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Rank Feasibility Problem
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Let A be a linear operator from ℜm×n (assuming m ≤ n) to ℜp, b ∈ ℜp

be a vector and Q ⊆ ℜp be a closed convex cone. One may ask the
following question:

Does there exist a matrix X ∈ Ω := {X ∈ ℜm×n | A(X) ∈ b + Q} such
that X ∈ Ω ∩ Mr? Here Mr := {X ∈ ℜm×n | rank(X) ≤ r}?

We use σ1(X) ≥ σ2(X) ≥ . . . ≥ σm(X) to denote all (nonnegative)
singular values of X. Define

sk(X) :=
k

∑

j=1

σj(X) − a convex function

The function sk(·) is called Ky Fan’s k-norm and the nuclear norm of X
is ‖X‖∗ := sm(X).
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Fact : rank(X) ≤ r ⇐⇒ σr+1(X) = 0 .
The above Rank Feasibility Problem is equivalent to checking if there is
a global solution whose optimal value is zero for each of

min pr(x) := σr+1(X) + . . . + σm(X) [or σr+1(X)]
s.t. X ∈ Ω;

min
1

2
‖A(X) − b − ΠQ(AX − b)‖2

s.t. rank(X) ≤ r;

min
1

2
‖A(X) − b − ΠQ(AX − b)‖2 + pr(X)

s.t. X ∈ ℜm×n .



Rank Optimization Problem
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In applications, we not only seek a feasible point with a prescribed rank,
but also want to find a best one, measured by some merit function
f : ℜm×n → ℜ. That is, we consider the Rank Optimization Problem

min f(X)

s.t. A(X) ∈ b + Q ,

rank(X) ≤ r.

Here f can be a smooth function (not necessarily convex) plus a
(simple) convex function. For simplicity in discussions, let us assume
that f is continuously differentiable.
One situation can be stated as follows: we may have an initial point X0

which is not feasible. Then we may set f(X) := ‖X − X0‖2/2 in order
to project X0 onto the set Ω ∩ Mr.
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To get an optimal low rank matrix dates back to E. Schmidt [Math.
Ann. 63 (1907), pp. 433–476] and C. Eckart and G. Young
[Psychometrika 1 (1936), pp. 211–218]:

min
1

2
‖X − Z‖2

F

s.t. rank(X) ≤ r

admits an analytic solution for a given Z ∈ ℜm×n:

X∗ =

r
∑

i=1

σi(Z)uiv
T
i ,

where Z has the following singular value decomposition (SVD):

Z = U [diag(σ(Z)) 0]V T , σ1(Z) ≥ σ2(Z) ≥ . . . ≥ σm(Z) ≥ 0 .



A model from quantitative finance
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For an example, let us focus on the following rank constrained
correlation matrix problem

min
1

2
‖H ◦ (X − G)‖2

F

s.t. Xii = 1, i = 1, . . . , n , (all diagonals are ones)

Xij = eij , (i, j) ∈ Be , (fixed off diagonals)

Xij ≥ lij, (i, j) ∈ Bl , (lower bounds)

Xij ≤ uij, (i, j) ∈ Bu , (upper bounds)

X ∈ Sn
+ , (covariance matrix)

rank(X) ≤ r , (rank)

(1)

where Be, Bl, and Bu are three index subsets of {(i, j) | 1 ≤ i < j ≤ n}
satisfying Be ∩Bl = ∅, Be ∩Bu = ∅, and lij < uij for any (i, j) ∈ Bl ∩Bu.
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Here Sn and Sn
+ are, respectively, the space of n × n symmetric matrices

and the cone of positive semidefinite matrices in Sn.

H ≥ 0 is a weight matrix.

• Hij is larger if Gij is better estimated.

• Hij = 0 if Gij is missing.

A matrix X ∈ Sn is called a correlation matrix if X � 0 (i.e., X ∈ Sn
+)

and Xii = 1, i = 1, . . . , n.



Simple ones
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One simpler model:

min
1

2
‖H ◦ (X − G)‖2

F

s.t. Xii = 1 , i = 1, . . . , n ,

X � 0 ,

rank(X) ≤ r .

(2)

The simplest model:

min
1

2
‖X − G‖2

F

s.t. Xii = 1 , i = 1, . . . , n ,

X � 0 ,

rank(X) ≤ r .

(3)
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In finance and statistics, correlation matrices are in many situations
found to be inconsistent, i.e., X � 0.

These include, but are not limited to,

■ Structured statistical estimations; data come from different time
frequencies

■ Stress testing regulated by Basel III;

■ Expert opinions in reinsurance, and etc.



Drop the rank constraint
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Let us first consider the problem without the rank constraint:

min
1

2
‖H ◦ (X − G)‖2

F

s.t. Xii = 1 , i = 1, . . . , n

X � 0 .

(4)

When H = E, the matrix of ones, we get

min
1

2
‖X − G‖2

F

s.t. Xii = 1 , i = 1, . . . , n

X � 0 .

(5)

which is known as the nearest correlation matrix (NCM) problem, a
terminology coined by Nick Higham (02).



The best approximation problem
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The NCM problem is a special case of the best approximation problem

min
1

2
‖x − c‖2

s.t. Ax ∈ b + Q ,

x ∈ K ,

where X is a finite dimensional real Hilbert space equipped with a scalar
product 〈·, ·〉 and its induced norm ‖ · ‖, c is a given vector in X ,
A : X → ℜm is a linear operator, Q = {0}p × ℜq

+ is a polyhedral convex
cone, 1 ≤ p ≤ m, q = m − p, and K is a closed convex cone in X .



The dual formulation
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The dual problem is

max −θ(y) := −

[

1

2
‖ΠK(c + A∗y)‖2 − 〈b, y〉 −

1

2
‖c‖2

]

s.t. y ∈ Q∗ ,

where ΠK(x) is the unique optimal solution to

min
1

2
‖u − x‖2

s.t. u ∈ K .

Then ∇θ(y) = A(ΠK(c + A∗y)) − b and the first order optimality
condition for the dual is:

F (y) := y − ΠQ∗(y −∇θ(y)) = 0 .
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Now, we only need to solve a system of nonlinear equations

F (y) = 0, y ∈ ℜm .

However, the difficulties are:

■ F is not differentiable at y;

■ F involves two metric projection operators;

■ Even if F is differentiable at y, it is too costly to compute F ′(y).



The NCM problem
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For the nearest correlation matrix problem,

• A(X) = diag(X), a vector consisting of all diagonal entries of X.
.

• A∗(y) = diag(y), the diagonal matrix.

• b = e, the vector of all ones in ℜn and K = Sn
+.

Consequently, F can be written as

F (y) = AΠSn
+
(G + A∗y) − b.



The projector

Workshop II: Numerical Methods for Continuous Optimization. IPAM, UCLA NUS/SUN – 15 / 44

For n = 1, we have

x+ := ΠS1
+
(x) = max(0, x).

Note that
• x+ is only piecewise linear, but not smooth.
• (x+)2 is continuously differentiable with

∇
{1

2
(x+)2

}

= x+,

but is not twice continuously differentiable.



The one dimensional case
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The multi-dimensional case
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The projector for K = Sn
+:

x

x

 
Convex Cone 

x2 3

1

ΠK

η

(η)
K
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Let X ∈ Sn have the following spectral decomposition1

X = PΛP T ,

where Λ is the diagonal matrix of eigenvalues of X and P is a
corresponding orthogonal matrix of orthonormal eigenvectors.

Then

X+ := ΠSn

+
(X) = PΛ+P T .

1Use the divide and conquer algorithm, which is much faster than the shifted QR
decomposition based algorithm.]
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We have

• ‖X+‖2 is continuously differentiable with

∇
(1

2
‖X+‖

2
)

= X+,

but is not twice continuously differentiable.

• X+ is not piecewise smooth (n > 1), but strongly semismooth
[Sun2, 02].

A locally Lipschitz function G : ℜn → ℜm is said to be strongly
semismooth at x if the directional derivative of G at x along h, G′(x;h),
exists; and

G(x + h) − G(x) − ∂G(x + h)h = O(‖h‖2) .



Choice of algorithms
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• Interior point methods (for n < 100 only);

• First order methods are too costly (too many iterations);

• Quasi-Newton methods (okay, but can be slow as F is not smooth);

• A quadratically convergent semismooth Newton-CG method [Qi & S.,
06].

• It needs 1 to 10 steps for both random and market data;

• For a typical example with n = 2000, one needs less than 50 secs
on my PC running MatLab to get very high accuracy.



Inequality constraints
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People from the financial institutions started to use it immediately.
NAG http://www.nag.com/ includes it in their financial products now.

Two key points: 1) F is strongly semismooth; and
2) ∂F (X∗) is positive definite that makes CG method possible [roughly:
non-smoothness allows non-singularity!] Smoothness = Singularity.

If we have lower and upper bounds on X, F takes the form

F (y) = y − ΠQ∗ [y − (AΠSn

+
(G + A∗y) − b)] ,

which involves double layered projections over convex cones.

A highly efficient quadratically convergent inexact smoothing
Newton-BiCGStab method is available [Gao & S., 09]



Back to the rank constraint
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min
1

2
‖H ◦ (X − G)‖2

F

s.t. AX ∈ b + Q ,

X ∈ Sn
+ ,

rank(X) ≤ r,

equivalently,

min
1

2
‖H ◦ (X − G)‖2

F

s.t. AX ∈ b + Q ,

X ∈ Sn
+ ,

σi(X) = 0, i = r + 1, . . . , n.



The penalty approach
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Given c > 0, we consider a penalized version (trade-off between the
objective function and the rank constraint)

min
1

2
‖H ◦ (X − G)‖2

F + cpr(X)
[

pr(X) =
n

∑

j=r+1

σj(X)
]

s.t. AX ∈ b + Q ,

X ∈ Sn
+ ,

or equivalently

min fc(X) :=
1

2
‖H ◦ (X − G)‖2

F + c(‖X‖∗ − sr(X))

s.t. AX ∈ b + Q ,

X ∈ Sn
+ .



Ky Fan’s r-norm function
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Recall that Ky Fan’s r-norm function sr(Y ) = σ1(Y ) + . . . , σr(Y ) is
convex. Then for any given X and J ∈ ∂sr(X), we have

sr(Y ) ≥ lX(Y ) := sr(X) + 〈J, Y − X〉 ∀ Y ∈ ℜm×n.

Suppose that X has the SVD decomposition

X = U [Σ(X) 0]V T ,

where U and V are orthogonal matrices. The set ∂sr(X) is completely
characterized [Overton & Womersley, 93]. In particular,

J :=
r

∑

j=1

ujv
T
j ∈ ∂sr(X).



Majorized functions
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For given X0 = 0, we wish to use the largest possible support function
lX0(Y ) by choosing a good J ∈ ∂Sr(X

0). Since

lX0(Y ) = 〈J, Y 〉 ≤ sr(Y ) ∀ Y ∈ ℜm×n,

the ”neutral” choice is J = 0 ∈ ∂rS(X0) and lX0(Y ) ≡ 0. Consequently,
pr(X) is majorized at X0 by

sm(X) = ‖X‖∗ ≥ pr(X) ∀X

and f(X) + cpr(X) is majorized by

f(X) + c‖X‖∗ ≥ f(X) + cpr(X) ∀X.
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Then our majorized penalty approach (suppose that f is simple first) will
try to solve the following nuclear norm regularized optimization problem
for X1:

min f(X) + c‖X‖∗

s.t. A(X) ∈ b + Q .

A good starting point X0 may be available in practice. Then we only
need to solve the following problem for X1:

min f(X) + c(‖X‖∗ − 〈J0, X〉)

s.t. A(X) ∈ b + Q .
(6)

where J0 =
∑r

j=1 ujv
T
j ∈ ∂sr(X0).
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Instead of adding the nuclear norm term c‖X‖∗, we add a weighted
nuclear norm term in (6). Applying von Neumann’s trace inequality to

〈J0,±X〉 ≤ σ(J0)
T σ(X) = sr(X),

we know that for any X ∈ ℜm×n,

‖X‖∗ + sr(X) ≥ gJ0
(X) := ‖X‖∗ − 〈J0, X〉 ≥ pr(X) ≥ 0.

The added term gJ0
(X) is actually a semi norm, but not a norm.

Thus, instead of solving a nuclear norm regularized optimization
problem, we are solving a semi norm regularized optimization problem.
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The symmetric case: things are slightly different.
Let X0 = 0. We wish to use the largest possible support function lX0(Y )
by choosing a good J ∈ ∂Sr(X

0). Since

lX0(Y ) = 〈J, Y 〉 ≤ sr(Y ) ∀ Y ∈ Sn
+,

the worst choice is J = 0 ∈ ∂rS(X0) and lX0(Y ) ≡ 0. Then our
majorized penalty approach will try to solve the following trace
regularized optimization problem for X1:

min f(X) + c〈I,X〉

s.t. A(X) ∈ b + Q ,

X ∈ Sn
+ .
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The fact that the above choice is the worst among all possible choices
can be seen clearly from the following:

〈I,X〉 = n if X is a correlation matrix .

Since X is positive semi-definite, the best choice is
J0 =

∑r
j=1 uiu

T
i ∈ ∂Sr(X

0) and lX0(Y ) = sr(X0) + 〈J0, X − X0〉.

Consequently, pr(X) is majorized at X0 by

gJ0
(X) := ‖X‖∗ − 〈J0, X〉 = 〈I − J0, X〉 ≥ pr(X) ∀X ∈ Sn

+ .

By noting that I − J0 is a positive semi-definite and its rank is n− r, we
know that gJ0

(X) is a singular weighted trace.
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Consequently, we will solve the following weighted trace regularized
optimization problem for X1:

min f(X) + c〈W0, X〉

s.t. A(X) ∈ b + Q ,

X ∈ Sn
+ ,

(7)

where
I � W0 := I − J0 � 0 .

For X0 6= 0, we can discuss it similarly. The problem (7) may still be
difficult to solve. We will use a simple majorized function to approximate
it.



The idea of majorization
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Let us consider

f(X) :=
1

2
‖H ◦ (X − G)‖2

F .

Let d ∈ ℜn be a positive vector such that

H ◦ H ≤ ddT .

For example, d = max(Hij)e. Let D1/2 = diag(d0.5
1 , . . . , d0.5

n ).
Then f is majorized by

fk(X) := f(Xk) + 〈∇f(Xk), X − Xk〉 +
1

2
‖D1/2(X − Xk)D1/2‖2

F .
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Thus, at Xk, fc is majorized by

fc(X) ≤ fk
c (X) := fk(X) + cgJk

(X)

and fc(X
k) = fk(Xk).

If ∇f is Lipschitz continuous, we can always find a majorized function
for f , thus for fc.

If ∇f is not known to be Lipschitz continuous, we can combine the idea
of line search to select ”locally” majorized functions for f at each step.
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Instead of solving the penalized problem, the idea of the majorization is
to solve, for given Xk, the following problem

min fk
c (X) = fk(X) + cgJk

(X)

s.t. AX ∈ b + Q ,

X ∈ Sn
+ ,

which is a diagonal weighted least squares correlation matrix problem

min
1

2
‖D1/2(X − Xk)D1/2‖2

F + 〈∇f(Xk) + cWk, X〉

s.t. AX ∈ b + Q ,

X ∈ Sn
+ .
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Now, we can use the smoothing Newton BiCGStab method introduced
earlier or any other method for solving convex least squares semi-definite
programming for the majorized subproblems!

We have the following property:

fc(X
k+1) < fc(X

k) < · · · < fc(X
1).



Where is the rank condition?
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Looks good? But how can one guarantee that we can get a final X∗

such that its rank is less or equal to k?

The answer is: increase c. That is, to have a sequence of {ck} with
ck+1 ≥ ck.

Will it work? Numerical stability? Does not need a large ck in numerical
computations.

How do I know the quality of the obtained solution?
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Let
Sn

+(r) := {X ∈ Sn
+ | rank(X) ≤ r } .

Denote

Ψr(Y ) := min
1

2
‖Z − Y ‖2

s.t. Z ∈ Sn
+(r) .

(8)

Denote the set of optimal solutions to (8) by ΠSn
+

(r)(Y ), which can be
completely characterized. Furthermore, we have

∂Ψr(Y ) = Y − conv(ΠSn
+

(r)(Y )).



The Lagrangian dual
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The Lagrangian dual for

min
1

2
‖X − G‖2

F

s.t. A(X) ∈ b + Q ,

X ∈ Sn
+(r)

(9)

takes the form:

max v(y) := −

[

1

2
‖ΠSn

+
(r)(G + A∗y)‖2 − 〈b, y〉 −

1

2
‖G‖2

]

s.t. y ∈ Q∗ .
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Let ȳ ∈ Q∗ be an optimal solution to the dual problem [the existence can
be guaranteed under Slater’s condition for the rank-free problem]. Then

optimal value for (9) ≥ v(ȳ).

That is, v(ȳ) provides a valid lower bound. If we can find a feasible X∗

such that
1

2
‖X∗ − G‖2

F = v(ȳ),

then X∗ must be a global optimal solution.

Note that v(·) is a non-smooth concave function. We may use any first
known method to solve the (convex) dual problem. Our choice is
Overton’s BFGS code as it works well for the equality constrained
problems.



Global optimality checking
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Theorem. Let ȳ ∈ Q∗ be an optimal solution to the dual problem. If
there exists a matrix

X ∈ ΠSn

+
(r)

(

G + A∗ȳ
)

such that
b −AX ∈ NQ∗(ȳ),

then X and ȳ globally solve the primal problem (with H = E) and the
corresponding dual problem, respectively and there is no duality gap
between the primal and dual problems. In particular, if

λr

(

G + A∗ȳ
)

> λr+1

(

G + A∗ȳ
)

> 0 or λr+1

(

G + A∗ȳ
)

< 0 ,

then the above statements hold automatically.



Two examples for error checking
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Example 1. Let n = 500 and the weight matrix H = E. For

i, j = 1, . . . , n, Cij = 0.5 + 0.5e−0.05|i−j|. The index sets are

Be = Bl = Bu = ∅.

Example 2. Let n = 500 and the weight matrix H = E. The matrix C
is extracted from the correlation matrix which is based on a 10, 000 gene

micro-array data set obtained from 256 drugs treated rat livers. The

index sets are Be = Bl = Bu = ∅.
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Final remarks
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• All results hold in a parallel way for the non-symmetric case.

• Solve a sequence of convex least squares matrix optimization
problems with weighted nuclear semi norm regularization by using tools
from non-smooth and semi-smooth analysis.

• A code named PenCorr.m can efficiently solve all sorts of rank
constrained correlation matrix problems. Faster when rank is larger.

• The techniques may be used to solve other problems, e.g., low
rank matrix problems with sparsity and hard constraints.
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Materials can be found from:

Y. Gao and D.F. Sun, A majorized penalty approach for calibrating
rank constrained correlation matrix problems, March 2010.

Y. Gao, Structured Low Rank Matrix Optimization Problems: A
Penalized Approach, PhD thesis, National University of Singapore,
August 2010.

Thank you! :)


	blueDrop the rank constraint

