argmin
{ θi(xi) + 1

2〈xi, (Qi + σEi)xi〉

+〈xi, ḡsi 〉
| xi ∈ Fi

}
,(4.22)

where ĝsi = σA∗i (Ax̂s− b0−σ−1yk0 ), ḡsi = Qix̂si + ci +σA∗i (Ax̂s− b0−

σ−1yk0 )− (Qi + σEi)x̂si .

At termination, set xk+1 = x̂s+1.

Step 2. yk+1
0 = yk0 + τσ(b0 −Axk+1), where τ ∈ (0, 2) is the steplength.

Observe that the subproblem (4.21) in Step 1 of sPALM-b is exactly one step

of the proximal gradient method (4.22) in Step 1 of the ALM-DQA-mod. As

solving the problem of the form in (4.22) multiple times for each iteration of

the ALM-DQA-mod may be expensive, it is highly conceivable that the overall

efficiency of sPALM-b could be better than that of the ALM-DQA-mod.

Next, we elucidate the connection between ALM-DQA-mod and the DQA

method described in Ruszczyński (1989). Given x̂si ∈ Fi, we can parameterize a

given xi as

xi = x̂si + ρdi = (1− ρ)x̂si + ρ(x̂si + di), i = 0, 1, . . . , N,

with ρ = (N +1)−1 ∈ (0, 1]. Then by convexity, fi(xi) ≤ (1−ρ)fi(x̂
s
i )+ρfi(x̂

s
i +

di). Also, if x̂si + di ∈ Fi, then xi ∈ Fi since x̂si ∈ Fi. From here, we have that
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for all x ∈ F0 × F1 × · · · × FN ,

Lσ(x; yk0 ) +
σ

2
‖x− x̂s‖2T̂ +

1

2σ
‖yk0‖2

≤ (1− ρ)
N∑
i=0

fi(x̂
s
i ) + ρ

N∑
i=0

fi(x̂
s
i + di) +

σ

2
‖A(x̂s + ρd)− b0 − σ−1yk0‖2 +

σρ2

2
‖d‖2T̂

=
N∑
i=0

ρfi(x̂
s
i + di) + ρ〈di, ĝsi 〉+

σρ2

2
〈di, Eidi〉+ (1− ρ)

N∑
i=0

fi(x̂
s
i )

+
σ

2
‖Ax̂s − b0 − σ−1yk0‖2. (4.23)

Hence instead of (4.22), we may consider to minimize the majorization of Lσ(x; yk0 )+

σ
2 ‖x− x̂

s‖2
T̂

in (4.23), and compute for i = 0, 1, . . . , N ,

ds+1
i = argmin ρ

{
fi(x̂

s
i + di) +

σρ

2
〈di, ρEidi〉+ 〈di, ĝsi 〉 | x̂si + di ∈ Fi, di ∈ Xi

}
. (4.24)

We get the DQA method of Ruszczyński (1989) if we take Ei = ρ−1A∗iAi, com-

pute ds+1 exactly in the above subproblem (4.24), and set

x̂s+1
i = x̂si + ρds+1

i , i = 0, 1, ..., N,

instead of the solution in (4.22). Thus we may view the DQA method as an

augmented Lagrangian method for which the subproblem in Step 1 is solved

by a majorized proximal gradient method with the proximal term chosen to be

σ
2 ‖x− x̂

s‖2
T̂

in each step.

Remark 2. When theAi’s are matrices, the majorizationA∗A � diag(E0, . . . , EN )

can be improved as follows, as has been done in Chatzipanagiotis et al. (2015).

Let

Ij =
{
i ∈ {0, 1, . . . , N} | eTj Ai 6= 0

}
, χ := max{|Ij | | j = 1, . . . ,m} ≤ N+1 = ρ−1.
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Then

‖Ax‖2 = ‖
∑N

i=0Aixi‖2 =
∑m

j=1 |
∑N

i=0 e
T
j Aixi|2 =

∑m
j=1 |

∑
i∈Ij e

T
j Aixi|2

≤
∑m

j=1

(
|Ij |
∑

i∈Ij |e
T
j Aixi|2

)
≤ χ

∑m
j=1

∑
i∈Ij |e

T
j Aixi|2

= χ
∑m

j=1

∑N
i=0 |eTj Aixi|2 = χ

∑N
i=0 ‖Aixi‖2.

That is, A∗A � diag(χA∗0A0, · · · , χA∗NAN ). Such an improvement has been

considered in Chatzipanagiotis et al. (2015). It is straightforward to incorporate

the improvement into ALM-DQA-mod by simply replacing Ei = ρ−1A∗iAi in

(4.20) by χA∗iAi for each i = 0, 1, . . . , N.

With the derivation of the ALM-DQA-mod as an augmented Lagrangian

method with its subproblems solved by a specially chosen proximal gradient

method, we can leverage on this viewpoint to design an accelerated variant of this

method. Specifically, we can improve the efficiency in solving the subproblems

by using an inexact accelerated proximal gradient (iAPG) method, and we will

also use a proximal term based on the linear operator (4.12), which is typically

less conservative than the term σ
2 ‖x− x

k‖T̂ used in the DQA method.
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ALM-iAPG. Given σ > 0, y0
0 ∈ Y0 and x0 ∈ X . Let {εk} be a given summable

sequence of nonnegative numbers. Perform the following steps in each iteration.

Step 1. Starting with x̂0 = x̄0 = xk, t0 = 1, iterate the following step for

s = 0, 1, . . . until convergence:

• Compute x̂s+1 ≈ argmin
{
Lσ(x; yk0 ) + σ

2 ‖x − x̄s‖2T | xi ∈ Fi, i =

0, 1, . . . , N
}
. As the problem is separable, one can compute in parallel

for i = 0, 1, . . . , N ,

x̂s+1
i ≈ argmin

{
θi(xi) + 1

2〈xi, Gixi〉+ 〈xi, ḡsi 〉 | xi ∈ Fi
}
, (4.25)

where Gi = Qi +σJi, ḡsi = Qix̄si + ci +σA∗i (Ax̄si − b0−σ−1yk0 )−Gix̄si .

• Compute ts+1 = (1 +
√

1 + 4t2s)/2, βs+1 = (ts − 1)/ts+1.

• Compute x̄s+1 = (1 + βs+1)x̂s+1 − βs+1x̂
s.

At termination, set xk+1 = x̂s+1.

Step 2. yk+1
0 = yk0 + τσ(b0 −Axk+1), where τ ∈ (0, 2) is the steplength.

4.2.3 Numerical performance of sPALM and ALM-DQA-mod

In this subsection, we compare the performance of the sPALM and ALM-DQA-

mod algorithms for solving several linear and quadratic test instances. The

detailed description of the datasets is given in Section 4.4. We also report the

number of constraints and variables of the instances in the table. For all the

instances, we have m1 = m2 = ... = mN and n1 = n2 = ... = nN . Hence we

denote them as mi and ni respectively.

Table 4.1 compares the performance of the two solvers sPALM and ALM-DQA-

mod for the primal problem (PBA-P) through (4.10) against that of the solver

sGS-ADMM for the dual problem (PBA-D). The details of the dual approach

will be presented in the next section. Here, we could observe that sPALM and

ALM-DQA-mod always require much longer runtime to achieve the same accu-

racy level in the relative KKT residual when compare to sGS-ADMM, although

the former algorithms generally take a smaller number of outer iterations. In
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addition, the ALM-DQA-mod algorithm is slightly slower than sPALM on the

whole though the difference is not too significant. Note that our preliminary

implementation of the algorithms is in Matlab which does not have a good

support for parallel computing. In a full scale implementation, one may try to

implement these algorithms on an appropriate parallel computing platform with

a good parallelization support. Nevertheless, the inferior performance of the two

primal approaches has motivated us to instead consider the dual approach of

designing an efficient algorithm for the dual problem (PBA-D).

sGS-ADMM sPALM ALM-DQA-mod

Data m0|mi n0|ni N Iter Time(s) Iter Time (s) Iter Time (s)

qp-rand-m1-n20-N10-t1 1 | 1 20 | 20 10 321 0.50 153 8.43 12 15.62

qp-rand-m50-n80-N10-t1 50 | 50 80 | 80 10 421 0.64 268 59.88 44 192.17

qp-rand-m10-n20-N10-t2 10 | 10 20 | 20 10 1501 1.20 2971 208.56 54 137.83

qp-rand-m50-n80-N10-t2 50 | 50 80 | 80 10 141 0.20 92 19.20 32 150.32

tripart1 2096 | 192 2096 | 2096 16 1981 3.01 3880 1212.86 1422 1113.26

tripart2 8432 | 768 8432 | 8432 16 6771 51.65 5000 6369.20 1610 5723.31

qp-tripart1 2096 | 192 2096 | 2096 16 653 1.44 308 94.60 114 202.45

qp-tripart2 8432 | 768 8432 | 8432 16 971 9.79 347 419.16 124 1043.54

qp-pds1 87 | 126 372 | 372 11 971 0.99 538 49.18 535 79.24

qp-SDC-r100-c50-l100-p1000-t1 5000 | 150 0 | 5000 100 32 1.52 10 37.49 7 61.51

qp-SDC-r100-c50-l100-p1000-t2 5000 | 150 0 | 5000 100 31 1.34 9 34.22 2 33.40

qp-SDC-r100-c50-l100-p5000-t1 5000 | 150 0 | 5000 100 32 1.40 10 37.75 8 75.85

qp-SDC-r100-c50-l100-p5000-t2 5000 | 150 0 | 5000 100 31 1.37 9 34.50 3 36.63

qp-SDC-r100-c50-l100-p10000-t1 5000 | 150 0 | 5000 100 32 1.37 10 37.93 9 86.82

qp-SDC-r100-c50-l100-p10000-t2 5000 | 150 0 | 5000 100 31 1.35 9 34.78 3 37.30

qp-SDC-r100-c100-l100-p1000-t1 10000 | 200 0 | 10000 100 31 2.67 10 73.50 7 116.72

qp-SDC-r100-c100-l100-p1000-t2 10000 | 200 0 | 10000 100 31 2.67 9 68.08 2 63.91

qp-SDC-r100-c100-l100-p5000-t1 10000 | 200 0 | 10000 100 31 2.70 10 74.02 8 137.19

qp-SDC-r100-c100-l100-p5000-t2 10000 | 200 0 | 10000 100 31 2.63 9 68.04 2 64.26

qp-SDC-r100-c100-l100-p10000-t1 10000 | 200 0 | 10000 100 32 2.65 10 74.65 8 147.16

qp-SDC-r100-c100-l100-p10000-t2 10000 | 200 0 | 10000 100 31 2.63 9 67.66 3 71.18

qp-SDC-r100-c100-l200-p20000-t1 10000 | 200 0 | 10000 200 41 6.68 10 183.21 8 302.29

qp-SDC-r200-c100-l200-p20000-t1 20000 | 300 0 | 20000 200 34 11.96 10 360.48 7 513.61

qp-SDC-r200-c200-l200-p20000-t1 40000 | 400 0 | 40000 200 31 22.33 10 783.49 7 1068.04

M64-64 405 | 64 511 | 511 64 1991 3.16 5000 2874.88 625 1241.12
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sGS-ADMM sPALM ALM-DQA-mod

Data m0|mi n0|ni N Iter Time(s) Iter Time (s) Iter Time (s)

Table 4.1: Comparison of computational results between sGS-ADMM and two
variants of ALM for primal block angular problem. All the run result are ob-
tained using single thread. Here, “Iter” is the number of outer iterations
performed, and “Time” is the total runtime in seconds.

4.3 A semi-proximal symmetric Gauss-Seidel based

ADMM for the dual problem (PBA-D)

In the last section, we have designed the sPALM algorithm to solve the pri-

mal problem (PBA-P) directly. One can also attempt to solve (PBA-P) via

its dual problem (PBA-D). Based on the structure in (PBA-D), we find that it

is highly conducive for us to employ a symmetric Gauss-Seidel based ADMM

(sGS-ADMM) to solve the problem, as we shall see later when the details are

presented.

To derive the sGS-ADMM algorithm for solving (PBA-D), it is more conve-

nient for us to express (PBA-D) in a more compact form as follows:

min {p(s) + f(y1:N , w, s) + q(z) + g(y0, z) | F∗[y1:N ;w; s] + G∗[y0; z] = c},(4.26)

where y1:N = [y1; . . . ; yN ], and

F∗ :=
[
D∗, −Q, I

]
, G∗ :=

[
A∗, I

]
,

p(s) := θ∗(−s), f(y1:N , w, s) := −〈b1:N , y1:N 〉+
1

2
〈w, Qw〉+ δW(w),

q(z) := δ∗K(−z), g(y0, z) := −〈b0, y0〉.

Here we take W = Range(Q). This is a multi-block linearly constrained convex

programming problem for which the direct application of the classical ADMM is

not guaranteed to converge. Thus we adapt the recently developed sGS-ADMM

(Chen et al. 2017; Li et al. 2016) whose convergence is guaranteed to solve the
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dual problem (PBA-D).

Given a positive parameter σ, the augmented Lagrangian function for (PBA-

D) is given by

Lσ(y, w, s, z;x) = p(s) + f(y1:N , w, s) + q(z) + g(y0, z)+

σ
2 ‖F

∗[y1:N ;w; s] + G∗[y0; z]− c+ 1
σx‖

2 − 1
2σ‖x‖

2

=
∑N

i=0 θ
∗
i (−si) + δ∗Ki

(−zi) + 1
2〈wi, Qiwi〉 − 〈bi, yi〉

+σ
2 ‖ − Q0w0 +A∗0y0 + s0 + z0 − c0 + σ−1x0‖2 − 1

2σ‖x0‖2.

+
∑N

i=1
σ
2 ‖ − Qiwi +A∗i y0 +D∗i yi + si + zi − ci + σ−1xi‖2 − 1

2σ‖xi‖
2.

Now to develop the sGS-ADMM, we need to analyze the block structure of

the quadratic terms in Lσ(y, w, s, z;x) corresponding the blocks [y1:N ;w; s] and

[y0; z], which are respectively given as follows:

FF∗ =


DD∗ −DQ D

−QD∗ Q2 −Q

D∗ −Q I



=


0 −DQ D

0 0 −Q

0 0 0


︸ ︷︷ ︸

UF

+


DD∗ 0 0

0 Q2 0

0 0 I


︸ ︷︷ ︸

DF

+ U∗F

GG∗ =

 AA∗ A
A∗ I

 =

 0 A

0 0


︸ ︷︷ ︸

UG

+

 AA∗ 0

0 I


︸ ︷︷ ︸

DG

+ U∗G .

Based on the above (symmetric Gauss-Seidel) decompositions, we define the fol-

lowing positive semidefinite linear operators associated with the decompositions:

sGS(FF∗) = U∗FD−1
F UF , sGS(GG∗) = U∗GD−1

G UG . (4.27)

Note that here we view Q as a linear operator defined on W and because we
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take W = Range(Q), Q2 is positive definite on W and hence DF is invertible.

Since A is assumed to have full row-rank, DG is also invertible.

Given the current iterate (yk, sk, wk, zk, xk), the basic template of the sGS-

ADMM for (4.26) at the k-th iteration is given as follows.

Step 1. Compute

(yk+1
1:N , w

k+1, sk+1) = argminy1:N ,w,s


p(s) + f(y1:N , w, s)

+σ
2 ‖F

∗[y1:N ;w; s] + G∗[yk0 ; zk]− c+ 1
σx

k‖2

+σ
2 ‖[y1:N ;w; s]− [yk1:N ;wk; sk]‖2sGS(FF∗)

 .

Step 2. Compute

(yk+1
0 , zk+1) = argminy0,z


q(z) + g(y0, z)

+σ
2 ‖F

∗[yk+1
1:N ;wk+1; sk+1] + G∗[y0; z]− c+ 1

σx
k‖2

+σ
2 ‖[y0; z]− [yk0 ; zk]‖2sGS(GG∗)


.

Step 3. Compute xk+1 = xk + τσ(F∗[yk+1
1:N ;wk+1; sk+1] + G∗[yk+1

0 ; zk+1] − c),

where τ ∈ (0, 1+
√

5
2 ) is the steplength.

By using the sGS-decomposition theorem in Li et al. (2018a), we can show

that the computation in Step 1 can be done by updating the blocks (y1:N , w, s)

in a symmetric Gauss-Seidel fashion. Similarly, the computation in Step 2 can

be done by updating the blocks (y0, z) in a symmetric Gauss-Seidel fashion.

With the above preparations, we can now give the detailed description of the

sGS-ADMM algorithm for solving (4.9).

sGS-ADMM on (4.9). Given (y0, w0, s0, z0, x0) ∈ Y×W×X×X×X , perform

the following steps in each iteration. Note that for notational convenience,

we define D0 = 0 in the algorithm.

Step 1a. Let gk = A∗yk0 + zk − c+ σ−1xk. Compute

(ȳk1 , . . . , ȳ
k
N ) = argminy1,...,yN

{
Lσ
(
(yk0 , y1, . . . , yN ), wk, sk, zk;xk

)}
,
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which can be done in parallel by computing for i = 1, . . . , N ,

ȳki = argminyi

{
− 〈bi, yi〉+

σ

2
‖ − Qiwki +D∗i yi + ski + gki ‖2

}
.

Specifically, for i = 1, . . . , N , ȳki is the solution of the following linear

system:

DiD∗i yi = σ−1bi −Di(−Qiwki + ski + gki ). (4.28)

Step 1b Compute w̄k = argmin
{
Lσ
(
(yk0 , ȳ

k
1 , . . . , ȳ

k
N ), w, sk, zk;xk

)}
by comput-

ing in parallel for i = 0, 1, . . . , N,

w̄ki = argminwi

{1

2
〈wi, Qiwi〉+

σ

2
‖ − Qiwi +D∗i ȳki + ski + gki ‖2 | wi ∈ Range(Qi)

}
.

It is important to note that w̄ki is only needed theoretically but not needed

explicitly in practice. This is because in practical computation, only Qiw̄ki

is needed. To compute Qiw̄ki , we first compute the solution w̃ki of the linear

system below:

(I + σQi)w̃i = σ(D∗i ȳki + ski + gki ). (4.29)

Then we can compute Qiw̄ki = Qiw̃ki . The precise mechanism as to why

the latter equality is valid will be given in the remark after the presentation

of this algorithm.

Step 1c. Compute

(sk+1
0 , . . . , sk+1

N ) = argmins0,...,sN

{
Lσ((yk0 , ȳ

k
1 , . . . , ȳ

k
N ), w̄k, (s0, s1, . . . , sN ), zk;xk)

}
,

which can be done in parallel by computing for i = 0, 1, . . . , N,

sk+1
i = argminyi

{
θ∗i (−si) +

σ

2
‖ − Qiw̄ki +D∗i ȳki + si + gki ‖2

}
= −Proxθ∗i /σ(−Qiw̄ki +D∗i ȳki + gki )

=
1

σ
Proxσθi

(
σ(−Qiw̄ki +D∗i ȳki + gki )

)
− (−Qiw̄ki +D∗i ȳki + gki ).
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Step 1d Compute wk+1 = argmin
{
Lσ
(
(yk0 , ȳ

k
1 , . . . , ȳ

k
N ), w, sk+1, zk;xk

)}
by com-

puting in parallel for i = 0, 1, . . . , N,

wk+1
i = argminwi


1
2〈wi, Qiwi〉

+σ
2 ‖ − Qiwi +D∗i ȳki + sk+1

i + gki ‖2

∣∣∣wi ∈ Range(Qi)

 .

Note that the same remark in Step 1b is applicable here.

Step 1e Compute

(yk+1
1 , . . . , yk+1

N ) = argminy1,...,yN

{
Lσ
(
(yk0 , y1, . . . , yN ), wk+1, sk+1, zk;xk

)}
,

which can be done in parallel by computing for i = 1, . . . , N ,

yk+1
i = argminyi

{
− 〈bi, yi〉+

σ

2
‖ − Qiwk+1

i +D∗i yi + sk+1
i + gki ‖2

}
.

Step 2a. Let hk = −Qwk+1 +D∗yk+1 + sk+1 − c+ σ−1xk. Compute

ȳk0 = argminy0

{
Lσ
(
(y0, y

k+1
1 , . . . , yk+1

N ), wk+1, sk+1, zk;xk
)}

= argminy0

{
− 〈b0, y0〉+

σ

2
‖A∗0y0 + zk0 + hk0‖2 +

N∑
i=1

σ

2
‖A∗i y0 + zki + hki ‖2

}
.

Specifically, ȳk0 is the solution to the following linear system of equations:

( N∑
i=0

AiA∗i
)
y0 = σ−1b0 −

N∑
i=0

Ai(zki + hki ). (4.30)

Step 2b Compute zk+1 = argmin
{
Lσ
(
(ȳk0 , y

k+1
1 , . . . , yk+1

N ), wk+1, sk+1, z;xk
)}

by computing in parallel for i = 0, 1, . . . , N ,

zk+1
i = argminzi

{
δ∗Ki

(−zi) +
σ

2
‖A∗i ȳk0 + zi + hki ‖2

}
= −Proxσ−1δ∗Ki

(A∗i ȳk0 + hki )

=
1

σ
ΠKi

(
σ(A∗i ȳk0 + hki )

)
− (A∗i ȳk0 + hki ).
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Step 2c Compute

yk+1
0 = argminy0

{
Lσ
(
(y0, y

k+1
1 , . . . , yk+1

N ), wk+1, sk+1, zk+1;xk
)}

= argminy0

{
− 〈b0, y0〉+

σ

2
‖A∗0y0 + zk+1

0 + hk0‖2 +
N∑
i=1

σ

2
‖A∗i y0 + zk+1

i + hki ‖2
}
.

Note that the computation in Step 2a is applicable here.

Step 3 Compute

xk+1 = xk + τσ(−Qwk+1 + B∗yk+1 + sk+1 + zk+1 − c),

where τ ∈ (0, 1+
√

5
2 ) is the steplength.

Now we make some important remarks concerning the computations in sGS-

ADMM.

1. If the term θ ≡ 0 in Step 1c, then this step is vacuous, and Step 1b and

Step 1d are identical. Hence the computation needs only to be done for

Step 1d. Hence Step 1 only consists of Step 1a, 1d, and 1e.

2. If Q ≡ 0, then Step 1b and 1d are vacuous. Therefore Step 1 only consists

of Step 1a, 1c, and 1e.

3. The computation in Step 1d can be omitted if the quantity w̄ki computed in

Step 1b is already a sufficiently good approximate solution to the current

subproblem. More precisely, if the approximation w̄ki for wk+1
i satisfies the

admissible accuracy condition required in the inexact sGS-ADMM designed

in Chen et al. (2017), then we can just set wk+1
i = w̄ki instead of using the

exact solution to the current subproblem. Similar remark is also applicable

to the computation in Step 1e and Step 2c.

4. The sGS-ADMM in fact has the flexibility of allowing for inexact compu-

tations as already shown in Chen et al. (2017). While the computation in

Step 1a and 1e (similarly for Step 1b and 1d, Step 2a and 2c) are assumed

to be done exactly (up to machine precision), the computation can in fact
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be done inexactly subject to a certain predefined accuracy requirement on

the computed approximate solution. Thus iterative methods such as the

preconditioned conjugate gradient (PCG) method can be used to solve the

linear systems when their dimensions are too large. We omit the details

here for the sake of brevity.

5. In solving the linear system (4.30), the m0×m0 symmetric positive definite

matrix
∑N

i=0AiA∗i is fixed, and one can pre-compute the matrix if it can

be stored in the memory and its Cholesky factorization can be computed

at a reasonable cost. Then in each sGS-ADMM iteration, ȳk0 and yk+1
0 can

be computed cheaply by solving triangular linear systems. In the event

when computing the coefficient matrix or its Cholesky factorization is out

of reach, one can use a PCG method to solve the linear system. In that

case, one can implement the computation of the matrix-vector product in

parallel by computing AiA∗i y0 in parallel for i = 0, 1, . . . , N , given any

y0. Note that when the PCG method is employed, the use of the inexact

sGS-ADMM framework just mentioned above will become necessary.

The same remark above also applies to the linear system (4.28) for each

i = 1, . . . , N .

For the multi-commodity flow problem which we will consider later in the

numerical experiments, we note that the linear system in (4.30) has a

very simple coefficient matrix given by
∑N

i=0AiA∗i = (N + 1)Im, and the

coefficient matrix DiD∗i in (4.28) is equal to the Laplacian matrix of the

network graph for all i = 1, . . . , N. Thus both (4.30) and (4.28) can be

solved efficiently by a direct solver.

6. In Step 1b, we claimed that Qiw̄ki = Qiw̃ki . Here we show why the re-

sult holds. For simplicity, we assume that Qi is a symmetric positive

semidefinite matrix rather than a linear operator. Consider the spectral

decomposition Qi = UDUT , where D ∈ <r×r is a diagonal matrix whose

diagonal elements are the positive eigenvalues of Qi and the columns of

U ∈ <mi×r are their corresponding orthonormal set of eigenvectors. We

let V ∈ <mi×(mi−r) be the matrix whose columns form an orthonormal set
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of eigvectors of Qi correspond to the zero eigenvalues. With this decom-

position and the parameterization wi = Uξ (because wi ∈ Range(Qi)), the

minimization for w̄ki is equivalent to the following:

argmin
{1

2
〈ξ, Dξ〉+

σ

2
‖Dξ − UT g‖2 +

σ

2
‖V T g‖2 | ξ ∈ <r

}
, (4.31)

where we have set g = zki + hki for convenience. Now from solving (4.29),

we get that

(I + σD)UT w̃ki = σUT g, V T w̃ki = σV T g.

This show that UT w̃ki is the unique solution to the problem (4.31). Hence

w̄ki = U(UT w̃ki ) is the unique solution to (4.29). From here, we have that

Qiw̄ki = UDUT (UUT w̃ki ) = UDUT w̃ki = Qiw̃ki .

4.3.1 Convergence theorems of sGS-ADMM

The convergence theorem of sGS-ADMM can be established directly by using

known results from Chen et al. (2017) and Zhang et al. (2018). Here we present

the global convergence result and the linear rate of convergence for the conve-

nience of reader.

In order to state the convergence theorems, we need some definitions.

Definition 4.3.1. Let F : X ⇒ Y be a multivalued mapping and denote its

inverse by F−1. The graph of multivalued function F is defined by gphF :=

{(x, y) ∈ X × Y | y ∈ F(x)}.

Denote u := (y, w, s, z, x) ∈ U := Y ×W ×X ×X ×X . The KKT mapping

R : U → U of (4.4) is defined by

R(u) :=



Bx− b

−Qw + B∗y + s+ z − c

Qw −Qx

x− Proxθ(x− s)

x−ΠK(x− z)


. (4.32)
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Denote the set of KKT points by Ω̄. The KKT mapping R is said to be

metrically subregular at (ū, 0) ∈ gphR with modulus η > 0 if there exists a

scalar ρ > 0 such that

dist(u, Ω̄) ≤ η‖R(u)‖ ∀u ∈ {u ∈ U : ‖u− ū‖ ≤ ρ}.

Now we are ready to present the convergence theorem of sGS-ADMM.

Theorem 4.2. Let {uk := (yk, wk, sk, zk;xk)} be the sequence generated by

sGS-ADMM. Then, we have the following results.

(a) The sequence {(yk, wk, sk, zk)} converges to an optimal solution of the com-

pact form (4.6) of the dual problem (PBA-D), and the sequence {xk} converges

to an optimal solution of the compact form (4.4) of the primal problem (PBA).

(b) Suppose that the sequence {uk} converges to a KKT point ū := (ȳk, w̄k, s̄k, z̄k, x̄k)

and the KKT mapping R is metrically subregular at (ū, 0) ∈ gphR. Then the

sequence {uk} is linearly convergent to ū.

Proof. (a) The global convergence result follows from that in Chen et al.

(2017). (b) The result follows directly by applying the convergence result in

(Zhang et al., 2018, Proposition 4.1) (which slightly improves an earlier result

in Han et al. (2017)) to the compact formulation (4.6) of (PBA-D). �

Remark 3. By Theorem 1 and Remark 1 in Li et al. (2018b), we know that

when (PBA-P) is a convex programming problem where for each i = 0, . . . , N , θi

is piecewise linear-quadratic or strongly convex, and Ki is polyhedral, then R is

metrically subregular at (ū, 0) ∈ gphR for any KKT point ū. Thus sGS-ADMM

converges locally at a linear rate to an optimal solution of (PBA-P) and (PBA-

D) under the previous conditions on θi and Ki. In particular, for the special

case of a primal block angular quadratic programming problem where θi ≡ 0

and Ki = Rni
+ for all i, we know that sGS-ADMM is locally linearly convergent,

which can even be proven to converge globally linearly.
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4.3.2 Computational cost

Now we would discuss the main computational cost of sGS-ADMM. We could

observe that the most time-consuming computations are in solving large linear

system of equations in Step 1a, 1b, 1d, 1e, 2a, and 2c.

In general, suppose for every iteration we need to solve a d× d linear system

of equations:

Mx = r. (4.33)

Assuming that M is stored, then we can compute its Cholesky factorization at

the cost of O(d3) operations, which needs only to be done once at the very be-

ginning of the algorithm. After that, whenever we need to solve the equation, we

just need to compute the right-hand-side vector r and solve two d× d triangular

systems of linear equations at the cost of O(d2) operations.

We can roughly summarize the costs incurred in solving Mx = r as follows:

(C1) Cost for computing the coefficient matrix M (only once at the beginning

of algorithm);

(C2) Cost for computing Cholesky factorization of M (only once at the begin-

ning of algorithm);

(C3) Cost for computing right-hand-side vector r;

(C4) Cost for solving two triangular systems of linear equations.

The computational cost C1, C2, C3, C4 above for each of the equations in Step

1a, 1b, 1d, 1e, 2a, and 2c are tabulated in Table 4.2.

Step C1 (once) C2 (once) C3 (each iteration) C4 (each iteration)

1a and 1e

(i = 1, . . . , N)
O(m2

ini) O(m3
i ) O(n2

i +mini) O(m2
i )

1b and 1d

(i = 1, . . . , N)
O(n2

i ) O(n3
i ) O(mini) O(n2

i )
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2a and 2c O(m2
0n0) O(m3

0) O(m0n0) O(m2
0)

Table 4.2: Computational cost for solving the linear systems of equations in each
of the steps.

4.4 Numerical experiments

In this section, we evaluate the performance of the algorithm we have designed for

solving the problem (PBA). We conduct numerical experiments on three major

types of primal block angular model, including linear, quadratic, and nonlinear

problems. Apart from randomly generated datasets, we would demonstrate that

our algorithms can be quite efficient in solving realistic problems encountered in

the literature.

4.4.1 Stopping condition

Based on the optimality conditions in (4.8), we measure the accuracy of a com-

puted solution by the following relative residuals:

η = max{ηP , ηD, ηQ, ηK , ηS},

where

ηP =
‖Bx− b‖
1 + ‖b‖

, ηD =
‖ − Qw + B∗y + s+ z − c‖

1 + ‖c‖
, ηQ =

‖Qw −Qx‖
1 + ‖Q‖

,

ηK =
‖x−ΠK(x− z)‖

1 + ‖x‖+ ‖z‖
, ηS =

‖x− Proxθ(x− s)‖
1 + ‖x‖+ ‖s‖

.

We terminate our algorithm when η ≤ 10−5.

4.4.2 Block angular problems with linear objective functions

In this subsection, we perform numerical experiments on minimization problems

having linear objective functions and primal block angular constraints. Mul-

ticommodity flow (MCF) problems are one of the main representative in this
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class of problems. It is a model to solve the routing problem of multiple com-

modities throughout a network from a set of supply nodes to a set of demand

nodes. These problems usually exhibit primal block angular structures due to

the network nature in the constraints.

Consider a connected network graph (N , E) with m nodes and n = |E| arcs

for which N commodities must be transported through the network. We assume

that each commodity has a single source-sink pair (sk, tk) and we are given

the flow rk that must be transported from sk to tk, for k = 1, . . . , N . Let

M ∈ Rm×|E| be node-arc incidence matrix of the graph. Then the MCF problem

can be expressed in the form given in (PBA-D) with the following data:

K0 = {x0 ∈ Rn | 0 ≤ x0 ≤ u}, Ki = Rn+, i = 1, . . . , N,

Qi = 0, θi(·) = 0, ∀i = 0, 1, ..., N,

A0 = In, Ai = −In, ∀i = 1, ..., N,

D1 = D2 = · · · = DN = M is the node-arc incidence matrix.

For this problem, xi denotes the flow of the i-th commodity (i = 1, . . . , N)

through the network, x0 is the total flow, and u is a given upper bound vector

on the total flow.

Description of datasets

Following Castro and Cuesta (2011), the datasets we used are as follows.

tripart and gridgen: These are five multicommodity instances obtained with

the Tripart and Gridgen generators. They could be downloaded from

http://www-eio.upc.es/~jcastro/mmcnf_data.html.

pds: The PDS problems come from a model of transporting patients away from

a place of military conflict. It could be downloaded from

http://www.di.unipi.it/optimize/Data/MMCF.html#Pds.

M{n}-{k}: These are the problems generated by the Mnetgen generator, which

is one of the most famous random generator of Multicommodity Min Cost
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Flow instances. Here n is the number of nodes in the network and k is

the number of commodity. It could be downloaded from http://www.di.

unipi.it/optimize/Data/MMCF.html#MNetGen.

Numerical results

In Table 4.3, we compare our sGS-ADMM algorithm against the solvers Gurobi

and BlockIP. We should emphasize that Gurobi is a state-of-the-art solver for

solving general linear and quadratic programming problems. Although it is

not a specialized algorithm for primal block angular problems, it has been so

powerful in solving sparse general linear and convex quadratic programming

problems that it should be used as the benchmark for any newly developed

algorithm. On the other hand, BlockIP (Castro, 2016) is an efficient interior-

point algorithm specially designed for solving primal block angular problems,

especially those arising from MCF problems. As reported in Castro (2016), it

has been successful in solving many large scale instances of primal block angular

LP and QP problems.

In the following numerical experiments, we employ Gurobi directly on the

compact formulation (4.4). To be more specific, we input B as a general sparse

matrix. The feasibility and objective gap tolerance is set to be 1e-5, and the

number of threads is set to be 1. All the other parameters remain as default

setting. Similarly for BlockIP, all the three tolerances (primal and dual feasibil-

ity, and relative objective gap) are set to be 1e-5 for consistency. Its maximum

number of iteration is set to be 500.

sGS-ADMM Gurobi BlockIP

Data m0|mi n0|ni N Iter Time(s) Iter Time (s) Iter Time (s)

tripart1 2096 | 192 2096 | 2096 16 1981 3.01 5155 0.78 48 1.23

tripart2 8432 | 768 8432 | 8432 16 6771 51.65 42070 42.81 67 10.32

tripart3 16380 | 1200 16380 | 16380 20 5561 104.96 85390 189.37 81 48.70

tripart4 24815 | 1050 24815 | 24815 35 8581 343.32 246340 1685.50 115 139.36

gridgen1 3072 | 1025 3072 | 3072 320 7541 409.75 497709 8039.40 203 1589.04

pds15 1812 | 2125 7756 | 7756 11 2893 22.60 8545 1.01 81 12.19

pds30 3491 | 4223 16148 | 16148 11 4471 111.49 27645 4.79 110 51.66
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sGS-ADMM Gurobi BlockIP

Data m0|mi n0|ni N Iter Time(s) Iter Time (s) Iter Time (s)

pds60 6778 | 8423 33388 | 33388 11 7719 465.06 70168 17.57 145 403.23

pds90 8777 | 12186 46161 | 46161 11 5315 479.59 100858 25.18 162 822.45

M64-64 405 | 64 511 | 511 64 1991 3.16 7601 0.77 51 0.85

M128-64 936 | 128 1171 | 1171 64 2601 7.32 18108 3.93 52 3.15

M128-128 979 | 128 1204 | 1204 128 3801 28.89 32736 7.24 127 11.75

M256-256 1802 | 256 2204 | 2204 256 6821 225.31 103561 18.53 97 89.92

M512-64 3853 | 512 4768 | 4768 64 2631 45.77 48235 8.76 72 48.44

M512-128 3882 | 512 4786 | 4786 128 3581 137.23 87659 17.96 97 144.77

M512-512 707 | 512 1797 | 1797 512 7021 373.58 199260 16.79 146 308.95

Table 4.3: Comparison of computational results between sGS-ADMM, Gurobi,
and BlockIP for linear primal block angular problems. All the results are ob-
tained using a single thread. ‘Iter’ under the column for Gurobi means the
total number of simplex iterations.

From Table 4.3, we observe that Gurobi is the fastest to solve 11 out of 16 in-

stances. Gurobi is extremely fast in solving the pdsxx and Mxxx-xx problems but

have difficulty in solving tripart4 and gridgen1 efficiently. On the other hand,

sGS-ADMM and BlockIP are highly efficient in solving the latter instances. On

the other hand, BlockIP is the fastest when solving the tripart2,3,4 instances

while sGS-ADMM is the fastest in solving the gridgen1 and M512-128 instances.

Our sGS-ADMM solver outperforms Gurobi when the instance is both hard

and huge, for example, tripart4 and gridgen1. For the latter instance, it is

in fact the fastest solver. Intuitively, we can expect sGS-ADMM to perform

stablely as the scale of the data increases. We also noticed that BlockIP is quite

sensitive to the practical setting of the upper bound on the unbounded variables.

For example, setting “9e6” and “9e8” as the upper bounds for the unbounded

variables can lead to a significant difference in the number of iterations.
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4.4.3 Block angular problems with convex quadratic objective

functions

In this subsection, we perform numerical experiments on optimization prob-

lems having convex quadratic objective functions and primal block angular con-

straints.

One of the main class of this type of problem is again from the multicommodity

flow problem. Following Castro (2016), we add in the quadratic objective term,

Qi = 0.1I, ∀i = 0, ..., N . The corresponding datasets start with a prefix "qp-",

including tripart, gridgen and pds.

Another main class of quadratic primal block angular problems arises in the

field of statistical disclosure control. Castro (2005) studied the controlled tabular

adjustment (CTA) to find a closest, perturbed, yet safe table given a three-

dimensional table for which the content need to be protected. In particular, we

have

Qi = I, θi(·) = 0, i = 0, . . . , N,

A0 = I, Ai = −I, ∀i = 1, ..., N,

D1 = D2 = · · · = DN is a node-arc incidence matrix

and Ki (i = 0, 1, . . . , N) is the same as in section 4.4.2.

Description of datasets

The datasets we used are as follows.

rand: These instances are randomly generated sparse problems. Here we gen-

erated two types of problems.

• Type 1 problem (with suffix -t1) has diagonal quadratic objective

cost, i.e. Qi is a random diagonal matrix given by

spdiags(rand(n i,1),0,n i,n i).

• Type 2 problem (with suffix -t2) does not necessarily have diagonal
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quadratic objective cost. In this case Qi is still very sparse but re-

mained to be positive semidefinite. We use the following routine to

generate Qi for every i = 0, 1, ..., N :

tmp=sprandn(n i,n i,0.1); Qi = tmp*tmp’.

For both types of problems, we generate Ai and Di similarly for i = 0, ..., N

using Matlab command sprandn with density 0.5 and 0.3 respectively.

Note that by convention we have D0 = 0.

L2CTA3D: This is an extra large instance (with a total of 10M variables and

210K constraints) provided in http://www-eio.upc.es/~jcastro/huge_

sdc_3D.html.

SDC: These are some of the CTA instances we generated using the gener-

ator provided by J. Castro at http://www-eio.upc.es/~jcastro/CTA_

3Dtables.html.

Numerical results

As in the last subsection, we compare our sGS-ADMM algorithm against Gurobi

and BlockIP solver in Table 4.4.

sGS-ADMM Gurobi BlockIP

Data m0|mi n0|ni N Iter Time(s) Iter Time (s) Iter Time (s)

qp-rand-m50-n80-N10-t1 50 | 50 80 | 80 10 421 0.64 14 0.28 29 0.13

qp-rand-m1000-n1500-N10-t1 1000 | 1000 1500 | 1500 10 748 57.67 15 1641.91 39 360.12

qp-rand-m100-n200-N100-t1 100 | 100 200 | 200 100 331 3.81 18 14.09 54 8.51

qp-rand-m1000-n1500-N100-t1 1000 | 1000 1500 | 1500 100 361 312.61 18 17175.81 / /

qp-rand-m100-n200-N150-t1 100 | 100 200 | 200 150 341 6.56 19 20.94 58 60.17

qp-rand-m1000-n1500-N150-t1 1000 | 1000 1500 | 1500 150 448 559.20 17 36591.57 / /

qp-rand-m10-n20-N10-t2 10 | 10 20 | 20 10 1501 1.20 14 0.25 * *

qp-rand-m50-n80-N10-t2 50 | 50 80 | 80 10 141 0.20 14 0.44 * *

qp-rand-m1000-n1500-N10-t2 1000 | 1000 1500 | 1500 10 131 50.81 12 6916.43 * *

qp-rand-m100-n200-N100-t2 100 | 100 200 | 200 100 81 3.61 14 28.40 * *

qp-rand-m1000-n1500-N100-t2 1000 | 1000 1500 | 1500 100 220 576.62 13 8823.43 * *

qp-rand-m100-n200-N150-t2 100 | 100 200 | 200 150 74 5.36 15 45.91 * *

qp-rand-m1000-n1500-N150-t2 1000 | 1000 1500 | 1500 150 252 930.81 13 15299.33 * *
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sGS-ADMM Gurobi BlockIP

Data m0|mi n0|ni N Iter Time(s) Iter Time (s) Iter Time (s)

qp-tripart1 2096 | 192 2096 | 2096 16 653 1.44 15 1.17 24 0.22

qp-tripart2 8432 | 768 8432 | 8432 16 971 9.79 19 6.66 38 1.36

qp-tripart3 16380 | 1200 16380 | 16380 20 1034 27.09 22 30.08 55 6.78

qp-tripart4 24815 | 1050 24815 | 24815 35 5871 413.35 22 238.92 67 17.46

qp-gridgen1 3072 | 1025 3072 | 3072 320 4081 308.05 40 2143.19 208 1197.24

qp-pds15 1812 | 2125 7756 | 7756 11 1110 10.40 48 14.49 90 11.56

qp-pds30 3491 | 4223 16148 | 16148 11 1941 57.58 53 59.95 113 44.32

qp-pds60 6778 | 8423 33388 | 33388 11 4685 337.13 58 226.56 134 192.85

qp-pds90 8777 | 12186 46161 | 46161 11 3021 318.43 58 402.51 165 547.32

qp-L2CTA3D 100x100x1000 5000 110000 | 1000 0 | 100000 100 21 31.24 8 6696.47 7 22.72

qp-SDC-r100-c50-l100-p1000-t1 5000 | 150 0 | 5000 100 32 1.52 8 101.91 7 0.84

qp-SDC-r100-c50-l100-p1000-t2 5000 | 150 0 | 5000 100 31 1.34 6 96.47 6 0.80

qp-SDC-r100-c50-l100-p5000-t1 5000 | 150 0 | 5000 100 32 1.40 8 100.84 8 0.93

qp-SDC-r100-c50-l100-p5000-t2 5000 | 150 0 | 5000 100 31 1.37 6 106.82 6 0.79

qp-SDC-r100-c50-l100-p10000-t1 5000 | 150 0 | 5000 100 32 1.37 8 97.74 8 0.94

qp-SDC-r100-c50-l100-p10000-t2 5000 | 150 0 | 5000 100 31 1.35 6 102.74 6 0.77

qp-SDC-r100-c100-l100-p1000-t1 10000 | 200 0 | 10000 100 31 2.67 8 810.58 7 2.16

qp-SDC-r100-c100-l100-p1000-t2 10000 | 200 0 | 10000 100 31 2.67 6 1107.95 6 2.10

qp-SDC-r100-c100-l100-p5000-t1 10000 | 200 0 | 10000 100 31 2.70 8 1266.75 7 2.12

qp-SDC-r100-c100-l100-p5000-t2 10000 | 200 0 | 10000 100 31 2.63 6 751.24 6 2.02

qp-SDC-r100-c100-l100-p10000-t1 10000 | 200 0 | 10000 100 32 2.65 8 779.24 8 2.42

qp-SDC-r100-c100-l100-p10000-t2 10000 | 200 0 | 10000 100 31 2.63 6 810.03 6 1.98

qp-SDC-r100-c100-l200-p20000-t1 10000 | 200 0 | 10000 200 41 6.68 8 1418.31 8 4.87

qp-SDC-r200-c100-l200-p20000-t1 20000 | 300 0 | 20000 200 34 11.96 8 5194.45 8 9.47

qp-SDC-r200-c200-l200-p20000-t1 40000 | 400 0 | 40000 200 31 22.33 8 53964.31 7 23.34

qp-SDC-r500-c50-l500-p50000-t1 25000 | 550 0 | 25000 500 41 43.36 8 11025.98 8 24.56

qp-SDC-r500-c500-l50-p5000-t1 250000 | 1000 0 | 250000 50 20 27.04 8 11360.16 / /

Table 4.4: Comparison of computational results between sGS-ADMM, Gurobi,
and BlockIP for quadratic primal block angular problems. All the results are
obtained using single thread. ‘Iter’ under the column for Gurobi means the
total number of barrier iterations. A ‘/’ under the column for BlockIP means
that the solver runs out of memory, and a ‘*’ means the solver is not compatible
to solve the problem.
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Table 4.4 shows that Gurobi is almost always slowest to solve the test instances

in this case, whereas our sGS-ADMM performs almost as efficiently as BlockIP

in solving these quadratic primal block angular problems. It is worth noting that

our sGS-ADMM method works very well on the large scale randomly generated

problems compared to BlockIP, because for these instances the matrices Ai and

Qi are no longer simple identity matrices for which the BlockIP solver can take

special advantage of. Also, BlockIP runs out of memory for three of the huge in-

stances qp-rand-m1000-n1500-N100-t1, qp-rand-m1000-n1500-N150-t1 and

qp-SDC-r500-c500-l50-p5000-t1.

It is also observed that BlockIP solver could not solve for the qp-rand-xxx-t2

problem because it is not designed to cater for solving problems with nondiagonal

quadratic objective cost. For these types of problem, our sGS-ADMM algorithm

can substantially outperform Gurobi, sometimes by a factor of more than 10.

4.4.4 Block angular problems with nonlinear convex objective

functions

In this subsection, we perform numerical experiments on optimization prob-

lems having nonlinear convex objective functions and primal block angular con-

straints. Nonlinear multicommodity flow problems usually arise in transporta-

tion and telecommunication. The two most commonly used nonlinear objective

functions are:

h(t) =


∑m

i=1 fKr(ti; capi), known as Kleinrock function;

∑m
i=1 fBPR(ti; capi, ri), known as BPR (Bureau of Public Roads) function,

where

fKr(α; c) =


α
c−α if 0 ≤ α < c,

+∞ otherwise,

fBPR(α; c, r) =


rα[1 +B(αc )β] if α ≥ 0,

+∞ otherwise.

The Kleinrock function is normally used to model delay in a telecommunication

problem; whereas the BPR function is mainly used to model congestion in a
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transportation problem. Here capi is the capacity of arc i, ri is the free flow

time of arc i, and β,B are two positive parameters.

Thus in our problem setting, we have

θ0(x0) = h(x0), θi(xi) = 0, ∀ i = 1, ..., N,

Qi = 0, ci = 0, ∀ i = 0, ..., N,

A0 = I, Ai = −I, ∀ i = 1, ..., N,

D1 = D2 = · · · = DN is a node-arc incidence matrix,

b0 = 0, bi = di ∀i = 1, ..., N for some demand di for each commodity i,

Ki =


[0, capi], for Kleinrock function;

Rni
+ , for BPR function.

Following Babonneau and Vial (2009), the datasets we used are the planar

and grid problems, which could be downloaded from http://www.di.unipi.

it/optimize/Data/MMCF.html#Plnr.

Remark 4. In Step 1c of the sGS-ADMM algorithm, we need to update sk+1
i

by

sk+1
i =

1

σ
Proxσθi

(
σ(−Qiw̄ki +D∗i ȳki + gki )

)
−
(
−Qiw̄ki +D∗i ȳki + gki

)
i = 0, 1, . . . , N.

To compute the proximal mapping for a given s:

Proxσθi(s) = arg min
{
g(t) := σθi(t) +

1

2
‖t− s‖2

}
,

we can use Newton’s method to solve the equation ∇g(t) = 0. In each sGS-

ADMM iteration, we warm-start Newton’s method by using the quantity already

computed in the previous iteration to generate ski .

Another point to note is that although sk+1
i is not computed exactly, the

convergence of the sGS-ADMM algorithm is not affected as long as sk+1
i is com-

puted to satisfy the admissible accuracy condition required in each iteration of

the inexact sGS-ADMM method developed in Chen et al. (2017).
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Numerical results

In this subsection, we compare our sGS-ADMM algorithm against BlockIP and

IPOPT. IPOPT is one of the state-of-the-art solvers for solving general nonlinear

programs. We use the Kleinrock function as our objective function here.

sGS-ADMM BlockIP IPOPT

Data m0|mi n0|ni N Iter Time(s) Iter Time(s) Iter Time (s)

grid1 80 | 24 80 | 80 50 591 0.66 28 0.13 76 3.10

grid3 360 | 99 360 | 360 50 381 0.53 41 1.60 86 21.30

grid5 840 | 224 840 | 840 100 581 1.95 - - 90 127.50

grid8 2400 | 624 2400 | 2400 500 4171 261.73 215 4568.28 51 5027.50

grid10 2400 | 624 2400 | 2400 2000 3432 893.98 221 36035.85 14 5340.39

planar30 150 | 29 150 | 150 92 431 0.44 93 1.59 90 7.55

planar80 440 | 79 440 | 440 543 1875 20.07 - - 430 1400.91

planar100 532 | 99 532 | 532 1085 2614 70.99 - - 117 1184.46

Table 4.5: Comparison of computational results between sGS-ADMM, BlockIP
and IPOPT for nonlinear primal block angular problem. A ‘-’ under the column
for BlockIP means that the solver encounters memory issue.

Table 4.5 shows that IPOPT is almost always the slowest to solve the test

instances but it is very robust in the sense that it is able to solve all the test

instances to the required accuracy. It is not surprising for it to perform less

efficiently since it is a general solver for nonlinear programs.

On the other hand, we observed that BlockIP runs into memory issue when

solving almost half of the instances. This may be due to the fact that BlockIP

uses a preconditioned conjugate gradient (PCG) method and Cholesky factor-

ization to solve the linear systems arising in each iteration of the interior-point

method. At some point of the iteration, the PCG method did not converge and

the algorithm switches to use a Cholesky factorization to solve the linear system,

which causes the out-of-memory error. Even when the PCG method works well,

it might still converge in almost 10 times slower than our algorithm.
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Chapter 5
On proximal augmented Lagrangian

based decomposition methods for

dual block angular convex composite

conic programming problems

Let X and Y be an n-dimensional and m-dimensional inner product spaces re-

spectively. Similarly Xi and Yi are ni-dimensional and mi-dimensional (i =

1, · · · , N) inner product spaces respectively. We consider the following convex

composite conic programming problem with the so called dual block angular

structure (DBA):

min θ(x) + 〈c, x〉+
∑N

i=1 θ̄i(x̄i) + 〈c̄i, x̄i〉

s.t.



A

B1 B̄1

B2 B̄2

...
. . .

BN B̄N





x

x̄1

...

x̄N


=



b

b̄1
...

b̄N


,

x ∈ K, x̄i ∈ Ki ⊂ Xi, ∀ i = 1, . . . , N,

(5.1)
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where b ∈ Y, c ∈ X , b̄i ∈ Yi and ci ∈ Xi (i = 1, . . . , N) are given data; A : X →

Y, Bi : X → Yi and B̄i : Xi → Yi are given linear maps; θ : X → (−∞,∞]

and θ̄i : Xi → (−∞,∞] (i = 1, . . . , N) are given proper closed convex functions;

K ⊂ X and Ki ⊂ Xi (i = 1, . . . , N) are given closed convex sets. In the above

problem, we allow the case where A is absent.

Let m̄ =
∑N

i=1mi and n̄ =
∑N

i=1 ni with ni being the dimension of Xi. Define

X̄ = X1 × · · · × XN , Ȳ = Y1 × · · · × YN , K̄ = K1 × · · · × KN ,

x̄ = [x̄1; . . . ; x̄N ] ∈ X̄ , c̄ = [c̄1; . . . ; c̄N ] ∈ X̄ , b̄ = [b̄1; . . . ; b̄N ] ∈ Ȳ,

B = [B1; . . . ;BN ], B̄ = diag(B̄1, . . . , B̄N ), θ̄(x̄) =
∑N

i=1 θ̄i(x̄i). (5.2)

Note that the dimension of X̄ is n̄ and that of Ȳ is m̄. For convenience, we will

sometimes refer to B̄i as an mi × ni matrix to mean its matrix representation

with respect to the standard basis in Xi and Yi. A similar convention may also

be used for A and Bi.

We can rewrite (5.1) as an instance of the following general conic programming

problem with a block angular structure:

(DBA-P) min θ(x) + 〈c, x〉 + θ̄(x̄) + 〈c̄, x̄〉

s.t. Ax = b, x ∈ K,

Bx + B̄x̄ = b̄, x̄ ∈ K̄,

where A : X → Y, B : X → Ȳ, B̄ : X̄ → Ȳ. The above structure is often referred

to in the literature as a dual block angular structure. We should mention that

the problem (DBA-P) is very general. For example, it includes block angular

convex quadratic conic programming problems as a special case when θ(·) and

θ̄i(·) (i = 1, . . . , N) are convex quadratic functions.
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We shall show later that the dual of (DBA-P) is given by

(DBA-D) −min θ∗(−v) + δ∗K(−z)− 〈b, y〉 + θ̄∗(−v̄) + δ∗K̄(−z̄)− 〈b̄, ȳ〉

s.t. A∗y +B∗ȳ + z + v = c, z ∈ X , v ∈ X ,

B̄∗ȳ + z̄ + v̄ = c̄, z̄ ∈ X̄ , v̄ ∈ X̄ ,

where z̄ = [z̄1; . . . ; z̄N ] ∈ X̄ , v̄ = [v̄1; . . . ; v̄N ] ∈ X̄ , ȳ = [ȳ1; . . . ; ȳN ] ∈ Ȳ, K∗ the

dual cone of K and K̄∗ = K∗1×· · ·×K∗N . Observe that the problem (DBA-D) has

six blocks of variables (y, ȳ, z, z̄, v, v̄) coupled together by the linear constraints

A∗y +B∗ȳ + z + v = c and B̄∗ȳ + z̄ + v̄ = c̄.

We made the following assumption on the problem data throughout this chap-

ter.

Assumption 1. A ∈ Rm×n has full row rank (if it is present), and [B, B̄] has

full row rank.

Assumption 2. The projection ΠK(x) and ΠK̄(z̄) can be computed efficiently

such as in the case when K is a nonnegative orthant, a second-order cone or Sn+

(the cone of symmetric positive semidefinite matrices). We also assume that the

proximal mappings for θ and θ̄ can be computed analytically or very efficiently.

This chapter is organized as follows. We will elaborate some example classes of

the conic programming problem with dual block angular structure in section 5.2.

In section 5.3, we will derive the dual (DBA-D) of the primal problem (DBA-P).

We present some preliminary in section 5.4 before we provide the algorithmic

details of our inexact symmetric Gauss-Seidel proximal ADMM and ALM for

solving (DBA-D) in section 5.5. In section 5.6, we discuss an extension where

we incorporate a semismooth Newton-CG method in our proposed algorithm.

Finally, we conduct numerical experiment in section 5.7 and conclude the chapter

in the last section.
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5.1 Example classes of (DBA)

In this section, we shall give three example classes of the dual block angular

problems.

5.1.1 Examples from 2-stage stochastic conic programming prob-

lems

Here we show that the dual block angular structure shown in (5.1) naturally

arises from a 2-stage stochastic conic programming problem. Consider the fol-

lowing 2-stage stochastic optimization problem:

min
x∈X

{
θ(x) + 〈c, x〉+ Eξ Q(x; ξ) | Ax = b, x ∈ K

}
. (5.3)

Here ξ is a random vector, Eξ(·) denotes the expectation with respect to ξ, and

Q(x; ξ) = min
x̃∈X2

{
θ̃ξ(x̃) + 〈c̃ξ, x̃〉 : B̃ξx̃ = b̃ξ −Bξx, x̃ ∈ K1

}
,

where for each given scenario ξ, c̃ξ ∈ X1, b̃ξ ∈ Y1 are given data, Bξ : X → Y1,

B̃ξ : X1 → Y1 are given linear maps, and K1 ⊂ X1 is a given closed convex

set, θ̃ξ : X1 → (−∞,∞] is a given proper closed convex function. Note that

there is no loss of generality in considering only equality constraints in (5.3)

since constraints of the form b− Ax ∈ Q, x ∈ K can always be reformulated as

[A, I](x; s) = b, (x; s) ∈ K ×Q.

By sampling N scenarios for ξ, one may approximate EξQ(x; ξ) by the sample

mean
∑N

i=1 piQ(x; ξi), with pi being the probability of occurrence of the ith

scenario, and hence approximately solve (5.3) via the following deterministic

optimization problem which has exactly the same form as (5.1):

min

 θ(x) + 〈c, x〉

+
∑N

i=1 θ̄i(x̄i) + 〈c̄i, x̄i〉

∣∣∣ Ax = b, x ∈ K

Bix+ B̄iȳi = b̄i, ȳi ∈ K1, ∀ i = 1, . . . , N

 , (5.4)

where c̄i = pic̃ξi and θ̄i = piθ̃ξi , Bi = Bξi , B̄i = B̃ξi , b̄i = b̃ξi are the data,

and x̄i = x̃ξi ∈ X1 is the second stage decision variable associated with the ith
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scenario.

5.1.2 Examples from doubly nonnegative relaxations of unca-

pacitated facility location problems

The uncapacitated facility location (UFL) problem is one of the most studied

problems in operations research. Here we consider the general UFL with lin-

ear and/or separable convex quadratic allocation costs that was introduced in

G
..
unl

..
uk et al. (2007):

(UFL) min
∑p

i=1 ciui +
∑p

i=1

∑q
j=1 cijsij + 1

2qijs
2
ij

s.t
∑n

i=1 sij = 1, ∀ j = 1, . . . , q;

sij ≤ ui, ∀ i = 1, . . . , p, j = 1, . . . , q;

sij ≥ 0, ∀ i = 1, . . . , p, j = 1, . . . , q;

ui ∈ {0, 1} ∀ i = 1, . . . , p,

(5.5)

where ci ≥ 0 for all i, and cij , qij ≥ 0 for all i, j are given data. Observe that

the allocation cost for customer j is a convex quadratic function of his demand

sij served by the opened facility i.

Let U = uuT . One can see that the constraint ui ∈ {0, 1} is equivalent to

the constraint that u2
i = Uii = ui. Also, by introducing the nonnegative slack

variable zij , we can convert the inequality constraint sij ≤ ui to the equality

constraint sij + zij = ui.

Let S = (sij) ∈ Rp×q and Z = (zij) ∈ Rp×q. Also let e ∈ Rp be the vector of

all ones and Sj be the jth column of S. Then one can express the problem (5.5)

equivalently as follows:

min
∑p

i=1 ciui +
∑p

i=1

∑q
j=1 cijsij + 1

2qijs
2
ij

s.t eTSj = 1, ∀ j = 1, . . . , q;

Sj + Zj = u, Sj , Zj ≥ 0, ∀ j = 1, . . . , q;

u− diag(U) = 0, U = uuT , u ≥ 0, U ∈ Sp.
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Let C = (cij) ∈ Rp×q and Q = (qij) ∈ Rp×q. By relaxing the rank-1 constraint

U = uuT to U � uuT and using the equivalence that U � uuT if and only if

[1, uT ;u, U ] � 0, we get the following doubly nonnegative (DNN) relaxation of

(5.5):

min 〈[0; c], [α;u]〉+
∑q

j=1〈Cj , Sj〉+ 1
2〈Sj , diag(Qj)Sj〉

s.t

 0

u

+

 eT 0T

−Ip −Ip


 Sj

Zj

 =

 1

0

 , j = 1, . . . q;

u− diag(U) = 0, α = 1,

U :=

 α uT

u U

 ∈ S1+p
+ , U ≥ 0, Sj , Zj ≥ 0, j = 1, . . . , q.

(5.6)

Now we can express the above DNN programming problem in the form (5.1) by

defining the following inner product spaces, functions, cones and linear maps:

X = S1+p, Y = R1+p, Xj = R2q, Yj = R1+p, j = 1, . . . , q,

θ(U) = δN (U), K = S1+p
+ ,

θ̄j([Sj ;Zj ]) =
1

2
〈Sj , diag(Qj)Sj〉, Kj = R2q

+ , j = 1, . . . , q,

b =

 1

0

 ∈ R1+p, A(U) =

 α

u− diag(U)

 =



〈A0, U〉

〈A1, U〉
...

〈Ap, U〉


,

Bj(U) =

 0

u

 =



〈O, U〉

〈E1, U〉
...

〈Ep, U〉


, B̄j =

 eT 0T

−Ip −Ip

 ∈ R(1+p)×2q,

b̄j =

 1

0

 ∈ R1+p, j = 1, . . . , q,
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where N = {X ∈ S1+p | X ≥ 0} and

A0 =

 1 0T

0 0p×p

 , Ai =

 0 1
2e
T
i

1
2ei −eie

T
i

 , Ei =

 0 1
2e
T
i

1
2ei 0p×p

 , i = 1, . . . , p.

In the above, ei is the ith unit vector in Rp. Observe that for the problem (5.6),

we have

B1 = · · · = Bq, B̄1 = · · · = B̄q.

Thus given any U ∈ X and ȳ ∈ X1×· · ·×Xq, the evaluation of B(U) and B∗ȳ can

be done very efficiently since B(U) = [B1(U)]qj=1 and B∗ȳ = B∗1(ȳ1 + · · ·+ ȳq).

For later purpose, we note that B̄jB̄
∗
j has a very simple inverse given by

(B̄jB̄
∗
j )−1 =

 0 0T

0 1
2Ip

+
1

2p

 2

e

 [2, eT ], j = 1, . . . , q. (5.7)

5.1.3 Computation of a Wasserstein barycenter for a family of

discrete distributions

Consider a family of discrete distributions {(s(i)
j , p

(i)
j ) | j = 1, . . . ,mi}, i =

1, . . . , N , such that the probability of the ith distribution taking the value s
(i)
j ∈

Rd is given by p
(i)
j for j = 1, . . . ,mi. The Wasserstein barycenter for the family is

the distribution {(sj , pj) | j = 1, . . . ,m} that solves the following minimization

problem:

min


N∑
i=1

〈M (i), X(i)〉

∣∣∣∣∣∣∣
X(i)e(i) = p, (X(i))T e = p(i), p ∈ ∆,

X(i) ∈ Rm×mi , X(i) ≥ 0, i = 1, . . . , N

 , (5.8)

where ∆ = {p ∈ Rm | eT p = 1, p ≥ 0}, e is the vector of all ones in Rm, and e(i) is

the vector of all ones in Rmi , i = 1, . . . , N. In the above problem, M (i) ∈ Rm×mi

is defined by M
(i)
kj = ‖sk−s

(i)
j ‖2. In (5.8), we consider the version of the problem

where the support vectors x1, . . . , xm of the centroid are given. (Note that in

practice, one may cluster the support vectors ∪Ni=1{s
(i)
j | j = 1, . . . ,mi} into m

clusters and the vectors sj may be taken to be the center of mass of the jthe

cluster.)
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Next, we show that the problem (5.8) has a dual block angular structure.

Define

X = Rm, Y = Rm, K = ∆, Bi = Im, i = 1, . . . , N,

Xi = Rm×mi , Yi = Rm, Ki = {X(i) ∈ Xi | (X(i))T e = p(i), X(i) ≥ 0},

B̄i : Xi → Yi such that B̄i(X
(i)) = −X(i)e(i), i = 1, . . . , N.

Then we can express (5.8) as the following block angular problem:

min δK(p) +
∑N

i=1〈M (i), X(i)〉+ δKi(X
(i))

s.t.


B1

...

BN

 p+


B̄1(X(1))

...

B̄N (X(N))

 =


0

...

0

 .
(5.9)

Observe that for the above problem, we have that B1 = . . . = BN = Im, B̄∗i (ȳi) =

−ȳi(e(i))T , and

(B̄iB̄
∗
i )−1 =

1

mi
Im, i = 1, . . . , N.

Note that for this problem, the projection onto K can be computed analytically.

Similarly, the projection onto Ki can also be computed analytically as follows.

Given G ∈ Rm×mi ,

ΠKi(G) = argmin
{1

2
‖X −G‖2 | XT e = p(i), X ≥ 0

}
= argmin

{ mi∑
j=1

1

2
‖Xj −Gj‖2 | eTXj = p

(i)
j , Xj ∈ Rm+ , j = 1, . . . ,mi

}
,

where Xj and Gj denote the jth column of X and G, respectively. Thus the jth

column of ΠKi(G) can be computed analytically for j = 1, . . . ,mi.
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5.2 The derivation of (DBA-D) and KKT conditions

In this section, we will provide the derivation of dual problem (DBA-D) of (DBA-

P) in details. We introduce the auxiliary variables, u = x, ū = x̄, s = x, s̄ = x̄

and replace θ(x), θ̄(x̄), δK(x), δK̄(x̄) by θ(u), θ̄(ū), δK(s), δK̄(s̄) respectively.

Consider the Lagrangian function for (DBA-P):

L(x, x̄, u, ū, s, s̄; y, ȳ, v, v̄, z, z̄)

:= θ(u) + 〈c, x〉+ θ̄(ū) + 〈c̄, x̄〉+ δK(s) + δK̄(s̄)− 〈y, Ax− b〉 − 〈ȳ, Bx+ B̄x̄− b̄〉

−〈v, x− u〉 − 〈v̄, x̄− ū〉 − 〈z, x− s〉 − 〈z̄, x̄− s̄〉

= 〈c−A∗y −B∗ȳ − v − z, x〉+ 〈−B̄∗ȳ − v̄ − z̄, x̄〉+ θ(u) + 〈v, u〉+ θ̄(ū) + 〈v̄, ū〉

+δK(s) + 〈z, s〉+ δK̄(s̄) + 〈z̄, s̄〉+ 〈b, y〉+ 〈b̄, ȳ〉,

where x, u, s, v, z ∈ X , x̄, ū, s̄, v̄, z̄ ∈ X̄ , y ∈ Y and ȳ ∈ Ȳ.

We have the following:

inf
x
L(x, x̄, u, ū, s, s̄; y, ȳ, v, v̄, z, z̄) = inf

x
{〈c−A∗y −B∗ȳ − v − z, x〉}

=


0, if c−A∗y −B∗ȳ − v − z = 0,

−∞, otherwise;

inf
x̄
L(x, x̄, u, ū, s, s̄; y, ȳ, v, v̄, z, z̄) = inf

x̄
{〈−B̄∗ȳ − v̄ − z̄, x̄〉}

=


0, if B̄∗ȳ + v̄ + z̄ = 0,

−∞, otherwise;

inf
u
L(x, x̄, u, ū, s, s̄; y, ȳ, v, v̄, z, z̄) = inf

u
{θ(u) + 〈v, u〉} = −θ∗(−v);

inf
ū
L(x, x̄, u, ū, s, s̄; y, ȳ, v, v̄, z, z̄) = inf

ū
{θ̄(ū) + 〈v̄, ū〉} = −θ̄∗(−v̄);

inf
s
L(x, x̄, u, ū, s, s̄; y, ȳ, v, v̄, z, z̄) = inf

u
{δK(s) + 〈z, s〉} = −δ∗K(−z);

inf
s̄
L(x, x̄, u, ū, s, s̄; y, ȳ, v, v̄, z, z̄) = inf

s̄
{δK̄(s̄) + 〈z̄, s̄〉} = −δ∗K̄(−z̄).

Hence the dual (DBA-D) of (DBA-P) is given by

max
y,ȳ,v,v̄,z,z̄

inf
x,x̄,u,ū,s,s̄

L(x, x̄, u, ū, s, s̄; y, ȳ, v, v̄, z, z̄)
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= max
y,ȳ,v,v̄,z,z̄

 −θ
∗(−v)− θ̄∗(−v̄)− δ∗K(−z)

−δ∗K̄(−z̄) + 〈b, y〉+ 〈b̄, ȳ〉

∣∣∣∣∣∣∣
c−A∗y −B∗ȳ − v − z = 0,

B̄∗ȳ + v̄ + z̄ = 0

 .

Assume that the feasible regions of both the primal and dual problem has

nonempty interiors. Then the optimal solutions for both problems exist. The

Karush-Kuhn-Tucker (KKT) conditions for the problems (DBA-P) and (DBA-

D) are given as follows:

Ax = b, Bx+ B̄x̄ = b̄,

A∗y +B∗ȳ + z + v = c, B̄∗ȳ + z̄ + v̄ = c̄,

x = ΠK(x− z), x̄ = ΠK̄(x̄− z̄),

x = Proxθ(x− v), x̄ = Proxθ̄(x̄− v̄).

(5.10)

5.3 Inexact symmetric Gauss-Seidel proximal ADMM

and ALM for solving (DBA-D)

Now we are ready to discuss our proposed inexact symmetric Gauss-Seidel (sGS)

proximal ADMM algorithm for solving (DBA-D). We shall also show that the

algorithm reduced to sGS proximal augmented Lagrangian method (ALM) for

a special case where the nonsmooth objective terms disappear.

Given a penalty parameter σ > 0, the augmented Lagrangian function associ-

ated with (DBA-D) is given as follows: for (y, ȳ, z, z̄, v, v̄) ∈ Y×Ȳ×X×X̄×X×X̄ ,

(x, x̄) ∈ X × X̄ ,

Lσ(y, ȳ, z, z̄, v, v̄;x, x̄)

= θ∗(−v) + δ∗K(−z)− 〈b, y〉+ θ̄∗(−v̄) + δ∗K̄(−z̄)− 〈b̄, ȳ〉 − 1

2σ
‖x‖2 − 1

2σ
‖x̄‖2

+
σ

2
‖A∗y +B∗ȳ + z + v − c+ σ−1x‖2 +

σ

2
‖B̄∗ȳ + z̄ + v̄ − c̄+ σ−1x̄‖2.
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5.3.1 An inexact symmetric Gauss-Seidel proximal ADMM for

solving (DBA-D)

The inexact symmetric Gauss-Seidel based proximal ADMM method for solv-

ing the dual problem (DBA-D) of the block angular problem (DBA-P) has the

following template:

Algorithm DBA-sGS-ADMM. Given the initial points (y0, ȳ0, z0, z̄0, v, v̄0) ∈

Y × Ȳ × X × X̄ × X × X̄ , (x0, x̄0) ∈ X × X̄ , perform the following steps in each

iteration.

Step 1. Let J : Y → Y be a given self-adjoint positive semidefinite linear oper-

ator, and S be a positive semidefinite linear operator that is to be chosen

later. Compute

(z̄k+1, zk+1, yk+1) ≈ argmin


Lσ(y, ȳk, z, z̄, vk, v̄k;xk, x̄k) +

σ
2 ‖y − y

k‖2J + σ
2 ‖(z; y)− (zk; yk)‖2S

∣∣∣ y ∈ Y,

z ∈ X , z̄ ∈ X̄

 .

Let R1,k = A∗yk +B∗ȳk + zk + vk − ck, R2,k = B̄∗ȳk + z̄k + v̄k − c̄k, where

ck = c−σ−1xk and c̄k = c̄−σ−1x̄k. Observe that z̄ and (y, z) are separable.

Hence we can compute z̄k+1 and (zk+1, yk+1) separately by solving

z̄k+1 = argmin
{σ

2
‖z̄ − z̄k +R2,k‖2 + δ∗K̄(−z̄) | z̄ ∈ X̄

}
, (5.11)

(zk+1, yk+1) ≈ argmin


−〈b, y〉+ δ∗K(−z)+

σ
2 ‖A

∗y + z +B∗ȳk + vk − ck‖2

σ
2 ‖y − y

k‖2J + σ
2 ‖(z; y)− (zk; yk)‖2S

∣∣∣ y ∈ Y,

z ∈ X


.(5.12)

Notice that z̄k+1 can be computed by solving the following N subproblems

in parallel, i.e.,

z̄k+1
i = argmin

{σ
2
‖z̄i − z̄ki +R2,k

i ‖
2 + δ∗Ki

(−z̄i) | z̄i ∈ Xi
}

(5.13)

= −Proxσ−1δ∗Ki

(
R2,k
i − z̄

k
i

)
, i = 1, . . . , N.

To compute (yk+1, zk+1) efficiently, we can choose S = sGS(Qz,y), the
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sGS linear operator associated with the following operator to decompose

the computation of yk+1 and zk+1:

Qz,y :=

 In A∗

A AA∗ + J

 .
Then we can compute (yk+1, zk+1) in a symmetric Gauss-Seidel fashion as

follows:

yk+1
tmp = argmin

{
− 〈b, y〉+ σ

2 ‖A
∗(y − yk) +R1,k‖2 + σ

2 ‖y − y
k‖2J − 〈δ

k+1
tmp , y〉

}
= yk + (AA∗ + J)−1

(
σ−1(b+ δk+1

tmp )−AR1,k
)
,

zk+1 = argmin
{
σ
2 ‖z − z

k +A∗(yk+1
tmp − yk) +R1,k‖2 + δ∗K(−z) | z ∈ X

}
= −Proxσ−1δ∗K

(
A∗(yk+1

tmp − yk) +Rk1 − zk
)
,

yk+1 = argmin
{ −〈b, y〉+ σ

2 ‖A
∗(y − yk) +R1,k + zk+1 − zk‖2

+σ
2 ‖y − y

k‖2J − 〈δk+1, y〉

}
= yk + (AA∗ + J)−1(σ−1(b+ δk+1)−A(R1,k + zk+1 − zk)).

Step 2. Let J̄ be a given block diagonal linear operator with J̄ = diag(J̄1, . . . , J̄N )

such that each J̄i : Yi → Yi is self-adjoint positive semidefinite, and T be

a positive semidefinite linear operator that is to be chosen later. Compute

(vk+1, v̄k+1, ȳk+1) ≈ argmin


Lσ(yk+1, ȳ, zk+1, z̄k+1, v, v̄;xk, x̄k) +

σ
2 ‖ȳ − ȳ

k‖2
J̄

+σ
2 ‖(v − v

k; v̄ − v̄k; ȳ − ȳk)‖2T

∣∣∣ ȳ ∈ Rm̄,

v ∈ X ,

v̄ ∈ X̄

 .

Let

M = BB∗ + B̄B̄∗ + J̄ , (5.14)

and R3,k = A∗yk+1 + B∗ȳk + zk+1 + vk − ck = R1,k + A∗(yk+1 − yk) +

(zk+1 − zk), R4,k = B̄∗ȳk + z̄k+1 + v̄k − c̄k = R2,k + (z̄k+1 − z̄k). To

compute (vk+1, v̄k+1, ȳk+1) efficiently, we choose T = sGS(Qvv̄,ȳ), the sGS
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linear operator associated with the following linear operator

Qvv̄,ȳ =


In 0

∣∣∣ B∗
0 In̄

∣∣∣ B̄∗
B B̄

∣∣∣ M

 .

Then we can decompose the computation of (vk+1, v̄k+1, ȳk+1) in a sym-

metric Gauss-Seidel fashion as follows:

ȳk+1
tmp = argmin


−〈b̄, ȳ〉+ σ

2 ‖B
∗(ȳ − ȳk) +R3,k‖2 + σ

2 ‖B̄
∗(ȳ − ȳk) +R4,k‖2

+σ
2 ‖ȳ − ȳ

k‖2
J̄
− 〈δ̄k+1

tmp , ȳ〉


= ȳk +M−1(σ−1(b̄+ δ̄k+1

tmp )−BR3,k − B̄R4,k);


vk+1 = argmin

{
θ∗(−v) + σ

2 ‖v − v
k +B∗(ȳk+1

tmp − ȳk) +R3,k‖2 | v ∈ X
}

;

v̄k+1 = argmin
{
θ̄∗(−v̄) + σ

2 ‖v̄ − v̄
k + B̄∗(ȳk+1

tmp − ȳk) +R4,k‖2 | v̄ ∈ X̄
}

;

ȳk+1 = argmin


−〈b̄, ȳ〉+ σ

2 ‖B
∗(ȳ − ȳk) + vk+1 − vk +R3,k‖2

+σ
2 ‖B̄

∗(ȳ − ȳk) + v̄k+1 − v̄k +R4,k‖2 + σ
2 ‖ȳ − ȳ

k‖2
J̄
− 〈δ̄k+1, ȳ〉


= ȳk +M−1

(
σ−1(b̄+ δ̄k+1)−B(R3,k + vk+1 − vk)− B̄(R4,k + v̄k+1 − v̄k)

)
.

(5.15)

We should note that the computation of v̄k+1 in (5.15) can be done in

parallel by solving N smaller subproblems where

v̄k+1
i = argmin

{
θ̄∗i (−v̄i) +

σ

2
‖v̄i − v̄ki + B̄∗i

(
(ȳk+1

tmp )i − ȳki
)

+ (Rk4)i‖2 | v̄i ∈ Xi
}

= −Proxσ−1θ̄∗i

(
B̄∗i
(
(ȳk+1

tmp )i − ȳki
)

+R4,k
i − v̄

k
i

)
, i = 1, . . . , N. (5.16)

Step 3. Compute

xk+1 = xk + τσ(A∗yk+1 +B∗ȳk+1 + zk+1 + vk+1 − c),

x̄k+1 = x̄k + τσ(B̄∗ȳk+1 + z̄k+1 + v̄k+1 − c̄),

where τ ∈ (0, (1 +
√

5)/2) is the step-length, which is usually set to be

1.618.
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5.3.2 An inexact symmetric Gauss-Seidel proximal ALM for

solving (DBA-D)

When the functions θ(·) and θ̄i(·) (i = 1, . . . , N) are absent in (5.1), we can

design a symmetric Gauss-Seidel proximal augmented Lagrangian method (sGS-

ALM) to solve the problem. In this case, the variables v and v̄ are absent in

(DBA-D), and the associated augmented Lagrangian function is given as follows:

for (y, ȳ, z, z̄) ∈ Y × Ȳ × X × X̄ , (x, x̄) ∈ X × X̄ ,

Lσ(y, ȳ, z, z̄;x, x̄) = −〈b, y〉 − 〈b̄, ȳ〉+ δ∗K(−z) + δ∗K̄(−z̄)

+σ
2 ‖A

∗y +B∗ȳ + z − c+ σ−1x‖2

+σ
2 ‖B̄

∗ȳ + z̄ − c̄+ σ−1x̄‖2 − 1
2σ‖x‖

2 − 1
2σ‖x̄‖

2.

Algorithm DBA-sGS-ALM. Given the initial points (z̄0, z0, y0, ȳ0) ∈ X̄ ×

X × Y × Ȳ, (x0, x̄0) ∈ X × X̄ , perform the following steps in each iteration.

Step 1. Let J : Y → Y and J̄ : Ȳ → Ȳ be given self-adjoint positive semidefinite

linear operators, and S be a positive semidefinite linear operator that is

to be chosen later. Let {εk} be a given summable sequence of nonnegative

numbers. Compute

αk := (z̄k+1, zk+1, yk+1, ȳk+1)

≈ α̂k = argmin


Lσ(y, ȳ, z, z̄;xk, x̄k)

+σ
2 ‖y − y

k‖2J + σ
2 ‖ȳ − ȳ

k‖2
J̄

+σ
2 ‖(z̄; z; y; ȳ)− (z̄k; zk; yk; ȳk)‖2S

∣∣∣ y ∈ Y, ȳ ∈ Ȳ,
z ∈ X , z̄ ∈ X̄


,

with residual dk+1 ∈ ∂αLσ(αk+1, βk) + σT (αk+1−αk) satisfying ‖dk+1‖ ≤

εk, where T := S + diag(0, 0, J, J̄). If we choose S = sGS(Qz̄z,y,ȳ), the

sGS linear operator associated with the following operator

Qz̄z,y,ȳ =



In̄ 0
∣∣∣ 0

∣∣∣ B̄∗

0 In

∣∣∣ A∗
∣∣∣ B∗

0 A
∣∣∣ AA∗ + J

∣∣∣ AB∗

B̄ B
∣∣∣ BA∗

∣∣∣ BB∗ + B̄B̄∗ + J̄


,
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then we can decompose the computation of (z̄k+1, zk+1, yk+1, ȳk+1) in a

symmetric Gauss-Seidel fashion as follows. Let ck = c − σ−1xk and c̄k =

c̄− σ−1x̄k. Compute

ȳk+1
tmp = argmin


−〈b̄, ȳ〉+ σ

2 ‖B
∗ȳ +A∗yk + zk − ck‖2

+σ
2 ‖B̄

∗ȳ + z̄k − c̄k‖2 + σ
2 ‖ȳ − ȳ

k‖2
J̄
− 〈δ̄k+1

tmp , ȳ〉

 ;

yk+1
tmp = argmin


−〈b, y〉+ σ

2 ‖A
∗y +B∗ȳktmp + zk − ck‖2

+σ
2 ‖y − y

k‖2J − 〈δ
k+1
tmp , y〉

 ;



zk+1 = argmin
{
σ
2 ‖z +A∗yk+1

tmp +B∗ȳk+1
tmp − ck‖2 + δ∗K(−z) | z ∈ X

}
= −Proxσ−1δ∗K

(
A∗yk+1

tmp +B∗ȳk+1
tmp − ck

)
;

z̄k+1
i = argmin

{
σ
2 ‖z̄i + B̄∗i (ȳk+1

tmp )i − c̄ki ‖2 + δ∗Ki
(−z̄i) | z̄i ∈ Xi

}
= −Proxσ−1δ∗Ki

(
B̄∗i (ȳk+1

tmp )i − c̄ki
)

i = 1, . . . , N ;

yk+1 = argmin


−〈b, y〉+ σ

2 ‖A
∗y +B∗ȳk+1

tmp + zk+1 − ck‖2

+σ
2 ‖y − y

k‖2J − 〈δk+1, y〉

 ;

ȳk+1 = argmin


−〈b̄, ȳ〉+ σ

2 ‖B
∗ȳ +A∗yk+1 + zk+1 − ck‖2

+σ
2 ‖B̄

∗ȳ + z̄k+1 − c̄k‖2 + σ
2 ‖ȳ − ȳ

k‖2
J̄
− 〈δ̄k+1, ȳ〉

 .

Step 2. Compute

xk+1 = xk + τσ(A∗yk+1 +B∗ȳk+1 + zk+1 − c),

x̄k+1 = x̄k + τσ(B̄∗ȳk+1 + z̄k+1 − c̄),

where τ ∈ (0, 2) is the step-length which is usually set to be 1.9.

5.3.3 Convergence of the inexact sGS-ADMM and sGS-ALM

algorithms

The convergence theorem of the inexact sGS-ADMM and sGS-ALM algorithms

could be established directly using known results from Chen et al. (2017), Zhang
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et al. (2018), and Chen et al. (2018). Here we state the theorems again for the

convenience of readers.

Denote u := (y, ȳ, v, v̄, z, z̄, x, x̄) ∈ U := Y × Ȳ × X × X̄ × X × X̄ × X × X̄ .

The KKT mapping R : U → U of (5.1) is defined by

R(u) :=



Ax− b

Bx+ B̄x̄− b̄

A∗y +B∗ȳ + z + v − c

B̄∗ȳ + z̄ + v̄ − c̄

x−ΠK(x− z)

x̄−ΠK̄(x̄− z̄)

x− Proxθ(x− v)

x̄− Proxθ̄(x̄− v̄)



. (5.17)

Theorem 5.1. Let {uk := (yk, ȳk, vk, v̄k, zk, z̄k, xk, x̄k)} be the sequence gener-

ated by sGS-ADMM. Then, we have the following results.

(a) The sequence {(yk, ȳk, vk, v̄k, zk, z̄k)} converges to an optimal solution of

the dual problem (DBA-D) and the sequence {(xk, x̄k)} converges to an

optimal solution of the primal problem (DBA-P).

(b) Suppose that the sequence {uk} converges to a KKT point

û := (ŷk, ˆ̄yk, v̂k, ˆ̄vk, ẑk, ˆ̄zk, x̂k, ˆ̄xk) and the KKT mapping R is metrically

subregular at (û, 0) ∈ gphR. Then the sequence {uk} is linearly convergent

to û.

Proof. We refer the reader to section 4.3.1 for the definition of metrically sub-

regularity. The result of the theorem follows directly by applying the convergence

result in (Zhang et al., 2018, Proposition 4.1) to (DBA-D). �

Remark 5. By Theorem 1 and Remark 1 in Li et al. (2018b), we know that when

(DBA-P) is a convex programming problem where for each i = 1, . . . , N , θ and

θ̄i are piecewise linear-quadratic or strongly convex, and K,Ki are polyhedral,

then R is metrically subregular at (ū, 0) ∈ gphR for any KKT point ū.
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Similarly, the convergence of the sGS-ALM can be established readily by using

known results in Chen et al. (2018). Define the self-adjoint positive definite linear

operator H,V : X → X by

H :=



0

I

A

B


[

0 I A∗ B∗
]

+



I

0

0

B̄


[
I 0 0 B̄∗

]
,

V := τσ2
(
T +

2− τ
6
H
)
.

We have the following convergence result for the inexact sGS-ALM.

Theorem 5.2. Define α := (z̄, z, y, ȳ) and β := (x, x̄). Assume that the solution

set to the KKT system of (DBA-D) is nonempty and (ᾱ, β̄) is such a solution.

Then, the sequence {(αk, βk)} generated by DBA-sGS-ALM is well-defined such

that for any k ≥ 1,

‖αk+1 − α̂k+1‖2σ(T +H) ≤ 〈d
k+1, αk+1 − α̂k+1〉,

and for all k = 0, 1, . . .,

(
‖αk+1 − α‖2V̂1/2 + ‖βk+1 − β‖2

)
−
(
‖αk − α‖2V̂1/2 + ‖βk − β‖2

)
≤ −

(
2−τ
3τ ‖β

k − βk+1‖2 + ‖αk+1 − αk‖2V − 2τσ〈dk, αk+1 − α〉
)
,

where V̂ = V + 2−τ
6 τσ2H. Moreover, the sequence {(αk, βk)} converges to a

solution to the KKT system of (DBA-D).

Proof. The result can be proved directly from the convergence result in (Chen

et al., 2018, Theorem 1). �

5.3.4 The efficient computation of ȳk+1
tmp and ȳk+1

To implement the DBA-sGS-ALM or DBA-sGS-ADMM efficiently, the efficient

computation of ȳk+1
tmp and ȳk+1 must be carefully addressed. To compute the

solution ȳk+1
tmp in (5.15), we would need to solve a generally very large m̄ × m̄
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system of linear equations of the form:

Mȳ = h, (5.18)

where the m̄× m̄ matrix M given in (5.14) has the following structure:

M =


B1

...

BN



B1

...

BN


∗

+


B̄1B̄

∗
1

. . .

B̄N B̄
∗
N

+ J̄ . (5.19)

Here we design several strategies which are crucial for cutting down the com-

putational cost of solving (5.18).

(a) Suppose we choose J̄ = diag(J̄1, . . . , J̄N ) where each J̄i : Xi → Xi is a

self-adjoint positive semidefinite linear operator. To compute the inverse

of M in (5.19), we may make use of the Sherman-Morrison-Woodbury

(SMW) formula which we shall describe next. Let D̄ = diag(D̄1, . . . , D̄N ),

where D̄i = B̄iB̄
∗
i + J̄i, i = 1, . . . , N. Assume that D̄i is invertible for all

i = 1, . . . , N , then we have that

M−1h = (D̄ +BB∗)−1h = D̄−1h− D̄−1BG−1B∗D̄−1h,

where G : X → X is given by

G := In +
N∑
i=1

B∗i D̄
−1
i Bi. (5.20)

Thus to solve (5.18), we only need to solve a linear system of the form

Gx = g.

Observe that to computeG, the component matricesB∗i D̄
−1
i Bi, i = 1, . . . , N ,

can be computed in parallel, and operations such as D̄−1
i hi, i = 1, . . . , N ,

can also be done in parallel. Similarly operations such as evaluating Bx

and B∗ȳ for given x ∈ X and ȳ ∈ Ȳ can also be done in parallel.

(i) Generally, one would expect the n × n matrix B∗i D̄
−1
i Bi to be dense

even if Bi is sparse, unless D̄i has a nice structure such as being a diagonal
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matrix. If the memory required to store the matrix G and its Cholesky

factor is prohibitive, then one may choose J̄i such that D̄i is a diagonal

matrix. For example, we may choose

J̄i = λmax(B̄iB̄
∗
i )Imi − B̄iB̄∗i , i = 1, . . . , N.

Hence D̄i = λmax(B̄iB̄
∗
i )Imi . In which case, G = In+

∑N
i=1 λmax(B̄iB̄

∗
i )−1B∗iBi,

and it is more likely to be sparse.

(ii) In general, we can expect the matrix symmetric positive definite ma-

trix G in (5.20) to be well conditioned, especially if for each i, we choose

J̄i = αiImi for a sufficiently large nonnegative scalar αi. In this case, a

preconditioned conjugate gradient (PCG) method applied to solve Gx = g

is expected to converge in a small number of steps. In addition, for a given

x, the matrix-vector product Gx can also be computed very efficiently

since the component vectors, B̄∗i D̄
−1
i B̄ix, i = 1, . . . , N , can be computed

in parallel.

(b) It is possible to solve (5.18) in a parallel fashion if we choose J̄ appropriately.

For example, if we choose

J̄ = diag(BiB
∗
i +

∑N
j=1,j 6=i‖BiB

∗
j ‖2 Imi | i = 1, . . . , N)−BB∗ � 0, (5.21)

then

M = diag(Ē, . . . , ĒN ), (5.22)

where Ēi = B̄iB̄
∗
i + BiB

∗
i +

∑N
j=1,j 6=i‖BiB∗j ‖2Imi , i = 1, . . . , N . Then the

solution ȳ in (5.18) can be computed in parallel by solving

Ēiȳi = hi, i = 1, . . . , N.

We should mention that in the literature, a standard way to decompose
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M into a block diagonal form is to choose J̄ to be:

J̄ std = Ndiag(B1B
∗
1 , . . . , BNB

∗
N )−BB∗ � 0,

where the positive semidefiniteness of J̄ std can be shown by using the

inequality that ‖
∑N

i=1 x̄i‖2 ≤ N
∑N

i=1 ‖x̄i‖2 for any x̄ ∈ X̄ . However, such

a choice is usually too conservative compared to the one in (5.21).

(c) We should also take special consideration when the optimization problem

(5.1) has the property that B1 = B2 = · · · = BN . In this case

G = In +B∗1
(∑N

i=1D̄
−1
i

)
B1.

Thus if m1 is not too large, one can precompute the m1 × m1 matrix∑N
i=1 D̄

−1
i once at the beginning of the algorithm so that the matrix-vector

product Gx can be evaluated very efficiently for any given x ∈ X . If in

addition, we also have that B̄1 = · · · = B̄N such as in the case of the DNN

relaxation (5.6) of the UFL problem, then we get

G = In +NB∗1D̄
−1
1 B1.

In this case, obviously there is tremendous saving in the computation of

the matrix-vector product Gx for any given x.

5.4 Incorporating a semismooth Newton-CG method

in DBA-sGS-ADMM and DBA-sGS-ALM for solv-

ing (DBA-D)

Recall that in computing (zk+1, yk+1) in (5.12) for Algorithm DBA-sGS-ADMM,

we have added a proximal term based on the sGS linear operator sGS(Qz,y) to

decouple the computation of zk+1 and yk+1. We should note that while the

computation of the individual zk+1 and yk+1 has been made easier, the negative

effect of adding a possibly large proximal term is that the overall algorithm
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may take more iterations to converge to a required level of accuracy. Thus in

practice, a judicious choice must always be made to balance the two competing

factors. In particular, if an efficient solver is available to compute (zk+1, yk+1)

simultaneously in (5.12) without the need to add a proximal term, i.e., J = 0

and S = 0, then one should always adopted this option. In this case, we have

that

(zk+1, yk+1) = argmin


−〈b, y〉+ δ∗K(−z)− 〈δk+1, y〉

+σ
2 ‖A

∗y + z +B∗ȳk + vk − ck‖2

∣∣∣ y ∈ Y,

z ∈ X

 . (5.23)

In Step 1 of Algorithm DBA-sGS-ALM, if we choose J = 0 and S = sGS(Qz̄zy,ȳ),

the sGS linear operator associated with the following operator

Qz̄zy,ȳ =



In̄ 0 0
∣∣∣ B̄∗

0 In A∗
∣∣∣ B∗

0 A AA∗
∣∣∣ AB∗

B̄ B BA∗
∣∣∣ BB∗ + B̄B̄∗ + J̄


,

then we can compute (z̄k+1, zk+1, yk+1, ȳk+1) in a symmetric Gauss-Seidel fash-

ion as follows. Let ck = c− σ−1xk and c̄k = c̄− σ−1x̄k. Compute

ȳk+1
tmp = argmin


−〈b̄, ȳ〉+ σ

2 ‖B
∗ȳ +A∗yk + zk − ck‖2 + σ

2 ‖B̄
∗ȳ + z̄k − c̄k‖2

+σ
2 ‖ȳ − ȳ

k‖2
J̄
− 〈δ̄k+1

tmp , ȳ〉

 ,


(zk+1, yk+1) = argmin


−〈b, y〉+ δ∗K(−z)+

σ
2 ‖z +A∗y +B∗ȳk+1

tmp − ck‖2 − 〈δk+1, y〉

∣∣∣ y ∈ Y,

z ∈ X

 ,

z̄k+1 = argmin
{
σ
2 ‖z̄ + B̄∗ȳk+1

tmp − c̄k‖2 + δ∗K̄(−z̄) | z̄ ∈ X̄
}
,

(5.24)

ȳk+1 = argmin


−〈b̄, ȳ〉+ σ

2 ‖B
∗ȳ +A∗yk+1 + zk+1 − ck‖2 + σ

2 ‖B̄
∗ȳ + z̄k+1 − c̄k‖2

+σ
2 ‖ȳ − ȳ

k‖2
J̄
− 〈δ̄k+1, ȳ〉

 .
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In both (5.23) and (5.24), we need to solve a problem of the form:

(zk+1, yk+1) = argmin


−〈b, y〉+ δ∗K(−z)

+σ
2 ‖z +A∗y − ĉk‖2 − 〈δk+1, y〉

∣∣∣ y ∈ Y, z ∈ X
 , (5.25)

for some given ĉk. By making use of the projection onto K, we can first compute

yk+1 from the following minimization problem, and obtain zk+1 once yk+1 is

computed as follows:


yk+1 = argmin

{
−〈b, y〉+ σ

2 ‖ΠK(A∗y − ĉk)‖2 − 〈δk+1, y〉
∣∣ y ∈ Y} ,

zk+1 = ΠK∗
(
ĉk −A∗yk+1

)
.

In this case, we could employ a Newton based conjugate gradient method (New-

ton CG) to update the variable y and hence are able to compute (zk+1, yk+1)

simultaneously. This method is however not implemented in the context of this

thesis and might be a possible future enhancement for our algorithm in solving

dual block angular problems.

5.5 Numerical experiments

Here we describe the numerical experiments we have conducted on several data

classes of (DBA).

5.5.1 Stopping conditions

Based on the optimality conditions in (5.10), we measure the accuracy of a

computed solution by the following relative residuals:

η = max{ηP , ηD, 0.1ηK, ηP̄ , ηD̄, 0.1ηK̄},

where

ηP = ‖Ax−b‖
1+‖b‖ , ηD = ‖A∗y+B̄∗ȳ+z+v−c‖

1+‖c‖ , ηK = ‖x−ΠK(x−z)‖
1+‖x‖+‖z‖ ,

ηP̄ = ‖Bx+B̄x̄−b̄‖
1+‖b̄‖ , ηD̄ = ‖B̄∗ȳ+z̄+v̄−c̄‖

1+‖c̄‖ , ηK̄ =
‖x̄−ΠK̄(x̄−z̄)‖

1+‖x̄‖+‖z̄‖ .
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In addition, we also compute the duality gap by:

ηgap =
|ObjPrimal −ObjDual|

1 + |ObjPrimal|+ |ObjDual|
,

where

ObjPrimal := θ(x) + 〈c, x〉+ θ̄(x̄) + 〈c̄, x̄〉, and

ObjDual := θ∗(−v) + δ∗K(−z)− 〈b, y〉+ θ̄∗(−v̄) + δ∗K̄(−z̄)− 〈b̄, ȳ〉,

are the primal and dual objective functions respectively. We terminate our

algorithm when η ≤ 10−5 and ηgap ≤ 10−4.

5.5.2 2-stage Stochastic Conic Programming Problems

In this subsection, we run numerical experiment on the two-stage stochastic

conic programming problems. Our main objective here is to test the efficiency

of our algorithm for quadratic stochastic programming (QSP). Since there are

not much QSP test data available, we will follow the idea mentioned in Lau and

Womersley (2001) to extend stochastic linear programming to QSP by artificially

adding a small quadratic term in the objective. That is, we choose to set θ(x) =

0.1
2 ‖x‖

2, θ̄(x̄) = 0.1
2 ‖x̄‖

2.

Other than those data sets that have been studied in Linderoth et al. (2006),

we also examine several other data sets found in the literature. The datasets

assets, env, phone, and 4node are from the website http://www4.uwsp.edu/

math/afelt/slptestset/download.html; pltexp and storm are from http://

users.iems.northwestern.edu/~jrbirge/html/dholmes/post.html; and at

last gbd could be downloaded from http://pages.cs.wisc.edu/~swright/

stochastic/sampling/. Below we describe each of the dataset in more details.

assets. This network model represents the management of assets. Its nodes are

asset categories and its arcs are transactions. The problem is to maximize

the return of an investment from every stage with the balance of material

at each node.
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env. This model assists the Canton of Geneva in planning its energy supply

infrastructure and policies. The main objective is to minimize the instal-

lation cost of various types of energy, while meeting all the supply-demand

at each node and satisfying several realistic constraints such as the envi-

ronmental constraints.

phone. This is a problem which models the service of providing private lines

to telecommunication customers, often used by large corporations between

business locations for high speed, private data transmission. The goal is

to minimize the unserved requests, while staying within budget.

4node. This is a two stage network problem for scheduling cargo transporta-

tion. While the flight schedule is completely determined in stage one, the

amounts of cargo to be shipped are uncertain and shall be determined in

stage two.

pltexp. This is a stochastic capacity expansion model that tries to allocate new

production capacity across a set of plants so as to maximize profit subject

to uncertain demand.

storm. This is a two period freight scheduling problem described in Mulvey

and Ruszczynski. In this model, routes are scheduled to satisfy a set of

demands at stage 1, demands occur, and unmet demands are delivered at

higher costs in stage 2 to account for shortcomings.

gbd. This is the aircraft allocation problem where aircraft of different types are

to be allocated to routes in a way that maximizes profit under uncertain

demand, and minimizes the cost of operating the aircraft as well as costs

associated with bumping passengers when the demand for seats outstrips

the capacity.

In Table 5.1, we compare the numerical performance of our proposed sGS-

ADMM method against the state-of-the-art solver Gurobi. As mentioned in

previous chapter, although Gurobi is not a specialized algorithm for solving DBA

problem, it is so efficient that it should be a benchmark for any newly-developed

algorithm. When running Gurobi, we set the stopping tolerance to be 1e-5 for
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consistency and input the DBA problem as the usual quadratic programming

problem without any special structure.

sGS-ADMM Gurobi

Data m0|mi n0|ni N Obj Iter Time(s) dy|dȳ Iter Time(s)

assets small 5 | 5 13 | 13 100 1.86e+05 1351 1.23 86 | 697 20 0.16

assets large 5 | 5 13 | 13 37500 5.09e+06 20000 761.06 1752 | 5190 33 17.83

env aggr 32 | 48 69 | 85 5 6.38e+04 501 0.43 501 | 18 23 0.16

env imp 32 | 48 69 | 85 15 1.22e+05 1022 0.50 1022 | 46 25 0.17

env 1200 32 | 48 69 | 85 1200 6.74e+06 5251 24.37 5251 | 630 36 4.66

env 1875 32 | 48 69 | 85 1875 1.05e+07 4800 37.66 4800 | 635 38 7.45

env 3780 32 | 48 69 | 85 3780 2.11e+07 5099 105.69 5099 | 667 39 15.50

env 5292 32 | 48 69 | 85 5292 2.95e+07 5361 156.86 5361 | 707 40 23.94

env lrge 32 | 48 69 | 85 8232 4.58e+07 4611 225.64 4611 | 838 44 37.07

env xlrge 32 | 48 69 | 85 32928 1.83e+08 5633 1389.10 5633 | 1667 39 157.56

phone 1 | 23 9 | 93 32768 2.74e+05 4201 489.65 4199 | 1579 195 573.03

phone 1 1 | 23 9 | 93 1 4.77e+01 157 0.09 64 | 28 12 0.12

4node 256 14 | 74 60 | 198 256 1.25e+04 881 1.48 199 | 45 26 1.92

4node 512 14 | 74 60 | 198 512 1.39e+04 764 1.98 160 | 31 29 4.08

4node 1024 14 | 74 60 | 198 1024 1.64e+04 691 5.17 182 | 14 29 8.39

4node 2048 14 | 74 60 | 198 2048 2.15e+04 763 11.69 138 | 14 28 18.49

4node 4096 14 | 74 60 | 198 4096 3.14e+04 873 26.02 99 | 14 51 65.65

4node 8192 14 | 74 60 | 198 8192 5.05e+04 912 54.08 80 | 10 59 166.00

4node 16384 14 | 74 60 | 198 16384 8.65e+04 839 103.17 71 | 14 54 305.55

4node 32768 14 | 74 60 | 198 32768 1.55e+05 646 178.71 93 | 40 135 1237.64

4node base 1024 16 | 74 60 | 198 1024 1.60e+04 501 4.10 111 | 54 68 17.14

4node base 2048 16 | 74 60 | 198 2048 2.02e+04 501 8.93 163 | 112 49 31.17

4node base 4096 16 | 74 60 | 198 4096 2.85e+04 501 18.15 170 | 160 55 67.81

4node base 8192 16 | 74 60 | 198 8192 4.51e+04 811 65.50 265 | 500 229 535.85

4node base 16384 16 | 74 60 | 198 16384 7.83e+04 931 148.14 234 | 500 156 1390.91

4node base 32768 16 | 74 60 | 198 32768 1.44e+05 1271 419.45 296 | 500 62 695.07

pltexpA2 6 62 | 104 188 | 272 6 6.50e+04 20000 10.35 19968 | 8 25 0.18

pltexpA2 16 62 | 104 188 | 272 16 1.54e+05 20000 14.93 19988 | 104 24 0.27
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sGS-ADMM Gurobi

Data m0|mi n0|ni N Obj Iter Time(s) dy|dȳ Iter Time(s)

stormG2 8 58 | 528 179 | 1377 8 1.83e+07 14401 30.49 14398 | 0 65 0.99

stormG2 27 58 | 528 179 | 1377 27 2.11e+07 8101 26.98 8096 | 0 76 5.44

stormG2 125 58 | 528 179 | 1377 125 3.04e+07 15501 180.01 15494 | 0 98 64.89

gbd 4 | 5 21 | 10 646425 8.21e+08 1211 436.94 1002 | 372 21 167.61

Table 5.1: Comparison of computational result between sGS-ADMM and Gurobi
for two-stage quadratic stochastic programming problem. All the run result are
obtained using single thread. Under the column dy|dȳ, we also record the
number of times y and ȳ are updated twice.

From table 5.1, we could observe that Gurobi is indeed very efficient for solving

the quadratic stochastic programming problems. Overall, we can still say that

our algorithm is on comparable term with Gurobi, and it has better performance

for 15 out of 32 datasets, particularly for the phone and 4node datasets.

5.5.3 Uncapacitated Facility Location (UFL) Problem

(1) Linear UFL problem

In this subsection, we aim to solve some actual data of UFL problems arising from

the literature. We have two benchmark datasets of different scales, namely the

small scale Bilde-Krarup dataset and the large scale Koerkel-Ghosh dataset.

Both of these data instances could be downloaded from the UflLib at http://

resources.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/

index.html. These are all linear UFL problem, i.e. Qj = 0 ∀j = 1, ..., q in equa-

tion (5.6).

We first solve the linear relaxation of the UFL problem by relaxing the in-

tegrality constraint in (5.5), i.e. for all i = 1, ..., p, we replace the constraint

ui ∈ {0, 1} by ui ∈ [0, 1]. Since the nonsmooth objective does not exist in this

case, we would employ the sGS-ALM algorithm to solve the linear relaxation

instead. The numerical results obtained by sGS-ALM will be compared against

Gurobi and reported in table 5.2.
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Next, we solve the SDP relaxation (5.6) of the UFL problem arised from

relaxing the uncapacitated facility location problem (5.5) using sGS-ADMM.

We would compare our numerical results against MOSEK. MOSEK is one of the

state-of-the-art SDP solver for solving general SDP problems. When MOSEK is

employed to solve the dual block angular problem, we input the left hand side

matrix in the constraint without assuming any special structure.

In both tables, we would also report the optimal objective function value of

the original integer problem and the resulting relaxation gap.

Original IP LP relaxation via sGS-ALM LP relaxation via Gurobi

Data m0|mi n0|ni N Obj Obj Gap Iter Time(s) dy|dȳ Obj Gap Iter Time(s)

B1.1 0 | 51 50 | 100 100 23468.00 23372.97 0.40 3639 2.61 0 | 3639 23368.40 0.42 1429 0.12

B1.10 0 | 51 50 | 100 100 21864.00 21193.70 3.07 2358 1.62 0 | 2358 21192.18 3.07 1406 0.12

C1.1 0 | 51 50 | 100 100 16781.00 16038.66 4.42 2021 1.38 0 | 2021 16036.80 4.43 1003 0.13

C1.10 0 | 51 50 | 100 100 17994.00 17150.08 4.69 1427 0.96 0 | 1427 17149.54 4.69 1191 0.16

E1.1 0 | 51 50 | 100 100 15042.00 13877.78 7.74 1461 1.01 0 | 1461 13876.52 7.75 1015 0.16

E1.10 0 | 51 50 | 100 100 14630.00 13324.01 8.93 1511 1.02 0 | 1511 13324.52 8.92 985 0.17

E5.1 0 | 51 50 | 100 100 32377.00 29288.08 9.54 1011 0.70 0 | 1011 29288.97 9.54 1965 0.19

E5.10 0 | 51 50 | 100 100 34086.00 30123.69 11.62 1731 1.17 0 | 1731 30122.65 11.63 2001 0.18

E10.1 0 | 51 50 | 100 100 46832.00 42496.39 9.26 1411 0.95 0 | 1411 42495.70 9.26 2709 0.20

E10.10 0 | 51 50 | 100 100 47449.00 43179.36 9.00 1791 1.18 0 | 1791 43179.42 9.00 2682 0.21

ga250a-1 0 | 251 250 | 500 250 257957.00 257602.28 0.14 2061 10.12 0 | 2061 257618.98 0.13 970 3.03

ga250b-2 0 | 251 250 | 500 250 275141.00 272715.83 0.88 1251 6.14 0 | 1251 272721.53 0.88 3897 3.56

ga250c-3 0 | 251 250 | 500 250 333662.00 322880.36 3.23 1581 7.71 0 | 1581 322884.50 3.23 15500 3.23

ga500a-4 0 | 501 500 | 1000 500 511047.00 510526.04 0.10 2201 90.41 0 | 2201 510382.61 0.13 3073 17.05

ga500b-5 0 | 501 500 | 1000 500 537482.00 533027.15 0.83 1301 53.05 0 | 1301 532968.81 0.84 12685 17.43

ga500c-1 0 | 501 500 | 1000 500 621360.00 602873.29 2.98 1791 74.01 0 | 1791 602860.99 2.98 44632 19.58

ga750a-2 0 | 751 750 | 1500 750 763674.00 762602.53 0.14 3501 320.01 0 | 3501 762520.15 0.15 5504 67.87

ga750b-3 0 | 751 750 | 1500 750 796130.00 789639.63 0.82 1951 182.52 0 | 1951 789618.46 0.82 22224 56.82

ga750c-4 0 | 751 750 | 1500 750 900044.00 875458.52 2.73 1941 183.79 0 | 1941 875565.93 2.72 82495 59.52

gs250a-1 0 | 251 250 | 500 250 257964.00 257647.60 0.12 2601 14.29 0 | 2601 257640.74 0.13 881 2.55

gs250b-2 0 | 251 250 | 500 250 275675.00 273062.38 0.95 1251 6.61 0 | 1251 273034.93 0.96 4271 2.66

gs250c-3 0 | 251 250 | 500 250 333000.00 321994.92 3.30 1621 8.10 0 | 1621 321988.94 3.31 15368 3.42

gs500a-4 0 | 501 500 | 1000 500 511137.00 510439.57 0.14 2001 81.60 0 | 2001 510369.57 0.15 2770 17.76

gs500b-5 0 | 501 500 | 1000 500 538270.00 533107.87 0.96 1361 54.44 0 | 1361 533098.15 0.96 11974 17.90

gs500c-1 0 | 501 500 | 1000 500 620041.00 601950.27 2.92 1731 71.17 0 | 1731 601986.20 2.91 43477 17.68

gs750a-2 0 | 751 750 | 1500 750 763548.00 762632.87 0.12 3851 330.23 0 | 3851 762529.44 0.13 5631 62.84

gs750b-3 0 | 751 750 | 1500 750 796589.00 790041.76 0.82 1751 155.15 0 | 1751 789935.57 0.84 22439 51.68

gs750c-4 0 | 751 750 | 1500 750 901339.00 875326.27 2.89 1951 168.32 0 | 1951 875410.57 2.88 82798 49.20

Table 5.2: Comparison of computational result for the LP relaxation of UFL
problem using sGS-ALM and Gurobi. Under the column dy|dȳ, we also record
the number of times y and ȳ are updated twice. Under the column ‘Gap’, the
relaxation gap is also reported.

109



Chapter 5 Section 5.5

Original IP SDP relaxation via sGS-ADMM SDP relaxation via MOSEK

Data m0|mi n0|ni N Obj Obj Gap Iter Time(s) dy|dȳ Obj Gap Iter Time(s)

B1.1 51 | 51 51 | 100 100 23468.00 23367.68 0.43 1883 3.33 768 | 1883 23296.71 0.73 21 49.71

B1.10 51 | 51 51 | 100 100 21864.00 21192.78 3.07 1911 3.21 379 | 1911 21147.47 3.28 21 48.60

C1.1 51 | 51 51 | 100 100 16781.00 16034.28 4.45 2151 3.82 847 | 2151 16000.42 4.65 30 63.74

C1.10 51 | 51 51 | 100 100 17994.00 17150.73 4.69 1973 3.47 538 | 1973 17113.25 4.89 26 57.58

E1.1 51 | 51 51 | 100 100 15042.00 13876.46 7.75 1969 3.80 586 | 1969 13833.35 8.04 24 53.73

E1.10 51 | 51 51 | 100 100 14630.00 13323.19 8.93 1872 3.64 561 | 1872 13292.16 9.14 31 66.52

E5.1 51 | 51 51 | 100 100 32377.00 29289.55 9.54 1603 3.05 247 | 1603 29223.74 9.74 22 49.99

E5.10 51 | 51 51 | 100 100 34086.00 30122.05 11.63 1854 3.53 365 | 1854 30057.47 11.82 18 43.66

E10.1 51 | 51 51 | 100 100 46832.00 42495.90 9.26 1321 2.52 310 | 1321 42367.00 9.53 20 46.25

E10.10 51 | 51 51 | 100 100 47449.00 43179.16 9.00 1869 3.56 133 | 1869 43082.90 9.20 18 42.99

ga250a-1 251 | 251 251 | 500 250 257957.00 257640.39 0.12 1751 39.20 1570 | 1751 - - - -

ga250b-2 251 | 251 251 | 500 250 275141.00 272733.10 0.88 1646 34.87 1249 | 1646 - - - -

ga250c-3 251 | 251 251 | 500 250 333662.00 322880.76 3.23 1504 31.52 526 | 1504 - - - -

ga500a-4 501 | 501 501 | 1000 500 511047.00 510427.92 0.12 2601 259.07 2150 | 2601 - - - -

ga500b-5 501 | 501 501 | 1000 500 537482.00 532995.96 0.83 2901 282.99 2777 | 2901 - - - -

ga500c-1 501 | 501 501 | 1000 500 621360.00 602860.72 2.98 1796 173.45 809 | 1796 - - - -

ga750a-2 751 | 751 751 | 1500 750 763674.00 762536.78 0.15 3001 765.85 2428 | 3001 - - - -

ga750b-3 751 | 751 751 | 1500 750 796130.00 789652.09 0.81 5601 1402.37 5475 | 5601 - - - -

ga750c-4 751 | 751 751 | 1500 750 900044.00 875561.41 2.72 2197 544.13 1328 | 2197 - - - -

gs250a-1 251 | 251 251 | 500 250 257964.00 257690.01 0.11 2091 45.41 1699 | 2091 - - - -

gs250b-2 251 | 251 251 | 500 250 275675.00 273048.49 0.95 1578 32.31 1263 | 1578 - - - -

gs250c-3 251 | 251 251 | 500 250 333000.00 321990.63 3.31 1707 34.93 736 | 1707 - - - -

gs500a-4 501 | 501 501 | 1000 500 511137.00 510417.22 0.14 3101 313.15 2983 | 3101 - - - -

gs500b-5 501 | 501 501 | 1000 500 538270.00 533119.62 0.96 3401 332.51 3297 | 3401 - - - -

gs500c-1 501 | 501 501 | 1000 500 620041.00 601982.83 2.91 1871 180.30 1002 | 1871 - - - -

gs750a-2 751 | 751 751 | 1500 750 763548.00 762567.38 0.13 3251 829.55 2790 | 3251 - - - -

gs750b-3 751 | 751 751 | 1500 750 796589.00 789952.48 0.83 4601 1154.16 4410 | 4601 - - - -

gs750c-4 751 | 751 751 | 1500 750 901339.00 875413.80 2.88 2608 648.66 1972 | 2608 - - - -

Table 5.3: Comparison of computational result for the SDP relaxation of UFL
problem using sGS-ADMM and MOSEK. Under the column dy|dȳ, we also record
the number of times y and ȳ are updated twice. Under the column ‘Gap’, the
relaxation gap is also reported.

From Table 5.2, we could observe that Gurobi is still very efficient in solving

this kind of problem even if the scale is very huge. However, we should emphasize

that our main focus is not on its LP relaxation, but on the SDP relaxation. From

Table 5.3, we could observe that sGS-ADMM is always the fastest in solving

the SDP relaxation of the UFL problem when compared against MOSEK, as

expected. The runtime is almost 10-20 times faster than that is achieved by
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MOSEK. For the large scale UFL problems, we also tried to use MOSEK to

solve them but they often run out of memory in our machine. In addition,

due to the inefficiency of MOSEK as observed when small scale UFL dataset is

used, we would not report the numerical result of MOSEK for large scale UFL

problem.

(2) Quadratic UFL Problem

In this subsection, we would generate some random quadratic UFL problem

following a procedure mentioned in G
..
unl

..
uk et al. (2007). We first solve the QP

relaxation of these qUFL problems with our sGS-ADMM algorithm and Gurobi

in Table 5.4, and then solve its SDP relaxation with sGS-ADMM and MOSEK

in Table 5.5.

We should take note that MOSEK could not accept the model with both

quadratic objective function value and semidefinite constraint, thus we reformu-

late (5.6) to be a conic programming model with rotated quadratic cone con-

straint. Assuming we can find the Cholesky factorization for each Qj := HT
j Hj ,

we have:

min 〈[0; c], [α;u]〉+
∑q

j=1〈Cj , Sj〉+
∑q

j=1 tj

s.t

 0

u

+

 eT 0T

−Ip −Ip


 Sj

Zj

 =

 1

0

 , j = 1, . . . q;

u− diag(U) = 0, α = 1;

U :=

 α uT

u U

 ∈ S1+p
+ , U ≥ 0, Sj , Zj ≥ 0, j = 1, . . . , q;

yj = HjSj , j = 1, . . . q;

βj = 1,


βj

tj

yj

 ∈ Qj := {x ∈ Rp+2 : 2x1x2 ≥
∑p+2

i=3 x
2
i , x1 ≥ 0, x2 ≥ 0}.

(5.26)
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QP relaxation via sGS-ADMM QP relaxation via Gurobi

Data m0|mi n0|ni N Obj Iter Time(s) dy |dȳ Obj Iter Time(s)

randQUFL-m50-n10 0 | 11 10 | 20 50 83.73 151 0.22 2 | 0 83.73 15 0.26

randQUFL-m50-n20 0 | 21 20 | 40 50 68.11 196 0.10 8 | 0 68.11 17 0.24

randQUFL-m50-n30 0 | 31 30 | 60 50 45.78 411 0.14 11 | 0 45.78 16 0.27

randQUFL-m200-n50 0 | 51 50 | 100 200 73.52 754 0.79 9 | 0 73.52 22 0.38

randQUFL-m200-n100 0 | 101 100 | 200 200 46.97 813 1.06 14 | 0 46.97 21 0.56

randQUFL-m200-n150 0 | 151 150 | 300 200 42.00 773 1.40 21 | 0 42.00 30 1.01

randQUFL-m200-n200 0 | 201 200 | 400 200 38.35 1016 2.29 27 | 0 38.35 27 1.36

randQUFL-m1000-n200 0 | 201 200 | 400 1000 79.85 1665 26.34 14 | 0 79.85 30 5.26

randQUFL-m1000-n500 0 | 501 500 | 1000 1000 47.94 3037 119.68 36 | 0 47.94 41 17.59

randQUFL-m1000-n1000 0 | 1001 1000 | 2000 1000 35.29 2559 233.04 51 | 0 35.29 44 37.79

randQUFL-m1000-n2000 0 | 2001 2000 | 4000 1000 24.95 2056 436.06 58 | 0 24.95 40 73.93

Table 5.4: Comparison of computational result for the QP relaxation of random
large scale QUFL problem using sGS-ADMM and Gurobi. All the run result
are obtained using single thread. Under the column dy|dȳ, we also record the
number of times y and ȳ are updated twice.

SDP relaxation via

sGS-ADMM

SDP relaxation via

MOSEK

Data m0|mi n0|ni N Obj Iter Time(s) dy |dȳ Obj Iter Time(s)

randQUFL-m50-n10 11 | 11 11 | 20 50 83.73 101 0.22 5 | 49 83.73 8 0.81

randQUFL-m50-n20 21 | 21 21 | 40 50 68.11 107 0.14 8 | 50 68.11 8 1.33

randQUFL-m50-n30 31 | 31 31 | 60 50 45.78 173 0.20 37 | 92 45.77 11 3.03

randQUFL-m200-n50 51 | 51 51 | 100 200 73.52 402 0.81 11 | 62 73.52 10 108.46

randQUFL-m200-n100 101 | 101 101 | 200 200 46.97 385 1.60 30 | 50 46.97 15 980.51

randQUFL-m200-n150 151 | 151 151 | 300 200 42.00 469 3.35 34 | 40 42.00 16 3536.43

randQUFL-m200-n200 201 | 201 201 | 400 200 38.35 501 6.13 36 | 34 - - -

randQUFL-m1000-n200 201 | 201 201 | 400 1000 79.85 611 16.59 28 | 24 - - -

randQUFL-m1000-n500 501 | 501 501 | 1000 1000 47.94 1021 109.07 68 | 11 - - -

randQUFL-m1000-n1000 1001 | 1001 1001 | 2000 1000 35.29 791 312.37 80 | 10 - - -

randQUFL-m1000-n2000 2001 | 2001 2001 | 4000 1000 24.95 651 999.62 111 | 0 - - -

Table 5.5: Comparison of computational result for the SDP relaxation of random
large scale QUFL problem using sGS-ADMM and MOSEK. All the run result
are obtained using single thread. Under the column dy|dȳ, we also record
the number of times y and ȳ are updated twice. ‘-’ means that the numerical
experiment is not performed due to the inefficiency.
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Table 5.4 shows that Gurobi is still quite efficient in solving the QUFL prob-

lems, probably because the quadratic objective is diagonal that makes the decom-

position easy. In Table 5.5, our sGS-ADMM algorithm clearly overtakes MOSEK

to be the most efficient algorithm in solving the QUFL problems. Although the

number of iterations required by MOSEK is small, the runtime needed in each

iteration is huge and thus slows down the overall process. For the last five test

instances, we do not run MOSEK due to the inefficiency observed in the smaller

test instances.

5.5.4 Randomly generated problems

To demonstrate the generality and superiority of our algorithm, we conduct

numerical experiment on some randomly generated dual block angular problem

in this section. We have two classes of random data sets, namely the DBA-QP

and DBA-SDP problems.

(1) DBA-QP

Here we generate some random quadratic problems with dual block angular

structure. In particular, we have the following:

θ(x) :=
1

2
〈x, Qx〉 and θ̄i(x̄i) :=

1

2
〈x̄i, Q̄ix̄i〉 ∀i = 1, ..., N,

with the bounds K := Rn+, K̄i := Rni
+ ∀i = 1, ..., N.

We generate A,B by MATLAB command sprand with density 10/n0. Similarly

B̄ is generated with the same command with density 10/ni. On the other hand,

we generate the symmetric positive definite matrices Q and Q̄i by the MATLAB

routine sprandsym(n0,2/n0,1,1) and sprandsym(ni,2/ni,1,1) respectively.

sGS-ADMM Gurobi

Data m0|mi n0|ni N Obj Iter dy |dȳ Time(s) Iter Time(s)

randQP-m10-n20-N10 10 | 10 20 | 20 10 3.523e+02 104 23| 0 0.22 13 0.25

randQP-m50-n80-N10 50 | 50 80 | 80 10 1.806e+03 151 70| 0 0.16 11 0.29
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sGS-ADMM Gurobi

Data m0|mi n0|ni N Obj Iter dy |dȳ Time(s) Iter Time(s)

randQP-m100-n200-N10 100 | 100 200 | 200 10 3.707e+03 283 269| 0 0.59 13 0.99

randQP-m200-n300-N10 200 | 200 300 | 300 10 7.048e+03 374 340| 0 4.10 11 4.48

randQP-m500-n800-N10 500 | 500 800 | 800 10 1.770e+04 335 334| 0 6.56 12 53.51

randQP-m100-n200-N50 100 | 100 200 | 200 50 1.713e+04 810 803| 0 4.09 14 1.53

randQP-m200-n300-N50 200 | 200 300 | 300 50 3.362e+04 959 906| 0 10.88 13 6.60

randQP-m500-n800-N50 500 | 500 800 | 800 50 8.494e+04 791 787| 0 60.33 14 53.87

randQP-m100-n200-N100 100 | 100 200 | 200 100 3.460e+04 973 963| 0 8.70 16 3.18

randQP-m200-n300-N100 200 | 200 300 | 300 100 6.687e+04 1023 1007| 0 30.45 14 15.91

randQP-m500-n800-N100 500 | 500 800 | 800 100 1.688e+05 601 580| 0 13.14 15 130.15

randQP-m100-n200-N200 100 | 100 200 | 200 200 6.897e+04 1169 1156| 0 23.76 18 7.71

randQP-m200-n300-N200 200 | 200 300 | 300 200 1.324e+05 1187 1138| 0 73.10 15 35.29

randQP-m500-n800-N200 500 | 500 800 | 800 200 3.369e+05 859 829| 0 34.37 17 312.68

randQP-m1000-n2000-N200 1000 | 1000 2000 | 2000 200 7.003e+05 1326 1320| 0 156.92 17 2314.25

randQP-m2000-n3000-N200 2000 | 2000 3000 | 3000 200 1.351e+06 916 883| 0 217.22 16 8898.54

Table 5.6: Comparison of computational result between sGS-ADMM and Gurobi
for randomly generated QP problem. All the run result are obtained using
single thread. Under the column dy|dȳ, we also record the number of times y
and ȳ are updated twice.

From Table 5.6, we can observe that Gurobi is no longer the most efficient

algorithm in solving the general DBA-QP problems. This may be due to the

reason that the problem is harder in the sense that quadratic terms Q or Q̄i

is no longer a simple diagonal matrix. In particular, the largest dataset having

402,000 constraints and 603,000 variables is solved within 4 minutes by sGS-

ADMM while Gurobi takes more than 2 hours to achieve the required optimality.

(2) DBA-SDP

We also generated a random data set of semidefinite programming problem with

dual block angular structure. In particular, we have

θ(x) := 0, θ̄i(x̄i) := 0 ∀i = 1, ..., N ;

with bounds K := Sn+, K̄i := Sni
+ ∀i = 1, ..., N ;
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and mappings A(x) :=



〈A1, x〉

〈A2, x〉
...

〈Am, x〉


, Bi(x) :=



〈Bi,1, x〉

〈Bi,2, x〉
...

〈Bi,m̄, x〉


, B̄i(x̄i) :=



〈B̄i,1, x̄i〉

〈B̄i,2, x̄i〉
...

〈B̄i,m̄, x̄i〉


.

We generate the matrix representation of the linear mapping Ai for i = 1, ...,m

using MATLAB routine:

Ai = sprand(n0,n0,0.2); Ai = Ai*Ai’;.

Similarly, the matrix representation of Bi,k and B̄i,k for i = 1, ..., N , k = 1, ..., m̄

is generated using the same routine except with density 5/ni.

sGS-ADMM MOSEK

Data m0|mi n0|ni N Obj Iter dy|dȳ Time(s) Iter Time(s)

randSDP-m10-n20-N10 10 | 10 20 | 20 10 5.222e+03 2375 2369|2375 6.13 9 1.61

randSDP-m50-n80-N10 50 | 50 80 | 80 10 2.327e+05 236 154| 236 8.15 10 6.68

randSDP-m100-n200-N10 100 | 100 200 | 200 10 3.286e+06 212 110| 212 55.81 11 116.40

randSDP-m200-n300-N10 200 | 200 300 | 300 10 1.646e+07 309 165| 309 243.02 12 1109.49

Table 5.7: Comparison of computational result between sGS-ADMM and
MOSEK for randomly generated SDP problem. All the run result are obtained
using single thread. Under the column dy|dȳ, we also record the number of
times y and ȳ are updated twice.

From Table 5.7, we observe that MOSEK is not efficient in solving the general

DBA-SDP problems. Even when there is only 2,200 constraints and 3,300 vari-

ables, MOSEK needs about 18 minutes to reach optimality, which is almost 4.5

times slower than our proposed algorithm.
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Chapter 6
Conclusions

In this thesis, we have proposed several efficient algorithms to solve various

classes of structured optimization problems.

In the first part of the thesis, by making use of the recent advances in ADMM

from the work in Sun et al. (2015), Li et al. (2016) and Chen et al. (2017),

we proposed a convergent 3-block inexact symmetric Gauss-Seidel-based semi-

proximal ADMM algorithm for solving large scale DWD problems. We applied

the algorithm successfully to the primal formulation of the DWD model and

designed highly efficient routines to solve the subproblems arising in each of the

inexact sGS-ADMM iterations. Numerical experiments for the cases when the

exponent equals to 1 and 2 demonstrated that our algorithm is capable of solving

large scale problems, even when the sample size and/or the feature dimension is

huge. In addition, it is also highly efficient while guaranteeing the convergence

to optimality.

In the second part of the thesis, we have designed efficient sGS decomposition

based ADMM methods for solving convex composite quadratic conic program-

ming problems with a primal block angular structure. Numerical experiments

show that our algorithm is especially efficient for large instances with convex

quadratic objective functions. As a future project, we plan to implement our

algorithm for solving semidefinite programming problems with primal block an-

gular structures. Also, it would be ideal to utilize a good parallel computing and

programming platform to implement the algorithm to realize its full potential.
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In the last part of the thesis, we have proposed a distributed sGS decomposi-

tion based ADMM method for solving general convex composite quadratic conic

programming problems with a dual block angular structure. An improvement

that could be made to improve the numerical performance might be incorporat-

ing the semismooth Newton-CG method for solving the subproblem. In addition,

instead of the simple doubly nonnegative relaxations, we could first derive the

equivalence copositive conic reformulation of the UFL problems followed by dou-

ble nonnegative relaxations to tighten the relaxation gap.

There are some open questions that we would like to bring out for discussion.

For example, can we accelerate the sGS-ADMM? If so, what’s the rate of con-

vergence? Overall, we could see that sGS-ADMM as a newly emerging tool has

many potential in application to various optimization model in the literature. In

the future, we would be interested to design decomposed based algorithms for

other optimization problem with special structure, such as staircase and block

triangular structure.
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Mulvey, J.-M. and Ruszczyński, A. (1992). A diagonal quadratic approximation

method for large scale linear programs. Operations Research Letters, 12:205–

215.

Qiao, X., Zhang, H. H., Liu, Y., Todd, M. J., and Marron, J. S. (2010). Weighted

distance weighted discrimination and its asymptotic properties. Journal of the

American Statistical Association, 105:401–414.

Rockafellar, R.-T. and Wets, R.-J.-B. (1991). Scenarios and policy aggregation in

optimization under uncertainty. Mathematics of Operations Research, 16:119–

147.
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