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Newton and Quasi-Newton Methods for
Normal Maps with Polyhedral Sets1
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Abstract. We present a generalized Newton method and a quasi-
Newton method for solving H(x) := F(nc(x))+x-nc(x) = 0, when C
is a polyhedral set. For both the Newton and quasi-Newton methods
considered here, the subproblem to be solved is a linear system of equa-
tions per iteration. The other characteristics of the quasi-Newton
method include: (i) a g-superlinear convergence theorem is established
without assuming the existence of H' at a solution x* of H(x) = 0; (ii)
only one approximate matrix is needed; (iii) the linear independence
condition is not assumed; (iv) Q-superlinear convergence is established
on the original variable x; and (v) from the QR-factorization of the
kth iterative matrix, we need at most O((1 +2\Lk\ +2\Lk\)n2) arithmetic
operations to get the QR-factorization of the (k+ l)th iterative matrix.

Key Words. Normal maps, Newton methods, quasi-Newton methods,
Q-superlinear convergence.

1. Introduction

Let C be a nonempty closed convex set in Rn, and let F be a continuous
function from Rn to itself. A very common problem arising in optimization
and equilibrium analysis is that of finding a point x that is a solution of the
following equation:
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It is easy to verify that, if H(x) = 0, then the point y := Tlc(x) solves (2);
conversely, if y solves (2), then with x'-=y-F(y), one has H(x) = 0. There-
fore the equation H(x) = 0 is an equivalent way of formulating the varia-
tional inequality problem (2). The function H defined in (1) is in general
nonsmooth.

Recently, many authors have considered Newton and/or quasi-Newton
methods for solving nonsmooth equations and related problems; see, e.g.,
Refs. 2-10 and references therein. For solving the variational inequality
problem, some early methods are Josephy's Newton method (Ref. 4) and
quasi-Newton methods (Ref. 5). At each step, the Josephy methods solve a
linear variational inequality problem defined on the set C. This is a nonlinear
and nonconvex subproblem. Kojima and Shindo (Ref. 6) generalized
Newton and quasi-Newton methods to piecewise smooth equations. For
quasi-Newton methods, they need a new approximate starting matrix when
the iteration sequence moves to a new C1-piece. This may require storing
lots of initial matrices. Ip and Kyparisis (Ref. 3) discussed quasi-Newton
methods directly applied to nonsmooth equations. The Q-superlinear con-
vergence of quasi-Newton methods was established by them on the assump-
tion that the underlying mapping is strongly Frechet differentiable at the
solution (Ref. 11). This is somewhat too restrictive for (1). The results of
Chen and Qi (Ref. 2) are not far from this. Qi and Jiang (Ref. 9) discussed
applications of Newton and quasi-Newton methods for solving semismooth
Karush-Kuhn-Tucker (KKT) equations of a nonlinear programming prob-
lem and established superlinear convergence of the proposed methods
without assuming a strict complementarity condition. Sun and Han (Ref.
10) considered Newton and quasi-Newton methods for a class of nonsmooth
equations and related problems, which includes the general nonlinear com-
plementarity problem, the variational inequality problem with simple bound
constraints, and the KKT system of a nonlinear programming problem. The
quasi-Newton method of Sun and Han needs one approximate initial matrix,
and at each step it solves only a linear system of equations. Furthermore,
for the quasi-Newton method, they discussed how to update the QR-factori-
zation of the present iterative matrix to the QR-factorization of the next
iterative matrix in less than O(n3) arithmetic operations.

In this paper, we generalize the methods developed in Ref. 10 to solve
(1) when C is a general polyhedral set. Since H is piecewise smooth if F is
continuously differentiable and C is polyhedral [even if C is nonpolyhedral,
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where nc is the Euclidean projector on C and H is called a normal map
(Ref. 1). For example, the variational inequality problem defined on C is to
find yeC such that
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H may still be piecewise smooth under some constraint qualification assump-
tion (Ref. 12)], the Newton-type methods developed in Ref. 6 for solving
general piecewise smooth equations can be used directly. Suppose that H is
piecewise smooth with a continuous selection of a family of finitely many
continuous differentiable functions {H 1 \ ieE} such that, for any xeRn,

In order to use the methods developed in Ref. 6 for solving (1), one must
first find an essentially active piece H1, ieE, at a point x (Ref. 13); i.e.,

where for any set SsRn, cl(int{S}) denotes the closure of the interior of
S. This is not an easy task when C is a general polyhedral set. Based on the
work of Ref. 12, in this paper we first modify slightly the Newton methods
developed in Refs. 6 and 8 for solving (1). This modification allows us to
use nonessentially active smooth pieces, making the resulting Newton
method more computable. Based on the modified Newton method and on
Josephy's quasi-Newton methods (Ref. 5), we develop a new quasi-Newton
method. The subproblem involved in the new method is a linear system of
equations, and only one approximate starting matrix is used.

In this paper, we assume that C has the form

where A: Rn-»Rm, B: R n - » R p , aeRm, and beRp. Also, we assume that
rank(B) =p, p<n. We discuss Newton and quasi-Newton methods that use
a linear system of equations as the subproblem per iteration. It is noted that
a linear constrained least-square problem must be solved for obtaining the
projection of a point x over the set C. This computation work cannot be
avoided, since the function value of H at x is needed. We treat this work as
part of the computation involved in computing H(x), rather than that
involved in each subproblem.

The main characteristics of the quasi-Newton method considered in this
paper are as follows:

(i) without assuming the existence of H' at a solution x* of (1), we
establish a Q-superlinear convergence theorem;

(ii) only one approximate matrix is needed;
(iii) the linear independence condition is not assumed;
(iv) g-superlinear convergence is established on the original variable

x;
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(v) from the QR-factorization of the kth iterative matrix, we need at
most 0((1 +2\Jk\ +2|Lk|)n

2) arithmetic operations to get the QR-
factorization of the (k +1 )th iterative matrix; see (38) for the
definition of Jk and Lk.

The rest of this paper is organized as follows. In Section 2, we discuss
some properties of the normal map in (1). A generalized Newton method
and a quasi-Newton method are given in Sections 3 and 4. In Section 5, we
discuss the implementation aspects of Newton and quasi-Newton methods.

2. Basic Preliminaries

Let || • || denote the l2-vector norm or its induced matrix norm. For any
xeRn , let nc(x) be the Euclidean projection of x on C. Since C is of the
form (3), there exist multipliers AeR m , ueRp such that

Let M (x ) denote the nonempty set of multipliers (A, u)eRm x Rp that satisfy
the KKT conditions (4). For a nonnegative vector deRm , let supp(d), the
support of d, be the subset of { 1 , . . . , m} consisting of the indexes i for
which di>0. Denote

Define the family B (x ) of indexes of {1 , . . . , m} as follows: K e B ( x ) if and
only if supp(A) £K£I(x), for some (A, u)e M(x) , and the vectors

are linearly independent. The family B>(x) is nonempty, because M(x) has
an extreme point which yields easily a desired index set K with the stated
properties.

Define

where / is the identity matrix of Rnxn and AK is the matrix consisting of the
rows of A, indexed by K.
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Remark 2.1. The existence of the inverse in (7) comes from the linear
independence of the vectors

Note that, for all P e P ( x ) , we have

These simple facts will be used later.

In the following lemma, part (i) is a consequence of Pang and Ralph
(Ref. 12). For completeness, we prove it here.

Lemma 2.1.

(i) There exists a neighborhood N(x) of x such that, when yeN(x),
we have

B ( y ) < = B ( x ) and P > ( y ) ^ P ( x ) .

(ii) When B(y)£B(x), then Tlc(y) = Tlc(x) + P(y-x), VPe0>(y).

Proof.

(i) According to the definition of P( •), we only need to prove that
there exists a neighborhood N(x) of x such that

If not, then there exists a sequence {y k } converging to x such that, for all
k, there is an index set K k e B ( y k ) \ B ( x ) . Since there are only finitely many
such index sets, if necessary by taking a subsequence we assume that these
index sets Kk are the same for all k. By letting K be the common index set,
we have that the vectors

are linearly independent and there exists (Ak, uk)eM(yk) such that
supp(Ak)£K£I(yk), but K $ B ( x ) . Clearly, A:SI(JC). The only way for
K E B ( x ) is that there exists no (A, u)e M(x) such that supp(A)£K. But we
have

Since yk -> x, and since [ A T , ieK} u (Bj ,j = 1,. . . ,p} are linearly indepen-
dent, it follows that {Ak, ieK} and {uk,j= 1 , . . . , p} are bounded; thus,
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the full sequence {Ak} u {nk} must have an accumulation point which must
be an element in M(x) and whose support is a subset of K. This is a
contradiction.

(ii) When B ( y ) £B(x), from the KKT conditions (4) we know that,
for any P e P ( y ) , there exists K e B ( y ) ^ B ( x ) such that

where

and aK is the vector consisting of the components of a, indexed by K. Thus,

This completes the proof.

By the above lemma, we have

where for any locally Lipschitz continuous function G: Rn -> Rn, dBG(x) is
defined as (Ref. 8)

The equality in (9) does not hold in general. To see this, consider

After simple computations, we have

D
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So,

Ideally, for a given point xeRn, it is better to use an element of dBnc(x)
instead of P(x) to design Newton-type methods for solving (1). However,
it is not easy to compute an element of dBT\c(x), while it is relatively easier
to compute an element of 0>(x). In Sections 3 and 4, we will use P(x) to
design Newton-type methods.

3. Generalized Newton Method

In the following sections, suppose that F is continuously differentiable.
Denote

A generalized Newton method for solving (1) can be described as follows:

Step 0. Given x°eRn.
Step 1. For k = 0, 1 , . . . , choose P k eP(x k ) and compute

Wk := F'(Uc(x
k))Pk + I - P k e W ( x k ) .

Solve the following equation for sk:

Before giving a convergence analysis of the above Newton method, let
us first consider a generalized Newton method for solving piecewise smooth
equations. Suppose that a function G: Rn-»Rn has a continuous selection
of a family of finitely many continuously differentiable functions {GlieE}.
Denote the active set of G at x s Rn by

Given x°eRn, a generalized Newton method for solving the piecewise
smooth equation
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is as follows:

where dk is the solution of the following equation:

If all Gi, ieE(x), are essentially active pieces of G at any xeRn, the conver-
gence analysis of the iteration method (13) was given in Ref. 6. Since not
all active pieces G', ieE(x), of G at x are essentially active pieces of G at x
(see the example in Section 2), and since an essentially active piece of G at
x, which exists by Proposition 4.1.1 of Ref. 14, may not easily be identified,
it is better to use any active pieces of G at x in the algorithm. By noting
that {G i\ieE} is a continuous selection of a family of several continuously
differentiable functions of G, similarly to the proof of Theorem 1 of Ref. 6,
we have the following lemma.

Lemma 3.1. Suppose that x* is a solution of (12). If all
V^e{(G l ) ' (x*) \ ieE(x*)} are nonsingular, then there exists a neighborhood
N of x* such that, when the initial vector x° is chosen in N, the entire
sequence {xk} generated by (13) is well defined and converges Q-super-
linearly to x*. Furthermore, if all (G1)', ieE(x*), are Lipschitz continuous
around x*, then the convergence is quadratic.

We may prove the convergence of the iteration method (11) by showing
that (11) is a special case of (13) in a neighborhood of a solution x* of (1).

Theorem 3.1. Suppose that F: Rn -»Rn is continuously differentiable,
C is of the form (3), and x* is a solution of (1). If all W * e W ( x * ) are
nonsingular, then there exists a neighborhood N of x* such that, when the
initial vector x° is chosen in N, the entire sequence {xk} generated by (11)
is well defined and converges to x* Q-superlinearly. Furthermore, if F' is
Lipschitz continuous around Tlc(x*), then the convergence is quadratic.

Proof. From Lemma 2.1, we know that there exists a neighborhood
N of x* such that

hold for all xeN. Then, for all xeN,
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where c* := Uc(x*) and 0>(x*) is the family of finitely many affine functions
defined in Eq. (7) at x*. By the definition of P( •), it is easy to see that, for
any xkeN and any PkeP(xk), H(xk) and Wk are the value and the Jacobian
of the following function at xk:

Thus, for all xkeN, (11) is a special case of (13). By the assumptions and
Lemma 3.1, the results of this theorem hold.

Since in general P ( x ) = d B T l c ( x ) , and so W ( x ) = d B H ( x ) , the Newton
method established here is slightly different from those in Refs. 6 and 8.
Concerning the assumption of nonsingularity of all W * e W ( x * ) , we have
the following result.

Proposition 3.1. Suppose that V:=F'(Tlc(x)) is strictly positive defin-
ite on

Then, all W e W ( x ) are nonsingular.

Proof. For any W e W ( x ) , there exists an index set K e B ( x ) such that

where

is an element of P(x). Assume that v is such that

i.e.,

D
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Multiplying by (Pv)T both sides of (15), and noting that PT=P and P2 =
P, we have

Therefore,

But

which means that

By (14), (16), and the above formula, we have

Substituting this into (15) gives

which means that W is nonsingular.

Remark 3.1. In Proposition 3.1, we do not need the condition of linear
independence of the vectors

If this linear independence condition is satisfied, then Condition (14) is
equivalent to the Robinson strong sufficiency condition (Ref. 15), which is
implied by the sufficiency condition and the strict complementarity condi-
tion; i.e., there exists no ieI(x) such that Ai=0, where (A, u)eM(x).

In the linear case, Lemma 2.1, Theorem 3.1, and Proposition 3.1 give
the following direct result.

D
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Corollary 3.1. Suppose that F is affine, i.e., F(z) = Mz + c, with
MeRnxn and ceRn, and x* is a solution of (1). If all W * e W ( x * ) are
nonsingular, in particular if M is positive definite, then there exists a neigh-
borhood N of x* such that, when x° is chosen in N, we have

i.e., the iteration ( I I ) will terminate in one step.

4. Quasi-Newton Method

Based on the generalized Newton method established in Section 3, we
describe a quasi-Newton method for solving (I) [Broyden's Case (Ref. 16)] :

Step 0. Given x°eRn, D0eRn x n , an approximation of F(nc(x°)).
Step 1. For k = 0 , 1 , . . . , choose P k e P ( x k ) and compute

Solve

for sk. Set

Remark 4.1. The above Broyden update should be credited to Josephy
(Ref. 5), who solves a linear variational inequality problem defined on C to
get sk.

Theorem 4.1. Suppose that F: Rn -> Rn is continuously differentiable,
x* is a solution of (1), F' is Lipschitz continuous in a neighborhood of
Tlc(x*), and the Lipschitz constant is y. Suppose that all W* e W(x*) are
nonsingular. Then, there exist positive constants e, S such that, when
\\x°-x*\\<e and \\D0-F'(Tlc(x*))\\£S, the sequence {xk} generated by
the above quasi-Newton method (Broyden's case) is well defined and
converges Q-superlinearly to x*.

Proof. From Lemma 2.1 and the nonsingularity assumption of all
W * €W(x* ) , we know that there exist a neighborhood N0(x*) of x* and a



670 JOTA: VOL. 94, NO. 3, SEPTEMBER 1997

positive number /?>0 such that B(x)<=@(x*) and \ \W - 1 \ \<>p for any
xeN0(x*) and any W e W ( x ) . Choose e and 8 such that

for any xeN(x*) := {x\ \\x-x*\\ <e] and any W e W ( x ) . Denote
ek = x k-x*.

We first prove that {x*} is locally Q-linearly convergent. The local proof
consists of showing by induction that

for k = 0, 1 , . . . .
For k = 0, (23) is trivially true. The proof of (24) and (25) is identical

to the proof at the induction step, so we omit it here.
Now, assume that (23)-(25) hold for k = 0, 1,. . . , i-1. For k = i, we

have from Dennis and More (Ref. 17) [also see Lemma 8.2.1 of Dennis and
Schnabel (Ref. 18)] and the induction hypothesis that

From (25) and \\e°\\ < e, we get
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Substituting this into (26), and using (20), gives

which verifies (23).
To verify (24), we must first show that Vi is invertible. From the defini-

tion of Vi, there exists PieP(xl) such that

Denote

Then, W ieW(x l) and

Using (23) for k = i and the Lipschitz condition (18) gives

From (25), \\e°\\<e, and (20),

which substituted into (28) gives

From (21), (29), and (19), we get

So, from Theorem 2.3.2 of Ortega and Rheinboldt (Ref. 11) we have that
V, is invertible and

which verifies (24).
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To complete the induction, we verify (25). From

we have

From Lemma 2.1 and (17), we know that

Therefore,

From (31), (24), (22), (29), and (19), we get

This proves (25) and completes the Q-linear convergence proof.
Next, we prove the Q-superlinear convergence of {x k} under the

assumptions. Let
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From Ref. 17 or the last part of the proof of Theorem 8.2.2 of Ref. 18, we
get

So, from (31), (24), (30), (23), (32), and (19), we have

which means that

This completes the Q-superlinear convergence of {xk}.

When C= Rn, H defined by (1) is essentially equivalent to the function
G defined in Refs. 6 and 3. In Ref. 3, Ip and Kyparisis discussed the conver-
gence properties of quasi-Newton methods applied directly to nonsmooth
equations. For the nonlinear complementarity problem (i.e., C=Rn), they
described the sufficient conditions to guarantee the convergence of the quasi-
Newton method; see Theorem 5.4 of Ref. 3. A restrictive condition in
Theorem 5.4 of Ref. 3 is that

D
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where ij is the rth column of the identity matrix /. This condition restricts
the class F to which Theorem 5.4 of Ref. 3 applies. Here, to guarantee the
convergence of our new quasi-Newton method, we need a nonsingularity
assumption for all W * € W ( x * ) , instead of the existence and invertibility
of H'(x*) as in Ref. 3. For the nonlinear complementarity problem, the
nonsingularity assumption used here is similar to that of Ref. 10.

5. Implementation Aspects

For implementing the generalized Newton method established in this
paper, there is not much difference from the smooth case except for choosing
the iterative matrices. For implementing the quasi-Newton method, there
exist some differences from the smooth case, especially for the factorization
of the iterative matrix Vk. The entire QR-factorization of Vk costs O(n3)
arithmetic operations. If we do this per iteration, then the advantages of
quasi-Newton methods diminish. In this section, we discuss how to update
the QR-factorization of Vk into the QR-factorization of Vk+1 in much less
than O(n3) operations.

Denote

Then,

It is well known that we can update the QR-factorization of Vk into the QR-
factorization of Vk in O(n2) operations; see, e.g., Refs. 19 and 20.

According to the definition of Pk and P k + 1 , there exist K e B ( x k ) and
KeB(xk+1) such that

Denote
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Define

After simple computations, we know that ( D k + 1 - I ) ( P k ~ P k ) is at most a
rank-2|Jk| matrix and (Dk+1 - I ) (P k + 1 ~P k ) is at most a rank-2|Lk| matrix.
But from (35) and (40), we know that

So, we can update the QR-factorization of Vk into the QR-factorization of
Vk+1 in O(2(\Jk\ + |Lk|)n

2) operations; see, e.g., Refs. 19 and 20. Therefore,
we get the following theorem.

Theorem 5.1. The cost of updating the QR-factorization of Vk into
the QR-factorization of Vk+1 is at most 0((1 +2\Jk\ + 2|Lk|)n

2) arithmetic
operations.

In Ref. 21, Marker and Pang proposed the following question: How to
reduce the work to solve the subproblems involved in Josephy's quasi-
Newton methods for solving the variational inequality problem. Theorem
5.1 says that, except for the first step, the subproblem involved in the quasi-
Newton proposed here can be solved by using update technique. This may
reduce greatly the work to solve subproblems.
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