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Abstract. Given M ∈ �n×n and q ∈ �n, the linear complementarity problem (LCP) is to find (x, s) ∈
�n × �n such that (x, s) ≥ 0, s = Mx + q, xT s = 0. By using the Chen-Harker-Kanzow-Smale (CHKS)
smoothing function, the LCP is reformulated as a system of parameterized smooth-nonsmooth equations. As
a result, a smoothing Newton algorithm, which is a modified version of the Qi-Sun-Zhou algorithm [Math-
ematical Programming, Vol. 87, 2000, pp. 1–35], is proposed to solve the LCP with M being assumed to be
a P0-matrix (P0−LCP). The proposed algorithm needs only to solve one system of linear equations and to
do one line search at each iteration. It is proved in this paper that the proposed algorithm has the following
convergence properties: (i) it is well-defined and any accumulation point of the iteration sequence is a solution
of the P0−LCP; (ii) it generates a bounded sequence if the P0−LCP has a nonempty and bounded solution
set; (iii) if an accumulation point of the iteration sequence satisfies a nonsingularity condition, which implies
the P0−LCP has a unique solution, then the whole iteration sequence converges to this accumulation point
sub-quadratically with aQ-rate 2− t , where t ∈ (0, 1) is a parameter; and (iv) ifM is positive semidefinite and
an accumulation point of the iteration sequence satisfies a strict complementarity condition, then the whole
sequence converges to the accumulation point quadratically.

Key words. linear complementarity problem – smoothing Newton method – global convergence – sub-qua-
dratic convergence

1. Introduction

Recently there has been much interest in smoothing (non-interior continuation) New-
ton-type methods for solving some mathematical programming problems, such as linear
programming problems [41, 6, 17, 18], linear complementarity problems (LCPs) [1–3,
7, 10, 26], nonlinear complementarity problems (NCPs) [4, 5, 8, 9, 11, 14, 15, 21, 23, 27,
29, 33, 34, 36, 38, 42, 45–47, 49], variational inequality problems [37, 43], semidefinite
complementarity problems [12, 13, 28, 44], and so on. The main idea of this class of
methods is to reformulate the problem concerned as a family of parameterized smooth
equations and then to solve the smooth equations approximately by using Newton’s
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method at each iteration. By driving the parameter to converge to zero, one can expect
to find a solution to the original problem.

In [41], Smale initiated the study on smoothing (non-interior continuation) New-
ton-type methods for solving linear programming problems and LCPs. Independent of
Smale’s work [41], Chen and Harker [7] introduced a non-interior continuation method
for solving the LCP with a P0 and R0 matrix. They concentrated on establishing prop-
erties of smoothing paths. Later, the smoothing function used in [7], was refined and
generalized by Kanzow [26], Chen and Mangasarian [11], and Gabriel and Moré [20].
In [1], Burke and Xu introduced the concept of neighborhood of smoothing paths into
their continuation method. This allowed them to establish a global linear convergence
result for LCPs. Chen and Xiu [9] improved the method of Burke and Xu by simplify-
ing the definition of neighborhood and adding an approximate Newton step to obtain a
local quadratic convergence result. In [2, 3], Burke and Xu further proposed two pre-
dictor-corrector-type non-interior continuation methods for LCPs. They also obtained
a local quadratic convergence result. Qi and Sun [36] analyzed the local superlinear
convergence of the non-interior point method of Hotta and Yoshise for NCPs [23]. It
should be noted that in order to obtain the local superlinear convergence one needs
to assume that the strict complementarity condition holds at a solution point and that
the iteration matrices are uniformly nonsingular [2, 3, 9, 36]. It is well-known that the
latter assumption implies that the solution set is a singleton. To relax this relatively
restrictive assumption, Tseng [46] developed a new approach to the analysis of local
quadratic convergence of general predictor-corrector-type path-following methods for
solving monotone complementarity problems. By using the error bound theory, Tseng
discussed the local quadratic convergence under a strict complementarity condition. The
assumptions made in [46] do not imply (explicitly or implicitly) that the solution set is a
singleton. Very recently, Engelke and Kanzow [17, 18] further investigated the methods
developed in [46] and proposed two specific predictor-corrector smoothing methods for
solving linear programming problems. Under the assumption that the iteration sequence
converges to a strict complementary solution, they proved the local quadratic conver-
gence of their algorithms without assuming the uniqueness of the solution set. Very
encouraging numerical results were also reported in [17, 18]. Just as the algorithms
developed in [2, 3, 5, 9], the algorithms given in [17, 18, 46] usually need to solve two
systems of linear equations and to do two or three line searches at each iteration. It
should also be pointed out that the methods given in [17, 18, 46] depend strongly on the
strict complementarity condition.

By exploiting a so-called Jacobian consistency property for smoothing functions,
Chen, Qi, and Sun [14] designed a class of globally and locally superlinearly convergent
smoothing Newton methods for NCPs with a nonsingularity condition, but without any
strict complementarity condition. Some modifications were made in [15] and [29]. Devi-
ating from [14], Qi, Sun, and Zhou [38] proposed a class of new smoothing methods for
solving NCPs and box constrained variational inequality problems. The Qi-Sun-Zhou
(QSZ) method treats the smoothing parameter as a free variable and solves one system of
linear equations at each iteration. Based on the semismoothness of smoothing functions,
the QSZ method was proved to possess fast local convergence under a nonsingularity
assumption [38]. Very encouraging numerical results of this class of methods were
reported in [49]. Due to its simplicity and weaker assumptions imposed on smoothing
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functions, the QSZ method has also been used to deal with other problems [33, 34, 42,
44, 49]. It is worth mentioning that the assumptions used in [14, 15, 33, 34, 38, 42, 49]
imply that the solution set is a singleton, but do not imply that the strict complementarity
condition holds.

In this paper, we focus on LCPs. GivenM ∈ �n×n and q ∈ �n, the LCP is to find a
vector (x, s) ∈ �n × �n such that

(x, s) ≥ 0, s = Mx + q, xT s = 0 . (1)

We shall present a smoothing Newton method for solving (1) by assuming M to be
a P0-matrix, i.e., all of its principal minors are nonnegative. This smoothing Newton
method is a modified version of the QSZ method [38]. Just as the QSZ method, the new
method needs only to solve one system of linear equations and to do one line search at
each iteration. By using the regularization technique [19, 33, 42] and the upper semi-
continuity property of the inverse of a weakly univalent function [40, Theorem 2.5], we
investigate the boundedness of the generated iteration sequence under the assumption
that the solution set of (1) is nonempty and bounded. Compared to previous smoothing
(non-interior continuation) Newton-type methods, the method presented in this paper
possesses the following stronger local convergence properties:

– If an accumulation point of the iteration sequence satisfies a nonsingularity condi-
tion, which implies that the P0−LCP has a unique solution, then the whole iteration
sequence converges to this accumulation point sub-quadratically with aQ-rate 2− t ,
where t ∈ (0, 1) is a parameter and can be close to zero as much as wanted.

– If M is a positive semidefinite matrix and an accumulation point of the itera-
tion sequence satisfies a strict complementarity condition, then the whole iteration
sequence converges to this accumulation point quadratically. It is worth noting that
here only one accumulation point is assumed to satisfy the strict complementarity
condition.

To the best of our knowledge, this is the first smoothing (non-interior continuation)
method to have the above local convergence properties simultaneously.

The rest of this paper is organized as follows. In the next section, we present a mod-
ified smoothing Newton algorithm. We prove its global convergence in Section 3. In
Section 4, we show the local sub-quadratic convergence of the algorithm with a non-
singularity condition, but without the strict complementarity condition. In Section 5,
we prove the local quadratic convergence of the algorithm without the nonsingularity
condition, but with the strict complementarity condition. Some final remarks are made
in Section 6.

To help the later discussion, we introduce some notation here. All vectors are column
vectors, the supscript T denotes transpose, �n denotes the space of n−dimensional real
column vectors, and �n+ (respectively, �n++) denotes the nonnegative (respectively, pos-
itive) orthant in �n. We denote I = {1, 2, . . . , n}. For any vector u, we denote by ui the
ith component of u and, for any K ⊂ I, by uK the vector obtained after removing from
u those ui with i �∈ K. We also write u as vec{ui : i ∈ I}. We denote by diag{ui : i ∈ I}
the diagonal matrix whose ith diagonal element is ui . We denote by ‖u‖ the 2-norm of u.
For any vectors u, v ∈ �n, we write (uT , vT )T as (u, v) for simplicity, and denote by
min{u, v} the vector whose ith component is min{ui, vi}. We denote by �n×n the space
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of n× n real matrices. For any A ∈ �n×n and K,L ∈ I, we denote AKL the submatrix
of A obtained by removing all rows of A with indices outside of K and removing all
columns of A with indices outside of L. Also, we denote ‖A‖ = maxu∈�n,‖u‖=1 ‖Au‖.
For any continuously differentiable function g = (g1, g2, . . . , gm)

T : �m → �m, we
denote its Jacobian by g′ = (	g1,	g2, . . . ,	gm)T , where 	gi denotes the gradient
of gi for i = 1, 2, . . . , m. We denote by F and S the feasible set and the solution set of
(1), respectively, i.e.,

F := {(x, s) ∈ �2n : s = Mx + q}, S := {(x, s) ∈ F : (x, s) ≥ 0, xT s = 0}.
We denote by dist((u, v),S) the Euclidean distance of the vector (u, v) ∈ �2n to the solu-
tion set S of (1), i.e., dist((u, v),S) = inf(x,s)∈S ‖(u, v)− (x, s)‖. For any α, β ∈ �++,
we write α = O(β) (respectively, α = o(β)) to mean α/β is uniformly bounded
(respectively, tends to zero) as β → 0. Let k ≥ 0 denote the iteration index. For any
(µ, x, s), (µk, x

k, sk) ∈ �+ × �2n, we always use the following notation throughout
this paper unless stated otherwise:

w := (x, s), z := (µ,w) := (µ, x, s),

wk := (xk, sk), zk := (µk,w
k) := (µk, x

k, sk).

2. A smoothing Newton algorithm

Let φ : �3 → � denote the Chen-Harker-Kanzow-Smale (CHKS) [7, 26, 41] smoothing
function

φ(µ, a, b) = a + b −
√
(a − b)2 + 4µ2

and let � : �2n+1 → �n be defined by

�(z) :=






φ(µ, x1, s1)
...

φ(µ, xn, sn)




 .

Then, solving the LCP (1) is equivalent to finding a root of the following equation:

H(z) :=



µ

s −Mx − q

�(z)+ p(µ)x



 = 0 , (2)

where p : � → �+ is a twice continuously differentiable function which satisfies
p(µ) > 0 for µ �= 0, and

p(0) = 0, |p(µ)| = O(µ3), and |p′(µ)| = O(µ2). (3)

From (2), for any µ �= 0 a straightforward calculation yields

H ′(z) =



1 0 0
0 −M I

d(z)+ p′(µ)x D(z)+ p(µ)I E(z)



 , (4)
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where I denotes the n× n identity matrix,

d(z) : = vec
{
−4µ/

√
(xi − si)2 + 4µ2 : i ∈ I

}
, (5)

D(z) : = diag
{

1 − (xi − si)/
√
(xi − si)2 + 4µ2 : i ∈ I

}
, (6)

E(z) : = diag
{

1 + (xi − si)/
√
(xi − si)2 + 4µ2 : i ∈ I

}
. (7)

For any z := (µ,w) = (µ, x, s) ∈ � × �2n, let

�0(w) := 2 min{x, s} and ξ(w) := min{|xi − si | : i ∈ I}. (8)

The following result on �0 and � can be checked easily.

Lemma 1. For any z = (µ,w) = (µ, x, s) ∈ �+ × �2n, we have

‖�0(w)−�(z)‖ ≤ 2
√
nµ. (9)

Moreover, if ξ(w) ≥ ε for some ε > 0, then there exists a constant C1(ε) > 0 such that

‖�0(w)−�(z)‖ ≤ C1(ε)µ
2; (10)

and if ξ(w) ≥ κµt for two constants t ∈ (0, 1) and κ > 0, then

‖�0(w)−�(z)‖ ≤ 2n

κ
µ2−t . (11)

Suppose that µ̄ ∈ �++ and γ ∈ (0, 1). Define ψ : �2n+1 → �+ and β : �2n+1 →
�+ by

ψ(z) := ‖H(z)‖2 and β(z) := γ min{1, ψ(z)}, (12)

respectively. Let τ ∈ (0, 1) and d(·) be defined by (5). Denote u : �2n+1 → �n by

u(z) :=
{
�0(w)−�(z)+ µ̄β(z)d(z) if µ �= 0
0 otherwise

(13)

and v : �2n+1 → �n by

v(z) :=
{
τµe if τ

√
nµ ≤ ‖u(z)‖

u(z) otherwise,
(14)

where e denotes the n-vector of all ones. Suppose that t ∈ (0, 1) and κ > 0 are two
constants, and that ξ : �2n → �+ is defined by (8). We now define ϒ : �2n+1 →
� × �n × �n as follows:

ϒ(z) :=









µ̄β(z)

0
v(z)



 if ξ(w) > κµt ,




µ̄β(z)

0
0



 if ξ(w) ≤ κµt .

(15)
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Algorithm 1 (A smoothing Newton algorithm).

Step 0. Choose t, δ ∈ (0, 1), σ ∈ (0, 1/2), and κ, µ̄ ∈ (0,∞). Let x0 ∈ �n be an
arbitrary vector. Set µ0 := µ̄, s0 := Mx0 + q, and z0 := (µ0, x

0, s0). Choose
γ ∈ (0, 1) and τ ∈ (0, 1) such that γµ0 + τ

√
n < 1. Set η := γµ0 + τ

√
n and

k := 0.
Step 1. If ‖H(zk)‖ = 0, stop.
Step 2. Compute �zk := (�µk,�x

k,�yk) ∈ � × �n × �n by

H(zk)+H ′(zk)�zk = ϒ(zk). (16)

Step 3. Let λk be the maximum of the values 1, δ, δ2, · · · such that

ψ(zk + λk�z
k) ≤ [1 − 2σ(1 − η)λk]ψ(z

k). (17)

Step 4. Set zk+1 := zk + λk�z
k and k := k + 1. Go to Step 1.

Remark 1. Algorithm 1 is a modified version of the QSZ smoothing Newton algorithm
developed in [38]. The main feature of Algorithm 1 is that we add a term v(zk) into the
perturbed Newton equation (see (16) and (15)). This modification allows us to prove
stronger local convergence properties for Algorithm 1. Just as the QSZ algorithm, Algo-
rithm 1 needs only to solve one system of linear equations and to perform one line search
at each iteration.

Lemma 2. Suppose that M is a P0-matrix. If µk > 0 for some k, then Algorithm 1 is
well-defined at the k-th step.

Proof. Since M is a P0-matrix, it is not difficult to show from (4) that the Jacobian
matrix H ′(zk) is nonsingular if µk > 0. This implies that equation (16) is solvable.
Thus, to show that Algorithm 1 is well-defined at the k-th step, it suffices to verify that
Step 3 of Algorithm 1 is well-defined. Since (12) implies β(zk) ≤ γψ(zk)1/2 and (14)
implies ‖v(zk)‖ ≤ τ

√
nµk , from (15) we have either

‖ϒ(zk)‖ ≤ µ0γψ(z
k)1/2 + τ

√
nµk ≤ ηψ(zk)1/2

or

‖ϒ(zk)‖ ≤ µ0γψ(z
k)1/2 < ηψ(zk)1/2.

Thus, similar to Lemma 5 in [38] we can obtain that there exists a constant ᾱ ∈ (0, 1)
such that

ψ(zk + α�zk) ≤ [1 − 2σ(1 − η)α]ψ(zk)

holds for any α ∈ (0, ᾱ]. This demonstrates that (17) is well-defined. The proof is
completed. 
�
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3. Global convergence

Denote � := {z ∈ � × �2n : w ∈ F, µ ≥ µ0β(z)}.
Lemma 3. Suppose that M is a P0-matrix. Then Algorithm 1 generates an infinite
iteration sequence {zk} with µk > 0 and zk ∈ � for any k ≥ 0.

Proof. We only need to show that wk ∈ F holds for all k ≥ 0 because other results can
be obtained as in Lemma 5 and Proposition 6 of [38]. Obviously, w0 ∈ F . Assume that
wk−1 ∈ F for some k ≥ 1, i.e., sk−1 = Mxk−1 + q. By equation (16), we have

−M�xk−1 +�sk−1 = −(sk−1 −Mxk−1 − q)

which, implies �sk−1 = M�xk−1. Hence,

sk = sk−1 + λk−1�s
k−1 = Mxk−1 + q + λk−1M�x

k−1

= M(xk−1 + λk−1�x
k−1)+ q = Mxk + q .

This proves wk ∈ F . 
�
Theorem 1. Suppose that M is a P0-matrix. Then Algorithm 1 generates an infinite
iteration sequence {zk} with limk→∞ ψ(zk) = 0. In particular, any accumulation point
of {zk} is a solution of H(z) = 0.

Proof. By using Lemma 3, we can prove the above theorem similarly as in Theorem 4.1
of [42]. We omit the details here for brevity. 
�

Theorem 1 shows that if there exists an accumulation point z∗ of {zk}, then z∗ is a
solution of (1). This does not necessarily mean that {zk} has an accumulation point. In
order to assure that {zk} has an accumulation point, we need the following assumption.

Assumption 1. The solution set of (1) is nonempty and bounded.

It is well known that for the monotone nonlinear complementarity problem,Assump-
tion 1 is equivalent to that the problem has a strictly feasible solution [30, 31]. The latter
has been used extensively in interior point methods for the monotone complementarity
problem. It is also known that Assumption 1 is weaker than those required by most
existing smoothing (non-interior continuation) methods [24]. In addition, Assumption 1
has been used in regularized smoothing algorithms [25, 33, 42].

Theorem 2. Suppose that M is a P0-matrix and Assumption 1 is satisfied. Then the
infinite sequence {zk} generated by Algorithm 1 is bounded and any accumulation point
of {zk} is a solution of H(z) = 0.

Proof. It is not difficult to show that the function H : �2n+1 → �2n+1 defined by (2)
is a weakly univalent function (see [21]). Since Assumption 1 implies that the inverse
image H−1(0) is nonempty and bounded, by using Theorem 2.5 in [40] we obtain that
the sequence {zk} is bounded, and hence, by Theorem 1, any accumulation point of {zk}
is a solution of H(z) = 0. 
�
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4. Sub-quadratic convergence under nonsingularity

Let z∗ := (µ∗, w∗) := (µ∗, x∗, s∗) ∈ �+ × �2n be an accumulation point of the
iteration sequence generated by Algorithm 1. Then Theorem 1 implies that µ∗ = 0 and
(x∗, s∗) is a solution of (1). In this section, we consider the case that (x∗, s∗) satisfies
a nonsingularity condition but may not satisfy the strict complementarity condition. In
order to discuss the local superlinear convergence of the algorithm, we need the concept
of semismoothness, which was originally introduced by Mifflin [32] for functionals.
Qi and Sun [39] extended the definition of semismoothness to vector valued functions.
A locally Lipschitz function F : �m1 → �m2 , which has the generalized Jacobian
∂F (x) in the sense of Clarke [16], is said to be semismooth at x ∈ �m1 , if

lim
V∈∂F (x+th′)
h′→h,t↓0

{V h′}

exists for any h ∈ �m1 . F is said to be strongly semismooth at x if F is semismooth at
x and for any V ∈ ∂F (x + h), h → 0, it follows that

F(x + h)− F(x)− V h = O(‖h‖2).

Lemma 4. Suppose that M is a P0-matrix. Let t ∈ (0, 1) be given as in Algorithm 1
and the sequence {zk} be generated by Algorithm 1. Then, for all k sufficiently large,

‖ϒ(zk)‖ = O(‖H(zk)‖2−t ).

Proof. Since the infinite sequence {zk} is generated by Algorithm 1, it follows from
Theorem 1 that limk→∞ ψ(zk) = 0. This, together with the definition of β(zk), implies
that β(zk) = γψ(zk) holds for all k sufficiently large. For any k, we have either ξ(wk) ≤
κ(µk)

t or ξ(wk) > κ(µk)
t . For the former case, we have for all k sufficiently large that

‖ϒ(zk)‖ = µ0β(z
k) = µ0γψ(z

k) = O(‖H(zk)‖2) .

For the latter case, since it follows from (11), (5), and Lemma 3 that

‖u(zk)‖ ≤ ‖�0(w
k)−�(zk)‖ + µ0β(z

k)‖d(zk)‖
≤ 2n

κ
(µk)

2−t + µ0β(z
k)‖d(zk)‖

= 2n

κ
(µk)

2−t +
∥∥∥∥vec

{
−4µk/

√
(xki − ski )

2 + 4(µk)2 : i ∈ I
}∥∥∥∥µ0β(z

k)

= O((µk)
2−t ),

by (14) we obtain that v(zk) = u(zk). Hence, for all k sufficiently large,

‖ϒ(zk)‖ =
√
(µ0β(zk))2 + ‖u(zk)‖2 = O(‖H(zk)‖2−t ).

The proof is completed. 
�
By using Lemma 4, we can obtain the following sub-quadratic convergence result.

It can be proved in a similar way as Theorem 8 in [38].
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Theorem 3. Suppose that M is a P0-matrix and Assumption 1 is satisfied. Suppose
that z∗ is an accumulation point of the sequence {zk} generated by Algorithm 1. If all
V ∈ ∂H(z∗) are nonsingular, then the whole iteration sequence {zk} converges to z∗,

‖zk+1 − z∗‖ = O(‖zk − z∗‖2−t ) and µk+1 = O((µk)
2−t ).

In Theorem 3, for the sub-quadratic convergence, all V ∈ ∂H(z∗) are assumed to be
nonsingular. It is noticed here that this nonsingularity condition implies that the solution
set is a singleton, but not necessarily a strict complementary solution. For conditions
to guarantee this nonsingularity assumption, see [38]. In the next section, under a strict
complementarity condition, we shall discuss the quadratic convergence of our method
with multiple solutions.

5. Quadratic convergence under strict complementarity

In this section, we shall discuss the rate of convergence of Algorithm 1 without assuming
the nonsingularity condition, but with a strict complementarity condition and M being
a positive semidefinite matrix. Let z∗ := (µ∗, w∗) := (µ∗, x∗, s∗) ∈ �+ × �2n be
an accumulation point of the iteration sequence {zk} generated by Algorithm 1. Then
Theorem 1 says that µ∗ = 0 and (x∗, s∗) is a solution of (1). In this section, we consider
the case that (x∗, s∗) satisfies the strict complementarity condition x∗ + s∗ > 0. Let

B := {i ∈ I : x∗
i > 0} and N := {i ∈ I : s∗i > 0}.

Since (x∗, s∗) is a strict complementary solution of (1), it follows that B ∪ N = I and
B ∩ N = ∅.

For any w = (x, s) ∈ �n × �n, let

G(w) :=



s − (Mx + q)

2sB
2xN



 and S0 := {w ∈ �2n : G(w) = 0}.

Lemma 5. Denote ε := min{mini∈B x∗
i ,mini∈N s∗i } and

�(w∗) := {w = (x, s) ∈ �n × �n : |xi − x∗
i | ≤ ε/3, |si − s∗i | ≤ ε/3, i ∈ I}.

Then, for any w ∈ �(w∗) ∩ F , there exists a constant λ > 0 such that

‖�0(w)‖ = ‖G(w)‖ ≥ λdist(w,S0), (18)

where �0(·) is defined by (8).

Proof. It is obvious that G(w) = 0 is solvable since G(w∗) = 0. Hence S0 �= ∅. By
Hoffman’s error bound result for a linear system [22], there exists a positive number
λ > 0 such that for any w ∈ �2n,

||G(w)|| ≥ λdist(w,S0). (19)
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For any w ∈ �(w∗), we have

xi = x∗
i + xi − x∗

i ≥ ε − 1

3
ε = 2

3
ε, |si | ≤ 1

3
ε ∀ i ∈ B,

si = s∗i + si − s∗i ≥ ε − 1

3
ε = 2

3
ε, |xi | ≤ 1

3
ε ∀ i ∈ N .

Hence, ‖�0(w)‖ = ‖G(w)‖ holds for all w ∈ �(w∗) ∩ F . This and (19) imply (18).

�

Lemma 5 indicates that if w ∈ S0 with w sufficiently close to w∗ := (x∗, s∗), then
w solves (1), i.e., w ∈ S. Furthermore, from (18), there exists a constant ρ̄ > 0 such
that

dist(w,S0) ≤ ρ̄‖�0(w)‖ (20)

for all w ∈ F sufficiently close to w∗. Noting that max{µk, ‖�(zk)‖} ≤ ‖H(zk)‖, we
can obtain from (9), (20) and Lemma 3 that for all zk sufficiently close to z∗,

dist(wk,S0) ≤ ρ̄(‖�(zk)‖ + ‖�0(w
k)−�(zk)‖) ≤ C2‖H(zk)‖, (21)

where C2 := ρ̄(1 + 2
√
n).

Lemma 6. Suppose that M is a P0-matrix and Assumption 1 is satisfied. Let z∗ be an
accumulation point of the iteration sequence {zk} generated by Algorithm 1. If (x∗, s∗)
satisfies the strict complementarity condition x∗ + s∗ > 0, then v(zk) = u(zk) holds
for all zk sufficiently close to z∗, where v(·) and u(·) are defined by (14) and (13),
respectively.

Proof. Since the strict complementarity condition holds, i.e., x∗ + s∗ > 0, it is easy to
see that there exists a constant ε > 0 such that |xki − ski | ≥ ε holds for all i ∈ I and
all zk sufficiently close to z∗. Thus, by combining (13) with (10), (5), and Lemma 3, we
have for all zk sufficiently close to z∗ that

‖u(zk)‖ ≤ ‖�0(w
k)−�(zk)‖ + ‖d(zk)µ0β(z

k)‖
≤ C1(ε)(µk)

2 +
∥∥∥∥vec

{
−4µk/

√
(xki − ski )

2 + 4(µk)2 : i ∈ I
}∥∥∥∥µ0β(z

k)

≤ γ
√
nµk, (22)

where the last inequality used the fact that µk is sufficiently close to 0. Therefore, (14)
and (22) yield the desired result. 
�

In the following lemma, by using Lemma 5 and the techniques in [17, 46], we shall
prove for monotone LCPs that the term ‖�zk‖ is of the same order as ‖H(zk)‖ for all
zk sufficiently close to a strict complementary solution.

Lemma 7. Suppose that M is a positive semidefinite matrix and Assumption 1 is sat-
isfied. Let z∗ be an accumulation point of the iteration sequence {zk} generated by
Algorithm 1. If (x∗, s∗) satisfies the strict complementarity condition x∗ + s∗ > 0, then
there exists a constant C3 > 0 such that for all zk sufficiently close to z∗,

‖�zk‖ ≤ C3‖H(zk)‖. (23)
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Proof. By making use of the fact that v(zk) = u(zk) (by Lemma 6) and wk ∈ F (by
Lemma 3), we obtain from (16) that for all zk sufficiently close to z∗,

�µk = −µk + µ0β(z
k), (24)

−M�xk +�sk = 0, (25)

(d(zk)+ p′(µk)xk)�µk + (D(zk)+ p(µk)I )�x
k + E(zk)�sk

= −�(zk)− p(µk)x
k + u(zk), (26)

where the functions d(·), D(·), E(·), and u(·) are defined by (5), (6), (7), and (13),
respectively. We prove (23) by investigating the following three issues:

Firstly, we estimate |�µk|. From (24) it follows that for all zk sufficiently close to
z∗,

|�µk| ≤ µk + µ0β(z
k) ≤ (1 + µ0γ )‖H(zk)‖. (27)

Secondly, we estimate ‖�xk‖. For any zk sufficiently close to z∗, there exists a vector
wk∗ := (xk∗, sk∗) ∈ S0 (and hence wk∗ ∈ S by Lemma 5) such that

dist(wk,S0) = ‖wk − wk∗‖. (28)

By using the fact that wk,wk∗ ∈ F , we get from (25) and (26) that

sk +�sk − sk∗ = M(xk +�xk − xk∗) (29)

and

(D(zk)+ p(µk)I )(x
k +�xk − xk∗)+ E(zk)(sk +�sk − sk∗) = α(zk), (30)

where α(zk) := �(zk)+ �(zk) with

�(zk) := (D(zk)+ p(µk)I )(x
k − xk∗)+ E(zk)(sk − sk∗)−�0(w

k) (31)

and

�(zk) : = �0(w
k)−�(zk)+ u(zk)− d(zk)�µk − p̂(zk)

= 2(�0(w
k)−�(zk))+ d(zk)µ0β(z

k)− d(zk)�µk − p̂(zk)

= 2(�0(w
k)−�(zk))+ d(zk)µk − p̂(zk), (32)

where p̂(zk) := p′(µk)�µkxk + p(µk)x
k . From the positive semidefiniteness of M

and (29), it follows that (xk +�xk − xk∗)T (sk +�sk − sk∗) ≥ 0. Hence, multiplying
(30) on the left side by (xk +�xk − xk∗)T E(zk)−1 yields

min
i∈I

(D(zk)ii + p(µk))E(z
k)ii‖E(zk)−1(xk +�xk − xk∗)‖2

≤ (xk +�xk − xk∗)T E(zk)−1(D(zk)+ p(µk)I )E(z
k)E(zk)−1(xk +�xk − xk∗)

≤ (xk +�xk − xk∗)T E(zk)−1α(zk)

≤ ‖E(zk)−1(xk +�xk − xk∗)‖‖α(zk)‖,
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and so,

min
i∈I

(D(zk)ii + p(µk))E(z
k)ii‖E(zk)−1(xk +�xk − xk∗)‖ ≤ ‖α(zk)‖. (33)

It can be seen easily that there exists a constant ε > 0 such that

xki − ski > ε for all i ∈ B and ski − xki > ε for all i ∈ N (34)

hold for all zk sufficiently close to z∗. Since wk∗ ∈ S0, we have

sk∗i = 0 for all i ∈ B and xk∗i = 0 for all i ∈ N . (35)

By using (34), (35), and the fact that D(zk)+E(zk) = 2I for all k (by (6) and (7)),
we obtain from (31) that for all zk sufficiently close to z∗,

�(zk)B = (D(zk)BB + p(µk)IBB)(xkB − xk∗B )+ E(zk)BB(skB − sk∗B )− 2skB
= D(zk)BB(xkB − xk∗B − skB + sk∗B )+ p(µk)(x

k
B − xk∗B ),

and similarly,

�(zk)N = E(zk)NN (skN − sk∗N − xkN + xk∗N )+ p(µk)(x
k
N − xk∗N ).

Hence, for all zk sufficiently close to z∗,

‖�(zk)‖ ≤ [max{‖D(zk)BB‖, ‖E(zk)NN ‖} + p(µk)](‖xk − xk∗‖ + ‖sk − sk∗‖).

For any k ≥ 0, let rk = mini∈I(D(zk)ii + p(µk))E(z
k)ii . By (3), (7), and (34) it

follows that for i ∈ I and all zk sufficiently close to z∗,

p(µk)E(z
k)ii = p(µk)

(
1 + (xki − ski )/

√
(xki − ski )

2 + 4(µk)2
)

= O((µk)
3).

Then there exists a constant r > 0 such that for all zk sufficiently close to z∗,

rk = min
i∈I

4(µk)2

(xki − ski )
2 + 4(µk)2

+O((µk)
3) ≥ r(µk)

2, (36)

which implies p(µk)/rk = O(µk). Thus, from (34) and (36) we have for j ∈ B that

D(zk)jj

rk
≤

1 − xkj−skj√
(xkj−skj )2+4(µk)2

r(µk)2
=

√
(xkj − skj )

2 + 4(µk)2 − (xkj − skj )

r(µk)2
√
(xkj − skj )

2 + 4(µk)2

= 4

r
√
(xkj − skj )

2 + 4(µk)2
(√
(xkj − skj )

2 + 4(µk)2 + (xkj − skj )
)

= O(1)
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and for any j ∈ N that

E(zk)jj

rk
≤ 4

r
√
(skj − xkj )

2 + 4(µk)2
(√
(skj − xkj )

2 + 4(µk)2 + (skj − xkj )
)

= O(1).

Hence, there exists a constant C4 > 0 such that for all zk sufficiently close to z∗,

‖�(zk)‖/rk ≤ C4(‖xk − xk∗‖ + ‖sk − sk∗‖) ≤ 2C2C4‖H(zk)‖, (37)

where the second inequality is due to (21) and (28). On the other hand, by (32) we have

�i(z
k) = 2

[√
(xki − ski )

2 + 4(µk)2 −
√
(xki − ski )

2

]
+ d(zk)iµk − p̂i(z

k)

= 8(µk)2√
(xki − ski )

2 + 4(µk)2 +
√
(xki − ski )

2
− 4(µk)2√

(xki − ski )
2 + 4(µk)2

− p̂i(z
k)

=
4(µk)2

[√
(xki − ski )

2 + 4(µk)2 −
√
(xki − ski )

2

]

√
(xki − ski )

2 + 4(µk)2
(√

(xki − ski )
2 + 4(µk)2 +

√
(xki − ski )

2

) − p̂i(z
k)

= 16(µk)4

√
(xki − ski )

2 + 4(µk)2
(√

(xki − ski )
2 + 4(µk)2 +

√
(xki − ski )

2

)2 − p̂i(z
k),

which, together with (34) and (27), implies that for all zk sufficiently close to z∗,

|�i(zk)|
rk

≤ |�i(zk)|
r(µk)2

= O((µk)
2)+O(µk) = O(µk) = O(‖H(zk)‖).

Hence, there exists a constant C5 > 0 such that for all zk sufficiently close to z∗,

‖�(zk)‖/rk ≤ C5‖H(zk)‖. (38)

By combining (33) with (37) and (38), we further obtain that

‖E(zk)−1(xk +�xk − xk∗)‖ ≤ ‖�(zk)‖/rk + ‖�(zk)‖/rk
≤ (2C2C4 + C5)‖H(zk)‖. (39)

Since ‖E(zk)‖ ≤ 2, (21) and (28) imply that for all zk sufficiently close to z∗,

‖E(zk)−1(xk +�xk − xk∗)‖ ≥ [‖�xk‖ − ‖xk − xk∗‖]/‖E(zk)‖
≥ ‖�xk‖ − C2‖H(zk)‖/2.

This, together with (39), implies that for all zk sufficiently close to z∗,

‖�xk‖ = O(‖H(zk)‖). (40)
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Thirdly, we estimate ‖�sk‖. From (30) and (37)–(39) we have that for all zk suffi-
ciently close to z∗,

‖sk +�sk − sk∗‖
≤ ‖[D(zk)+ p(µk)I ]−1E(zk)−1‖‖D(zk)+ p(µk)I‖‖α(zk)‖

+‖D(zk)+ p(µk)I‖‖E(zk)−1(xk +�xk − xk∗)‖
≤ 3

‖�(zk)‖ + ‖�(zk)‖
mini∈I(D(zk)ii + p(µk))E(zk)ii

+ 3‖E(zk)−1(xk +�xk − xk∗)‖

≤ 6(2C2C4 + C5)‖H(zk)‖, (41)

where the second inequality is due to the fact that ‖D(zk)+ p(µk)I‖ ≤ 2 + p(µk) and
α(zk) = �(zk)+�(zk) and the last inequality is due to (39). Hence, from (21) and (41)
we have that for all zk sufficiently close to z∗,

‖�sk‖ ≤ ‖sk +�sk − sk∗‖ + ‖sk − sk∗‖ = O(‖H(zk)‖). (42)

Now, by combining (27) with (40) and (42), we obtain that there exists a constant
C3 > 0 such that (23) holds for all zk sufficiently close to z∗. 
�

Lemma 8. Suppose that all the conditions assumed in Lemma 7 are satisfied. Then there
exists a constant C6 > 0 such that for all zk sufficiently close to z∗, zk+1 = zk +�zk

and

‖H(zk+1)‖ ≤ C6‖H(zk)‖2. (43)

Proof. From Lemma 1.2 in [36] we have

‖φ′′(µ, a, b)‖ ≤ 4/
√
(a − b)2 + 4µ2

for any (µ, a, b) ∈ �+ × �2n and (a − b)2 + 4µ2 �= 0. For any k ≥ 0 and i ∈ I, let
yki := (µk, x

k
i , s

k
i ) and�yki := (�µk,�x

k
i ,�s

k
i ). Then by using the strict complemen-

tarity condition we can obtain a positive number C̄ such that ‖φ′′(yki )‖ ≤ C̄ for all zk

sufficiently close to z∗. Hence, from Lemma 7 we have that for all zk sufficiently close
to z∗,

|φ(yki +�yki )− φ(yki )− φ′(yki )�y
k
i | ≤

∫ 1

0
t

∫ 1

0
‖φ′′(yki + ts�yki )‖dsdt‖�yki ‖2

≤ C̄‖�yki ‖2.

Furthermore, from the definition of H(·) (see (2)), it is not difficult to show that there
exists a constant C7 > 0 such that for all zk sufficiently close to z∗,

‖H(zk +�zk)−H(zk)−H ′(zk)�zk‖ ≤ C7‖�zk‖2. (44)
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Hence, from Lemmas 6 and 7, (44) and (16) we have that for all zk sufficiently close to
z∗,

‖H(zk +�zk)‖
= ‖(H(zk +�zk)−H(zk)−H ′(zk)�zk +H(zk)+H ′(zk)�zk‖
≤ ‖H(zk +�zk)−H(zk)−H ′(zk)�zk‖ + ‖H(zk)+H ′(zk)�zk‖
≤ C7‖�zk‖2 +

√
(γµ0‖H(zk)‖2)2 + ‖u(zk)‖2

≤ C7(C3)
2θ(zk)2 +

√
(γµ0‖H(zk)‖2)2 + ‖u(zk)‖2. (45)

Lemma 1 and the strict complementarity condition imply that there exists a constant
C8 > 0 such that for all zk sufficiently close to z∗,

‖u(zk)‖ ≤ C8(µk)
2 + nγµ0‖H(zk)‖2 ,

which, together with (45), implies that there exists a constant C6 > 0 such that for all
zk sufficiently close to z∗,

‖H(zk +�zk)‖ ≤ C6‖H(zk)‖2 .

Hence, by the definition of ψ(·), ψ(zk +�zk) ≤ C2
6ψ(z

k)2, i.e., (43) holds, for all zk

sufficiently close to z∗. This further implies that zk+1 = zk +�zk for all zk sufficiently
close to z∗. The proof is completed. 
�

For any ε > 0, define N(z∗, ε) := {z ∈ �+ × �2n : ‖z − z∗‖ ≤ ε}. Since H is
locally Lipschitz continuous around z∗, it follows that ‖H(y1)−H(y2)‖ ≤ L‖y1 −y2‖
for some constant L > 0 and any y1, y2 ∈ N(z∗, ε). Let

ε̄ := min {ε/[2 + 4C3L], 1/[2C6L]} , (46)

where C3 and C6 are given by (23) and (43), respectively.
The following lemma, which to some extent is motivated by a result in Yamashita

and Fukushima [48] on the Levenberg-Marquardt method, is on the convergence of the
whole iteration sequence {zk}.
Lemma 9. Suppose that all the conditions assumed in Lemma 7 are satisfied. Let ε̄ be
defined by (46). If for some k the iterate zk ∈ N(z∗, ε̄) and ε is sufficiently small, then
zk+q ∈ N(z∗, ε/2) for all q = 0, 1, 2, . . . and {zk+q}∞q=1 is a convergent sequence.

Proof. Suppose that for some k, zk ∈ N(z∗, ε̄). Then, it is obvious that zk ∈ N(z∗, ε̄) ⊆
N(z∗, ε/2) by (46). By reducing ε if necessary, we have from Lemmas 8 and 7 and (46)
that

‖zk+1 − z∗‖ = ‖zk +�zk − z∗‖ ≤ ‖zk − z∗‖ + ‖�zk‖ ≤ ε̄ + C3‖H(zk)‖
= ε̄ + C3‖H(zk)−H(z∗)‖ ≤ ε̄ + C3L‖zk − z∗‖
≤ (1 + C3L)ε̄ ≤ ε/2,
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which implies zk+1 ∈ N (z∗, ε/2). Suppose that for some q ≥ 1, zk+1, · · · , zk+q ∈
N(z∗, ε/2). We now show zk+q+1 ∈ N (z∗, ε/2). From Lemma 8, we have

‖H(zk+q)‖ ≤ C6‖H(zk+q−1)‖2 ≤ · · · ≤ (C6)
2q−1‖H(zk)‖2q

= (C6)
2q−1‖H(zk)−H(z∗)‖2q ≤ (C6)

2q−1L2q‖zk − z∗‖2q

≤ (C6)
2q−1L2q

(
1

2C6L
)2q−1

ε̄ = Lε̄(1/2)2q−1 ≤ Lε̄(1/2)2q−1, (47)

which, together with (23), implies that

q∑

i=1

‖�zk+i‖ ≤ C3

q∑

i=1

‖H(zk+i )‖ ≤ C3Lε̄
q∑

i=1

(1/2)2i−1

≤ C3Lε̄
∞∑

i=1

(1/2)i = C3Lε̄.

This further leads to

‖zk+q+1 − z∗‖ ≤ ‖zk+1 − z∗‖ +
q∑

i=1

‖�zi‖ ≤ (1 + C3L)ε̄ + C3Lε̄ ≤ ε/2.

Therefore, zk+q+1 ∈ N (z∗, ε/2).
From (47) and Lemma 8 we know that ‖�zk+q‖ ≤ C3Lε̄(1/2)2q−1 holds for all

q ≥ 0. Hence, for any positive integers l, m with l ≥ m ≥ q,

‖zl − zm‖ ≤
l−1∑

i=m
‖�zi‖ ≤

∞∑

i=m
‖�zi‖

≤ C3Lε̄
∞∑

i=m
(1/2)2i−1 = 1

3
C3Lε̄(1/2)2m−3,

which indicates that the sequence {zk} is a Cauchy sequence. This implies that {zk} is a
convergent sequence. The proof is completed. 
�
Theorem 4. Suppose that M is a positive semidefinite matrix and Assumption 1 is sat-
isfied. Let z∗ be an accumulation point of the iteration sequence {zk} generated by
Algorithm 1. If (x∗, s∗) satisfies the strict complementarity condition x∗ + s∗ > 0, then
the whole sequence {zk} generated by Algorithm 1 converges to z∗,

‖H(zk+1)‖ = O
(
‖H(zk)‖2

)
and µk+1 = O

(
(µk)

2
)
.

Proof. This theorem follows directly from Lemmas 8 and 9. 
�
It is worth pointing out that in Theorem 4 only one accumulation point of the itera-

tion sequence is assumed to satisfy the strict complementarity condition and the whole
sequence is proved to converge to this accumulation point while in [46] all accumula-
tion points are assumed to satisfy the strict complementarity condition uniformly and in
[17, 18] the whole sequence is assumed to converge to a strict complementary solution.
This indicates that even in this case our results are stronger than those in [46, 17, 18].
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Table 1. The numerical results for random generated convex quadratic programming

QSZ’s Algorithm 20 17 19 19 18 19 18 18 18 19
Algorithm 1 19 16 20 17 19 18 17 18 19 18

6. Some final remarks

It has been tested in [49] that the QSZ smoothing algorithm [38] performs very efficiently
in practice for solving complementarity problems. In this paper, we have shown that a
modified version of the QSZ smoothing algorithm for the P0 and monotone LCP has
better convergence properties than those appeared in [38] and [46, 17, 18]. Specifically,
it is shown that the new method converges globally and i) locally sub-quadratically if
M is a P0 matrix and the LCP satisfies a nonsingularity condition; and ii) locally qua-
dratically if M is positive semidefinite and there is an accumulation point that satisfies
a strict complementarity condition.

We implemented Algorithm 1 for LCPs in Matlab in order to see the behavior of the
new smoothing method. Theoretically, the new algorithm has better guaranteed conver-
gence properties than the QSZ smoothing algorithm. Numerically, our testing shows that
the new algorithm behaves quite similarly to the QSZ smoothing algorithm in practice.
As an example, we considered the following convex quadratic programming problem:

min cT x̄ + 1

2
x̄T Gx̄ s.t. Ax̄ ≤ b, x̄ ≥ 0 , (48)

where c ∈ �n, A ∈ �m×n, b ∈ �m, and G ∈ �n×n is symmetric positive semidefinite.
Then (48) is equivalent to the following LCP

s = Mx + q, xT s = 0, (x, s) ≥ 0,

with

s =
(
y

v

)
, M =

(
0 −A
AT G

)
, x =

(
u

x̄

)
, q =

(
b

c

)
.

For any positive integers n1 and n2, let rand(n1, n2) denote a matrix by n1 × n2
whose each element is randomly chosen in (0, 1). Assume that the problem is given by
A = rand(500, 220),G = BBT and q = rand(720, 1) where B = rand(220, 200).
Throughout the computational experiments, the parameters used in Algorithm 1 were
chosen as σ = 0.0001, δ = 0.5, t = 0.9, µ0 = 100, and κ = 0.1. Take τ = 1/(10

√
n),

γ = 0.1 min{1, 1/µ0}, and η = γµ0 + τ
√
n. Let the starting point x0 = rand(720, 1)

and set y0 := Mx0 + q. We used ‖H(zk)‖ ≤ 10−12 as the stopping rule. This problem
is tested ten times by using Algorithm 1 and the QSZ smoothing algorithm, respectively.
The iteration numbers are listed in Table 1. Table 1 shows that the new algorithm and
the QSZ smoothing algorithm behave similarly for the above convex quadratic problem.
We also observed similar results for other examples.

Acknowledgements. We thank the Associate Editor and the two referees for their valuable comments on the
paper, which have considerably improved its presentation.
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