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A PROXIMAL POINT ALGORITHM FOR LOG-DETERMINANT
OPTIMIZATION WITH GROUP LASSO REGULARIZATION∗
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Abstract. We consider the covariance selection problem where variables are clustered into
groups and the inverse covariance matrix is expected to have a blockwise sparse structure. This
problem is realized via penalizing the maximum likelihood estimation of the inverse covariance ma-
trix by group Lasso regularization. We propose to solve the resulting log-determinant optimization
problem with the classical proximal point algorithm (PPA). At each iteration, as it is difficult to
update the primal variables directly, we first solve the dual subproblem by an inexact semismooth
Newton-CG method and then update the primal variables by explicit formulas based on the com-
puted dual variables. We also propose to accelerate the PPA by an inexact generalized Newton’s
method when the iterate is close to the solution. Theoretically, we prove that at the optimal solution,
the nonsingularity of the generalized Hessian matrices of the dual subproblem is equivalent to the
constraint nondegeneracy condition for the primal problem. Global and local convergence results
are also presented for the proposed PPA. Moreover, based on the augmented Lagrangian function of
the dual problem we derive an alternating direction method (ADM), which is easily implementable
and is demonstrated to be efficient for random problems. Numerical results, including comparisons
with the ADM on both synthetic and real data, are presented to demonstrate that the proposed
Newton-CG based PPA is stable and efficient and, in particular, outperforms the ADM when high
accuracy is required.
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1. Introduction. In many applications, e.g., multivariate data analysis, the
relationships among a set of variables are usually described by an undirected graph,
where each node represents a certain variable and two nodes are unconnected if and
only if the corresponding variables are conditionally independent, i.e., independent
with all other variables being fixed. This graph is frequently referred to as a graphical
model of the set of random variables. In many cases, we are required to select a
graphical model that adequately explains the observed data and yet has a simple
structure, i.e., fewer edges. When the set of random variables are jointly normally
distributed, the graphical model is also known as a Gaussian graphical model.

Let {yi ∈ R
n : i = 1, 2, . . . , p} be a set of samples independently drawn from an

n-variate Gaussian distribution N(0,Σ). We assume that the covariance matrix Σ is
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858 JUNFENG YANG, DEFENG SUN, AND KIM-CHUAN TOH

nonsingular. The goal is to estimate from the given samples the covariance matrix
Σ, whose inverse is expected to have a sparse structure, i.e., fewer nonzero entries.
This is largely because sparsity in the inverse covariance matrix (a.k.a. precision or
concentration matrix) corresponds to conditional independence. In fact, Dempster
[12] proved that any two components, say, xi and xj , of x ∼ N(0,Σ) are conditionally
independent if and only if (Σ−1)ij = 0. Based on this theoretical result, Dempster
suggested directly setting some selected entries of the inverse covariance matrix to be
zero, which leads to robust and efficient estimates of the covariance matrix in the case
when its inverse matrix indeed has a large number of zero elements. The estimation
of the sparsity pattern (and sometimes the values of the nonzero entries) of Σ−1 is
called covariance selection, which has diverse applications in, e.g., speech recognition
[3] and gene network analysis [13]. Recently, the covariance selection problem has
mainly been studied in the low sample size and high dimensional setting; see [40].

Let S := 1
p

∑p
k=1 yky

�
k be the sample covariance matrix. To estimate Σ−1, it is

natural to consider the maximum likelihood estimation (MLE), which is given by

(1.1) Σ̂−1 = argmin
X�0

〈S,X〉 − log detX.

Here the notation X � 0 represents that X is symmetric and positive semidefinite.
(In this paper, log(·) represents the natural logarithm function, and log 0 = −∞
is assumed wherever it might occur.) Unfortunately, the MLE alone is usually not
sufficient for our purpose because, first, S may not be positive definite (e.g., when
p < n), in which case the objective function in (1.1) is unbounded below; and second,
even if S is positive definite, the MLE, which is easily shown to be given by Σ̂−1 = S−1,
may not have the desired sparsity structure determined by a prior given conditional
independence. Furthermore, it is well known that the MLE is not a robust estimator
for many statistical purposes.

1.1. Some existing approaches. To promote sparsity in the inverse covariance
matrix, many heuristic, statistical, and variational approaches have been suggested
in the literature, e.g., Lauritzen [31] proposed a greedy forward-backward cardinality
search algorithm to determine the sparsity pattern of Σ−1; Dobra and West [14]
considered Bayesian covariance selection via a stochastic algorithm and utilized prior
information; Li and Gui [33] applied an intuitive thresholding gradient ascent method
to the log-likelihood function to estimate Σ−1; Huang, Liu, and Pourahmadi [29]
reparameterized the covariance matrix through its modified Cholesky factorization
and considered penalized MLE; and Dahl, Roychowdhury, and Vandenberghe [10]
considered MLE with predetermined sparsity constraints {Xij = 0 : (i, j) ∈ Ω},
where Ω is an index set. In particular, Banerjee, El Ghaoui, and d’Aspremont [2] and
Yuan and Lin [62] proposed to penalize the MLE by the �1-norm of X , resulting in
an optimization problem of the form

(1.2) min
X�0

〈S,X〉 − log detX + ω‖X‖1.

Here ‖X‖1 :=
∑

ij |Xij | and ω > 0 is a parameter to balance the relative importance
between the log-likelihood and regularization. In fact, the use of �1-regularization to
promote solution sparsity can be traced back to the 1960s and was mainly started
in geophysics for searching the so-called sparse spike trains; see, e.g., [50]. Recently,
�1-regularization has been extensively utilized in various applications including linear
regression [53], overcomplete decomposition [8], principal component analysis [11],
and compressive sensing [5, 15]. More importantly, the �1-norm is a simple convex
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function, which facilitates efficient computation (at least theoretically). In the co-
variance selection setting, (1.2) is a strictly convex problem due to the presence of
the strictly convex function log detX−1. Therefore, standard interior point meth-
ods (IPMs) are in principle applicable, at least to problems with small n, e.g., in
[62] the authors utilized standard IPMs to solve (1.2). Unfortunately, it is impossi-
ble to solve (1.2) efficiently on a common PC via IPMs when n is large, say, more
than 200. As a result, many customized algorithms for solving (1.2) and related
problems have been designed in the literature, e.g., block coordinate descent method
[22, 2, 64], projected subgradient method [16], Nesterov’s first-order methods [42, 43]
and their variants [2, 35, 36], alternating direction method (ADM) [63], Newton-CG
based proximal point algorithm (PPA) [54], and inexact IPM with effective precon-
ditioners [34]. In general, first-order algorithms (block coordinate descent, projected
subgradient, ADM, Nesterov’s methods and their variants) are easily implementable
and fast to obtain low or moderate accuracy solutions. The Newton-CG based PPA
works stably and is more efficient in obtaining solutions of higher accuracy. The
customized inexact IPM with effective preconditioners can even be faster than the
Newton-CG based PPA, but it is not applicable to log-determinant problems like
(1.2) with other types of regularization and/or additional generic linear constraints
other than {Xij = 0 : (i, j) ∈ Ω}.

1.2. Covariance selection with group Lasso regularization. In many ap-
plications, variables are naturally clustered into groups, and those from the same
group are more likely to be connected than those from different ones. For example,
in machine learning when modeling a two-dimensional shape made up of articulated
objects, landmarks along the contours of an animal’s different parts (e.g., legs, head,
tail) can naturally be grouped together, as these landmarks move collectively as the
animal moves through different articulated forms; see [16] for details. Another ex-
ample comes from the modeling of gene networks, where genes can be grouped into
pathways and interactions happen at the level of pathways, i.e., either two pathways
interact or they do not interact at all. In such applications, a blockwise sparsity
structure in the inverse covariance matrix is highly desired. Let A be a generic lin-
ear mapping from Sn (the set of n × n symmetric matrices) to R

m. To promote
group sparsity, we penalize the MLE by group Lasso regularization, resulting in an
optimization problem of the form

(1.3) min
X

{
〈S,X〉 − log detX + ω

∑
g∈G

‖Xg‖# : AX = b,X � 0
}
.

Here each g is a subset of {(i, j) : i, j = 1, 2, . . . , n}, G is a collection of such index
sets, Xg is a vector of length |g| (the cardinality of g) formed by the components of
X with indices in g, ‖ · ‖# is a certain norm, and b ∈ R

m. The equation AX = b in
(1.3) enforces a set of additional linear constraints on X , which could be determined
via prior knowledge about the inverse covariance matrix in a specific application.
We note that group Lasso regularization has been used in the literature to promote
blockwise sparsity; see, e.g., [61, 39, 1, 65] for group �2-regularized (logistic) regression
and [16] for group �∞-regularized covariance selection. A specific example of (1.3) is
the multitask structure learning problem for Gaussian graphical models [28]. Given k
arbitrary tasks, the following problem was considered in [28, equation (3)] to promote
a consistent sparsity pattern across different tasks:

(1.4) min
X1,...,Xk�0

k∑
t=1

(〈St, Xt〉 − log detXt) + ω

m∑
i,j=1

‖(X1,ij , . . . , Xk,ij)‖∞,
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860 JUNFENG YANG, DEFENG SUN, AND KIM-CHUAN TOH

where for each t, St denotes a given data matrix of size m × m, and Xt,ij denotes
the (i, j)th component of Xt, t = 1, 2, . . . , k. Let S = diag(S1, . . . , Sk) and X =
diag(X1, . . . , Xk). Since the constraint that off-diagonal blocks of X are equal to zero
can be represented by AX = b with an appropriate A, it is clear that (1.4) is a special
case of (1.3) with ‖·‖# = ‖·‖∞ and an appropriate G. Theoretically, the group Lasso
regularization is equivalent to enforcing certain bound constraints on the magnitudes
of Xg’s. Obviously, the choice of the group structure G, the regularization norm ‖·‖#
and the parameter ω are very important issues, which usually depend on specific
application problems. In this paper, we assume that they are given priors, and our
objective is to design an efficient algorithm for solving the optimization problem. In
practical applications, the group structure G can be either a known prior or learned
from statistical machine learning algorithms; see, e.g., [37]. For convenience, we
assume that G = {gi : i = 1, 2, . . . , r} and it satisfies the following assumption.

Assumption 1. Different groups in G are disjoint, i.e., gi ∩ gj = ∅ for all 1 ≤ i <
j ≤ r.

In practice, problems more general than (1.3) can be considered, e.g., local weights
can be enforced, and different norms can be applied to different groups. Taking into
account these two factors, we obtain the model problem which we will concentrate on
in this paper:

(1.5) min
X

{
〈S,X〉 − log detX +

∑r

�=1
ϕ�(Xg�) : AX = b,X � 0

}
,

where, for each �, ϕ� : R|g�| → R is a simple, closed proper convex function (local
weights can be implicitly included), A is a generic linear mapping from Sn to R

m, and
b ∈ R

m. Obviously, explicit sparsity constraints of the form {Xij = 0 : (i, j) ∈ Ω} can
be enforced via the linear constraints AX = b. In this paper, we make the following
assumption on A.

Assumption 2. The generic linear mapping A from Sn to R
m is surjective.

1.3. Motivation and contributions. Recently, Zhao, Sun, and Toh [66] pro-
posed to solve the dual form of a standard linear semidefinite programming (SDP)
problem by a Newton-CG based augmented Lagrangian (NAL) method, which is es-
sentially a PPA applied to the primal SDP where the inner subproblems are solved
by an inexact generalized Newton’s method for semismooth equations. The exten-
sive numerical results presented in [66] demonstrated that the NAL method can be
highly efficient for solving large-scale linear SDP problems whenever the constraint
nondegeneracy conditions hold for both the primal and the dual problems. The effi-
ciency of the NAL method can be partly explained by the theoretical results in [6, 52],
where it is shown that under the constraint nondegeneracy conditions the augmented
Lagrangian method (ALM) can be locally regarded as an approximate generalized
Newton’s method applied to a semismooth equation. Given the efficiency of the NAL
method for SDP, Wang, Sun, and Toh [54] adopted a similar idea to solve the log-
determinant problem (1.2) with additional linear constraints, where the problem is
transformed into a smooth problem via introducing auxiliary variables. The resulting
algorithm was shown to be approximately 2∼20 times faster than the adaptive Nes-
terov’s smoothing method [35], one of the fastest first-order methods for solving (1.2)
and some of its variants.

Motivated by the robustness and the effectiveness of the Newton-CG based PPA,
in this paper we extend the idea of [66, 54] to solving (1.5), which clearly contains a
much broader class of problems. Unlike the problem considered in [54], in the case of
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group Lasso regularization, it is generally not feasible to transform (1.5) into a smooth
problem. Therefore, at each iteration a nonsmooth PPA subproblem needs to be
solved. Our approach is to first solve the dual subproblem via an inexact generalized
Newton’s method for the dual variables and then update the primal variables via
explicit formulas based on the computed dual variables. We also propose to accelerate
the PPA by an inexact generalized Newton’s method when the iterate is close to the
solution. The key difference between this algorithmic framework and that in [54] is the
nonsmoothness of the objective function in the dual subproblem. In [54], the objective
function in the dual subproblem is smooth and thus Newton’s method of normal type
can be applied. In our case, the objective function of the dual subproblem is only
first-order continuously differentiable. We used a generalized Newton’s method for
solving semismooth nonlinear equations and solved the generalized Newton equation
iteratively. However, the efficiency of the inexact generalized Newton’s method for
solving the dual subproblem depends on the nonsingularity of the generalized Hessian
matrices of the dual subproblem. We prove that the nonsingularity of the generalized
Hessian matrices of the dual subproblem is equivalent to the constraint nondegeneracy
of the primal problem. Global and local convergence results of the proposed Newton-
CG based PPA are also presented. Moreover, based on the dual problem of (1.5)
we derive a first-order ADM-like algorithm, which is used for comparison with the
Newton-CG based PPA.

1.4. Notation. In the following, we let Sn, Sn
+, and Sn

++ be the sets of all n×n
symmetric, symmetric positive semidefinite, and symmetric positive definite matrices,
respectively. For convenience, X ∈ Sn

+ (resp., X ∈ Sn
++) also is represented by X � 0

(resp., X 
 0) occasionally. The derivative of a mapping f : Sn → Sn at X is denoted

by f ′(X)[H ] for any H ∈ Sn, i.e., f ′(X)[H ] := limt→0
f(X+tH)−f(X)

t . The transpose
operation of a vector or matrix variable is denoted by superscript �, and the adjoint
operators ofA and P are represented, respectively, by A∗ and P∗. The identity matrix
of appropriate size is denoted by I. The signum function is denoted by sgn, which
represents componentwise operation when applied to vector variables. The notation
‖ · ‖ represents the Frobenius norm ‖ · ‖F (resp., the 2-norm ‖ · ‖2) for matrix (resp.,
vector) variables. For matrices X,Y and vectors x, y of appropriate sizes, we define
〈(X, x), (Y, y)〉 = tr(X�Y ) + x�y, where tr represents the trace operation, and the
induced norm ‖(X, y)‖ =

√
‖X‖2 + ‖y‖2. The Hadamard product or componentwise

multiplication of two vectors or matrices of the same size is denoted by ◦. The set
of generalized Jacobian matrices of a mapping f at a certain point x is denoted by
∂f(x) (see the definition in (3.20)). The notation ∂ is also used to denote partial
derivative of a mapping with respect to certain variables (see, e.g., (3.25)), and with
a little overloading of notation, the boundary of a set K is also represented by ∂K
(see, e.g., (4.6)). We note that these uses of the notation ∂ in this paper do not cause
confusion in context. Other notation will be defined when it occurs.

1.5. Organization. The rest of this paper is organized as follows. In section 2,
we review the concept of Moreau–Yosida regularization and its basic properties which
will be used in subsequent analysis. In section 3, we present a Newton-CG based PPA
for solving (1.5). Some theoretical results, including global and local convergence, are
given in section 4. In section 5, based on the augmented Lagrangian function of the
dual problem we derive an ADM-like algorithm for solving (1.5). Numerical results,
including comparisons with the ADM on various types of data, are presented in section
6. Finally, some concluding remarks are given in section 7.
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2. The Moreau–Yosida regularization. Let E be a finite dimensional real
Euclidean space endowed with an inner product 〈·, ·〉 and its induced norm ‖ · ‖. Let
ϑ : E → R be a closed proper convex function; see, e.g., [46]. For any β > 0, the
Moreau–Yosida regularization [41, 60] of ϑ is defined by

(2.1) Φβ
ϑ(x) := min

y∈E

{
ϑ(y) +

1

2β
‖y − x‖2

}
, x ∈ E .

Since ϑ is proper and convex, it is minorized by an affine function in its effective
domain. Therefore, the objective function in (2.1) is coercive (i.e., it goes to infinity
as ‖y‖ does). Further considering the closedness and strong convexity of the objective
function, for any x ∈ E , problem (2.1) has a unique optimal solution, which is well

known as the proximal point of x associated with ϑ and is denoted by πβ
ϑ(x), i.e.,

(2.2) πβ
ϑ(x) := argmin

y∈E

{
ϑ(y) +

1

2β
‖y − x‖2

}
, x ∈ E .

The Moreau–Yosida regularization and the proximal point mapping have the proper-
ties given in the following proposition.

Proposition 2.1 (see [27, 32, 49]). Let ϑ : E → R be a closed proper convex func-

tion. For any β > 0, the Moreau–Yosida regularization Φβ
ϑ(·) and the associated prox-

imal point mapping πβ
ϑ(·) defined in (2.1) and (2.2), respectively, have the following

properties:
(i) Φβ

ϑ(·) is continuously differentiable and convex on E. Furthermore, it holds
that

(2.3) ∇Φβ
ϑ(x) =

1

β

(
x− πβ

ϑ(x)
)
, x ∈ E .

(ii) x∗ ∈ E minimizes ϑ over E if and only if it minimizes Φβ
ϑ over E.

(iii) πβ
ϑ is globally Lipschitz continuous with modulus 1, i.e.,

‖πβ
ϑ(x)− πβ

ϑ(y)‖ ≤ ‖x− y‖ ∀x, y ∈ E .

Let X ∈ Sn and X = Q diag(d1, d2, . . . , dn)Q
� be its eigenvalue decomposition,

where d1 ≥ · · · ≥ dn. Let β > 0. For the two scalar functions φ+
β (x) := (

√
x2 + 4β +

x)/2 and φ−
β (x) := (

√
x2 + 4β − x)/2, x ∈ R, we define their matrix counterparts by

φ+
β (X) := Q diag(φ+

β (d1), . . . , φ
+
β (dn))Q

� and(2.4)

φ−
β (X) := Q diag(φ−

β (d1), . . . , φ
−
β (dn))Q

�, X ∈ Sn.

Clearly, φ+
β (X) and φ−

β (X) are positive definite for any X ∈ Sn. The following

properties of φ+
β and φ−

β will be used in our subsequent analysis.
Proposition 2.2. Let β > 0. For any X ∈ Sn with eigenvalue decomposi-

tion X = Q diag(d1, d2, . . . , dn)Q
�, φ+

β and φ−
β defined in (2.4) satisfy the following

properties:
(a) φ+

β (X)− φ−
β (X) = X and φ+

β (X)φ−
β (X) = βI.

(b) φ+
β (−X) = φ−

β (X) and φ−
β (−X) = φ+

β (X).

(c) For any α > 0, there hold φ+
β (αX) = αφ+

β/α2(X) and φ−
β (αX) = αφ−

β/α2(X).
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(d) φ+
β is continuously differentiable and its derivative (φ+

β )
′(X)[H ] at X for any

H ∈ Sn is given by

(φ+
β )

′(X)[H ] = Q(Γ ◦ (Q�HQ))Q�,

where Γ ∈ Sn is defined by

(2.5) Γij =
φ+
β (di) + φ+

β (dj)√
d2i + 4β +

√
d2j + 4β

, i, j = 1, 2, . . . , n.

(e) (φ+
β )

′(X)[X1 +X2] = φ+
β (X), where X1 = φ+

β (X) and X2 = φ−
β (X).

Proof. The properties (a), (b), and (c) can be verified straightforwardly from the
definitions of φ+

β and φ−
β , while the proofs for (d) and (e) can be found in [54].

In the following, we derive the Moreau–Yosida regularization and the proximal
point mappings of− log detX defined on Sn

++ and the vector p-norm ‖·‖p (1 ≤ p ≤ ∞)
defined on R

n, which will be utilized subsequently in designing our Newton-CG based
PPA.

Proposition 2.3. Let ϑ(X) = − log detX be defined on Sn
++ and β > 0. Then

it holds that

πβ
ϑ(X) = φ+

β (X) = arg min
Y ∈Sn

++

{
− log detY +

1

2β
‖Y −X‖2

}
, X ∈ Sn,(2.6)

Φβ
ϑ(X) = − log detφ+

β (X) +
1

2β
‖φ−

β (X)‖2, X ∈ Sn.(2.7)

Proof. It is easy to show that for any X ∈ Sn, the unique optimal solution Y ∗

to (2.6) must satisfy the condition X = Y ∗ − β(Y ∗)−1. Property (a) in Proposition
2.2 implies that Y ∗ = φ+

β (X) satisfies this condition. By plugging φ+
β (X) into the

objective function of (2.6), we can show by using Proposition 2.2 that the Moreau–
Yosida regularization of ϑ(X) = − log detX , X ∈ Sn

++, is given by (2.7).
Proposition 2.4. Let 1 ≤ p ≤ +∞. The proximal point mapping of ϑ(x) =

‖x‖p = (
∑n

i=1 |xi|p)1/p : Rn → R is given by πβ
ϑ(x) = x−ΠBβ

q
(x), i.e.,

(2.8) πβ
ϑ(x) = x−ΠBβ

q
(x) = arg min

y∈Rn

{
‖y‖p +

1

2β
‖y − x‖2

}
, x ∈ R

n,

where 1 ≤ q ≤ +∞ satisfies 1
p + 1

q = 1, Bβ
q := {x ∈ R

n : ‖x‖q ≤ β}, and ΠBβ
q
(·)

represents the Euclidean projection onto Bβ
q .

The proof of Proposition 2.4 can be easily fulfilled by using the famous Moreau’s
theorem (see, e.g., [46, Theorem 31.5]). A simple proof can also be found in [21].

As regularization functions, in general the ϕ�’s in (1.5) are nonsmooth. In the
rest of this paper, we make the following assumption on the ϕ�’s.

Assumption 3. The ϕ�’s in (1.5) are given by ϕ�(·) = w�‖ · ‖p, where w� > 0 and
p = 1, 2 or ∞.

We note that in principle the Newton-CG based PPA proposed in this paper is
applicable provided that (i) ϕ�’s are simple in the sense that their proximal point
mappings either have explicit formulas or can be computed efficiently, and (ii) the
generalized Jacobian matrices of the proximal point mappings can be evaluated at
any given point. Clearly, both projections onto the �2-norm and the �∞-norm balls
have closed form formulas, and the generalized Jacobian matrices of these projection
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864 JUNFENG YANG, DEFENG SUN, AND KIM-CHUAN TOH

mappings can also be analytically represented. On the other hand, it is well known
that the projection onto the �1-norm ball can be computed efficiently (usually via
a sorting according to the magnitudes of the vector components; see, e.g., [17, 21]).
Furthermore, the corresponding generalized Jacobian can also be evaluated at any
given point. Therefore, all the ϕ�’s prescribed in Assumption 3 satisfy the two con-
ditions required by the Newton-CG based PPA. Another example that satisfies the
two conditions is the vector k-norm defined by ‖x‖(k) :=

∑k
i=1 |x|

↓
i , x ∈ R

n, where

|x|↓ is a reordering of |x| (absolute value applied to each component of x) such that

|x|↓1 ≥ |x|↓2 ≥ . . . ≥ |x|↓n; see the recent manuscript [56].

3. A Newton-CG based PPA. In this section, we propose a Newton-CG based
PPA for solving (1.5). The PPA is a classical optimization approach, which goes back
to [38] and is extensively studied in [48, 47]. Roughly, suppose we aim to minimize an
objective function f : Rn → R and xk is the current guess of an optimal solution; the
PPA generates xk+1 via (approximately) solving a perturbed problem of the form

(3.1) min
x

f(x) +
1

2βk
‖x− xk‖2,

where {βk > 0 : k = 1, 2, . . .} is a sequence of parameters. It is shown in [47] that
PPA is closely related to the method of multipliers of Hestenes [26] and Powell [44].
In the following, we reformulate (1.5) and then apply the PPA.

3.1. The problem reformulation. For each �, we let the operation X → Xg�

be denoted by P�, i.e., P�X = Xg� . To decouple the difficulty caused by the overlap-
ping of variables in the log-likelihood function and the regularization, we introduce for
each � an auxiliary variable y� ∈ R

|g�| to take Xg� = P�X out of the function ϕ�. Let
s :=

∑r
�=1 |g�| be the total number of elements of X involved in the regularization.

For convenience, we let P := [P1;P2; . . . ;Pr] : R
n×n → R

s and

(3.2) ϕ(y) :=

r∑
�=1

ϕ�(y�), where y := (y1; y2; . . . ; yr) ∈ R
|g1| × R

|g2| × · · · × R
|gr|.

We note that under Assumption 1, the operator P is also a surjective mapping. With
the above notation, (1.5) can be equivalently transformed to

min
X, y

〈S,X〉 − log detX + ϕ(y)(3.3a)

s.t. AX = b,(3.3b)

PX − y = 0,(3.3c)

X ∈ Sn
+, y ∈ R

s.(3.3d)

An advantage of introducing the auxiliary variable y ∈ R
s is that the objective func-

tion in (3.3) is now separable in X and y. To apply PPA to (3.3), we need to
determine the essential objective function. For this purpose, we let the generalized
Lagrange function L(X, y, λ, η) : Rn×n ×R

s ×R
m ×R

s → R∪ {+∞} associated with
(3.3) be defined by

L(X, y, λ, η)

(3.4)

:=

{
〈S,X〉 − log detX + ϕ(y)− λ�(AX − b)− η�(PX − y) if X ∈ Sn

++,
+∞ otherwise.
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Clearly, (3.3) is equivalent to

(3.5) min
X,y

{f(X, y) : X ∈ R
n×n, y ∈ R

s},

where f : Rn×n × R
s → R is the essential objective function of (3.3) defined by

(3.6) f(X, y) := max{L(X, y, λ, η) : λ ∈ R
m, η ∈ R

s}.

It is easy to show that the dual problem of (3.3) is given by

(3.7) max
λ,η,Z

{
b�λ+ log detZ − ϕ∗(−η) + n : A∗λ+ P∗η + Z = S, Z ∈ Sn

+

}
,

where ϕ∗ denotes the convex conjugate of ϕ (see, e.g., [46]). Under Assumption 3, ϕ∗

is actually the indicator function of

(3.8) B := {η ∈ R
s : ‖η�‖q ≤ ω�, � = 1, 2, . . . , r},

where q satisfies 1/p + 1/q = 1. Therefore, the presence of −ϕ∗(−η) in the dual
problem (3.7) essentially enforces the ball constraints η ∈ B. The feasible sets of the
primal and dual problems (1.5) and (3.7) are, respectively, defined by

FP = {X ∈ Sn
++ : AX = b},(3.9a)

FD = {(λ, η, Z) ∈ R
m × R

s × Sn
++ : ϕ∗(−η) < +∞,A∗λ+ P∗η + Z = S}.(3.9b)

Throughout this paper, we make the following assumption on (1.5) and (3.7).
Assumption 4. Both the primal and the dual feasible sets FP and FD are

nonempty.
Under Assumption 4, both problems (1.5) and (3.7) have optimal solutions. Fur-

thermore, the optimal solution to (1.5) is unique since the objective function is strictly
convex.

In the following, we concentrate on (3.5), to which we apply the PPA. For conve-
nience, we define

Wβ := Wβ(X,λ, η) = X − β (S −A∗λ− P∗η) ,(3.10a)

zβ := zβ(y, η) = y − βη.(3.10b)

First, we compute the Moreau–Yosida regularization of the essential objective function
f , which is derived in the following lemma.

Lemma 3.1. Let Wβ and zβ be defined in (3.10) and Φβ
ϕ be the Moreau–Yosida

regularization of ϕ defined in (3.2). Then, the Moreau–Yosida regularization of f
defined in (3.6) is given by

Φβ
f (X, y) = max{Θβ(X, y, λ, η) : λ ∈ R

m, η ∈ R
s},

where

Θβ(X, y, λ, η) := b�λ− 1

2β
‖φ+

β (Wβ)‖2 +
1

2β
‖X‖2 − log detφ+

β (Wβ) + n(3.11)

− 1

2β
‖zβ‖2 +

1

2β
‖y‖2 +Φβ

ϕ(zβ).
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Proof. By the definition of the Moreau–Yosida regularization, it holds that

Φβ
f (X, y) = min

U, v
f(U, v) +

1

2β

(
‖U −X‖2 + ‖v − y)‖2

)
(3.12)

= min
U, v

max
λ, η

L(U, v, λ, η) + 1

2β

(
‖U −X‖2 + ‖v − y‖2

)
= max

λ, η
min
U, v

L(U, v, λ, η) + 1

2β

(
‖U −X‖2 + ‖v − y‖2

)
= max{Θβ(X, y, λ, η) : λ ∈ R

m, η ∈ R
s},

where the interchange of min and max follows from [46], and

Θβ(X, y, λ, η)(3.13)

= min
U, v

L(U, v, λ, η) + 1

2β

(
‖U −X‖2 + ‖v − y‖2

)
= min

U, v
〈S,U〉 − log detU + ϕ(v) − λ�(AU − b)− η�(PU − v)

+
1

2β

(
‖U −X‖2 + ‖v − y‖2

)
= b�λ− 1

2β
‖Wβ‖2 +

1

2β
‖X‖2 +min

U

{
− log detU +

1

2β
‖U −Wβ‖2

}

− 1

2β
‖zβ‖2 +

1

2β
‖y‖2 +min

v

{
ϕ(v) +

1

2β
‖v − zβ‖2

}
.

From (2.6), the minimization for U in (3.13) is attained at φ+
β (Wβ), while the min-

imization for v is attained at πβ
ϕ(zβ). By using Proposition 2.2 and (2.7), simple

computation shows that Θβ(X, y, λ, η) can be simplified to the expression given in
(3.11).

3.2. The proposed PPA framework. In this subsection, we present a PPA
framework for solving (3.3) or equivalently (3.5). Given (Xk, yk) ∈ R

n×n × R
s, ac-

cording to (3.1), the next iterate (Xk+1, yk+1) generated by PPA satisfies
(3.14)

(Xk+1, yk+1) ≈ πβ
f (X

k, yk) = argmin
X,y

f(X, y) +
1

2β

(
‖X −Xk‖2 + ‖y − yk‖2

)
.

For simplicity, here the proximal parameter β is assumed to be constant, although it
is frequently varying in practice to accelerate convergence. According to (3.12), the
saddle point formulation of (3.14) is given by

(3.15) max
λ,η

min
X,y

L(X, y, λ, η) +
1

2β

(
‖X −Xk‖2 + ‖y − yk‖2

)
.

From Lemma 3.1, the dual problem of (3.14) is given by

(3.16) max
λ,η

{θk(λ, η) := Θβ(X
k, yk, λ, η) : λ ∈ R

m, η ∈ R
s}.

Unfortunately, directly solving (3.14) in practice is by no means an easy task. We
emphasize that the saddle value of (3.15) exists because the objective function is
strictly convex (actually strongly convex) with respect to (X, y); see [46, Theorem
37.3]. Therefore, a feasible way to solve (3.14) is to first solve the dual subproblem
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(3.16) for the dual variables and then compute the primal variables (X, y) based on
the computed dual ones. Specifically, at each iteration, we first (approximately) solve
(3.16) to obtain the dual variables (λk+1, ηk+1) and then update the primal variables
(Xk, yk) via

Xk+1 = φ+
β (Wβ(X

k, λk+1, ηk+1)),(3.17a)

yk+1 = πβ
ϕ(zβ(y

k, ηk+1)),(3.17b)

because it is implied by the proof of Lemma 3.1 that for fixed (λ, η), the minimiza-
tion in (3.15) with respect to X and y is attained at X = φ+

β (Wβ(X
k, λ, η)) and

y = πβ
ϕ(zβ(y

k, η)), respectively. Now we are ready to summarize the proposed PPA
framework.

Algorithm 1. A PPA framework for solving (3.3).

1 Input S, A, b, ω�’s and β > 0. Initialize (X, y) = (X0, y0) and k = 0.
2 while “not converged” do
3 For fixed (Xk, yk), solve (3.16) approximately to obtain the dual variables

(λk+1, ηk+1).
4 Update the primal variables via (3.17) and set k = k + 1.

Since in practice (3.16) can be solved only approximately, we will use the following
stopping criteria considered by Rockafellar [48, 47] for the theoretical analysis in
section 4:

sup θk(λ, η)− θk(λ
k+1, ηk+1) ≤ ε2k

2β
, εk ≥ 0,

∞∑
k=0

εk < ∞;(3.18a)

sup θk(λ, η)− θk(λ
k+1, ηk+1) ≤ δ2k

2β
‖(Xk+1, yk+1)− (Xk, yk)‖2,(3.18b)

δk ≥ 0,
∞∑
k=0

δk < ∞;

‖∇θk(λ
k+1, ηk+1)‖ ≤ δ′k

β
‖(Xk+1, yk+1)− (Xk, yk)‖, 0 ≤ δ′k → 0.(3.18c)

Clearly, the main cost per iteration of Algorithm 1 is to solve the dual subprob-
lem (3.16), which requires its own iterations. In the next subsection, we describe a
Newton-CG algorithm for solving the dual subproblem (3.16) and introduce practi-
cally implementable stopping criteria in place of (3.18a) and (3.18b) by removing the
unknown quantity sup θk(λ, η).

3.3. Solve the dual subproblem by a Newton-CG method. From Propo-
sition 2.1, for any (Xk, yk), θk(λ, η) defined in (3.16) is continuously differentiable
and concave with respect to (λ, η). Therefore, solving (3.16) is equivalent to solving
the following nonlinear system:

Fk(λ, η) := −∇θk(λ, η) =

[
Aφ+

β (W
k
β (λ, η))− b

Pφ+
β (W

k
β (λ, η))− πβ

ϕ(z
k
β(η))

]
= 0, (λ, η) ∈ R

m × R
s,

(3.19)
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where W k
β (λ, η) = Xk + β(A∗λ + P∗η − S) and zkβ(η) = yk − βη. However, due

to the nonsmoothness of the projection mappings onto the �p-norm balls (hidden
in the proximal point mapping πβ

ϕ), θk(λ, η) is not twice continuously differentiable.

From Proposition 2.1, πβ
ϕ is globally Lipschitz continuous. Therefore, according to

Rademacher’s theorem, πβ
ϕ is almost everywhere Fréchet differentiable in the whole

space. Let Dπβ
ϕ
be the set of points where πβ

ϕ is differentiable, and

∂Bπ
β
ϕ(z) :=

{
V : V = lim

k→∞
(πβ

ϕ)
′(zk), zk → z, zk ∈ Dπβ

ϕ

}
, z ∈ R

s.

The set of generalized Jacobian matrices (see, e.g., [9]) of πβ
ϕ is defined by

(3.20) ∂πβ
ϕ(z) := conv{∂Bπβ

ϕ(z)}, z ∈ R
s,

where conv denotes the convex hull. Fortunately, the projection mappings onto the
�p-norm balls (p = 1, 2,∞) (and thus, from Proposition 2.4, the proximal point map-
pings) are semismooth. That is, for any fixed z̄, πβ

ϕ is directional differentiable and,

for any V ∈ ∂πβ
ϕ(z), it holds that

πβ
ϕ(z)− πβ

ϕ(z̄)− V (z − z̄) = o(‖z − z̄‖) as z → z̄.

As a result, (3.19) is a semismooth equation and the generalized Newton’s method
developed in [30, 45] for solving semismooth equations can be applied. In our imple-
mentation, we solved (3.19) by the inexact generalized Newton’s method described in
Algorithm 2.

Algorithm 2. A Newton-CG algorithm for solving (3.16).

1 Given μ ∈ (0, 0.5) and c, δ ∈ (0, 1). Choose (λk,0, ηk,0) and let j = 0.
2 while “not converged” do
3 Apply an iterative algorithm to solve

(3.21) V k,j(dλ; dη) = −Fk(λ
k,j , ηk,j)

4 to obtain djλ and djη, where V k,j ∈ ∂Fk(λ
k,j , ηk,j).

5 Set αj = δmj , where mj is the first nonnegative integer m for which

θk(λ
k,j + δmdjλ, η

k,j + δmdjη) ≥ θk(λ
k,j , ηk,j)(3.22a)

−μδm〈Fk(λ
k,j , ηk,j), (djλ; d

j
η)〉,

‖∇θk(λ
k,j + δmdjλ, η

k,j + δmdjη)‖ ≤ c‖∇θk(λ
k,j , ηk,j)‖.(3.22b)

Set λk,j+1 = λk,j + αjd
j
λ, η

k,j+1 = ηk,j + αjd
j
η.

6 If converged, set λk+1 = λk,j+1, ηk+1 = ηk,j+1 and break; otherwise set
j = j + 1.

Simple computation shows that the set of generalized Jacobian matrices ∂Fk

(λk,j , ηk,j) has the form

∂Fk(λ
k,j , ηk,j) =

{
β

[
A
P

]
(φ+

β )
′(W k

β )

[
A
P

]∗
+ β

(
0 0
0 J

)
: J ∈ ∂πβ

ϕ(z
k
β)

}
,
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where W k
β = Xk + β(A∗λk,j + P∗ηk,j − S) and zkβ = yk − βηk,j . Clearly, all the

elements in ∂Fk(λ
k,j , ηk,j) are positive semidefinite.

In practical implementation, a proximal term − ε
2 (‖λ−λk‖2+‖η−ηk‖2) can always

be added to the dual objective function θk(λ, η). In fact, this corresponds to the PPA
of multipliers considered in [47, section 5]. Convergence analysis of this improvement
can be conducted in a parallel way as for Algorithm 1. The benefits of adding a
proximal term to θk(λ, η) are twofold. First, it provides a feasible way of terminating

Algorithm 2. In fact, the function θ̂k(λ, η) := θk(λ, η) − ε
2 (‖λ− λk‖2 + ‖η − ηk‖2) is

strongly concave with modulus ε, and thus the following estimation holds:

sup θ̂k(λ, η) − θ̂k(λ
k+1, ηk+1) ≤ 1

2ε
‖∇θ̂k(λ

k+1, ηk+1)‖2.

Therefore, the stopping criteria (3.18a) and (3.18b) can be practically modified to

‖∇θ̂k(λ
k+1, ηk+1)‖ ≤

√
ε/β · εk, εk ≥ 0,

∞∑
k=0

εk < ∞;(3.23a)

‖∇θ̂k(λ
k+1, ηk+1)‖ ≤

√
ε/β · δk‖(Xk+1, yk+1)− (Xk, yk)‖,(3.23b)

δk ≥ 0,
∞∑
k=0

δk < ∞.

Note that the unknown value sup θk(λ, η) has been removed, and thus the criteria
(3.23a) and (3.23b) are practically implementable. Furthermore, adding this proxi-
mal term to θk(λ, η) changes the coefficient matrix in (3.21) to V k,j + εI, which is
clearly positive definite. Therefore, the corresponding linear system can be practically
solved by a preconditioned conjugate gradient (PCG) method. In practical implemen-
tation, we always choose the parameter ε adaptively to accelerate convergence of inner
iterations.

3.4. Acceleration by a generalized Newton’s method. For given X and y,
we let (λ(X, y), η(X, y)) ∈ argmaxλ,η Θβ(X, y, λ, η). According to (i) of Proposition
2.1, it holds that

∇Φβ
f (X, y) =

[
∇XΦβ

f (X, y)

∇yΦ
β
f (X, y)

]
=

1

β

{[
X
y

]
−
[
φ+
β (W )

πβ
ϕ(z)

]}
,

where

W := W (X, y, λ(X, y), η(X, y)) = X + β(A∗λ(X, y) + P∗η(X, y)− S),(3.24a)

z := z(y, η(X, y)) = y − βη(X, y).(3.24b)

Therefore, the PPA framework presented in Algorithm 1, which iterates X and y by
(3.17), is equivalent to a gradient descent method applied to Φβ

f (X, y). To accelerate
convergence, we propose to use the generalized Newton’s method for solving semi-
smooth equations when the iterate is close to the solution. Let O be a set of operators
and u be an element in the domain of the operators in O. With a slight abuse of
notation, in the following we let Ou := {h(u) : h ∈ O} and v+Ou := {v+ h(u) : h ∈
O}. Since it is difficult to express ∂2Φβ

f (X, y) := ∂∇Φβ
f (X, y) exactly, we define the

following alternative for ∂2Φβ
f (X, y) just as in [66]:
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(3.25)

∂̂2Φβ
f (X, y)

[
D
d

]
:=

⎧⎨
⎩ 1

β

[
D
d

]
− 1

β

⎡
⎣ (φ+

β )
′(W )

(
∂W
∂X [D] + ∂W

∂y [d]
)

h
(

∂z
∂X [D] + ∂z

∂y [d]
)

⎤
⎦ : h ∈ ∂πβ

ϕ(z)

⎫⎬
⎭ ,

where (D, d) ∈ R
n×n × R

s, ∂πβ
ϕ(z) denotes the set of generalized Jacobian matrices

of πβ
ϕ(z), and

∂W

∂X
[D] = D + βA∗ ∂λ(X, y)

∂X
[D] + βP∗ ∂η(X, y)

∂X
[D],(3.26a)

∂W

∂y
[d] = βA∗ ∂λ(X, y)

∂y
[d] + βP∗ ∂η(X, y)

∂y
[d],(3.26b)

∂z

∂X
[D] = −β

∂η(X, y)

∂X
[D],(3.26c)

∂z

∂y
[d] = d− β

∂η(X, y)

∂y
[d].(3.26d)

It follows from [9, p. 75] that ∂2Φβ
f (X, y)[D, d] ⊆ ∂̂2Φβ

f (X, y)[D, d] for any (D, d) ∈
R

n×n × R
s. When the iterate is close to an optimal solution, we take a generalized

Newton’s step, i.e.,

(3.27) (Xk+1, yk+1) = (Xk, yk) + (Dk, dk),

where (Dk, dk) is the solution to the Newton system

(3.28) V k[D, d] = −∇Φβ
f (X

k, yk) for some V k ∈ ∂̂2Φβ
f (X

k, yk).

Let W and z be defined as in (3.24). Then, Aφ+
β (W ) and Pφ+

β (W )− πβ
ϕ(z) are map-

pings of (X, y) from Sn ×R
s to R

m and R
s, respectively, and so are their derivatives.

By computing the derivatives to Aφ+
β (W ) − b = 0 and Pφ+

β (W ) − πβ
ϕ(z) = 0 on

both sides (for πβ
ϕ(z), compute its generalized Jacobians) with respect to (X, y) and

applying the resulting mappings onto (D, d) ∈ Sn × R
s, we obtain

A(φ+
β )

′(W )

[
∂W

∂X
[D] +

∂W

∂y
[d]

]
= 0,(3.29a)

P(φ+
β )

′(W )

[
∂W

∂X
[D] +

∂W

∂y
[d]

]
− ∂πβ

ϕ(z)

[
∂z

∂X
[D] +

∂z

∂y
[d]

]
= 0.(3.29b)

By plugging (3.26) into (3.29) and with simple manipulation, we obtain

β

{[
A
P

]
(φ+

β )
′(W )

[
A
P

]∗
+

[
0 0
0 ∂πβ

ϕ(z)

]}[
λ′
X + λ′

y

η′X + η′y

]

=

[
−A(φ+

β )
′(W )[D]

−P(φ+
β )

′(W )[D] + ∂πβ
ϕ(z)[d]

]
.

Here λ′
X and λ′

y stand for ∂λ(X, y)/∂X [D] and ∂λ(X, y)/∂y[d], respectively, and
similarly for η′X and η′y . Note that the coefficient matrix of the above linear system is

identical to that in (3.21). Therefore, λ′
X +λ′

y and η′X + η′y, and thus ∂W
∂X [D] + ∂W

∂y [d]

and ∂z
∂X [D] + ∂z

∂y [d] from (3.26), can be computed by solving the above linear system.
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Since ∂πβ
ϕ can be explicitly computed for the ϕ�’s prescribed in Assumption 3, (3.25)

implies that for given V ∈ ∂̂2Φβ
f (X, y) and [D, d] in its domain, their multiplication

can be computed. As a result, the Newton system (3.28) can be solved by a Krylov
subspace method such as the CG method, which depends merely on this “matrix-
vector” multiplication.

4. Theoretical results. In this section, we present some theoretical results of
the proposed PPA. Let (X̄, ȳ) be the unique optimal solution of (3.3) and (λ̄, η̄) be
the corresponding unique multipliers. We note that the uniqueness of the optimal
solution to the dual problem (3.7) (or multipliers) depends on a primal constraint
nondegeneracy, as will be stated in (4.8). For λ ∈ R

m and η ∈ R
s, we define

(4.1) F (λ, η) :=

[
Aφ+

β (X̄ + β(A∗λ+ P∗η − S))− b

Pφ+
β (X̄ + β(A∗λ+ P∗η − S))− πβ

ϕ(ȳ − βη)

]
.

The efficiency of the Newton-CG method for solving the inner subproblems depends
on the positive definiteness of the generalized Hessian matrices of the dual objective
function, an important property for the effectiveness of applying an iterative solver,
such as CG, to the generalized Newton equation (3.21). We will show in subsection
4.1 that the primal constraint nondegeneracy condition for (3.3) (with a slight refor-
mulation) at (X̄, ȳ) is equivalent to the nonsingularity (positive definiteness) of the
set of generalized Jacobian matrices ∂F (λ̄, η̄). We note that the Newton-CG method
cannot be guaranteed to be efficient if the constraint nondegeneracy condition for (3.3)
does not hold. Thus, for an effective and stable implementation, a proximal term can
be added when solving the dual subproblem (3.16). We also present in subsection 4.2
global and local convergence results of Algorithm 1 based on the classical results in
[48, 47].

4.1. Constraint nondegeneracy and the positive definiteness of ∂
F (λ̄, η̄). Recall that under Assumption 3 the regularization function ϕ has the form
ϕ(y) =

∑r
�=1 ω�‖y�‖p, y ∈ R

s, where p = 1, 2, or ∞. By introducing an auxiliary
variable t ∈ R, (3.3) is clearly equivalent to

min
X, y,t

〈S,X〉 − log detX + t(4.2a)

s.t. AX = b,(4.2b)

PX − y = 0,(4.2c)

(X, y, t) ∈ Sn
+ ×Kp,(4.2d)

where Kp, p = 1, 2,∞, is a closed convex cone defined by

(4.3) Kp :=
{
(y, t) ∈ R

s × R : ϕ(y) =
∑r

�=1
ω�‖y�‖p ≤ t

}
.

The constraint nondegeneracy condition of (4.2) at (X̄, ȳ, t̄) (here t̄ = ϕ(ȳ) since the
constraint (y, t) ∈ Kp must be active at the optimal solution) is(

A 0 0
P −I 0

)(
lin(TSn

+
(X̄))

lin(TKp(ȳ, t̄))

)
=

(
R

m

R
s

)
,(4.4)

where, for a set C and v ∈ C, TC(v) denotes the tangent cone of C at v, and lin rep-
resents the linearity space of a closed convex cone (the biggest linear space contained
in the cone). Since X̄ is positive definite, it follows that TSn

+
(X̄) = Sn, and thus (4.4)

is equivalent to
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A 0 0
P −I 0

)(
Sn

lin
(
TKp(ȳ, t̄)

)) =

(
R

m

R
s

)
.(4.5)

For any (y, t) ∈ R
s × R, the tangent cone of Kp at (ȳ, t̄) is given by

(4.6)

TKp(y, t) =

⎧⎨
⎩

R
s+1 if (y, t) ∈ int(Kp),

Kp if (y, t) = 0,
{(d, α) ∈ R

s × R : φ′((y, t); (d, α)) ≤ 0} if (y, t) ∈ ∂Kp \ {0},

where φ(y, t) := ϕ(y) − t; see, e.g., [9, Theorem 2.4.7]. In the following, we give a
detailed analysis for the case p = 2. As we will explain at the end of this subsection,
the analyses for p = 1 and p = ∞ are similar.

For p = 2, direct calculation shows that

TK2(y, t) =

⎧⎨
⎩(d, α) ∈ R

s × R :
∑

�: y� �=0

y�� d�
‖y�‖

+
∑

�: y�=0

‖d�‖ ≤ α

⎫⎬
⎭ ∀ (y, t) ∈ ∂K2 \ {0}.

Thus, it follows from lin(TK2(y, t)) = TK2(y, t) ∩−TK2(y, t) that

lin(TK2(y, t)) =

⎧⎨
⎩(d, α) ∈ R

s × R : α =
∑

�: y� �=0

y�� d�
‖y�‖

, d� = 0 if y� = 0

⎫⎬
⎭(4.7)

∀ (y, t) ∈ ∂K2 \ {0}.

Since at the optimal solution the constraint ϕ(y) ≤ t must be active, i.e., (ȳ, t̄) /∈
int(K2), it follows from (4.7) that (4.5) can be simplified to

(4.8)

(
A
P

)
Sn +

(
0
V

)
=

(
R

m

R
s

)
,

where

V := {d : (d, α) ∈ lin(TK2(ȳ, t̄)) for some α}(4.9)

= H1 × . . .×Hr, H� =

{
R

|ȳ�| if ȳ� �= 0,
{0|ȳ�|} otherwise.

From Proposition 2.4, it holds for p = 2 that

πβ
ϕ(z) = z −ΠBβw

2
(z),

where Bβw
2 = Bβw1

2 × · · · × Bβwr

2 and Bβw�

2 := {v ∈ R
|z�| : ‖v‖ ≤ βw�} for each �.

Clearly, we have the following formulas for projection onto an �2-norm ball and its
generalized Jacobian matrices:

ΠBw
2
(v) =

{
w v

‖v‖ if ‖v‖ > w,

v otherwise,
and(4.10)

∂ΠBw
2
(v) =

⎧⎪⎪⎨
⎪⎪⎩

w
‖v‖
(
I − vv�

‖v‖2

)
if ‖v‖ > w,{

I − t vv
�

w2 : 0 ≤ t ≤ 1
}

if ‖v‖ = w,

I if ‖v‖ < w.

The next theorem establishes the equivalence of the positive definiteness of the set
of generalized Jacobian matrices ∂F (λ̄, η̄) and the primal constraint nondegeneracy
condition (4.8).
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Theorem 4.1. Assume p = 2. The set of generalized Jacobian matrices ∂F (λ̄, η̄)
are all positive definite if and only if the constraint nondegeneracy (4.8) holds.

Proof. First, we show that the constraint nondegeneracy condition (4.8) implies
the positive definiteness of all members in ∂F (λ̄, η̄). Let W̄ := X̄+β(A∗λ̄+P∗η̄−S)
and z̄ := ȳ − βη̄. Then, the set of generalized Jacobian matrices of F at (λ̄, η̄) (upon
a scaling of 1/β) are given by

(4.11) ∂F (λ̄, η̄) =

{[
A(φ+

β )
′(W̄ )A∗ A(φ+

β )
′(W̄ )P∗

P(φ+
β )

′(W̄ )A∗ P(φ+
β )

′(W̄ )P∗ + V

]
: V ∈ ∂πβ

ϕ(z̄)

}
,

where ∂πβ
ϕ(·) is defined in (3.20). Let d = (d1, d2) ∈ R

m × R
s and Jd = 0 for some

J ∈ ∂F (λ̄, η̄). Then,

0 = 〈d, Jd〉 = 〈A∗d1 + P∗d2, (φ+
β )

′(W̄ )(A∗d1 + P∗d2)〉+ 〈d2, V d2〉(4.12)

≥ 〈A∗d1 + P∗d2, (φ+
β )

′(W̄ )(A∗d1 + P∗d2)〉+ 〈V d2, V d2〉 ≥ 0

for some V ∈ ∂πβ
ϕ(z̄), where the first ≥ holds because all eigenvalues of V are less than

or equal to one (this is clear from (4.10)). Clearly (4.12) implies that A∗d1+P∗d2 = 0
and V d2 = 0. Next we show that d2 ∈ V⊥, where V is defined in (4.9). For any v ∈ V ,
i.e., (v, α) ∈ lin(TK2(ȳ, t̄)) (t̄ = ϕ(ȳ)) for some α ∈ R. If ȳ = 0, then (4.9) implies
that H� ≡ {0}. Thus, V = H1 × . . . × Hr = {0} and d2 ∈ V⊥. Otherwise, it holds
that 〈d2, v〉 =

∑
�: ȳ� �=0〈(d2)�, v�〉 (since H� = {0|ȳ�|} for all � such that ȳ� = 0), which

is equal to 0 if we can show that (d2)� = 0 for all � such that ȳ� �= 0. It follows from
ȳ = πβ

ϕ(z̄) = πβ
ϕ(ȳ − βη̄) that −βη̄� = Π

B
βw�
2

(−βη̄� + ȳ�) for each �. Therefore, for

those � such that ȳ� �= 0, it holds that ‖η̄�‖ = w�, and there exist δ� > 0 such that
δ�ȳ� = −βη̄�. This implies that if ȳ� �= 0, then ‖ȳ� − βη̄�‖ > βw� and thus

∂Π
B

βw�
2

(z̄�) =

{
βw�

‖z̄�‖

(
I − z̄�z̄

�
�

‖z̄�‖2

)}
.

Here z̄� = ȳ� − βη̄�. In this case, it is easy to see that

I − βw�

‖z̄�‖

(
I − z̄�z̄

�
�

‖z̄�‖2

)

 0.

Note that V ∈ ∂πβ
ϕ(z̄) implies that V = I−U for some U ∈ ∂ΠBβw

2
(z̄) or, equivalently,

V� = I − U� for some U� ∈ ∂Π
B

βw�
2

(z̄�) for all �. Therefore, V d2 = 0 implies that

(d2)� = 0 for all � such that ȳ� �= 0. In summary, we have proved d2 ∈ V⊥. Next

we show that d = (d1, d2) = 0. From (4.8), there exist X ∈ Sn and d̂ ∈ V such that

AX = d1 and PX + d̂ = d2. It thus follows from A∗d1 + P∗d2 = 0, d2 ∈ V⊥, and
d̂ ∈ V that

(4.13) 〈d, d〉 =
〈
d,

[
A 0
P I

] [
X

d̂

]〉
=

〈[
A∗d1 + P∗d2

d2

]
,

[
X

d̂

]〉
= 〈d2, d̂〉 = 0,

which implies d = 0. Therefore, we have proved that the set of generalized Jaco-
bian matrices ∂F (λ̄, η̄) defined in (4.11) are all positive definite under the constraint
nondegeneracy condition (4.8).

Now we assume that the set of generalized Jacobian matrices ∂F (λ̄, η̄) are all
positive definite. Let

B =

[
A 0
P −I

]
and X =

[
Sn

V

]
.
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We will show that the constraint nondegeneracy condition (4.8) holds by contradiction.

Suppose otherwise; then there exists d = (d1, d2) �= 0 such that d ∈ (BX )
⊥
. Thus,

it holds that 〈d,BU〉 = 〈B∗d, U〉 = 0 for any U ∈ X . Clearly, this is equivalent
to 〈A∗d1 + P∗d2, X〉 = 0 for all X ∈ Sn and 〈d2, v〉 = 0 for all v ∈ V . Thus,
A∗d1 + P∗d2 = 0 and d2 ∈ V⊥, where from (4.9) V⊥ is given by

V⊥ = H⊥
1 × . . .×H⊥

r , H⊥
� =

{
{0|ȳ�|} if ȳ� �= 0,

R
|ȳ�| otherwise,

which implies that (d2)� = 0 if ȳ� �= 0. For � such that ȳ� = 0, it follows from
ȳ� = πβ

ϕ(ȳ� − βη̄�) that ΠB
βw�
2

(−βη̄�) = −βη̄� and thus ‖ȳ� − βη̄�‖ ≤ βw�. Therefore,

for any V ∈ ∂πβ
ϕ(z̄), it holds that

〈d2, V d2〉 =
∑

�: ȳ�=0

〈(d2)�, (I − U�)(d2)�〉,

where U� = I if ‖βη̄�‖ < βw� and U� ∈ {I − tz̄z̄�/(βw�)
2 : 0 ≤ t ≤ 1} if ‖βη̄�‖ = βw�.

By taking U� ≡ I for all � such that ȳ� = 0, we obtain 〈d2, V d2〉 = 0. Therefore,
we have found a vector d = (d1, d2) �= 0 and a member M ∈ ∂F (λ̄, η̄) such that
〈d,Md〉 = 0, which contradicts the fact that all the members in ∂F (λ̄, η̄) are positive
definite. Thus, the constraint nondegeneracy condition (4.8) must hold.

Results similar to Theorem 4.1 can be established for p = 1 and p = ∞. The
analysis for the case p = 1 follows directly from that for p = 2 because the �1-norm
is componentwise separable and the absolute value is essentially the only norm in R.
The analysis for the case p = ∞ is also analogous to that for p = 2, except that
the argument is more tedious in notation because the projection mapping onto the
�1-norm ball and its generalized Jacobian matrices require an ordering of the variable
components according to their magnitudes. Due to this similarity, we omit the analysis
for these two cases and merely present in the following the explicit representations of
the linearity spaces of K1 and K∞, which are the key of the proofs.

From (4.6), we only need to concentrate on the case (y, t) ∈ ∂Kp \ {0}. With a
slight abuse of notation, for the case p = 1 we temporarily let vi be the ith component
of a vector v (different from the notation y�, which represents the �th block of y).
Direct calculation shows that

TK1(y, t) =

⎧⎨
⎩(d, α) ∈ R

s × R :
∑

1≤i≤s, yi �=0

sgn(yi)di +
∑

1≤i≤s, yi=0

|di| ≤ α

⎫⎬
⎭

∀ (y, t) ∈ ∂K1 \ {0}.
Thus, it follows from lin(TK1(y, t)) = TK1(y, t) ∩−TK1(y, t) that

lin(TK1(y, t)) =

⎧⎨
⎩(d, α) ∈ R

s × R : α =
∑

1≤i≤s: yi �=0

sgn(yi)di, di = 0 if yi = 0

⎫⎬
⎭

∀ (y, t) ∈ ∂K1 \ {0}.
Analogously, for p = ∞ it can be shown that

TK∞(y, t) =

⎧⎨
⎩(d, α) :

∑
�: y� �=0

max(dI� ◦ sgn((y�)I�)) +
∑

�: y�=0

‖d�‖∞ ≤ α

⎫⎬
⎭

∀ (y, t) ∈ ∂K∞ \ {0},
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where, for each �, I� := {i : |(y�)i| = ‖y�‖∞}. Thus, it follows from lin(TK∞(y, t)) =
TK∞(y, t) ∩ −TK∞(y, t) that

lin(TK∞(y, t)) =

⎧⎨
⎩(d, α) : α =

∑
�: y� �=0

γ�, dI� = γ� sgn((y�)I�), d� = 0 if y� = 0

⎫⎬
⎭

∀ (y, t) ∈ ∂K∞ \ {0}.

Finally, we note that for p = 1, 2,+∞ and under Assumption 4, one can prove that
the primal constraint nondegeneracy condition (4.8) implies the positive definiteness

of the set of generalized Hessian operators ∂̂2Φβ
f (X̄, ȳ), where ∂̂2Φβ

f is defined in

(3.25) and (X̄, ȳ) is the unique optimal solution to (3.3), i.e., V [D, d] �= 0 for any

V ∈ ∂̂2Φβ
f (X̄, ȳ) and 0 �= (D, d) ∈ R

n×n × R
s. As a consequence, the Newton

acceleration step (3.27) is well defined if the current point is sufficiently close to
(X̄, ȳ). The proof of this statement can be done by following that of [52, Proposition
5] in the context of nonconvex SDP. Note that since we consider convex problems in
this paper, we do not need the penalty parameter β to go beyond a threshold value
as in [52]. Here we omit the details of the proof for brevity.

4.2. Convergence results. In this subsection we first establish a lemma, which
together with the classical results in [48, 47] ensures the global convergence of Algo-
rithm 1. The local convergence rate of Algorithm 1 can also be directly derived from
the results in [48, 47]. For completeness, we shall merely present the convergence
results below but omit their proofs.

Lemma 4.2. Let πβ
f and Θβ be defined in (3.14) and (3.11), respectively. Then,

(Xk+1, yk+1) generated by Algorithm 1 satisfies

(4.14) ‖(Xk+1, yk+1)− πβ
f (X

k, yk)‖2/(2β) ≤ Φβ
f (X

k, yk)− θk(λ
k+1, ηk+1).

Proof. From (3.13), Θβ(X, y, λ, η) is the Moreau–Yosida regularization of
L(·, ·, λ, η) for fixed (λ, η). Thus, Θβ(X, y, λ, η) is convex in (X, y). Furthermore,
it is easy to show from Proposition 2.1 and (3.17) that

∇(X,y)Θβ(X
k, yk, λk+1, ηk+1) =

1

β
(Xk −Xk+1, yk − yk+1).

Thus, for any (X, y) ∈ R
n×n × R

s, it holds that

θk(λ
k+1, ηk+1) +

1

β

〈
(Xk −Xk+1, yk − yk+1), (X −Xk, y − yk)

〉
(4.15)

≤ Θβ(X, y, λk+1, ηk+1) ≤ sup
λ,η

Θβ(X, y, λ, η)

= sup
λ, η

inf
U, v

L(U, v, λ, η) + 1

2β

(
‖U −X‖2 + ‖v − y‖2

)
= inf

U, v
sup
λ, η

L(U, v, λ, η) + 1

2β

(
‖U −X‖2 + ‖v − y‖2

)
= inf

U, v
f(U, v) +

1

2β

(
‖U −X‖2 + ‖v − y‖2

)
≤ f

(
πβ
f (X

k, yk)
)
+

1

2β
‖πβ

f (X
k, yk)− (X, y)‖2,
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where the first inequality follows from the fact that θk(λ
k+1, ηk+1) = Θβ(X

k, yk, λk+1,
ηk+1) and the convexity of Θβ as a function of (X, y). On the other hand, it is obvious
by definition that

(4.16) Φβ
f (X

k, yk) = f
(
πβ
f (X

k, yk)
)
+

1

2β
‖πβ

f (X
k, yk)− (Xk, yk)‖2.

It follows from (4.15) and (4.16) that

(4.17)

Φβ
f (X

k, yk)− θk(λ
k+1, ηk+1)

≥ 1

β

〈
(Xk −Xk+1, yk − yk+1), (X −Xk, y − yk)

〉
+

1

2β

(
‖πβ

f (X
k, yk)− (Xk, yk)‖2 − ‖πβ

f (X
k, yk)− (X, y)‖2

)
,

=
1

2β

(
2
〈
πβ
f (X

k, yk)− (Xk+1, yk+1), (X, y)− (Xk, yk)
〉
− ‖(X, y)− (Xk, yk)‖2

)
.

The required result in (4.14) follows directly by taking the supremum on the right-
hand side of (4.17) since it holds for all (X, y) ∈ R

n×n × R
s.

In order to present the global and local convergence results of Algorithm 1, we
define two set-valued operators Tf and TL. For (X, y) ∈ R

n×n × R
s, we define

Tf(X, y) = {(U, v) ∈ R
n×n × R

s : (U, v) ∈ ∂f(X, y)}.

For (X, y, λ, η) ∈ R
n×n × R

s × R
m × R

s, we define

TL(X, y, λ, η) = {(U, v,−μ,−ν) ∈ R
n×n×R

s×R
m×R

s : (U, v,−μ,−ν) ∈ ∂L(X, y, λ, η)}.

To ensure the uniqueness of multipliers, we further make the following assumption.
Assumption 5. The primal constraint nondegeneracy condition (4.8) holds.

Since Φβ
f (X

k, yk) = supλ,η θk(λ, η), it follows from (4.14) and (3.18a) that

(4.18) ‖(Xk+1, yk+1)− πβ
f (X

k, yk)‖ ≤ εk, εk ≥ 0,

∞∑
k=0

εk < ∞.

Under the assumption that FD �= ∅, problem (3.3) has a unique optimal solution,
which we denote by (X̄, ȳ). It follows from (4.18) that

‖(Xk+1, yk+1)− (X̄, ȳ)‖ − εk ≤ ‖πβ
f (X

k, yk)− (X̄, ȳ)‖(4.19)

≤ ‖(Xk, yk)− (X̄, ȳ)‖,

where the first ≤ follows from the triangle inequality, and the second ≤ follows from
the nonexpansiveness of πβ

f (see Proposition 2.1) and the fact that πβ
f (X̄, ȳ) = (X̄, ȳ).

Further considering
∑∞

k=0 εk < ∞ and εk ≥ 0, it it easy to show from (4.19) that the
sequence {(Xk, yk)} generated by Algorithm 1 is bounded, a key property needed in
the proof of the global convergence of PPA. On the other hand, the local convergence
of Algorithm 1 depends on (4.19) and the Lipschitz continuity of T−1

f and T−1
L at the

origin; see [48].
Now, we are ready to present the global and local convergence results of Algorithm

1, which follow directly [48, Theorem 1] and [47, Theorems 4 and 5].
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Theorem 4.3 (global convergence). Let Algorithm 1 be executed with stopping
criterion (3.18a). If FD �= ∅, then the sequence {(Xk, yk)} generated by Algorithm 1
converges to (X̄, ȳ), the unique optimal solution to (3.3), and {(λk, ηk, Zk)} (Zk :=
S−A∗λk −P∗ηk) is asymptotically maximizing the dual problem (3.7) with the same
optimal value as the primal problem, i.e., strong duality holds.

If {(Xk, yk)} is bounded and FP �= ∅, then the sequence {(λk, ηk, Zk)} is also
bounded and thus converges to the unique optimal solution to (3.7).

Theorem 4.4 (local convergence). Let Algorithm 1 be executed with stopping
criteria (3.18a) and (3.18b). Assume that both FP and FD are nonempty. If T−1

f

is Lipschitz continuous at the origin with modulus af , then {(Xk, yk)} converges to
(X̄, ȳ), the unique optimal solution to (3.3), and

‖(Xk+1, yk+1)− (X̄, ȳ)‖ ≤ τk‖(Xk, yk)− (X̄, ȳ)‖

for all k sufficiently large, where τk = (af (a
2
f + β2)−1/2 + δk)/(1 − δk) → af (a

2
f +

β2)−1/2 < 1.
If in addition condition (3.18c) is satisfied and T−1

L is Lipschitz continuous at the
origin with modulus aL (≥ af ), then for all k sufficiently large it holds that

‖(λk+1, ηk+1)− (λ̄, η̄)‖ ≤ τ ′k‖(Xk+1, yk+1)− (Xk, yk)‖,

where τ ′k = aL(1 + δ′k)/β → aL/β and (λ̄, η̄, Z̄) (Z̄ := S −A∗λ̄ − P∗η̄) is the unique
optimal solution to the dual problem (3.7).

5. A dual based ADM. In this section, we derive a simple alternating min-
imization algorithm, the ADM, based on the dual problem (3.7). As noted, under
Assumption 3, ϕ∗ is the indicator function of the set B defined in (3.8). Thus, it is
easy to see that (3.7) is equivalent to

(5.1) min
λ,η,Z

{
−b�λ− log detZ : A∗λ+ P∗η + Z = S, Z ∈ Sn

++, η ∈ B
}
.

The augmented Lagrangian function associated with (5.1) is given by

LA(λ, η, Z,X) = −b�λ− log detZ +
σ

2
‖A∗λ+ P∗η + Z − S +X/σ‖2 − ‖X‖2/2σ,

where (λ, η, Z) ∈ R
m × B × Sn

++, X ∈ Sn is the Lagrangian multiplier associated
with the equality constraints, and σ > 0 is a penalty parameter. To solve the dual
problem (5.1), the classical ALM or method of multiplier of Hestenes [26] and Powell
[44] iterates as follows: given X0, for k = 0, 1, 2, . . .,

(λk+1, ηk+1, Zk+1) = argmin
{
LA(λ, η, Z,X

k) : (λ, η, Z) ∈ R
m × B × Sn

+

}
,(5.2a)

Xk+1 = Xk + σ
(
A∗λk+1 + P∗ηk+1 + Zk+1 − S

)
.(5.2b)

It is easy to verify that the multiplier X is actually the primal variable in (1.5).
Therefore, whenever the generated sequence {Xk} converges, it converges to the op-
timal solution of the primal problem (1.5). Obviously, the practical efficiency of the
ALM framework (5.2) depends on our ability to solve the subproblem (5.2a). Unfor-
tunately, solving (5.2a) is not an easy task since it has three blocks of variables (λ,
η, Z) and each block is involved in a different structure. To decouple the difficulty
caused by the joint minimization with respect to (λ, η, Z), we minimize with respect
to each of them separately while keeping the others fixed. Meanwhile, we adopt the
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878 JUNFENG YANG, DEFENG SUN, AND KIM-CHUAN TOH

idea of Gauss–Seidel iteration to utilize the latest information. After each sweep of
alternating minimization, we update X according to (5.2b). This leads to an iterative
algorithm that is known as the ADM pioneered by Glowinski and Marrocco [25] and
Gabay and Mercier [23]:

λk+1 = argmin
{
LA(λ, η

k, Zk, Xk) : λ ∈ R
m
}
,(5.3a)

ηk+1 = argmin
{
LA(λ

k+1, η, Zk, Xk) : η ∈ B
}
,(5.3b)

Zk+1 = argmin
{
LA(λ

k+1, ηk+1, Z,Xk) : Z ∈ Sn
+

}
,(5.3c)

Xk+1 = Xk + σ
(
A∗λk+1 + P∗ηk+1 + Zk+1 − S

)
.(5.3d)

Now we elaborate that all three subproblems in (5.3) can be solved easily. First, it is
easy to see that (5.3a) is a least squares problem with normal equations given by

AA∗λ = b/σ −A
(
P∗ηk + Zk − S +Xk/σ

)
.(5.4)

For the linear map A which enforces explicit sparsity constraints of the form {Xij =
0 : (i, j) ∈ Ω}, i.e., AX = XΩ, we have AA∗ = I (the identity operator). In this case,
the solution λk+1 to (5.4) is trivial to obtain. Second, it follows from Assumption 1
and the definition of P that PP∗ = I, and thus the η-subproblem (5.3b) always has
an analytical solution given by

ηk+1 = ΠB
(
P(S −A∗λk+1 − Zk −Xk/σ)

)
,(5.5)

where ΠB denotes the Euclidean projection onto B. For p = 1, 2,∞, the projection
onto B, and thus ηk+1 in (5.5), can be computed easily. Third, from Proposition 2.2,
the solution to the Z-subproblem (5.3c) is analytically given by

(5.6) Zk+1 = φ+
1/σ

(
S −A∗λk+1 − P∗ηk+1 −Xk/σ

)
.

Obviously, the computational cost of Zk+1 in (5.6) is one eigenvalue decomposition.
In summary, all three subproblems are easily solvable and thus the ADM framework
(5.3) is easily implementable. The implementation details of the ADM framework
(5.3), including adaptive choice of the parameter σ and stopping criterion, will be
discussed in section 6.

Due to the simplicity and surprising effectiveness of ADM for a wide range of
optimization problems including total variation problems in image processing [19,
59], �1-minimizations in compressive sensing [58], nuclear norm problems in low-rank
matrix reconstruction and factorization [7, 57, 51], semidefinite programming [55],
and many others [4], the ADM has recently attracted a lot of attention in the signal,
image, and data processing communities. We note that the classical ADM [25, 23]
is designed for linear equality constrained convex optimization problems where the
objective function contains only two blocks of variables. However, here we separated
the objective function in (5.1) into three blocks (λ, η, Z) because for fixed X = Xk,
the joint minimization of LA in its effective domain with respect to any two of them
is not easily solvable. Although the classical ADM is a special case of the PPA (see
[18]) and thus its convergence can be guaranteed even under certain inexactness of
solutions to the subproblems, the convergence of the ADM-like algorithm (5.3), which
is a natural generalization of the classical ADM when the objective function has three
blocks of variables, is still ambiguous. In section 6, we will verify the convergence of
(5.3) numerically.
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6. Numerical results. In this section, we present numerical results to demon-
strate the performance of the proposed Newton-CG based PPA on (1.5) with both
synthetic and real data. We implemented the algorithm in MATLAB and referred
to it as LGL (log-determinant optimization with group Lasso regularization). Since
we are not aware of any publicly available codes customized for solving (1.5) with
group Lasso regularization (p = 2,∞), we only compared LGL with the ADM-like
algorithm (5.3). All the experiments were performed with Microsoft Windows XP and
MATLAB v7.9 (R2009b), running on a Lenovo desktop with an Intel Core i7-2600
CPU at 3.40 GHz and 3 GB of memory.

6.1. A preconditioner. Let T : Sn → Sn be defined by T (H) = Q(Γ ◦
(Q�HQ))Q� for H ∈ Sn, where Γ and Q are given in Proposition 2.2. Let A, P, and
T be the matrix representations of the linear mappings A, P , and T , respectively.
Then the coefficient matrix in (3.21) (for simplicity, here we omit the dependence on
the iteration counters k and j) has the form

(6.1) M := β

[
A
P

]
T

[
A
P

]�
+ β

[
0 0
0 J

]
+ εI,

where J ∈ ∂πβ
ϕ(zβ). Clearly, the efficiency for solving the linear system (3.21) is cru-

cial for the performance of the overall algorithm. To achieve a faster convergence for
the CG method to solve (3.21), an effective preconditioner is desired. In our imple-
mentation, we designed an easy-to-compute approximate diagonal preconditioner by
using an idea first developed in [24].

Let the standard basis of Sn be given by {Eij := αij(eie
�
j +eje

�
i ) : 1 ≤ i ≤ j ≤ n},

where ei is the ith unit vector in R
n, and αij = 1/

√
2 if i �= j and αij = 1/2 if

otherwise. Then the diagonal element of T with respect to the basis element Eij is
given by
(6.2)

T(ij),(ij) = 〈Eij , T (Eij)〉 =
{
((Q ◦Q)Γ(Q ◦Q)�)ij + 〈v(ij),Γv(ij)〉 if i �= j,
((Q ◦Q)Γ(Q ◦Q)�)ij otherwise,

where letting Qi be the ith column of Q, v(ij) = Qi ◦ Qj . It is easy to see from
(6.2) that the computational cost for all the diagonal elements of T is O(n4). In our
implementation, we merely computed the first term on the right-hand side of (6.2),
which is typically a good approximation of T(ij)(ij), and the computational cost is

reduced to O(n3). Let d(ij) := ((Q ◦ Q)Γ(Q ◦ Q)�)ij for i, j = 1, 2, . . . , n. We used
the following preconditioner for M :

MD := β

[
A
P

]
diag(d)

[
A
P

]�
+ εI.

We note that it is also possible to take into account J ∈ ∂πβ
ϕ(zβ) in the preconditioner

because for ϕ�’s prescribed in Assumption 3, the explicit representation of the elements
of ∂πβ

ϕ(zβ) is not complicated. Based on our numerical experience, taking MD as the
preconditioner works reasonably well in practice, and thus we adopted it for simplicity.

6.2. Implementation details. We measured the primal and the dual infeasi-
bility of (1.5) and (3.7), respectively, by

RP :=
‖AX − b‖
1 + ‖b‖ and RD := max

{
‖A∗λ+ P∗η + Z − S‖

1 + ‖S‖ ,
‖η�‖q − ω�

ω�
, � = 1, . . . , r

}
.
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Let pobj := 〈S,X〉 − log detX +
∑r

�=1 ω�‖Xg�‖p and dobj := b�λ + log detZ + n
be the primal and the dual objective function values. Under Assumption 4, strong
duality holds. Therefore, in our experiments we terminated both LGL and ADM by
Res := max{RP , RD, RG} < Tol, where Tol > 0 is a tolerance and RG is the relative
duality gap defined by

(6.3) RG :=
|pobj− dobj|

1 + |pobj|+ |dobj| .

We also terminated ADM if the requirement Res < Tol was not satisfied after a
maximum number of 2000 iterations. In all experiments, we set Tol = 10−5. For
LGL, we initialized β0 = 1 and updated β by

βk+1 =

{
min(2βk, 10

8) if Rk+1
D /Rk

D > 0.5,
βk otherwise,

where Rk
D represents the dual infeasibility at the kth iteration. As for the penalty

parameter σ in ADM, we add the following note. It is well known that the penalty
parameter σ plays an important role for the convergence rate of the ALM scheme
(5.2). In general, a larger value of σ leads to a faster convergence of the outer loop.
However, extremely large values of σ may cause numerical difficulty and thus should
be avoided in practice. The same comments apply to the ADM since it is a practical
variant of the ALM for structured problems. In our experiments we initialized σ0 = 1
for constrained problems and updated it in a way such that the primal and the dual
infeasibilities are well balanced. Specifically, we updated σ as follows:

σk+1 =

⎧⎨
⎩

min(2σk, 10
8) if RP /RD < 0.1,

max(0.5σk, 10
−2) if RP /RD > 10,

σk otherwise.

For unconstrained problems, we first rescale the problem data and then set σ = 1
without dynamic adjustment. In all the experiments, we initialized LGL and ADM,
respectively, by (X0, y0) = (I,PI) and (X0, Z0, η0) = (I, I, 0). A Newton acceleration
step (3.28) was also taken if after a PPA iteration the condition max(RP , RD) < 10−2

is satisfied at the current point.

6.3. Results on random synthetic data. In this section, we present exper-
imental results to demonstrate the performance of LGL and ADM on (1.5) with
random synthetic data. To begin, we describe our procedure for generating random
synthetic data, including the inverse covariance matrix Σ−1, the sample covariance
matrix S, the group structure G, and the linear constraints AX = b.

For the inverse covariance matrix Σ−1, we first generate its sparsity pattern and
then the values of its nonzero entries. By reordering the components of x ∼ N(0,Σ)
if necessary, without loss of generality, we assume that x can be partitioned into
ng groups where the indices of components in each group are adjacent. That is,
x = (xI1 , xI2 , . . . , xIng

), where Ij = {ij−1 + 1, ij−1 + 2, . . . , ij} for j = 1, 2, . . . , ng.
Here, i0 := 0 and ing := n. The group sizes {|Ij | : j = 1, 2, . . . , ng} are determined
randomly such that each |Ij | is around the mean value n/ng. In the graphical model
of x, we let two nodes xi and xj from the same group be connected with probability
p1. On the other hand, for any two different groups Ij1 and Ij2 , we let the probability
of “there exist connections between Ij1 and Ij2” be p2. In the case that indeed
there exist connections between Ij1 and Ij2 , we let two nodes, one from each group,
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be connected with probability p3. Based on the principle that connections within
a group are more likely than connections between different groups, we assume that
0 < p2 < p3 < p1 < 1. Let Mask be the generated sparsity pattern and U be an
n × n matrix having the sparsity pattern Mask and entry values ±1 generated with
equal probability. The inverse covariance matrix (denoted by A) is generated via the
following MATLAB scripts:

• d = diag(U’*U); A = sign(sprandn(Mask)) + diag(d+1);
• eig min = min(eig(A)); ep = max(-1.2*eig min, 1E-4); A = A + ep * eye(n);

After generating Σ−1 (and thus Σ), we generated 2n independent and identically
distributed (i.i.d.) random vectors from N(0,Σ) and calculate the sample covariance
matrix S. For two index sets Ii and Ij , we let Ii × Ij := {(k, l) : k ∈ Ii, l ∈ Ij}.
The group structure is then set to be G = {Ii × Ij : i, j = 1, 2, . . . , ng}. The linear
constraints AX = b are determined by {Xij = 0 : (i, j) ∈ Ω}, where Ω is a subset of
E (the set of indices of the zero elements of Σ−1). In our experiments, we randomly
chose approximately 50% of the elements in E to form the subset Ω.

In the following, we first present an illustrative example to demonstrate the poten-
tial superiority of group Lasso regularization (p = 2,∞) compared to �1-regularization
(p = 1) when the inverse covariance matrix possesses a blockwise sparsity structure,
and then we present comparison results of LGL and ADM on random synthetic data
with different problem sizes.

Figure 6.1 shows the results recovered from (1.5) with p = 1, 2, and ∞. In
this experiment, the regularization parameters were chosen by trial and error so that
the recovered sparsity pattern approximates that of the true inverse covariance matrix
sufficiently well. It can be seen from Figure 6.1 that with appropriate choices of groups
and regularization parameters, group Lasso regularization with p = 2 and p = ∞ can
give better results than p = 1. Specifically, the blockwise sparsity structure of the true
inverse covariance matrix is approximately recovered by (1.5) with p = 2 and p = ∞,
while the result for p = 1 is much worse no matter how we tune the regularization
parameters.

Table 6.1 presents detailed comparison results of LGL and ADM on solving these
random problems with different problem sizes, where the number of iterations (iter),
the consumed CPU time (measured in seconds), and the resulting residues (RP ,
RD and RG) are given. To better understand the convergence speed (in terms of
iterations), for each test we present the results of two or three intermediate iterations
for both methods, where the iteration numbers are those where LGL and ADM at-
tain the required accuracy in the solution (measured by Res). In particular, in our
experiments all the final solutions obtained by LGL satisfy the condition Res < 10−5.
Therefore, the three iteration numbers will be those where the iterates first meet
the conditions Res < 10−1, 10−3, and 10−5. On the other hand, most of the final
solutions obtained by ADM failed to meet the condition Res < 10−5. In this case,
we present the final results as well as one or two intermediate iterations to make
a consistent comparison with LGL. The reason for us to present detailed results of
several intermediate iterations is that one can compare the two methods to obtain a
solution of modest accuracy. In the Iter column for LGL, four numbers are given for
each of the selected iterations, where the first (the one outside of the parentheses)
represents the number of PPA iterations, and the three numbers inside the paren-
theses represent, respectively, the total number of Newton systems (3.21) solved, the
average PCG steps taken for solving (3.21), and the total number of outer Newton
acceleration steps, i.e., (3.27). We also present the final primal objective function
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nz = 4754

True sparsity pattern.

nz = 1662

Recovered by L1.

nz = 6826

Recovered by group L2.

nz = 7266

Recovered by group Linf.

Fig. 6.1. An illustrative example. From top left to bottom right: the sparsity pattern of the
true inverse covariance matrix and those recovered from (1.5) with p = 1, 2, and ∞, respectively.
Parameters: n = 200, ng = 20, p1 = 0.8, p2 = 0.2, and p3 = 0.5. The regularization parameters are
set to be ω� ≡ ω = 0.03, 0.13, and 0.8 for p = 1, 2, and ∞, respectively.

values (pobj) below the detailed results of the selected iterations. For example, for
p = 1, n = 500, and m = 55194, LGL obtained the final primal objective function
value of −1.47963560× 103. The value at the corresponding position for ADM rep-
resents the difference between the final primal objective function value obtained by
ADM and that obtained by LGL, e.g., for p = 1, n = 500, and m = 55194, the value
−5.48× 10−7 implies that the final primal objective function value obtained by ADM
is −1.47963560× 103 − 5.48× 10−7. To evaluate how well we have recovered the true
inverse covariance matrix, we compute the quadratic loss (LossQ) and the normalized
entropy loss (LossE) defined, respectively, by

LossQ :=
1

n
‖ΣX − I‖ and LossE :=

1

n
(〈Σ, X〉 − log det ΣX − n).

We note that in general it is impossible to recover Σ−1 accurately based on S via
solving (1.5). The purpose of solving (1.5) is not to recover the true inverse covariance
matrix accurately but to detect its sparsity pattern while maintaining a reasonable
approximation to the true matrix. To measure the quality of the sparsity pattern in
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Table 6.1

Results on random problems. Parameters: ng = n/10, p1 = 0.8, p2 = 0.2, and p3 = 0.5;
ω� ≡ ω = 1/n.

LGL ADM
p n|m Iter Time (RP , RD , RG) Iter Time (RP , RD , RG)

1 500|55194 18(24, 4.0, 0) 13 (7.6-2, 5.9-2, 3.8-2) 30 4 (1.9-3, 6.7-2, 2.4-2)
22(32, 4.4, 1) 18 (8.4-4, 1.2-4, 6.7-5) 36 5 (9.7-4, 4.2-4, 1.3-4)
24(36, 4.5, 3) 23 (1.1-8, 7.7-6, 4.6-7) 47 6 (9.1-6, 2.1-6, 3.0-7)

pobj & Loss -1.47963560 3, (5.48-3, 4.09-3, 1.00, 0.02) -5.48-7, (5.48-3, 4.09-3, 1.00, 0.02)
1000|222941 22(32, 4.4, 0) 93 (1.4-2, 2.1-2, 1.6-2) 32 20 (3.9-13, 9.7-2, 3.3-2)

25(39, 4.7, 1) 119 (5.3-9, 7.9-5, 4.6-5) 37 24 (1.3-12, 4.9-4, 1.9-4)
28(45, 4.8, 4) 170 (5.7-9, 8.9-6, 4.2-6) 41 26 (1.4-12, 8.7-6, 2.6-6)

pobj & Loss -3.57578598 3, (3.63-3, 4.97-3, 1.00, 0.01) -1.73-6, (3.63-3, 4.97-3, 1.00, 0.01)

2 500|55072 24(39, 13.8, 0) 47 (5.6-2, 7.5-4, 6.1-4) 48 8 (9.8-2, 4.1-2, 1.6-2)
28(60, 18.8, 1) 75 (3.0-6, 1.3-5, 9.5-6) 150 24 (9.7-4, 3.4-4, 1.3-4)
29(64, 20.2, 2) 85 (6.3-6, 9.5-6, 6.9-6) 259 41 (9.9-6, 3.8-6, 1.2-6)

pobj & Loss -1.54395177 3, (1.17-2, 2.98-2, 0.74, 0.63) -7.17-7, (1.17-2, 2.98-2, 0.74, 0.63)
1000|224590 25(42, 23.6, 0) 379 (8.4-2, 1.3-3, 1.1-3) 49 40 (9.8-2, 5.5-2, 2.1-2)

29(70, 51.4, 0) 897 (1.8-5, 2.8-5, 2.0-5) 186 150 (9.8-4, 2.7-4, 1.0-4)
32(83, 75.2, 3) 1418 (6.9-6, 1.6-6, 1.1-6) 321 258 (9.7-6, 3.1-6, 9.6-7)

pobj & Loss -3.60607928 3, (6.50-3, 1.94-2, 0.77, 0.62) 3.35-7, (6.50-3, 1.94-2, 0.77, 0.62)

∞ 500|54394 26(79, 47.2, 0) 299 (4.5-2, 1.6-4, 1.6-4) 53 17 (6.9-2, 9.9-2, 3.8-2)
29(95, 47.0, 1) 343 (4.4-5, 1.6-5, 1.4-5) 403 132 (7.4-4, 9.9-4, 4.8-4)
30(100, 48.2, 2) 369 (3.5-6, 7.5-6, 7.0-6) 876 287 (7.4-6, 9.9-6, 4.4-6)

pobj & Loss -1.62905709 3, (2.43-2, 1.09-1, 0.59, 0.83) -5.78-7, (2.43-2, 1.09-1, 0.59, 0.83)
1000|223472 27(75, 45.4, 0) 1323 (6.8-2, 4.1-4, 4.0-4) 59 84 (8.8-2, 9.8-2, 3.6-2)

30(90, 45.5, 0) 1506 (2.9-5, 3.7-5, 3.4-5) 497 715 (9.9-4, 8.8-4, 4.2-4)
33(104, 47.9, 3) 1779 (1.6-6, 2.3-6, 2.2-6) 1071 1549 (9.9-6, 8.7-6, 4.0-6)

pobj & Loss -3.74196300 3, (1.60-2, 9.94-2, 0.58, 0.85) 1.35-6, (1.60-2, 9.94-2, 0.58, 0.85)

X in relation to that of the true matrix, we borrow some criteria from the machine
learning literature:

Specificity =
TN

TN+ FP
, Sensitivity :=

TP

TP + FN
,

where TP, TN, FP, and FN denote the number of true positives, true negatives, false
positives, and false negatives, respectively. For each computed solution X , we first
determine an appropriate thresholding value according to the clustered distribution
of the magnitudes of the elements of X and then classify Xij as 0 if its magnitude is
less than this value. In our situation, specificity measures the quality of zero entries,
while sensitivity measures the quality of nonzero entries. In Table 6.1, the four values
in parentheses behind the primal objective function values represent, respectively,
LossQ, LossE , specificity, and sensitivity.

It can be seen from Table 6.1 that both ADM and LGL perform very well on
these random problems because both methods are able to reduce Res to less than
10−5. With the help of acceleration by outer Newton iterations, LGL is able to
reach the required accuracy in less than around 30 PPA iterations for all the tested
random problems. The total number of Newton systems (3.21) solved is at most 104
(for p = ∞ and n = 1000). The average PCG steps taken for solving (3.21) is less
than 5 for p = 1, and this number is increased to about 70 and 50 for p = 2 and
p = ∞, respectively. Convergence faster than the linear rate can also be observed
from the results of LGL in Table 6.1, i.e., large decreases in Res were obtained in
very few or even two consecutive iterations, which is due to the help of the outer
Newton acceleration steps. The performance of ADM on these random problems is
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also favorable because Res decreases continuously at a relatively stable and fast speed.
It can also be seen that ADM is much faster than LGL on these random problems.
The differences in the final objective function values obtained by both methods are
negligible. From the results of LossQ and LossE, we see that the recovered solutions
approximate the true inverse covariance matrices very well. The sensitivity results
obtained by p = 2 and p = ∞ are much better than those obtained by p = 1, which
indicates the superior quality of nonzero elements of the recovered solutions from
group Lasso regularization. The specificity results for p = 1 are approximately 1
because usually the recovered solutions are overly sparse, while those for p = 2 and
p = ∞ are smaller because some false nonzeros are detected, as illustrated by the
results in Figure 6.1.

In section 6.4, we mainly examine the performance of LGL for p = 2 and p =
∞ because first, as illustrated by the results in Figure 6.1, p = 1 is not suitable
for problems with blockwise sparse inverse covariance matrices, and second, it is
intuitively true and also justified by our experimental results that the performance of
LGL for p = 1 is comparable with that of the NAL method [54] (which has been well
illustrated therein) since both methods adopt the idea of applying Newton’s method
to solving PPA subproblems. In section 6.5, we present comparison results of LGL
and ADM on solving (1.5) with p = 1 and gene expression data.

6.4. Results on deterministic synthetic data. In this section, we present
extensive comparison results between LGL and ADM on the deterministic synthetic
examples considered in [62] and [20]. Specifically, we tested the following sparse
inverse covariance matrices (denoted by A):
ar1 Aii = 1, Ai,i−1 = Ai−1,i = 0.5 ∀ i;
ar2 Aii = 1, Ai,i−1 = Ai−1,i = 0.5, Ai,i−2 = Ai−2,i = 0.25 ∀ i;
ar3 Aii = 1, Ai,i−1 = Ai−1,i = 0.4, Ai,i−2 = Ai−2,i = Ai,i−3 = Ai−3,i = 0.2 ∀ i;
ar4 Aii = 1, Ai,i−1 = Ai−1,i = 0.4, Ai,i−2 = Ai−2,i = Ai,i−3 = Ai−3,i = 0.2, Ai,i−4 =

Ai−4,i = 0.1 ∀ i;
decay Aij = exp(−2|i− j|) ∀ i, j;
circle Aii = 1, Ai,i−1 = Ai−1,i = 0.5 ∀ i, A1n = An1 = 0.4.

Again, for each test we first generated 2n i.i.d. random samples from the n-
dimensional Gaussian distribution N(0,Σ) and then computed the sample covariance
matrix S. For all these tests, we set ω� ≡ ω = 0.1. The constraints AX = b are
generated in the same manner as in section 6.3. Here, the nonzero entries of these
inverse covariance matrices exhibit a “diagonal” structure (for decay, Aij decays very
fast as |i − j| increases and thus can be reset to zero for |i − j| large). Therefore,
in our experiments we tested the “diagonal” group structure, i.e., the elements in
the same diagonal are grouped together. Specifically, the group structure is given by
G = {g� : � = 1, 2, . . . , 2n− 1}, where

g� =

{
{(1, n− �+ 1), (2, n− �+ 2), . . . , (�, n)} \ Ω, � = 1, . . . , n;
{(�− n+ 1, 1), (�− n+ 2, 2), . . . , (n, 2n− �)} \ Ω, � = n+ 1, . . . , 2n− 1.

Here Ω denotes the set of indices which determine AX = b. To illustrate the perfor-
mance of LGL and ADM on different groups, we also tested the “columnwise” group
structure, i.e.,

G = {g� : � = 1, 2, . . . , n}, where g� = {(1, �), (2, �), . . . , (n, �)} \ Ω, � = 1, 2, . . . , n.

Detailed experimental results of LGL and ADM are given in Tables 6.2 (diagonal
groups, p = 2), 6.3 (diagonal groups, p = ∞), 6.4 (columnwise groups, p = 2), and 6.5
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(columnwise groups, p = ∞), where all the quantities have the meanings explained in
section 6.3.

It can be seen from Tables 6.2–6.5 that for all the tests, LGL is able to obtain
solutions satisfying the condition Res < 10−5. The total number of PPA iterations
taken by LGL for these problems is no more than 40. The total number of Newton
systems (3.21) solved is mostly less than 100, except for the two hard problems ar1
and circle, for which this number was increased to 198 at the most (ar1 and n = 1000
in Table 6.3). We note that problems ar1 and circle are challenging since Σ−1 has
very small eigenvalues. (The minimum eigenvalue is on the order of 10−5 to 10−6 for
n = 500 and 1000.) For these two harder problems, the average PCG steps taken
for solving (3.21) and the total number of outer Newton acceleration steps are also
more than those for the random problems tested in section 6.3, while for the other
problems, the average PCG steps and the total number of outer Newton acceleration
steps are comparable with those in Table 6.1 for random problems. Specifically, the
total number of outer Newton acceleration steps are no more than 6 for the two harder
problems and 3 for the others. It is worth noting that the outer Newton acceleration
steps are usually able to decrease Res substantially in very few iterations. For example,
it can be seen from Tables 6.2–6.5 that for the four easier problems the solution
accuracy can be increased by 1∼3 digits in the final one or two iterations, while for
the two harder problems, the acceleration is less. Based on our experimental results,
without the outer Newton acceleration, the CPU time consumed by the Newton-CG
based PPA to obtain solutions of the same accuracy can increase by about 10–20%
on average.

In contrast, the ADM obtained low-accuracy solutions (Res fell into the range
10−2 ∼ 10−3) for most of the tests after 2000 iterations, except for the four easier
problems in Table 6.5. Based on our experimental results, the residue values produced
by ADM either stagnated or improved extremely slowly after it was decreased to a
certain level. As a result, it is generally very difficult and even impossible for ADM
to produce a solution satisfying the final accuracy requirement Res < 10−5 for most
of these tests. For diagonal groups the final accuracy reached by ADM is mostly on
the order of 10−2 to 10−3, while this accuracy is increased by about 1 ∼ 2 digits for
the case of columnwise groups. For both type groups, ADM failed to obtain solutions
with accuracy Res < 10−2 for the two hard problems ar1 and circle.

By comparing the results for p = 2 with those for p = ∞, we see that both LGL
and ADM consumed longer CPU time for the later case. This is reasonable because
the calculations of the proximal point mapping of the �∞-norm and its generalized
Jacobian require projections onto the �1-norm ball which is practically more expensive
than for the case of p = 2. On the other hand, by comparing the results for the two
types of group structures, we see that LGL performs stably across the two types of
problems in the sense that it can attain the desired accuracy in a comparable number
of iterations. But for ADM, the case of columnwise groups appears to be easier than
the case of diagonal groups, since it can attain higher accuracy for the former case
as compared to the latter case. It can also be seen from Tables 6.2–6.5 that LGL
obtained smaller primal objective function values for about two-thirds of the tested
problems. In all cases, LGL obtained solutions of much higher accuracy measured by
Res.

For reference purpose, the results of LossQ, LossE , specificity, and sensitivity at
the final iterations are also presented for all the tests. It can be seen from these results
that with appropriate postprocessing of the computed solutions, the sparsity pattern
of the inverse covariance matrices are recovered very well because the specificity and
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Table 6.2

Results on synthetic problems. Diagonal groups, p = 2.

LGL ADM
Prob. n|m Iter Time (RP , RD , RG) Iter Time (RP , RD , RG)

ar1 500|62126 4(4, 3.0, 0) 2 (4.1-2, 4.3-2, 7.8-2) 15 2 (1.5-3, 9.6-2, 7.6-2)

30(85, 29.2, 1) 99 (6.7-6, 2.7-7, 4.0-4) 2000 278 (3.1-6, 3.1-5, 1.2-2)

34(100, 36.4, 5) 133 (4.8-6, 2.0-9, 2.9-6) ———–

pobj & Loss 8.46651163 2, (2.91-1, 1.13-1, 1.00, 1.00) 9.15-1, (2.71-1, 1.08-1, 1.00, 1.00)

1000|249251 4(4, 3.0, 0) 13 (3.2-2, 3.7-2, 7.0-2) 14 10 (2.6-4, 9.6-2, 6.7-2)

33(100, 40.2, 1) 740 (1.2-6, 9.5-8, 4.1-4) 2000 1467 (7.5-6, 2.9-5, 4.3-2)

38(117, 52.1, 6) 1071 (1.3-6, 2.4-10, 9.9-7) ———–

pobj & Loss 1.69925377 3, (3.00-1, 1.11-1, 1.00, 1.00) 6.28 0, (2.63-1, 1.06-1, 1.00, 1.00)

ar2 500|61877 18(27, 7.5, 0) 19 (8.5-2, 1.3-3, 2.5-3) 34 5 (1.7-2, 9.6-2, 5.8-2)

21(40, 9.0, 0) 26 (8.8-3, 7.3-5, 1.5-4) 2000 276 (4.4-13, 1.2-2, 9.0-4)

22(44, 11.5, 1) 34 (8.8-6, 1.8-6, 4.8-6) ———–

pobj & Loss 6.71682925 2, (2.55-2, 1.08-1, 1.00, 0.95) -3.88-1, (2.56-2, 1.08-1, 1.00, 0.97)

1000|248752 19(30, 10.1, 0) 128 (4.8-2, 1.2-3, 2.4-3) 40 30 (1.2-2, 9.9-2, 5.9-2)

22(44, 11.6, 0) 173 (7.6-3, 8.7-5, 1.8-4) 2000 1465 (2.9-12, 1.5-2, 5.6-4)

23(48, 13.4, 1) 209 (9.5-6, 2.7-6, 3.2-6) ———–

pobj & Loss 1.34126164 3, (1.79-2, 1.06-1, 1.00, 0.98) 5.93-1, (1.79-2, 1.06-1, 1.00, 0.99)

ar3 500|61628 18(27, 7.4, 0) 19 (7.1-2, 9.0-4, 1.5-3) 34 5 (1.3-2, 9.4-2, 5.5-2)

21(41, 8.4, 0) 25 (6.0-3, 9.3-5, 1.6-4) 260 36 (9.9-3, 8.3-3, 2.1-3)

22(45, 9.9, 1) 31 (6.4-6, 2.6-6, 2.4-6) 2000 273 (1.5-11, 8.3-3, 2.1-3)

pobj & Loss 6.16605249 2, (2.36-2, 9.82-2, 1.00, 0.92) -1.08 0, (2.42-2, 1.02-1, 1.00, 0.92)

1000|248253 20(34, 9.8, 0) 136 (3.8-2, 4.4-4, 7.7-4) 40 29 (9.7-3, 9.8-2, 5.7-2)

22(45, 10.8, 0) 167 (7.3-3, 6.5-5, 1.1-4) 2000 1443 (1.1-12, 1.1-2, 1.6-3)

23(49, 12.9, 1) 204 (7.0-6, 2.0-6, 5.8-8) ———–

pobj & Loss 1.23551533 3, (1.65-2, 9.68-2, 1.00, 0.94) -5.41-1, (1.67-2, 9.88-2, 1.00, 0.95)

ar4 500|61380 18(29, 8.2, 0) 20 (7.5-2, 7.2-4, 1.1-3) 28 4 (5.8-2, 9.1-2, 4.8-2)

21(42, 9.0, 0) 27 (8.1-3, 6.4-5, 9.2-5) 245 34 (9.8-3, 8.7-3, 2.4-3)

22(46, 10.4, 1) 32 (7.6-6, 1.5-6, 1.1-6) 2000 276 (1.1-11, 8.7-3, 2.4-3)

pobj & Loss 6.05884352 2, (2.25-2, 9.79-2, 0.99, 0.92) 3.19-1, (2.29-2, 1.00-1, 0.99, 0.92)

1000|247755 20(33, 9.3, 0) 129 (8.5-2, 6.4-4, 9.4-4) 32 23 (3.7-2, 9.2-2, 4.9-2)

22(43, 10.6, 0) 162 (8.3-3, 8.4-5, 1.2-4) 2000 1459 (1.1-12, 1.1-2, 1.8-3)

23(47, 12.6, 1) 199 (9.2-6, 1.8-6, 1.6-6) ———–

pobj & Loss 1.21405855 3, (1.57-2, 9.61-2, 1.00, 0.93) -5.15-1, (1.60-2, 9.85-2, 1.00, 0.93)

decay 500|57961 18(29, 7.4, 0) 20 (5.5-2, 6.1-4, 7.5-4) 28 4 (4.5-2, 8.8-2, 4.2-2)

20(35, 7.6, 0) 23 (8.9-3, 1.2-4, 1.4-4) 207 29 (9.7-3, 9.7-3, 3.5-3)

21(39, 8.8, 1) 28 (5.1-6, 2.4-6, 1.8-6) 2000 276 (9.8-7, 2.6-3, 4.7-3)

pobj & Loss 5.13281600 2, (1.89-2, 8.12-2, 0.69, 0.37) -1.72 0, (2.00-2, 8.79-2, 0.69, 0.37)

1000|240836 19(29, 7.2, 0) 105 (9.2-2, 1.2-3, 1.5-3) 31 23 (3.4-2, 9.8-2, 4.6-2)

22(43, 8.3, 0) 141 (5.3-3, 5.3-5, 6.4-5) 311 227 (9.8-3, 7.2-3, 3.9-3)

23(47, 9.7, 1) 171 (6.6-6, 1.7-6, 5.7-7) 2000 1459 (2.1-6, 3.7-3, 4.5-3)

pobj & Loss 1.02865383 3, (1.30-2, 7.75-2, 0.74, 0.30) 2.32 0, (1.36-2, 8.32-2, 0.73, 0.31)

circle 500|62125 4(4, 3.0, 0) 3 (3.7-2, 4.2-2, 7.8-2) 15 2 (1.3-3, 8.8-2, 7.6-2)

30(87, 32.6, 1) 106 (7.7-6, 2.0-7, 3.1-4) 2000 278 (3.4-6, 3.0-5, 1.5-2)

34(102, 38.4, 5) 138 (4.7-6, 1.6-9, 2.4-6) ———–

pobj & Loss 8.48828879 2, (3.20-1, 1.13-1, 1.00, 1.00) 7.59-1, (2.76-1, 1.06-1, 1.00, 1.00)

1000|249250 4(4, 3.0, 0) 13 (2.9-2, 3.7-2, 7.0-2) 14 10 (2.9-4, 9.6-2, 6.7-2)

34(102, 36.9, 3) 719 (1.1-6, 7.3-8, 3.3-4) 2000 1470 (3.0-6, 3.7-5, 5.2-2)

37(112, 43.6, 6) 896 (5.5-6, 2.2-9, 9.6-6) ———–

pobj & Loss 1.70184613 3, (3.09-1, 1.11-1, 1.00, 1.00) 3.93 1, (2.10-1, 1.23-1, 1.00, 1.00)

the sensitivity results are close to one for all these problems except decay. Problem
decay gives worse specificity and sensitivity results because its components are less
well separated than those of the other tested problems, which causes difficulty in
determining appropriate values for thresholding.

6.5. Results on gene expression data. In this section, we present comparison
results of LGL and ADM on gene expression data sets that have been widely used in
the model selection and classification literature. Specifically, we will test the lymph
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Table 6.3

Results on synthetic problems. Diagonal groups, p = ∞.

LGL ADM
Prob. n|m Iter Time (RP , RD, RG) Iter Time (RP , RD , RG)

ar1 500|62126 4(4, 3.0, 0) 4 (7.8-2, 5.0-2, 7.7-2) 15 3 (1.5-3, 9.6-2, 7.6-2)

32(126, 60.7, 0) 299 (6.5-6, 3.0-7, 4.8-4) 2000 410 (3.7-6, 3.0-5, 1.6-2)

37(151, 70.1, 5) 390 (1.0-6, 1.3-9, 2.0-6) ———–

pobj & Loss 8.30947890 2, (3.14-1, 1.29-1, 1.00, 1.00) 1.67 0, (2.84-1, 1.17-1, 1.00, 1.00)

1000|249251 4(4, 3.0, 0) 15 (8.9-2, 3.6-2, 7.0-2) 14 12 (2.6-4, 9.6-2, 6.7-2)

33(178, 143.4, 1) 2906 (6.2-6, 1.1-7, 5.0-4) 2000 1748 (3.0-6, 3.9-5, 5.7-2)

37(198, 144.8, 5) 3284 (1.2-6, 1.4-9, 6.5-6) ———–

pobj & Loss 1.66685871 3, (3.23-1, 1.28-1, 1.00, 1.00) 4.99 1, (2.18-1, 1.25-1, 1.00, 1.00)

ar2 500|61877 19(69, 58.1, 0) 169 (5.0-2, 3.2-4, 7.4-4) 35 8 (1.7-2, 9.6-2, 6.2-2)

22(90, 55.5, 0) 191 (5.0-3, 2.2-5, 5.0-5) 175 38 (9.1-3, 9.5-3, 3.9-4)

23(95, 59.1, 1) 213 (2.4-6, 2.5-6, 2.5-6) 2000 432 (4.7-13, 7.2-3, 6.1-4)

pobj & Loss 6.54974002 2, (2.86-2, 1.23-1, 1.00, 1.00) -2.96-1, (2.86-2, 1.23-1, 1.00, 1.00)

1000|248752 21(93, 99.5, 0) 1300 (8.4-2, 4.6-4, 1.1-3) 42 37 (1.2-2, 9.8-2, 6.3-2)

25(125, 94.4, 1) 1501 (7.5-5, 5.5-6, 3.9-6) 194 171 (9.1-3, 8.5-3, 2.7-4)

26(129, 94.8, 2) 1578 (8.6-6, 2.0-6, 1.7-6) 2000 1747 (5.6-13, 6.6-3, 4.1-4)

pobj & Loss 1.30625650 3, (2.02-2, 1.22-1, 1.00, 1.00) 1.03 0, (2.02-2, 1.23-1, 1.00, 1.00)

ar3 500|61628 19(66, 56.1, 0) 160 (7.6-2, 3.5-4, 6.7-4) 35 7 (1.3-2, 9.4-2, 5.9-2)

23(92, 55.8, 1) 201 (1.3-5, 2.2-6, 2.3-6) 201 42 (9.7-3, 8.1-3, 7.9-4)

24(95, 56.0, 2) 213 (5.8-6, 1.5-6, 1.8-6) 2000 411 (4.4-13, 8.0-3, 7.9-4)

pobj & Loss 6.01294444 2, (2.68-2, 1.17-1, 1.00, 0.99) -9.63-1, (2.71-2, 1.19-1, 1.00, 0.99)

1000|248253 21(86, 94.0, 0) 1227 (6.9-2, 3.3-4, 6.4-4) 41 36 (1.0-2, 9.9-2, 6.1-2)

24(108, 92.5, 1) 1401 (4.0-5, 5.1-6, 5.3-6) 205 178 (9.5-3, 7.7-3, 5.3-4)

25(112, 92.6, 2) 1471 (8.4-6, 1.6-6, 2.0-6) 2000 1734 (5.3-13, 7.7-3, 5.2-4)

pobj & Loss 1.20377195 3, (1.89-2, 1.16-1, 1.00, 1.00) 1.93 0, (1.89-2, 1.17-1, 1.00, 1.00)

ar4 500|61380 19(43, 22.0, 0) 70 (8.3-2, 3.9-4, 6.4-4) 35 7 (1.3-2, 9.4-2, 5.3-2)

23(72, 29.4, 1) 118 (1.5-5, 2.2-6, 1.9-6) 198 41 (9.8-3, 9.0-3, 9.2-4)

24(75, 30.9, 2) 130 (5.3-6, 1.5-6, 1.5-6) 2000 414 (9.0-12, 6.1-3, 1.3-3)

pobj & Loss 5.90682889 2, (2.57-2, 1.17-1, 0.98, 0.97) 5.37-1, (2.58-2, 1.17-1, 0.98, 0.97)

1000|247755 20(67, 75.5, 0) 950 (5.8-2, 6.2-4, 1.0-3) 32 28 (4.3-2, 9.8-2, 5.5-2)

23(86, 76.9, 1) 1126 (9.5-5, 8.7-6, 1.2-5) 190 166 (9.7-3, 8.3-3, 5.9-4)

25(94, 82.8, 3) 1330 (6.7-7, 2.1-6, 2.7-6) 2000 1744 (5.6-13, 8.3-3, 5.9-4)

pobj & Loss 1.18272795 3, (1.80-2, 1.16-1, 1.00, 0.99) -3.42-1, (1.81-2, 1.17-1, 1.00, 0.99)

decay 500|57961 20(66, 46.4, 0) 147 (5.1-2, 1.5-4, 1.9-4) 28 6 (5.5-2, 9.3-2, 5.0-2)

22(77, 45.8, 0) 161 (4.5-3, 1.8-5, 2.3-5) 145 31 (9.6-3, 9.6-3, 1.4-3)

23(81, 49.7, 1) 182 (6.3-6, 1.9-6, 6.4-7) 2000 417 (2.0-9, 4.3-3, 2.1-3)

pobj & Loss 5.00048518 2, (2.33-2, 1.12-1, 0.63, 0.40) -1.37 0, (2.39-2, 1.15-1, 0.63, 0.40)

1000|240836 21(80, 78.0, 0) 1047 (1.9-2, 1.6-4, 2.0-4) 32 29 (3.6-2, 9.2-2, 4.9-2)

23(91, 73.6, 0) 1092 (5.0-3, 2.8-5, 3.6-5) 140 125 (9.2-3, 9.6-3, 9.0-4)

24(95, 75.0, 1) 1166 (6.3-6, 2.7-6, 1.3-6) 2000 1754 (1.4-9, 4.6-3, 1.4-3)

pobj & Loss 1.00280524 3, (1.61-2, 1.08-1, 0.68, 0.34) 1.80 0, (1.63-2, 1.10-1, 0.68, 0.34)

circle 500|62125 21(66, 15.1, 0) 64 (1.9-2, 1.4-4, 9.0-2) 15 3 (1.3-3, 8.8-2, 7.6-2)

31(136, 64.1, 1) 306 (3.8-6, 2.4-7, 3.8-4) 2000 412 (3.9-6, 3.0-5, 1.9-2)

35(155, 71.8, 5) 381 (1.2-6, 5.4-9, 8.4-6) ———–

pobj & Loss 8.33272097 2, (3.45-1, 1.29-1, 1.00, 1.00) 1.53 0, (2.88-1, 1.14-1, 1.00, 1.00)

1000|249250 4(4, 3.0, 0) 15 (9.0-2, 3.5-2, 7.0-2) 14 12 (3.7-4, 9.4-2, 6.7-2)

33(175, 147.8, 1) 2961 (8.5-6, 1.2-7, 5.7-4) 2000 1748 (3.0-6, 3.9-5, 5.8-2)

37(194, 151.9, 5) 3397 (6.8-6, 1.8-9, 8.2-6) ———–

pobj & Loss 1.66945708 3, (3.34-1, 1.28-1, 1.00, 1.00) 5.33 1, (2.17-1, 1.27-1, 1.00, 1.00)

node status data (n = 587), the estrogen receptor data (n = 692), the arabidopsis
thaliana data (n = 834), the leukemia data (n = 1255), and the hereditary breast
cancer data (n = 1869) tested in [34], which will be abbreviated, respectively, as
lymph, ER, arabidopsis, leukemia, and hereditary. For detailed information about
these gene data sets, we refer to [34] and the references therein. Since the sparsity
structure of the inverse covariance matrices is unknown for these gene expression
data sets, we tested (1.5) with p = 1 and without explicit sparsity linear constraints.
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Table 6.4

Results on synthetic problems. Columnwise groups, p = 2.

LGL ADM
Prob. n|m Iter Time (RP , RD , RG) Iter Time (RP , RD , RG)

ar1 500|62126 3(3, 3.0, 0) 2 (6.3-2, 5.7-2, 7.6-2) 15 2 (1.5-3, 9.6-2, 7.6-2)

30(86, 26.2, 1) 88 (5.5-6, 2.4-7, 3.7-4) 2000 272 (3.3-6, 1.9-5, 1.4-2)

34(101, 28.9, 5) 108 (2.4-6, 2.2-9, 3.3-6) ———–

pobj & Loss 8.40510928 2, (3.02-1, 1.26-1, 1.00, 1.00) 1.18 0, (2.78-1, 1.18-1, 1.00, 1.00)

1000|249251 2(2, 3.0, 0) 7 (8.8-2, 8.8-2, 6.6-2) 14 10 (2.6-4, 9.6-2, 6.7-2)

33(95, 31.0, 1) 594 (5.4-6, 8.3-8, 3.7-4) 2000 1450 (2.9-6, 3.7-5, 5.4-2)

38(111, 33.3, 6) 736 (4.3-6, 2.5-10, 1.1-6) ———–

pobj & Loss 1.68754056 3, (3.09-1, 1.24-1, 1.00, 1.00) 4.32 1, (2.17-1, 1.28-1, 1.00, 1.00)

ar2 500|61877 18(25, 6.3, 0) 16 (6.9-2, 7.5-4, 1.6-3) 34 5 (1.7-2, 9.5-2, 6.0-2)

20(34, 7.3, 0) 21 (5.3-3, 9.4-5, 2.0-4) 163 23 (3.1-4, 9.8-4, 8.4-4)

21(38, 8.5, 1) 25 (3.4-6, 2.4-6, 4.2-6) 2000 271 (2.2-7, 1.7-4, 3.1-6)

pobj & Loss 6.64536766 2, (2.80-2, 1.23-1, 1.00, 0.97) -3.05-1, (2.80-2, 1.22-1, 1.00, 0.98)

1000|248752 20(30, 7.6, 0) 111 (7.2-2, 5.7-4, 1.2-3) 40 29 (1.3-2, 9.9-2, 6.2-2)

22(40, 8.5, 0) 138 (6.9-3, 1.1-4, 2.3-4) 168 124 (2.4-4, 9.7-4, 9.5-4)

23(44, 9.6, 1) 163 (2.7-6, 3.7-6, 3.0-6) 2000 1450 (2.4-6, 8.6-5, 1.7-6)

pobj & Loss 1.32725189 3, (1.97-2, 1.21-1, 1.00, 0.99) 3.64-1, (1.97-2, 1.21-1, 1.00, 0.99)

ar3 500|61628 18(25, 5.6, 0) 15 (6.8-2, 1.1-3, 1.9-3) 34 5 (1.4-2, 9.4-2, 5.8-2)

22(37, 6.3, 0) 21 (6.8-3, 5.8-5, 1.1-4) 134 18 (2.8-4, 9.8-4, 6.8-4)

23(41, 7.0, 1) 25 (5.1-6, 1.7-6, 3.6-7) 2000 270 (3.8-6, 8.9-5, 4.2-6)

pobj & Loss 6.08967487 2, (2.61-2, 1.14-1, 1.00, 0.93) -1.36 0, (2.62-2, 1.15-1, 1.00, 0.92)

1000|248253 19(27, 6.7, 0) 95 (4.2-2, 9.5-4, 1.7-3) 40 29 (1.0-2, 9.8-2, 6.0-2)

21(35, 7.4, 0) 118 (9.2-3, 1.5-4, 2.7-4) 145 105 (2.3-4, 9.9-4, 7.9-4)

22(39, 8.5, 1) 141 (3.3-6, 3.1-6, 2.7-6) 2000 1438 (8.2-7, 8.6-5, 1.9-6)

pobj & Loss 1.22030395 3, (1.83-2, 1.13-1, 1.00, 0.95) 8.52-1, (1.82-2, 1.12-1, 1.00, 0.95)

ar4 500|61380 18(25, 5.4, 0) 15 (6.7-2, 8.6-4, 1.4-3) 28 4 (6.2-2, 9.0-2, 5.2-2)

21(34, 5.9, 0) 19 (8.9-3, 8.4-5, 1.3-4) 99 14 (2.8-4, 9.9-4, 5.4-4)

22(38, 6.6, 1) 23 (5.8-6, 2.0-6, 1.1-6) 2000 273 (3.3-6, 8.7-5, 4.1-6)

pobj & Loss 5.98152690 2, (2.49-2, 1.14-1, 0.98, 0.92) 1.93-1, (2.48-2, 1.13-1, 0.98, 0.93)

1000|247755 20(29, 6.3, 0) 99 (4.8-2, 5.3-4, 8.3-4) 32 23 (3.9-2, 9.1-2, 5.2-2)

22(37, 6.9, 0) 120 (8.2-3, 7.5-5, 1.2-4) 127 93 (2.3-4, 9.7-4, 6.4-4)

23(41, 7.7, 1) 142 (3.1-6, 2.4-6, 6.9-7) 2000 1447 (7.0-7, 8.5-5, 1.9-6)

pobj & Loss 1.19862076 3, (1.74-2, 1.12-1, 1.00, 0.94) -9.90-1, (1.75-2, 1.12-1, 1.00, 0.94)

decay 500|57961 15(17, 3.8, 0) 10 (7.0-2, 8.9-3, 1.2-2) 28 4 (4.9-2, 8.4-2, 4.7-2)

20(27, 4.4, 0) 15 (7.6-3, 1.9-4, 2.4-4) 74 11 (2.0-4, 9.9-4, 2.5-4)

21(31, 4.9, 1) 18 (4.6-6, 2.3-6, 8.0-7) 2000 276 (5.6-7, 7.5-5, 4.0-6)

pobj & Loss 5.05587081 2, (2.14-2, 9.89-2, 0.64, 0.39) -2.20 0, (2.15-2, 9.90-2, 0.64, 0.39)

1000|240836 14(16, 3.7, 0) 50 (7.2-2, 5.9-2, 6.2-2) 31 23 (3.7-2, 9.5-2, 5.1-2)

20(29, 5.1, 0) 89 (5.6-3, 3.3-4, 4.3-4) 87 65 (2.5-4, 9.6-4, 4.6-4)

21(33, 5.7, 1) 109 (6.8-6, 3.6-6, 1.7-6) 2000 1453 (3.0-6, 3.8-5, 2.0-6)

pobj & Loss 1.01223229 3, (1.48-2, 9.48-2, 0.70, 0.32) 3.32-1, (1.48-2, 9.47-2, 0.70, 0.32)

circle 500|62125 4(4, 3.0, 0) 2 (3.3-2, 4.4-2, 7.7-2) 15 2 (1.3-3, 8.8-2, 7.6-2)

30(85, 26.7, 1) 88 (8.3-6, 3.5-7, 5.5-4) 2000 274 (3.6-6, 2.1-5, 1.7-2)

34(101, 29.9, 5) 110 (5.1-6, 3.4-9, 5.2-6) ———–

pobj & Loss 8.42717878 2, (3.33-1, 1.26-1, 1.00, 1.00) 1.26 0, (2.82-1, 1.15-1, 1.00, 1.00)

1000|249250 2(2, 3.0, 0) 7 (8.9-2, 8.8-2, 6.6-2) 14 10 (3.7-4, 9.4-2, 6.7-2)

33(96, 31.0, 1) 596 (4.9-6, 8.6-8, 3.9-4) 2000 1450 (2.9-6, 3.7-5, 5.5-2

38(112, 33.1, 6) 736 (3.3-6, 2.7-10, 1.2-6) ———–

pobj & Loss 1.68857852 3, (3.09-1, 1.24-1, 1.00, 1.00) 4.77 1, (2.15-1, 1.29-1, 1.00, 1.00)

We set ω� ≡ ω = 0.5 for all the gene data sets. Detailed comparison results are
given in Table 6.6, where all presented quantities have the same meanings as those in
section 6.3.

It can be seen from the results in Table 6.6 that for these gene data sets and p = 1,
(1.5) is somehow easier than the problems tested in section 6.4 because ADM reached
the final accuracy requirement Res < 10−5 in less than 2000 iterations for the first four
data sets, while for the Hereditarybc data set the accuracy obtained by ADM is in the
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Table 6.5

Results on synthetic problems. Columnwise groups, p = ∞.

LGL ADM
Prob. n|m Iter Time (RP , RD , RG) Iter Time (RP , RD , RG)

ar1 500|62126 3(3, 3.0, 0) 2 (5.7-2, 5.1-2, 7.6-2) 15 3 (1.5-3, 9.6-2, 7.6-2)

31(92, 48.7, 1) 194 (1.6-6, 2.5-7, 4.0-4) 2000 349 (3.7-6, 2.3-5, 1.7-2)

35(110, 58.6, 5) 258 (1.3-6, 5.9-9, 9.2-6) ———–

pobj & Loss 8.28721853 2, (3.19-1, 1.34-1, 1.00, 1.00) 1.84 0, (2.87-1, 1.20-1, 1.00, 1.00)

1000|249251 3(3, 3.0, 0) 11 (9.6-2, 3.9-2, 6.9-2) 14 11 (2.6-4, 9.6-2, 6.7-2)

33(99, 54.8, 1) 1094 (2.1-6, 1.4-7, 6.4-4) 2000 1603 (3.0-6, 3.8-5, 5.7-2)

37(117, 67.0, 5) 1468 (1.2-6, 2.0-9, 9.0-6) ———–

pobj & Loss 1.66394918 3, (3.25-1, 1.32-1, 1.00, 1.00) 5.11 1, (2.19-1, 1.26-1, 1.00, 1.00)

ar2 500|61877 17(24, 10.2, 0) 27 (6.5-2, 2.1-3, 4.9-3) 35 6 (1.7-2, 9.5-2, 6.2-2)

21(44, 13.8, 0) 45 (8.6-3, 6.1-5, 1.4-4) 175 31 (3.0-4, 8.4-4, 9.7-4)

22(48, 16.0, 1) 55 (5.6-6, 2.6-6, 4.3-6) 308 55 (3.1-6, 9.0-6, 9.7-6)

pobj & Loss 6.52491442 2, (2.95-2, 1.28-1, 1.00, 1.00) -3.85-1, (2.94-2, 1.28-1, 1.00, 1.00)

1000|248752 21(33, 12.9, 0) 189 (3.1-2, 4.8-4, 1.1-3) 42 34 (1.2-2, 9.7-2, 6.3-2)

24(50, 15.5, 0) 262 (1.9-3, 4.0-5, 9.4-5) 199 160 (2.1-4, 8.5-4, 9.9-4)

25(54, 17.7, 1) 322 (7.2-6, 4.2-6, 4.4-6) 386 311 (2.1-6, 8.8-6, 9.9-6)

pobj & Loss 1.30284846 3, (2.07-2, 1.27-1, 1.00, 1.00) 3.96-1, (2.07-2, 1.27-1, 1.00, 1.00)

ar3 500|61628 18(26, 9.7, 0) 28 (8.0-2, 9.7-4, 1.9-3) 34 6 (1.5-2, 9.9-2, 6.3-2)

21(42, 12.1, 0) 41 (3.7-3, 5.6-5, 1.1-4) 151 26 (3.5-4, 9.9-4, 9.7-4)

22(46, 14.1, 1) 51 (3.8-6, 2.0-6, 2.1-6) 273 47 (3.4-6, 9.9-6, 9.3-6)

pobj & Loss 5.98991552 2, (2.77-2, 1.23-1, 1.00, 0.99) -1.38 0, (2.79-2, 1.24-1, 1.00, 0.99)

1000|248253 20(31, 11.8, 0) 169 (3.8-2, 7.4-4, 1.5-3) 41 33 (1.0-2, 9.9-2, 6.2-2)

24(50, 14.0, 0) 245 (3.6-3, 3.6-5, 7.1-5) 172 139 (2.5-4, 9.8-4, 9.7-4)

25(54, 15.5, 1) 287 (6.0-6, 4.2-6, 2.0-6) 339 273 (2.4-6, 9.9-6, 9.4-6)

pobj & Loss 1.20049312 3, (1.94-2, 1.21-1, 1.00, 1.00) 8.52-1, (1.93-2, 1.21-1, 1.00, 1.00)

ar4 500|61380 19(30, 10.0, 0) 31 (4.6-2, 4.2-4, 7.1-4) 34 6 (1.5-2, 9.9-2, 5.7-2)

21(42, 11.8, 0) 40 (5.8-3, 6.0-5, 1.0-4) 154 27 (3.7-4, 9.9-4, 8.3-4)

22(46, 13.9, 1) 50 (3.9-6, 2.2-6, 2.6-6) 270 47 (3.6-6, 9.9-6, 7.9-6)

pobj & Loss 5.88382863 2, (2.65-2, 1.22-1, 0.97, 0.97) 2.08-1, (2.64-2, 1.21-1, 0.97, 0.97)

1000|247755 20(31, 11.1, 0) 164 (3.8-2, 6.6-4, 1.1-3) 32 25 (4.3-2, 9.7-2, 5.6-2)

22(39, 13.4, 1) 221 (1.4-4, 2.4-5, 2.9-5) 155 123 (2.6-4, 9.9-4, 8.3-4)

23(43, 15.0, 2) 262 (4.3-6, 8.8-6, 6.7-6) 315 250 (2.6-6, 9.9-6, 8.0-6)

pobj & Loss 1.17921219 3, (1.85-2, 1.20-1, 1.00, 0.99) -9.44-1, (1.85-2, 1.20-1, 1.00, 0.99)

decay 500|57961 19(28, 6.9, 0) 25 (6.8-2, 3.2-4, 4.2-4) 28 5 (5.7-2, 9.0-2, 5.0-2)

21(36, 8.3, 1) 34 (1.5-4, 4.9-6, 7.0-6) 73 13 (5.2-4, 9.9-4, 6.4-4)

22(40, 9.3, 2) 41 (5.6-6, 1.4-6, 9.0-7) 127 23 (5.0-6, 9.5-6, 5.9-6)

pobj & Loss 5.00206096 2, (2.40-2, 1.18-1, 0.63, 0.40) -2.20 0, (2.42-2, 1.18-1, 0.63, 0.40)

1000|240836 20(30, 8.0, 0) 131 (5.7-2, 4.0-4, 5.4-4) 32 26 (3.7-2, 9.0-2, 5.0-2)

23(41, 9.3, 1) 185 (3.1-5, 3.1-6, 2.4-6) 93 76 (3.6-4, 9.9-4, 6.4-4)

24(45, 10.0, 2) 216 (1.6-6, 1.2-6, 9.5-7) 165 135 (3.6-6, 9.7-6, 6.1-6)

pobj & Loss 1.00188885 3, (1.65-2, 1.13-1, 0.68, 0.34) 3.50-1, (1.65-2, 1.13-1, 0.68, 0.34)

circle 500|62125 3(3, 3.0, 0) 2 (9.0-2, 5.1-2, 7.5-2) 15 3 (1.3-3, 8.8-2, 7.6-2)

30(92, 52.0, 1) 200 (1.4-6, 5.2-7, 8.7-4) 2000 346 (3.9-6, 2.4-5, 2.0-2)

34(110, 67.3, 5) 283 (1.5-6, 2.6-9, 4.2-6) ———–

pobj & Loss 8.30955347 2, (3.50-1, 1.34-1, 1.00, 1.00) 2.00 0, (2.90-1, 1.17-1, 1.00, 1.00)

1000|249250 3(3, 3.0, 0) 11 (9.7-2, 3.8-2, 6.9-2) 14 11 (3.7-4, 9.4-2, 6.7-2)

34(103, 49.1, 0) 1034 (1.9-6, 1.5-7, 7.6-4) 2000 1590 (3.0-6, 3.8-5, 5.8-2)

40(127, 61.4, 6) 1491 (1.5-6, 3.0-10, 1.4-6) ———–

pobj & Loss 1.66643596 3, (3.38-1, 1.32-1, 1.00, 1.00) 5.43 1, (2.17-1, 1.28-1, 1.00, 1.00)

order of 10−4. LGL also performs stably as it requires no more than 16 PPA iterations
for all the tested gene data sets. The total number of Newton equations solved, the
average PCG steps for solving each Newton equation, and the total number of outer
Newton acceleration steps taken by LGL are also reasonable. In particular, only one
or two outer Newton acceleration steps were taken at the final iterations. From Table
6.6, these Newton acceleration steps usually decrease the residue Res substantially,
e.g., two digits of accuracy was obtained in the final iteration for the last three gene
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Table 6.6

Results on gene data sets.

p = 1 LGL ADM
Gene name n Iter Time (RD, RG) pobj Iter Time (RD , RG) pobj

Lymph 587 6(6, 3.0, 0) 5 (1.7-2, 7.3-2) 8.667588 2 45 7 (6.5-2, 9.9-2) 8.309654 2
11(13, 3.5, 0) 10 (3.6-4, 9.2-4) 8.133484 2 325 54 (8.0-4, 9.9-4) 8.132632 2
14(19, 4.4, 1) 16 (2.4-6, 2.2-6) 8.132611 2 672 112 (9.9-6, 8.0-6) 8.132604 2

ER 692 6(6, 3.0, 0) 7 (3.7-2, 6.5-2) 9.545812 2 40 10 (7.3-2, 9.8-2) 9.493477 2
13(17, 4.3, 0) 20 (1.3-4, 7.2-4) 9.236315 2 422 110 (6.5-4, 9.9-4) 9.231078 2
16(24, 7.6, 2) 39 (8.7-7, 4.0-7) 9.231049 2 947 248 (7.0-6, 9.9-6) 9.231042 2

Arabidopsis 834 7(7, 3.1, 0) 15 (7.9-3, 5.1-2) 1.182199 3 57 24 (5.0-2, 9.9-2) 1.139305 3
12(18, 5.4, 0) 35 (6.0-5, 3.3-4) 1.109685 3 602 245 (5.0-4, 9.9-4) 1.109305 3
13(23, 9.2, 1) 56 (6.2-6, 8.8-7) 1.109301 3 1292 526 (6.3-6, 9.9-6) 1.109300 3

Leukemia 1255 9(10, 3.3, 0) 57 (9.5-3, 6.2-2) 1.759269 3 100 123 (3.8-2, 9.9-2) 1.738725 3
15(23, 6.3, 0) 134 (8.1-5, 5.2-4) 1.698618 3 925 1144 (4.0-4, 9.9-4) 1.697893 3
16(27, 9.5, 1) 196 (7.9-6, 1.7-6) 1.697891 3 1935 2394 (5.1-6, 9.9-6) 1.697887 3

Hereditarybc 1869 8(9, 3.4, 0) 139 (5.4-3, 9.3-2) 2.694112 3 92 332 (4.1-2, 9.9-2) 2.463273 3
14(29, 9.4, 0) 494 (7.6-5, 4.5-4) 2.373668 3 1554 5722 (2.7-4, 9.9-4) 2.372595 3
15(34, 15.1, 1) 759 (6.1-6, 6.1-6) 2.372587 3 2000 7388 (8.8-5, 3.3-4) 2.372587 3

data sets. The differences in final objective function values obtained by both methods
are negligible. From the CPU time results, it is easy to see that LGL is much faster
than ADM on these gene data sets.

6.6. Summary. From the extensive experimental results presented in sections
6.3–6.5 on both synthetic and real data, we see that the proposed Newton-CG based
PPA, together with the outer acceleration by Newton’s method, performs very sta-
bly and efficiently to obtain solutions of relatively higher accuracy. Specifically, for
all the tested problems LGL successfully generated solutions satisfying the accuracy
requirement Res < 10−5. By appropriately tuning the algorithmic parameters for
inner subproblems, the total number of Newton systems solved and the average PCG
steps taken for solving each of the Newton system are also reasonable. Aided by the
outer Newton acceleration, LGL demonstrated superlinear convergence. Therefore,
the outer Newton acceleration was only taken for very few iterations at the final stage
of algorithm. In contrast, though easily implementable and having lower cost per
iteration, the ADM scheme (5.3) performs very differently for different problem data.
In our experiments, the ADM seems to be efficient only for solving random problems
where the inverse covariance matrices are well-conditioned. For the deterministic syn-
thetic problems tested in section 6.4, ADM performs poorly in most cases. For the
gene expression data, ADM is also much slower than LGL. Even in cases where ADM
obtained solutions of relatively higher accuracy, it takes many iterations and thus its
overall efficiency can be much inferior to LGL. Based on our extensive experiments,
we observed that the performance of ADM is highly sensitive to the penalty parameter
σ, and in many cases ADM performs poorly no matter how we tune the parameter
σ, either manually or adaptively. In contrast, LGL with a unified parameter setting
performs efficiently and robustly for all the tested problems. Thus, LGL is a promis-
ing algorithm for applications in a much wider class of problem scenarios, especially
when solutions of relatively higher accuracy are desired.

7. Concluding remarks. We designed a practical implementation of the clas-
sical PPA for solving the log-determinant optimization problem with group Lasso
regularization. At each iteration, we first solve the dual subproblem with a CG based
Newton’s method to obtain the dual variables and then update the primal variables
via explicit formulas based on the computed dual variables. An outer Newton accel-
eration strategy is also developed when the iterate is close to the optimal solution,
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which is helpful for fast local convergence. Some theoretical results, including conver-
gence of the Newton-CG based PPA and the nonsingularity of the Newton systems,
are also presented. Based on the classical augmented Lagrangian function, we also
derived an ADM for solving (1.5) via solving its dual problem. Extensive experi-
mental results on both synthetic and real data sets are presented to illustrate the
performance of the proposed Newton-CG based PPA and the ADM. These results
clearly demonstrated that the Newton-CG based PPA is stable and efficient and, in
particular, outperforms the ADM in obtaining solutions of relatively higher accuracy.
For some easy problems where the inverse covariance matrices are well-conditioned,
or when a low-accuracy solution is sufficient for a certain application, the ADM can
be faster than the Newton-CG based PPA.

Finally, we note that given the simplicity and the potential superiority of the ADM
in certain situations, in practical implementation it is advantageous to incorporate
the ADM into the Newton-CG based PPA to provide an initial point. The ADM
initialization stage can be terminated either by a maximum number of iterations or
when Res is decreased to a certain level. Clearly, a more flexible switching criterion can
be used for this initialization stage, e.g., whenever a satisfactory speed of convergence
is detected (which can be realized by checking the values of Res), one should allow
ADM to iterate more steps before switching to the more stable and robust Newton-
CG based PPA. This way, the advantages of both methods can be fully adopted into a
unified practical implementation for solving the log-determinant optimization problem
(1.5). In our implementation of the Newton-CG based PPA, we have incorporated
the ADM into initialization. For a fair comparison, however, we did not activate the
ADM initialization when computing all the results reported in section 6.
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