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A Class of Iterative Methods for 
Solving Nonlinear Projection Equations 
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Abstract. A class of globally convergent iterative methods for solving 
nonlinear projection equations is provided under a continuity condition 
of the mapping F. When Fis pseudomonotone, a necessary and sufficient 
condition on the nonemptiness of the solution set is obtained. 
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1. Introduction 

Assume that the mapping F: X c R ~ - - , R  n is continuous and X is a 
closed convex subset of RL We consider the solution of  the following projec- 
tion equations: 

x -  1-Ix [x - F(x)]  = 0, (1) 

where for any y e R " ,  

1-Ix(y) = argmin{xeXI [Ix -Yll }. 

Here, It" II denotes the 12-norm of  R" or its induced matrix norm. It is well 
known (see, e.g., Refs. 1 and 2) that the projection problem (1) is equivalent 
to a variational inequality problem, which is to find x e X  such that 

( y - x ) r F ( x ) > O ,  for a l lyeX.  (2) 

For  any fl > 0, define 

E x ( x ,  f l )  = x - H x [ X  - f lF (x ) ] .  (3) 

1The author would like to thank two referees for their useful comments on this paper and one 
of them, in particular, for bringing Ref. 15 to his attention. The author also thanks Professor 
He for sending him Ref. 23. 
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Without causing any confusion, we will use E(x, ]3) to represent Ex(x, fl). 
It is easy to see that x is a solution of (1) if and only if E(x, fl) =0 for some 
or any 13 > 0. Denote 

X* = { x e X l x  is a solution of (1)}. (4) 

Definition 1.1. The mapping F: R n ~  R n is said to be: 

(i) monotone over a set D if 

[F(x)-F(y)]r(x-y)>>_O, forallx ,  y~D; (5) 

(ii) pseudomonotone over a set D relative to a set Y(c  D) if 

F ( y ) r ( x - y )  > 0 implies 

F ( x ) r ( x -  y) > O, for all x~D, y~ Y. (6) 

Remark 1.1. When Y= D, the pseudomonotonicity of F over a set D 
relative to Yis the usual pseudomonotonicity, and in this case we say directly 
that F is pseudomonotone over D. 

For solving the projection equations (1) and related problems, there is 
a long history in the mathematical programming field; see Refs. 2-4 for 
details. Among the algorithms for solving (1), Newton's method is the basic 
method when the derivative of F exists and is easy to implement. In this 
paper, we will investigate a globally convergent method for solving (1) 
assuming only the continuity of the mapping F. 

When F is monotone and Lipschitz continuous over X, i.e., there exists 
a positive number L such that 

[]F(x)-F(y)l l<_Lllx-yl[,  foral lx ,  yeX,  

Korpelevich (Ref. 5) proposed the following extragradient (EG) method: 

2 k = rlx[x k -  flF(xk)], 

x ~+'  = n ~  [x ~ -  ] 3 F ( ~ ) ] ,  

where f i t (0,  1/L) is a constant. Since the Lipschitz constant is difficult to 
estimate in practice, by introducing an inexact line search to relax ]3 to ]3k 
in the above formulas, Khobotov (Ref. 6), Marcotte (Ref. 7), and Sun 
(Ref. 8) proposed an improved extragradient (IEG) method. The IEG 
method does not need the value of the Lipschitz constant. EG and IEG 
methods have global convergence if Fis  monotone and Lipschitz continuous 
over X (Refs. 5-7). Moreover, in Sun (Ref. 8) a global convergence theorem 
was provided for the IEG method if F is pseudomonotone and continuous 
over X only. For algorithms with strong monotonicity and Lipschitz continu- 
ity assumptions, see Fukushima (Ref. 9) and Pang and Chan (Ref. 3). 
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When F is an affine map, i.e., 

F ( x )  = M x  + c, 

where M e R  "• and c e R " ,  He (Refs. 10-13) and He and Stoer (Ref. 14) 
proposed a class of projection and contraction (PC) methods for solving 
(1). Some of the results of He (Refs. 10-13) and He and Stoer (Ref. 14) 
were also obtained recently by Solodov and Tseng (Ref. 15). The numerical 
results show that PC methods behave much better than the EG method or 
IEG method in linear cases, i.e., F ( x )  = M x  + c. This stimulates us to investi- 
gate such algorithms that not only can compete with the PC methods in 
linear cases, but also behave much better than the EG method or IEG 
method in nonlinear cases. By introducing some parameters, Sun (Ref. 16) 
made a first step toward this. The method introduced by the author of Ref. 
16 behaves promisingly in practice, but the stepsize cannot be proved to be 
bounded away from zero if F is Lipschitz continuous over X. So, a new 
stepsize procedure was introduced in Sun (Ref. 17). Unfortunately, although 
the new stepsize is bounded away from zero under the Lipschitz continuity 
assumption, the corresponding algorithm does not perform as promisingly 
as the algorithm in Sun (Ref. 16) does. In this paper, we propose a class of 
iterative methods, which include the method in Sun (Ref. 16) and a new 
method that not only performs promisingly in practice, but also has the 
property that the stepsize is bounded away from zero under the Lipschitz 
continuity assumption, for solving the projection problem (1). In addition, 
we introduce a practically useful strategy to choose the initial value of flk 

at each step. This strategy can greatly reduce the total number of inner 
iterations. When F ( x ) =  M x +  c and M is a skew-symmetric matrix (i.e., 
M r=  - M ) ,  some of our algorithms were also discussed by He (Refs. l0 
and 12). For linear convergence of descent methods for solving convex 
smooth minimization problem, see Luo and Tseng (Ref. 18). Here, we focus 
our main attention on projection-type methods for the projection problem 
(1) or the variational inequality problem (2). 

In Section 2, we give some preliminaries. In Section 3, we give a class 
of abstract search directions and the corresponding algorithms. In Section 
4, we discuss two forms of search directions which satisfy the requirements. 
In Section 5, we establish a necessary and sufficient condition on the non- 
emptiness of the solution set when F is pseudomonotone. Numerical results 
are presented in Section 6. In Section 7, we give a discussion. 

2. Basic Preliminaries 

Throughout this paper, we assume that X is a nonempty convex subset 
of R n and F is continuous over X. 
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Lemma 2.1. See Ref. 19. If  F i s  continuous over a nonempty compact 
convex set Y, then there exists y* ~ Y such that 

F(y*)r(y-y*)  > O, for all y e  Y. 

Lemma 2.2. See Ref. 20. For  the projection operator 1-Ix(- ), we have: 

(i) [z-Hx(z)]r[y-Hx(z)]<O, when y~X, for all gERn; 
(ii) Ill-Ix(z) -1-Ix(y)l[ < Ilz-yl], for all y, zr 

Lemma 2.3. See Refs. 21 and 22. 
0 defined by 

0(p)  = Ilrlx (x + fld) - x l l / /L 

is antitone (nonincreasing). 

Given x~R" and d~R", the function 

/~>0 

Choose an arbitrary constant q~(0, 1), e.g., 7/= 1/2. When x~X, define 

Imax{r/ ,  1-t(x)/llE(x, 1)112}, 
rl(x) = ( 1, 

if t(x) > O, 
(7) 

otherwise, 

[1 - r/(x)] liE(x, 1)[12/t(x), 
s(x)= 1, 

if t(x) > O, 
(8) 

otherwise, 

where 

t(x) = {F(x) - F(IIx [x-  F(x)])  } rE(x, 1). 

It is easy to see that 0 < s(x) < I. 

Theorem 2.1. Suppose that F is continuous over X and q ~ (0, 1) is a 
constant. I f  S c X \ X *  is a compact set, then there exists a positive constant 
f i < l  such that, for all x6S with s (x )<  1 and fie(0,  &], we have 

{F(x) - F(rlx [x- flF(x)]) } TE(x, fl) 

< [1 -- q(x)] liE(x, fl)ll2/fl. (9) 

In addition, for all x~X\X*  with s(x) = 1, (9) holds for fl = 1. 

Proof. Note  that, for any x~X\X*  with s (x )<  1, we have 

t ( x ) > 0  and r / ( x ) > l - t ( x ) / l l E ( x ,  1)112, 
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which means that ri(x) = 1/. Since S c X \ X *  is a compact set and F is con- 
tinuous over X, there exists a constant go > 0 such that, for all x ~ S, we have 

IllIx [x - F(x)] - x 1[ > So > 0. (10) 

From Lemma 2.3 and (10), for all fie(0, 1] and x e S ,  we have 

I[ x - 1-Ix [x - f lF(x)]  II/ fl >- [[ x - Hx  [x - F(x)] II - ~0. (1 l) 
From the continuity of F, we know that F is uniformly continuous over 
compact sets. So, from (ii) of Lemma 2.2, we know that there exists a 
positive constant 8 <  1, for all x e S  with s (x)<  1 and fie(0, g], such that 

[I F ( H x  [x - f lF(x)])  - F (x )  II < (1 - q)fi0. (12) 

Combining (11) and (12), for all x e S  and fie(0,  t~], we have 

{r(x)  - F ( H x  [ x -  fl F(x )  ]) } rE(x,  fl) 

< [I F(x)  - F ( H x  [ x -  flV(x)]) II lIE (x, fl)II 

<(1 - r/)liE(x, fl)ll2/fl 

= [1 - r/(x)] liE(x, fl)l[2/fl, 

which completes the proof of (9). I f  in addition x eX \ X* with s(x) = 1, then 
from the definition of s(x) we know that 

t (x )<O or t ( x )=[1- r l ( x ) ] [ [E(x ,  1)l[ 2, 

which means that (9) holds for fl = 1. [] 

3. Algorithms and Convergence 

Suppose that g: R" x R~++ ~ R" is a continuous mapping. We will use 
g(x,  fl) as a search direction in this section. The various forms of g(x,  fl) 
will be given in Section 4. First, we describe our algorithm in the abstract 
form of g(x,  fl). 

Projection and Contraction Method. Given x ~  positive constants 
r/, ae (0 ,  1), and 0<A1 <A2<2.  F o r k = 0 ,  1 , . . . ,  i f x k ~ X  *, do the following 
steps. 

Step 1. Calculate ~?(x k) and s(xk) .  I f s ( x  k) = 1, let fl~= 1 ; otherwise, 
determine flk = s(x  k )a  mk , where mk is the smallest nonnegative 
integer m such that 

{ F ( x  ~ ) - F ( H x  [x ~ - s (x  k )amF(x  ~ )l) } TE(x~, s(x k ) a m) 

< [1 - r/(x k)l IlE(x k, s(x  k )am ) [12/(s(x k )am). (13) 
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Step 2. 

Step 3. 

Step 4. 
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Calculate g(x k, ilk). 

Calculate 

pk= E (x k, flg) r g(xk, flk) /llg(x k, flg) ll 2 �9 

Take ~'k6[A~, A2] and set 

gk = x ~ _ yk pkg(x k, fig), 

x k+l = rIx(~Zk). 

(14) 

(15) 

(16) 

Remark 3.1. Theorem 2.1 ensures that  flk can be obtained in a finite 
number  of  trials if s(x k) < 1. When s(x k) = 1, (13) holds for m = 0. 

For  fl > 0, define 

~t(x, fl) = rl(x)liE(x, fl)t[2/fl. (17) 

Theorem 3.1. Suppose that  F,g are continuous over X, XxR~++ 
respectively. I f  X * #  ~ ,  and if  there exists x*~X*  such that  the infinite 
sequence {x g } generated by PC methods  satisfies 

( x k -  x*)rg(x g, fl~) >-E(x k, flk)rg(x k, fig)>- Ilt(X k, ilk), (18) 

then 

Ilx k + i _ x* 112 < I lxk-  x* 112- ~'k(2- ?'k) ~t2(xk, fig)/llg(xk, fig)]12. (19) 

Proof. F r o m  (ii) of  Lemma 2.2 and (18), we have 

ii xk-~ l _ x* II 2 = II I-Ix [x k - ~k Pkg(x k, ilk)] -- X* l[ 2 

< [IX k -- ~/ePkg(x k, ilk) -- X* I12 

= IIx k -  X* 112-- 2~'k pk (X k -  X*)rg(xk, ilk) 

+ ~'~p~ ilg(x k, ,6k)II 2 

- II x k - x* II 2 - 2?'kpkE(x k, flk)rg(x k, ilk) 
2 2 + 7k Pk IIg(x k, flk )I12 

= I tgk-  x*ll 2 -  ~'k ( 2 -  ~'k) 

x [E(x  g, fl~)rg(xg, fl~)]2/l]g(xk , flk)l[ 2 

-< 11 x k _ x* II = - 7'~ (2 - ~'k) ~2(x k /~k) ! IIg(x k fig) 112, 

which verifies (19). []  
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Define 

dist(x, X *) = inf { II x - x* I I Ix* eX*}.  (20) 

Theorem 3.2. Suppose that the conditions of  Theorem 3.1 hold. Then, 
the infinite sequence {x k } generated by the PC method is bounded and 
lim inf~ ~ ~ dist(x k, X*)  = 0. Furthermore, if (18) holds for each x* e X*, then 
there exists 2 e X *  such that x k ~Y~ as k ~ oe. 

Proof. For the sake of  simplicity, we take ~'k = 1. 
From (19) we know that { IIx k -  x* II } is a decreasing sequence. So, the 

sequence {x k } generated by the PC method is bounded and the sequence 
{dist(x ~, X*)} is also bounded. Suppose that there exists a positive constant 
e such that 

Define 

dist(x k, X*) > e > 0, for all k. 

S = {x eX I dist(x, X*) ___ e, IIx - x* II --- Ilx ~  x* II }- 

Then, S c X \ X *  is a compact set and { x k } c S .  From Theorem 2.1, we 
know that there exists a positive constant 6 ___ 1 such that, for all x e S  with 
s(x) < 1 and fie(O, 6], (9) holds. Hence, for each k with s(x k) < 1, we have 

fik>min{a6, s(xk)}. (21) 

From the definition of  s(xk), we know that, if s(x k) < 1, then 

{F(xk)-F(1-tx[x -F(xk)l)}TE(x , 1 ) > 0 ,  = 7, 

and 

s(x ~ ) = (1 - q)tlE(x k, 1)112/{F(x k) --F(IIx[xk--F(xk)l)}rE(xk , 1) 

> (1 - 7/)IIE(x k, 1 )1f/[ lir(x k )ll + IIr(rlx [x k - F(xk)])I1 ]. (22) 

From the continuity of  F and {x k } c S c X \ X * ,  we know that 

inf [[E(x ~, 1)ll >0.  (23) 
k 

From (21)-(23), there exists a positive constant ~ <  1 such that 

f i k > 8 > 0 ,  f o ra l l kwi ths (xk )<l .  

If s(xk) = 1, then ilk = 1. Hence, 

1 > f i k > ~ > 0 ,  for all k. (24) 
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Therefore, 

inf ?r(x k, ilk)~ Ilg(x k, t,O t1 = eo > O, 
k 

which in light of (19) (note that we just take 7k = 1) means that 

i lxk+ 1 _ x *  rl 2_< IIx k - x *  If 2 - r  2 . 

Taking limits in both sides of the above inequality, we can derive a contra- 
diction, since { IIx k -  x* II } is a convergent sequence. So, we have 

lim inf dist(x k, X*) = 0. (25) 

Furthermore, if (18) holds for each x* ~X*, we can conclude that there 
exists 2~X* such that x k ~ 2 ,  as k ~ ~ ,  by the following argument. Since 
X* is closed, (25) and the boundedness of {x k } mean that there exist ~EX* 
and a subsequence {x kj} such that x~J~2 a s j ~  ~ .  Since {Ifxk-~ll} is a 
decreasing sequence and xkJ~2  as j ~  c~, the whole sequence {x k } also 
converges to 2. [] 

When X is of the following form: 

X =  {x~R"ll<_x<_u}, (26) 

where l and u are two vectors of {R u { -  ~ ,  oo } }n, we can give an improved 
form of the PC method. For any x ~ X  and fl >0, denote 

N(x,  f l)= {i](xi=liand (g(x, fl))i>O) or 

(xi = ui and (g(x, fl))i < O) }. 

Denote g•(x, fl) and gs(x, fl) as follows: 

fl))t=~ fl))i, if i~N(x ,  fl), 
(gU(X, 

(0, otherwise, 

(g.(x, i ) ) ;  = (g(x, #))i-(g~(x, t)),, 

Then, for any x * e X *  and x e X ,  

(X-- X*)TgN(x, #) <o, 

which means that 

( x -  x*) TgB (X, i )  ---- (x-- X*) ~g(X, i) .  

So, if in the PC methods we set 

x k + 1 = Fix [x k - 7/k Pkgs (x k, ilk)], 

i = l , . . . , n .  

(27) 

(28a) 

(28b) 

(29) 

( 3 0 )  
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where 

Pk = E (x I', flk) T g(x k, flk) /l[g~(x k , ilk)[I 2 , 

then the convergence Theorems 3.1 and 3.2 hold for the improved PC 
method. In practice, we use the iterative form (30) whenever X is of the 
form (26). When X is a general convex polyhedral set, we cannot give similar 
definitions of gN and gB. 

4. Search Directions 

In this section, under some conditions, we give two forms of search 
directions which satisfy the assumptions of Theorems 3.1 and 3.2. 

For any fl > 0, define 

g(x, fl) = F ( H x [ x -  flF(x)]) 

or  

g(x, fl) = F(Hx  [ x -  f lF(x)l) - F(x)  + E(x ,  fl)/[3. 

(31) 

(32) 

The form (31) is a modification of the extragradient (Ref. 5) and was used 
as a search direction by Sun (Refs. 16 and 17). The form (32) first appeared 
in Sun (Ref. 17) as an auxiliary vector function to obtain a new stepsize for 
the algorithm proposed by Sun (Ref. 16). Recently, Solodov and Tseng 
(Ref. 15) and He (Ref. 23) also considered the form (32) (including its 
extension) as a search direction to obtain a new globally convergent method 
for monotone variational inequalities. An Armijo-type inexact line search 
was also introduced in both Solodov and Tseng (Ref. 15) and He (Ref. 23), 
but no global convergence theorems were provided without assuming the 
Lipschitz continuity of F. 3 

Theorem 4.1. Suppose that F is continuous over X, that X* is non- 
empty, and that g(x, fl) is of the form (31) or (32). If F is pseudomonotone 
over X relative to x* ~X*, and if there exists fl > 0 such that (9) holds for 
some x e X \ X * ,  then 

( x -  x*)rg(x, fl) >_E(x, fl)rg(x, fl) > W(x, fl). (33) 

Furthermore, if F is pseudomonotone over X relative to X*, then (33) holds 
for all x*eX* .  

3Such theorem was given by Solodov and Tseng in a revised version of their paper (Ref. 15). 
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Proof. Since F is pseudomonotone over X relative to x* eX*,  for all 
z ~ X  we have 

( z -  x*)rF(z )  >_ O. 

In particular, we have 

{l-Ix I x -  f i r (x) ]  - x*} rE(l-Ix Ix - f i r (x)] )  > 0. (34) 

First, we consider the case where g(x, fi) takes the form (31). Considering 
(34), we have 

( x -  x*)Tg(x, fi) 

= ( x -  x*) rr(1-Ix Ix - f i r (x )] )  

= E ( x ,  f i)rg(x,  fi) + {1-Ix I x -  f i r ( x ) ]  - x*} r r ( U x  I x -  f i r (x )] )  

>_E(x, f l)rg(x,  fl) 

= E(X, f i)r{r(1-Ix I x -  f r ( x ) ] )  - F(x)} + E(x ,  f i ) rF(x)  

_> -[1 - q(x)] tiE(x, fi)112/fi + E(x ,  f i ) rF(x) ,  

where the last inequality follows from (9). By taking z = x -  f iF(x)  and y = 
x in (i) of  Lemrna 2.2, we have 

f iE(x ,  fi)TF(x)>_ liE(x, fi)II 2, 

which means that 

( x -  x*)T g(x, fi) >_E(x, fi) g(x, fi) 

> - [ 1  - q(x)] liE(x, fi)IlZ/fi + liE(x, fi)tlZ/fi 

= rl(x)liE(x, fi)112/fi 

= f i ) .  

Next, we consider the case where g(x,  fi) takes the form (32). By taking 

z=x-flF(x) and y=x* 

in (i) of  Lemma 2.2, we have 

{x* - Fix I x -  f i r (x ) ]  } r { x -  f i r ( x )  - 1-Ix Ix - f i r (x) ]  } < 0. 

By rearrangement, we have 

(x - x* ) rE(x ,  fl) >_ fi {l-Ix Ix - f lF(x)] - x*} r r ( x )  + liE(x, fl)II 2. 
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Therefore, 

(x-  x*)Tg(x, /3) 

= ( x -  x * ) r r ( H x [ x - / 3 F ( x ) ] )  

- (x - x*)rV(x)  + ( x -  x*)rE(x, /3)/ /3 

>_ (x-  x*)TF(1-Ix Ix--/3r(x)]) - (x -  x*)rF(x) 

+ {I-Ix Ix-/3F(x)] - x* } rF(x) + II E (x, fl)112//3 

= E(x , /3 ) rF(Hx  [x - /3F(x)])  

+ {rlx [x - /~r (x) ]  - x* }V(nx Ix-/~V(x)]) 

- E ( x , / 3 ) r F ( x )  + liE(x,/~) 112//L (35) 

Substituting (34) into (35) gives 

(x-x*)~g(x, ~) 

> E(x , /3)TF(I Ix[X- /3F(x) I )  - E ( x , / 3 ) T F ( x )  + tiE(x,/3) 112//3 

=E(x,  fl)r g(x, /3). 

Substituting (9) into the above formulas, we have 

(x-  x*)Tg(x, ~) >_E(x, ~)Tg(x, ~) 

= E (x,/3)r {F(nx  I x -  flF(x)]) - r(x)} 

+ liE(x,/3)llz/fl 

>_ - [ 1 -  O(x)] liE(x,/3) l[2/fl + liE(x,/3) [12//3 

= rl(x)liE(x, fl)112/fl 

= q , (x , /3 ) .  [ ]  

Remark 4.1. Assume that F(x)  = M x  + c and that M is skew-symmet- 
ric, i.e., M T= - M .  If g(x, 13) takes the form (31), then 

/3k = 1 and g(xk , /3k )=MrE(x  ~, 1 ) + ( M x k + c ) ,  

which means that, for linear programming (translated into an equivalent 
linear complementarity problem), our method reduces to the same discussed 
by He (Ref. 10). Ifg(x,/3) takes the form (32), then 

f lk=l  and g (xk , / 3k )=M r E (x  k, 1)+E(x  k, 1), 

which also appeared in He (Ref. 12). 
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Remark 4.2. Assume that F is Lipschitz continuous over X. Then, in 
the PC method, by taking the form (32), we can easily prove that Pk is 
bounded away from zero (under the Lipschitz continuity assumption, fl~ is 
bounded away from zero); by taking the form (31), we cannot prove such 
conclusion. 

Remark 4.3. From the last part of the proof of Theorem 4.1 we know 
that, under the conditions of Theorem 4.1, (33) holds for all x r  if we 
take form (32). So, if in this case we set 

x k+ J = x  k -  )'kP~g(x k, ilk), (36) 

then the convergence theorems also hold. Considering the forms (15) and 
(16), we know that, in (36), one projection step is saved per iteration. So, 
from the theoretical point of view, it is more suitable to use form (36). But 
according to our computational experience, we suggest to use the iterative 
forms (15) and (16) in practice. 

5. Existence of Solutions 

When F is continuous and pseudomonotone over X, there exist some 
results on the existence of the solutions of Eq. (1); see Harker and Pang 
(Ref. 2). Here, we give a necessary and sufficient condition on the existence 
of solutions. 

Theorem 5.1. Suppose that g(x, fl) takes the form (31) or (32). If F 
is continuous and pseudomonotone over X, then X* ~ ~ if and only if some 
or any sequence {x * } generated by PC methods is bounded. 

Proof. We just discuss the case where g(x, t )  takes the form (31). The 
proof on taking the form (32) is similar. 

When X * ~ ,  then from Theorems 3.2 and 4.1, any sequence {x k} 
generated by the PC method is bounded. 

For the converse part of the theorem, we suppose that there exists a 
bounded sequence {x k } generated by the PC method. From the boundedness 
of {x k } and the continuity of F, there exists a positive constant r such that 

Ilx~ I[_<r, IlF(xg)lf<r, for all k. 

From (ii) of Lemma 2.2, for all k and fl~[0, 1], we have 

IIHx[X k -  f lF(xk)] I1 < 2r. 
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Choosing an arbitrary fixed vector veX,  define 

Y= {xeR"l  IlxlL < 2 r +  Ilvll} n X .  

Then, Y is a nonempty compact convex set and, for all k and fie[0, 1], we 
have 

1-Ir[xk--/3F(xk)]=Hx[Xk--f iF(xk)],  for all fie[0, 1], (37) 

x k+' = H x [ x  k -  YkPkg(X k, fiX)] = H y [ x  k -  7kPkg(X k,/3k)]. (38) 

For any x e Y and fl > O, define 

= Imax{r/,  1 - 7  (x)/ l lEr(x,  1)112}, 
O(x) (1, 

g(x)={[ll,-fl(x)ll,Ey(x, 1)tl2fi (x), 

and 

where 

if ~ (x) > O, 

otherwise, 

if t (x) > 0, 

otherwise, 

~(x,/3) = 0(x)IIEy(x,/3) 112//3, 

T (x) = {F(x) - F ( H r [ x - F ( x ) l ) } r E r ( x ,  1). 

For each k, if g(x k) = 1, let flk = 1 ; otherwise, determine flk = ~(X k)a mk, where 
mk is the smallest nonnegative integer m such that 

{ F(x  k ) - F(H r[X k - g(x k )amF(x k )1) } TEr(Xk ' g(X k ) a m) 

< [1 - r/(x k)] IIEr (x k, ~(x k) a")112/(S(x k) a"). 

From (37), we know that 

O(x ~) = o(xk), 
and for all fie[O, 11, 

Ey(x  k, f i ) = E x ( x  k, fi). 

Therefore, for all k, we have 

flk ~/3k" 
Define 

g(x k) =s(xk) ,  (39) 

g(x, fi) = F ( H r [ x -  fiF(x)l),  

)k=Er(x k, L )rg(X k , flk)/][~(x k , flk)]l 2 . 

(40) 

(41) 
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Then from (37) and (39)-(41), we have 

g(x k, i lk)=g(x  k, ilk) and ~k=pk.  (42) 

Hence, from (38) and (42), we have 

x* + 1 = Hx [x k - yk pkg(x k, ilk)] 

= 1-Ir[x k - YkPkg(x k, ilk)] 

= r l y [ x  k - 7 k P k # ( X  k, /~k)] ,  

which means that {x k } can be regarded as a sequence generated by applying 
the PC method to solve 

Er(x ,  1) = 0. (43) 

Since Y is a nonempty compact convex subset of  R n, from Lemma 2.1 and 
Eaves (Ref. 1), we know that the solution set, 

Y* = {Y~ YI Y is a solution of  (43)}, 

is nonempty. According to Theorems 3.2 and 4.1, there exists x*e  Y* such 
that 

x k ~ x*, as k ~ oo. 

Since x*e  Y* and ve Y, from Eaves (Ref. 1) we know that 

r ( x * ) r ( v - x * )  >_0. 

Since v is an arbitrary fixed point of  X and x* is the limit point of  {xk}, 
we have 

F(x*) r(x - x*) > 0, for all x eY. 

which again from Eaves (Ref. 1) means that Ex(x*,  1)=0 ;  i.e., X* is non- 
empty and x* ~X*. [] 

Remark 5.1. When X is of  the form (26), Theorem 5.1 also holds for 
the improved PC methods. The proof  is similar and the details are omitted. 

Remark 5.2. The procedure introduced here can be used to give a 
positive answer to an open problem proposed by He and Stoer (Ref. 14). 

6. Numerical Experiments 

In the following examples, we take 7/= a =0.5 and A1 = A 2  = 1.95 (the 
algorithms behave better when )'k approaches 2.0). We use q~(x, 1)= 
F(x)TE(x, 1 ) ~  E 2 [note that q~(x, 1)> liE(x, 1)If 2, for all x~X]  as a stopping 
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criterion, where E is a small nonnegative number. The projection and con- 
traction method for solving nonlinear projection equations with forms (31) 
and (32) is abbreviated as NPC1 and NPC2 respectively. The projection 
and contraction method for solving linear projection equations by He (Ref. 
10) is abbreviated as LPC. In the above algorithms, we use the improved 
search direction gB (x,/3) instead of g(x,/3). Here, we do not list the results 
of EG and IEG methods, since we know from Sun (Ref. 16) that in general 
EG and IEG methods cannot compete with PC methods. 

Example 6.1. This example, discussed by Ahn (Ref. 24), is of the form 
F(x)  = Dx + c, where c is an n-vector, D is an n x n nonsymmetric matrix, 

Take 

"4 

1 

D =  

- 2  

4 - 2  

1 4 - 2  

- 2  

1 4 

X =  [l, u], l= (0, 0 , . . . ,  0) r, u = (1, 1 . . . . .  1) T. 

Take E2=nl0 -14, where n is the dimension of the problem. See Table 1. 

Example 6.2. This problem was discussed by Sun (Ref. 16). Consider 

F ( x ) = F I ( x ) + F 2 ( x ) ,  x - ~ - ( X l  . . . . .  X n )  T, X o = X n + l  = 0 ,  

F l ( x ) = [ f l ( x ) , . . .  ,f~(x)] r, FE(X)=Dx+c, 

f i (x )  2 xZ + xi_lxi+ i= 1, n, = X i _  1 "~- X i X i +  1 ~ �9 . . , 

and D and c are the same as those of Example 6.1. Take 

x=[l,u], t=  (0, 0 . . . .  ,0) ~, u=(1 ,  1 , . . . ,  1) T. 

Take e z= q l0  -14, where n is the dimension of the problem. See Table 2. 
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Table 1. Results for Example 6.1, starting point (0, 0 , . . . ,  0). 

Number of iterations (left) and inner iterations (right) 

Algorithms n = 10 n = 50 n = 100 n = 200 n = 500 

LPC 39 - -  39 - -  39 - -  39 - -  39 - -  
NPC1 19 13 16 6 15 5 17 9 16 11 
NPC2 16 8 17 11 14 4 14 4 13 4 

Table 2. Results for Example 6.2, starting point (0, 0 . . . . .  0). 

Number of iterations (left) and inner iterations (right) 

Algorithms n = 10 n = 50 n = 100 n = 200 n = 500 

NPC1 9 0 9 0 9 0 9 0 10 2 
NPC2 9 0 9 0 9 0 10 0 10 0 

7. Discussion 

In this paper,  a class of  globally convergent algorithms for solving 
nonlinear projection equations (1) is provided. Here, the convergence rate 
of  the given methods is not discussed, since we think that the best conver- 
gence rate is Q-linear. The basic reason for this is that the derivative of  
F is not assumed. However,  the methods given here can converge to the 
neighborhood of  the solution set very fast. In practice, when the iterative 
point is far away from the solution set, the PC methods can be used to make 
the iterative sequence reach the neighborhood of  the solution set; when the 
iterative sequence approaches the solution set close enough, more rapid 
locally convergent methods,  such as the Newton and quasi-Newton methods, 
can be used. For  the Newton and quasi-Newton methods for solving Eqs. 
(1), see Ref. 4 and references therein for details. 

In Section 4, two forms of  search directions are given to satisfy the 
requirements. In fact, more  search directions can be given. For  example, a 
convex combinat ion of  the forms (31) and (32) is also a suitable choice. For  
various forms of  the search directions for solving linear projection equations, 
see He (Refs. 10-13) and He and Stoer (Ref. 14). As an extension of  the 
search directions used in this paper, we can set 

g'eW(x, fl) = G- l  g(x,  fl), 

where G is an arbitrary symmetric positive-definite matrix. To choose a 
suitable G is useful, but difficult in theory. 

F rom the computat ional  experiments presented here, there is not too 
much difference between choosing (31) and (32). But, when F is Lipschitz 
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continuous over X, the stepsize is bounded away from zero if we take the 
form (32), and this result does not hold for the form (31). 
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