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Abstract

To ensure the system stability of the H;-guaranteed cost optimal decentralized control
(ODC) problem, we formulate an approximate semidefinite programming (SDP) prob-
lem that leverages the block diagonal structure of the decentralized controller’s gain
matrix. To minimize data storage requirements and enhance computational efficiency,
we employ the Kronecker product to vectorize the SDP problem into a conic pro-
gramming (CP) problem. We then propose a proximal alternating direction method
of multipliers (PADMM) to solve the dual of the resulting CP problem. By using
the equivalence between the semi-proximal ADMM and the (partial) proximal point
algorithm, we identify the non-expansive operator of PADMM, enabling the use of
Halpern fixed-point iteration to accelerate the algorithm. Finally, we demonstrate that
the sequence generated by the proposed accelerated PADMM exhibits a fast conver-
gence rate for the Karush—Kuhn—Tucker residual. Numerical experiments confirm that
the accelerated algorithm outperforms the well-known COSMO, MOSEK, and SCS
solvers in efficiently solving large-scale CP problems, particularly those arising from
‘H>-guaranteed cost ODC problems.
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1 Introduction

Numerous complex real-world systems, including aircraft formations, automated high-
ways, and power systems, are comprised of a multitude of interconnected subsystems.
Within these systems, the controller is limited to accessing only the status information
of individual subsystems. To mitigate the computational and communication complex-
ity inherent in the overall control process, the optimal decentralized control (ODC)
problem with structural constraints is employed to stabilize the system while achieving
optimal performance. Given its critical importance, the ODC problem has garnered
significant research interest since the late 1970s [29, 42].

The design of a centralized controller without structural constraints for control
problems such as the linear quadratic regulator, linear quadratic Gaussian, H> and
Hoo control problems typically involves solving algebraic Riccati equations. How-
ever, extending this technique to decentralized control scenarios is challenging due
to the specific sparsity constraints imposed on the gain matrix of the decentralized
controller. Moreover, it is well-established that designing a globally optimal decentral-
ized controller is generally an NP-hard problem [44, 45]. Significant efforts have been
devoted to addressing this complex problem, particularly for special system types such
as spatially distributed systems [32], dynamically decoupled systems [1], weakly con-
nected systems [41], and strongly connected systems [20]. Early approaches focused
on parameterization techniques [6, 15], which later evolved into matrix optimization
methods [40, 47]. While these methods have certain advantages, they are often com-
putationally intensive and do not always guarantee global optimality. Additionally,
they can be particularly resource-demanding for large-scale systems and susceptible to
numerical instability. These limitations underscore the need for alternative approaches
in the design of decentralized controllers.

Recent advancements in convex optimization have shifted the focus of control
synthesis towards finding convex formulations that can be solved efficiently. Vari-
ous convex relaxation techniques, such as those based on linear matrix inequalities,
semidefinite programming (SDP) [43], and second-order cone programming [26], have
become popular for addressing the ODC problems. Additionally, quadratic invariance
(QI) has been identified as a necessary and sufficient condition for ensuring that the set
of Youla parameters is convex [21], thereby guaranteeing the existence of a sparse con-
troller [13, 22, 28, 39]. Recently, the concept of sparse invariance was introduced by
[12] as a method to design optimally distributed controllers and overcome the restric-
tions of QL. However, verifying these invariance conditions can be computationally
expensive, if not infeasible, for practical applications.

To enhance computational effectiveness, more recently, by adapting the inexact
symmetric Gauss—Seidel (sGS) decomposition technique developed in [23, 24] for
solving multi-block convex problems, the sGS semi-proximal augmented Lagrangian
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method was first used by [30, 49] to solve conic programming (CP) relaxation of
the Hy-guaranteed cost ODC problem. This method is effective in maintaining a
decentralized structure while ensuring robust stability and performance. However,
the computational efficiency remains suboptimal, potentially due to the fact that the
algorithm has to compute the projections onto the semidefinite cones twice in each
iteration. Therefore, there is a strong motivation to design a more efficient algorithm
for solving the H>-guaranteed cost ODC problem.

Acceleration techniques play a crucial role in enhancing algorithmic efficiency and
have gained significant attention in optimization and related fields. Inspired by Nes-
terov’s accelerated gradient method [34], Kim [18] introduced an accelerated scheme
of the proximal point algorithm (PPA) to solve the maximally monotone inclusion
problem. This accelerated scheme exhibits a rapid O(1/k) convergence rate for the
fixed-point residual of the corresponding maximally monotone operator, where k
denotes the number of iterations. Notably, solving the maximal monotone inclusion
problem can be equivalently reformulated as finding the fixed point of a non-expansive
operator [3]. A more general Halpern iteration was introduced earlier [16] for approx-
imating the fixed point of a non-expansive operator. Specifically, for a non-expansive
mapping T on the Hilbert space H and a fixed xo € H, the Halpern fixed-point iteration
is given by:

X1 i= Aixo + (1 — AT (xg),

where the stepsizes Ax € (0, 1). Recently, Lieder [27] demonstrated that the Halpern
iteration with stepsizes Ay = 1/(k 4+ 2) achieves an accelerated convergence rate
of O(1/k) for the norm of the fixed-point residual in Hilbert space. The connection
between the Halpern iteration with stepsizes Ay = 1/(k + 2) [16, 27] and Kim’s
acceleration [18] was further explored in [4, Proposition 5]. Moreover, Contreras
and Cominetti in [4, Proposition 2] established that the best possible rate for general
Mann iterations, including the Halpern iteration, in normed spaces is bounded from
below by O(1/k). Consequently, employing the Halpern iteration or Kim’s acceler-
ation appears natural for enhancing the convergence rate of the fixed-point residual.
Following this line of research, an efficient Halpern-Peaceman-Rachford algorithm
was proposed by Zhang et al. [48] for solving the two-block convex programming
problems, including the Wasserstein barycenter problem. This algorithm achieved an
appealing O(1/k) non-ergodic convergence rate concerning the Karush—Kuhn—Tucker
(KKT) residual. Additionally, Kim [18] proposed an accelerated alternating direction
method of multipliers (ADMM) and achieved an O(1/k) convergence rate concerning
primal infeasibility. However, the convergence of these accelerated methods is contin-
gent on specific assumptions, such as the full column rank of the coefficient matrix of
the constraints or the strong convexity of the objective functions [10]. It is important to
note that the CP problem derived from the H»-guaranteed cost ODC problem may not
necessarily satisfy these assumptions. To tackle this issue, we introduce an innovative
accelerated proximal ADMM (PADMM) based on the Halpern iteration for solving
the CP problem. Specifically, proximal terms are integrated to ensure the existence of
optimal solutions to the corresponding subproblems, and the Halpern iteration [27] is
utilized as an acceleration strategy. In comparison to the non-ergodic O(1/+/k) iter-
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ation complexity of the majorized ADMM presented in [5], this paper demonstrates
that the proposed accelerated PADMM achieves a faster O(1/k) convergence rate for
the fixed-point KKT residual.

In this paper, we approximate the ODC problem with an SDP problem by using
a parameterized approach that preserves the block-diagonal structure of the feedback
matrix. Additionally, the stability of the system with parameter uncertainties is guar-
anteed [30]. To enhance the algorithm’s efficiency and minimize matrix operations, we
transform the original SDP problem into an equivalent vector form, and the optimal
solutions are efficiently obtained by using the accelerated PADMM. The contributions
made in this paper to the current literature can be summarized as follows:

(i) We establish an equivalence between the semi-proximal ADMM and the (partial)
PPA. Utilizing this equivalence, we propose an accelerated PADMM by applying
the Halpern iteration to the (partial) PPA. The proposed accelerated PADMM
demonstrates a convergence rate of O(1/k) with respect to the norm of the KKT
residual.

(i) By exploiting the sparsity of the problem data, we introduce a lifting technique to
solve the linear systems of subproblems in the (accelerated) PADMM. This tech-
nique enhances the efficiency of the proposed accelerated PADMM in addressing
large-scale CP problems arising from the ODC problem.

(iii) We implement the accelerated PADMM in C (using the MSVC compiler) and
compare its performance to COSMO [14], MOSEK [31], and SCS [36] in solving
small-medium and large-scale problems' . Extensive numerical results demonstrate
the efficiency and robustness of the proposed algorithm.

The remainder of this paper is organized as follows: In Sect. 2, we first introduce
the generic form of the H-guaranteed cost ODC problem for uncertain systems. We
then relax this problem to a CP formulation. We establish the equivalence between the
semi-proximal ADMM and the (partial) PPA in Sect. 3. Building on this equivalence,
we propose an accelerated PADMM for solving the CP problem. In Sect. 4, we provide
a fast implementation of the proposed algorithm for solving the CP problem. Section
5 presents extensive numerical experiments that demonstrate the superiority of our
algorithm compared to existing methods. Finally, we conclude the paper in Sect. 6.
Notation. The notations used in this paper are defined as follows:

e Let R" denote the n-dimensional real space. The identity operator, denoted by Z,
is the operator on R” such that Zv = v, Vv € R".

e S" represents the set of all n x n real symmetric matrices; S’ , (S'}) is the cone
of positive (semidefinite) matrices in S with the trace inner product (-, -) and the
Frobenius norm || - ||. We may sometimes write X > 0 (X > 0) to indicate that
X e S, (8%). We use ® to denote the Kronecker product of matrices.

e The block diagonal matrix with diagonal entries Aj, Az, ..., A, is denoted by
blkdiag {A|, A2, ..., A,}, and vec(A) denotes the column vector formed by
stacking the columns of A sequentially..

e The vector ¢; € RP*! is defined as having 1 in the kth position and 0 elsewhere.

I we say a problem is of small scale if the number of variables/constraints is less than 5000, medium scale
if the number is between 5,000 and 150,000, and large scale if the number is larger than 150,000.
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e Foraset XY C R", §y is the indicator function for X, i.e., x(x) = 0ifx € X
and 6y (x) = +oo if x ¢ X. For a closed convex set D, the Euclidean projector
onto D is defined by [1p(x) := argmin{||s — x||}.

seD
e The set of fixed points of an operator 7 : X — X is denoted by Fix(7), i.e.,
Fix(7T) :={x e X|x =7 (x)}.
2 Optimal Decentralized Control Problem

In this section, we first introduce the ODC problem and subsequently present an
approximated CP model for the ODC problem.

2.1 Problem Statement

Consider a linear time-invariant (LTT) system with additive disturbance in the following
compact form:

x(t) = Ax(t) + Bau(t) + Biw(?),

(D
z(t) = Cx(t) + Du(t)
with a static state feedback controller
u(t) =—Kx(). 2)

Here, x () € R" represents the state vector, u(t) € R is the control input vector,
w(t) € R denotes the exogenous disturbance, and z(7) € R? is the controlled output.
The matrices A € R"™™" B, € R™! B, € R C ¢ R and D € RI*™
are system parameters. The feedback gain matrix K € R™*" is assumed to have a
decentralized structure, as defined by:

K 0

where K; € R™>Pi fori=1,...,m,and Y ", D; =n.

Assumption 2.1 The state matrix C and control matrix D satisfy C " D = 0, implying
no cross-weighting between the state variables and control variables. And the control
weighting matrix D satisfies D" D > 0, under the standard assumptions that (A, B>)
is stabilizable and (A, C) is detectable.

The objective function associated with the linear systems (1) and (2) is defined as
J = / 20 20, 4)
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We can convert the linear system (1) to the frequency domain by taking the Laplace
transform [2, Appendix C] as follows:

sX(s) —sx(0) = AX(s) + BoU(s) + BiW(s),
Z(s) =CX(s)+ DU(s).

Substituting the Eq. (2) into the above expressions, we obtain

X(s) = (sI — A+ BoK) 'sx(0) + (sI — A+ B,K) " 'BiW(s),
Z(s) = (C—DK)(s[—A+ByK) 'sx(0)+(C — DK)(sI — A+ByK)" ' B W (s).

Hence, the transfer function of the state-space model (1) and (2) with x(0) = 0 is
H(s) = (C — DK)(sI — A+ B,K) 'Bj.

Motivated by the optimal Hj controller parametrization results in Doyle et al. [7],

minimizing the objective function (4) can be converted to minimizing the following

‘H>-guaranteed cost ODC problem:

min ||H(s)|3 = Tr((C — DK)We(C — DK) "), (5)
KeT

where W, is the controllability Gramian matrix related to the closed-loop system, and
7 is the set of all decentralized stabilizing controllers. To ensure the robustness of
the closed-loop system, we assume that the system matrices (A, B») are unknown, but
estimates (A, B,) are available to the control designer. Specifically, we consider

A=A+ A, By =By + Ap,,

where the uncertainty matrices A 4 and A g, are unknown and belong to the following
convex compact set of the polytope type [37], represented as:

M M
U= {<AA, Ap) | (Aa, Apy) =Y E(ALL A Y &i=1, &= 0}-
i=1 i

Here {Al, ..., A¥} and {Al Lo Agz} are known vertex matrices with fixed M >
0.

2.2 An Approximated CP Model of the ODC Problem

For notational convenience, we define the data matrix & and parameter matrix W as
follows:

c’c o Wi Wa
o V4 —— P
<I>._|: 0 DTD:|€S’ W'_|:W2TW3 e SP,
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where Wy € §' ,, W, € RV, W3 € §", p = n + m. The following lemma shows
that under an appropriate convex restriction, the feedback gain matrix K derived from
the parameter matrix W can preserve the decentralized structure, robust stability, and
robust performance, even in the presence of parameter uncertainties.

Lemma 2.1 [30, Theorem 1] Fori = 1,..., M, the function F; : SP — R"*" is
defined as

Fi(W):= EWE" + EWF," + BB/,
where
E :=[Inxn Opxm | € R™P, F;:=[A" =B} ] e R"™*7.

Based on the partition of the decentralized structure of the feedback gain matrix K
defined in (3), we define the set

W= WeSP|Wx=0, F;(W)<0,Vi=12,..., M,

(41 =blkdiag{W1,D], Wi.Dys -+, Wl,Dm}:
Wy = blkdiag{Wz’Dl, Wap,, ..o, W2’Dm} ,
Wl,DieSDf,Wz,DieRDf,Vj=1,2,...,m} )
and
/C::{WJW;HWeW}.
Then,

(a) K € K maintains the decentralized structure as defined in (3).

(b) K € K stabilizes the closed-loop system under parameter uncertainties.

(¢c) K € K gives (®, W) > || H; (s)||%, Vi=1,2,..., M, where |H;(s)|» represents
the Hy-norm with respect to i-th extreme system.

On the one hand, we observe that (®, W) serves as an upper bound for | H (s)||%
according to Lemma 2.1. On the other hand, the block diagonal structure of W; and
W> in (6) can be restricted by the following linear systems:

VWV, =0, j=1,....N, 7

where N = (3m(m — 1))/2, and the matrices V;; € R%'*? and V;; € RV2*?
are provided in Appendix A. Therefore, by introducing slack variables S; € S} ,i =
1,..., M, the design of the controller K inherent in the H,-guaranteed cost decen-
tralized control problem (5) can be relaxed into the following SDP problem:

in (d, W
min ( )

i)
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s.S; + Fi (W) =0,
ViWwvy, =0, j=1,....N,
Wesl, SieSti=1,...,M. (8)

To reduce the heavy cost of matrix multiplication and improve implementation per-
formance, we consider rewriting the above problem in an equivalent vector form. For

2 n? such that

a symmetrlc matrix § € S”, there exists a matrix 7,, € R
svec(S) = T,vec(S) with T,T, = Liut, ©)
2

(n+ )

where the symmetric vectorization operator svec : S” — R is defined as:

-
svec(S) == [s11,v/2s21, -, V28u1, -+ S |-

For ease of notation, we define the following quantities:

p(P+ p(p+ ) n(n+1)

, r =svec(d) e R , b= svec(BlB1 yeR 2

w =svec(W) e R

nntl) p(p2+l) n(n+l)

A, =T(EQEFi+EF,® E)T) cR 7 ,si =svee(S;)) e R 2

. rp+1)
Bl = (Va®@ ViDT, e R ™57 fori=1,... .M, j=1,...,N,

and
T Mn(rHrl) T Mn(n+l) p(p+1)
s=[s1.....sm] eRM 7, Ay =[A],.....,AN] eRY 7 *"7,
T n(n+1) T N o) p(p+1)
bw=[b.,....b] eRM"2", B, =[BL,...,BY] eRZi=viv"5

By combining the properties of the Kronecker product with the Eq. (9), we can refor-
mulate the problem (8) into the following vectorized form:

min 7w

w,s

s.t. Ayw+s+ by, =0,

Byw =0,
pp+1)
wel 2z ,seC, (10)
n n+l) n(n+l) |
where the cone I' C R™ 2 is defined as
n(n+1)
r | a
n(n+1) n(n+l) n(n+1)

and the convex set C € R 2 is denoted byC:=T Lox DT,
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3 An Accelerated PADMM for Solving the CP Model

In this section, we first design the PADMM to solve the dual problem of the approxi-
mated CP model (10). We then establish the equivalence between the semi-proximal
ADMM, including PADMM, and the (partial) PPA. This equivalence allows us to
accelerate the PADMM by applying the Halpern iteration to the (partial) PPA.

3.1 PADMM for Solving the CP Model

The Lagrangian function of the problem (10) is defined by

L(ws; 2, y,04) = —(2,by) — (2 +v,8) +(r — A— ALz — B, y, w),

where the primal variable wg, and multipliers z, y and v, of the problem (10) are
defined as

n(n+1)
z:=1z15...;zml € Z:=RM™—

N
Ly =Dy vl € Y = REIm RN,
rp+l)
vpgi=[Av]eV: =R 2 x Z, wy = [w; s] € V.

The dual of (10), ignoring the minus sign in the objective, is given by

min (Z3 bw)
z,y,Av
T T _
st. Ayz+B,y+A=r, (an
Z +v =0,
pp+D

Ael' 72 ,vel.

To achieve a more compact representation of problem (11), we introduce the linear
operators .4 and B as follows:

Al T0---0

AZ01---0 By 00
A==l T] B =B 0]

. DY . N

AMO00.-.. 1 By 0---0

The adjoints of the linear operators A and 5 are denoted as

«_ A «_ [ By
A_[I:| andB_|:0].
Let b := [by:0] € Z x ), 7 := [r;0] € V, and A* := [A* B*].Then, we can

rewrite problem (11) as the following two-block problem:

min (b, &) + 8 (va)

&,va
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st. A% +vy =F, (12)

rp+l)

where ' =1 "2 xCand& =[z;y] € Zx Y.Giveno > 0, forany (v4, &; wy) €
U:=V x(Zx))xV,we can define the augmented Lagrangian function associated
with the problem (12) as:

- ~ U« S -
Lo(a, &5 wy) = (b, €) +8r(a) + (ws, A€ +va = F) + ZIAE +va = FI%
The KKT system associated with (12) is given by:

0=>h+ .,les,
0€ddr(va) + wy,
0=7F— A% —vy.

Let §2 denote the solution set to the above KKT system. Assuming §2 # {J, we define
the following monotone operator 7°

1;+./~lws
T(va,§:wy) i= | 38r(va) +ws |, V(va, & wy) €U,
7‘—./4*5—1)/\

where 96 (-) denotes the subdifferential of convex function 8 (-). It is evident that
7 is a maximally monotone operator [3, Example 20.26 and Corollary 25.5], and
T-10) =2 #0.

Next, we focus on the design of the algorithm. To enhance computational efficiency,
we categorize the problem into medium-scale problems (Case 1) and large-scale prob-
lems (Case 2), selecting distinct proximal terms accordingly.

Case 1. For medium-scale problems, let 1o and 1] be given positive parameters.
Define

~ Iz 0
So I=G/Lo[ }
0 Iy

where 7z, 7y and Zy, denote the identity operators in Z, ), and V, respectively. The
two-block PADMM for solving medium-scale problem (12) is provided as follows:

Case 2. For large-scale problems, let p2 and w3 be given positive parameters.
Define

AA* 4+ urZz AB*

. 1 A% S/
Q:=cAA +SO—U|: BA* BB + 13Ty

]ZQu+Qd+Q;a

where

& . Iz O _ _loAaB*
S.—a|: 0 M3I:)):|’ Qu.—a|:0 I E
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Algorithm 1 PADMM_2blk

Require: Set ul = (v(/)l, SO, wg) € U to be the initial point.
fork=0,1, .., do

) 1
uf‘*'l = argmin EG(UA,Sk; w?) + =llva — UIZHiIIV
vpeV 2
T S ST .
1
g1 = argmin EU(UIZH,S; wf"'l) + - llE — g%
EcZxY 2 So

end for

and

0, =0 AA* + w2z 0
a- 0 BB* + usTy |

Note that Qg is positive definite. From [23, 24], the self-adjoint positive semi-
definite linear operator sGS(Q) : Z x Y — Z x ) can be defined as

sGS(Q) = 0,9, Q5. (13)

For large-scale problems, solving the linear system involving & poses a significant
challenge. Utilizing the sGS(Q) operator enables the separation of £ into z and y.
Consequently, problem (12) can be solved using the multi-block PADMM provided
in Algorithm 2:

Algorithm 2 PADMM_sGS

Require: Set ud = (v%, 0, yO), w?) € U to be the initial point.
fork=0,1,...,do

K+l _ . koky oy, L k2
vyt =argmin Lo (vy, (25, ),ws)+5||vA—vAllmzv

I)AEV

W = b 4 o (ALK K] 4 o5 — )

k+d _ ; k41 kv kel L k2

$7 = argmin £, 045 G b 4 Sy = 42,7 (14)
yey

Kl _ : K+l [T N ST ky2

2T =argmin Lo (v, (2, ¥ 2);5 wy )+§”Z—Z 15,7 (15)
zeZ

1
k1l _ : K1 k1 gk o L k2
y = argimin Loy @i + Sy =3 g7, (16)

end for
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To simplify notation, we introduce the following proximal operators:

So, for PADMM _2blk,
S1=wmZy and S;:= - a7
sGS(Q) + &), for PADMM_sGS.

This allows us to consolidate Algorithm 1 and Algorithm 2 into the unified PADMM
framework presented in Algorithm 3:

Algorithm 3 PADMM

Require: Set u0 = (U(/)l’ SO, wso) € U to be the initial point.
fork=0,1, .., do

. 1
V! = argmin Ea(vA,Sk;w’s‘HEHvA -3, (18)
vpeV
whtl = wk o (A% K — )
. 1
1 = argmin £, 04 £l 4+ JlE - R, (19)
EeZx)Y

end for

Remark 3.1 The selection of S is fundamentally dependent on the dimensionality
of the problem and the available computational memory (RAM). In our numerical
experiments, for example, the dual problem (12) and the primal problem (10) derived
fromn = 300,m = 2, M = 4 in the ODC problem (5) are classified as large-
scale problems. For such cases, the proximal operator sGS(Q) + 5’(’) is utilized within
the PADMM framework. The large-scale subproblems associated with this proximal
operator are efficiently solved by leveraging the sGS decomposition technique, as
detailed in [23, 24].

3.2 Acceleration of the PADMM Scheme

We define a self-adjoint linear operator S : U — U as follows:

S o )
S = UAAT%-SZ A
A* 07121)

Since S; and S; are self-adjoint positive definite linear operators, by leveraging the
equivalence between the semi-proximal ADMM and the (partial) proximal point
method presented in Proposition B.1 in Appendix B, we can obtain the following
equivalence:
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Proposition 3.1 Consider (v9, £€°, w®) € U and p € R. Then the point (v}, T, w)
generated by the following generalized PADMM (GPADMM) scheme

1 2
ﬁj{ = argmin Ly (vy, £%; w?) + = HUA - U91 H )
'UAGV 2 S]
oF = w4+ o (@h + AL —7),
i} 1 2 0)
ET = argmin L, (v}, & W) + = Hé - ~§OH )
E€ZxY 2 S
Wi £5 wh) = (1= p)). 6% w)) + o}, §F 0
is equivalent to the one generated by the following proximal point scheme
0eT@h EF, )+ 80k —0%, X —£%, wf —u?), e

Wi e wh =0 - p%. &% wd) + oL, T, w)H).

Remark 3.2 For the special positive definite diagonal proximal terms S| = w1Zy
and S = é:o, Eckstein [11] demonstrated that the scheme (20) with p = 1 and a
cyclically equivalent updating rule “v4 — & — w” can be interpreted as a Douglas-
Rachford splitting method for solving the inclusion system 0 € 7. Consequently,
according to [10, Theorem 6], this approach can be then viewed as an application of
the proximal point algorithm corresponding to an inclusion system depending on the
specific splitting form of 7. Here, we focus on the general scheme (20) by providing
a simple yet rigorous proof of the equivalence between GPADMM and the proximal
point algorithm.

To achieve a faster convergence rate, based on the above Proposition 3.1, we adopt
the Halpern fixed-point method to accelerate the proximal point scheme (21). Let p be
a given relaxation parameter in (0, 2] and u# := (v4, &, wy) € U. Then each iteration
in the relaxed PPA (21) can be expressed abstractly as:

ut = Fy(u),
where the operator F, : U/ — U is defined by

Fo) =1 —pu+pS+T) "' Su=u—2- g (L= S+T)"'Su. (22)
Note that

ueFix(F,) & u=(S+ T 'Su & 0eT®w).
Thus,

Fix(F,) = T~ 1(0).
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For notational convenience, the dependence of F on p is omitted in the remainder of
this section.

Since S is a symmetric positive definite linear operator, S~! can be decomposed as
S~! = LLT, where L is a real lower triangular matrix with positive diagonal entries.
We now demonstrate that F' is non-expansive with respect to the induced norm || - || s.
To this end, we define the normalized operator of F, denoted by F:U—>U , as
follows:

Fai):= (1= pli+p (I—i—LTTL)_lzZ —i-2. g : [Z— (I—{-’ZN')_I]IZ, 23)

where 7 = LTTL is a maximally monotone operator by [3, Proposition 23.25].
Similar to [25, Lemma 2.1], it is not difficult to verify that

L'Fu)=FWLu), Yuel. (24)

Proposition 3.2 Given the parameter p € (0, 2], the operator F defined in (23) is
non-expansive. Furthermore, F is non-expansive with respect to the induced norm
I - lls, that is,

IF@w) — F)ls < llu—vls, Yu,vel.

Proof Define the resolvent operator of T asG = @+ ’j:)’l and O :=7 —G. It
should be noted that G is a single-valued and firmly non-expansive operator. By [3,
Proposition 4.4] and p € (0, 2], we have
(Qx — Qy,x —y) = (Qx — Qy, Gx — Gy) + 1 Qx — Qy|?
~ ~ p ~ ~
> 1Qx = QyI* = Z1Qx - I,
which shows that é is %-co-coercive. Then, according to [3, Proposition 4.11], we

know that the mapping F:=T- 2(%)@ is a non-expansive operator.
Now for all u, v € U, it holds from (24) that

IF(u) — F)lls = IL" ' Fu) — L' F(v)||
= |F(L™ ") — F(L™ )|

-1 -1
SIL™u =L v = llu—vls,

where the last inequality follows from the non-expansiveness of F. O

Proposition 3.2 implies that the following Halpern fixed-point iteration can be used
to find a fixed-point in Fix(F):

1 1
k+1 0 k
1] — — . Vk>0. 25
u u+< )F(u) (25)
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Moreover, by considering the definition of F in (22) along with Proposition 3.1, we can
equivalently reformulate the update scheme (25) as the following accelerated PADMM
algorithm.

Algorithm 4 the accelerated proximal ADMM (APADMM)

Require: Choose parameters o > 0, ;g > 0, 1 > 0, up > 0, u3 > 0, and p € (0, 2]. Let operators S
and Sy be defined in (17). Select an initial point ud = (v?l, 50, w_?) eU.
fork=0,1,..,do

_ , 1
9%, = argmin LU(UA,sk;w§)+§||uA —uﬁ\@l (26)

vpeV

by =y +o (A + ) —7)

gk = argmin EU({;];‘, &; 11)?) + %“E - §k||%gz 27
E€eZxY

Ak = ok 4 (1 = pyu®

B S S B Py S8

u
k+2 k+2

end for

Remark 3.3 Algorithm 4 incorporates both the relaxation and the acceleration tech-
niques. Notably, the relaxation parameter p is permissible within the interval (0, 2],
which is a distinguishing feature compared to the classic generalized ADMM [10],
where p is confined to the open interval (0, 2). Moreover, to enhance the performance
of Algorithm 4, our implementation incorporates the restarting strategy discussed in
[33, Section 11.4] and [35, Section 5.1].

We now present the convergence and rate of convergence results for Algorithm 4.

Theorem 3.1 [46, Theorem 2] Assume that T~'(0) # (. Let {uk},fio denote
the infinite sequence generated by Algorithm 4. Then, it holds that limy_, o uf =
710y ?).

Utilizing the results from [27, Theorem 2.1], we establish the following on the rate
of convergence for Algorithm 4.

Theorem 3.2 Assume that T ' (0) # . Let {uk},fio be the infinite sequence generated
by Algorithm 4. Then, the following inequality holds

20|u’ —u*|s

P Yk >0and u* € 771(0).

luf — Fb)|s <

4 A Fast Implementation for Solving the Subproblems of APADMM
In this section, we delineate a fast implementation strategy for solving subproblems
of the APADMM for solving problem (12). This strategy involves varying proximal

operators S> depending on the problem scale.
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4.1 The Projection Onto the Cone I

Within the subproblem (26), the variable A¥ is determined through the following
projection:

_ A — oAl K+ Bk — 4 Lk
A =1 Lo [M (A w? ) , (28)
r-z o+ 1
and the variable o% = [17’1‘; R ﬁﬁ,l] is computed as follows: fori > 1,
k k k
v: —(0ZF + 5
l—}k =TI n(n+1) |:M] ! ( ! l)i| . (29)
1
r—z o+ Ui

4.2 A Lifting Technique for Solving Large-Scale Sparse Linear Systems

To enhance the algorithm’s efficiency, we introduce a lifting technique to solve large-
scale sparse linear systems within the subproblem (27), which is applicable to both
Case 1 and Case 2 as previously discussed.
Case 1. Inthe APADMM iteration scheme with the operator S, = So, the optimality
condition for ék in (27) is expressed as:
e YaNan _laa Lz 74 Tk _ ~
(AA + —So> £ = —S5p&" — — (b + wa> — AW} — 7). (30)
o o o
Note that the computation of A.A* is time-consuming, and even if A is sparse, AA*
becomes dense for problem (12). Therefore, solving the linear system (30) via direct

methods becomes formidable. To mitigate this challenge, we introduce an auxiliary
variable ' = A*EX leading to the following augmented system

A A
A~z || 0 '

This lifting technique effectively circumvents the need to compute AA* and the
matrix-vector product A*EF in the update of A,

Case 2. For large-scale problems, substituting the proximal operator S =
sGS(Q) + 36 into the subproblem (27) reveals that & k= [zk; %1 in Algorithm 4
is analogous to &K1 = [F*1; yk+17 in Algorithm 2. Hence, £¥ can be obtained by
solving (14)—(16) in Algorithm 2 using the sGS decomposition approach. In particular,
from the Eq. (14), y**1/2 is computed by solving

. ]o 1
Y2 = argmin {EIIBI,y + HU P+ Sy - y"nimzy} :
yey ‘
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The optimality condition for this problem implies that y**1/2 is a solution to the
following linear equation

(13Ty + BuB,))y = u3y* — B, HY,

where HY = —r + %wk“ + Ak 1 AT ZK Moreover, the update for z5+! in (15) is
explicitly given by
. o 1
eZ 2 o

o 1
+5||A1z + HY)? + Sz = zknf,mzz} .

From its optimality condition, we know that
1
[(Mz + DIz + AwAl] = ok - [vk“ + ;(bw + 55t + Awa} :

To update z¥*!, we can employ a similar lifting technique as used in (30) to solve the
following linear system:

(2 + DTz Aw | [ZF1] _ [t = 0F 4+ 2w + 59 + AuH) | (35
Al -T T 0 ’

z
where HY = —r + éwk“ + A+ 4 B T yk+1/2 Finally, we obtain y**! similarly
to y¥+1/2 as follows:

(u3Ty + BuB)Y* ! = sy — By HY

where H/ = —r + Luk+! 4 A 4 AT 441,

5 Numerical Experiments

In this section, we present the numerical performance of APADMM in solving ODC
problems for linear time-invariant systems. The APADMM implementation was con-
ducted in C language (using the MSVC compiler) and executed on a workstation
equipped with an Intel(R) Core(TM) i9-10900 CPU@2.80GHz and 64GB RAM.

5.1 Implementation Details
For the ODC problem data (1), matrices A and B, were generated following a normal

distribution with zero mean and unit variance. The matrices C and D were obtained
by generating a random orthogonal matrix to satisfy C'T D = 0. Additionally, the
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matrix By was generated to satisfy F; (W) < Ofori =1, ..., M witha p x p random
positive semidefinite matrix W.

After generating the data, we conducted a performance comparison between
APADMM and several other methods, including GPADMM in (20), sGS_PADMM
[23], and widely-used solvers such as SCS (C source code version 3.2.3), COSMO
(Python interface version 0.8.8 for Julia language), and MOSEK (Python interface).
The sGS_PADMM framework is detailed as follows:

Algorithm 5 sGS_PADMM

Require: Leto > 0, u; > 0, up > 0, u3 > 0, and v € (0, (1 + fo)/Z) be given parameters. Set
ud = (UOA, SO, w?) € U to be the initial point.
fork=0,1,.., do

. 1
£ = argmin Lo (0K, & wk) + 115 — &F)2

E€ZxY 2 sGS(Q)+8)
el koo ] k2
vy = argmin L5 (v, § ,ws)+§|\v/\—v/\\|mlv
UAEV

wé“'l = wé‘ +ar(A*§k+l + UIXH —7)

end for

In the numerical experiments, SCS, COSMO, and MOSEK were employed using
their default settings (as outlined in the respective manuals: COSMO [14], MOSEK
[31], and SCS [36]). For the APADMM, GPADMM, and sGS_PADMM, we utilized
the LDL ' factorization [8] or the mk 1 -pardiso function? to solve the linear systems
from Eqgs. (31) or (32). The updates of A in (28) and v in (29) were computed using
the eigenvalue decomposition implemented in MKL for the projection calculations.
Regarding parameter settings, we choose (o = 1 = p2 = u3 = le-4 for all
three methods, p = 2 for APADMM, p = 1.8 for GPADMM, and 7 = 1.618 for
sGS_PADMM. Additionally, we adopted the penalty parameter o adjustment strategy
from [19]. APADMM, GPADMM, and sGS_PADMM utilized the following stopping
criterion based on the KKT relative residuals, similar to the ones used in SCS.

Err_rel := max {p_res, d_res, ngap} ,
where d_res := max{nf, n]gq} with

ny = I + 2o :
1 4+ max {Ilvk||oo, ||Zk||00}
IAL % + B y* 4+ A% — 7o
L max {[ AL lloo. 1B,] ¥ lloo. 4 Ioc. I lloo}”

ko _
neq_

2 https://www.intel.com/content/www/us/en/docs/onemkl/get- started- guide/2023-0/overview.html.
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and p_res := max {n’z‘, n’j‘, n’;, ) I{laXM{nﬁ,}} with
i=l1,...,
AF —T1 Ak — ¥
[ Fp(p2+1> ( W) oo ' ||wak||Oo

k
)7 = 9 r] = —’
A7 T max [ AF oo, [0k o) YT 14 Byl

k k k
' ”bw +Awwk+sk||oo . ||Ul- — Hrn(n;rl) (Ui —Si)”oo

]7 = . n L=
T max {bulleos sk lloc, lAwwk e} ™

1+ max {[[vf [lo. 15} lloo}

Finally, the relative gap ngqp is given by

|p_obj — d_obj|
1 + max {|p_obj|, |d_obj|}’

Ngap =

where

p_obj := (r, wk), d_obj:=—(*, by).

5.2 Verification of Decentralized Structure

In this subsection, we validate that the feedback gain matrix K constructed from the
solution obtained by Algorithm 4, adheres to the decentralized structure specified in
(3) using the chemical reactor system from [17] as a case study. Additionally, we assess
the stability of the control system. For this experiment, the estimated matrices (A, B»)
and the given matrices (B1, C, D) in the LTI system (1) are defined as follows:

[ —1.38 —0.2077 6.715 —5.676 1000
4| 05814 —429 0 0675 B _|0100
| 1.067 4273 —6.654 5893 [ 7'~ o010 |
| —0.048 —4.273 1343 —2.104 0001
0, 0 0100 00
5679 0 0010 00
Br=11136-3146 | €= 0000 " P=]|10
| 1136 0 0000 01

To introduce robustness, we incorporate noise into the system matrix A with a magni-
tude of +5% of its nominal values and set M = 4 as the number of extreme systems.
The solution W obtained by APADMM, with a relative error Err_rel < le—7, is given
by

1.94008 —0.15198 0 0 0.05891 0
—0.15198 0.09056 0 0 0.05654 0

_ 0 0 0.30031 0.26107 0 —0.17958

W= 0 0 0.26107 0.47226 0 —0.23248
0.05891 0.05654 0 0 0.04935 0

0 0 —0.17958 —0.23248| 0 0.13116
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Fig.1 System response under
the feedback matrix K

The feedback gain matrix K, computed as K = W2T W, 1, is

K:WJWf1:[0'091280'77760 0 0 }

0 0 ‘—0.32737 —0.31129 (33)

which satisfies the decentralized structure requirements. In the simulation, the distur-
bance w(¢) is modeled as an impulse vector. The system responses of all state variables
are depicted in Fig. 1.

The system response depicted in Fig. 1 confirms that the LTI system successfully
maintains robust stability.

5.3 Numerical Results for the Lifting Technique and Acceleration

In this subsection, we demonstrate the effectiveness of the lifting technique for solving
large-scale sparse linear systems, as opposed to directly solving the normal Eq. (30).
Specifically, Table 1 presents the numerical results of the lifting technique, where
PADMM_AA" refers to the result obtained by solving the normal Eq. (30) using
LDL" decomposition directly, and PADMM_Lifting denotes the results obtained by
using the lifting technique.

From Table 1, it is evident that the lifting technique is more than ten times faster
than directly solving the normal Eq. (30). The acceleration becomes increasingly
pronounced as the problem size scales up. This improvement is likely due to the fact
that AA* results in a dense matrix, even if A is sparse. The complexity of the LDL
decomposition is closely tied to the matrix’s sparsity structure, as discussed in [9,
Chapter 4]. Conversely, the lifting technique can avoid calculating AA* and fully
exploit the sparsity of A

Numerical testing also indicates that the restart strategy proposed [33, Section
11.4] and [35, Section 5.1] significantly enhances APADMM’s performance. To deter-
mine an appropriate fixed iteration number for restarting the APADMM algorithm,
we conducted experiments on 30 randomly generated examples, testing various restart
intervals to solve problem (12). As depicted in Fig. 2, setting the restart interval to
58 for APADMM with the operator sGS(Q) + 5(’) considerably reduces both average
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Table 1 Performance comparison between PADMM_AAT and PADMM_Lifting with Err_rel=1e—5

Algorithm n, m, M Iter Err_rel Time (s) Lin_sys time (s)1
test 1

PADMM_AAT (10,5, 11) 993 4.994e—06 3.54e—01 1.59¢—01
PADMM_Lifting (10,5, 11) 941 8.273e—06 1.87e—01 1.59e—02

test 2

PADMM_AAT (30, 15, 11) 1112 9.698e—06 5.22e+01 2.94e+01
PADMM_Lifting (30, 15, 11) 1353 2.521e—06 4.55e+00 1.44e+00

test 3

PADMM_AAT (50,25, 11) 1202 2.674e—06 6.54e+02 2.42e+02
PADMM_Lifting (50,25, 11) 1151 5.278e—06 2.13e+01 9.55e+00

lLin_sys Time refers to the total time spent on solving the linear system

6000

5000 4 1000 1 .

S
8
3

L

3000

5 3000 4
2000 4

Iteration Number
Iteration Number

2000
1000 4

1000 4

T T T T T T T
15 30 40 50 55 58 65 8 90 5 15 18 20 25 35 45 55 65 75

Restart Interval Restart Interval

(a) APADMM with operator sGS(Q) + S, (b) APADMM with operator Sp

Fig.2 Performance of APADMM with various restart intervals

and median iteration numbers. In contrast, for APADMM using the operator S/, the
optimal restart interval is found to be 18.

After setting the restart interval, we compared APADMM against traditional
PADMM-type methods, including GPADMM and sGS_PADMM. Both APADMM
and GPADMM utilized the proximal operator sGS(Q) + 5(’). As illustrated in Fig.
3, the APADMM outperforms both GPADMM and sGS_PADMM, achieving a bet-
ter solution in terms of relative error Err_rel with fewer iterations across various
problem scales. Additionally, GPADMM demonstrated performance comparable to
sGS_PADMM.

To further analyze the impact of different proximal operators on the acceleration,
we summarized the numerical results of APADMM and PADMM in Table 2, with spe-
cific experimental results for each example provided in Table 3. Here, “TB" denotes
the proximal operator Sy, and “sGS" refers to the proximal operator sGS(Q) + 36 As
shown in Table 2, sGS_APADMM exhibits an average iteration step improvement of
46.268% and reduces the average time by 47.378% compared to sGS_GPADMM.
Likewise, TB_APADMM demonstrates an average iteration step improvement of
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e P ) wr{ [ o .1 H 1] e a6 oo
—— GPADMM( o =1.8) APADNMC b <2, 0 — GPADM (0 =1. 8)
—— APADMM( p =2) - [ APADMM (p =2. 0)
"o 100 200 w0 100 o a0 w00 a0 o 200 w0 w60 w00
Tteration Iteration Tteration

(a) n=10, m=3, M=6 (b) n=12, m=3, M=6 (c) n=12, m=6, M=8
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—=— GPADMM(p =1. 8)
—— APADMM(p =2.0)

[ sGS PADI{ « -1. 618)
f—— GPADMM{ p =1.8)
[ APADM( p =2. 0}

2m 0o o s o0 0 500 1000 00 ] 00 100 1500 200 2500
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Fig.3 Performance comparison of APADMM, sGS_PADMM, and GPADMM

25.668% and a time reduction of 26.809% compared to TB_ GPADMM. These findings
highlight that the acceleration technique significantly boosts the efficiency of PADMM
with a more pronounced impact when using the proximal operator sGS(Q) + 5‘(’). One
possible explanation is that the accelerated effect intensifies with larger iteration num-
bers, and PADMM with sGS(Q) + 56 generally requires more iterations.

5.4 Numerical Results for APADMM in Comparison with COSMO, MOSEK, and SCS

In this subsection, we compare APADMM with COSMO, MOSEK (an interior point
method), and SCS in solving the ODC problems of various scales. All ADMM-type
solvers were terminated with a tolerance of 1le—4. For the following tests, the max-
imum number of iterations was set to 25000 for APADMM, SCS, and COSMO for
small and medium-scale problems, and to 10000 for large-scale problems. The results
are summarized in Tables 4, 5, and 6, where the status max_i ter indicates the algo-
rithm stopping due to reaching the maximum iteration steps, solved means that
the solver has successfully solved the ODC problems within the given accuracy, and

memory error denotes that the solver exceeded memory limits, resulting in an
error. Additionally, “obj_bias" represents the absolute difference between the objective
function values obtained by each algorithm and that of MOSEK. Furthermore, “p_abs"
and “d_abs" denote the absolute residual errors, while “p_res" and “d_res" represent
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the relative residual errors (refer to SCS3, COSMO*, and MOSEK? for details on
stopping criteria).

The numerical results in Tables 4, 5, and 6 reveal several key observations: (1)
APADMM is the only algorithm consistently capable of providing solutions within
the specified accuracy and maximal iteration across all problem scales. (2) Compared
to the second-order method MOSEK, while MOSEK efficiently solves small-scale
problems shown in Table 4, its computational time increases significantly with the
problem size. For medium-scale problems shown in Table 5, APADMM outperforms
MOSEK in computation time. Moreover, as shown in Table 6, MOSEK encounters
memory errors when addressing large-scale problems. (3) When compared to the first-
order methods SCS and COSMO, APADMM demonstrates superior performance in
terms of iteration number and computation time. For instance, COSMO fails to achieve
the required accuracy within the maximum iteration for small-scale problems shown
in Table 4, and SCS faces similar challenges with medium and large-scale problems.

6 Conclusions and Future Work

In this paper, we have developed an accelerated PADMM to efficiently solve the
CP problem, which serves as a relaxation of the H»-guaranteed cost ODC prob-
lem. By establishing the equivalence between the (generalized) PADMM and the
relaxed PPA, we were able to accelerate the (generalized) PADMM using the Halpern
fixed-point iteration method, achieving a fast O(1/k) convergence rate. To further
enhance the efficiency of Algorithm 4, we employed the lifting technique for solv-
ing the PADMM subproblems. Numerical experiments on medium and large-scale
CP problems, derived from H;-guaranteed cost ODC problems, demonstrate that the
proposed accelerated PADMM outperforms COSMO, MOSEK, and SCS in terms of
computation time. It is also important to note that the projections in our algorithm
are independent, and we used direct methods for solving the linear systems. In future
work, we will explore the development of a parallel framework for solving the non-
smooth terms and incorporate iterative methods for solving the linear systems into our
algorithm.

Appendix A The Definition of V;; and Vj;

According to the definition of the set W in (6), Wi and W, are m block-diagonal
matrices with ) /* | D; = n. The coefficient matrix for the equality constraints (7)
can be constructed by utilizing the symmetry of Wy and the sparse structure of W,. We
define the matrices {V; }iz;”l to extract the off-diagonal block parts from W and restrict

the corresponding positions are zeros. Specifically, for 1 <i <m — 1, we define the

3 https://www.cvxgrp.org/scs/index.html.
4 https://oxfordcontrol.github.io/ COSMO.jl/stable/.
5 https://docs.mosek.com/latest/fag/index.html.

@ Springer
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Table 6 Performance of MOSEK, SCS, and APADMM for solving large-scale ODC problems

Size of LTI system n=300, m=4 n=350, m=4 n=400, m=5 n=480, m=3
Number of vertices M=6 M=6 M=6 M=4
Size of variable & 305515 415336 546696 539463
Number of cgnstraints 317260 431385 563415 578646
Nonzeos in A* 65652859 104442568 155504316 178508123
MOSEK
p_res 8.6e—14 1.1e—13 1.2e—14 Fkk
d_res 5.1e—07 4.4e—06 2.0e—07 ok
Ngap 9.2e—15 4.le—16 4.0e—15 ok
iter 21 24 21 ok
p_obj 38.1333 6.8503 103.9257 ok
d_obj 38.1333 6.8503 103.9257 ook
total time (s) 1.385e+04 3.574e+04 1.619e+05 ok
status solved solved solved memory error
SCS(direct)
p_abs 6.748¢—03 2.640e—03 1.053e—02 5.524e—03
d_abs 1.410e—05 5.786e—06 2.646e—05 9.562e—06
Ngap 3.904e—01 1.345e—01 5.251e—01 2.594e—01
iter 10000 10000 10000 10000
objective 37.5071 6.5015 102.6840 57.3878
total time (s) 9.27e+03 1.67e+04 2.84e+04 5.94e+04
obj_bias 6.26e—01 3.49e—01 1.24e—01 -
status max_iter max_iter max_iter max_iter
APADMM
p_abs 1.090e—02 6.424e—03 1.042e—02 3.216e—02
d_abs 4.141e—06 6.578e—06 4.701e—06 7.001e—05
Ngap 7.543e—03 6.021e—04 1.953e—02 3.092e—03
iter 1362 1413 1683 1150
p_obj 38.0940 6.7651 103.9076 57.8089
d_obj 38.0865 6.7651 103.8881 57.8120
total time (s) 1.54e+03 2.91e+03 5.87e+03 9.18e+03
obj_bias 3.93e—02 8.52e—02 1.57e—02 -
Status Solved Solved Solved Solved

Entries marked *** indicate failure due to memory limitations

matrices V; as follows:

T T T
e €D+1 €D\ +..Dp_r+1
Vi = , Vo = vee s Vi1 = € RPm-1%p,
T T T
D €D1+D; €Di+..D2+ Dyt

@ Springer
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For i = m, the matrix V), is given by
_,T _ T Ixp
Vimn =€p ypyttp, =€ €R

For k = 1,...,m, Vy4 is a vector whose (n + k)-th element is 1 and all other
components are 0, i.e.,

Virk = [O1xDy. - -. O1xp,,. 0.....1,...,0] e R"*P,
N —’

ity Di=n ntk

The block diagonal structure of Wi and W, in (6), along with the symmetry of Wy,
implies that N = (3m(m — 1))/2 off-diagonal block submatrices of W need to be
zero. Using the defined matrices {Vi}?’:"l, we extract these off-diagonal blocks and
enforce zero through the following linear constraints:

T T
Viwvli=o0,...,viwvl, =0,
ViWVil =0, ViWV,y, =0, i=1,....m—1,

1

and
VaWV,l =0, VWV, =0,i=m.
Next, we divide the index array [1, 2, ..., W’T_l)] into m blocks:
1.2 ... ... w
2] R P , > ’
1 i —
m

where for i-th block, the starting index is

(i—l)(i—2)Jrl

(i —1HQ2m —2) — 5 :

i=1,...,m.

According to the above decomposition, we reorder {V; }?;”1 and construct V;; and V;,
for j =1,..., N. Specifically, we define the matrix V;; as follows

Vi, forj=1,2,...,2m—2,
Vo, forj=2m—1,...,4m —5,

Vit=1:
Vin—1, for j=T+1, ..., T +m,
Vi, forj=L+1, ..., L+m—1,
where
(m —2)(m —3)

T:(m—2)(2m—2)—f,

@ Springer
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-1 -2
L:(m—l)(2m—2)—%.
Foreachs(i)=[i+1, ..., i+@m—1), i+ @m~+1), ..., 2m], the matrix V;; is
defined by
Vs, s forj=1,2,..., 2m—2,
VS(Z)jf(meZ)’ fOI‘j =2m — 1, ..., dm — 5,
Viz=1:
Vs(m—l)j,Ts forj=T+1, ..., T +m,
Vsomyj 1> forj=L+1, ..., L+m—1.

Appendix B The Equivalence of the Semi-proximal ADMM and the
(Partial) PPA

In this section, we establish the equivalence between the proximal point method and
the semi-proximal ADMM, which encompasses the version of PADMM used in this
paper. Consider the following linearly constrained convex optimization problem with
separable objective functions:

r;gi}r} f&)+eg»

(34)
st. Fx+Gy=c,

where f : X — (—o0,+oc] and g : YV — (—o00, +00] are proper closed convex
functions, F : X - Zand G : X — Z are given linear operators, ¢ € Z is given
data, and X', Y and Z are real finite-dimensional Euclidean spaces, each equipped
with an inner product (-, -) and its induced norm ||-|| . The dual problem of (34) can
be written as

max {—(c, 2) = fF(=F"2) — g"(=G"2)}. (35)
The KKT system associated with (34) and (35) is given by

0e€df(x)+ F*z,
0e€dg(y)+3G'z, (36)
0=c—Fx—Gy.

Let £2 be the solution set to the above KKT system. Suppose that £2 # (. Define
af(x)+F*z
Ti(x,y,2) = | 08 +G"z |,
c—Fx—Gy

@ Springer
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then 7; is a maximal monotone operator and ’Z;_l (0) # @.Giveno > 0, the augmented
Lagrangian function associated with (34) is given by:

Lo, y;2)=f(x)+g(y)+{z, Fx+Gy—c)+ % | Fx +Gy —cl*.

Given two self-adjoint linear operators S} : X — X and S : Y — ), define a
self-adjoint linear operator S : X x Y x Z2 — X x YV x Z as follows:

S1
S = oG*'G+ S GF |,
g o~ 17

where 7 is the identity operator on Z. The following proposition establishes the equiv-
alence between the proximal point method and the semi-proximal ADMM.

Proposition B.1 Let S| and S» be two self-adjoint positive semi-definite linear opera-
tors suchthat 9 f (-) + o F*F + 81 and g (-) + 0 G*G + S, are maximal and strongly
monotone, respectively. Consider (x9, yo, ) e dom(f) x dom(g) x Z and p € R.
Then the point (x+, y¥, z1) generated by the following generalized semi-proximal
ADMM scheme (37)

b

1 2
xt = argmin £, (x, yo; )+ = Hx — xo‘
x 2 S

F=4oFxt+6y° -0,

. ) (37)
yt =argmin L, (&, y; 21 + = ”y - yo‘ )
¥ 2 S
Gyt ) =0 -0 0 + et 5120
is equivalent to the one generated by the following proximal point scheme (38)
0e TEH 7HZH +8GT =20 5" =028 =20, a8)

@yt e =0 =%y ) + et 3T 7h.
Proof Sinced f(-)+oF*F+S)anddg(-)+0G*G+S; are assumed to be maximal and
strongly monotone, the objective function of each subproblem in the semi-proximal

ADMM scheme is a proper closed strongly convex function [38, Exercise 8.8 and Exer-
cise 12.59]. Consequently, one can deduce from [38, Theorem 8.15 and Proposition

12.54] that x+ = argmin L (x, yo; ZO) + % ||x —x0 H‘ZSI if and only if
X
0€dfGH+F +o0(FxT+6—0) +Si1xH —xY),

and yT = argmin L, (X", y; z7) + % Hy -0 ||§2 if and only if
Y

0€dg(3)+G*CT +0(Fit +G3T — o) +SGT — 0.
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Hence, (37) is equivalent to

0€dfGH+F L +oFt+6y° =)+ 851G —x0),
T =L 4oFiT+6y° -0,

0€dg(GNH + G G +o(Fxm +G5" — ) + G —y0),
Gt oyt ) =1 =%y )+ pET 5T 2.

(39)

Note that for any (x*, y*, z*) satisfying (39), one has
oG =)= -F G = - FiT - G5T + GG )0,
Therefore, (39) can be recast as

0edfEH +F 7z +8GET—x9),

0€dgGH+G 7+ (G G+ SHGT -y + 6%zt -0,
O=c—Fit =Gyt +6GT -y +o7 1@ - 2",
Gyt e =0 -Gy 0 +pEt 3T 2h,

which is exactly the scheme (38) by the definition of 7; and S. Hence, the point
(x*, yT, zT") generated by the generalized semi-proximal ADMM scheme (37) is
equivalent to the one generated by the proximal point scheme (38). O
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