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Summary

This thesis focuses on a class of optimization problems, which involve minimizing the

sum of a linear function and a proper closed simple convex function subject to an affine

constraint in the matrix space. Such optimization problems are said to be matrix opti-

mization problems (MOPs). Many important optimization problems in diverse applica-

tions arising from a wide range of fields such as engineering, finance, and so on, can be

cast in the form of MOPs.

In order to apply the proximal point algorithms (PPAs) to the MOP problems, as

an initial step, we shall study the properties of the corresponding Moreau-Yosida reg-

ularizations and proximal point mappings of MOPs. Therefore, we study one kind of

matrix-valued functions, so-called spectral operators, which include the gradients of the

Moreau-Yosida regularizations and the proximal point mappings. Specifically, the fol-

lowing fundamental properties of spectral operators, including the well-definiteness, the

directional differentiability, the Fréchet-differentiability, the locally Lipschitz continu-

ity, the ρ-order B(ouligand)-differentiability (0 < ρ ≤ 1), the ρ-order G-semismooth

(0 < ρ ≤ 1) and the characterization of Clarke’s generalized Jacobian, are studied sys-

temically.
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Summary viii

In the second part of this thesis, we discuss the sensitivity analysis of MOP problems.

We mainly focus on the linear MCP problems involving Ky Fan k-norm epigraph cone

K. Firstly, we study some important geometrical properties of the Ky Fan k-norm

epigraph cone K, including the characterizations of tangent cone and the (inner and

outer) second order tangent sets of K, the explicit expression of the support function of

the second order tangent set, the C2-cone reducibility of K, the characterization of the

critical cone of K. By using these properties, we state the constraint nondegeneracy, the

second order necessary condition and the (strong) second order sufficient condition of

the linear matrix cone programming (MCP) problem involving the epigraph cone of the

Ky Fan k-norm. Variational analysis on the metric projector over the Ky Fan k-norm

epigraph cone K is important for these studies. More specifically, the study of properties

of spectral operators in the first part of this thesis plays an essential role. For such linear

MCP problem, we establish the equivalent links among the strong regularity of the KKT

point, the strong second order sufficient condition and constraint nondegeneracy, and

the nonsingularity of both the B-subdifferenitial and Clarke’s generalized Jacobian of

the nonsmooth system at a KKT point. Finally, the extensions of the corresponding

sensitivity results to other MOP problems are also considered.



Summary of Notation

• For any Z ∈ <m×n, we denote by Zij the (i, j)-th entry of Z.

• For any Z ∈ <m×n, we use zj to represent the jth column of Z, j = 1, . . . , n. Let

J ⊆ {1, . . . , n} be an index set. We use ZJ to denote the sub-matrix of Z obtained

by removing all the columns of Z not in J . So for each j, we have Z{j} = zj .

• Let I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} be two index sets. For any Z ∈ <m×n, we

use ZIJ to denote the |I|× |J | sub-matrix of Z obtained by removing all the rows

of Z not in I and all the columns of Z not in J .

• For any y ∈ <n, diag(y) denotes the diagonal matrix whose i-th diagonal entry is

yi, i = 1, . . . , n.

• e ∈ <n denotes the vector with all components one. E ∈ <m×n denotes the m by

n matrix with all components one.

• Let Sn be the space of all real n× n symmetric matrices and On be the set of all

n× n orthogonal matrices.

• We use “ ◦ ” to denote the Hadamard product between matrices, i.e., for any two

ix



Summary of Notation x

matrices X and Y in <m×n the (i, j)-th entry of Z := X◦Y ∈ <m×n is Zij = XijYij .

• For any given Z ∈ <m×n, let Z† ∈ <m×n be the Moore-Penrose pseudoinverse of

Z.

• For each X ∈ <m×n, ‖X‖2 denotes the spectral or the operator norm, i.e., the

largest singular value of X.

• For each X ∈ <m×n, ‖X‖∗ denotes the nuclear norm, i.e., the sum of the singular

values of X.

• For each X ∈ <m×n, ‖X‖(k) denotes the Ky Fan k-norm, i.e., the sum of the

k-largest singular values of X, where 0 < k ≤ min{m,n} is a positive integer.

• For each X ∈ Sn, s(k)(X) denotes the sum of the k-largest eigenvalues of X, where

0 < k ≤ n is a positive integer.

• Let Z and Z ′ be two finite dimensional Euclidean spaces. and A : Z → Z ′ be a

given linear operator. Denote the adjoint of A by A∗, i.e., A∗ : Z ′ → Z is the

linear operator such that

〈Az, y〉 = 〈z,A∗y〉 ∀ z ∈ Z, y ∈ Z ′ .

• For any subset C of a finite dimensional Euclidean space Z, let

dist(z, C) := inf{‖z − y‖ | y ∈ C} , z ∈ Z .

• For any subset C of a finite dimensional Euclidean space Z, let δ∗C : Z → (−∞,∞]

be the support function of the set C, i.e.,

δ∗C(z) := sup {〈x, z〉 |x ∈ C} , z ∈ Z .

• Given a set C, intC denotes its interior, riC denotes its relative interior, clC

denotes its closure, and bdC denotes its boundary.



Summary of Notation xi

• A backslash denotes the set difference operation, that is A \B = {x ∈ A |x /∈ B}.

• Given a nonempty convex cone K of a finite dimensional Euclidean space Z. Let

K◦ be the polar of K, i.e.,

K◦ = {z ∈ Z | 〈z, x〉 ≤ 0 ∀x ∈ K} .

All further notations are either standard, or defined in the text.



Chapter 1
Introduction

1.1 Matrix optimization problems

Let X be the Cartesian product of several finite dimensional real (symmetric or non-

symmetric) matrix spaces. More specifically, let s be a positive integer and 0 ≤ s0 ≤ s

be a nonnegative integer. For the given positive integers m1, . . . ,ms0 and ns0+1, . . . , ns,

denote

X := Sm1 × . . .× Sms0 ×<ms0+1×ns0+1 × . . .×<ms×ns . (1.1)

Without loss of generality, assume that mk ≤ nk, k = s0 + 1, . . . , s. Let 〈·, ·〉 be the

natural inner product of X and ‖ · ‖ be the induced norm. Let f : X → (−∞,∞] be

a closed proper convex function. The primal matrix optimization problem (MOP) takes

the form:

(P) min 〈C,X〉+ f(X)

s.t. AX = b, X ∈ X ,
(1.2)

where A : X → <p is a linear operator; C ∈ X and b ∈ <p are given. Let f∗ : X →

(−∞,∞] be the conjugate function of f (see, e.g., [83]), i.e.,

f∗(X∗) := sup {〈X∗,X〉 − f(X) |X ∈ X} , X∗ ∈ X .

1



1.1 Matrix optimization problems 2

Then, the dual MOP can be written as

(D) max 〈b, y〉 − f∗(X∗)

s.t. A∗y −C = X∗ ,

(1.3)

where y ∈ <p and X∗ ∈ X are the dual variables; A∗ : <p → X is the adjoint of the

linear operator A.

If the closed proper convex function f is the indicator function of some closed convex

cone K of X , i.e., f ≡ δK(·) : X → (−∞,+∞], then the corresponding MOP is said to

be the matrix cone programming (MCP) problem. In this case, we have

f∗(X∗) = δ∗K(X∗) = δK◦(X
∗), X∗ ∈ X ,

where K◦ ⊆ X is the polar of the closed convex cone K, i.e.,

K◦ := {X∗ ∈ X | 〈X,X∗〉 ≤ δK(X) ∀X ∈ X} .

Thus, the primal and dual MCPs take the following form

(P) min 〈C,X〉

s.t. AX = b ,

X ∈ K ,

(D) max 〈b, y〉

s.t. A∗y −C = X∗ ,

X∗ ∈ K◦ .

(1.4)

The MOP is a broad framework, which includes many important optimization prob-

lems involving matrices arising from different areas such as engineering, finance, scientific

computing, applied mathematics. In such applications, the convex function f usually is

simple. For example, let X = Sn be real symmetric matrices space and K = Sn+ be the

cone of real positive semidefinite matrices in Sn. f ≡ δSn+(·) and f∗ ≡ δSn−(·). Then, the

corresponding MCP is said to be the semidefinite programming (SDP), which has many

interesting applications. For an excellent survey on this, see [105]. Below we list some

other examples of MOPs.



1.1 Matrix optimization problems 3

Matrix norm approximation. Given matrices B0, B1, . . . , Bp ∈ <m×n, the matrix

norm approximation (MNA) problem is to find an affine combination of the matrices

which has the minimal spectral norm (the largest singular value of matrix), i.e.,

min
{
‖B0 +

p∑
k=1

ykBk‖2 | y ∈ <p
}
. (1.5)

Such problems have been studied in the iterative linear algebra literature, e.g., [38, 99,

100], where the affine combination is a degree-p polynomial function of a given matrix.

More specifically, it is easy to see that the problem (1.5) can be written as the dual MOP

form (1.3), i.e.,

(D) max 〈0, y〉 − f∗(X∗)

s.t. A∗y −B0 = X∗ ,

(1.6)

where X ≡ <m×n, f∗ ≡ ‖ · ‖2 is the spectral norm, and A∗ : <p → <m×n is the linear

operator defined by

A∗y = −
p∑

k=1

ykBk, y ∈ <p . (1.7)

Note that for (1.6), the closed proper convex function f∗ is positively homogeneous. For

positively homogeneous convex functions, we have the following useful result (see, e.g.,

[83, Theorem 13.5 & 13.2]).

Proposition 1.1. Suppose E be a finite dimensional Euclidean space. Let g : E →

(−∞,∞] be a closed proper convex function. Then, g is positively homogeneous if and

only if g∗ is the indicator function of

C = {x∗ ∈ E | 〈x, x∗〉 ≤ g(x) ∀x ∈ E} . (1.8)

If g is a given norm function in E and gD is the corresponding dual norm in E , then by

the definition of the dual norm gD, we know that C = ∂g(0) coincides with the unit ball

under the dual norm , i.e.,

∂g(0) =
{
x ∈ E | gD(x) ≤ 1

}
.
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In particular, for the case that g = f∗ ≡ ‖ · ‖2, by Proposition 1.1, we have

f(X) = (f∗)∗(X) = δ∂f∗(0)(X) .

Note that the dual norm of the spectral norm ‖ · ‖2 is the nuclear norm ‖ · ‖∗, i.e., the

sum of all singular values of matrix. Thus, ∂f∗(0) coincides with the unit ball B1
∗ under

the dual norm ‖ · ‖∗, i.e.,

∂f∗(0) = B1
∗ :=

{
X ∈ <m×n | ‖X‖∗ ≤ 1

}
.

Therefore, the corresponding primal problem of (1.5) can be written as

(P) min 〈B0, X〉+ δB1
∗
(X)

s.t. AX = 0 ,

(1.9)

where A : <m×n → <p is the adjoint of A∗. Note that in some applications, a sparse

affine combination is desired, one can add a penalty term ρ‖y‖1 with some ρ > 0 to the

objective function in (1.5) meanwhile to use 1
2‖ · ‖

2
2 to replace ‖ · ‖2 to get the following

model

min
{1

2
‖B0 +

p∑
k=1

ykBk‖22 + ρ‖y‖1 | y ∈ <p
}
. (1.10)

Correspondingly, we can reformulate (1.10) in terms of the dual MOP form:

(D′) max 〈0, y〉 − 1

2
‖X∗‖22 − ρ‖z‖1

s.t. A∗y −B0 = X∗ ,

y = z ,

where A∗ : <p → <m×n is the linear operator defined by (1.7). Note that for any norm

function g in E , we always have

(
1

2
g2)∗ =

1

2
(gD)2 , (1.11)

where gD is the corresponding dual norm of g. Let Bρ
∞ be the closed ball in <p under

the l∞ norm with radius ρ > 0, i.e., Bρ
∞ := {z ∈ <p | ‖z‖∞ ≤ ρ}. Then, the primal form
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of (1.10) can be written as

(P) min 〈B0, X〉+ 〈0, x〉+
1

2
‖X‖2∗ + δBρ∞(x)

s.t. AX + x = 0 .

Matrix completion. Given a matrix M ∈ <m×n with entries in the index set

Ω given, the matrix completion problem seeks to find a low-rank matrix X such that

Xij ≈Mij for all (i, j) ∈ Ω. The problem of efficient recovery of a given low-rank matrix

has been intensively studied recently. In [15], [16], [39], [47], [77], [78], etc, the authors

established the remarkable fact that under suitable incoherence assumptions, an m × n

matrix of rank r can be recovered with high probability from a random uniform sample

of O((m+ n)rpolylog(m,n)) entries by solving the following nuclear norm minimization

problem:

min
{
‖X‖∗ |Xij = Mij ∀ (i, j) ∈ Ω

}
.

The theoretical breakthrough achieved by Candès et al. has led to the rapid expansion

of the nuclear norm minimization approach to model application problems for which the

theoretical assumptions may not hold, for example, for problems with noisy data or that

the observed samples may not be completely random. Nevertheless, for those application

problems, the following model may be considered to accommodate problems with noisy

data:

min
{1

2
‖PΩ(X)− PΩ(M)‖22 + ρ‖X‖∗ |X ∈ <m×n

}
, (1.12)

where PΩ(X) denotes the vector obtained by extracting the elements of X corresponding

to the index set Ω in lexicographical order, and ρ is a positive parameter. In the above

model, the error term is measured in l2 norm of vector. One can of course use the l1-

norm or l∞-norm of vectors if those norms are more appropriate for the applications

under consideration. As for the case of the matrix norm approximation, one can easily
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write (1.12) in the following primal MOP form

(P) min 〈0, X〉+ 〈0, z〉+
1

2
‖z‖22 + ρ‖X‖∗

s.t. AX − z = b ,

where (z,X) ∈ X ≡ <|Ω| × <m×n, b = PΩ(M) ∈ <|Ω|, and the linear operator A :

<m×n → <|Ω| is given by A(X) = PΩ(X). Moreover, by Proposition 1.1 and (1.11), we

know that the corresponding dual MOP of (1.12) can be written as

(D) max 〈b, y〉 − 1

2
‖z∗‖22 − δBρ2 (X∗)

s.t. A∗y −X∗ = 0, y + z∗ = 0 ,

where A∗ : <|Ω| → <m×n is the adjoint of A, and Bρ
2 ⊆ <m×n is the closed ball under

the spectral norm ‖ · ‖2 with radius ρ > 0, i.e., Bρ
2 := {Z ∈ <m×n | ‖Z‖2 ≤ ρ}.

Robust matrix completion/Robust PCA. Suppose thatM ∈ <m×n is a partially

given matrix for which the entries in the index set Ω are observed, but an unknown sparse

subset of the observed entries may be grossly corrupted. The problem here seeks to find

a low-rank matrix X and a sparse matrix Y such that Mij ≈ Xij + Yij for all (i, j) ∈ Ω,

where the sparse matrix Y attempts to identify the grossly corrupted entries in M , and

X attempts to complete the “cleaned” copy of M . This problem has been considered in

[14], and it is motivated by earlier results established in [18], [112]. In [14] the following

convex optimization problem is solved to recover M :

min
{
‖X‖∗ + ρ‖Y ‖1 |PΩ(X) + PΩ(Y ) = PΩ(M)

}
, (1.13)

where ‖Y ‖1 is the l1-norm of Y ∈ <m×n defined component-wised, i.e., ‖Y ‖1 =

m∑
i=1

n∑
j=1

|yij |,

and ρ is a positive parameter. In the event that the “cleaned” copy of M itself in (1.13)

is also contaminated with random noise, the following problem could be considered to

recover M :

min
{1

2
‖PΩ(X) + PΩ(Y )− PΩ(M)‖22 + η

(
‖X‖∗ + ρ‖Y ‖1

)
|X,Y ∈ <m×n

}
, (1.14)
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where η is a positive parameter. Again, the l2-norm that is used in the first term can

be replaced by other norms such as the l1-norm or l∞-norm of vectors if they are more

appropriate. In any case, both (1.13) and (1.14) can be written in the form of MOP. We

omit the details.

Structured low rank matrix approximation. In many applications, one is often

faced with the problem of finding a low-rank matrix X ∈ <m×n which approximates

a given target matrix M but at the same time it is required to have certain structures

(such as being a Hankel matrix) so as to conform to the physical design of the application

problem [21]. Suppose that the required structure is encoded in the constraints A(X) ∈

b + Q. Then a simple generic formulation of such an approximation problem can take

the following form:

min {‖X −M‖F | A(X) ∈ b+Q, rank(X) ≤ r} . (1.15)

Obviously it is generally NP hard to find the global optimal solution for the above prob-

lem. However, given a good starting point, it is quite possible that a local optimization

method such as variants of the alternating minimization method may be able to find a

local minimizer that is close to being globally optimal. One possible strategy to generate

a good starting point for a local optimization method to solve (1.15) would be to solve

the following penalized version of (1.15):

min
{
‖X −M‖F + ρ

min{m,n}∑
k=r+1

σk(X) | A(X) ∈ b+Q
}
, (1.16)

where σk(X) is the k-th largest singular value of X and ρ > 0 is a penalty parameter.

The above problem is not convex but we can attempt to solve it via a sequence of convex

relaxation problems as proposed in [37] as follows. Start with X0 = 0 or any feasible

matrix X0 such that A(X0) ∈ b+Q. At the k-th iteration, solve

min
{
λ‖X −Xk‖2F + ‖X −M‖F + ρ(‖X‖∗ − 〈Hk, X〉) | A(X) ∈ b+Q

}
(1.17)
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to get Xk+1, where λ is a positive parameter and Hk is a sub-gradient of the convex

function
∑r

k=1 σk(·) at the point Xk. Once again, one may easily write (1.17) in the

form of MOP. Also, we omit the details.

System identification. For system identification problem, the objective is to fit a

discrete-time linear time-invariant dynamical system from observations of its inputs and

outputs. Let u(t) ∈ <m and ymeas(t) ∈ <p, t = 0, . . . , N be the sequences of inputs and

measured (noise) outputs, respectively. For each time t ∈ {0, . . . , N}, denote the state

of the dynamical system at time t by the vectors x(t) ∈ <n, where n is the order of the

system. The dynamical system which we need to determine is assumed as following

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t) ,

where the system order n, the matrices A, B, C, D, and the initial state x(0) are

the parameters to be estimated. In system identification literatures [52, 106, 104, 107],

the SVD low-rank approximation based subspace algorithms are used to estimate the

system order, and other model parameters. As mentioned in [59], the disadvantage of

this approach is that the matrix structure (e.g., the block Hankel structure) is not taken

into account before the model order is chosen. Therefore, it was suggested by [59] (see

also [60]) that instead of using the SVD low-rank approximation, one can use nuclear

norm minimization to estimate the system order, which preserves the linear (Hankel)

structure. The method proposed in [59] is based on computing y(t) ∈ <p, t = 0, . . . , N

by solving the following convex optimization problem with a given positive weighting

parameter ρ

min

{
ρ‖HU⊥‖∗ +

1

2
‖Y − Ymeas‖2

}
, (1.18)

where Y = [y(0), . . . , y(N)] ∈ <p×(N+1), Ymeas = [ymeas(0), . . . , ymeas(N)] ∈ <p×(N+1), H
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is the block Hankel matrix defined as

H =



y(0) y(1) y(2) · · · y(N − r)

y(1) y(2) y(3) · · · y(N − r + 1)

...
...

...
...

y(r) y(r + 1) y(r + 2) · · · y(N)


,

and U⊥ is a matrix whose columns form an orthogonal basis of the null space of the

following block Hankel matrix

U =



u(0) u(1) u(2) · · · u(N − r)

u(1) u(2) u(3) · · · u(N − r + 1)

...
...

...
...

u(r) u(r + 1) u(r + 2) · · · u(N)


.

Note that the optimization variable in (1.18) is the matrix Y ∈ <p×(N+1). Also, one can

easily write (1.18) in the form of MOP. As we mentioned in matrix norm approximation

problems, by using (1.11), one can find out the corresponding dual problem of (1.18)

directly. Again, we omit the details.

Fastest mixing Markov chain problem. Let G = (V, E) be a connected graph

with vertex set V = {1, . . . , n} and edge set E ⊆ V × V. We assume that each vertex

has a self-loop, i.e., an edge from itself to itself. The corresponding Markov chain can be

describe via the transition probability matrix P ∈ <n×n, which satisfies P ≥ 0, Pe = e

and P = P T , where the inequality P ≥ 0 means elementwise and e ∈ <n denotes the

vector of all ones. The fastest mixing Markov chain problem [10] (FMMC) is finding

the edge transition probabilities that give the fastest mixing Markov chain, i.e., that

minimize the second largest eigenvalue modulus (SLEM) µ(P ) of P . The eigenvalues of

P are real (since it is symmetric), and by Perron-Frobenius theory, no more than 1 in

magnitude. Therefore,we have

µ(P ) = max
i=2,...,n

|λi(P )| = σ2(P ) ,
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where σ2(P ) is the second largest singular value. Then, the FMMC problem is equivalent

to the following optimization problem:

min σ1(P(p)) + σ2(P(p)) = ‖P(p)‖(2)

s.t. p ≥ 0, Bp ≤ e ,
(1.19)

where ‖ · ‖(k) is Ky Fan k-norm of matrices, i.e., the sum of the k largest singular values

of a matrix; p ∈ <m denotes the vector of transition probabilities on the non-self-loop

edges; P = I + P(p) = I +
∑m

l=1 plE
(l) with E

(l)
ij = E

(l)
ji = +1, E

(l)
ii = E

(l)
jj = −1 and all

other entries of E(l) are zero; B ∈ <m×p is the vertex-edge incidence matrix. Then, the

FMMC problem can be reformulated as the following dual MOP form

(D) max −‖Z‖(2)

s.t. Pp− Z = I, p ≥ 0, Bp− e ≤ 0 .

Note that for any given positive integer k, the dual norm of Ky Fan k-norm ‖ · ‖(k) (cf.

[3, Exercise IV.1.18]) is given by

‖X‖(k)∗ = max{‖X‖2,
1

k
‖X‖∗} .

Thus, the primal form of (1.19) can be written as

(P) min 〈1, v〉 − 〈I, Y 〉+ δB1
(2)∗

(Y )

s.t. P∗Y − u+BT v = 0 ,

u ≥ 0, v ≥ 0 ,

where P∗ : <n×n → <m is the adjoint of the linear mapping P, and B1
(2)∗ ⊆ <

n×n is the

closed unit ball of the dual norm ‖ · ‖∗(2), i.e.,

B1
(2)∗ := {X ∈ <n×n | ‖X‖∗(2) ≤ 1} = {X ∈ <n×n | ‖X‖2 ≤ 1, ‖X‖∗ ≤ 2} .

Fastest distributed linear averaging problem. A matrix optimization prob-

lem, which is closely related to the fastest mixing Markov chain (FMMC) problem, is
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the fastest distributed linear averaging (FDLA) problem. Again, let G = (V, E) be a

connected graph (network) consisting of the vertex set V = {1, . . . , n} and edge set

E ⊆ V × V. Suppose that each node i holds an initial scalar value xi(0) ∈ <. Let

x(0) = (x1(0), . . . .xn(0))T ∈ <n be the vector of the initial node values on the network.

Distributed linear averaging is done by considering the following linear iteration

x(t+ 1) = Wx(t), t = 0, 1, . . . , (1.20)

where W ∈ <n×n is the weight matrix, i.e., Wij is the weight on xj at node i. Set

Wij = 0 if the edge (i, j) /∈ E and i 6= j. The distributed averaging problem arises

in the autonomous agents coordination problem. It has been extensively studied in

literature (e.g., [62]). Recently, the distributed averaging problem has found applications

in different areas such as formation fight of unmanned airplanes and clustered satellites,

and coordination of mobile robots. In such applications, one important problem is how

to choose the weight matrix W ∈ <n×n such that the iteration (1.20) converges and

it converges as fast as possible, which is so-called fastest distributed linear averaging

problem [58]. It was shown [58, Theorem 1] that the iteration (1.20) converges to the

average for any given initial vector x(0) ∈ <n if and only if W ∈ <n×n satisfies
eTW = eT ,

We = e ,

ρ

(
W − 1

n
eeT
)
< 1 ,

where ρ : <n×n → < denotes the spectral radius of a matrix. Moreover, the speed

of convergence can be measured by the so-called per-step convergence factor, which is

defined by

rstep(W ) = ‖W − 1

n
eeT ‖2 .

Therefore, the fastest distributed linear averaging problem can be formulated as the
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following MOP problem:

min ‖W − 1

n
eeT ‖2

s.t. eTW = eT , We = e ,

Wij = 0, (i, j) /∈ E , i 6= j .

(1.21)

The FDLA problem is similar with the FMMC problem. The corresponding dual problem

also can be derived easily. We omit the details.

More examples of MOPs such as the reduced rank approximations of transition ma-

trices, the low rank approximations of doubly stochastic matrices, and the low rank

nonnegative approximation which preserves the left and right principal eigenvectors of a

square positive matrix, can be found in [46].

Finally, by considering the epigraph of the norm function, the MOP problem involving

the norm function can be written as the MCP form. In fact, these two concepts can be

connected by the following proposition.

Proposition 1.2. Suppose E be a finite dimensional Euclidean space. Assume that the

proper convex function g : E → (−∞,∞] is positively homogeneous, then the polar of the

epigraph of g is given by

(epi g)◦ =
⋃
ρ≥0

ρ(−1, C) ,

where C is given by (1.8).

For example, consider the MOP problem (1.2) with f ≡ ‖ · ‖], a given norm function

defined in X (e.g., X ≡ <m×n and f ≡ ‖ · ‖(k)). We know from Proposition 1.2 and

Proposition 1.1 that the polar of the epigraph cone K ≡ epi‖ · ‖] can be written as

K◦ =
⋃
λ≥0

λ(−1, ∂f(0)) =
{

(−t,−Y ) ∈ < × X | ‖Y ‖∗] ≤ t
}

= −epi‖ · ‖∗] ,

where ‖ · ‖∗] is the dual norm of ‖ · ‖]. Then, the primal and dual MOPs can be rewritten
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as the following MCP forms

(P) min 〈C,X〉+ t

s.t. AX = b ,

(t,X) ∈ K ,

(D) max 〈b, y〉

s.t. A∗y −C = X∗ ,

(−1,X∗) ∈ K◦ ,

where K = epi‖ · ‖] and K◦ = −epi‖ · ‖∗] .

For many applications in eigenvalue optimization [69, 70, 71, 55], the convex function

f in the MOP problem (1.2) is positively homogeneous in X . For example, let X ≡ Sn

and f ≡ s(k)(·), the sum of k largest eigenvalues of the symmetric matrix. It is clear that

sk(·) is a positively homogeneous closed convex function in Sn. Then, by Proposition

1.2 and Proposition 1.1, we know that the corresponding primal and dual MOPs can be

rewritten as the following MCP forms

(P) min 〈C,X〉+ t

s.t. AX = b ,

(t,X) ∈M ,

(D) max 〈b, y〉

s.t. A∗y − C = X∗ ,

(−1, X∗) ∈M◦ ,

where the closed convex cone M :=
{

(t,X) ∈ < × Sn | s(k)(X) ≤ t
}

is the epigraph of

s(k)(·), and M◦ is the polar of M given by M◦ =
⋃
ρ≥0 ρ(−1, C) with

C = ∂s(k)(0) := {W ∈ Sn | tr(W ) = k, 0 ≤ λi(W ) ≤ 1, i = 1, . . . , n} .

Since MOPs include many important applications, the first question one must answer

is how to solve them. One possible approach is considering the SDP reformulation of the

MOP problems. Most of the MOP problems considering in this thesis are semidefinite

representable [2, Section 4.2]. For example, if f ≡ ‖ · ‖(k), the Ky Fan k-norm of matrix,

then the convex function f is semidefinite representable (SDr) i.e., there exists a linear

matrix inequality (LMI) such that

(t,X) ∈ epif ⇐⇒ ∃u ∈ <q : ASDr(t,X, u)− C � 0 ,
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where ASDr : < × <m×n × <q → Sr is a linear operator and C ∈ Sr. It is well-known

that for any (t,X) ∈ < × <m×n,

‖X‖(k) ≤ t ⇐⇒



t− kz − 〈Z, Im+n〉 ≥ 0 ,

Z � 0 ,

Z −

 0 X

XT 0

+ zIm+n � 0 ,

where Z ∈ Sm+n and z ∈ <. In particular, when k = 1, i.e., f ≡ ‖ · ‖2, the spectral norm

of matrix, we have

‖X‖2 ≤ t ⇐⇒ Sm+n 3

 tIm X

XT tIn

 � 0 .

See [2, Example 18(c) & 19] for more details on these. By employing the corresponding

semidefinite representation of f , most MOPs considering in this thesis can be reformu-

lated as SDP problems with extended dimensions. For instance, consider the matrix

norm approximation problem (1.5), which can be reformulated as the following SDP

problem:

min t

s.t. A∗y −B0 = Z , tIm Z

ZT tIn

 � 0 ,

(1.22)

where A∗ : <p → <m×n is the linear operator defined by (1.7). Also, it is well-known

[10] that the FMMC problem (1.19) has the following SDP reformulation

min s

s.t. −sI � P − (1/n)eeT � sI ,

P ≥ 0, P e = e, P = P T ,

Pij = 0, (i, j) /∈ E ,

(1.23)
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where E is the edge set of the given connected graph G. For the semidefinite repre-

sentations of the other MOPs we mentioned before, one can refer to [71, 1] for more

details.

By considering the corresponding SDP reformulations, most MOPs can be solved by

the well developed interior point methods (IPMs) based SDP solvers, such as SeDuMi

[92] and SDPT3 [103]. This SDP approach is fine as long as the sizes of the reformulated

problems are not large. However, for large scale problems, this approach becomes im-

practical, if possible at all, due to the fact that the computational cost of each iteration

of an IPM becomes prohibitively expensive. This is particular the case when n� m (if

assuming m ≤ n). For example, for the matrix norm approximation problem (1.5), the

matrix variable of the equivalent SDP problem (1.22) has the order 1
2(m+ n)2. For the

extreme case that m = 1, instead of solving the SDP problem (1.22), one always want

to reformulate (1.5) as the following second order cone programming (SOC) problem:

min t

s.t. A∗y −B0 = z ,

√
zzT ≤ t ,

(1.24)

where B0 ∈ <1×n, A∗ : <p → <1×n is the linear operator defined by (1.7), and z ∈ <1×n.

Even if m ≈ n (e.g., the symmetric case), the expansion of variable dimensions will

inevitably lead to extra computational cost. Thus, the SDP approach do not seem to be

viable for large scale MOPs. It is highly desirable for us to design algorithms that can

solve MOPs in the original matrix spaces.

Our idea for solving MOPs is built on the classical proximal point algorithms (PPAs)

[85, 84]. The reason for doing so is because we have witnessed a lot of interests in apply-

ing augmented Lagrangian methods, or in general PPAs, to large scale SDP problems

during the last several years, e.g., [74, 63, 116, 117, 111]. Depending on how the inner

subproblems are solved, these methods can be classified into two categories: first order
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alternating direction based methods [63, 74, 111] and second order semismooth New-

ton based methods [116, 117]. The efficiency of all these methods depends on the fact

that the metric projector over the SDP cone admits a closed form solution [88, 40, 102].

Furthermore, the semismooth Newton based method [116, 117] also exploits a crucial

property – the strong semismoothness of this metric projector established in [95]. It will

be shown later that the similar properties of the MOP analogues play a crucial role in

the proximal point algorithm (PPA) for solving MOP problems.

Next, we briefly introduce the general framework of the PPA for solving the MOP

problem (1.2). The classical PPA is designed to solve the inclusion problems with max-

imal monotone operators [85, 84]. Let H be a finite dimensional real Hilbert space with

the inner product 〈·, ·〉 and T : H → H be a multivalued, maximal monotone opera-

tor (see [85] for the definition). Given x0 ∈ H, in order to solve the inclusion problem

0 ∈ T (x) by the PPA, we need to solve iteratively a sequence of regularized inclusion

problems:

xk+1 approximately solves 0 ∈ T (x) + η−1
k (x− xk) . (1.25)

Denote Pηk(·) := (I + ηkT )−1(·). Then, equivalently, we have

xk+1 ≈ Pηk(xk) ,

where the given sequence {ηk} satisfies

0 < ηk ↑ η∞ ≤ ∞ . (1.26)

Two convergence criteria for (1.26) introduced by Rockafellar [85] as follows

‖xk+1 − Pηk(xk)‖ ≤ εk, εk > 0,
∞∑
k=0

εk ≤ ∞ , (1.27)

‖xk+1 − Pηk(xk)‖ ≤ δk‖xk+1 − xk‖, δk > 0,
∞∑
k=0

δk <∞ . (1.28)

For the convergence analysis of the general proximal point method, one may refer to [85,

Theorem 1 & 2]. Roughly speaking, under mild assumptions, condition (1.27) guarantees
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the global convergence of {xk}, in the sense that the sequence {xk} converges to one

solution of the inclusion problem 0 ∈ T (x). Moreover, if condition (1.28) holds and T −1

is Lipschitz continuous at the origin, then the sequence {xk} converges locally at a linear

rate and in particular, if η∞ =∞, the convergence is superlinear.

Consider the primal and dual MOP problems (1.2) and (1.3). Let L : X × <p → <

be the ordinary Lagrangian function for (1.2), i.e.,

L(X, y) := 〈C,X〉+ f(X) + 〈b−AX, y〉, X ∈ X , y ∈ <p .

The essential objective function of the primal and dual MOPs (1.2) and (1.3) are defined

by

F (X) := sup
y∈<p

L(X, y) =


〈C,X〉+ f(X) if AX − b = 0 ,

∞ otherwise ,

X ∈ X (1.29)

and

G(y) := inf
X∈X

L(X, y) = 〈b, y〉 − f∗(A∗y − C), y ∈ <p . (1.30)

Therefore, the primal and dual MOP problems can be written as the following inclusion

problems respectively

0 ∈ TF (X) := ∂F (X) and 0 ∈ TG(y) := ∂G(y) . (1.31)

Since F and −G are closed proper convex functions, from [83, Corollary 31.5.2], we know

that ∂F and −∂G are maximal monotone operators. Thus, the proximal point algorithm

can be used to solve the inclusion problems (1.31). In order to apply the PPA to MOPs,

we need to solve the inner problem (1.25) in each step approximately. For example,

consider the primal MOP problem. Let ηk > 0 be given. Then, we have

Xk+1 ≈ (I + ηkTF )−1(Xk) ,

which is equivalent to

Xk+1 ≈ arg min
X∈X

{
F (X) +

1

2ηk
‖X −Xk‖2

}
. (1.32)
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Let ψF,ηk(Xk) be the optimal function value of (1.32), i.e.,

ψF,ηk(Xk) := min
X∈X

{
F (X) +

1

2ηk
‖X −Xk‖2

}
.

By the definition of the essential primal objective function (1.29), we have

ψF,ηk(Xk) = min
X∈X

{
F (X) +

1

2ηk
‖X −Xk‖2

}

= min
X∈X

{
sup
y∈<p

L(X, y) +
1

2ηk
‖X −Xk‖2

}

= sup
y∈<p

min
X∈X

{
〈C,X〉+ f(X) + 〈b−AX, y〉+

1

2ηk
‖X −Xk‖2

}
= sup

y∈<p
Θηk(y;Xk) , (1.33)

where Θηk(y;Xk) : <p → < is given by

Θηk(y;Xk) := ψf,ηk(Xk+ηk(A∗y−C))+
1

2ηk

(
‖Xk‖2 − ‖Xk + ηk(A∗y − C)‖2

)
+ 〈b, y〉

with

ψf,ηk(Xk + ηk(A∗y−C)) := min
X∈X

{
f(X) +

1

2ηk
‖X − (Xk + ηk(A∗y − C))‖2

}
. (1.34)

Therefore, from the definition of Θηk(y;Xk), we know that in order to solve the inner

sub-problem (1.33) efficiently, the properties of the function ψf,ηk should be studied first.

In particular, as we mentioned before, similar as the SDP problems, the success of the

PPAs for MOPs depends crucially on the first and second order differential properties

of ψf,ηk . Actually, the function ψf,ηk : X → < defined in (1.34) is called the Moreau-

Yosida regularization of f with respect to ηk. The Moreau-Yosida regularization for

the general convex function has many important applications in different optimization

problems. There have been great efforts on studying the properties of the Moreau-Yosida

regularization (see, e.g., [41, 53]). Several fundamental properties of the Moreau-Yosida

regularization will be introduced in Section 1.2.
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1.2 The Moreau-Yosida regularization and spectral opera-

tors

In this section, we first briefly introduce the Moreau-Yosida regularization and proximal

point mapping for general convex functions.

Definition 1.1. Let E be a finite dimensional Euclidean space. Suppose that g : E →

(−∞,∞] is a closed proper convex function. Let η > 0 be given. The Moreau-Yosida

regularization ψg,η : E → < of g with respect to η is defined as

ψg,η(x) := min
z∈E

{
g(z) +

1

2η
‖z − x‖2

}
, x ∈ E . (1.35)

It is well-known that for any given x ∈ E , the minimization problem (1.35) has unique

optimal solution. We denote such unique optimal solution as Pg,η(x), the proximal point

of x associated with g. In particular, if g ≡ δC(·) is the indicator function of the nonempty

closed convex set C in E and η = 1, then the corresponding proximal point of x ∈ E is the

metric projection ΠC(x) of x onto C, which is the unique optimal solution to following

convex optimization problem:

min
1

2
‖y − z‖2

s.t. y ∈ C .

Next, we list some important properties of the Moreau-Yosida regularization as fol-

lows.

Proposition 1.3. Let g : E → (−∞,+∞] be a closed proper convex function. Let

η > 0 be given, ψg,η be the Moreau-Yosida regularization of g, and Pg,η be the associated

proximal point mapping. Then, the following properties hold.

(i) Both Pg,η and Qg,η := I − Pg,η are firmly non-expansive, i.e., for any x, y ∈ E,

‖Pg,η(x)− Pg,η(y)‖2 ≤ 〈Pg,η(x)− Pg,η(y), x− y〉, (1.36)

‖Qg,η(x)−Qg,η(y)‖2 ≤ 〈Qg,η(x)−Qg,η(y), x− y〉. (1.37)
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Consequently, both Pg,η and Qg,η are globally Lipschitz continuous with modulus 1.

(ii) ψg,η is continuously differentiable, and furthermore, it holds that

∇ψg,η(x) =
1

η
Qg,η(x) =

1

η
(x− Pg,η(x)), x ∈ E .

The following useful property is derived by Moreau [66] and so-called Moreau decom-

position.

Theorem 1.4. Let g : E → (−∞,∞] be a closed proper convex function and g∗ be its

conjugate. Then, any x ∈ E has the decomposition

Pg,1(x) + Pg∗,1(x) = x . (1.38)

Moreover, for any x ∈ E, we have

ψg,1(x) + ψg∗,1(x) =
1

2
‖x‖2 . (1.39)

Suppose that the closed proper convex function g is positively homogenous. Then,

from Proposition 1.1, we can obtain the following result directly.

Corollary 1.5. Suppose that the closed proper convex function g : E → (−∞,∞] is

positively homogenous. Let g∗ be the conjugate of g and η > 0 be given. For any x ∈ E,

we have

Qg,η(x) = x− Pg,η(x) = ηPg∗,η−1(η−1x) = arg min
z

{
1

2
‖z − x‖2 | z ∈ ηC

}
,

where the closed convex set C in E is defined by (1.8). Furthermore, for any x ∈ E, we

have

ψg,η(x) + ψg∗,η−1(η−1x) =
1

2η
‖x‖2 .

In applications, the closed proper convex functions f : X → (−∞,∞] in the MOP

problems are unitarily invariant, i.e., for any X = (X1, . . . ,Xs0 ,Xs0+1, . . . ,Xs) ∈ X ,

any orthogonal matrices Uk ∈ <mk×mk , k = 1, . . . , s and Vk ∈ <nk×nk , k = s0 + 1, . . . , s,

f(X) = f(UT
1 X1U1, . . . ,U

T
s0Xs0Us0 ,U

T
s0+1Xs0+1Vs0+1, . . . ,U

T
s XsVs) . (1.40)
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If the closed proper convex function f : X → (−∞,∞] is unitarily invariant, then it

can be shown (Proposition 3.2 in Chapter 3) that the corresponding Moreau-Yosida

regularization ψf,η is also unitarily invariant in X . Moreover, we will show that the

proximal mapping Pf,η : X → X can be written as

Pf,η(X) = (G1(X), . . . ,Gs(X)) , X ∈ X ,

with

Gk(X) :=


Pkdiag

(
gk(κ(X))

)
P Tk k = 1, . . . , s0 ,

Uk
[
diag

(
gk(κ(X))

)
0
]
V T
k k = s0 + 1, . . . , s ,

and Pk ∈ Omk , 1 ≤ k ≤ s0, Uk ∈ Omk , Vk ∈ Onk , s0 + 1 ≤ k ≤ s such that

Xk =


PkΛ(Xk)P

T
k k = 1, . . . , s0 ,

Uk[Σ(Xk) 0]V T
k k = s0 + 1, . . . , s ,

where g : <m0+m → <m0+m is a vector valued function satisfying the so-called (mixed)

symmetric condition (Definition 3.1). It will be shown in Proposition 3.2 Chapter 3 that

the proximal mapping Pf,η is a spectral operator (Definition 3.2).

Spectral operators of matrices have many important applications in different fields,

such as matrix analysis [3], eigenvalue optimization [55], semidefinite programming [117],

semidefinite complementarity problems [20, 19] and low rank optimization [13]. In such

applications, the properties of some special spectral operators have been extensively

studied by many researchers. Next, we will briefly review the related work. Usually, the

symmetric vector valued function g is either simple or easy to study. Therefore, a natural

question one may ask is that how can we study the properties of spectral operators from

the vector valued analogues?

For symmetric matrices, Löwner’s (symmetric) operator [61] is the first spectral op-

erator considered by the mathematical optimization community. Suppose that X ∈ Sn



1.2 The Moreau-Yosida regularization and spectral operators 22

has the eigenvalue decomposition

X = P



λ1(X) 0 · · · 0

0 λ2(X) · · · 0

...
...

. . .
...

0 0 · · · λn(X)


P
T
, (1.41)

where λ1(X) ≥ λ2(X) ≥ . . . ≥ λn(X) are the real eigenvalues of X (counting multiplic-

ity) being arranged in non-increasing order. Let g : < → < be a scalar function. The

corresponding Löwner operator is defined by

G(X) :=
n∑
i=1

g(λi(X))p̄ip̄
T
i , X ∈ Sn , (1.42)

where for each i ∈ {1, . . . , n}, p̄i is the i-th column of P . Löwner’s operator is used in

many important applications, such as matrix analysis [3], conic optimization [97] and

complementary problems [19]. The properties of Löwner’s operator are well-studied in

the literature. For example, the well-definiteness can be found, e.g., [3, Chapter V]

and [43, Section 6.2]. Chen, Qi and Tseng [19, Proposition 4.6] showed that Löwner’s

operator G is locally Lipschitz continuous if and only if g is locally Lipschitz continuous.

The differentiability result of Löwner’s operator G can be largely derived from [31] or [49].

In particular, Chen, Qi and Tseng [19, Proposition 4.3] showed that G is differentiable

at X if and only if g is differentiable at every eigenvalue of X. This result is also

implied in [56, Theorem 3.3] for the case that g ≡ ∇h for some differentiable function

h : < → <. Chen, Qi and Tseng [20, Lemma 4 and Proposition 4.4] showed that

G is continuously differentiable if and only if g is continuously differentiable near every

eigenvalue of X. For the related directional differentiability of G, one may refer to [89] for

a nice derivation. Sun and Sun [95, Theorem 4.7] first provided the directional derivative

formula for Löwner’s operator G with respect to the absolute value function, i.e., g ≡ |· |.

Also, they proved [95, Theorem 4.13] the strong semismoothness of the corresponding

Löwner’s operator G. It is an open question whether such a (tractable) characterization
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can be found for Löwner’s operator G with respect to any locally Lipschitz function g.

To our knowledge, such characterization can be found only for some special cases. For

example, the characterization of Clarke’s generalized Jacobian of Löwner’s operator G

with respect to the absolute value function was provided by [72, Lemma 11]; Chen, Qi

and Tseng [20, Proposition 4.8] provided Clarke’s generalized Jacobian of G, where the

directional derivative of g has the one-side continuity property [20, the condition (24)].

Recently, in order to solve some fundamental optimization problems involving the

eigenvalues [55], one needs to consider a kind of (symmetric) spectral operators which are

more general than Löwner’s operators, in the sense that the functions g in the definition

(2.18) are vector-valued. In particular, Lewis [54] defined such kind of (symmetric)

spectral operators by considering the gradient of the symmetric function φ, i.e., φ :

<n → < satisfies that

φ(x) = φ(Px) for any permutation matrix P and any x ∈ <n .

Let g := ∇φ(·) : <n → <n. For any X ∈ Sn with the eigenvalue decomposition (2.4), the

corresponding (symmetric) spectral operator G : Sn → Sn [54] at X can be defined by

G(X) :=
n∑
i=1

gi(λ(X))p̄ip̄
T
i . (1.43)

Lewis [54] proved that such kind of function G is well-defined, by using the “block-

refineness” property of g. Also, it is easy to see that Löwner’s operator is indeed a

special symmetric spectral operator G defined by (1.43), where the vector valued func-

tion g is separable. It is well known that the eigenvalue function λ(·) is not everywhere

differentiable. It is natural to expect that the composite function G could be not every-

where differentiable no matter how smooth g is. It was therefore surprising when Lewis

and Sendov claimed in [56] that G is (continuously) differentiable at X if and only if

g is (continuously) differentiable at λ(X). For the directional differentiability of G, it

is well known that the directional differentiability of g is not sufficient. In fact, Lewis

provided a count-example in [54] that g is directionally differentiable at λ(X) but G is
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not directionally differentiable at X. Therefore, Qi and Yang [75] proved that G is direc-

tionally differentiable at X if g is Hadamard directionally differentiable at λ(X), which

can be regarded as a sufficient condition. However, they didn’t provide the directional

derivative formula for G, which is important in nonsmooth analysis. In the same paper,

Qi and Yang [75] also proved that G is locally Lipschitz continuous at X if and only if g

is locally Lipschitz continuous at λ(X), and G is (strongly) semismooth if and only if g is

(strongly) semismooth. However, the characterization of Clarke’s generalized Jacobian

of the general symmetric matrix valued function G is still an open question.

For nonsymmetric matrices, some special Löwner’s nonsymmetric operators were con-

sidered in applications. One well-known example is the soft thresholding (ST) operator,

which is widely used in many applications, such as the low rank optimization [13]. The

general Löwner’s nonsymmetric operators were first studied by Yang [114]. For the given

matrix Z ∈ <m×n (assume that m ≤ n), consider the singular value decomposition

Z = U [Σ(Z) 0]V
T

= U [Σ(Z) 0]
[
V 1 V 2

]T
= UΣ(Z)V

T
1 , (1.44)

where

Σ(Z) =



σ1(Z) 0 · · · 0

0 σ2(Z) · · · 0

...
...

. . .
...

0 0 · · · σm(Z)


,

and σ1(Z) ≥ σ2(Z) ≥ . . . ≥ σm(Z) are the singular values of Z (counting multiplicity)

being arranged in non-increasing order. Let g : <+ → < be a scalar function. The

corresponding Löwner’s nonsymmetric operators [114] is defined by

G(Z) := U [g(Σ(Z)) 0]V
T

=

m∑
i=1

g(σi(Z))ūiv̄
T
i , Z ∈ <m×n , (1.45)

where g(Σ(Z)) := diag(g(σ1(Z)), . . . , g(σm(Z))). Yang [114] proved that g(0) = 0 is

the sufficient and necessary condition for the well-definiteness of Löwner’s nonsymmetric

operators G. By using the connection between the singular value decomposition of Z
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and the eigenvalue decomposition of the symmetric transformation [42, Theorem 7.3.7]

(see (2.28)-(2.30) in Section 2.2 for more details), Yang [114] studied the correspond-

ing properties of Löwner’s nonsymmetric operators. In particular, it was shown that

Löwner’s nonsymmetric operators G inherit the (continuous) differentiability and the

Lipschitz continuity of g. For the (strong) semismoothness of G, Jiang, Sun and Toh [45]

first showed that the soft thresholding operator is strongly semismooth. By using similar

techniques, Yang [114] showed that the general Löwner’s nonsymmetric operators G is

(strongly) semismooth at Z ∈ <m×n if and only if g is (strongly) semismooth at σ(Z).

Recently, the metric projection operators over five different matrix cones have been

studied in [30]. In particular, they provided the closed form solutions of the metric

projection operators over the epigraphs of the spectral and nuclear matrix norm. Such

metric projection operators can not be covered by Löwner’s nonsymmetric operators. In

fact, those metric projection operators are spectral operators defined on X ≡ <×<m×n,

which is considered in this thesis. Several important properties, including its closed form

solution, ρ-order B(ouligand)-differentiability (0 < ρ ≤ 1) and strong semismoothness,

of the metric projection operators were studied in [30].

Motivated by [30], in this thesis, we study spectral operators under the more general

setting, i.e., the spectral operators considered in this thesis are defined on the Cartesian

product of several symmetric and nonsymmetric matrix spaces. On one hand, from

[30], we know that the directional derivatives of the metric projection operators over the

epigraphs of the spectral and nuclear matrix norm are the spectral operators defined

on the Cartesian product of several symmetric and nonsymmetric matrix spaces (see

Section 3.2 for details). However, most properties of such kind of matrix functions (even

the well-definiteness of such functions), which are important to MOPs, are unknown.

Therefore, it is desired to start a systemic study of the general spectral operator. On the

other hand, in some applications, the convex function f in (1.2) can be defined on the

Cartesian product of the symmetric and nonsymmetric matrix space. For example, in
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applications, one may want to minimize both the largest eigenvalue of a symmetric matrix

and the spectral norm of a nonsymmetric matrix under the certain linear constraint, i.e.,

min 〈C, (X,Y )〉+ max{λ1(X), ‖Y ‖2}

s.t. A(X,Y ) = b ,

(1.46)

where C ∈ X ≡ Sn × <m×n, (X,Y ) ∈ X , b ∈ <p, and A : X → <p is the given linear

operator. Therefore, the proximal point mapping Pf,η and the gradient ∇ψf,η of the

convex function f ≡ max{λ1(X), ‖Y ‖2} : X → (−∞,∞] is the spectral operator defined

in X = Sn × <m×n, which is not covered by pervious work. Thus, it is necessary to

study the properties of spectral operators under such general setting. Specifically, the

following fundamental properties of spectral operators, including the well-definiteness,

the directional differentiability, the Fréchet-differentiability, the locally Lipschitz conti-

nuity, the ρ-order B-differentiability (0 < ρ ≤ 1), the ρ-order G-semismooth (0 < ρ ≤ 1)

and the characterization of Clarke’s generalized Jacobian, will be studied in the first

part of this thesis. The study of spectral operators is not only interesting in itself, but

it is also crucial for the study on the solutions of the Moreau-Yosida regularization of

matrix related functions. As mentioned before, in order to make MOPs tractable, we

must study the properties of the proximal point mapping Pf,η and the gradient ∇ψf,η of

the Moreau-Yosida regularization.

It is worth to note that the semismoothness of the proximal point mapping Pf,η for the

MOP problems considered in this thesis, also can be studied by using the corresponding

results on tame functions. Firstly, we introduce the concept of the o(rder)-minimal

structure (cf. [24, Definition 1.4]).

Definition 1.2. An o-minimal structure of R is a sequence M = {Mt} with Mt a

collection of subsets of <n satisfying the following axioms.

(i) For every t, Mt is closed under Boolean operators (finite unions, intersections and

complement).
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(ii) If A ∈Mt and B ∈Mt′, then A×B belongs to Mt+t′.

(iii) Mt contains all the subsets of the form {x ∈ <n | p(x) = 0}, where p : <n → < is

a polynomial function.

(iv) Let P : <n → <n−1 be the projection on the first n coordinates. If A ∈ Mt, then

P (A) ∈Mt.

(v) The elements of M1 are exactly the finite union of points and intervals.

The elements of o-minimal structure are called definable sets. A map F : A ⊆ <n → <m

is called definable if its graph is a definable subset of <n+m.

A set of <n is called tame with respect to an o-minimal structure, if its intersection

with the interval [−r, r]n for every r > 0 is definable in this structure, i.e., the element of

this structure. A mapping is tame if its graph is tame. One most often used o-minimal

structure is the class of semialgebraic subsets of <n. A set in <n is semialgebraic if it is

a finite union of sets of the form

{x ∈ <n | pi(x) > 0, qj(x) = 0, i = 1, . . . , a, j = 1, . . . , b} ,

where pi : <n → <, i = 1, . . . , a and qj : <n → <, j = 1, . . . , b are polynomials. A

mapping is semialgebraic if its graph is semialgebraic.

For tame functions, the following proposition was firstly established by Bolte et.al in

[4]. Also see [44] for another proof of the semismoothness.

Proposition 1.6. Let g : <n → <m be a locally Lipschitz continuous mapping.

(i) If g is tame, then g is semismooth.

(ii) If g is semialgebraic, then g is γ-order semismooth with some γ > 0.

Let E be a finite dimensional Euclidean space. If the closed proper convex function

g : E → (−∞,∞] is semialgebraic, then the Moreau-Yosida regularization ψg,η of g with
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respect to η > 0 at x is semialgebraic. Moreover, since the graph of the corresponding

proximal point mapping Pg,η is of the form

gphPg,η =

{
(x, y) ∈ E × E | g(y) +

1

2η
‖y − x‖2 = ψg,η(x)

}
,

we know that Pg,η is also semialgebraic (cf. [44]). Since Pg,η is globally Lipschitz con-

tinuous, according to Proposition 1.6 (ii), it yields that Pg,η is γ-order semismooth with

some γ > 0. Furthermore, most closed proper convex functions f in the MOP problem

(1.2) are semialgebraic. For example, it is easy to verify that the indicator function

δSn+(·) of the SDP cone and the Ky Fan k-norm ‖ · ‖(k) are semialgebraic. Therefore,

we know that the corresponding proximal point mapping Pf,η(·) for MOPs are γ-order

semismooth with some γ > 0. However, we only know the existence of γ, which means

that we may not able to obtain the strong semismoothness of Pg,η by this approach.

1.3 Sensitivity analysis of MOPs

The second topic of this thesis is the sensitivity analysis of solutions to matrix opti-

mization problems (MOPs) subject to data perturbation. During the last three decades,

considerable progress has been made in this area (Bonnans and Shapiro [8], Facchinei

and Pang [33], Klatte and Kummer [48], Rockafellar and Wets [86]). Consider the opti-

mization problem

min f(x)

s.t. G(x) ∈ C ,
(1.47)

where f : E → < and G : E → Z are twice continuously differentiable functions, E and

Z are two finite dimensional real vector spaces, and C is a closed convex set in Z. If

C is a polyhedral set (for the conventional nonlinear programming), the corresponding

perturbation analysis results are quite complete.

For the general non-polyhedral C, much less has been discovered. However, for the

non-polyhedral C which is C2-cone reducible, the sensitivity analysis of solutions for (1.47)
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have been systematically studied in literature [5, 7, 8]. Meanwhile, the theory of second

order optimality conditions of the optimization problem (1.47), which are closely related

with sensitivity analysis, has also been studied in [6, 8]. Recently, for a local solution

of the nonlinear SDP problem, Sun [94] established various characterizations for the

strong regularity, which is one of the important concepts in sensitivity and perturbation

analysis introduced by Robinson [80]. More specifically, in [94], for a local solution of

the nonlinear SDP problem, the author proved that under the Robinson’s constraint

qualification, the strong second-order sufficient condition and constraint nondegeneracy,

the non-singularity of Clarke’s Jacobian of the Karush-Kuhn-Tucker (KKT) system and

the strong regularity of the KKT point are equivalent. Motived by this, Chan and Sun

[17] gained more insightful characterizations about the strong regularity of linear SDP

problems. They showed that the primal and dual constraint nondegeneracies, the strong

regularity, the non-singularity of the B(ouligand)-subdifferential of the KKT system, and

the non-singularity of the corresponding Clarke’s generalized Jacobian, at a KKT point

are all equivalent. For the (nonlinear and linear) SDP problems, variational analysis

on the metric projection operator over the cone of positive semidefinite matrices plays a

fundamental role in achieving these goals. One interesting question is that how to extend

these stability results on SDP problems to MOPs.

In stead of considering the general MOP problems, as a starting point, we mainly

focus on the sensitivity analysis of the MOP problems with some special structures. For

example, the proper closed convex function f : X → (−∞,∞] in (1.2) is assumed to be

a unitarily invariant matrix norm (e.g., the Ky Fan k-norm) or a positively homogenous

function (e.g., the sum of k largest eigenvalues of the symmetric matrix). Also, we mainly

focus on the simple linear model as the MCP problems (1.48). For example, we can study
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the following linear MCP problem involving Ky Fan k-norm cone

min 〈(s, C), (t,X)〉

s.t. A(t,X) = b ,

(t,X) ∈ K ,

(1.48)

where K ≡ epi‖ ·‖(k) =
{

(t,X) ∈ < × <m×n | ‖X‖(k) ≤ t
}

, (s, C) ∈ <×<m×n, b ∈ <p are

given, and A : < × <m×n → <p is the given linear operator. Note that the matrix cone

K = epi‖·‖(k) includes the epigraphs of the spectral norm ‖·‖2 (k = 1) and nuclear norm ‖·

‖∗ (k = m) as two special cases. In this thesis, we first study some important geometrical

properties of the Ky Fan k-norm epigraph cone K, such as the characterizations of tangent

cone and the (inner and outer) second order tangent sets of K, the explicit expression

of the support function of the second order tangent set, the C2-cone reducibility of K,

the characterization of the critical cone of K. By using these properties, we state the

constraint nondegeneracy, the second order necessary condition and the (strong) second

order sufficient condition of the linear MCP problem (1.48). Finally, for the linear MCP

problem (1.48), we establish the equivalent links among the strong regularity of the KKT

point, the strong second order sufficient condition and constraint nondegeneracy, and the

non-singularity of both the B-subdifferential and Clarke’s generalized Jacobian of the

nonsmooth system at a KKT point. Variational analysis on the metric projector over the

Ky Fan k-norm epigraph cone K is very important for these studies. More specifically,

the study of properties of spectral operators, such as the directional differentiability,

the F-differentiability, the ρ-order G-semismooth and the characterization of Clarke’s

generalized Jacobian in the first part of this thesis, plays an essential role.

Since the model is simplified, we may lose some kind of generality, which means that

some MOP problems may not be covered by this work. However, it is worth taking into

consideration that the study on the basic models as the linear MCP involving the Ky

Fan k-norm cone can serve as a basic tools to study the sensitivity analysis of the more

complicated MOP problems. For some MOP problems, the corresponding sensitivity



1.4 Outline of the thesis 31

results can be obtained similarly by following the derivation of our basic model. For

example, we can extend the sensitivity results to the following linear MCP problem

involving the epigraph cone of the sum of k largest eigenvalues of the symmetric matrix

min 〈(s, C), (t,X)〉

s.t. A(t,X) = b ,

(t,X) ∈M ,

(1.49)

where M ≡ epi s(k)(·) =
{

(t,X) ∈ < × Sn | s(k)(X) ≤ t
}

, (s, C) ∈ < × Sn, b ∈ <p are

given, and A : <×Sn → <p is the given linear operator. In fact, by using the properties

of the eigenvalue function λ(·) of the symmetric matrix, the corresponding variational

properties of M can be obtained in the similar but simple way to those of the Ky Fan

k-norm cone K. Moreover, by using the properties of the spectral operator (the metric

projection operator over the epigraph cone M), the corresponding sensitivity results on

the linear MCP problem (1.49) can be derived directly. The extensions to other MOP

problems are also be discussed in this thesis.

1.4 Outline of the thesis

The thesis is organized as follows: to facilitate later discussions, we give some prelim-

inaries on the eigenvalue decomposition of symmetric matrices and the singular value

decomposition of general matrices in Chapter 2. In Chapter 3, we study some funda-

mental properties of spectral operators. As an example, the corresponding properties

of the metric projection operator over the Ky Fan k-norm epigraph cone K and other

matrix cones are studied at the end of this chapter. Chapter 4 focus on the perturbation

analysis of the MOP problems. We mainly study some important geometrical properties

of the Ky Fan k-norm epigraph cone K and various characterizations for the strong reg-

ularity of the linear matrix cone programming involving Ky Fan k-norm. The extensions

to other MOP problems are discussed at the end of the chapter. Chapter 5 presents
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conclusions and some possible topic for future research.



Chapter 2
Preliminaries

Let E and E ′ be two finite dimensional real Euclidean spaces and O be an open set in

E . Suppose that Φ : O ⊆ E → E ′ is a locally Lipschitz continuous function on the open

set O. According to Rademacher’s theorem, Φ is almost everywhere differentiable (in

the sense of Fréchet) in O. Let DΦ be the set of points in O where Φ is differentiable.

Let Φ′(x) be the derivative of Φ at x ∈ DΦ. Then the B(ouligand)-subdifferential of Φ

at x ∈ O is denoted by [76]:

∂BΦ(x) :=

{
lim

DΦ3xk→x
Φ′(xk)

}
,

and Clarke’s generalized Jacobian of Φ at x ∈ O [23] takes the form:

∂Φ(x) = conv {∂BΦ(x)} ,

where “conv” stands for the convex hull in the usual sense of convex analysis [83]. A

function Φ : O ⊆ E → E ′ is said to be Hadamard directionally differentiable at x ∈ O if

the limit

lim
t↓0
h′→h

Φ(x+ th′)− Φ(x)

t
exists for any h ∈ E . (2.1)

It is clear that if Φ is Hadamard directionally differentiable at x, then Φ is directionally

differentiable at x, and the limit in (2.1) equals the directional derivative Φ′(x;h) for

33
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any h ∈ E . Let ρ > 0 be given. A function Φ : O ⊆ E → E ′ is said to be ρ-order

B(ouligand)-differentiable at x ∈ O if for any h ∈ E with h→ 0,

Φ(x+ h)− Φ(x)− Φ′(x;h) = O(‖h‖1+ρ) . (2.2)

Definition 2.1. Let E and E ′ be two finite dimensional real Euclidean spaces. We say

that Φ : E → E ′ is (parabolic) second order directionally differentiable at x ∈ E, if Φ is

directionally differentiable at x and for any h,w ∈ E

lim
t↓0

Φ(x+ th+ 1
2 t

2w)− Φ(x)− tΦ′(x;h)
1
2 t

2
exists ;

and the above limit is said to be the (parabolic) second order directional derivative of Φ

at x along h,w, denoted by Φ′′(x;h,w).

Let Φ : O ⊆ E → E ′ be a locally Lipschitz continuous function on the open set O.

The function Φ is said to be G-semismooth at a point x ∈ O if for any y → x and

V ∈ ∂Φ(y),

Φ(y)− Φ(x)− V (y − x) = o(||y − x||) .

A stronger notion than G-semismoothness is ρ-order G-semismoothness with ρ > 0. The

function Φ is said to be ρ-order G-semismooth at x if for any y → x and V ∈ ∂Φ(y),

Φ(y)− Φ(x)− V (y − x) = O(||y − x||1+ρ) .

In particular, the function Φ is said to be strongly G-semismooth at x if Φ is 1-order

G-semismooth at x. Furthermore, the function Φ is said to be (ρ-order, strongly) semis-

mooth at x ∈ O if (i) the directional derivative of Φ at x along any direction h ∈ E

exists; and (ii) Φ is (ρ-order, strongly) G-semismooth.

The following result taken from [95, Theorem 3.7] provides a convenient tool for

proving the G-semismoothness of Lipschitz functions.

Lemma 2.1. Let Φ : O ⊆ E → E ′ be a locally Lipschitz continuous function on the open

set O. Let ρ > 0 be a constant. If Z is a set of Lebesgue measure zero in O, then Φ is
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ρ-order G-semismooth (G-semismooth) at x if and only if for any y → x, y ∈ DΦ, and

y /∈ Z,

G(y)−G(x)−G′(y)(y − x) = O(||y − x||1+ρ)
(

= o(||y − x||)
)
. (2.3)

It is easy to show that if Φ : O ⊆ E → E ′ is locally Lipschitz continuous and

directionally differentiable, then the directional derivative is globally Lipschitz continuous

(cf. [27] or [82, Theorem A.2(a)]). Therefore, we have the following lemma.

Lemma 2.2. Suppose that the function Φ : O ⊆ E → E ′ is locally Lipschitz continuous

near x ∈ E with modulus L > 0 and directionally differentiable at x. Then the directional

derivative Φ′(x; ·) : E → E ′ is globally Lipschitz continuous on E with the same modulus

L.

In the next two subsections, we collect some useful preliminary results on symmetric

and non-symmetric matrices, which are important for our subsequent analysis.

2.1 The eigenvalue decomposition of symmetric matrices

Let Sn be the space of all real n× n symmetric matrices and On be the set of all n× n

orthogonal matrices. Let Y ∈ Sn be any given symmetric matrix. We use λ1(Y ) ≥

λ2(Y ) ≥ . . . ≥ λn(Y ) to denote the real eigenvalues of Y (counting multiplicity) being

arranged in non-increasing order. Denote λ(Y ) := (λ1(Y ), λ2(Y ), . . . , λn(Y ))T ∈ <n and

Λ(Y ) := diag(λ(Y )). Let P ∈ On be such that

Y = PΛ(Y )P
T
. (2.4)

We denote the set of such matrices P in the eigenvalue decomposition (2.4) by On(Y ).

Let µ1 > µ2 > . . . > µr be the distinct eigenvalues of Y . Define

αk := {i |λi(Y ) = µk, 1 ≤ i ≤ n}, k = 1, . . . , r . (2.5)

For each i ∈ {1, . . . , n}, we define li(Y ) to be the number of eigenvalues that are equal

to λi(Y ) but are ranked before i (including i) and l̃i(Y ) to be the number of eigenvalues
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that are equal to λi(Y ) but are ranked after i (excluding i), respectively, i.e., we define

li(Y ) and l̃i(Y ) such that

λ1(Y ) ≥ . . . ≥ λi−li(Y )(Y ) > λi−li(Y )+1(Y ) = . . . = λi(Y ) = . . . = λi+l̃i(Y )(Y )

> λi+l̃i(Y )+1(Y ) ≥ . . . ≥ λn(Y ) . (2.6)

In later discussions, when the dependence of li and l̃i, i = 1, . . . , n on Y can be seen

clearly from the context, we often drop Y from these notations.

The inequality in the following lemma is known as Ky Fan’s inequality [34].

Lemma 2.3. Let A and B be two matrices in Sn. Then

〈A,B〉 ≤ λ(A)Tλ(B) , (2.7)

where the equality holds if and only if A and B admit a simultaneous ordered eigenvalue

decomposition, i.e., there exists an orthogonal matrix U ∈ On such that

A = UΛ(A)UT and B = UΛ(B)UT .

By elementary calculation, one can obtain the following simple observation easily.

Proposition 2.4. Let Q ∈ On be an orthogonal matrix such that QTΛ(Y )Q = Λ(Y ).

Then, we have
Qαkαl = 0 , k, l = 1, . . . , r, k 6= l , (2.8)

QαkαkQ
T
αkαk

= QTαkαkQαkαk = I|αk| , k = 1, . . . , r . (2.9)

The following result, which was stated in [96], was essentially proved in the derivation

of Lemma 4.12 in [95].

Proposition 2.5. For any Sn 3 H → 0, let Y := Λ(Y ) + H. Suppose that P ∈ On

satisfies

Y = PΛ(Y )P T .
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Then, we have
Pαkαl = O(‖H‖) , k, l = 1, . . . , r, k 6= l , (2.10)

PαkαkP
T
αkαk

= I|αk| +O(‖H‖2) , k = 1, . . . , r , (2.11)

and there exist Qk ∈ O|αk|, k = 1, . . . , r such that

Pαkαk = Qk +O(‖H‖2), k = 1, . . . , r . (2.12)

Moreover, we have

Λ(Y )αkαk − Λ(Y )αkαk = QTkHαkαkQk +O(‖H‖2), k = 1, . . . , r . (2.13)

The next proposition follows easily from Proposition 2.5. It has also been proved in

[20] based on a so-called “ sin(Θ)” theorem in [91, Theorem 3.4].

Proposition 2.6. For any H ∈ Sn, let P ∈ On be an orthogonal matrix such that

Y +H = Pdiag(λ(Y +H))P T . Then, for any Sn 3 H → 0, we have

dist(P,On(Y )) = O(‖H‖) .

The following proposition about the directional differentiability of the eigenvalue

function λ(·) is well known. For example, see [51, Theorem 7] and [101, Proposition 1.4].

Proposition 2.7. Let Y ∈ Sn have the eigenvalue decomposition (2.4). Then, for any

Sn 3 H → 0, we have

λi(Y +H)− λi(Y )− λli(P
T
αk
HPαk) = O(‖H‖2), i ∈ αk, k = 1, . . . , r , (2.14)

where for each i ∈ {1, . . . , n}, li is defined in (2.6). Hence, for any given direction

H ∈ Sn, the eigenvalue function λi(·) is directionally differentiable at Y with λ′i(Y ;H) =

λli(P
T
αk
HPαk), i ∈ ak, k = 1, . . . , r.

Next, let us consider the (parabolic) second order directional derivative (Defintion

2.1) of the eigenvalue function λ(·). Suppose that H,W ∈ Sn are given. Denote

Y (t) = Y + tH +
1

2
t2W, t > 0 .
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Consider the eigenvalue decomposition of Y (t), i.e.,

Y (t) = U(t)Λ(Y (t))U(t)T ,

where U(t) ∈ On. Then, we have the following result (see [115, Lemma 2.1]), which can

be used to study the second order directional differentiability of the eigenvalue function

λ(·).

Proposition 2.8. For each k ∈ {1, . . . , r}, there exists Qk(t) ∈ O|αk| such that

Uαkαl(t) = t
HαkαlQk(t)

µl − µk
+O(t2) if 1 ≤ l 6= k ≤ n ,

Uαkαk(t)TUαkαk(t) = I|αk| − t
2
∑
l 6=k

Qk(t)
THT

αlαk
HαlαkQk(t)

(µl − µk)2
+O(t3) .

Let k ∈ {1, . . . , r} be fixed. Consider the symmetric matrix P TαkHPαk ∈ S
|αk|. Let

R ∈ O|αk| be such that

P TαkHPαk = RΛ(P TαkHPαk)RT . (2.15)

Denote the distinct eigenvalues of P TαkHPαk by µ̃1 > µ̃2 > . . . > µ̃r̃. Define

α̃j := {i |λi(P TαkHPαk) = µ̃j , 1 ≤ i ≤ |αk|}, j = 1, . . . , r̃ . (2.16)

For each i ∈ αk, let l̃i ∈ {1, . . . , |αk|} and k̃ ∈ {1, . . . , r̃} be such that

l̃i := lli(P
T
αk
HPαk) and l̃i ∈ α̃k̃ , (2.17)

where li is defined by (2.6).

Then Proposition 2.8 leads to the following well known result.

Proposition 2.9 (e.g., [101]). For any given H,W ∈ Sn, denote Y (t) := Y +tH+ 1
2 t

2W ,

t > 0. Then for any i ∈ αk, k = 1, . . . , r, we have for any t ↓ 0,

λi(Y (t)) = λi(Y ) + tλli(P
T
αk
HPαk)

+
t2

2
λl̃i

(
RTα̃k̃

P Tαk

[
W − 2H(X − λiIn)†H

]
PαkRα̃k̃

)
+O(t3) .
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Hence, the eigenvalue function λ(·) is second order directionally differentiable at Y with

λ′′i (Y ;H,W ) = λl̃i

(
RTα̃k̃

P Tαk

[
W − 2H(Y − λiIn)†H

]
PαkRα̃k̃

)
.

Suppose that Y ∈ Sn has the eigenvalue decomposition (2.4). Let f : < → < be a

scalar function. As we mentioned in Section 1.2, the corresponding Löwner’s operator is

defined by [61]

F (Y ) := P diag(f(λ1(Y )), f(λ2(Y )), . . . , f(λn(Y )))P
T

=
n∑
i=1

f(λi(Y ))p̄ip̄
T
i . (2.18)

Let D := diag(d), where d ∈ <n is a given vector. Assume that the scalar function f

is differentiable at each di with the derivatives f ′(di), i = 1, . . . , n. Let f [1](D) ∈ Sn be

the first divided difference matrix whose (i, j)-th entry is given by

(f [1](D))ij =


f(di)− f(dj)

di − dj
if di 6= dj ,

f ′(di) if di = dj ,

i, j = 1, . . . , n.

The following result for the differentiability of Löwner’s operator F defined in (2.18) can

be largely derived from [31] or [49]. Actually, Proposition 4.3 of [19] shows that F is

differentiable at Y if and only if f is differentiable at every eigenvalue of Y . This result is

also implied in [56, Theorem 3.3] for the case that f = ∇h for some differentiable function

h : < → <. Lemma 4 of [20] and Proposition 4.4 of [19] show that F is continuously

differentiable at Y if and only if f is continuously differentiable at every eigenvalue of

Y . For the related directional differentiability of F , one may refer to [89] for a nice

derivation.

Proposition 2.10. Let Y ∈ Sn be given and have the eigenvalue decomposition (2.4).

Then, Löwner’s operator F is (continuously) differentiable at Y if and only if for each

i ∈ {1, . . . , n}, f is (continuously) differentiable at λi(Y ). In this case, the (Fréchet)

derivative of F at Y is given by

F ′(Y )H = P
[
f [1](Λ(Y )) ◦ (P

T
HP )

]
P
T ∀H ∈ Sn . (2.19)
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The following second order differentiability of Löwner’s operator F can be derived as

in [3, Exercise V.3.9].

Proposition 2.11. Let Y ∈ Sn have the eigenvalue decomposition (2.4). If the scalar

function f is twice continuously differentiable at each λi(Y ), i = 1, . . . , n, then Löwner’s

operator F is twice continuously differentiable at Y .

Let Y ∈ Sn be given. For each k ∈ {1, . . . , r}, there exists δk > 0 such that |µ̄l−µ̄k| >

δk, ∀ 1 ≤ l 6= k ≤ r. Define a scalar function gk(·) : < → < by

gk(t) =



− 6

δk
(t− µ̄k −

δk
2

) if t ∈ (µ̄k + δk
3 , µ̄k + δk

2 ],

1 if t ∈ [µ̄k − δk
3 , µ̄k + δk

3 ],

6

δk
(t− µ̄k +

δk
2

) if t ∈ [µ̄k − δk
2 , µ̄k −

δk
3 ),

0 otherwise.

(2.20)

For each k ∈ {1, . . . , r}, define Pk : Sn → Sn by

Pk(Y ) :=
∑
i∈αk

pip
T
i , Y ∈ Sn , (2.21)

where P ∈ On is an orthogonal matrix such that Y = Pdiag(λ(Y ))P T . For each k ∈

{1, . . . , r}, we know that there exists an open neighborhood N of Y such that Pk is

at least twice continuously differentiable on N . By shrinking N if necessary, we may

assume that for any Y ∈ N and k, l ∈ {1, . . . , r},

λi(Y ) 6= λj(Y ) ∀ i ∈ αk, j ∈ αl and k 6= l .

Define Ωk(Y ) ∈ Sn, k = 1, . . . , r by

(Ωk(Y ))ij =



1

λi(Y )− λj(Y )
if i ∈ αk, j ∈ αl, k 6= l, l = 1, . . . , r ,

−1

λi(Y )− λj(Y )
if i ∈ αl, j ∈ αk, k 6= l, l = 1, . . . , r ,

0 otherwise .

(2.22)

Then, the following proposition follows from Proposition 2.10 and Proposition 2.11,

directly.
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Proposition 2.12. For each k = 1, . . . , r, there exists an open neighborhood N of Y

such that Pk is at least twice continuously differentiable on N , and for any H ∈ Sn, the

first order derivative of Pk at Y ∈ N is given by

P ′k(Y )H = P [Ωk(Y ) ◦ (P THP )]P T , (2.23)

where P ∈ On is any orthogonal matrix such that Y = PΛ(Y )P T .

2.2 The singular value decomposition of matrices

From now on, without loss of generality, we always assume that m ≤ n in this thesis.

Let Z ∈ <m×n be any given matrix. We use σ1(Z) ≥ σ2(Z) ≥ . . . ≥ σm(Z) to denote

the singular values of Z (counting multiplicity) being arranged in non-increasing order.

Let σ(Z) := (σ1(Z), σ2(Z), . . . , σm(Z))T ∈ <m and Σ(Z) := diag(σ(Z)). Let Z ∈ <m×n

admit the following singular value decomposition (SVD):

Z = U
[
Σ(Z) 0

]
V
T

= U
[
Σ(Z) 0

] [
V 1 V 2

]T
= UΣ(Z)V

T
1 , (2.24)

where U ∈ Om and V =
[
V 1 V 2

]
∈ On with V 1 ∈ <n×m and V 2 ∈ <n×(n−m). The set

of such matrices (U, V ) in the SVD (2.24) is denoted by Om,n(Z), i.e.,

Om,n(Z) := {(U, V ) ∈ Om ×On |Z = U
[
Σ(Z) 0

]
V
T } .

Define the three index sets a, b and c by

a := {i |σi(Z) > 0, 1 ≤ i ≤ m}, b := {i |σi(Z) = 0, 1 ≤ i ≤ m} and c := {m+1, . . . , n} .

(2.25)

We use ν1 > ν2 > . . . > νr to denote the nonzero distinct singular values of Z. Define

ak := {i |σi(Z) = νk, 1 ≤ i ≤ m}, k = 1, . . . , r . (2.26)

For notational convenience, let ar+1 := b. For each i ∈ {1, . . . ,m}, we also define li(Z)

to be the number of singular values that are equal to σi(Z) but are ranked before i
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(including i) and l̃i(Z) to be the number of singular values that are equal to σi(Z) but

are ranked after i (excluding i), respectively, i.e., we define li(Z) and l̃i(Z) such that

σ1(Z) ≥ . . . ≥ σi−li(Z)(Z) > σi−li(Z)+1(Z) = . . . = σi(Z) = . . . = σi+l̃i(Z)(Z)

> σi+l̃i(Z)+1(Z) ≥ . . . ≥ σm(Z) . (2.27)

In later discussions, when the dependence of li and l̃i, i = 1, . . . ,m, on Z can be seen

clearly from the context, we often drop Z from these notations.

Let B : <m×n → Sm+n be the linear operator defined by

B(Z) :=

 0 Z

ZT 0

 , Z ∈ <m×n. (2.28)

We use I↑p to denote the p by p anti-diagonal matrix whose anti-diagonal entries are all

ones and other entries are zeros. Denote

U↑a = UaI
↑
|a| and V ↑a = VaI

↑
|a| .

Let

P :=
1√
2

 Ua Ub 0 Ub U↑a

Va Vb
√

2V2 −Vb −V ↑a

 ∈ Om+n . (2.29)

It is well-known [42, Theorem 7.3.7] that

P TB(Z)P = Λ(B(Z)) =


Σ(Z) 0 0

0 0 0

0 0 −Σ(Z)↑

 . (2.30)

For notational convenience, we define two linear operators S : <p×p → Sp and T :

<p×p → <p×p by

S(X) :=
1

2
(X +XT ) and T (X) :=

1

2
(X −XT ) ∀X ∈ <p×p . (2.31)

The inequality in the following lemma is known as von Neumann’s trace inequality

[108].
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Lemma 2.13. Let Y and Z be two matrices in <m×n. Then

〈Y, Z〉 ≤ σ(Y )Tσ(Z) , (2.32)

where the equality holds if Y and Z admit a simultaneous ordered singular value decom-

position, i.e., there exist orthogonal matrices U ∈ Om and V ∈ On such that

Y = U [Σ(Y ) 0]V T and Z = U [Σ(Z) 0]V T .

Similar as the symmetric case (Proposition 2.4), we have the following simple obser-

vation.

Proposition 2.14. Let Σ := Σ(Z). Then, the two orthogonal matrices P ∈ Om and

W ∈ On satisfy

P
[
Σ 0

]
=
[
Σ 0

]
W (2.33)

if and only if there exist Q ∈ O|a|, Q′ ∈ O|b| and Q′′ ∈ On−|a| such that

P =

 Q 0

0 Q′

 and W =

 Q 0

0 Q′′

 ,
where Q = diag(Q1, Q2, . . . , Qr) is a block diagonal orthogonal matrix with the k-th

diagonal block given by Qk ∈ O|ak|, k = 1, . . . , r.

Proof. “⇐=” Obvious.

“=⇒” Define Σ+ := Σaa. Let ā := {1, . . . , n} \ a. From (2.33), we obtain that Paa Pab

Pba Pbb

 Σ+ 0

0 0

 =

 Σ+ 0

0 0

 Waa Waā

Wāa Wāā

 ,
which, implies

PaaΣ+ = Σ+Waa, Σ+Waā = 0 and PbaΣ+ = 0 .

Since Σ+ is nonsingular, we know that Waā = 0 and Pba = 0. Then, since W and P are

two orthogonal matrices, we also have

P T

 Σ+ 0

0 0

 =

 Σ+ 0

0 0

W T ,
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which, implies Wāa = 0 and Pab = 0. Therefore, we know that

P =

 Paa 0

0 Pbb

 and W =

 Waa 0

0 Wāā

 ,
where Waa, Paa ∈ O|a|, Pbb ∈ Om−|a| and Wāā ∈ On−|a|. By noting that

Σ+ =



µ1I|a1| 0 · · · 0

0 µ2I|a2| · · · 0

...
...

. . .
...

0 0 · · · µrI|ar|


,

from PaaΣ+ = Σ+Waa, we obtain that

µ1Pa1a1 µ2Pa1a2 · · · µrPa1ar

µ1Pa2a1 µ2Pa2a2 · · · µrPa2ar

...
...

. . .
...

µ1Para1 µ2Para2 · · · µrParar


=



µ1Wa1a1 µ1Wa1a2 · · · µ1Wa1ar

µ2Wa2a1 µ2Wa2a2 · · · µ2Wa2ar

...
...

. . .
...

µrWara1 µrWara2 · · · µrWarar


.

(2.34)

By using the fact that µk > 0, k = 1, . . . , r, we obtain from (2.34) that
Pakak = Wakak , k = 1, . . . , r , (2.35)

Pakal = µ−1
l µkWakal , k, l = 1, . . . , r, k 6= l . (2.36)

Next, we shall show by induction that for each k ∈ {1, . . . , r},

Pakal = Wakal = 0 and Palak = Walak = 0 ∀ l = 1, . . . , r, l 6= k . (2.37)

First for k = 1, since P and W are orthogonal matrices, we have

I|a1| =
r∑
l=1

Pa1alP
T
a1al

=
r∑
l=1

Wa1alW
T
a1al

.

Therefore, by further using (2.35) and (2.36), we obtain that

r∑
l=2

(1− (µ−1
l µ1)2)Wa1alW

T
a1al

= 0 .
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Since for each l ∈ {2, 3, . . . , r}, µ−1
l µ1 > 1 and Wa1alW

T
a1al

is symmetric and positive

semidefinite, we can easily conclude that

Wa1al = 0 ∀ l = 2, 3, . . . , r and W−1
a1a1

= W T
a1a1

.

From the condition that W TW = Im, we also have

I|a1| = W T
a1a1

Wa1a1 +
r∑
l=2

W T
ala1

Wala1 .

Then, W T
a1a1

Wa1a1 = I|a1| implies that

r∑
l=2

W T
ala1

Wala1 = 0 .

Therefore, we have Wala1 = 0, for each l ∈ {2, 3, . . . , r}. By (2.36), we know that (2.37)

holds for k = 1.

Now, suppose that for some p ∈ {1, . . . , r − 1}, (2.37) holds for any k ≤ p. We will

show that (2.37) also holds for k = p+ 1. Since P and W are orthogonal matrices, from

the induction assumption we know that

I|ap+1| =

r∑
l=p+1

Pap+1alP
T
ap+1al

=

r∑
l=p+1

Wap+1alW
T
ap+1al

.

From (2.35) and (2.36), we obtain that

r∑
l=p+2

(1− (µ−1
l µp+1)2)Wap+1alW

T
ap+1al

= 0 .

Since µ−1
l µp+1 > 1 for each l ∈ {p+ 2, . . . , r}, it can then be checked easily that

Wap+1al = 0 ∀ l ∈ {p+ 2, . . . , r} and W−1
ap+1ap+1

= W T
ap+1ap+1

.

So we have

I|ap+1| = W T
ap+1ap+1

Wap+1ap+1 +

r∑
l=p+2

W T
alap+1

Walap+1 ,

which, together with W T
ap+1ap+1

Wap+1ap+1 = I|ap+1|, implies that

r∑
l=p+2

W T
alap+1

Walap+1 = 0 .
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Therefore, we have Walap+1 = 0 for all l ∈ {p + 2, . . . , r}. From (2.36), we know that

(2.37) holds for k = p+ 1.

Since (2.37) holds for all k ∈ {1, . . . , r}, we obtain from (2.35) that Paa = Waa. Let

Q := Paa = Waa, Q
′ := Pbb and Q

′′
:= Wāā. Then,

P =

 Q 0

0 Q′

 and W =

 Q 0

0 Q′′

 ,
where Q = diag(Q1, Q2, . . . , Qr) is a block diagonal orthogonal matrix with the k-th

diagonal block given by Qk = Pakak ∈ O|ak|, k = 1, . . . , r. The proof is completed. �

By using (2.30), one can derive the following proposition on the directional derivative

of the singular value function σ(·) directly from (2.14). For more details, see [57, Section

5.1].

Proposition 2.15. Suppose that Z ∈ <m×n has the singular value decomposition (2.24).

For any <m×n 3 H → 0, we have

σi(Z +H)− σi(Z)− σ′i(Z;H) = O(‖H‖2) , i = 1, . . . ,m , (2.38)

where

σ′i(Z;H) =


λli

(
S(U

T
ak
HV ak)

)
if i ∈ ak, k = 1, . . . , r ,

σli

( [
U
T
b HV b U

T
b HV 2

] )
if i ∈ b ,

(2.39)

where for each i ∈ {1, . . . ,m}, li is defined in (2.27).

The following proposition plays an important role of our study on spectral operators.

It also can be regarded as the nonsymmetric analogue to Proposition 2.5 for symmetric

matrices.

Proposition 2.16. For any <m×n 3 H → 0, let Z :=
[
Σ(Z) 0

]
+ H. Suppose that

U ∈ Om and V = [V1 V2] ∈ On with V1 ∈ <n×m and V2 ∈ <n×(n−m) satisfy

[
Σ(Z) 0

]
+H = U [Σ(Z) 0]V T = U [Σ(Z) 0] [V1 V2]T .
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Then, there exist Q ∈ O|a|, Q′ ∈ O|b| and Q′′ ∈ On−|a| such that

U =

 Q 0

0 Q′

+O(‖H‖) and V =

 Q 0

0 Q′′

+O(‖H‖) , (2.40)

where Q = diag(Q1, Q2, . . . , Qr) is a block diagonal orthogonal matrix with the k-th

diagonal block given by Qk ∈ O|ak|, k = 1, . . . , r. Furthermore, we have

Σ(Z)akak − Σ(Z)akak = QTk S(Hakak)Qk +O(‖H‖2), k = 1, . . . , r (2.41)

and [
Σ(Z)bb − Σ(Z)bb 0

]
= Q′T [Hbb Hbc]Q

′′ +O(‖H‖2) . (2.42)

Proof. Let Ẑ :=
[
Σ(Z) 0

]
. Let H ∈ <m×n be given. We use I↑p to denote the p by p

anti-diagonal matrix whose anti-diagonal entries are all ones and other entries are zeros.

Denote

U↑a = UaI
↑
|a| and V ↑a = VaI

↑
|a| .

Let

P ↑ :=
1√
2

 Ua Ub 0 Ub U↑a

Va Vb
√

2V2 −Vb −V ↑a

 ∈ <(m+n)×(m+n) . (2.43)

Then, from (2.30), we have

B(Z) = B(Ẑ) + B(H) = P ↑Λ(B(Z))(P ↑)T .

By Proposition 2.6, we know that for any H → 0, there exists P ′ ∈ Om+n(B(Ẑ)) such

that

P ↑ − P ′ = O(‖B(H)‖) = O(‖H‖) . (2.44)

On the other hand, suppose that Û ∈ Om and V̂ ∈ On are two arbitrary orthogonal

matrices such that

Ẑ = [Σ(Z) 0] = Û [Σ(Z) 0]V̂ T .
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From Proposition 2.14, we know that

Ûa =

 Ûaa

0

 and V̂a =

 Ûaa

0

 , (2.45)

where Ûaa = diag(Ûa1a1 , Ûa2a2 , . . . , Ûarar) is a block diagonal orthogonal matrix with the

k-th diagonal block given by Ûakak ∈ O|ak|, k = 1, . . . , r. Let

P̂ ↑ :=
1√
2

 Ûa Ûb 0 Ûb Û↑a

V̂a V̂b
√

2 V̂2 −V̂b −V̂ ↑a

 ∈ <(m+n)×(m+n) ,

where

Û↑a = ÛaI
↑
|a| and V̂ ↑a = V̂aI

↑
|a| .

Then, from (2.30), we know that the orthogonal matrix P̂ ↑ ∈ Om+n(B(Ẑ)). By Proposi-

tion 2.4, we know that there exist orthogonal matrices Nk, N
′
k ∈ O|ak|, k = 1, . . . , r and

M ∈ O2|b|+n−m such that

P ′ = P̂ ↑diag(N1, . . . , Nr,M,N ′r, . . . , N
′
1) .

Therefore, from (2.44), we obtain that Ua

Va

 =

 Ûadiag(N1, N2, . . . , Nr)

V̂adiag(N1, N2, . . . , Nr)

+O(‖H‖) . (2.46)

Denote

Q := Ûaadiag(N1, N2, . . . , Nr) .

Then, we know that Q = diag(Q1, Q2, . . . , Qr) is a block diagonal orthogonal matrix

with the k-th diagonal block given by Qk = ÛakakNk ∈ O|ak|, k = 1, . . . , r. Thus, from

(2.45) and (2.46), we obtain that

Ua =

 Q

0

+O(‖H‖) and Va =

 Q

0

+O(‖H‖) .
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Since U and Q are orthogonal matrices, from 0 = UTa Ub = QTUab +O(‖H‖), we obtain

that

Uab = O(‖H‖) .

Therefore, we have

I|b| = UTabUab + UTbbUbb = UTbbUbb +O(‖H‖2) .

By considering the singular value decomposition of Ubb, we know that there exists an

orthogonal matrix Q′ ∈ O|b| such that

Ubb = Q′ +O(‖H‖2) .

Similarly, since V and Q are orthogonal matrices, from 0 = V T
a Vā = QTVaā + O(‖H‖),

we know that

Vaā = O(‖H‖) ,

where ā = {1, . . . , n} \ a. Therefore, we have

I|ā| = V T
aāVaā + V T

āāVāā = V T
āāVāā +O(‖H‖2) .

By considering the singular value decomposition of Vāā, we know that there exists an

orthogonal matrix Q′′ ∈ On−|a| such that

Vāā = Q′′ +O(‖H‖2) .

Thus,

U =

 Q 0

0 Q′

+O(‖H‖) and V =

 Q 0

0 Q′′

+O(‖H‖) . (2.47)

Hence, (2.40) is proved.

From B(Ẑ) + B(H) = P ↑Λ(B(Z))(P ↑)T and P̂ ↑ ∈ Om+n(B(Ẑ)), we obtain that

Λ(B(Ẑ)) + (P̂ ↑)TB(H)P̂ ↑ = (P̂ ↑)TP ↑Λ(B(Z))(P ↑)T P̂ ↑ . (2.48)
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Let P̃ := (P̂ ↑)TP ↑ and B̃(H) := (P̂ ↑)TB(H)P̂ ↑. Then, we can re-write (2.48) as

P̃ T (Λ(B(Ẑ)) + B̃(H))P̃ = Λ(B(Z)) . (2.49)

By comparing both sides of (2.49), we obtain that

P̃ TakΛ(B(Ẑ))P̃ak + (P ↑ak)TB(H)P ↑ak = Λ(B(Z))akak , k = 1, . . . , r . (2.50)

From (2.10) in Proposition 2.5, we know that

P̃ TakΛ(B(Ẑ))P̃ak = P̃ TakakΛ(B(Ẑ))akak P̃akak +O(‖H‖2) .

By noting that for each k ∈ {1, . . . , r}, Λ(B(Ẑ))akak = Σ(Z)akak = µkI|ak| and Λ(B(Z))akak =

Σ(Z)akak , we obtain from (2.50) that

µkP̃
T
akak

P̃akak + (P ↑ak)TB(H)P ↑ak = Σ(Z)akak +O(‖H‖2), k = 1, . . . , r .

By (2.11) in Proposition 2.5, we know that P̃ Takak P̃akak = I|ak| + O(‖H‖2), k = 1, . . . , r.

Therefore, from (2.43), we obtain that for each k ∈ {1, . . . , r},

S(UTakHVak) = Σ(Z)akak − µkI|ak| +O(‖H‖2) = Σ(Z)akak − Σ(Z)akak +O(‖H‖2) .

By (2.47), we know that

UTakHVak = QTkHakakQk +O(‖H‖2) .

Therefore, we have

QTk S(Hakak)Qk = Σ(Z)akak − Σ(Z)akak +O(‖H‖2), k = 1, . . . , r .

Hence (2.41) is proved.

Next, we shall show that (2.42) holds. Since
[
Σ(Z) 0

]
+ H = U [Σ(Z) 0]V T , we

know that

UTb (
[
Σ(Z) 0

]
+H)Vā = [Σ(Z)bb 0] . (2.51)
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Again, from (2.47), we know that

Ub =

 O(‖H‖)

Ubb

 and Vā =

 O(‖H‖)

Vāā

 .
By comparing both sides of (2.51), we obtain that

UTbb
[
Σ(Z)bb 0

]
Vāā + UTbb [Hbb Hbc]Vāā +O(‖H‖2) = [Σ(Z)bb 0] .

Since Σ(Z)bb = 0, we have

UTbb [Hbb Hbc]Vāā =
[
Σ(Z)bb − Σ(Z)bb 0

]
+O(‖H‖2) .

From (2.47), we know that

UTbb [Hbb Hbc]Vāā = Q′T [Hbb Hbc]Q
′′ +O(‖H‖2) .

Therefore,

Q′T [Hbb Hbc]Q
′′ =

[
Σ(Z)bb − Σ(Z)bb 0

]
+O(‖H‖2) .

Hence (2.42) is proved. The proof is completed. �

Let Z ∈ <m×n be given. For each k ∈ {1, . . . , r}, define the mapping Uk : <m×n →

<m×n by

Uk(Z) =
∑
i∈ak

uiv
T
i , Z ∈ <m×n , (2.52)

where U ∈ Om and V ∈ On are such that Z = U [Σ(Z) 0]V T . For each k ∈ {1, . . . , r},

by constructing the similar scalar function gk(·) in (2.20), we can show that there exists

an open neighborhood N of Z such that Uk is continuously differentiable in N (see

[30, pp. 14–15] for details). By shrinking N if necessary, we may assume that for any

k, l ∈ {1, . . . , r},

σi(Z) > 0, σi(Z) 6= σj(Z) ∀ i ∈ ak, j ∈ al and k 6= l,
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For any fixed Z ∈ N , define Γk(Z) and Ξk(Z) ∈ <m×m and Υk(Z) ∈ <m×(n−m), k =

1, . . . , r by

(Γk(Z))ij =



1

σi(Z)− σj(Z)
if i ∈ ak, j ∈ al, k 6= l, l = 1, . . . , r + 1 ,

−1

σi(Z)− σj(Z)
if i ∈ al, j ∈ ak, k 6= l, l = 1, . . . , r + 1 ,

0 otherwise ,

(2.53)

(Ξk(Z))ij =



1

σi(Z) + σj(Z)
if i ∈ ak, j ∈ al, k 6= l, l = 1, . . . , r + 1 ,

1

σi(Z) + σj(Z)
if i ∈ al, j ∈ ak, k 6= l, l = 1, . . . , r + 1 ,

2

σi(Z) + σj(Z)
if i, j ∈ ak,

0 otherwise

(2.54)

and

(Υk(Z))ij =


1

σi(Z)
if i ∈ ak ,

0 otherwise ,

j = 1, . . . , n−m. (2.55)

Therefore, by Proposition 2.12 and (2.28), we are able to show that the following

proposition holds, i.e., there exists an open neighborhood N such that for each k ∈

{1, . . . , r}, Uk is at least twice continuously differentiable in N . See [30, Proposition

2.11] for more details.

Proposition 2.17. Let Uk, k = 1, . . . , r be defined by (2.52). Then, there exists an open

neighborhood N of Z such that for each k ∈ {1, . . . , r}, Uk is at least twice continuously

differentiable in N , and for each k ∈ {1, . . . , r} and any H ∈ <m×n, the first order

derivative of Uk at Z ∈ N is given by

U ′k(Z)H = U [Γk(Z) ◦ S(UTHV1) + Ξk(Z) ◦ T (UTHV1)]V T
1 + U(Υk(Z) ◦ UTHV2)V T

2 ,

(2.56)

where (U, V ) ∈ Om,n(Z) and the two linear operators S and T are defined by (2.31).

Finally, let us consider the (parabolic) second order directional derivative of the

singular value function σ(·). Let Z ∈ <m×n be given. Since σi(Z) = λi(B(Z)), i =
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1, . . . ,m, we know from (2.39) that for any given direction H,W ∈ <m×n, the second

order directional derivatives of the singular value function σi(·), i = 1, . . . ,m are given

by

σ′′i (Z;H,W ) = λ′′i (B(Z);B(H),B(W )), i = 1, . . . ,m . (2.57)

Therefore, from (2.30), we know that the corresponding index sets αk of B(Z), k =

1, . . . , r + 1 are given by

αk = ak, k = 1, . . . , r and αr+1 = {|a|+ 1, . . . , |a|+ 2|b|+ n−m} .

Then, we know from (2.43) that

Pαk =
1√
2

 Uak

Vak

 , k = 1, . . . , r and Pαr+1 =
1√
2

 Ub 0 Ub

Vb
√

2V2 −Vb

 .
For any i ∈ {1, . . . ,m}, consider the following two cases.

Case 1. i ∈ ak, 1 ≤ k ≤ r. Consider the eigenvalue decomposition of the symmetric

matrix P TαkB(H)Pαk = S(UTakHVak) ∈ S |αk|, i.e.,

S(UTakHVak) = RΛ(S(UTakHVak))RT ,

where R ∈ O|αk|. Let {α̃j}r̃j=1 and l̃i, k̃ be defined by (2.16) and (2.17) respectively for

P TαkB(H)Pαk . From (2.57) and by Proposition 2.9, we have

σ′′i (Z;H,W ) = λl̃i

(
RTãk̃

P Tαk

[
B(W )− 2B(H)

(
B(Z)− σi(Z)Im+n

)† B(H)
]
PαkRãk̃

)
.

Case 2. i ∈ b. Since (B(Z))† = B((Z
†
)T ), we have B(W ) − 2B(H)(B(Z))†B(H) =

B(Y ), where Y := W − 2HZ
†
H ∈ <m×n. Next, consider the eigenvalue decomposition

of the symmetric matrix P Tαr+1
B(H)Pαr+1 , i.e., let R ∈ O2|b|+n−m such that

P Tαr+1
B(H)Pαr+1 = RΛ(P Tαr+1

B(H)Pαr+1)RT .
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On the other hand, it is easy to verify that

P Tαr+1
B(H)Pαr+1 =

1

2


AT +A

√
2B AT −A

√
2BT 0

√
2BT

−AT +A
√

2B −AT −A



=
1

2


I I 0

0 0
√

2 I

I −I 0




0 A B

AT 0 0

BT 0 0




I 0 I

IT 0 −IT

0
√

2 IT 0

 ,

where A := UTb HVb ∈ <|b|×|b| and B := UTb HV2 ∈ <|b|×(n−m). Denote K := [A B] ∈

<|b|×(2|b|+n−m). Let E ∈ O|b|, F = [F1 F2] ∈ O|b|+(n−m) with F1 ∈ <|b|+(n−m)×|b| and

F2 ∈ <|b|+(n−m)×(n−m) be such that

K = [A B] = E[Σ(K) 0]F T .

Let ν̃1 > ν̃2 > . . . > ν̃r̃ be the nonzero distinct singular values of K. Denote

ã := {i |σi(K) > 0, 1 ≤ i ≤ |b|} ,

ãj := {i |σi(K) = ν̃j , 1 ≤ i ≤ |b|}, j = 1, . . . , r̃ , (2.58)

b̃ := {i |σi(K) = 0, 1 ≤ i ≤ |b|} . (2.59)

Therefore, by [42, Theorem 7.3.7], we know that

R = J · 1√
2

 E 0 E↑

F1

√
2F2 −F ↑1

 ,

where J =
1√
2


I I 0

0 0
√

2 I

I −I 0

 ∈ O2|b|+n−m, E↑ = EI↑|b| and F ↑1 = F1I
↑
|b|. Therefore,
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for Y = W − 2HZ
†
H ∈ <m×n, we have

RTP Tαr+1
B(Y )Pαr+1R

=
1

2


ET F T1

0
√

2F T2

(E↑)T (−F ↑1 )T

 JTP Tαr+1
B(Y )Pαr+1J

 E 0 E↑

F1

√
2F2 −F ↑1



=
1

2


ET F T1

0
√

2F T2

(E↑)T (−F ↑1 )T




0 A′ B′

A′T 0 0

B′T 0 0


 E 0 E↑

F1

√
2F2 −F ↑1

 , (2.60)

where [A′ B′] := [UTb Y Vb UTb Y V2] ∈ <|b|×(|b|+n−m).

If li ∈ ã, i.e., there exists a positive integer k̃ ∈ {1, . . . , r̃} such that li ∈ ãk̃. Then,

from (2.60), we have

σ′′i (Z;H,W ) = λl̃i(S(ETãk̃
[A′ B′]Fãk̃)) ,

where l̃i is defined by (2.17).

If li ∈ b̃, then α̃r̃+1 = {|ã|+ 1, . . . , |ã|+ 2|b̃|+ n−m} and

Rα̃r̃+1 = J · 1√
2

 Eb̃ 0 Eb̃

Fb̃
√

2F2 −Fb̃

 .
Let K ′ = [A′ B′] ∈ <|b|×(|b|+n−m). Then, from (2.60), we obtain that

RTα̃r̃+1
P Tαr+1

B(Y )Pαr+1Rα̃r̃+1

=
1

2


ET
b̃

F T
b̃

0
√

2F T2

(Eb̃)
T (−Fb̃)

T


 0 K ′

K ′T 0

 Eb̃ 0 Eb̃

Fb̃
√

2F2 −Fb̃



=
1

2


I I 0

0 0
√

2 I

I −I 0




0 A′′ B′′

A′′T 0 0

B′′T 0 0




I 0 I

IT 0 −IT

0
√

2 IT 0

 ,
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where [A′′ B′′] := [ET
b̃
K ′Fb̃ ET

b̃
K ′F2] ∈ <|b̃|×(|b̃|+n−m). Therefore, we know that

σ′′i (Z;H,W ) = σl̃i

(
[ET

b̃
K ′Fb̃ ET

b̃
K ′F2]

)
,

where K ′ = [A′ B′] = [UTb Y Vb UTb Y V2] ∈ <|b|×(|b|+n−m) and l̃i = lli is defined by (2.27).

Finally, we have the following proposition.

Proposition 2.18. Let Z ∈ <m×n have the singular value decomposition (2.24). Suppose

that the direction H,W ∈ <m×n are given. Denote Y = W − 2HZ
†
H ∈ <m×n.

(i) If σi(Z) > 0, then

σ′′i (Z;H,W ) = λl̃i

(
RTãk̃

P Tαk

[
B(W )− 2B(H)

(
B(Z)− σi(Z)Im+n

)† B(H)
]
PαkRãk̃

)
,

where R ∈ O|αk| satisfies

S(UTakHVak) = RΛ(S(UTakHVak))RT ,

and {α̃j}r̃j=1 and l̃i, k̃ be defined by (2.16) and (2.17) respectively for S(UTakHVak).

(ii) If σi(Z) = 0 and σli([U
T
b HVb UTb HV2]) > 0, then

σ′′i (Z;H,W ) = λl̃i(S(ETãk̃
[UTb Y Vb UTb Y V2]Fãk̃)) ,

where E ∈ O|b|, F = [F1 F2] ∈ O|b|+(n−m) satisfy

K = [UTb HVb UTb HV2] = E[Σ(K) 0]F T ,

ãk̃ is defined by (2.58) and l̃i = lli is defined by (2.27).

(iii) If σi(Z) = 0 and σli([U
T
b HVb UTb HV2]) = 0, then

σ′′i (Z;H,W ) = σl̃i

(
[ET

b̃
K ′Fb̃ ET

b̃
K ′F2]

)
,

where the index set b̃ is defined by (2.59), K ′ = [A′ B′] = [UTb Y Vb UTb Y V2] ∈

<|b|×(|b|+n−m) and l̃i = lli is defined by (2.27).



Chapter 3
Spectral operator of matrices

3.1 The well-definiteness

Let X be the Euclidean space defined by (1.1) in Chapter 1, i.e.,

X := Sm1 × . . .× Sms0 ×<ms0+1×ns0+1 × . . .×<ms×ns .

Denote m0 :=
∑s0

k=1mk, m =
∑s

k=s0+1mk, and n :=
∑s

k=s0+1 nk. For any X :=

(X1, . . . ,Xs0 ,Xs0+1, . . . ,Xs) ∈ X , define κ(X) ∈ <m0+m by

κ(X) := (λ(X1), . . . , λ(Xs0), σ(Xs0+1), . . . , σ(Xs)) .

A matrix Q ∈ <p×p is said to be a signed permutation matrix if each element of Q has

exactly one nonzero entry in each row and each column, that entry being ±1. For the

Euclidean space X , define the set Q by

Q := {Q := (Q1, . . . ,Qs) |Qk ∈ Pmk , 1 ≤ k ≤ s0 and Qk ∈ |P|mk , s0 + 1 ≤ k ≤ s} ,

(3.1)

where Pmk , 1 ≤ k ≤ s0 are the sets of the permutation matrices in <mk×mk , and |P|mk ,

s0 + 1 ≤ k ≤ s are the sets of the signed permutation matrices in <mk×mk . For any

57
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Q ∈ Q, the transpose of Q is defined by

QT :=
(
QT

1 , . . . ,Q
T
s

)
∈ Q .

For any x ∈ <m0+m and Q ∈ Q, write x as the form x := (x1, . . . ,xs), where xk ∈ <mk ,

k = 1, . . . , s. Then, for any x ∈ <m0+m and Q ∈ Q, define the product Qx ∈ <m0+m by

Qx := (Q1x1, . . . , . . . ,Qsxs) .

For any given x ∈ <m0+m, define a subset Qx ⊆ Q by

Qx := {Q ∈ Q |x = Qx} . (3.2)

Let g : <m0+m → <m0+m be given. For any x ∈ <m0+m, re-write the function value

g(x) as the following form

g(x) = (g1(x), . . . , gs(x)) ,

where gk(x) ∈ <mk , k = 1, . . . , s. The so-called (mixed) symmetric property of the

function g is defined as follows.

Definition 3.1. A vector valued function g : <m0+m → <m0+m is said to be (mixed)

symmetric with respect to X if

g(x) = QTg(Qx) ∀Q ∈ Q and x ∈ <m0+m , (3.3)

where the set Q is defined by (3.1).

For a given symmetric function g, the corresponding spectral operator G : X → X

is defined as follows.

Definition 3.2. The spectral operator G : X → X with respect to the symmetric function

g is defined by

G(X) := (G1(X), . . . ,Gs(X)) , X ∈ X ,
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where

Gk(X) :=


Pkdiag

(
gk(κ(X))

)
P Tk if 1 ≤ k ≤ s0,

Uk
[
diag

(
gk(κ(X))

)
0
]
V T
k if s0 + 1 ≤ k ≤ s,

and Pk ∈ Omk(Xk), 1 ≤ k ≤ s0, (Uk, Vk) ∈ Omk,nk(Xk), s0 + 1 ≤ k ≤ s, i.e.,

Xk =


PkΛ(Xk)P

T
k if 1 ≤ k ≤ s0,

Uk[Σ(Xk) 0]V T
k if s0 + 1 ≤ k ≤ s.

Theorem 3.1. If g is symmetric, then the corresponding spectral operator G : X → X

is well-defined.

Proof. For any given x = (x1, . . . ,xs) ∈ <m0+m, we know from (3.3) that for each

k ∈ {1, . . . , s}, if (xk)i = (xk)j , 1 ≤ i, j ≤ mk, then

(gk(x))i = (gk(x))j , (3.4)

and for each k ∈ {s0 + 1, . . . , s}, if (xk)i = 0, 1 ≤ i ≤ mk, then

(gk(x))i = 0 . (3.5)

For the well-definiteness of G, it is sufficient to prove that for any given X, the function

value G(X) is independent of the choice of the orthogonal matrices Pk ∈ Omk(Xk),

1 ≤ k ≤ s0 and (Uk, Vk) ∈ Omk,nk(Xk), s0 + 1 ≤ k ≤ s. By using (3.4) and (3.5), we can

prove this directly from Proposition 2.4 and Proposition 2.14. �

Next, consider the Moreau-Yosida regularization ψf,η : X → < and the proximal

point mapping Pf,η : X → X of the unitarily invariant closed proper convex function

f : X → (−∞,∞] with respect to η > 0, which are introduced in Section 1.2. Firstly,

it is well-known [108, 25] (see e.g., [42]) that if the closed proper convex function f :

X → (−∞,∞] is unitarily invariant, then there exists a closed proper convex function

g : <m0+m → (−∞,∞] such that for any X ∈ X ,

f(X) = (g ◦ κ)(X) . (3.6)
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Moreover, it is easy to see that the closed proper convex function g : <m0+m → (−∞,∞]

in (3.6) is invariant under permutations, i.e., for any x ∈ <m0+m,

g(x) = g(Qx) ∀Q ∈ Q , (3.7)

where the set Q is defined by (3.1). Since g is a closed proper convex function in <m0+m,

we know that for the given η > 0, the Moreau-Yosida regularization ψg,η and the proximal

mapping Pg,η of g with respect to η are well-defined. The relationship between ψf,η and

ψg,η is established in the following proposition. Moreover, we show that the proximal

point mapping Pf,η : X → X is the spectral operator with respect to the proximal point

mapping Pg,η : <m0+m → <m0+m.

Proposition 3.2. Let f : X → (−∞,∞] be a closed proper convex function. Let η > 0

be given. If f is unitarily invariant and g : <m0+m → (−∞,∞] is the closed proper

convex function which satisfies the condition (3.6), then the Moreau-Yosida regularization

function ψf,η of f is also unitarily invariant. Moreover, for any X ∈ X , we have

ψf,η(X) = ψg,η(κ(X)) . (3.8)

Denote G(X) := Pf,η(X), X ∈ X and g(x) := Pg,η(x), x ∈ <m0+m. Then, the vector

valued function g satisfies the condition

g(x) = QTg(Qx) ∀Q ∈ Q and x ∈ <m0+m , (3.9)

where Q is defined in (3.1). Furthermore, we have

G(X) = (G1(X), . . . ,Gs(X)) , X ∈ X , (3.10)

where

Gk(X) :=


Pkdiag

(
gk(κ(X))

)
P Tk k = 1, . . . , s0 ,

Uk
[
diag

(
gk(κ(X))

)
0
]
V T
k k = s0 + 1, . . . , s ,

and Pk ∈ Omk(Xk), 1 ≤ k ≤ s0, (Uk, Vk) ∈ Omk,nk(Xk), s0 + 1 ≤ k ≤ s, i.e.,

Xk =


PkΛ(Xk)P

T
k k = 1, . . . , s0 ,

Uk[Σ(Xk) 0]V T
k k = s0 + 1, . . . , s .
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Proof. From the definitions of ψf,η and Pg,η, it is easy to see that ψf,η is unitarily

invariant and (3.9) holds. Next, we will show that both (3.8) and (3.10) hold.

Firstly, assume that X := (X1, . . . ,Xs0 ,Xs0+1, . . . ,Xs) ∈ X satisfies

Xk =


Λ(Xk) k = 1, . . . , s0 ,

[Σ(Xk) 0] k = s0 + 1, . . . , s .

For any Z ∈ X , by considering the corresponding eigenvalue and single value decompo-

sitions of Zk, k = 1, . . . , s, we have

f(Z) +
1

2η
‖Z −X‖2 = (g ◦ κ)(Z) +

1

2η
‖Z −X‖2

= (g ◦ κ)(Z) +
1

2η

s0∑
k=1

‖Zk −Xk‖2 +
1

2η

s∑
k=s0+1

‖Zk −Xk‖2

For each k ∈ {1, . . . , s0}, by Ky Fan’s inequality (Lemma 2.3), we know that

‖Zk −Xk‖ ≥ ‖λ(Zk)− λ(Xk)‖ .

Also, for each k ∈ {s0 + 1, . . . , s}, by von Neumann’s trace inequality (Lemma 2.13), we

have

‖Zk −Xk‖ ≥ ‖σ(Zk)− σ(Xk)‖

Then, we know that

f(Z) +
1

2η
‖Z −X‖2 ≥ g(κ(Z)) +

1

2η
‖κ(Z)− κ(X)‖2 ∀Z ∈ X ,

which means that

ψf,η(X) ≥ ψg,η(κ(X)) .

On the other hand, since g ≡ Pg,η, if choose Z∗ = diag(g(κ(X))) ∈ X , i.e.,

Z∗ = (Z∗1 , . . . ,Z
∗
s )

with

Z∗k =


diag

(
gk(κ(X))

)
k = 1, . . . , s0 ,[

diag
(
gk(κ(X))

)
0
]

k = s0 + 1, . . . , s ,
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then, we have

f(Z∗) +
1

2η
‖Z∗ −X‖2 = ψg,η(κ(X)) .

Therefore, Z∗ is one optimal solution of the following problem

min
Z∈X

{
f(Z) +

1

2η
‖Z −X‖2

}
.

By the uniqueness of Pf,η(X), we know that

Pf,η(X) = Z∗ and ψf,η(X) = ψg,η(κ(X)) . (3.11)

For the general X = (X1, . . . ,Xs0 ,Xs0+1, . . . ,Xs) ∈ X , let Pk ∈ Omk(Xk), 1 ≤ k ≤

s0 and (Uk, Vk) ∈ Omk,nk(Xk), s0 + 1 ≤ k ≤ s, i.e.,

Xk =


PkΛ(Xk)P

T
k k = 1, . . . , s0 ,

Uk[Σ(Xk) 0]V T
k k = s0 + 1, . . . , s .

Define D := (D1, . . . ,Ds) ∈ X by

Dk =


Λ(Xk) k = 1, . . . , s0 ,

[Σ(Xk) 0] k = s0 + 1, . . . , s .

Since ψf,η is unitarily invariant, we know from (3.11) that

ψf,η(X) = ψf,η(D) = ψg,η(κ(X)) .

Also, since f is unitarily invariant, we have for any Z ∈ X ,

f(Z) +
1

2η
‖Z −X‖2 = f(Z̃) +

1

2η
‖Z̃ −D‖2 ,

where Z̃ = (Z̃1 . . . , Z̃s) ∈ X satisfies

Z̃k =


P Tk ZkPk k = 1, . . . , s0 ,

UTk ZkVk k = s0 + 1, . . . , s .

Therefore, from (3.11), we know that

G(X) = Pf,η(X) = P̃f,η(D) = (G1(X), . . . ,Gs(X)) ,
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where

Gk(X) :=


Pkdiag

(
gk(κ(X))

)
P Tk k = 1, . . . , s0 ,

Uk
[
diag

(
gk(κ(X))

)
0
]
V T
k k = s0 + 1, . . . , s .

The proof is completed. �

Next, we study several important properties of general spectral operators, includ-

ing the well-definiteness, the directional differentiability, the differentiability, the locally

Lipschitz continuity, the ρ-order B(ouligand)-differentiability (0 < ρ ≤ 1), the ρ-order

G-semismooth (0 < ρ ≤ 1) and the characterization of Clarke’s generalized Jacobian.

Without loss of generality, from now on, we just consider the case that X = Sm0×<m×n.

For any given X := (Y, Z) ∈ X , let κ := κ(X) = (λ(Y ), σ(Z)). Denote

I1 := {1, . . . ,m0} and I2 := {m0 + 1, . . . ,m0 +m} .

Then, the given symmetric function g : <m0+m → <m0+m can be written as

g(x) = (g1(x), g2(x)), x ∈ <m0+m .

Define the matrices A(κ) ∈ Sm0 , E1(κ), E2(κ) ∈ <m×m and F(κ) ∈ <m×(n−m) (depend-

ing on X ∈ X ) by

(A(κ))ij :=


(g1(κ))i − (g1(κ))j
λi(Y )− λj(Y )

if λi(Y ) 6= λj(Y ) ,

0 otherwise ,

i, j ∈ {1, . . . ,m0} , (3.12)

(E1(κ))ij :=


(g2(κ))i − (g2(κ))j
σi(Z)− σj(Z)

if σi(Z) 6= σj(Z) ,

0 otherwise ,

i, j ∈ {1, . . . ,m} , (3.13)

(E2(κ))ij :=


(g2(κ))i + (g2(κ))j
σi(Z) + σj(Z)

if σi(Z) + σj(Z) 6= 0 ,

0 otherwise ,

i, j ∈ {1, . . . ,m} ,

(3.14)
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and

(F(κ))ij :=


(g2(κ))i
σi(Z)

if σi(Z) 6= 0 ,

0 otherwise.

i ∈ {1, . . . ,m}, j ∈ {1, . . . , n−m} . (3.15)

In later discussions, when the dependence of A(κ), E1(κ), E2(κ) and F(κ) on X can be

seen clearly from the context, we often drop κ from these notations.

Let X := (Y , Z) ∈ X be given. Consider the eigenvalue decomposition (2.4) of

Y ∈ Sm0 and the singular value decomposition (2.24) of Z ∈ <m×n, respectively, i.e.,

Y = PΛ(Y )P
T

and Z = U
[
Σ(Z) 0

]
V
T
, (3.16)

where P ∈ Om0 , U ∈ Om and V =
[
V 1 V 2

]
∈ On with V 1 ∈ <n×m and V 2 ∈ <n×(n−m).

Let

κ := κ(X) = (λ(Y ), σ(Z)) ∈ <m0 ×<m .

We use µ1 > . . . > µr0 to denote the distinct eigenvalues of Y and ν1 > . . . > νr to

denote the nonzero distinct singular values of Z. Let αk, k = 1, . . . , r0 be the index sets

defined by (2.5) for Y , and a, b, c, al, l = 1, . . . , r be the index sets defined by (2.25) and

(2.26) for Z. Denote ā := {1, . . . , n} \ a. For notational convenience, define the index

sets

αr0+l := {j | j = m0 + i, i ∈ al}, l = 1, . . . , r and αr0+r+1 := {j | j = m0 + i, i ∈ b} .

(3.17)

Since g is symmetric, we may define the vector ḡ ∈ <r0+r+1 by

ḡk :=

 (g1(κ))i∈αk if 1 ≤ k ≤ r0 ,

(g2(κ))i∈al if r0 + 1 ≤ k = r0 + l ≤ r0 + r + 1 .

Moreover, let A ∈ Sm0 , E1, E2 ∈ <m×m and F ∈ <m×(n−m) be the matrices defined

by (3.12)-(3.15) with respect to X. Hence, for the given X, define a linear operator

T : X → X by for any Z := (Z1,Z2) = (Z1, [Z21 Z22]) ∈ X ,

T (Z) := (T1(Z1),T2(Z2)) =
(
A ◦Z1,

[
E1 ◦ S(Z21) + E2 ◦ T (Z21) F ◦Z22

])
. (3.18)
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For any X = (Y,Z) ∈ X , define

GS(X) :=
(

(G1)S(Y ), (G2)S(Z)
)

=
( r0∑
k=1

ḡkPk(Y ),
r∑
l=1

ḡr0+lUl(Z)
)
, (3.19)

and

GR(X) := G(X)−GS(X) , (3.20)

where Pk(Y ), k = 1, . . . , r0 and Ul(Z), l = 1, . . . , r are given by (2.21) and (2.52), respec-

tively. Therefore, the following lemma follows from Proposition 2.12 and Proposition

2.17, directly.

Lemma 3.3. Let GS : X → X be defined by (3.19). Then, there exists an open neigh-

borhood N of X =
(
Y , Z

)
in X such that GS is twice continuously differentiable on N ,

and for any X 3H = (A,B)→ 0,

GS(X +H)−GS(X) = G′S(X)H +O(‖H‖2) .

with

G′S(X)H =
( r0∑
k=1

ḡkP ′k(Y )A,

r∑
l=1

ḡr0+l U ′l (Z)B
)

=
(
A ◦ Ã,

[
E1 ◦ S(B̃1) + E2 ◦ T (B̃1) F ◦ (B̃2)

])
=
(
T1(Ã),T2(B̃)

)
= T (H̃) ,

where H̃ = (Ã, B̃), Ã = P
T
AP , B̃ =

[
B̃1 B̃2

]
=
[
U
T
BV 1 U

T
BV 2

]
; and the linear

operator T : X → X is defined in (3.18).

3.2 The directional differentiability

Firstly, if we assume that the symmetric function g is directionally differentiable at κ,

then, from the definition of directional derivative of g at κ and the condition (3.3), it is

easy to see that the directional derivative φ := g′(κ; ·) : <m0+m → <m0+m satisfies

φ(h) = QTφ(Qh) ∀Q ∈ Qκ and ∀h ∈ <m0+m , (3.21)
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where Qκ is the subset defined for κ in (3.2). Note that Q = (Q1, . . . ,Qr0+r,Qr0+r+1) ∈

Qκ if and only if Qk ∈ P|αk|, 1 ≤ k ≤ r0, Qr0+l ∈ P|al|, 1 ≤ l ≤ r and Qr0+r+1 ∈ |P||b|.

For any h ∈ <m0+m, write φ(h) as the form

φ(h) = (φ1(h), . . . , φr0+r(h), φr0+r+1(h)) .

Denote the Euclidean space W by

W := S |α1| × . . .× S |αr0 | × S |a1| × . . .× S |ar| ×<|b|×(n−|a|) .

Let Φ :W →W be the spectral operator with respect to the symmetric function φ, i.e.,

for any W = (W1, . . . ,Wr0+r,Wr0+r+1) ∈ W,

Φ(W ) =
(

Φ1(W ), . . . ,Φr0+r(W ),Φr0+r+1(W )
)

(3.22)

with

Φk(W ) =


Q̃kdiag(φk(κ(W )))Q̃Tk if 1 ≤ k ≤ r0 + r,

M̃diag(φr0+r+1(κ(W )))ÑT
1 if k = r0 + r + 1,

k = 1, . . . , r0 + r + 1 ,

where κ(W ) = (λ(W1), . . . , λ(Wr0+r), σ(Wr0+r+1)) ∈ <m0+m; Q̃k ∈ O|αk|(Wk), 1 ≤

k ≤ r0, Q̃k ∈ O|al|(Wr0+l), r0+1 ≤ k = r0+l ≤ r0+r; and (M̃, Ñ) ∈ O|b|,n−|a|(Wr0+r+1),

Ñ :=
[
Ñ1 Ñ2

]
with Ñ1 ∈ <(n−|a|)×|b|, Ñ2 ∈ <(n−|a|)×(n−m). By Theorem 3.1, we know

from (3.21) that the spectral operator Φ :W →W is well-defined.

Define the first divided directional difference g[1](X; H̃) ∈ X of g at X along the

direction H = (A,B) ∈ X by

g[1](X; H̃) :=
(
g

[1]
1 (X; H̃), g

[1]
2 (X; H̃)

)
,

with

g
[1]
1 (X; H̃) = T1(Ã) +


Φ1(D(H̃)) · · · 0

...
. . .

...

0 · · · Φr0(D(H̃))

 ∈ Sm0 (3.23)
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and

g
[1]
2 (X; H̃) = T2(B̃)+



Φr0+1(D(H̃)) · · · 0 0

...
. . .

...
...

0 · · · Φr0+r(D(H̃)) 0

0 · · · 0 Φr0+r+1(D(H̃))


∈ <m×n ,

(3.24)

where the linear operator T : X → X is defined in (3.18),

D(H̃) :=
(
Ãα1α1 , . . . , Ãαr0αr0 , S(B̃a1a1), . . . , S(B̃arar), B̃bā

)
∈ W (3.25)

and H̃ = (Ã, B̃) =
(
P
T
AP, [U

T
BV 1 U

T
BV 2]

)
. Therefore, we have the following result

on the directional differentiability of spectral operators.

Theorem 3.4. Let X = (Y , Z) ∈ Sm0 × <m×n = X be given. Suppose that Y and

Z have the decompositions (3.16). The spectral operator G is Hadamard directionally

differentiable at X if and only if the symmetric function g is Hadamard directionally

differentiable at κ(X). In particular, G is directionally differentiable at X and the

directional derivative at X along any direction H ∈ X is given by

G′(X;H) =
(
Pg

[1]
1 (X; H̃)P

T
, Ug

[1]
2 (X; H̃)V

T
)
. (3.26)

Proof. “ ⇐= ” Let H = (A,B) ∈ X be any given direction. For any X 3 H ′ → H

and τ > 0, let X := X + τH ′ = (Y + τA′, Z + τB′) = (Y, Z). Consider the eigenvalue

decomposition of Y and the singular value decomposition of Z, i.e.,

Y = PΛ(Y )P T and Z = U [Σ(Z) 0]V T . (3.27)

Denote κ := κ(X). Let GS and GR be defined by (3.19) and (3.20), respectively.

Therefore, by Lemma 3.3, we know that

lim
τ↓0

H′→H

1

τ
(GS(X)−GS(X)) = G′S(X)H =

(
T1(Ã),T2(B̃)

)
= T (H̃) , (3.28)
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where H̃ = (Ã, B̃) with Ã = P
T
AP , B̃ =

[
B̃1 B̃2

]
=
[
U
T
BV 1 U

T
BV 2

]
, and the

linear operator T : X → X is given by (3.18).

On the other hand, for τ and H ′ sufficiently close to 0 and H, we have Pk(Y ) =∑
i∈αk

pip
T
i , k = 1, . . . , r0 and Ul(Z) =

∑
i∈al

uiv
T
i , l = 1, . . . , r. Therefore, we know that

GR(X) = G(X)−GS(X) =
(

(G1)R(X), (G2)R(X)
)

= (G1(X)− (G1)S(Y ),G2(X)− (G2)S(Z))

=

 r0∑
k=1

∑
i∈αk

[(g1(κ))i − (g1(κ))i]pip
T
i ,

r∑
l=1

∑
i∈al

[(g2(κ))i − (g2(κ))i]uiv
T
i +

∑
i∈b

(g2(κ))iuiv
T
i

 . (3.29)

For any τ > 0 and H ′, let

∆k(τ,H
′) =


1

τ

∑
i∈αk

[(g1(κ))i − (g1(κ))i]pip
T
i if 1 ≤ k ≤ r0,

1

τ

∑
i∈al

[(g2(κ))i − (g2(κ))i]uiv
T
i if r0 + 1 ≤ k = r0 + l ≤ r0 + r

and

∆r0+r+1(τ,H ′) =
∑
i∈b

(g2(κ))iuiv
T
i .

We first consider the case that X = (Y , Z) =
(
Λ(Y ), [Σ(Z) 0]

)
. Then, from (2.14),

(2.38) and (2.39), for any τ and H ′ ∈ X sufficiently close to 0 and H, we have

λ(Y ) = λ(Y )+τλ′(Y ;A′)+O(τ2‖H ′‖2) and σ(Z) = σ(Z)+τσ′(Z;B′)+O(τ2‖H ′‖2) ,

(3.30)

where λ′(Y ;A′) = (λ(A′α1α1
), . . . , λ(A′αr0αr0

)) ∈ <m0 and σ′(Z;B′) ∈ <m with

(σ′(Z;B′))al = λ(S(B′alal)), l = 1, . . . , r and (σ′(Z;B′))b = σ([B′bb B′bc]) .

Denote h′ := (λ′(Y ;A′), σ′(Z;B′)) and h := (λ′(Y ;A), σ′(Z;B)). Since the functions

λ(·) and σ(·) are globally Lipschitz continuous, we know that

lim
τ↓0

H′→H

h′ +O(τ‖H ′‖2) = h . (3.31)
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Since g is Hadamard directionally differentiable at κ, we know that

lim
τ↓0

H′→H

1

τ
(g(κ(X))−g(κ)) = lim

τ↓0
H′→H

1

τ
[g(κ+τ(h′+O(τ‖H ′‖2)))−g(κ)] = g′(κ;h) = φ(h) ,

where φ ≡ g′(κ; ·) : <m0+m → <m0+m satisfies (3.21). Since pip
T
i , i = 1, . . . ,m0 and

uiv
T
i , i = 1, . . . ,m are uniformly bounded, we know that for τ and H ′ sufficiently close

to 0 and H,

∆k(τ,H
′) =


Pαkdiag(φk(h))P Tαk + o(1) if 1 ≤ k ≤ r0,

Ualdiag(φk(h))V T
al

+ o(1) if r0 + 1 ≤ k = r0 + l ≤ r0 + r

and

∆r0+r+1(τ,H ′) = Ubdiag(φr0+r+1(h))V T
b + o(1) .

By (2.10) and (2.12) in Proposition 2.5, we know that there existQk ∈ O|αk|, k = 1, . . . , r0

and Qr0+l ∈ O|al|, l = 1, . . . , r (depending on τ and H ′) such that for each i ∈ αk,

Pαk =


O(τ‖H ′‖)

Qk +O(τ‖H ′‖)

O(τ‖H ′‖)

 , k = 1, . . . , r0 ,

Ual =


O(τ‖H ′‖)

Qr0+l +O(τ‖H ′‖)

O(τ‖H ′‖)

 and Val =


O(τ‖H ′‖)

Qr0+l +O(τ‖H ′‖)

O(τ‖H ′‖)

 , l = 1, . . . , r .

Therefore, we have

∆k(τ,H
′) =


O(τ2‖H ′‖2) O(τ‖H ′‖) O(τ2‖H ′‖2)

O(τ‖H ′‖) Qkdiag(φk(h))QTk +O(τ‖H ′‖) O(τ‖H ′‖)

O(τ2‖H ′‖2) O(τ‖H ′‖) O(τ2‖H ′‖2)

+ o(1)

=


0 0 0

0 Qkdiag(φk(h))QTk 0

0 0 0

+O(τ‖H ′‖) + o(1), 1 ≤ k ≤ r0 + r .(3.32)



3.2 The directional differentiability 70

Meanwhile, by (2.40), we know that there exist M ∈ O|b| and N = [N1 N2] ∈ On−|a|

with N1 ∈ <(n−|a|)×|b| and N2 ∈ <(n−|a|)×(n−m) such that

Ub =

 O(τ‖H ′‖)

M +O(τ‖H ′‖)

 and [Vb Vc] =

 O(τ‖H ′‖)

N +O(τ‖H ′‖)

 .
Therefore, we obtain that

∆r0+r+1(τ,H ′) =

 0 0

0 Mdiag(φr0+r+1(h))NT
1

+O(τ‖H ′‖) + o(1) . (3.33)

On the other hand, from (2.13), we know that if 1 ≤ k ≤ r0,

Aαkαk + o(1) = A′αkαk =
1

τ
Qk(Λ(Y )αkαk − µkI|αk|)Q

T
k +O(τ‖H ′‖2) , (3.34)

if r0 + 1 ≤ k = r0 + l ≤ r0 + r,

S(Balal) + o(1) = S(B′alal) =
1

τ
Qr0+l(Σ(Z)alal − νlI|al|)Q

T
r0+l +O(τ‖H ′‖2) (3.35)

and

[Bbb Bbc] + o(1) = [B′bb B′bc] =
1

τ
M(Σ(Z)bb − νr+1I|b|)N

T
1 +O(τ‖H ′‖2) . (3.36)

Since Qk, k = 1, . . . , r0 + r, M and N are uniformly bounded, by taking a subsequence

if necessary, we assume that when τ ↓ 0 and H ′ → H, Qk, k = 1, . . . , r0 + r, M and

N converge to the orthogonal matrices Q̃k, k = 1, . . . , r0 + r, M̃ and Ñ , respectively.

Therefore, by taking limits in (3.34), (3.35) and (3.36), we obtain from (3.30) and (3.31)

that

Aαkαk = Q̃kΛ(Aαkαk)Q̃Tk if 1 ≤ k ≤ r0 ,

S(Balal) = Q̃kΛ(S(Balal))Q̃
T
k if r0 + 1 ≤ k = r0 + l ≤ r0 + r

and

[Bbb Bbc] = M̃ [Σ([Bbb Bbc]) 0] ÑT = M̃Σ([Bbb Bbc])Ñ
T
1
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Hence, by using the notation (3.22), we know from (3.32) and (3.33) that

Υ1(H) = lim
τ↓0

H′→H

r0∑
k=1

∆k(τ,H
′) =


Φ1(D(H)) · · · 0

...
. . .

...

0 · · · Φr0(D(H))

 ∈ Sm0

and

Υ2(H) = lim
τ↓0

H′→H

r0+r+1∑
k=r0+1

∆k(τ,H
′)

=



Φr0+1(D(H)) · · · 0 0

...
. . .

...
...

0 · · · Φr0+r(D(H)) 0

0 · · · 0 Φr0+r+1(D(H))


∈ <m×n ,

where D(H) =
(
Aα1α1 , . . . , Aαr0αr0 , S(Ba1a1), . . . , S(Barar), Bbā

)
. Therefore, by (3.29),

we obtain that

lim
τ↓0

H′→H

1

τ
GR(X) = lim

τ↓0
H′→H

(

r0∑
k=1

∆k(τ,H
′),

r0+r+1∑
k=r0+1

∆k(τ,H
′))

= (Υ1(H),Υ2(H)) . (3.37)

Next, consider the general case for X = (Y , Z) ∈ X . For any X 3 H ′ → H and τ > 0,

re-write (3.27) as

Λ(Y ) + P
T
A′P = P

T
PΛ(Y )P TP and [Σ(Z) 0] + U

T
B′V = U

T
U [Σ(Z) 0]V TV .

Let P̃ = P
T
P , Ũ := U

T
U and Ṽ := V

T
V . Let X̃ := (Ỹ , Z̃) ∈ X with

Ỹ := Λ(Y ) + P
T
A′P and Z̃ := [Σ(Z) 0] + U

T
B′V .

Then, we have

GR(X) =
(
P (G1)R(X̃)P

T
, U(G2)R(X̃)V

T
)
.
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Therefore, by (3.37), we know that

lim
τ↓0

H′→H

1

τ
GR(X) =

(
PΥ1(H̃)P

T
, UΥ2(H̃)V

T
)
. (3.38)

Thus, by combining (3.28) and (3.38) and noting that G(X) = GS(X), we obtain that

for any given H ∈ X ,

lim
τ↓0

H′→H

1

τ
(G(X)−G(X)) = lim

τ↓0
H′→H

1

τ
(GS(X)−GS(X) +GR(X))

=
(
P [g

[1]
1 (X; H̃)]P

T
, U [g

[1]
2 (X; H̃)]V

T
)
,

where g
[1]
1 (X; H̃) and g

[1]
2 (X; H̃) are given by (3.23) and (3.24). This implies that G is

Hadamard directionally differentiable at X and (3.26) holds.

“ =⇒ ” Suppose that G is Hadamard directionally differentiable at X = (Y , Z). Let

P ∈ Om0(Y ) and (U, V ) ∈ Om×n(Z) be fixed. For any given direction h := (h1, h2) ∈

<m0 × <m, suppose that <m0 × <m 3 h′ = (h′1, h
′
2) → h. Let H ′ = (A′, B′) ∈ X

with A′ := Pdiag(h′1)P
T

and B′ := U [diag(h′2) 0]V
T

. Denote A := Pdiag(h1)P
T

and B := U [diag(h2) 0]V
T

. Then, we have H ′ → H := (A,B) as h′ → h. By the

assumption, we know that

G′(X;H) = lim
τ↓0

H′→H

1

τ
(G(X + τH ′)−G(X))

= lim
τ↓0

h′→h

1

τ

(
Pdiag(g1(κ+ τh′)− g1(κ))P

T
, U [diag(g2(κ+ τh′)− g2(κ)) 0]V

T
)
.

This implies that g(·) = (g1(·), g2(·)) : <m0×<m → <m0×<m is Hadamard directionally

differentiable at κ. Hence, the proof is completed. �

Remark 3.1. Note that for general spectral operator G, we can not obtain the directional

differentiability at X if we only assume that g is directionally differentiable at κ(X). In

fact, for the case that X ≡ Sm0, a counterexample can be found in [54]. However, since

X is a finite dimensional Euclidean space, it is well-known that for locally Lipschitz

continuous functions, the directional differentiability in sense of Hadamard and Gâteaux
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are equivalent (see e.g., [67, Theorem 1.13], [27, Lemma 3.2], [36, p.259]). Therefore, if

the spectral operator G is locally Lipschitz continuous near X (e.g., the proximal point

mapping Pf,η), then G is directionally differentiable at X if and only if the corresponding

symmetric function g is directionally differentiable at κ(X).

3.3 The Fréchet differentiability

For any X = (Y,Z) ∈ X , let

κ = (λ(Y ), σ(Z)) ∈ <m0+m . (3.39)

Suppose that the symmetric mapping g with respect to X is F-differentiable at κ. Then,

by using the symmetric property of g, we obtain that the Jacobian matrix g′(κ) is

symmetric and

g′(κ)h = QTg′(κ)Qh ∀Q ∈ Qκ and ∀h ∈ <m0+m . (3.40)

Moreover, by using the block structure of Q ∈ Qκ, we can derive the following lemma

easily.

Lemma 3.5. For any X ∈ X , let κ be given by (3.39). Suppose that the function g

is symmetric with respect to X and F-differentiable at κ. Then, the Jacobian matrix

g′(κ) ∈ Sm0+m satisfies
(g′(κ))ii = (g′(κ))i′i′ if κi = κi′,

(g′(κ))ij = (g′(κ))i′j′ if κi = κi′, κj = κj′, i 6= j and i′ 6= j′,

(g′(κ))ij = (g′(κ))ji = 0 if κi = 0, i ∈ {m0 + 1, . . . ,m0 +m} and i 6= j.

Define the matrices AD(κ) ∈ Sm0 , ED1 (κ), ED2 (κ) ∈ <m×m and FD(κ) ∈ <m×(n−m)

(depending on X ∈ X ) by

(AD(κ))ij :=


(g1(κ))i − (g1(κ))j
λi(Y )− λj(Y )

if λi(Y ) 6= λj(Y ) ,

(g′(κ))ii − (g′(κ))ij otherwise ,

i, j ∈ {1, . . . ,m0} , (3.41)
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(ED1 (κ))ij :=


(g2(κ))i − (g2(κ))j
σi(Z)− σj(Z)

if σi(Z) 6= σj(Z) ,

(g′(κ))ii − (g′(κ))ij otherwise ,

i, j ∈ {1, . . . ,m} , (3.42)

(ED2 (κ))ij :=


(g2(κ))i + (g2(κ))j
σi(Z) + σj(Z)

if σi(Z) + σj(Z) 6= 0 ,

(g′(κ))ii − (g′(κ))ij otherwise ,

i, j ∈ {1, . . . ,m} ,

(3.43)

and

(FD(κ))ij :=


(g2(κ))i
σi(Z)

if σi(Z) 6= 0 ,

(g′(κ))ii − (g′(κ))ij otherwise.

i ∈ {1, . . . ,m}, j ∈ {1, . . . , n−m} .

(3.44)

In later discussions, when the dependence of AD, ED1 , ED2 and FD on X can be seen

clearly from the context, we often drop κ from these notations.

Let X ∈ X be given. By Lemma 3.5, we know that the Jacobian matrix g′(κ) ∈

Sm0+m can be written as

g′(κ) =



c11E|α1||α1| · · · c1(r0+r)E|α1||ar| 0

...
. . .

...
...

c(r0+r)1E|ar||α1| · · · c(r0+r)(r0+r)E|ar||ar| 0

0 · · · 0 0



+



η1I|α1| · · · 0 0

...
. . .

...
...

0 · · · ηr0+rI|ar| 0

0 · · · 0 ηr0+r+1I|b|


, (3.45)

where c̄ ∈ Sr0+r is a real symmetric matrix and η̄ ∈ <r0+r+1 is a real vector with the

elements

η̄k =

 (g′(κ))ii if |αk| = 1, i ∈ αk,

(g′(κ))ii − (g′(κ))ij if |αk| > 1, for any i 6= j ∈ αk ,
k = 1, . . . , r0 + r + 1 .

(3.46)
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Moreover, let AD ∈ Sm0 , ED1 , ED2 ∈ <m×m and FD ∈ <m×(n−m) be the matrices defined

in (3.41)-(3.44) with respect to X. Therefore, for the given X, define a linear operator

L(κ, ·) := (L1(κ, ·),L2(κ, ·)) : X → X by

L1(κ,Z) :=


θ1(κ,Z)I|α1| · · · 0

...
. . .

...

0 · · · θr0(κ,Z)I|αr0 |

 ∈ Sm0 (3.47a)

and

L2(κ,Z) :=



θr0+1(κ,Z)I|a1| · · · 0 0 0

...
. . .

...
...

...

0 · · · θr0+r(κ,Z)I|ar| 0 0

0 · · · 0 0 0


∈ <m×n, Z = (A,B) ∈ X ,

(3.47b)

where θk(κ, ·) : X → <, k = 1, . . . , r0 + r are given by

θk(κ,Z) :=

r0∑
k′=1

c̄kk′tr(Aαk′αk′ ) +

r0+r∑
k′=r0+l=r0+1

c̄kk′tr(S(Balal)) . (3.48)

For the given X, define a linear operator T (κ, ·) : <m×n → <m×n by

T (κ, B) :=
[
ED1 ◦ S(B1) + ED2 ◦ T (B1) FD ◦B2

]
∈ <m×n, B = [B1 B2] ∈ <m×n .

(3.49)

Now, we are ready to state the result on the F-differentiability of spectral operators

in the following theorem.

Theorem 3.6. Let X = (Y , Z) ∈ Sm0 × <m×n = X be given. Suppose that Y and Z

have the decompositions (3.16). The spectral operator G is F-differentiable at X if and

only if the symmetric mapping g is F-differentiable at κ. In that case, the derivative of

G at X is given by for any H = (A,B) ∈ X ,

G′(X)H =
(
P [L1(κ, H̃) +AD ◦ Ã]P

T
, U [L2(κ, H̃) + T (κ, B̃)]V

T
)
, (3.50)
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where H̃ = (Ã, B̃) = (P
T
AP,U

T
BV ), and L(κ, ·) and T (κ, ·) are defined in (3.47) and

(3.48), respectively.

Proof. “⇐= ” For any H = (A,B) ∈ X , let X = X +H = (Y + A,Z + B) = (Y, Z).

Let P ∈ Om0 , U ∈ Om and V ∈ On be such that

Y = PΛ(Y )P T and Z = U [Σ(Z) 0]V T . (3.51)

Denote κ = κ(X). Let GS and GR be defined by (3.19) and (3.20), respectively.

Therefore, by Lemma 3.3, we know that for any X 3H → 0,

GS(X)−GS(X) = G′S(X)H +O(‖H‖2) =
(
T1(Ã),T2(B̃)

)
+O(‖H‖2) , (3.52)

where H̃ = (Ã, B̃) with Ã = P
T
AP , B̃ =

[
B̃1 B̃2

]
=
[
U
T
BV 1 U

T
BV 2

]
, and the

linear operator T (·) = (T1(·),T2(·)) : X → X is given by (3.18).

On the other hand, for H ∈ X sufficiently close to zero, we have Pk(Y ) =
∑
i∈αk

pip
T
i ,

k = 1, . . . , r0 and Ul(Z) =
∑
i∈al

uiv
T
i , l = 1, . . . , r. Therefore, we know that

GR(X) = G(X)−GS(X)

= ((G1)R(X), (G2)R(X)) = (G1(X)− (G1)S(Y ),G2(X)− (G2)S(Z))

=

 r0∑
k=1

∆k(H),

r0+r+1∑
k=r0+1

∆k(H)

 , (3.53)

where

∆k(H) =


∑
i∈αk

[(g1(κ))i − (g1(κ))i]pip
T
i if 1 ≤ k ≤ r0,

∑
i∈al

[(g2(κ))i − (g2(κ))i]uiv
T
i if r0 + 1 ≤ k = r0 + l ≤ r0 + r

and

∆r0+r+1(H) =
∑
i∈b

(g2(κ))iuiv
T
i .

Firstly, we consider the case that X = (Y , Z) =
(
Λ(Y ), [Σ(Z) 0]

)
. Then, from

(2.14), (2.38) and (2.39), for any H ∈ X sufficiently close to 0, we know that

κ = κ(X) = κ+ h+O(‖H‖2) , (3.54)
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where h := (λ′(Y ;A), σ′(Z;B)) ∈ <m0×<m with (λ′(Y ;A))αk = λ(Aαkαk), k = 1, . . . , r0,

(σ′(Z;B))al = λ(S(Balal)), l = 1, . . . , r and (σ′(Z;B))b = σ([Bbb Bbc]) .

Since g is F-differentiable at κ, we know that for any H ∈ X sufficiently close to 0,

g(κ)− g(κ) = g(κ+ h+O(‖H‖2))− g(κ)

= g′(κ)(h+O(‖H‖2)) + o(‖h‖)

= g′(κ)h+ o(‖H‖) .

Since pip
T
i , i = 1, . . . ,m0 and uiv

T
i , i = 1, . . . ,m are uniformly bounded, we know that

for H sufficiently close to 0,

∆k(H) =


Pαkdiag((g′(κ)h)αk)P Tαk + o(‖H‖) if 1 ≤ k ≤ r0,

Ualdiag((g′(κ)h)αk)V T
al

+ o(‖H‖) if r0 + 1 ≤ k = r0 + l ≤ r0 + r

and

∆r0+r+1(H) = Ubdiag((g′(κ)h)αr0+r+1)V T
b + o(‖H‖) .

By (2.10) and (2.12) in Proposition 2.5, we know that there existQk ∈ O|αk|, k = 1, . . . , r0

and Qr0+l ∈ O|al|, l = 1, . . . , r (depending on H) such that for each i ∈ αk,

Pαk =


O(‖H‖)

Qk +O(‖H‖)

O(‖H‖)

 , k = 1, . . . , r0 ,

Ual =


O(‖H‖)

Qr0+l +O(‖H‖)

O(‖H‖)

 and Val =


O(‖H‖)

Qr0+l +O(‖H‖)

O(‖H‖)

 , l = 1, . . . , r .

Therefore, since ‖g′(κ)h‖ = O(‖H‖), we obtain that

∆k(H) =


0 0 0

0 Qkdiag((g′(κ)h)αk)QTk 0

0 0 0

+ o(‖H‖), 1 ≤ k ≤ r0 + r . (3.55)
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Meanwhile, by (2.40), we know that there exist M ∈ O|b| and N = [N1 N2] ∈ On−|a|

(depending on H) with N1 ∈ <(n−|a|)×|b| and N2 ∈ <(n−|a|)×(n−m) such that

Ub =

 O(‖H‖)

M +O(‖H‖)

 and [Vb Vc] =

 O(‖H‖)

N +O(‖H‖)

 .
Therefore, we obtain that

∆r0+r+1(H) =

 0 0

0 Mdiag((g′(κ)h)αr0+r+1)NT
1

+ o(‖H‖) . (3.56)

By (3.45), we know that

(
g′(κ)h

)
αk

=

 θk(κ,H)e|αk| + η̄kλ(Aαkαk) if 1 ≤ k ≤ r0 + r,

η̄r0+r+1σ([Bbb Bbc]) if k = r0 + r + 1 ,

where θk(κ, ·) : X → <, k = 1, . . . , r0 + r are given by (3.48). On the other hand, from

(2.13), (2.41) and (2.42), we know that for H sufficiently close to 0,

Aαkαk = Qk(Λ(Y )αkαk − µkI|αk|)Q
T
k +O(‖H‖2)

= QkΛ(Aαkαk)QTk +O(‖H‖2), 1 ≤ k ≤ r0 ,

S(Balal) = Qk(Σ(Z)alal − νlI|al|)Q
T
k +O(‖H‖2)

= QkΛ(S(Balal))Q
T
k +O(‖H‖2), r0 + 1 ≤ k = r0 + l ≤ r0 + r ,

[Bbb Bbc] = M(Σ(Z)bb − νr+1I|b|)N
T
1 +O(‖H‖2)

= MΣ([Bbb Bbc])N1 +O(‖H‖2) .

Therefore, from (3.55) and (3.56), we obtain that

∆k(H) =


0 0 0

0 θk(κ,H)I|αk| + η̄kAαkαk 0

0 0 0

+ o(‖H‖), 1 ≤ k ≤ r0 ,

∆k(H) =


0 0 0

0 θk(κ,H)I|al| + η̄kS(Balal) 0

0 0 0

+o(‖H‖), r0 +1 ≤ k = r0 +l ≤ r0 +r ,
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∆r0+r+1(H) =

 0 0 0

0 η̄r0+r+1Bbb η̄r0+r+1Bbc

+ o(‖H‖) .

Thus, from (3.85), we have for any H sufficiently close to 0,

GR(X)

=

L1(κ,H) +


η̄1Aα1α1 0 0

0
. . . 0

0 0 η̄r0Aαr0αr0

 ,L2(κ,H)

+



η̄r0+1S(Ba1a1) 0 0 0 0

0
. . . 0 0 0

0 0 η̄r0+rS(Barar) 0 0

0 0 0 η̄r0+r+1Bbb η̄r0+r+1Bbc




+ o(‖H‖) ,

(3.57)

where the linear operator L(κ, ·) := (L1(κ, ·),L2(κ, ·)) : X → X is given by (3.47).

Next, consider the general X = (Y , Z) ∈ X . For any H ∈ X , re-write (3.51) as

Λ(Y ) + P
T
A′P = P

T
PΛ(Y )P TP and [Σ(Z) 0] + U

T
B′V = U

T
U [Σ(Z) 0]V TV .

Let P̃ = P
T
P , Ũ := U

T
U and Ṽ := V

T
V . Let X̃ := (Ỹ , Z̃) ∈ X with

Ỹ := Λ(Y ) + P
T
A′P and Z̃ := [Σ(Z) 0] + U

T
B′V .
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Then, since P , U and V are bounded, we know from (3.92) that

GR(X)

=
(
P (G1)R(X̃)P

T
, U(G2)R(X̃)V

T
)

+ o(‖H‖) .

=

L1(κ, H̃) +


η1Ãα1α1 0 0

0
. . . 0

0 0 ηr0Ãαr0αr0

 ,L2(κ, H̃)

+



ηr0+1S(B̃a1a1) 0 0 0 0

0
. . . 0 0 0

0 0 ηr0+rS(B̃arar) 0 0

0 0 0 ηr0+r+1B̃bb ηr0+r+1B̃bc




+ o(‖H‖) ,

(3.58)

Thus, by combining (3.52) and (3.58) and noting that G(X) = GS(X), we obtain that

for any H ∈ X sufficiently close to 0,

G(X)−G(X) =
(
P [L1(κ, H̃) +AD ◦ Ã]P

T
, U [L2(κ, H̃) + T (κ, B̃)]V

T
)

+ o(‖H‖) .

Therefore, we know that G is F-differentiable at X and (3.50) holds.

“ =⇒ ” Let P ∈ Om0(Y ) and (U, V ) ∈ Om×n(Z) be fixed. For any h := (h1, h2) ∈

<m0 × <m, let H = (A,B) ∈ X , where A := Pdiag(h1)P
T

and B := U [diag(h2) 0]V
T

.

Then, by the assumption, we know that for h sufficiently close to 0,(
Pdiag(g1(κ+ h)− g1(κ))P

T
, Udiag(g2(κ+ h)− g2(κ))V

T
1

)
= G(X +H)−G(X) = G′(X)H + o(‖H‖) .

Hence, for h sufficiently close to 0,

g(κ+ h)− g(κ) = (g1(κ+ h)− g1(κ), g2(κ+ h)− g2(κ))

= g′(κ)h+ o(‖h‖) .

The proof is competed. �
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Remark 3.2. It is easy to see that the formula (3.50) is independent of the choice of

the orthogonal matrices P ∈ Om0(Y ) and (U, V ) ∈ Om,n(Z) in (3.16).

Finally, let us consider the continuous differentiability of spectral operators as follows.

Theorem 3.7. Let X = (Y , Z) ∈ Sm0 × <m×n = X be given. Suppose that Y and Z

have the decompositions (3.16). The spectral operator G is continuously differentiable at

X if and only if the symmetric mapping g is continuously differentiable at κ(X).

Proof. “⇐= ” By the assumption, we know from Theroem 3.6 that there exists an open

neighborhood N of X such that G is differentiable on N , and for any X := (Y,Z) ∈ N ,

the derivative of G at X is given by

G′(X)H =
(
P [L1(κ, Ĥ) +AD ◦ Â]P T , U [L2(κ, Ĥ) + T (κ, B̂)]V T

)
, H = (A,B) ∈ X ,

(3.59)

where P ∈ Om0 , U ∈ Om and V ∈ On satisfy

Y = PΛ(Y )P T and Z = U [Σ(Z) 0]V T ,

κ = (λ(Y ), σ(Z)) ∈ <m0 × <m, Ĥ = (Â, B̂) = (P TAP,UTBV ), and L(κ, ·) and T (κ, ·)

are defined in (3.47) and (3.48) with respect to X. We shall prove that

lim
X→X

G′(X)H → G′(X)H ∀H ∈ X . (3.60)

Firstly, we will show that (3.60) holds for the special case that X = (Λ(Y ), [Σ(Z) 0])

andX = (Λ(Y ), [Σ(Z) 0]). In this case, we may assume that P = P ≡ Im0 , U = U ≡ Im

and V = V ≡ In. Let {E(ij)} ∪ {F (ij)} be the standard basis of X , i.e.,

E(ij) = (E(ij),0), 1 ≤ i ≤ j ≤ m0 and F (ij) = (0, F (ij)), 1 ≤ i ≤ m, 1 ≤ j ≤ n ,

(3.61)

where for each 1 ≤ i ≤ j ≤ m0, E(ij) ∈ Sm0 is a matrix whose entries are zeros, except

the (i, j)-th and (j, i)-th entries are ones; For each 1 ≤ i ≤ m, 1 ≤ j ≤ n, F (ij) ∈ <m×n

is a matrix whose entries are zeros, except the (i, j)-th entry is one. Therefore, we only
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need to show (3.60) holds for all E(ij) and F (ij). Since λ(·) and σ(·) are globally Lipchitz

continuous, we know that for X sufficiently close to X,
λi(Y ) 6= λj(Y ) if i ∈ αk, j ∈ αk′ and 1 ≤ k 6= k′ ≤ r0,

σi(Z) 6= σj(Z) if i ∈ al, j ∈ al′ and 1 ≤ l 6= l′ ≤ r + 1.

Without loss of generality, we only prove (3.60) holds for any F (ij), 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Write F (ij) as the form

F (ij) =
[
F

(ij)
1 F

(ij)
2

]
with F

(ij)
1 ∈ <m×m and F

(ij)
2 ∈ <m×(n−m). Next, we consider the following several cases.

Case 1: 1 ≤ i = j ≤ m. In this case, since g′ is continuous at κ, we know that

lim
X→X

G′(X)F (ij) = lim
X→X

(
0,
[
diag(g′(κ)ei) 0

])
=
(
0,
[
diag(g′(κ)ei) 0

])
= G′(X)F (ij) ,

where for each 1 ≤ i ≤ m, ei is a vector whose entries are zeros, except the i-th entry is

one.

Case 2: 1 ≤ i 6= j ≤ m, σi(Z) = σj(Z) and σi(Z) = σj(Z) > 0. Therefore, we know

that there exists l ∈ {1, . . . , r} such that i, j ∈ al. Since g′ is continuous at κ, we know

from (3.46) that

lim
X→X

G′(X)F (ij)

= lim
X→X

(
0,

[(
(g′(κ))ii − (g′(κ))ij

)
S(F

(ij)
1 ) +

gi(κ) + gj(κ)

σi(Z) + σj(Z)
T (F

(ij)
1 ) 0

])
=

(
0,

[(
(g′(κ))ii − (g′(κ))ij

)
S(F

(ij)
1 ) +

gi(κ) + gj(κ)

σi(Z) + σj(Z)
T (F

(ij)
1 ) 0

])
= G′(X)F (ij) .

Case 3: 1 ≤ i 6= j ≤ m and σi(Z) 6= σj(Z) but σi(Z) = σj(Z) > 0. In this case, we

know that

G′(X)F (ij) =

(
0,

[
gi(κ)− gj(κ)

σi(Z)− σj(Z)
S(F

(ij)
1 ) +

gi(κ) + gj(κ)

σi(Z) + σj(Z)
T (F

(ij)
1 ) 0

])
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and

G′(X)F (ij) =

(
0,

[(
(g′(κ))ii − (g′(κ))ij

)
S(F

(ij)
1 ) +

gi(κ) + gj(κ)

σi(Z) + σj(Z)
T (F

(ij)
1 ) 0

])
.

Let s, t ∈ <m be two vectors defined by

sp :=

 σp(Z) if p 6= i,

σj(Z) if p = i
and tp :=


σp(Z) if p 6= i, j,

σj(Z) if p = i ,

σi(Z) if p = j ,

p = 1, . . . ,m .

Define s, t ∈ <m0 ×<m as follows

s := (λ(Y ), s) and t := (λ(Y ), t) . (3.62)

It is clear that both s and t converge to κ as X →X. By noting that g is symmetric, we

know from (3.1) that gi(t) = gj(κ), since the vector t is obtained from σ(Z) by swapping

the i-th and the j-th components. By the mean value theorem, we have

gi(κ)− gj(κ)

σi(Z)− σj(Z)
=

gi(κ)− gi(s) + gi(s)− gj(κ)

σi(Z)− σj(Z)

=

∂gi(ξ)

∂µi
(σi(Z)− σj(Z)) + gi(s)− gj(κ)

σi(Z)− σj(Z)

=
∂gi(ξ)

∂µi
+
gi(s)− gi(t) + gi(t)− gj(κ)

σi(Z)− σj(Z)

=
∂gi(ξ)

∂µi
+

∂gi(ξ̂)

∂µj
(σj(Z)− σi(Z)) + gi(t)− gj(κ)

σi(Z)− σj(Z)

=
∂gi(ξ)

∂µi
− ∂gi(ξ̂)

∂µj
, (3.63)

where ξ ∈ <m0 × <m lies between κ and s and ξ̂ ∈ <m0 × <m is between s and t.

Consequently, we have ξ → κ and ξ̂ → κ as X → X. By the continuity of g′, we know

that

lim
X→X

gi(κ)− gj(κ)

σi(Z)− σj(Z)
= (g′(κ))ii − (g′(κ))ij .

Therefore, we have

lim
X→X

G′(X)F (ij) = G′(X)F (ij) .
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Case 4: 1 ≤ i 6= j ≤ m and σi(Z) > 0 or σj(Z) > 0 and σi(Z) 6= σj(Z). Then, we

have σi(Z) > 0 or σj(Z) > 0 and σi(Z) 6= σj(Z). Since g′ is continuous at κ, we know

that

lim
X→X

G′(X)F (ij) = lim
X→X

(
0,

[
gi(κ)− gj(κ)

σi(Z)− σj(Z)
S(F

(ij)
1 ) +

gi(κ) + gj(κ)

σi(Z) + σj(Z)
T (F

(ij)
1 ) 0

])
=

(
0,

[
gi(κ)− gj(κ)

σi(Z)− σj(Z)
S(F

(ij)
1 ) +

gi(κ) + gj(κ)

σi(Z) + σj(Z)
T (F

(ij)
1 ) 0

])
= G′(X)F (ij) .

Case 5: m+ 1 ≤ j ≤ n, σi(Z) > 0. Since g′ is continuous at κ, we obtain that

lim
X→X

G′(X)F (ij) = lim
X→X

(
0,

[
0
gi(κ)

σi(Z)
F

(ij)
2

])
=

(
0,

[
0
gi(κ)

σi(Z)
F

(ij)
2

])
= G′(X)F (ij) .

Case 6: 1 ≤ i 6= j ≤ m, σi(Z) = σj(Z) = 0 and σi(Z) = σj(Z) > 0. Therefore, we

know that

G′(X)F (ij) =

(
0,

[(
(g′(κ))ii − (g′(κ))ij

)
S(F

(ij)
1 ) +

gi(κ) + gj(κ)

σi(Z) + σj(Z)
T (F

(ij)
1 ) 0

])
.

Since g′ is continuous, we know from (3.45) that

lim
X→X

(g′(κ))ii = (g′(κ))ii = η̄r0+r+1 and lim
X→X

(g′(κ))ij → 0 . (3.64)

Let ŝ, t̂ ∈ <m be two vectors defined by

ŝp :=

 σp(Z) if p 6= i,

−σj(Z) if p = i
and t̂p :=


σp(Z) if p 6= i, j,

−σj(Z) if p = i ,

−σi(Z) if p = j ,

p = 1, . . . ,m .

Define ŝ, t̂ ∈ <m0 ×<m as follows

ŝ := (λ(Y ), ŝ) and t̂ := (λ(Y ), t̂ ) . (3.65)

Also, it clear that both ŝ and t̂ converge to κ as X → X. Again, by noting that g is

(mixed) symmetric, we know from (3.1) that

gj(κ) = −gi(t̂) and gi(κ) = −gj(t̂) .
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By the mean value theorem, we have

gi(κ) + gj(κ)

σi(Z) + σj(Z)
=

gi(κ)− gi(ŝ) + gi(ŝ) + gj(κ)

σi(Z) + σj(Z)

=

∂gi(ζ)

∂µi
(σi(Z) + σj(Z)) + gi(ŝ) + gj(κ)

σi(Z) + σj(Z)

=
∂gi(ζ)

∂µi
+
gi(ŝ)− gi(t̂) + gi(t̂) + gj(κ)

σi(Z) + σj(Z)

=
∂gi(ζ)

∂µi
+

∂gi(ζ̂)

∂µj
(σj(Z) + σi(Z)) + gi(t̂) + gj(κ)

σi(Z) + σj(Z)

=
∂gi(ζ)

∂µi
+
∂gi(ζ̂)

∂µj
, (3.66)

where ζ ∈ <m0 × <m is between κ and ŝ and ζ̂ ∈ <m0 × <m is between ŝ and t̂.

Consequently, we know that ζ, ζ̂ → κ as X →X. By the continuity of g′, we know from

(3.45) that

lim
X→X

gi(κ) + gj(κ)

σi(Z) + σj(Z)
= (g′(κ))ii + (g′(κ))ij = η̄r0+r+1 . (3.67)

Therefore, from (3.64) and (3.67), we have

lim
X→X

G′(X)F (ij) =
(
0,
[
η̄r0+r+1F

(ij)
1 0

])
= G′(X)F (ij) .

Case 7: 1 ≤ i 6= j ≤ m, σi(Z) = σj(Z) = 0, σi(Z) 6= σj(Z) and σi(Z) > 0 or

σj(Z) > 0. By using s, t and ŝ, t̂ defined in (3.62) and (3.65), respectively, since g′ is

continuous at κ, we know from (3.63) and (3.66) that

lim
X→X

G′(X)F (ij) = lim
X→X

(
0,

[
gi(κ)− gj(κ)

σi(Z)− σj(Z)
S(F

(ij)
1 ) +

gi(κ) + gj(κ)

σi(Z) + σj(Z)
T (F

(ij)
1 ) 0

])
=

(
0,
[
η̄r0+r+1S(F

(ij)
1 ) + η̄r0+r+1T (F

(ij)
1 ) 0

])
=

(
0,
[
η̄r0+r+1F

(ij)
1 0

])
= G′(X)F (ij) .

Case 8: 1 ≤ i 6= j ≤ m, σi(Z) = σj(Z) = 0 and σi(Z) = σj(Z) = 0. By the

continuity of g′, we obtain that

lim
X→X

G′(X)F (ij) = lim
X→X

(
0,
[
(g′(κ))iiF

(ij)
1 0

])
=
(
0,
[
(g′(κ))iiF

(ij)
1 0

])
=

(
0,
[
η̄r0+r+1F

(ij)
1 0

])
= G′(X)F (ij) .



3.3 The Fréchet differentiability 86

Case 9: m+ 1 ≤ j ≤ n, σi(Z) = 0 and σi(Z) > 0. We know that

G′(X)F (ij) =

(
0,

[
0
gi(κ)

σi(Z)
F

(ij)
2

])
.

Let s̃ ∈ <m be a vector given by

s̃p :=

 σp(Z) if p 6= i,

0 if p = i,
p = 1, . . . ,m .

Define s̃ = (λ(Y ), s̃) ∈ <m0 × <m. Therefore, we have s̃ converges to κ as X → X.

Since g is symmetric, we know that gi(s̃) = 0. By the mean value theorem, we have

gi(κ)

σi(Z)
=
gi(κ)− gi(s̃)

σi(Z)
=
∂gi(ρ)

∂µi
,

where ρ ∈ <m0 × <m is between κ and s̃. Consequently, we have ρ converges to κ as

X →X. By the continuity of g′, we know from (3.45) that

lim
X→X

gi(κ)

σi(Z)
= (g′(κ))ii = η̄r0+r+1 .

Thus,

lim
X→X

G′(X)F (ij) = lim
X→X

(
0,

[
0
gi(κ)

σi(Z)
F

(ij)
2

])
=
(
0,
[
0 η̄r0+r+1F

(ij)
2

])
= G′(X)F (ij) .

Case 10: m + 1 ≤ j ≤ n, σi(Z) = 0 and σi(Z) = 0. By the continuity of g′, we

know that

lim
X→X

G′(X)F (ij) = lim
X→X

(
0,
[
0 (g′(κ))iiF

(ij)
2

])
=
(
0,
[
0 (g′(κ))iiF

(ij)
2

])
= G′(X)F (ij) .

Finally, we consider the general case that

X =
(
PΛ(Y )P T , U [Σ(Z) 0]V T

)
and X =

(
PΛ(Y )P

T
, U
[
Σ(Z) 0

]
V
T
)
.

We know that for any given H ∈ X , any accumulation point of G′(X)H as X → X

can be written as G′(X)H, since the derivative formula is independent of the choice of

the orthogonal matrices P , U and V .

“ =⇒ ” From the proof of the second part of Theorem 3.6, it is easy to see that if

G is continuously differentiable at X, then the symmetric mapping g is continuously

differentiable at κ. �
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3.4 The Lipschitz continuity

In this section, we consider the local Lipschitz continuity of the spectral operator G.

Firstly, by using the systemic property of g, we can obtain the following proposition.

Proposition 3.8. Let X = (Y , Z) ∈ Sm0 × <m×n = X be given. Suppose that the

symmetric mapping g is locally Lipschitz continuous near κ = κ(X) with module L > 0,

i.e., there exists a positive constant δ0 > 0 such that

‖g(κ)− g(κ′)‖ ≤ L‖κ− κ′‖ ∀κ,κ′ ∈ B(κ, δ0) .

Then, there exist a positive constant L′ > 0 and a positive constant δ > 0 such that for

any κ ∈ B(κ, δ),

|gi(κ)− gj(κ)| ≤ L′|κi − κj | ∀ 1 ≤ i 6= j ≤ m0 +m and κi 6= κj , (3.68)

|gi(κ) + gj(κ)| ≤ L′|κi + κj | ∀m0 + 1 ≤ i, j ≤ m0 +m and κi + κj > 0 ,(3.69)

|gi(κ)| ≤ L′|κi| ∀m0 + 1 ≤ i ≤ m0 +m and κi > 0 . (3.70)

Proof. For the convenience, let αr0+l = {j | j = m0 + i, i ∈ al}, 1 ≤ l ≤ r and

αr0+r+1 = {j | j = m0 + i, i ∈ b}. We know that there exists a positive constant δ1 > 0

such that for any κ ∈ B(κ, δ1),

|κi − κj | ≥ δ1 > 0 ∀ 1 ≤ i 6= j ≤ m0 +m and κi 6= κj , (3.71)

|κi + κj | = κi + κj ≥ δ1 > 0 ∀m0 + 1 ≤ i, j ≤ m0 +m and κi + κj > 0 . (3.72)

and

|κi| = κi ≥ δ1 > 0 ∀m0 + 1 ≤ i ≤ m0 +m and κi > 0 . (3.73)

Let δ := min{δ0, δ1} > 0. Denote ν := max
i,j
{|gi(κ) − gj(κ)|, |gi(κ) + gj(κ)|, |gi(κ)|},

L1 := (2Lδ + ν)/δ and L′ := max{L1,
√

2L}. Let κ be any fixed vector in B(κ, δ).
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Firstly, we consider the case that i 6= j ∈ {1, . . . ,m0 + m} and κi 6= κj . If κi 6= κj ,

then from (3.71), we know that

|gi(κ)− gj(κ)| = |gi(κ)− gi(κ) + gi(κ)− gj(κ) + gj(κ)− gj(κ)|

≤ 2‖g(κ)− g(κ)‖+ ν

≤ 2Lδ + ν

δ
|κi − κj |

= L1|κi − κj | . (3.74)

If κi = κj , consider the vector t ∈ <m0+m defined by

tp :=


κp if p 6= i, j,

κj if p = i ,

κi if p = j ,

p = 1, . . . ,m0 +m.

It is easy to see that ‖t− κ‖ = ‖κ− κ‖ ≤ δ. Moreover, since g is symmetric, we know

that

gi(t) = gj(κ) .

Therefore, for such i, j, we have

|gi(κ)− gj(κ)| = |gi(κ)− gi(t) + gi(t)− gj(κ)|

≤ |gi(κ)− gi(t)| ≤ L‖κ− t‖ =
√

2L|κi − κj | . (3.75)

Thus, the inequality (3.68) follows from (3.74) and (3.75).

Secondly, we consider the case i, j ∈ {m0 + 1, . . . ,m0 + m} and κi + κj > 0. If

κi + κj > 0, then we know from (3.72) that

|gi(κ) + gj(κ)| = |gi(κ)− gi(κ) + gi(κ) + gj(κ)− gj(κ) + gj(κ)|

≤ 2‖g(κ)− g(κ)‖+ ν

≤ 2Lδ + ν

δ
|κi + κj |

= L1|κi + κj | . (3.76)
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If κi + κj = 0, i.e., κi = κj = 0, consider the vector t̂ ∈ <m0+m defined by

t̂p :=


κp if p 6= i, j,

−κj if p = i ,

−κi if p = j ,

p = 1, . . . ,m0 +m.

By noting that κi = κj = 0, we obtain that ‖t̂ − κ‖ = ‖κ − κ‖ ≤ δ. Moreover, since g

is symmetric, we know that

gi(t̂) = −gj(κ) .

Therefore, for such i, j, we have

|gi(κ) + gj(κ)| = |gi(κ)− gi(t̂) + gi(t̂) + gj(κ)| ≤ |gi(κ)− gi(t̂)|

≤ ‖g(κ)− g(t̂)‖ ≤ L‖κ− t̂‖ =
√

2L|κi + κj | . (3.77)

Then, the inequality (3.69) follows from (3.76) and (3.77).

Finally, we consider the case that i ∈ {m0 + 1, . . . ,m0 + m} and κi > 0 . If κi > 0,

then we know from (3.73) that

|gi(κ)| = |gi(κ)− gi(κ) + gi(κ)| ≤ |gi(κ)− gi(κ)|+ |gi(κ)|

≤ ‖g(κ)− g(κ)‖+ ν ≤ 2Lδ + ν

δ
|κi| ≤ L1|κi| . (3.78)

If κi = 0, consider the vector s ∈ <m0+m defined by

sp :=

 κp if p 6= i,

0 if p = i
p = 1, . . . ,m0 +m.

Then, since κi > 0, we know that ‖s− κ‖ < ‖κ− κ‖ ≤ δ. Moreover, since g, we know

that

gi(s) = 0 .

Therefore, for such i, we have

|gi(κ)| = |gi(κ)− gi(s)| ≤ ‖g(κ)− g(s)‖ ≤ L‖κ− s‖ ≤ L|κi| ≤
√

2L|κi| . (3.79)
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Thus, the inequality (3.68) follows from (3.78) and (3.79). This completed the proof. �

Suppose that g is locally Lipschitz continuous near κ with the module L > 0. For

any fixed 0 < η ≤ δ0/
√
n and y ∈ B∞(κ, δ0/(2

√
n)) := {‖y − κ‖∞ ≤ δ0/(2

√
n)}, the

function g is integrable on Vη(y) := {z ∈ <n | ‖y−z‖∞ ≤ η/2} (in the sense of Lebesgue).

Therefore, we know that the function

g(η,y) :=
1

ηn

∫
Vη(y)

g(y)dy (3.80)

is well-defined on (0, δ0/
√
n ] × B∞(κ, δ0/(2

√
n)) and is said to be Steklov averaged

function of g. For convenience of discussion, we always define g(0,y) = g(y). Since g

is symmetric, it is easy to check that for each fixed 0 < η ≤ δ0/
√
n, the function g(η, ·)

is also symmetric on B∞(κ, δ0/(2
√
n)). By the definition, we know that g(·, ·) is locally

Lipschitz continuous on (0, δ0/
√
n ]×B∞(κ, δ0/(2

√
n)) with the module L. Meanwhile, by

elementary calculation, we know that g(·, ·) is continuously differentiable on (0, δ0/
√
n ]×

B∞(κ, δ0/(2
√
n)) and for any fixed η ∈ (0, δ0/

√
n ] and y ∈ B∞(κ, δ0/(2

√
n)),

‖g′y(η,y)‖ ≤ L . (3.81)

Moreover, we know that g(η, ·) converges to g uniformly on the compact setB∞(κ, δ0/(2
√
n))

as η ↓ 0. By using the formula (3.50), the following results can be obtained from Theorem

3.7 and Proposition 3.8 directly.

Proposition 3.9. Suppose that the symmetric mapping g is locally Lipschitz continuous

near κ, Let g(·, ·) be the corresponding Steklov averaged function defined in (3.80). Then,

for any given η ∈ (0, δ0/
√
n ], the spectral operator G(η, ·) : X → X with respect to the

symmetric mapping g(η, ·) is continuously differentiable on B∗(X, δ0/(2
√
n)) := {X ∈

X | ‖κ(X)− κ‖∞ ≤ δ0/(2
√
n)}, and there exist two positive constants δ1 > 0 and L > 0

such that

‖G′(η,X)‖ ≤ L ∀ 0 < η ≤ min{δ0/
√
n, δ1} and X ∈ B∗(X, δ0/(2

√
n)) . (3.82)

Moreover, G(η, ·) converges to G uniformly in the compact set B∗(X, δ0/(2
√
n)) as η ↓ 0.
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We state the main result of this section in the following theorem.

Theorem 3.10. Let X = (Y , Z) ∈ Sm0 × <m×n = X be given. Suppose that Y and Z

have the decompositions (3.16). The spectral operator G is locally Lipschitz continuous

near X if and only if the symmetric mapping g is locally Lipschitz continuous near

κ = κ(X).

Proof. “ ⇐= ” Suppose that the symmetric mapping g is locally Lipschitz continuous

near κ = κ(X) with module L > 0, i.e., there exists a positive constant δ0 > 0 such that

‖g(κ)− g(κ′)‖ ≤ L‖κ− κ′‖ ∀κ,κ′ ∈ B(κ, δ0) .

By Proposition 3.9, for any given η ∈ (0, δ0/
√
n ], we may consider the continuously differ-

entiable spectral operator G(η, ·) : X → X with respect to the Steklov averaged function

g(η, ·) of g. Since G(η, ·) converges to G uniformly in the compact set B∗(X, δ0/(2
√
n))

as η ↓ 0, we know that for any ε > 0, there exists a constant δ2 > 0 such that for any

0 < η ≤ δ2

‖G(η,X)−G(X)‖ ≤ ε ∀X ∈ B∗(X, δ0/(2
√
n)) .

Fix any X,X ′ ∈ B∗(X, δ0/(2
√
n)) with X 6= X ′. Meanwhile, by Proposition 3.9, we

know that there exists δ1 > 0 such that (3.82) holds. Let δ̄ := min{δ1, δ2, δ0/
√
n}. Then,

by the mean value theorem, we know that

‖G(X)−G(X ′)‖ = ‖G(X)−G(η,X) +G(η,X)−G(η,X ′) +G(η,X ′)−G(X ′)‖

≤ 2ε+ ‖
∫ 1

0
G′(η,X + t(X −X ′))dt‖

≤ L‖X −X ′‖+ 2ε ∀ 0 < η < δ̄ .

Since X,X ′ ∈ B∗(X, δ0/(2
√
n)) and ε > 0 are arbitrary, by letting ε ↓ 0, we obtain that

‖G(X)−G(X ′)‖ ≤ L‖X −X ′‖ ∀X,X ′ ∈ B∗(X, δ0/(2
√
n)) .

Thus G is locally Lipchitz continuous near X.
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“ =⇒ ” Suppose that G is locally Lipschitz continuous near X. For any y =

(y1,y2) ∈ <m0 ×<m, we may define Y := (diag(y1), [diag(y2) 0]) ∈ X . Then, since g is

symmetric, we have G(Y ) = (diag(g1(y)), [diag(g2(y)) 0]). Therefore, we obtain that

there exist a positive number κ > 0 and a open neighborhood Nκ such that

‖g(y)− g(y′)‖ = ‖G(Y )−G(Y ′)‖ ≤ L‖Y − Y ′‖ = L‖y − y′‖ ∀y,y′ ∈ Nκ .

This completed the proof. �

3.5 The ρ-order Bouligand-differentiability

For the ρ-order B(ouligand)-differentiability of spectral operators, we have the following

result.

Theorem 3.11. Let X = (Y , Z) ∈ Sm0 × <m×n = X be given. Suppose that Y and

Z have the decompositions (3.16). Let 0 < ρ ≤ 1 be given. If the symmetric function

g is locally Lipschitz continuous near κ(X), then the spectral operator G is ρ-order B-

differentiable at X if and only if the symmetric mapping g is ρ-order B-differentiable at

κ(X).

Proof. Without loss of generality, we just prove the results for the case ρ = 1.

“⇐= ” For any H = (A,B) ∈ X , let X = X +H = (Y + A,Z + B) = (Y, Z). Let

P ∈ Om0 , U ∈ Om and V ∈ On be such that

Y = PΛ(Y )P T and Z = U [Σ(Z) 0]V T . (3.83)

Denote κ = κ(X). Let GS and GR be defined by (3.19) and (3.20), respectively.

Therefore, by Lemma 3.3, we know that for any X 3H → 0,

GS(X)−GS(X) = G′S(X)H +O(‖H‖2) =
(
T1(Ã),T2(B̃)

)
+O(‖H‖2) , (3.84)

where H̃ = (Ã, B̃) with Ã = P
T
AP , B̃ =

[
B̃1 B̃2

]
=
[
U
T
BV 1 U

T
BV 2

]
, and the

linear operator T (·) = (T1(·),T2(·)) : X → X is given by (3.18).
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On the other hand, for H ∈ X sufficiently close to zero, we know that Pk(Y ) =∑
i∈αk

pip
T
i , k = 1, . . . , r0 and Ul(Z) =

∑
i∈al

uiv
T
i , l = 1, . . . , r. Therefore,

GR(X) = G(X)−GS(X)

= ((G1)R(X), (G2)R(X)) = (G1(X)− (G1)S(Y ),G2(X)− (G2)S(Z))

=

 r0∑
k=1

∆k(H),

r0+r+1∑
k=r0+1

∆k(H)

 , (3.85)

where

∆k(H) =


∑
i∈αk

[(g1(κ))i − (g1(κ))i]pip
T
i if 1 ≤ k ≤ r0,

∑
i∈al

[(g2(κ))i − (g2(κ))i]uiv
T
i if r0 + 1 ≤ k = r0 + l ≤ r0 + r

and

∆r0+r+1(H) =
∑
i∈b

(g2(κ))iuiv
T
i .

Firstly, we consider the case that X = (Y , Z) =
(
Λ(Y ), [Σ(Z) 0]

)
. Then, from

(2.14), (2.38) and (2.39), for any H ∈ X sufficiently close to 0, we know that

κ = κ(X) = κ+ h+O(‖H‖2) , (3.86)

where h := (λ′(Y ;A), σ′(Z;B)) ∈ <m0×<m with (λ′(Y ;A))αk = λ(Aαkαk), k = 1, . . . , r0,

(σ′(Z;B))al = λ(S(Balal)), l = 1, . . . , r and (σ′(Z;B))b = σ([Bbb Bbc]) .

Since g is locally Lipschitz continuous near κ and 1-order B-differentiable at κ, we know

that for any H sufficiently close to 0,

g(κ)− g(κ) = g(κ+ h+O(‖H‖2))− g(κ)

= g(κ+ h)− g(κ) +O(‖H‖2)

= g′(κ;h) +O(‖H‖2) = φ(h) +O(‖H‖2) .
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Since pip
T
i , i = 1, . . . ,m0 and uiv

T
i , i = 1, . . . ,m are uniformly bounded, we know that

for H sufficiently close to 0,

∆k(H) =


Pαkdiag(φk(h))P Tαk +O(‖H‖2) if 1 ≤ k ≤ r0,

Ualdiag(φk(h))V T
al

+O(‖H‖2) if r0 + 1 ≤ k = r0 + l ≤ r0 + r

and

∆r0+r+1(H) = Ubdiag(φr0+r+1(h))V T
b +O(‖H‖2) .

By (2.10) and (2.12) in Proposition 2.5, we know that there existQk ∈ O|αk|, k = 1, . . . , r0

and Qr0+l ∈ O|al|, l = 1, . . . , r (depending on H) such that for each i ∈ αk,

Pαk =


O(‖H‖)

Qk +O(‖H‖)

O(‖H‖)

 , k = 1, . . . , r0 ,

Ual =


O(‖H‖)

Qr0+l +O(‖H‖)

O(‖H‖)

 and Val =


O(‖H‖)

Qr0+l +O(‖H‖)

O(‖H‖)

 , l = 1, . . . , r .

Since g is locally Lipchitz continuous near κ and directionally differentiable at κ, we

know from Lemma 2.2 that for H sufficiently close to 0,

‖φ(h)‖ = ‖g′(κ;h)‖ = O(‖H‖) .

Therefore, we have

∆k(H) =


0 0 0

0 Qkdiag(φk(h))QTk 0

0 0 0

+O(‖H‖2), 1 ≤ k ≤ r0 + r . (3.87)

Meanwhile, by (2.40), we know that there exist M ∈ O|b| and N = [N1 N2] ∈ On−|a|

(depending on H) with N1 ∈ <(n−|a|)×|b| and N2 ∈ <(n−|a|)×(n−m) such that

Ub =

 O(‖H‖)

M +O(‖H‖)

 and [Vb Vc] =

 O(‖H‖)

N +O(‖H‖)

 .



3.5 The ρ-order Bouligand-differentiability 95

Therefore, we obtain that

∆r0+r+1(H) =

 0 0

0 Mdiag(φr0+r+1(h))NT
1

+O(‖H‖2) . (3.88)

On the other hand, from (2.13), we know that

Aαkαk = Qk(Λ(Y )αkαk − µkI|αk|)Q
T
k +O(‖H‖2), 1 ≤ k ≤ r0 , (3.89)

S(Balal) = Qk(Σ(Z)alal − νlI|al|)Q
T
k +O(‖H‖2), r0 + 1 ≤ k = r0 + l ≤ r0 + r (3.90)

and

[Bbb Bbc] = M(Σ(Z)bb − νr+1I|b|)N
T
1 +O(‖H‖2) . (3.91)

Since the symmetric mapping φ(·) = g′(κ; ·) is globally Lipschitz continuous on <m0×<m,

by Theorem 3.10, we know that the corresponding spectral operator Φ defined by (3.22)

is globally Lipchitz continuous. Hence, we know from (3.85) that for H sufficiently close

to 0,

GR(X) = (Υ1(H),Υ2(H)) +O(‖H‖2) , (3.92)

where

Υ1(H) =


Φ1(D(H)) · · · 0

...
. . .

...

0 · · · Φr0(D(H))

 ∈ Sm0 ,

Υ2(H) =



Φr0+1(D(H)) · · · 0 0

...
. . .

...
...

0 · · · Φr0+r(D(H)) 0

0 · · · 0 Φr0+r+1(D(H))


∈ <m×n ,

and D(H) =
(
Aα1α1 , . . . , Aαr0αr0 , S(Ba1a1), . . . , S(Barar), Bbā

)
.

Next, consider the general case for X = (Y , Z) ∈ X . For any H ∈ X , re-write (3.83)

as

Λ(Y ) + P
T
A′P = P

T
PΛ(Y )P TP and [Σ(Z) 0] + U

T
B′V = U

T
U [Σ(Z) 0]V TV .
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Let P̃ = P
T
P , Ũ := U

T
U and Ṽ := V

T
V . Let X̃ := (Ỹ , Z̃) ∈ X with

Ỹ := Λ(Y ) + P
T
A′P and Z̃ := [Σ(Z) 0] + U

T
B′V .

Then, since P , U and V are bounded, we know from (3.92) that

GR(X) =
(
P (G1)R(X̃)P

T
, U(G2)R(X̃)V

T
)

=
(
PΥ1(H̃)P

T
, UΥ2(H̃)V

T
)

+O(‖H‖2) .

(3.93)

Thus, by combining (3.84) and (3.93) and noting that G(X) = GS(X), we obtain that

for any H ∈ X sufficiently close to 0,

G(X)−G(X)−G′(X;H) = O(‖H‖2) ,

where G′(X;H) is given by (3.26). This implies that G is 1-order B-differentiable at

X.

“ =⇒ ” Suppose that G is 1-order B-differentiable at X = (Y , Z). Let P ∈ Om0(Y )

and (U, V ) ∈ Om×n(Z) be fixed. For any h := (h1, h2) ∈ <m0×<m, letH = (A,B) ∈ X ,

where A := Pdiag(h1)P
T

and B := U [diag(h2) 0]V
T

. Then, by the assumption, we know

that for h sufficiently close to 0,(
Pdiag(g1(κ+ h)− g1(κ))P

T
, Udiag(g2(κ+ h)− g2(κ))V

T
1

)
= G(X +H)−G(X) = G′(X;H) +O(‖H‖2) .

Hence, for h sufficiently close to 0,

g(κ+ h)− g(κ) = (g1(κ+ h)− g1(κ), g2(κ+ h)− g2(κ))

= g′(κ;h) +O(‖h‖2) .

The proof is competed. �

3.6 The ρ-order G-semismoothness

In this section, we consider the ρ-order G-semismoothness of spectral operators.



3.6 The ρ-order G-semismoothness 97

Theorem 3.12. Let X = (Y , Z) ∈ Sm0 × <m×n = X be given. Suppose that Y and Z

have the decompositions (3.16). Let 0 < ρ ≤ 1 be given. If the symmetric mapping g

is locally Lipschitz continuous near κ(X), then the corresponding spectral operator G is

ρ-order G-semismooth at X if and only if g is ρ-order G-semismooth at κ(X).

Proof. Let κ = κ(X). Without loss of generality, we consider the case that ρ = 1.

“ ⇐= ” For any H = (A,B) ∈ X , let X := X + H = (Y + A,Z + B) = (Y, Z),

where Y ∈ Sm0 and Z ∈ <m×n. Let P ∈ Om0 , U ∈ Om and V ∈ On be such that

Y = PΛ(Y )P T and Z = U [Σ(Z) 0]V T . (3.94)

Denote κ = κ(X). Let GS and GR be defined by (3.19) and (3.20), respectively.

Therefore, by Lemma 3.3, we know that there exists an open neighborhood N̂ of X such

that GS twice continuously differentiable on N̂ , and

GS(X)−GS(X) = G′S(X)H +O(‖H‖2)

=
( r0∑
k=1

ḡkP ′k(Y )A,
r∑
l=1

ḡr0+l U ′l (Z)B
)

+O(‖H‖2)

=

(
r0∑
k=1

ḡkP [Ωk(Y ) ◦ Â]P T ,

r∑
l=1

ḡr0+l

{
U [Γl(Z) ◦ S(B̂1) + Ξl(Z) ◦ T (B̂1)]V T

1 + U(Υl(Z) ◦ B̂2)V T
2

})
+O(‖H‖2) ,

(3.95)

where
(
Â, B̂

)
=
(
Â,
[
B̂1 B̂2

])
=
(
P TAP,

[
UTBV1 UTBV2

])
= Ĥ; Ωk(Y ) ∈ Sm0 , k =

1, . . . , r0 is given by (2.22); Γl(Z), Ξl(Z) ∈ <m×m and Υl(Z) ∈ <m×(n−m), l = 1, . . . , r

are given by (2.53), (2.54) and (2.55) respectively. Since g s locally Lipschitz continuous

near κ, we know that for any X ∈ X converging to X,

ḡk =


(g1(κ))i +O(‖H‖) ∀ i ∈ αk if 1 ≤ k ≤ r0,

(g2(κ))j +O(‖H‖) ∀ j ∈ al if r0 + 1 ≤ k = r0 + l ≤ r0 + r.

Let A ∈ Sm0 , E1, E2 ∈ <m×m and F ∈ <m×(n−m) (depending on X ∈ X ) be the matrices

defined by (3.12)-(3.15). Since g s locally Lipschitz continuous near κ, we know that A,
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E1, E2 and F are uniformly bounded on N̂ . Therefore, since P ∈ Om0 , U ∈ Om and

V ∈ On are also uniformly bounded, by shrinking N̂ if necseeary, we know that for any

X ∈ N̂ ,

GS(X)−GS(X) =
(
P (A ◦ Â)P T , U

[
E1 ◦ S(B̂1) + E2 ◦ T (B̂1) F ◦ B̂2

]
V T
)

+O(‖H‖2) .

(3.96)

Let X ∈ DG ∩ N̂ , where DG is the set of points in X , where G is (F-)differentiable.

Let AD ∈ Sm0 , ED1 , ED2 ∈ <m×m and FD ∈ <m×(n−m) be the matrices defined in

(3.41)-(3.44), respectively. Since G is differentiable at X, by Theorem 3.6, we know that

G′(X)H =
(
P [L1(κ, H̃) +AD ◦ Ã]P T , U [L2(κ, H̃) + T (κ, B̃)]V T

)
, (3.97)

where L(κ, ·) = (L1(κ, ·),L2(κ, ·)) and T (κ, ·) are given by (3.47) and (3.49), respec-

tively with κ being replaced by κ. Denote

∆(H) = (∆1(H),∆2(H)) = G′(X)H − (GS(X)−GS(X)) .

From (3.96) and (3.97), we obtain that

∆1(H) = P



R1(H) 0 · · · 0

0 R2(H) · · · 0

...
...

. . .
...

0 0 · · · Rr0(H)


P T +O(‖H‖2) (3.98)

and

∆2(H) = U



Rr0+1(H) · · · 0 0

...
. . .

...
...

0 · · · Rr0+r(H) 0

0 · · · 0 Rr0+r+1(H)


V T +O(‖H‖2) , (3.99)

where

Rk(H) = diag
(

(θ(κ, H̃))αk

)
+ (AD)αkαk ◦ Ãαkαk , 1 ≤ k ≤ r0 , (3.100)
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Rr0+l(H) = diag
(

(θ(κ, H̃))αk

)
+ (ED1 )alal ◦ S(B̃alal) + (ED2 )alal ◦ T (B̃alal), 1 ≤ l ≤ r0 ,

(3.101)

Rr0+r+1(H) = diag
(

(θ(κ, H̃))αr0+r+1

)
+
[
(ED1 )bb ◦ S(B̃bb) + (ED2 )bb ◦ T (B̃bb) (FD)b ◦ B̃bc

]
.

(3.102)

By (3.16), we obtain from (3.94) that

Λ(Y ) + P
T
AP = P

T
PΛ(Y )P TP and

[
Σ(Z) 0

]
+ U

T
BV = U

T
U [Σ(Z) 0]V TV .

Let Ĥ := (Â, B̂) = (P
T
AP,U

T
BV ), P̂ = P

T
P , Û := U

T
U and V̂ := V

T
V . Then,

P TAP = P̂ TP
T
APP̂ = P̂ T ÂP̂ and UTBV = ÛTU

T
BV V̂ = ÛT B̂V̂ .

From (2.10), (2.12) and (2.40), we know that there exist Qk ∈ O|αk|, k = 1, . . . , r0,

Qr0+l ∈ O|al|, l = 1, . . . , r and M ∈ O|b|, N ∈ On−|a| such that

P TαkAPαk = P̂ TαkÂP̂αk = QTk ÂαkαkQk +O(‖H‖2), 1 ≤ k ≤ r0 ,

UTalBVal = ÛTalB̂V̂al = QTr0+lB̂alalQr0+l +O(‖H‖2), 1 ≤ l ≤ r

and [
UTb BVb UTb BV2

]
=
[
ÛTb B̂V̂b ÛTb B̂V̂2

]
= MT

[
B̂bb B̂bc

]
N +O(‖H‖2) .

From (2.13), (2.41) and (2.42), we obtain that

P TαkAPαk = Λ(Y )αkαk − Λ(Y )αkαk +O(‖H‖2), 1 ≤ k ≤ r0 ,

S(UTalBVal) = QTr0+lS(B̂alal)Qr0+l+O(‖H‖2) = Σ(Z)alal−Σ(Z)alal+O(‖H‖2), 1 ≤ l ≤ r

and [
UTb BVb UTb BV2

]
= MT

[
B̂bb B̂bc

]
N =

[
Σ(Z)bb − Σ(Z)bb 0

]
+O(‖H‖2) .

Let h := (h1,h2) = (λ′(Y ;A), σ′(Z;B)) ∈ <m0 × <m. Since λ(·) and σ(·) are strongly

semismooth [96], we know that

Ãαkαk = P TαkAPαk = diag(λ′i(Y ;A) : i ∈ αk) +O(‖H‖2)

= diag((h1)αk) +O(‖H‖2) , 1 ≤ k ≤ r0 , (3.103)
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S(B̃alal) = S(UTalBVal) = diag(σ′i(Z;B) : i ∈ al) +O(‖H‖2)

= diag((h2)al) +O(‖H‖2) , 1 ≤ l ≤ r (3.104)

and

[
B̃bb B̃bc

]
=
[
UTb BVb UTb BV2

]
=

[
diag(σ′i(Z;B) : i ∈ b) 0

]
+O(‖H‖2)

= [diag((h2)b) 0] +O(‖H‖2) . (3.105)

Therefore, by (3.100), (3.101) and (3.102), we obtain from (3.98) and (3.99) that

∆(H) =
(
Pdiag

(
(g′(κ)h)I1

)
P T , U

[
diag

(
(g′(κ)h)I2

)
0
]
V T
)

+O(‖H‖2) . (3.106)

On the other hand, for H ∈ X sufficiently close to 0, we have Pk(Y ) =
∑
i∈αk

pip
T
i ,

k = 1, . . . , r0 and Ul(Z) =
∑
i∈al

uiv
T
i , l = 1, . . . , r. Therefore,

GR(X) = G(X)−GS(X)

= (

r0∑
k=1

∑
i∈αk

[(g1(κ))i − (g1(κ))i]pip
T
i ,

r0+r+1∑
k=r0+1

∑
i∈al

[(g2(κ))i − (g2(κ))i]uiv
T
i ) .(3.107)

Note that by Theorem 3.6, we know that G is F-differentiable at X if and only if g is

F-differentiable at κ. Since g is 1-order G-semismooth at κ, λ(·) and σ(·) are strongly

semismooth at Y and Z [96], we obtain that for any Y ∈ DG ∩ N̂ (shrinking N̂ if

necessary),

g(κ)− g(κ) = g′(κ)(κ− κ) +O(‖H‖2)

= g′(κ)(h+O(‖H‖2)) +O(‖H‖2)

=
(
(g′(κ)h)I1 , (g

′(κ)h)I2
)

+O(‖H‖2) .

Then, since P ∈ Om0 , U ∈ Om and U ∈ On are uniformly bounded, we obtain from

(3.107) that

GR(X) =
(
Pdiag

(
(g′(κ)h)I1

)
P T , U

[
diag

(
(g′(κ)h)I2

)
0
]
V T
)

+O(‖H‖2) .
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Thus, from (3.106), we obtain that

∆(H) = GR(X) +O(‖H‖2) .

That is, for any X ∈ DG converging to X,

G(X)−G(X)−G′(X)H = GS(X)−GS(X)−G′(X)H +GR(X)

= −∆(H) +GR(X) = O(‖H‖2) .

“ =⇒ ” Let P ∈ Om0(Y ) and (U, V ) ∈ Om×n(Z) be fixed. Assume that κ =

(λ, σ) = κ + h ∈ Dg and h = (h1,h2) ∈ <m0 × <m+ sufficiently small. Let X =(
Pdiag(λ)P

T
, U [diag(σ) 0]V

T
)

and H :=
(
Pdiag(h1)P

T
, U [diag(σ) 0]V

T
)

. Then,

we know that X ∈ DG and converges to X. Therefore, we have

G(X)−G(X) =
(
Pdiag(g1(κ+ h)− g1(κ))P

T
, Udiag(g2(κ+ h)− g2(κ))V

T
1

)
and

G′(X)H =
(
Pdiag

(
(g′(κ)h)I1

)
P T , U

[
diag

(
(g′(κ)h)I2

)
0
]
V T
)
.

Then, from the 1-order G-semismoothness of G at X, we know that g is 1-order G-

semismooth at κ. �

3.7 The characterization of Clarke’s generalized Jacobian

Let X = (Y , Z) ∈ Sm0 × <m×n = X be given. In this section, we also assume that

g is Lipschitz continuous on an open neighborhood Nκ ⊆ <m0 × <m of κ = κ(X).

Therefore, we know from Theorem 3.10 that the corresponding spectral operator G is

locally Lipschitz continuous near X. In order to characterize the B-subdifferential and

Clarke’s generalized Jacobian of spectral operators, we first introduce some notations.

Define a subset D↓g ⊆ Nκ by

D↓g :=
{

(y1,y2) ∈ Nκ | g is F-differentiable at y, and y1, y2 are in non-increasing order
}
.
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For any κ ∈ D↓g, let J(κ, ·) : X → X be the linear operator given by

J(κ,Z) := (J1(κ, A),J2(κ, B)), Z = (A,B) ∈ X , (3.108)

with

J1(κ, A) =


(
AD(κ)

)
α1α1

◦Aα1α1 · · · 0

...
. . .

...

0 · · ·
(
AD(κ)

)
αr0αr0

◦Aαr0αr0

 ∈ Sm0

and

J2(κ, B) =



(
ED1 (κ)

)
a1a1
◦ S(Ba1a1) · · · 0 0

...
. . .

...
...

0 · · ·
(
ED1 (κ)

)
arar
◦ S(Barar) 0

0 · · · 0 (T (κ, B))bā


∈ <m×n ,

where AD(κ) ∈ Sm0 , ED1 (κ), ED2 (κ) ∈ <m×m and FD(κ) ∈ <m×(n−m) are the matrices

given by (3.41)-(3.44), respectively, and T (κ, ·) are given by (3.49). Denote

Vκ :=

{
V (·) = (V1(·),V2(·)) : X → X |V (·) = lim

D↓g3κ→κ
L(κ, ·) + J(κ, ·)

}
, (3.109)

where for each κ ∈ D↓g, the linear operator L(κ, ·) : X → X is given by (3.47). Let Kκ

be the set of linear operators such that K(·) = (K1(·),K2(·)) ∈ Kκ if and only if there

exist Qk ∈ O|αk|, k = 1, . . . , r0 + r, Q′ ∈ O|b|, Q′′ ∈ On−|a| and V = (V1,V2) ∈ Vgκ such

that

K(Z) = (K1(Z),K2(Z)) =
(
QV1(Ẑ)QT ,MV2(Ẑ)NT

)
∈ X , Z = (A,B) ∈ X ,

(3.110)

where Q = diag(Q1, . . . , Qr0) ∈ Om0 ,

M = diag(Qr0+1, . . . , Qr0+r, Q
′) ∈ Om and N = diag(Qr0+1, . . . , Qr0+r, Q

′′) ∈ On ,

and Ẑ = (QTAQ,MTBN) ∈ X . Therefore, we obtain the following characterization of

the B(ouligand)-subdifferential ∂BG(X) of the spectral operator G at X.
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Theorem 3.13. Let X = (Y , Z) ∈ Sm0 × <m×n = X be given. Suppose that Y and Z

have the decomposition (3.16). Assume that the symmetric mapping g is locally Lipschitz

continuous near κ = κ(X). Then, U ∈ ∂BG(X) if and only if there exists K =

(K1,K2) ∈ Kκ such that

U(H) =
(
P
(
K1(H̃) + T1(Ã)

)
P
T
, U
(
K2(H̃) + T2(B̃)

)
V
T
)
∀H = (A,B) ∈ X ,

(3.111)

where the linear operator T (·) = (T1(·),T2(·)) : X → X is defined in (3.18) and H̃ =

(Ã, B̃) =
(
P
T
AP,U

T
BV

)
.

Proof. “ =⇒ ” By the definition of ∂BG(X), we know that there exists a sequence

{Xt} in DG converging to X such that

U = lim
t→∞

G′(Xt) .

For each Xt = (Y t, Zt), let P t ∈ Om0 , U t ∈ Om and V t ∈ On be the orthogonal matrices

such that

Y t = P tΛ(Y t)(P t)T and Zt = U t[Σ(Zt) 0](V t)T .

For each t, let κt = κ(Xt). Let GS and GR be defined by (3.19) and (3.20), respectively.

Therefore, by taking the subsequence if necessary, we know from Lemma 3.3 that for each

t, GS is twice continuously differentiable at Xt and

lim
t→∞

G′S(Xt) = G′S(X) .

Hence, we know that

lim
t→∞

G′S(Xt)H = G′S(X)H =
(
T1(Ã),T2(B̃)

)
= T (H̃), H = (A,B) ∈ X , (3.112)

where H̃ = (Ã, B̃) with Ã = P
T
AP , B̃ =

[
B̃1 B̃2

]
=
[
U
T
BV 1 U

T
BV 2

]
, and the

linear operator T (·) = (T1(·),T2(·)) : X → X is given by (3.18).

Next, consider the function GR(·) = G(·)−GS(·). By the assumption, we know that

GR is differentiable at each Xt. Furthermore, since λ(·) and σ(·) are globally Lipschitz
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continuous, we may also assume that for each Xt,
λi(Y

t) 6= λj(Y
t) if i ∈ αk, j ∈ αk′ and 1 ≤ k 6= k′ ≤ r0,

σi(Z
t) 6= σj(Z

t) if i ∈ al, j ∈ al′ and 1 ≤ l 6= l′ ≤ r + 1.

Therefore, by (3.50) in Theorem 3.6 and (2.23) and (2.56), we obtain that for each t and

H ∈ X ,

G′R(Xt)H = G′(Xt)H −G′S(Xt)H

= G′(Xt)H −
( r0∑
k=1

ḡkPk(Y t),
r∑
l=1

ḡr0+l Ul(Zt)
)

=
(
P t(L1(κt, Ĥt) + J1(κt, Ât) + Θ1(κt, Ât))(P t)T ,

U t(L2(κt, Ĥt) + J2(κt, B̂t) + Θ2(κt, B̂t))(V t)T
)
, (3.113)

where Ĥt =
(
Ât, B̂t

)
=
(
(P t)TAP t, (U t)TBV t

)
, and for each t, Θ1(κt, Ât) ∈ Sm0 and

Θ2(κt, B̂t) ∈ <m×n are given by

Θ1(κt, Ât) = Ã(κt)◦Ât and Θ2(κt, B̂t) =
[
Ẽ1(κt) ◦ S(B̂t

1) + Ẽ2(κt) ◦ T (B̂t
1) F̃(κt) ◦ B̂t

2

]
,

with Ã(κt) ∈ Sm0 , Ẽ1(κt), Ẽ2(κt) ∈ <m×m and F̃(κt) ∈ <m×(n−m) by

(Ã(κt))ij :=


gi(κ

t)− ḡk − gj(κt) + ḡk′

λi(Y t)− λj(Y t)
if i ∈ αk, j ∈ αk′ and 1 ≤ k 6= k′ ≤ r0,

0 if i, j ∈ αk and 1 ≤ k ≤ r0 ,

(3.114)

(Ẽ1(κt))ij :=


gi(κ

t)− ḡr0+l − gj(κt) + ḡr0+l′

σi(Zt)− σj(Zt)
if i ∈ al, j ∈ al′ and 1 ≤ l 6= l′ ≤ r + 1,

0 if i, j ∈ al and 1 ≤ l ≤ r + 1 ,

(3.115)

(Ẽ2(κt))ij :=


gi(κ

t)− ḡr0+l + gj(κ
t)− ḡr0+l′

σi(Zt) + σj(Zt)
if i or j /∈ b

0 if i, j ∈ b ,
(3.116)

(F̃(κt))ij :=


gi(κ

t)− ḡr0+l

σi(Zt)
if i /∈ b,

0 otherwise.

(3.117)
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Since κt converges to κ and by the continuity of g, we know that

lim
t→∞
Ã(κt) = 0, lim

t→∞
Ẽ1(κt) = 0, lim

t→∞
Ẽ2(κt) = 0, and lim

t→∞
F̃(κt) = 0 . (3.118)

Denote the linear operator L(κt, ·) + J(κt, ·) : X → X by

L(κt, ·) + J(κt, ·) :=
(
L1(κt, ·) + J1(κt, ·),L2(κt, ·) + J2(κt, ·)

)
.

By taking subsequence if necessary, we may assume that the sequence of linear operators

{L(κt, ·) + J(κt, ·)} converges. Therefore, by (3.109), we know that there exists V =

(V1,V2) ∈ Vκ such that

lim
t→∞

L(κt, ·) + J(κt, ·) = V (·) . (3.119)

Since {P t}, {U t} and {V t} are uniformly bounded, by taking subsequence if necessary,

we may assume that {P t}, {U t} and {V t} converge and denote the limits by P∞ ∈ Om0 ,

U∞ ∈ Om and V∞ ∈ On, respectively. Then, it is easy to see taht

PΛ(Y )P
T

= Y = P∞Λ(Y )(P∞)T

and

U [Σ(Z) 0]V
T

= Z = U∞[Σ(Z) 0](V∞)T .

Therefore, from Proposition 2.4 and Proposition 2.14, we know that there exist Qk ∈

O|αk|, k = 1, . . . , r0 + r, Q′ ∈ O|b| and Q′′ ∈ On−|a| such that

P∞ = PQ, U∞ = UM and V∞ = V N ,

with Q = diag(Q1, . . . , Qr0) ∈ Om0 ,

M = diag(Qr0+1, . . . , Qr0+r, Q
′) ∈ Om and N = diag(Qr0+1, . . . , Qr0+r, Q

′′) ∈ On .

Therefore, from (3.113), (3.118) and (3.119), we obtain that for any H ∈ X ,

lim
t→∞

G′R(Xt)H =
(
P∞V1(Ĥ)(P∞)T , U∞V2(Ĥ)(V∞)T

)
=

(
PQV1(Ĥ)QTP

T
, UMV2(Ĥ)NTV

T
)

=
(
PK1(H̃)P

T
, UK2(H̃)V

T
)
, (3.120)
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where Ĥ = (QT ÃQ,MT B̃N) = (QTP
T
APQ,MTU

T
BV N) ∈ X and

K(H̃) :=
(
K1(H̃),K2(H̃)

)
=
(
QV1(Ĥ)QT ,MV2(Ĥ)NT

)
.

Finally, since G(·) = GS(·) + GR(·), from (3.112) and (3.120), we know that (3.111)

holds.

“ ⇐= ” Suppose that there exists K = (K1,K2) ∈ Kκ such that for any H ∈ X ,

(3.111) holds, i.e., there exist a sequence {κt = (λt, σt)} in D↓g converges to κ and

Qk ∈ O|αk|, k = 1, . . . , r0 + r, Q′ ∈ O|b| and Q′′ ∈ On−|a| such that for any H ∈ X ,

U(H) =
(
P
(
K1(H̃) + T1(Ã)

)
P
T
, U
(
K2(H̃) + T2(B̃)

)
V
T
)
,

with

K(Z) = (K1(Z),K2(Z))

= lim
t→∞

(
Q(L1(κt, Ẑ) + J1(κt, Ẑ))QT ,M(L2(κt, Ẑ) + J2(κt, Ẑ))NT

)
, Z = (A,B) ∈ X

where Q = diag(Q1, . . . , Qr0) ∈ Om0 ,

M = diag(Qr0+1, . . . , Qr0+r, Q
′) ∈ Om and N = diag(Qr0+1, . . . , Qr0+r, Q

′′) ∈ On ,

and Ẑ = (QTAQ,MTBN) ∈ X . Denote P = PQ, U = UM and V = V N . For each t,

let

Xt = (Y t, Zt) := (Pdiag(λt)P T , U [diag(σt) 0]V T ) .

Then, we have

lim
m→∞

Xt = X .

Moreover, by Theorem 3.6, we know that for each t, G is differentiable at Xt. By (3.50),

we know that for any H ∈ X ,

lim
m→∞

G′(Xt)H = U(H) .

Hence, by the definition, we obtain that U ∈ ∂BG(X). These complete the proof. �
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Remark 3.3. Let X ∈ X be given. Note that for the given H ∈ X , PT1(Ã)P
T

and

UT2(B̃)V
T

are independent of the choice of P ∈ Om0(Y ) and (U, V ) ∈ Om,n(Z) in

(3.16). Since Clarke’s generalized Jacobian ∂G(X) at X takes the form

∂G(X) = conv
{
∂BG(X)

}
,

we know from (3.111) that U ∈ ∂BG(X) if and only if there exists K = (K1,K2) ∈ Kκ

such that for any H = (A,B) ∈ X ,

U(H) =
(
P
(
K̂1(H̃) + T1(Ã)

)
P
T
, U
(
K̂2(H̃) + T2(B̃)

)
V
T
)
, (3.121)

where K̂(H̃) =
(
K̂1(H̃), K̂2(H̃)

)
is the convex combination of some {Kz(H̃)} in Kκ

defined by (3.110).

Let X = (Y , Z) ∈ Sm0 ×<m×n = X be given. Suppose that the symmetric mapping

g is also directionally differentiable at κ. Define d : <m0+m → <m0+m by

d(h) := g(κ+ h)− g(κ)− g′(κ;h), h ∈ <m0+m .

Then, by (3.3) and (3.21), we know that d is symmetric, i.e.,

d(h) = QTd(Qh) ∀Q ∈ Qκ and h ∈ <m0+m ,

where Qκ is a subset of Q defined by (3.2). On the orther hand, by the directional

differentiability of g, we know that d is differentiable at 0. If d is strictly differentiable

at 0, then we have

lim
w,w′→0
w 6=w′

d(w)− d(w′)

‖w −w′‖
= 0 . (3.122)

Let {wt = (ξt, ζt)} ∈ <m0 ×<m be a sequence converging to 0. Suppose that 1 ≤ i ≤ m,

1 ≤ j ≤ n, i 6= j.

Case 1: 1 ≤ i 6= j ≤ m and ζti 6= ζtj for all t. Consider the following sequence

{st = (ξt, st)} in <m0 ×<m where for each p = 1, . . . ,m,

(st)p :=


ζtp if p 6= i, j,

ζtj if p = i,

ζti if p = j,

t = 1, 2, . . . .
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It is clear that the sequence {st} converges to 0. By the symmetry of d, we know that

for each q = 1, . . . ,m0 +m,

dq(s
t) :=


dq(w

t) if q 6= m0 + i,m0 + j,

dm0+j(w
t) if q = m0 + i,

dm0+i(w
t) if q = m0 + j,

t = 1, 2, . . . .

Therefore, by (3.122), we obtain that for such i, j,

lim
t→∞

dm0+i(w
t)− dm0+j(w

t)

|ζti − ζtj |
= lim

t→∞

√
2
dm0+i(w

t)− dm0+i(s
t)

‖wt − st‖
= 0 . (3.123)

Case 2: i ∈ b, j ∈ b and ζti > 0 or ζtj > 0 for all t. Consider the following sequence

{ŝt = (ξt, ŝt)} in <m0 ×<m with

(ŝt)p :=


ζtp if p 6= i, j,

−ζtj if p = i,

−ζti if p = j,

t = 1, 2, . . . .

It is easy to see that ŝt 6= wt for all t. Also, we know that {ŝt} converges to 0. By the

symmetry of d (with respect to κ), we know that for each q = 1, . . . ,m0 +m,

dq(ŝ
t) :=


dq(w

t) if q 6= m0 + i,m0 + j,

−dm0+j(w
t) if q = m0 + i,

−dm0+i(w
t) if q = m0 + j,

t = 1, 2, . . . .

Therefore, by (3.122), we obtain that for such i, j,

lim
t→∞

dm0+i(w
t) + dm0+j(w

t)

ζti + ζtj
= lim

t→∞

dm0+i(w
t)− (−dm0+j(w

t))

ζti + ζtj

= lim
t→∞

√
2
dm0+i(w

t)− dm0+i(ŝ
t)

‖wt − ŝt‖
= 0 . (3.124)

Case 3: i ∈ b and ζti > 0 for all t. Consider the following sequence {s̃t = (ξt, s̃t)} in

<m0 ×<m with

(s̃t)p :=

 ζtp if p 6= i,

0 if p = i,
t = 1, 2, . . . .
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It is easy to see that s̃t 6= wt for all t. Also, we know that {s̃t} converges to 0. By the

symmetry of d (with respect to κ), we know that

dm0+i(s̃
t) = 0 .

Therefore, by (3.122), we obtain that for such i,

lim
t→∞

dm0+i(w
t)

ζti
= lim

t→∞

dm0+i(w
t)− 0

ζti − 0

= lim
t→∞

dm0+i(w
t)− dm0+i(s̃

t)

‖wt − s̃t‖
= 0 . (3.125)

As mentioned in Remark 3.1, if the symmetric mapping g is locally Lipschitz continu-

ous near κ = κ(X) and directionally differentiable at κ, then the corresponding spectral

operator G is also directionally differentiable at X. Moreover, we have the following

useful result on ∂G(X).

Theorem 3.14. Let X = (Y , Z) ∈ X be given. Suppose that Y and Z have the decom-

position (3.16). Assume that the symmetric mapping g is locally Lipschitz continuous

near κ = κ(X). Assume that g is directionally differentiable at κ and there exists an

open neighborhood N ⊆ <m0+m of zero such that the function d : <m0+m → <m0+m

defined by

d(h) = g(κ+ h)− g(κ)− g′(κ;h), h ∈ <m0+m

is differentiable on N and strictly differentiable at 0. Then, we have

∂BG(X) = ∂BΨ(0) ,

where Ψ(·) := G′(X; ·) : X → X is the directional derivative of G at X.

Proof. Let U ∈ ∂BG(X). By Theorem 3.13, we know that there exists K = (K1,K2) ∈

Kκ such that for any H ∈ X , (3.111) holds, i.e., there exist a sequence {κt = (λt, σt)} ⊂

D↓g converges to κ and Qk ∈ O|αk|, k = 1, . . . , r0 + r, Q′ ∈ O|b| and Q′′ ∈ On−|a| such

that for any H ∈ X ,

U(H) =
(
P
(
K1(H̃) + T1(Ã)

)
P
T
, U
(
K2(H̃) + T2(B̃)

)
V
T
)
, (3.126)
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with

K(Z) = (K1(Z),K2(Z))

= lim
t→∞

(
Q(L1(κt, Ẑ) + J1(κt, Ẑ))QT ,M(L2(κt, Ẑ) + J2(κt, Ẑ))NT

)
, Z = (A,B) ∈ X ,

(3.127)

where for each κt, the linear operators L(κt, ·) and J(κt, ·) are defined by (3.47) and

(3.108), respectively; Q = diag(Q1, . . . , Qr0) ∈ Om0 ,

M = diag(Qr0+1, . . . , Qr0+r, Q
′) ∈ Om and N = diag(Qr0+1, . . . , Qr0+r, Q

′′) ∈ On ;

Ẑ = (QTAQ,MTBN) ∈ X . For each t, let wt := (ξt, ζt) = κt − κ ∈ <m0 ×<m and

W t :=
(
W t

1 , . . . ,W
t
r0+r,W

t
r0+r+1

)
∈ Sα1 × . . .× Sαr0+r ×<|b|×(n−|a|) =W

with

W t
k :=


Qkdiag(wt

k)Q
T
k if 1 ≤ k ≤ r0 + r,

Q′[diag(wt
r0+r+1) 0]Q′′T if k = r0 + r + 1.

By noting that for each t, wt
r0+r+1 ∈ <

|b|
+ , we know that κ(W t) = wt. Therefore, we

have

lim
t→∞

W t = 0 ∈ W .

Moreover, for each t, define Ct := (Ct
1,C

t
2) ∈ X by

Ct
1 = P


W t

1 · · · 0

...
. . .

...

0 · · · W t
r0

P
T ∈ Sm0

and

Ct
2 = U



W t
r0 · · · 0 0

...
. . .

...
...

0 · · · W t
r0+r 0

0 · · · 0 W t
r0+r+1


V
T ∈ <m×n .
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Therefore, it is easy to see that

lim
t→∞

Ct = 0 ∈ X .

By recalling the notation D defined in (3.25), we know that

D(C̃t) = W t ∈ W ∀ t ,

where for each t, C̃t =
(
P
T
Ct

1P ,U
T
Ct

2V
)

. From the directional derivative formula

(3.26), we know that for each t and any H = (A,B) ∈ X ,

Ψ(Ct +H)−Ψ(Ct) =
(
P [∆t

1 + T1(Ã)]P
T
, U [∆t

2 + T2(B̃)]V
T
)
, (3.128)

where ∆t
1 ∈ Sm0 and ∆t

2 ∈ <m×n are defined by

(∆t
1)αkαk′ :=


Φk(D(C̃t) +D(H̃))− Φk(D(C̃t)) if k = k′,

0 otherwise,

k, k′ = 1, . . . , r0 ,

(3.129a)

and

(∆t
2)alal′ :=


Φr0+l(D(C̃t) +D(H̃))− Φr0+l(D(C̃t)) if l = l′,

0 otherwise,

l, l′ = 1, . . . , r+1 ,

(3.129b)

where Φ : W → W is the spectral operator with respect to the symmetric mapping

φ(·) := g′(κ; ·) defined by (3.22). Since d(·) = g(κ+ ·)− g(κ)− g′(κ; ·) is differentiable

on N and all κt ∈ D↓g, we know that for t sufficiently large, φ is differentiable at each

wt and

φ′(wt) = g′(κt)− d′(wt) . (3.130)

Moreover, since d is strictly differentiable at 0 and d′(0) = 0 and {g′(κt)} converges as

t→∞, we obtain that

lim
t→∞

g′(κt) = lim
t→∞

φ′(wt) . (3.131)
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Therefore, we know from Theorem 3.6 that for any t sufficiently large, Φ :W →W is dif-

ferentiable at D(C̃t), and by using the formula (3.50), the derivative Φ′(D(C̃t))D(H̃) ∈

W can be written as the following form:

Φ′(D(C̃t))D(H̃) =
(
Q1O

t
1(H̃)QT1 , . . . , Qr0+rO

t
r0+r(H̃)QTr0+r, Q

′Ot
r0+r+1(H̃)Q′′T

)
(3.132)

with

Ot
k(H̃) =


Lφk(wt,D(H̃)) + (ADφ (wt))αkαk ◦ (QTk (D(H̃))kQk) if 1 ≤ k ≤ r0 + r,

Lφr0+r+1(wt,D(H̃)) + T φ(wt, Q′T (D(H̃))r0+r+1Q
′′) if k = r0 + r + 1,

(3.133)

where for each wt, ADφ (wt) ∈ Sm0 , Lφ(wt, ·) =
(
(Lφ)1(wt, ·), . . . , (Lφ)r0+r+1(wt, ·)

)
:

W →W and Tφ(wt, ·) : <|b|×(n−|a|) → <|b|×(n−|a|) are defined by (3.41), (3.47) and (3.49)

with respect to the symmetric mapping φ. For each t, let

Rt(H̃) := (Rt
1(H̃),Rt

2(H̃)) ∈ X (3.134)

with

Rt
1(H̃) := Q


Ot

1(H̃) · · · 0

...
. . .

...

0 · · · Ot
r0(H̃)

QT ∈ Sm0

and

Rt
2(H̃) = M



Ot
r0(H̃) · · · 0 0

...
. . .

...
...

0 · · · Ot
r0+r(H̃) 0

0 · · · 0 Ot
r0+r+1(H̃)


NT ∈ <m×n .

Hence, we know from (3.128) and (3.132) that Ψ is differentiable at each Ct and for any

H ∈ X ,

Ψ′(Ct)H =
(
P [Rt

1(H̃) + T1(Ã)]P
T
, U [Rt

2(H̃) + T2(B̃)]V
T
)
. (3.135)
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By comparing with (3.126), we know that the conclusion then follows if we show that

K = lim
t→∞

Rt . (3.136)

On the other hand, since the orthogonal matrices Q ∈ Om0 , M ∈ Om and N ∈ On are

fixed, it is sufficient to prove that

K(Z) = lim
t→∞

Rt(Z) ∀Z ∈ {Ẽ(ij)} ∪ {F̃ (ij)} , (3.137)

where

{Ẽ(ij)} ∪ {F̃ (ij)} :=
{

(QZ1Q
T ,MZ2N

T ) : Z = (Z1,Z2) ∈ {E(ij)} ∪ {F (ij)}
}

{E(ij)}∪{F (ij)} is the standard basis of X defined by (3.61). For simplicity, we only show

that (3.137) holds for the case that each F̃ (ij) = (0, F̃ (ij)) ∈ X , 1 ≤ i ≤ m, 1 ≤ j ≤ n,

and the other cases can be shown similarly. Rewrite F̃ (ij) as the form

F̃ (ij) =
[
F̃

(ij)
1 F̃

(ij)
2

]
with F̃

(ij)
1 ∈ <m×m and F̃

(ij)
2 ∈ <m×(n−m). Therefore, we know from (3.127) and (3.133)

that for any 1 ≤ i ≤ m, 1 ≤ j ≤ n,

K(F̃ (ij)) =

 lim
t→∞

(0,M(L2(κt,F (ij)) + J2(κt,F (ij)))NT ) if i, j ∈ al for some 1 ≤ l ≤ r + 1,

0 otherwise.

and for each t

Rt(F̃ (ij)) =

 (0,Rt
2(F (ij))) if i, j ∈ al for some 1 ≤ l ≤ r + 1,

0 otherwise.

Therefore, without loss of generality, we only need to consider the case that i, j ∈ al for

some 1 ≤ l ≤ r + 1.

Case 1: 1 ≤ i = j ≤ m. By (3.47), (3.108) and (3.133), we know that

L2(κt,F (ij)) + J2(κt,F (ij)) =
[
diag(g′(κt)ei) 0

]
and

Rt
2(F (ij)) = M

[
diag(φ′(wt)ei) 0

]
NT ,
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where for each 1 ≤ i ≤ m, ei is a vector whose entries are zeros, except the i-th entry is

one. Therefore, from (3.131), we know that

K(F̃ (ij)) = lim
t→∞

(0,M(L2(κt,F (ij)) + J2(κt,F (ij)))NT )

= lim
t→∞

(0,Rt
2(F (ij))) = lim

t→∞
Rt(F̃ (ij)) .

Case 2: i 6= j ∈ al for some 1 ≤ l ≤ r and σti 6= σtj for any t sufficiently large. By

(3.47) and (3.108), we know that for any t,(
L2(κt,F (ij)) + J2(κt,F (ij))

)
pq

=


gm0+i(κ

t)− gm0+j(κ
t)

2(σti − σtj)
if (p, q) = (i, j) or (q, p) = (i, j),

0 otherwise,

1 ≤ p ≤ m, 1 ≤ q ≤ n .

Meanwhile, by (3.133), we know that for any t,(
R̃t

2(F (ij))
)
pq

=
(
MTRt

2(F (ij))N
)
pq

=


φm0+i(w

t)− φm0+j(w
t)

2(ζti − ζtj)
if (p, q) = (i, j) or (q, p) = (i, j),

0 otherwise,

1 ≤ p ≤ m, 1 ≤ q ≤ n .

For each t, since σi = σj and gm0+i(κ) = gm0+j(κ), we know that

gm0+i(κ
t)− gm0+j(κ

t)

2(σti − σtj)
=

gm0+i(κ+wt)− gm0+j(κ+wt)

2(ζti − ζtj)

=
gm0+i(κ+wt)− gm0+i(κ) + gm0+j(κ)− gm0+j(κ+wt)

2(ζti − ζtj)

=
dm0+i(w

t)− dm0+j(w
t)

2(ζti − ζtj)
+
φm0+i(w

t)− φm0+j(w
t)

2(ζti − ζtj)
.(3.138)

Therefore, since d is strictly differentiable at 0, by (3.123), we obtain that

lim
t→∞

gm0+i(κ
t)− gm0+j(κ

t)

2(σti − σtj)
= lim

t→∞

φm0+i(w
t)− φm0+j(w

t)

2(ζti − ζtj)
.

Therefore,

K(F̃ (ij)) = lim
t→∞

(0,M(L2(κt,F (ij)) + J2(κt,F (ij)))NT )

= lim
t→∞

(0,Rt
2(F (ij))) = lim

t→∞
Rt(F̃ (ij)) .
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Case 3: i 6= j ∈ al for some 1 ≤ l ≤ r and σti = σtj for any t sufficiently large.

By (3.47) and (3.108), we know that for any t sufficiently large and any 1 ≤ p ≤ m,

1 ≤ q ≤ n,

(
L2(κt,F (ij)) + J2(κt,F (ij))

)
pq

=

 ((g′(κt))(m0+i)(m0+i) − (g′(κt))(m0+i)(m0+j))/2 if (p, q) or (q, p) = (i, j),

0 otherwise.

Meanwhile, by (3.133), we know that for any t sufficiently large and any 1 ≤ p ≤ m,

1 ≤ q ≤ n,

(
R̃t

2(F (ij))
)
pq

=
(
MTRt

2(F (ij))N
)
pq

=

 ((φ′(wt))(m0+i)(m0+i) − (φ′(wt))(m0+i)(m0+j))/2 if (p, q) or (q, p) = (i, j),

0 otherwise.

Therefore, from (3.131), we know that

K(F̃ (ij)) = lim
t→∞

(0,M(L2(κt,F (ij)) + J2(κt,F (ij)))NT )

= lim
t→∞

(0,Rt
2(F (ij))) = lim

t→∞
Rt(F̃ (ij)) .

Case 4: i 6= j ∈ b and σti = σtj > 0 for any t sufficiently large. By (3.47) and (3.108),

we know that for any t sufficiently large,

L2(κt,F (ij)) + J2(κt,F (ij))

=

[(
(g′(κt))(m0+i)(m0+i) − (g′(κt))(m0+i)(m0+j)

)
S(F

(ij)
1 ) +

gm0+i(κ
t) + gm0+j(κ

t)

σti + σtj
T (F

(ij)
1 ) 0

]
.

Meanwhile, from (3.133), we know that for any t sufficiently large,

R̃t
2(F (ij)) = MTRt

2(F (ij))N

=

[(
(φ′(wt))(m0+i)(m0+i) − (φ′(wt))(m0+i)(m0+j)

)
S(F

(ij)
1 ) +

φm0+i(w
t) + φm0+j(w

t)

ζti + ζtj
T (F

(ij)
1 ) 0

]
.
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For each t, since σi = σj = 0 and gm0+i(κ) = gm0+j(κ) = 0, we know that

gm0+i(κ
t) + gm0+j(κ

t)

σti + σtj
=

gm0+i(κ+wt) + gm0+j(κ+wt)

ζti + ζtj

=
gm0+i(κ+wt)− gm0+i(κ)− gm0+j(κ) + gm0+j(κ+wt)

ζti + ζtj

=
dm0+i(w

t) + dm0+j(w
t)

ζti + ζtj
+
φm0+i(w

t) + φm0+j(w
t)

ζti + ζtj
.(3.139)

Therefore, since d is strictly differentiable at 0, by (3.124), we know that

lim
t→∞

gm0+i(κ
t) + gm0+j(κ

t)

σti + σtj
= lim

t→∞

φm0+i(w
t) + φm0+j(w

t)

ζti + ζtj
.

Hence, by (3.131), we obtain that

K(F̃ (ij)) = lim
t→∞

(0,M(L2(κt,F (ij)) + J2(κt,F (ij)))NT )

= lim
t→∞

(0,Rt
2(F (ij))) = lim

t→∞
Rt(F̃ (ij)) .

Case 5: i 6= j ∈ b and σti 6= σtj for any t sufficiently large. By (3.47) and (3.108), we

know that for any t sufficiently large,

L2(κt,F (ij)) + J2(κt,F (ij))

=

[
gm0+i(κ

t)− gm0+j(κ
t)

σti − σtj
S(F

(ij)
1 ) +

gm0+i(κ
t) + gm0+j(κ

t)

σti + σtj
T (F

(ij)
1 ) 0

]
.

Meanwhile, from (3.133), we know that for any t sufficiently large,

R̃t
2(F (ij)) = MTRt

2(F (ij))N

=

[
φm0+i(w

t)− φm0+j(w
t)

ζti − ζtj
S(F

(ij)
1 ) +

φm0+i(w
t) + φm0+j(w

t)

ζti + ζtj
T (F

(ij)
1 ) 0

]
.

Therefore, by (3.138) and (3.139), since d is strictly differentiable at 0, we know from

(3.123) and (3.124) that

lim
t→∞

gm0+i(κ
t)− gm0+j(κ

t)

σti − σtj
= lim

t→∞

φm0+i(w
t)− φm0+j(w

t)

ζti − ζtj

and

lim
t→∞

gm0+i(κ
t) + gm0+j(κ

t)

σti + σtj
= lim

t→∞

φm0+i(w
t) + φm0+j(w

t)

ζti + ζtj
.
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Hence, we know that

K(F̃ (ij)) = lim
t→∞

(0,M(L2(κt,F (ij))+J2(κt,F (ij)))NT ) = lim
t→∞

(0,Rt
2(F (ij))) = lim

t→∞
Rt(F̃ (ij)) .

Case 6: i 6= j ∈ b and σti = σtj = 0 for any t sufficiently large. By (3.47) and (3.108),

we know that for any t sufficiently large,

L2(κt,F (ij)) + J2(κt,F (ij))

=
[(

(g′(κt))(m0+i)(m0+i) − (g′(κt))(m0+i)(m0+j)

)
F

(ij)
1 0

]
.

Meanwhile, from (3.133), we know that for any t sufficiently large,

R̃t
2(F (ij)) = MTRt

2(F (ij))N

=
[(

(φ′(wt))(m0+i)(m0+i) − (φ′(wt))(m0+i)(m0+j)

)
F

(ij)
1 0

]
.

Therefore, by (3.131), we obtain that

K(F̃ (ij)) = lim
t→∞

(0,M(L2(κt,F (ij))+J2(κt,F (ij)))NT ) = lim
t→∞

(0,Rt
2(F (ij))) = lim

t→∞
Rt(F̃ (ij)) .

Case 7: i ∈ b, j ∈ c and σti > 0 for any t sufficiently large. By (3.47) and (3.108),

we know that for any t sufficiently large,

L2(κt,F (ij)) + J2(κt,F (ij)) =

[
0
gm0+i(κ

t)

σti
F

(ij)
2

]
.

Meanwhile, from (3.133), we know that for any t sufficiently large,

R̃t
2(F (ij)) = MTRt

2(F (ij))N =

[
0
φm0+i(w

t)

ζti
F

(ij)
2

]
.

Since σi = 0 and gm0+i(κ) = 0, we have for each t,

gm0+i(κ
t)

σti
=
gm0+i(κ+wt)− gm0+i(κ)

ζti
=
dm0+i(w

t)

ζti
+
φm0+i(w

t)

ζti
.

Therefore, by (3.125), we obtain that

K(F̃ (ij)) = lim
t→∞

(0,M(L2(κt,F (ij)) + J2(κt,F (ij)))NT )

= lim
t→∞

(0,Rt
2(F (ij))) = lim

t→∞
Rt(F̃ (ij)) .
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Case 8: i ∈ b, j ∈ c and σti = 0 for any t sufficiently large. By (3.47) and (3.108),

we know that for any t sufficiently large,

L2(κt,F (ij)) + J2(κt,F (ij))

=
[
0
(
(g′(κt))(m0+i)(m0+i) − (g′(κt))(m0+i)(m0+j)

)
F

(ij)
2

]
.

Meanwhile, from (3.133), we know that for any t sufficiently large,

R̃t
2(F (ij)) = MTRt

2(F (ij))N

=
[
0
(
(φ′(wt))(m0+i)(m0+i) − (φ′(wt))(m0+i)(m0+j)

)
F

(ij)
2

]
.

Therefore, by (3.131), we obtain that

K(F̃ (ij)) = lim
t→∞

(0,M(L2(κt,F (ij)) + J2(κt,F (ij)))NT )

= lim
t→∞

(0,Rt
2(F (ij))) = lim

t→∞
Rt(F̃ (ij)) .

Finally, from (3.126), (3.127) and (3.135), we know that there exists a sequence

{Ct} ⊂ X in DΨ converging to 0 such that

lim
t→∞

Ψ′(Ct)H = U(H) ∀H ∈ X .

This implies that

U ∈ ∂BΨ(0) .

Conversely, let U ∈ ∂BΨ(0). Then, there exists a sequence {Ct := (Ct
1,C

t
2)} ⊂ X

converging to 0 such that Ψ is differentiable at each Ct and

U = lim
t→∞

Ψ′(Ct) .

Meanwhile, we know from (3.128) and (3.129) that for each t, Ψ is differentiable at Ct

if and only if the spectral operator Φ is differentiable at D(C̃t), where

C̃t =
(
C̃t

1, C̃
t
2

)
=
(
P
T
Ct

1P ,U
T
Ct

2V
)
∈ Sm0 ×<m×n, t = 1, 2, . . . .
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By (3.25), we know that for each t,

D(C̃t) =
(

(C̃t
1)α1α1 , . . . , (C̃

t
1)αr0αr0 , S((C̃t

2)a1a1), . . . , S((C̃t
2)arar), (C̃

t
2)bā

)
.

For each t, consider the decompositions

(C̃t
1)αkαk = Qtkdiag(wt

k)(Q
t
k)
T , k = 1, . . . , r0 ,

S((C̃t
2)alal) = Qtr0+ldiag(wt

r0+l)(Q
t
r0+l)

T , l = 1, . . . , r

and

(C̃t
2)bā = Q′

t [
diag(wt

r0+r+1) 0
]

(Q′′
t
)T ,

where for each t, Qtk ∈ O|αk|, k = 1, . . . , r0, Qtr0+l ∈ O|al|, l = 1, . . . , r, Q′t ∈ O|b| and

Q′′t ∈ On−|a|; wt ∈ <m0 ×<m satisfies

wt
k =


λ((C̃t

1)αkαk) if 1 ≤ k ≤ r0,

λ(S((C̃t
2)alal)) if r0 + 1 ≤ k = r0 + l ≤ r0 + r

σ((C̃t
2)bā) if k = r0 + r + 1.

For each t, let ξt := (wt
1, . . . ,w

t
r0) ∈ <m0 and ζt := (wt

r0+1, . . . ,w
t
r0+r,w

t
r0+r+1) ∈ <m.

Then, we have wt = (ξt, ζt) for each t. For each t, let Qt = diag(Qt1, . . . , Q
t
r0) ∈ Om0 ,

M t = diag(Qtr0+1, . . . , Q
t
r0+r, Q

′t) ∈ Om and N t = diag(Qtr0+1, . . . , Q
t
r0+r, Q

′′t) ∈ On .

Since {Qt}, {M t} and {N t} are uniformly bounded, by taking subsequence if necessary,

we may assume that

lim
t→∞

Qt = Q = diag(Q1, . . . , Qr0) ∈ Om0 ,

lim
t→∞

M t = M = diag(Qr0+1, . . . , Qr0+r, Q
′) ∈ Om ,

lim
t→∞

N t = N = diag(Qr0+1, . . . , Qr0+r, Q
′′) ∈ On .

Since Φ is differentiable at eachD(C̃t), we know from Theorem 3.6 that φ is differentiable

at each wt. Also, by (3.128) and (3.50) in Theorem 3.6, we know that for any H =
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(A,B) ∈ X ,

U(H) = lim
t→∞

Ψ′(Ct)H

=
(
P [R1(H̃) + T1(Ã)]P

T
, U [R2(H̃) + T2(B̃)]V

T
)
, (3.140)

with

R = (R1,R2) = lim
t→∞

Rt ,

where for each t, Rt(·) = (Rt
1(·),Rt

2(·)) : X → X is a linear operator defined by (3.134).

Denote

P = PQ ∈ Om0 , U = UM ∈ Om and V = V N ∈ On .

For t sufficiently large, we have κt := κ+wt = (λt, σt) = <m0 ×<m+ . Therefore, for such

t, we may define

Xt := (Y t, Zt) =
(
Pdiag(λt)P T , U

[
diag(σt) 0

]
V T
)
∈ X .

It is clear that the sequence {Xt} converges to X. Meanwhile, since d is differentiable

on some neighborhood N , we know that for t sufficiently large, g is differentiable at

each κt and (3.130) holds. Moreover, since d is strictly differentiable at 0 and {φ′(wt)}

converges, we know that (3.131) holds. Therefore, by Theorem 3.6, we know that for t

sufficiently large, G is differentiable at each Xt and for any H = (A,B) ∈ X ,

G′(Xt)H =
(
P (L1(κt, Ĥ) + J1(κt, Â) + Θ1(κt, Â))P T ,

U(L2(κt, Ĥ) + J2(κt, B̂) + Θ2(κt, B̂))V T
)
, (3.141)

where for each t, Θ1(κt, Â) ∈ Sm0 and Θ2(κt, B̂) ∈ <m×n are given by

Θ1(κt, Â) = AD(κt) ◦ Â− J1(κt, Â) and Θ2(κt, B̂) = T (κt, B̂)− J2(κt, B̂) ,

AD(κt), T (κt, ·), L(κt, ·) and J(κt, ·) are given by (3.41), (3.49), (3.47) and (3.108),

respectively; and Ĥ = (Â, B̂) =
(
P TAP,UTBV

)
= (QT ÃQ,MT B̃N). Therefore, since

wt converges to κ, we know that

lim
t→∞

(
Θ1(κt, Â),Θ2(κt, B̂)

)
=
(
T1(Ã),T2(B̃)

)
.
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By taking subsequence if necessary, we may assume that {G′(Xt)} converges. Then,

from (3.141), we know that for any H ∈ X ,

lim
t→∞

G′(Xt)H =
(
P
(
K1(H̃) + T1(Ã)

)
P
T
, U
(
K2(H̃) + T2(B̃)

)
V
T
)
, (3.142)

with

K(Z) = (K1(Z),K2(Z)) = lim
t→∞

(
Kt

1(Z),Kt
2(Z)

)
, Z = (A,B) ∈ X ,

where for each t,

(
Kt

1(Z),Kt
2(Z)

)
:=
(
Q(L1(κt, Ẑ) + J1(κt, Ẑ))QT ,M(L2(κt, Ẑ) + J2(κt, Ẑ))NT

)
Similarly as the proof of Case 1-8 in the first part, by using the properties (3.131), we

can prove that

R = lim
t→∞

Kt .

Therefore, by (3.140) and (3.142), we know that there exists a sequence {Xt} in DG

converging to X such that

lim
t→∞

G′(Xt)H = U(H) ∀H ∈ X .

Then, we have U ∈ ∂BG(X). Therefore, the proof is completed. �

3.8 An example: the metric projector over the Ky Fan

k-norm epigraph cone

In this section, as an example of spectral operators, we study the metric projection

operator over the Ky Fan k-norm epigraph cone. Let K ∈ < × <m×n be the epigraph

of the Ky Fan k-norm, i.e., K ≡ epi‖ · ‖(k). Note that the matrix cone K ≡ epi‖ · ‖(k)

includes the epigraphs of the spectral norm ‖·‖2 (k = 1) and nuclear norm ‖·‖∗ (k = m).

Let ΠK : < × <m×n → < × <m×n be the metric projection operator over the epigraph
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of the Ky Fan k-norm, i.e., for any given (t,X) ∈ < × <m×n, (t̄, X) := ΠK(t,X) is the

unique optimal solution of the following convex problem

min
1

2

(
(τ − t)2 + ‖Y −X‖2

)
s.t. ‖Y ‖(k) ≤ τ .

(3.143)

Therefore, from Proposition 3.2, we know that

ΠK(t,X) =
(
g1(t, σ), U [diag (g2(t, σ)) 0]V

T
)
,

where σ = σ(X), (U, V ) ∈ Om,n(X) and g(t, σ) :=
(
g1(t, σ), g2(t, σ)

)
∈ < × <m is the

metric projection operator over the polyhedral convex set epi ‖ · ‖(k) ⊆ <×<m, i.e., the

unique optimal solution of the following convex problem

min
1

2

(
(τ − t)2 + ‖y − σ‖2

)
s.t. ‖y‖(k) ≤ τ ,

(3.144)

where ‖ ·‖(k) : <m → < is the vector k-norm, i.e., the sum of the k largest components in

absolute value of any vector in <m. It is clear that g is a symmetric function. Therefore,

the metric projection operator ΠK is the spectral operator with respect to g.

Another important spectral operator which is closely related to the metric projection

operator over the epigraph of the Ky Fan k-norm is the metric projection operator over

the epigraph of s(k)(·) : Sn → <, the sum of k largest eigenvalues of the symmetric matrix.

LetM≡ epi s(k)(·) be the epigraph of the positively homogenous convex function s(k)(·).

Let ΠM : <×Sn → <×Sn be the metric projection operator overM, i.e., for any given

(t,X) ∈ < × Sn, (t̄, X) := ΠM(t,X) is the unique optimal solution of the following

convex problem

min
1

2

(
(τ − t)2 + ‖Y −X‖2

)
s.t. s(k)(Y ) ≤ τ .

(3.145)

Therefore, since s(k)(·) is unitarily invariant in Sn, from Proposition 3.2, we know that

ΠM(t,X) =
(
h1(t, λ), Pdiag (h2(t, λ))P

T
)
,
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where λ = λ(X), P ∈ On(X) and h(t, σ) :=
(
h1(t, λ),h2(t, λ)

)
∈ < × <n is the metric

projection operator over the polyhedral convex set epi s(k)(·) ⊆ < × <n, i.e., the unique

optimal solution of the following convex problem

min
1

2

(
(τ − t)2 + ‖y − λ‖2

)
s.t. s(k)(y) ≤ τ ,

(3.146)

where s(k)(·) : <n → < is the sum of the k largest components of any vector in <n. It

is clear that h is a symmetric function with respect to < × <n. Similarly, the metric

projection operator ΠM is the spectral operator with respect to h.

For the definitions, it is easy to see that the symmetric functions g and h are similar.

In fact, several important properties of g and h have been well studied in [113]. The cor-

responding properties of the spectral operators ΠK and ΠM can be obtained by applying

the results for the general spectral operator which we obtained before. Therefore, from

now on, we mainly focus on the spectral operator ΠK, and the corresponding properties

of ΠM can be obtained similarly. Since epi‖ · ‖(k) ∈ < × <m is a polyhedral convex

set, we know that the corresponding metric projection operator g is a piecewise linear

function (for a short proof, see [87, Chapter 2] or [93, Chapter 5]). By [113, Propo-

sition 4.1], we know that for any given (t, σ) ∈ < × <m, the unique optimal solution

(t̄, σ) := g(t, σ) ∈ <×<m of (3.144) can be easily obtained by applying [113, Algorithm

1] and the computational cost is O(k(m− k + 1)). Moreover, by using [113, Lemma 4.2

& 4.1], we have the following simple fact.

Lemma 3.15. Let (t,X) /∈ intK be given. Denote σ = σ(X). Then, the unique optimal

solution (t̄, σ) = g(t, σ) ∈ < × <m of (3.144) satisfies the following conditions.

(i) If σk > 0, then there exist θ > 0 and u ∈ <m+ such that

σ = σ − θu , (3.147)
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with ui = 1, i = 1, . . . , k0, ui = 0, i = k1 + 1, . . . ,m,

uα = eα, uβ = u↓β,
∑
i∈β

ui = k − k0 and uγ = 0 , (3.148)

where 0 ≤ k0 ≤ k − 1 and k ≤ k1 ≤ m are two integers such that

σ1 ≥ . . . ≥ σk0 > σk0+1 = . . . = σk = . . . = σk1 > σk1+1 ≥ . . . ≥ σm ≥ 0 (3.149)

and

α = {1, . . . , k0}, β = {k0, . . . , k1} and γ = {k1 + 1, . . . ,m} . (3.150)

(ii) If σk = 0, then there exist θ > 0 and u ∈ <m+ such that

σ = σ − θu , (3.151)

with

uα = e, uβ = u↓β and
∑
i∈β

ui ≤ k − k0 , (3.152)

where 0 ≤ k0 ≤ k − 1 is the integer such that

σ1 ≥ · · · ≥ σk0 > σk0+1 = . . . = σk = . . . = σm = 0 (3.153)

and

α = {1, . . . , k0} and β = {k0, . . . ,m} . (3.154)

Other properties, including the close form solution, the directional differentiability,

and the F-differentiability, of the symmetric function g have also been studied in [113].

Therefore, the corresponding properties of the metric projection operator ΠK follow from

the results obtained in previous sections. Next, we list some of them as follows.

Let (t,X) ∈ < × <m×n be given. Consider the singular value decomposition of X,

i.e.,

X = U [Σ(X) 0]V
T
, (3.155)
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where (U, V ) ∈ Om,n(X). Let a, b, c and al, l = 1, . . . , r be the index sets defined

by (2.25) and (2.26) for X. Since g is globally Lipschitz continuous with modulus 1,

directionally differentiable ([113, Theorem 5.1]), we know from Theorem 3.4 that the

metric projection operator ΠK is directionally differentiable everywhere. Next, we will

provide the directional derivative formula Π′K((t,X); (·, ·)) for the metric projector ΠK

at any given point (t,X) ∈ < × <m×n. Without lose of generality, we assume that

(t,X) /∈ intK ∪ intK◦, since otherwise ΠK is continuously differentiable and the deriva-

tive Π′K(t,X) is either the identity mapping or the zero mapping. For notational conve-

nience, denote (t̄, σ) = g(t, σ). For the given (t,X), let E1, E2 ∈ Sm and F ∈ <m×(n−m)

be the matrices defined by (3.13)-(3.15), i.e.,

(E1)ij :=


σi − σj
σi − σj

if σi 6= σj ,

0 otherwise ,

i, j ∈ {1, . . . ,m} , (3.156)

(E2)ij :=


σi + σj
σi + σj

if σi + σj 6= 0 ,

0 otherwise ,

i, j ∈ {1, . . . ,m} , (3.157)

and

(F)ij :=


σi
σi

if σi 6= 0 ,

0 otherwise ,

i ∈ {1, . . . ,m}, j ∈ {1, . . . , n−m} . (3.158)

In order to introduce the directional derivative formula of the metric projector ΠK, we

consider the following two cases.

Case 1. (t,X) /∈ intK ∪ intK◦ and σk > 0. Then, by the part (i) of Lemma 3.15,

we know that there exist two integers r0, r1 ∈ {1, . . . , r} such that

α =

r0⋃
l=1

al, β =

r1⋃
l=r0+1

al and γ =

r+1⋃
l=r1+1

al ,

where the index sets α, β and γ are defined by (3.150). Define

β1 := {i ∈ β |ui = 1}, β2 := {i ∈ β | 0 < ui < 1} and β3 := {i ∈ β |ui = 0} .

(3.159)
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Then, by (3.147) and (3.148), we know from (3.156) that

(E1)alal′ = Ealal′ , l 6= l′ and l, l′ ∈ {1, . . . , r0} or l, l′ ∈ {r1 + 1, . . . , r + 1} ,

(E1)alβ1 = Ealβ1 and (E1)β1al = Eβ1al , l = 1, . . . , r0 ,

(E1)alβ3 = Ealβ3 and (E1)β3al = Eβ3al , l = r1 + 1, . . . , r + 1 ,

(E1)ββ = 0 .

For the given (t,X) ∈ <×<m×n, define a linear operator T : <m×n → <m×n by for any

Z = [Z1 Z2] ∈ <m×n,

T (Z) =

 (E1)γ γ ◦ S(Zγ γ) + (E2)γ γ ◦ T (Zγ γ) (E1)γ γ ◦ S(Zγ γ) + (E2)γ γ ◦ T (Zγ γ) Fγc ◦ Zγc

(E1)γγ ◦ S(Zγγ) + (E2)γγ ◦ T (Zγγ) Zγγ Zγc

 .
(3.160)

Define the finite dimensional real Euclidean space W by

W := <× S |a1| × . . .× S |ar1 | .

For any (ζ,W ) ∈ W, let κ(W ) := (λ(W1), . . . , λ(Wr1)) ∈ <k1 . Let C1 ⊆ W be the

closed subset defined as following, if (t,X) ∈ bdK,

C1 :=

{
(ζ,W ) ∈ W |

r0∑
l=1

tr(Wl) + s(k−k0)(κβ(W )) ≤ ζ

}
, (3.161a)

if (t,X) /∈ bdK,

C1 :=

{
(ζ,W ) ∈ W |

r0∑
l=1

tr(Wl) + s(k−k0)(κβ(W )) ≤ ζ,
r0∑
l=1

tr(Wl) + 〈uβ,κβ(W )〉 = ζ

}
,

(3.161b)

where s(k−k0) : <|β| → < is the positively homogeneous convex function defined by

s(k−k0)(z) =

k−k0∑
i=1

z↓i , z ∈ <|β| . (3.162)

By (3.147), we know that for any i, j ∈ β, ui = uj if σi = σj . Therefore, we know that

the closed subset C1 is convex. Also, it is easy to see that C1 is a cone.
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From Proposition 3.2, since the indicator function δC1(·) is unitarily invariant, we

know that the metric projection operator ΠC1 : W → W over the closed convex set C1

is the spectral operator with respect to the symmetric function φ = (φ0,φ1, . . . ,φr1) :

<× <|a1| × . . .×<|ar1 | → <×<|a1| × . . .×<|ar1 |, i.e.,

ΠC1(ζ,W ) = (Φ0(ζ,W ),Φ1(ζ,W ), . . . ,Φr1(ζ,W )) (3.163)

with Φ0(ζ,W ) = φ0(ζ,κ(W )) ∈ < and

Φl(ζ,W ) = Rldiag (φl(ζ,κ(W )))RTl ∈ S |al|, l = 1, . . . , r1 ,

where for each l ∈ {1, . . . , r1}, Rl ∈ O|al|(Wl), and for any (ζ,κ) ∈ <×<|a1|× . . .×<|ar1 |,

φ(ζ,κ) is the unique optimal solution of the following convex problem if (t,X) ∈ bdK,

min
1

2

(
(η − ζ)2 + ‖d− κ‖2

)
s.t. 〈eα, dα〉+ s(k−k0)(dβ) ≤ η ,

(3.164a)

if (t,X) /∈ bdK,

min
1

2

(
(η − ζ)2 + ‖d− κ‖2

)
s.t. 〈eα, dα〉+ s(k−k0)(dβ) ≤ η ,

〈eα, dα〉+ 〈uβ, dβ〉 = η .

(3.164b)

Define the first divided directional difference g[1]((t,X); (τ,H)) ∈ <×<m×n of g at (t,X)

along the direction (τ,H) ∈ < × <m×n by

g[1]((t,X); (τ,H)) :=
(
g

[1]
1 ((t,X); (τ,H)), g

[1]
2 ((t,X); (τ,H))

)
(3.165)

with

g
[1]
1 ((t,X); (τ,H)) = Φ0(τ,D(H̃)) ∈ <

and

g
[1]
2 ((t,X); (τ,H)) = T (H̃) +



Φ1(τ,D(H̃)) 0 0 0 0

0
. . . 0 0 0

0 0 Φr1(τ,D(H̃)) 0 0

0 0 0 0 0


∈ <m×n ,
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where the linear mapping T is defined by (3.160), H̃ = [U
T
HV 1 U

T
HV 2], and (τ,D(H̃)) ∈

W with D(H̃) =
(
S(H̃a1a1), . . . , S(H̃ar1ar1

)
)

.

Case 2. (t,X) /∈ intK ∪ intK◦ and σk = 0. Then, by the part (ii) of Lemma 3.15,

we know that there exists an integer r0 ∈ {1, . . . , r} such that

α =

r0⋃
l=1

al, β =

r+1⋃
l=r0+1

al (where ar+1 = b) ,

where the index sets α and β are given by (3.154). Define

β1 := {i ∈ β |ui = 1}, β2 := {i ∈ β | 0 < ui < 1} and β3 := {i ∈ β |ui = 0} .

(3.166)

Then, by (3.147), we know that

β1 ∪ β2 =

r⋃
l=r0+1

al and β3 = ar+1 = b .

Since σi = 0 for any i ∈ β, we know from (3.151) and (3.152) that the corresponding

matrices defined by (3.156)-(3.158) satisfy

(E1)alal′ = Ealal′ ∀ l 6= l′ ∈ {1, . . . , r0} ,

(E1)ββ = (E2)ββ = 0 and Fβc = 0 .

For the given (t,X) ∈ <×<m×n, define a linear operator T : <m×n → <m×n by for any

Z = [Z1 Z2] ∈ <m×n,

T (Z) =

 (E1)αα ◦ S(Zαα) + (E2)αα ◦ T (Zαα) (E1)αβ ◦ S(Zαβ) + (E2)αβ ◦ T (Zαβ) Fαc ◦ Zαc

(E1)βα ◦ S(Zβα) + (E2)βα ◦ T (Zβα) 0 0

 .
(3.167)

Define the finite dimensional real Euclidean space W by

W := <× S |a1| × . . .× S |ar| ×<|b|×(|b|+n−m) .

For any (ζ,W ) ∈ W, let κ(W ) := (λ(W1), . . . , λ(Wr), σ(Wr+1)) ∈ <m. Let C2 ⊆ W be

the closed subset defined as following if (t,X) ∈ bdK,

C2 :=

{
(ζ,W ) ∈ W |

r0∑
l=1

tr(Wl) + ‖κβ(W )‖(k−k0) ≤ ζ

}
, (3.168a)
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if (t,X) /∈ bdK,

C2 :=

{
(ζ,W ) ∈ W |

r0∑
l=1

tr(Wl) + ‖κβ(W )‖(k−k0) ≤ ζ,
r0∑
l=1

tr(Wl) + 〈uβ,κβ(W )〉 = ζ

}
,

(3.168b)

where ‖ · ‖(k−k0) : <|β| → < is the positive homogeneous convex function defined by

‖z‖(k−k0) =

k−k0∑
i=1

|z|↓i , z ∈ <|β| .

Again, by (3.151), we know that for any i, j ∈ β, ui = uj if σi = σj . Therefore, we know

that the closed subset C2 defined by (3.168) is convex. Also, it is easy to see that C2 is a

cone.

Similarly, since the indicator function δC2(·) is unitarily invariant, we know from

Proposition 3.2 that the metric projection operator ΠC2 : W → W over the closed

convex set C2 is the spectral operator with respect to the symmetric function φ :=

(φ0,φ1, . . . ,φr,φr+1) : <×<|a1| × . . .×<|ar| ×<|b| → <×<|a1| × . . .×<|ar| ×<|b|, i.e.,

ΠC2(ζ,W ) = (Φ0(ζ,W ),Φ1(ζ,W ), . . . ,Φr(ζ,W ),Φr+1(ζ,W )) (3.169)

with Φ0(ζ,W ) = φ0(ζ,κ(W )) ∈ < and
Φl(ζ,W ) = Rldiag (φl(ζ,κ(W )))RTl ∈ S |al|, l = 1, . . . , r ,

Φr+1(ζ,W ) = E[diag (φr+1(ζ,κ(W ))) 0]F T ∈ <|b|×(|b|+n−m) ,

where Rl ∈ O|al|(Wl), l = 1, . . . , r, (E,F ) ∈ O|b|,|b|+n−m(Wr+1), and for any (ζ,κ) ∈

< × <|α|+|β|, φ(ζ,κ) is the unique optimal solution of the following convex problem if

(t,X) ∈ bdK,

min
1

2

(
(η − ζ)2 + ‖d− κ‖2

)
s.t. 〈eα, dα〉+ ‖dβ‖(k−k0) ≤ η ,

(3.170a)

if (t,X) /∈ bdK,

min
1

2

(
(η − ζ)2 + ‖d− κ‖2

)
s.t. 〈eα, dα〉+ ‖dβ‖(k−k0) ≤ η ,

〈eα, dα〉+ 〈uβ, dβ〉 = η .

(3.170b)
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Similarly, define the first divided directional difference g[1]((t,X); (τ,H)) ∈ <×<m×n of

g at (t,X) along the direction (τ,H) ∈ < × <m×n by

g[1]((t,X); (τ,H)) :=
(
g

[1]
1 ((t,X); (τ,H)), g

[1]
2 ((t,X); (τ,H))

)
(3.171)

with

g
[1]
1 ((t,X); (τ,H)) = Φ0(τ,D(H̃)) ∈ <

and

g
[1]
2 ((t,X); (τ,H))

= T (H̃) +



Φ1(τ,D(H̃)) 0 0 0

0
. . . 0 0

0 0 Φr(τ,D(H̃)) 0

0 0 0 Φr+1(τ,D(H̃))


∈ <m×n ,

where the linear mapping T is defined by (3.167), (τ,D(H̃)) ∈ W with

D(H̃) =
(
S(H̃a1a1), . . . , S(H̃arar), [H̃bb H̃bc]

)
,

and H̃ = [U
T
HV 1 U

T
HV 2].

Consequently, from Theorem 3.4, we have the following results on the directional

differentiability of ΠK.

Proposition 3.16. Let (t,X) /∈ intK ∪ intK◦ be given. Suppose X has the singular

value decomposition (3.155). Denote (t̄, X) = ΠK(t,X). The metric projection operator

ΠK is directionally differentiable at (t,X) and the directional derivative at (t,X) along

the direction (τ,H) ∈ < × <m×n is given by

Π′K((t,X); (τ,H)) =
(
g

[1]
1 ((t,X); (τ,H)), Ug

[1]
2 ((t,X); (τ,H))V

T
)
,

where the first divided directional difference g[1]((t,X); (τ,H)) ∈ <×<m×n is defined by

(3.165) if σk(X) > 0, and defined by (3.171) if σk(X) = 0.
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By [113, Theorem 5.2], the following characterization of the F(réchet)-differentiability

of ΠK follows from Theorem 3.6 directly.

Proposition 3.17. Let (t,X) ∈ < × <m×n be given. Denote (t̄, X) = ΠK(t,X). The

metric projection operator ΠK is Fréchet differentiable if and only if (t,X) satisfies one

of the following conditions:

(i) ‖X‖(k) < t;

(ii) ‖X‖(k) > t, σk(X) > 0, k1 > k and β1 = ∅, β3 = ∅, where the index sets β1 and β3

are defined in (3.159);

(iii) ‖X‖(k) > t, σk(X) > 0, k1 = k;

(iv) ‖X‖(k) > t, σk(X) = 0,
∑m−k0

i=1 uk0+i < k − k0 and β1 = ∅, where the index set β1

in defined in (3.166).

Note that (i) of Proposition 3.17 is equivalent with (t,X) ∈ intK, and (iv) of Propo-

sition 3.17 includes the case that (t,X) ∈ intK◦. Moreover, the derivative formula of

ΠK can be obtained from Theorem 3.6 immediately. For the sake of completeness, we

provide the formula as follows.

If ‖X‖(k) < t, then

Π′K(t,X)(τ,H) = (τ,H), (τ,H) ∈ < × <m×n .

If ‖X‖(k) > t, σk(X) > 0, k1 > k and β1 = ∅, β3 = ∅, then for any (τ,H) ∈ <×<m×n,

Π′K(t,X)(τ,H)

=
(
Φ0(τ,D(H̃)), U(T (H̃) +



Φ1(τ,D(H̃)) 0 0 0

0
. . . 0 0

0 0 Φr1(τ,D(H̃)) 0

0 0 0 0


)V

T )
,

(3.172)
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where the linear mapping T is defined by (3.160), H̃ = [U
T
HV 1 U

T
HV 2], (τ,D(H̃)) ∈

W with D(H̃) :=
(
S(H̃a1a1), . . . , S(H̃ar1ar1

)
)

, and Φ : W → W is defined by (3.163)

with respect to the symmetric function φ : <×<|a1|×. . .×<|ar1 | → <×<|a1|×. . .×<|ar1 |,

i.e., for any (ζ,κ) ∈ < × <|α|+|β|, φ(ζ,κ) is the unique optimal solution of the following

convex problem

min
1

2

(
(η − ζ)2 + ‖d− κ‖2

)
s.t. 〈eα, dα〉+ (k − k0)ω = η ,

di = dj = ω, i, j ∈ β .

(3.173)

If ‖X‖(k) > t, σk(X) > 0, k1 = k, then for any (τ,H) ∈ < × <m×n,

Π′K(t,X)(τ,H)

=
(
Φ0(τ,D(H̃)), U(T (H̃) +



Φ1(τ,D(H̃)) 0 0 0

0
. . . 0 0

0 0 Φr1(τ,D(H̃)) 0

0 0 0 0


)V

T )
,

(3.174)

where the linear mapping T is defined by (3.160), H̃ = [U
T
HV 1 U

T
HV 2], (τ,D(H̃)) ∈

W with D(H̃) :=
(
S(H̃a1a1), . . . , S(H̃ar1ar1

)
)

, and Φ : W → W is defined by (3.163)

with respect to the symmetric function φ : <×<|a1|×. . .×<|ar1 | → <×<|a1|×. . .×<|ar1 |,

i.e., for any (ζ,κ) ∈ < × <|α|+|β|, φ(ζ,κ) is the unique optimal solution of the following

convex problem

min
1

2

(
(η − ζ)2 + ‖d− κ‖2

)
s.t. 〈eα, dα〉+ 〈eβ, dβ〉 = η .

(3.175)

If ‖X‖(k) > t, σk(X) = 0,
∑m−k0

i=1 uk0+i < k − k0 and β1 = ∅, then for any (τ,H) ∈
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<× <m×n,

Π′K(t,X)(τ,H)

=
(
Φ0(τ,D(H̃)), U(T (H̃) +



Φ1(τ,D(H̃)) 0 0 0

0
. . . 0 0

0 0 Φr(τ,D(H̃)) 0

0 0 0 Φr+1(τ,D(H̃))


)V

T )
,

(3.176)

where the linear mapping T is defined by (3.167), (τ,D(H̃)) ∈ W with

D(H̃) :=
(
S(H̃a1a1), . . . , S(H̃arar), [H̃bb H̃bc]

)
,

and H̃ = [U
T
HV 1 U

T
HV 2], and Φ :W →W is defined by (3.169) with respect to the

symmetric function φ : <×<|a1|× . . .×<|ar|×<|b| → <×<|a1|× . . .×<|ar|×<|b|, i.e., for

any (ζ,κ) ∈ < × <|α|+|β|, φ(ζ,κ) is the unique optimal solution of the following convex

problem

min
1

2

(
(η − ζ)2 + ‖d− κ‖2

)
s.t. 〈eα, dα〉 = η ,

dβ = 0 .

(3.177)

Since the symmetric function g defined by (3.144) is piecewise linear, it is well-

known that g is strongly semismooth everywhere (see, e.g., [33, Proposition 7.4.7]).

Therefore, we know from Theorem 3.12 that the metric projection operator ΠK is strongly

semismooth everywhere.

We end this section by considering the characterizations of B-subdifferenial ∂BΠK and

Clarke’s generalized Jacobian ∂ΠK of the metric projector ΠK. Some useful observations

will also be presented. Let (t,X) ∈ < × <m×n be given. Since the symmetric function

g is the metric projection operator over the polyhedral convex set epi ‖ · ‖(k) ⊆ <×<m,

we know that there exists an open neighborhood N ∈ <× <m of zero such that

d(τ, h) = g((t, σ) + (τ, h))− g(t, σ)− g′((t, σ); (τ, h)) ≡ 0 ∀ (τ, h) ∈ N .
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Therefore, we know from Theorem 3.14 that

∂BΠK(t,X) = ∂BΨ(0, 0) ,

where Ψ(·, ·) := Π′K((t,X); (·, ·)) the directional derivative of ΠK at (t,X). Meanwhile,

by Proposition 3.16, we obtain the following characterizations of ∂BΠK and ∂ΠK.

Proposition 3.18. Let (t,X) /∈ intK ∪ intK◦ be given. Suppose X has the singular

value decomposition (3.155). Denote (t̄, X) = ΠK(t,X).

(i) If σk(X) > 0, then V ∈ ∂BΠK(t,X) (respectively, ∂ΠK(t,X)) if and only if there

exists K = (K0,K1, . . . ,Kr1) ∈ ∂BΠC1(0, 0) (respectively, ∂ΠC1(0, 0)) such that

V (τ,H) = (V0(τ,H),V1(τ,H)) ,

where H̃ = U
T
HV , V0(τ,H) = K0(τ,D(H̃)),

V1(τ,H) = UT (H̃)V
T

+ U



K1(τ,D(H̃)) 0 0 0 0

0
. . . 0 0 0

0 0 Kr1(τ,D(H̃)) 0 0

0 0 0 0 0


V
T
,

(3.178)

with D(H̃) =
(
S(H̃a1a1), . . . , S(H̃ar1ar1

)
)

, and the linear mapping T is defined by

(3.160).

(ii) If σk(X) = 0, then V ∈ ∂BΠK(t,X) (respectively, ∂ΠK(t,X)) if and only if there

exists K = (K0,K1, . . . ,Kr,Kr+1) ∈ ∂BΠC2(0, 0) (respectively, ∂ΠC2(0, 0)) such

that

V (τ,H) = (V0(τ,H),V1(τ,H)) ,
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where H̃ = U
T
HV , V0(τ,H) = K0(τ,D(H̃)),

V1(τ,H) = UT (H̃)V
T

+ U



K1(τ,D(H̃)) 0 0 0

0
. . . 0 0

0 0 Kr(τ,D(H̃)) 0

0 0 0 Kr+1(τ,D(H̃))


V
T
,

(3.179)

with D(H̃) =
(
S(H̃a1a1), . . . , S(H̃arar), [H̃bb H̃bc]

)
, and the linear mapping T is

defined by (3.167).

The following observation is important to the sensitivity analysis on the linear MCP

involving the Ky Fan k-norm in Section 4.2.

Lemma 3.19. Let (t,X) ∈ <×<m×n be given. Denote (t̄, X) = ΠK(t,X). Suppose that

V = (V1,V2) ∈ ∂ΠK(t,X). Assume that (4ζ,4Γ) ∈ <×<m×n satisfies V (4ζ,4Γ) = 0.

(i) If σk(X) > 0, then

4Γ = U


−4ζI|α| 0 0 0

0 4Γ̃ββ 0 0

0 0 0 0

V T
, (3.180)

where 4Γ̃ββ is symmetric and

tr (4Γ̃ββ) + (k − k0)4ζ = 0 , (3.181)

where 4Γ̃ = U
T4ΓV .

(ii) If σk(X) = 0, then

4Γ = U

 −4ζI|α| 0 0

0 4Γ̃ββ 4Γ̃βc

V T
, (3.182)

where 4Γ̃ = U
T4ΓV .
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Proof. Without loss of generality, assume that (t,X) /∈ intK ∪ intK◦, since otherwise

the results hold trivially.

Case 1. σk(X) > 0. Since for any (g2)i(t, σ(X)) > (g2)j(t, σ(X)) > (g2)s(t, σ(X))

for any i ∈ α, j ∈ β, s ∈ γ and (g2)j(t, σ(X)) > 0 for any i ∈ α ∪ β, we know from

(3.178) that

4Γ̃αα =


4Γ̃a1a1 0 0

0
. . . 0

0 0 4Γ̃ar0ar0

 , 4Γ̃ββ =


4Γ̃ar0+1ar0+1 0 0

0
. . . 0

0 0 4Γ̃ar1ar1

 ,
4Γ̃alal = S(4Γ̃alal) ∈ S |al|, l = 1, . . . , r1 and

4Γ = U


4Γ̃αα 0 0 0

0 4Γ̃ββ 0 0

0 0 0 0

V T
.

Therefore, we know that 4Γ̃ββ is symmetric.

For the given (t,X), we first assume that k < k1, i.e., β3 6= ∅. Let W be the Euclid

space defined by

W = S |a1| × . . .× S |ar1 | .

Since V (4ζ,4Γ) = 0, we know from Proposition 3.18 that there existsK = (K0,K1, . . . ,Kr1) ∈

∂ΠC1(0, 0) such that K0(4ζ,D(4Γ̃)) = 0 and

Kl(4ζ,D(4Γ̃)) = 0, l = 1, . . . , r1 ,

where ΠC1 : W → W is the metric projection operator over the matrix cone C1 ⊆ W

(defined in (3.161)), and D(4Γ̃) = (4Γ̃a1a1 , . . . ,4Γ̃ar1ar1 ) ∈ W. Denote

Ω := {(W1, . . . ,Wr1) ∈ W | for each l ∈ {1, . . . , r1}, the eigenvalues of Wl are distinct} .

Let DΠC1
⊆ W be the set of points at which ΠC1 is differentiable. Since the set W \ Ω

measure zero (in sense of Lebesgue), we know from [109, Theorem 4] that

∂ΠC1(0, 0) = convΥ ,
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where Υ :=

{
lim

(η,W )→(0,0)
Π′C1(η,W ) | (η,W ) ∈ DΠC1

∩ Ω

}
.

Next, we consider the elements of Υ. Suppose that Θ ∈ Υ. Then there exists a

sequence {(η(q),W (q))} in DΠC1
∩ Ω such that

Θ(4ζ,D(4Γ̃)) = lim
q→∞

Π′C1(η(q),W (q))(4ζ,D(4Γ̃)) .

By (3.163), we know that ΠC2 is the spectral operator with respect to the symmetric

function φ defined by (3.164). We know from Theorem 3.7 that for each q, ΠC1 is

differentiable at (η(q),W (q)) if and only if φ is differentiable at (η(q),λ(q)), where

λ(q) =
(
λ(W

(q)
1 ), . . . , λ(W (q)

r1 )
)
∈ <|a1| × . . .×<|ar1 | .

Correspondingly, for each q, let R
(q)
l ∈ O|al|(W (q)

l ), l = 1, . . . , r1. Moreover, we know

from [113, Theorem 5.1] that for any (η,λ) sufficiently close to (0, 0),

φ(η,λ) = ψ(t+ η, σ + λ)−ψ(t, σ) ,

where σ = σ(X)α∪β and ψ(t, σ) = (g1(t, σ(X)), (g2(t, σ(X)))α∪β). Therefore, we know

that for q sufficiently large, φ is differentiable at (η(q),λ(q)) if and only ifψ is differentiable

at (t+ η(q), σ + λ(q)) and

φ′(η(q),λ(q)) = ψ′(t+ η(q), σ + λ(q)) .

For each q, denote

D̃(q) :=
(

(R
(q)
1 )T4Γ̃a1a1R

(q)
1 , . . . , (R(q)

r1 )T4Γ̃ar1ar1R
(q)
r1

)
and

d̃(q) =
(
d̃

(q)
1 , . . . , d̃(q)

r1

)
∈ <|a1| × . . .×<|ar1 | ,

where for each l ∈ {1, . . . , r1}, d̃(q)
l ∈ <|al| is the vector whose elements are diagonal

elements of (R
(q)
l )T4H̃alalR

(q)
l . For each q, denote

(ρ(q),h(q)) := φ′(η(q),λ(q))(4ζ, d̃(q))
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Since for (η(q),λ(q)) sufficiently close to (0, 0), k′0 ∈ β1 and k′1 ∈ β3 (i.e., α ⊆ α′, β2 ⊆ β′

and k < k′1), by considering the KKT condition of the convex problem (3.173), we know

that there exists θ(q) ≥ 0 such that

ρ(q) = 4ζ + θ(q) , (3.183)

h
(q)
i = d̃

(q)
i − θ

(q), i = 1, . . . , k′0 , (3.184)

h
(q)
i = h

(q)
j , i, j ∈ β′ ,

k′1∑
i=k′0+1

h
(q)
i =

k′1∑
i=k′0+1

d̃
(q)
i − (k − k′0)θ(q) . (3.185)

Therefore, we know from (3.184) that

ψi(η
(q),λ(q))−ψj(η(q),λ(q))

λ
(q)
i − λ

(q)
j

= 1 ∀ i 6= j ∈ α . (3.186)

For each q, denote

(∆
(q)
0 ,∆(q)) := (∆

(q)
0 ,∆

(q)
1 , . . . ,∆(q)

r1 ) = Π′C1(η(q),W (q))(∆ζ,D(∆Γ̃)) .

By (3.183), (3.184), (3.186) and (3.185), we know from the derivative formula of spectral

operator (3.50) that for each q,

∆
(q)
0 = 4ζ + θ(q) ,

∆
(q)
l = 4Γ̃alal − θ

(q)I|al|, l = 1, . . . , r0 ,

r1∑
l=r0+1

tr (∆
(q)
l ) = tr (4Γ̃ββ)− (k − k0)θ(q) .

Finally, since K(4ζ,D(4Γ̃)) = 0, by taking limits and convex combinations, we know

that there exists θ ≥ 0 such that

0 = 4ζ + θ

0 = 4Γ̃alal − θI|al|, l = 1, . . . , r0 ,

0 = tr (4Γ̃ββ)− (k − k0)θ .
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Therefore, we know that (3.180) and (3.181) hold.

For the case that k = k1, then we know from (iii) of Proposition 3.17 that ΠK is

differentiable. Also, since the singular value function σ(·) is globally Lipschitz continuous,

we know that when {(t(q), Xq)} sufficiently close to (t,X), we have k = k′1. Therefore, the

conclusion (3.180) and (3.181) can be obtained easily by considering the KKT condition

of the convex problem (3.175).

Case 2. σk(X) = 0. Since for any σi(X) > 0 for any i ∈ α, we know from (3.179)

that

4Γ̃αα =


4Γ̃a1a1 0 0

0
. . . 0

0 0 4Γ̃ar0ar0

 ,
4Γ̃alal = S(4Γ̃alal) ∈ S |al|, l = 1, . . . , r0 and

4Γ = U

 4Γ̃αα 0 0

0 4Γ̃ββ 4Γ̃βc

V T
.

Let W be the Euclid space defined by

W = S |a1| × . . .× S |ar| ×<|b|×(|b|+n−m) .

Since V (4ζ,4Γ) = 0, we know from Proposition 3.18 that there existsK = (K0,K1, . . . ,Kr+1) ∈

∂ΠC2(0, 0) such that K0(4ζ,D(4Γ̃)) = 0 and

Kl(4ζ,D(4Γ̃)) = 0, l = 1, . . . , r + 1 ,

where ΠC2 : W → W is the metric projection operator over the matrix cone C2 ⊆ W

(defined in (3.168)), and D(4Γ̃) = (S(4Γ̃a1a1), . . . , S(4Γ̃arar), [4Γ̃bb 4Γ̃bc]) ∈ W.

Denote

Ω := {W ∈ W | for each l ∈ {1, . . . , r + 1}, the eigenvalues (singular values) of Wl are distinct} .

Let DΠC2
⊆ W be the set of points at which ΠC2 is differentiable. Since the set W \ Ω

measure zero (in sense of Lebesgue), we know from [109, Theorem 4] that

∂ΠC2(0, 0) = convΥ ,
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where Υ :=

{
lim

(η,W )→(0,0)
Π′C2(η,W ) | (η,W ) ∈ DΠC2

∩ Ω

}
.

Consider the elements of Υ. Suppose that Θ ∈ Υ. Then there exists a sequence

{(η(q),W (q))} in DΠC2
∩ Ω such that

Θ(4ζ,D(4Γ̃)) = lim
q→∞

Π′C2(η(q),W (q))(4ζ,D(4Γ̃)) .

By (3.169), we know that ΠC2 is the spectral operator with respect to the symmetric

function φ defined by (3.170). We know from Theorem 3.7 that for each q, ΠC2 is

differentiable at (η(q),W (q)) if and only if φ is differentiable at (η(q),κ(q)), where

κ(q) =
(
λ(W

(q)
1 ), . . . , λ(W (q)

r ), σ(W
(q)
r+1)

)
∈ <m .

Correspondingly, for each q, let

R
(q)
l ∈ O

|al|(W
(q)
l ), l = 1, . . . , r and (E(q), F (q)) ∈ O|b|,|b|+n−m(W

(q)
r+1) .

Moreover, we know from [113, Theorem 5.1] that for any (η,κ) sufficiently close to (0, 0),

φ(η,κ) = ψ(t+ η, σ + κ)−ψ(t, σ) ,

where σ = σ(X) and ψ(t, σ) = σ(X). Therefore, we know that for q sufficiently large, φ

is differentiable at (η(q),κ(q)) if and only if ψ is differentiable at (t+ η(q), σ + κ(q)) and

φ′(η(q),κ(q)) = ψ′(t+ η(q), σ + κ(q)) .

For each q, denote

D̃(q) =
(

(R
(q)
1 )T Γ̃a1a1R

(q)
1 , . . . , (R(q)

r )T Γ̃ararR
(q)
r , ET [Γ̃bb Γ̃bc]F

)
and

d̃(q) =
(
d̃

(q)
1 , . . . , d̃(q)

r , d̃
(q)
r+1

)
∈ <|a1| × . . .×<|ar+1| ,

where for each l ∈ {1, . . . , r}, d̃(q)
l ∈ <

|al| is the vector whose elements are diagonal ele-

ments of (R
(q)
l )T4H̃alalR

(q)
l , and d̃

(q)
r+1 is the vector whose elements are diagonal elements

of ET [H̃bb H̃bc]F . For each q, denote

(ρ(q),h(q)) := φ′(η(q),λ(q))(4ζ, d̃(q))
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Since for (η(q),λ(q)) sufficiently close to (0, 0), k′0 ∈ β1 (i.e., α ⊆ α′), by considering the

KKT conditions of the convex problems (3.173), (3.175) and (3.177), we know that there

exists θ(q) ≥ 0 such that

ρ(q) = 4ζ + θ(q) , (3.187)

h
(q)
i = d̃

(q)
i − θ

(q), i = 1, . . . , k′0 . (3.188)

Therefore, we know from (3.188) that

ψi(η
(q),κ(q))−ψj(η(q),κ(q))

κ
(q)
i − κ

(q)
j

= 1 ∀ i 6= j ∈ α . (3.189)

For each q, denote

(∆
(q)
0 ,∆(q)) := (∆

(q)
0 ,∆

(q)
1 , . . . ,∆

(q)
r+1) = Π′C2(η(q),W (q))(4ζ,D(4Γ̃)) .

By (3.187), (3.188) and (3.189), we know from the derivative formula of spectral operator

that for each q,

∆
(q)
0 = 4ζ + θ(q) ,

∆
(q)
l = 4Γ̃alal − θ

(q)I|al|, l = 1, . . . , r0 .

Finally, since K(4ζ,D(4Γ̃)) = 0, by taking limits and convex combinations, we know

that there exists θ ≥ 0 such that

0 = 4ζ + θ

0 = 4Γ̃alal − θI|al|, l = 1, . . . , r0 .

Therefore, we know that (3.182) holds. �

3.8.1 The metric projectors over the epigraphs of the spectral norm

and nuclear norm

As we mentioned before, the closed form solutions of the metric projection operators

over the epigraphs of the spectral norm and nuclear norm are provided in [30]. On the



3.8 An example: the metric projector over the Ky Fan k-norm cone 142

other hand, for the matrix space <m×n, if k = 1 then the Ky Fan k-norm is the spectral

norm of matrices, and if k = m then the Ky Fan k-norm is just the nuclear norm of

matrices. Therefore, by considering these two special cases, we list the corresponding

results on the metric projection operators over the epigraphs of the spectral norm and

nuclear norm. In this subsection, denote the epigraph cone of spectral norm by K, i.e.,

K := {(t,X) ∈ < × <m×n | ‖X‖2 ≤ t}. Since the dual norm of the spectral norm is the

nuclear norm ‖ · ‖∗, we know from Proposition 1.2 and Proposition 1.1 that the polar of

K ≡ epi‖ · ‖2 is K◦ = −epi ‖ · ‖∗. Moreover, by Moreau decomposition (Theorem 1.4), we

have the following simple obversion

ΠK∗(t,X) = (t,X) + ΠK(−t,−X) ∀ (t,X) ∈ < × <m×n , (3.190)

where K∗ ≡ epi ‖ · ‖∗ is the epigraph cone of the nuclear norm. Therefore, we will mainly

focus on the metric projector over K. The related properties of the metric projector over

the epigraph of the nuclear norm can be readily derived by using (3.190).

For any positive constant ε > 0, denote the closed convex cone Dεn by

Dεn := {(t, x) ∈ < × <n | ε−1t ≥ xi, i = 1, . . . , n} .

For any (t, x) ∈ <×<n, ΠDεn(t, x) is the unique optimal solution to the following simple

quadratic convex optimization problem

min
1

2

(
(τ − t)2 + ‖y − x‖2

)
s.t. ε−1τ ≥ yi, i = 1, . . . , n .

(3.191)

Note that the problem (3.191) can be solved at a cost of O(n) operations (see [30] for

details). For any positive constant ε > 0, define the matrix cone Mε
n in Sn as the

epigraph of the convex function ελ1(·), i.e.,

Mε
n := {(t,X) ∈ < × Sn | ε−1t ≥ λ1(X)} .

For Mε
n, we have the following result on the metric projection operator ΠMε

n
.
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Proposition 3.20. Let X have the eigenvalue decomposition

X = Pdiag(λ(X))P
T
,

where P ∈ On. Then,

ΠMε
n
(t,X) = (t̄, Pdiag(ȳ)P

T
) ∀ (t,X) ∈ < × Sn ,

where (t̄, ȳ) = ΠDεn(t, λ(X)) ∈ < × <n.

Define

Kε := {(t,X) ∈ < × <m×n | ε−1t ≥ ‖X‖2}

for ε > 0. We drop ε if it is 1, i.e., K, the epigraph of the operator norm ‖ · ‖2. Consider

the metric projector over Kε, i.e., the unique optimal solution to the following convex

optimization problem

min
1

2

(
(τ − t)2 + ‖Y −X‖2

)
s.t. ε−1τ ≥ ‖Y ‖2 .

Proposition 3.21. For any (t,X) ∈ < × <m×n, we have

ΠKε(t,X) =
(
t̄, U [diag(ȳ) 0]V

T
)
,

with

(t̄, ȳ) = ΠCεm(t, σ(X)) ∈ < × <m ,

where ΠCεm(t, σ(X)) is the unique optimal solution to the following convex optimization

problem

min
1

2

(
(τ − t)2 + ‖y − σ(X)‖2

)
s.t. ε−1τ ≥ ‖y‖∞ .

(3.192)

Note that the simple quadric convex problem (3.192) can be solved in O(m) opera-

tions. Moreover, we have the following proposition about the directional differentiability

and Fréchet-differentiability of ΠCεm(t, x).
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Proposition 3.22. Assume that ε > 0 and (t, x) ∈ < × <n are given.

(i) The continuous mapping ΠCε(·, ·) is piecewise linear and for any (η, h) ∈ < × <n

sufficiently close to (0, 0),

ΠCε(t+ η, x+ h)−ΠCε(t, x) = ΠĈε(η, h) ,

where Ĉε := TCε(t̄, x̄) ∩ ((t, x) − (t̄, x̄))⊥ is the critical cone of Cε at (t, x) and

TCε(t̄, x̄) is the tangent cone of Cε at (t̄, x̄).

(ii) The mapping ΠCε(·, ·) is differentiable at (t, x) if and only if t > ε||x||∞, or

ε‖x‖∞ > t > −ε−1‖x‖1 and |x|↓
k̄+1

< (sk + εt)/(k̄ + ε2), or t < −ε−1‖x‖1.

For convenience, write σ0(X) = +∞ and σn+1(X) = −∞. Let s0 = 0 and sk =∑k
i=1 σi(X), k = 1, . . . ,m. Let k̄ be the smallest integer k ∈ {0, 1, . . . ,m} such that

σk+1(X) ≤ (sk + εt)/(k + ε2) < σk(X) . (3.193)

Denote

θ(t, σ(X)) := (sk + εt)/(k + ε2) . (3.194)

Define three index sets α, β and γ in {1, . . . , n} by

α := {i |σi(X) > θε(t, σ(X))}, β := {i |σi(X) = θε(t, σ(X))}

and

γ := {i |σi(X) < θε(t, σ(X))} .

Let δ :=
√

1 + k̄. Define a linear operator ρ : <× <m×n → < as follows

ρ(η,H) :=

 δ−1(η + Tr(S(U
T
αHV α))) if t ≥ −‖X‖∗ ,

0 otherwise .

Denote (
g0(t, σ(X)), g(t, σ(X))

)
:= ΠCm(t, σ(X)) .
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Define Ω1 ∈ <m×m, Ω2 ∈ <m×m and Ω3 ∈ <m×(n−m) (depending on X) as follows, for

any i, j ∈ {1, . . . ,m},

(Ω1)ij :=


gi(t, σ(X))− gj(t, σ(X))

σi(X)− σj(X)
if σi(X) 6= σj(X) ,

0 otherwise ,

(Ω2)ij :=


gi(t, σ(X)) + gj(t, σ(X))

σi(X) + σj(X)
if σi(X) + σj(X) 6= 0 ,

0 otherwise

and for any i ∈ {1, . . . ,m} and j ∈ {1, . . . , n−m}

(Ω3)ij :=


gi(t, σ(X))

σi(X)
if σi(X) 6= 0 ,

0 if σi(X) = 0 ,

The following result can be derived directly from Theorem 3.4. Note that from Part

(i) in Proposition 3.22, we have ΠCε is Hadamard directionally differentiable at (t, σ(X)).

Proposition 3.23. The metric projector over the matrix cone K, ΠK(·, ·) is directionally

differentiable at (t,X). For any given direction (η,H) ∈ < × <m×n, let A := U
T
HV 1,

B := U
T
HV 2. Then the directional derivative Π′K((t,X); (η,H)) can be computed as

follows

(i) if t > ‖X‖2, then Π′K((t,X); (η,H)) = (η,H);

(ii) if ‖X‖2 ≥ t > −‖X‖∗, then Π′K((t,X); (η,H)) = (η,H) with

η = δ−1ψδ0(η,H) ,

H = U


ηI|α| 0 (Ω1)αγ ◦ S(A)αγ

0 Ψδ(η,H) S(A)βγ

(Ω1)γα ◦ S(A)γα S(A)γβ S(A)γγ

V T
1

+U

 (Ω2)aa ◦ T (A)aa (Ω2)ab ◦ T (A)ab

(Ω2)ba ◦ T (A)ba T (A)bb

V T
1 + U

 (Ω3)ac′ ◦Bac′

Bbc′

V T
2 ,
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where
(
ψδ0(η,H),Ψδ(η,H)

)
∈ < × S |β| is given by(

ψδ0(η,H),Ψδ(η,H)
)

:= ΠMδ
|β|

(ρ(η,H), S(U
T
βHV β)) .

In particular, if t = ‖X‖2 > 0, we have that k̄ = 0, δ = 1, α = ∅, ρ(η,H) = η and

η = ψδ0(η,H), H = U

 Ψδ(η,H) + T (A)ββ Aβγ

Aγβ Aγγ

V T
1 + UBV

T
2 ;

(iii) if t = −‖X‖∗, then Π′K((t,X); (η,H)) = (η,H) with

η = δ−1ψδ0(η,H) ,

H = U

 ηI|α| 0

0 Ψδ
1(η,H)

V T
1 + U

 0

Ψδ
2(η,H)

V T
2 ,

where ψδ0(η,H) ∈ <, Ψδ
1(η,H) ∈ <|β|×|β| and Ψδ

2(η,H) ∈ <|β|×(n−m) are given by(
ψδ0(η,H),

[
Ψδ

1(η,H) Ψδ
2(η,H)

] )
:= ΠKδ|β|,(n−|a|)

(
ρ(η,H),

[
U
T
βHVβ U

T
βHV 2

] )
.

(iv) if t < −‖X‖∗, then

Π′K((t,X); (η,H)) = (0, 0) .

The following proposition can be derived directly from Theorem 3.6 and Proposition

3.22.

Proposition 3.24. ΠK(·, ·) is 1-order B-differentiable everywhere in <× <m×n.

By Theorem 3.6 and Proposition 3.22, we obtain the following property on the F-

differentiability of ΠK.

Proposition 3.25. The metric projector ΠK(·, ·) is differentiable at (t,X) ∈ <×<m×n

if and only if (t,X) satisfies one of the following three conditions:

(i) t > ‖X‖2;
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(ii) ‖X‖2 > t > −‖X‖∗ but σk̄+1(X) < θ(t, σ(X));

(iii) t < −‖X‖∗.

In this case, for any (η,H) ∈ < × <m×n, Π′K(t,X)(η,H) = (η̄, H), where under

condition (i), (η,H) = (η,H); under condition (ii),

η = δ−1ρ(η,H)

and

H = U

 δ−1ρ(η,H)I|α| (Ω1)αγ ◦ S(A)αγ

(Ω1)γα ◦ S(A)γα S(A)γγ

V T
1

+ U

 (Ω2)aa ◦ T (A)aa (Ω2)ab ◦ T (A)ab

(Ω2)ba ◦ T (A)ba T (A)bb

V T
1 + U

 (Ω3)ac′ ◦Bac′

Bbc′

V T
2

with A := U
T
HV 1, B := U

T
HV

T
2 ; and under condition (iii), (η,H) = (0, 0).

By applying Theorem 3.12 and noting that ΠCε(·, ·) is globally Lipschitz continuous

and piecewise linear, we have the following proposition.

Proposition 3.26. ΠK(·, ·) is strongly semismooth everywhere in <× <m×n.

Note that for any (η, h) ∈ < × <n sufficiently close to (0, 0),

ΠCε(t+ η, x+ h)−ΠCε(t, x) = ΠĈε(η, h) .

From Theorem 3.14, we have the following result.

Proposition 3.27. Let (t,X) ∈ < × <m×n be given. We have

∂BΠK(t,X) = ∂BΨ(0, 0) ,

where Ψ(·, ·) := Π′K((t,X); (·, ·)).

By Proposition 3.16, we obtain the characterizations of ∂BΠK and ∂ΠK, which are

similar with the results in Proposition 3.18. Finally, from the proof of Lemma 3.19, we

can see easily that the corresponding results also hold for the epigraph of the spectral

norm.



Chapter 4
Sensitivity analysis of MOPs

In this chapter, we discuss the sensitivity analysis of the matrix optimization problems

(MOPs), which is defined in (1.2) or (1.3) in Chapter 1. Instead of considering the

general MOP problems, as a starting point, we mainly focus on the sensitivity analysis

of the MOP problems with some special structures. For example, the proper closed

convex function f : X → (−∞,∞] in (1.2) is assumed to be a unitarily invariant matrix

norm (e.g., the Ky Fan k-norm) or a positively homogenous function (e.g., the sum of k

largest eigenvalues of the symmetric matrix). Also, we mainly focus on the simple linear

model as the MCP problems (1.48). Certainly, since simplifications , we may lose some

kind of generality, which means that some MOP problems are not covered by this work.

However, it is worth taking into consideration that the study on the basic models as

the linear MCP involving the Ky Fan k-norm cone can serve as a basic tools to study

the sensitivity analysis of the more complicated MOP problems. For example, by using

the variational properties of the known cones (the second order cone, the SDP cone,

and others), it becomes possible to study the sensitivity analysis of the MOP problems

involving the second order cone and the SDP cone constraints. Also, the variational

results obtained in this chapter on the Ky Fan k-norm cone can be extended to the

other matrix cones e.g., the epigraph cone of the sum of k largest eigenvalues of the

148
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symmetric matrix. Thus, the corresponding sensitivity results for such MOPs can be

obtained similarly by following the derivation of the simple basic model. We will discuss

such kind of extensions at the end of this chapter.

As we mentioned, in this chapter, we mainly consider the linear MCP problem in-

volving the Ky Fan k-norm cone ((1.48) in Section 1.3). As two special cases, the linear

MCP problems with the Ky Fan k-norm cone include the linear MCP problems which

involve the epigraphs of the spectral and nuclear norms. We begin this chapter with a

study of the geometrical properties of the Ky Fan k-norm epigraph cone K ≡ epi ‖ · ‖(k),

including the characterizations of tangent cone and the (inner and outer) second order

tangent sets of K, the explicit expression of the support function of the second order tan-

gent set, the C2-cone reducibility of K, the characterization of the critical cone of K. By

using these properties, we state the constraint nondegeneracy, the second order necessary

condition and the (strong) second order sufficient condition of the linear MCP problem

(1.48). Finally, for the linear MCP problem (1.48), we establish the equivalent results

among the strong regularity of the KKT point, the strong second order sufficient condi-

tion and constraint nondegeneracy, and the non-singularity of both the B-subdifferenitial

and Clarke’s generalized Jacobian of the nonsmooth system at a KKT point.

Finally, note that the Ky Fan k-norm includes the following two special matrix norms:

the spectral norm (k = 1) and the nuclear norm (k = m). Therefore, all the results

obtained in this chapter hold for the linear MCP problems involving the epigraphs of

the spectral norm and the nuclear norm, which are two special cases of the linear MCP

problem involving the Ky Fan k-norm.

4.1 Variational geometry of the Ky Fan k-norm cone

Consider the epigraph cone K ∈ <× <m×n of the Ky Fan k-norm, i.e.,

K =
{

(t,X) ∈ < × <m×n | ‖X‖(k) ≤ t
}
.
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In this section, we study some important geometric properties of K, including the char-

acterizations of the tangent cone, second order tangent sets and the critical cone of K.

4.1.1 The tangent cone and the second order tangent sets

In this subsection, we first study the tangent cone TK(t̄, X) [86, Definition 6.1] of the

closed convex cone K at the given point (t̄, X) ∈ K, i.e.,

TK(t̄, X) =
{

(τ,H) ∈ < × <m×n | ∃ ρn ↓ 0, dist
(
(t̄, X) + ρn(τ,H),K

)
= o(ρn)

}
.

For the given (t̄, X) ∈ K, consider the following three cases.

Case 1. (t̄, X) ∈ intK, i.e., ‖X‖(k) < t̄. It is clear that

TK(t̄, X) = <× <m×n .

Hence, the lineality space of T (t̄, X), i.e., the largest linear subspace in TK(t̄, X), is given

by lin
(
TK(t̄, X)

)
= <× <m×n.

Case 2. (t̄, X) = (0, 0) ∈ bdK. It is easy to see that

TK(t̄, X) = TK(0, 0) = K .

Then, the lineality space lin
(
TK(t̄, X)

)
coincides with {(0, 0)}.

Case 3. (t̄, X) ∈ bdK \ {(0, 0)}, i.e., ‖X‖(k) = t̄ and t̄ > 0. Let σ = σ(X) and

Σ = diag (σ). Therefore, there exist two nonnegative integers 0 ≤ k0 < k ≤ k1 ≤ m such

that if σk > 0,

σ1 ≥ . . . ≥ σk0 > σk0+1 = . . . = σk = . . . = σk1 > σk1+1 ≥ . . . ≥ σm ≥ 0 ;

if σk = 0,

σ1 ≥ . . . ≥ σk0 > σk0+1 = . . . = σk = . . . = σm = 0 .

Denote α = {1, . . . , k0} and β = {k0 + 1, . . . , k1}. Let U ∈ Om, V = [V 1 V 2] ∈ On be

such that

X = U [Σ 0]V
T
.
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Since ‖X‖(k) =
∑k

i=1 σi = t̄, we know from [23, Theorem 2.4.9] that the tangent cone of

K at the point (t̄, X) can be written as

TK(t̄, X) =
{

(τ,H) ∈ < × <m×n |
k∑
i=1

σ′i(X;H) ≤ τ
}
.

Let a1, . . . , ar be the index sets defined by (2.26) for X. For notational convenience, let

0 ≤ r0 ≤ r be the nonnegative integer such that α = ∪r0l=1al. Therefore, by Proposition

2.15, we know that if σk > 0, then

TK(t̄, X) =
{

(τ,H) ∈ <×<m×n |
r0∑
l=1

tr(U
T
al
HV al) +

k−k0∑
i=1

λi

(
S(U

T
βHV β)

)
≤ τ

}
; (4.1)

if σk = 0, then

TK(t̄, X) =
{

(τ,H) ∈ <×<m×n |
r0∑
l=1

tr(U
T
al
HV al)+

k−k0∑
i=1

σi

([
U
T
βHV β U

T
βHV 2

])
≤ τ

}
.

(4.2)

Hence, the lineality space lin
(
TK(t̄, X)

)
takes the following forms: if σk > 0,

lin
(
TK(t̄, X)

)
=

{
(τ,H) ∈ < × <m×n |S(U

T
βHV β) =

1

k − k0

(
τ −

r0∑
l=1

tr(U
T
al
HV al)

)
I|β|

}
;

(4.3)

if σk = 0,

lin
(
TK(t̄, X)

)
=

{
(τ,H) ∈ < × <m×n |

r0∑
l=1

tr(U
T
al
HV al) = τ,

[
U
T
βHV β U

T
βHV 2

]
= 0

}
.

(4.4)

For the polar of K, the tangent cone TK◦(ζ̄,Γ) at any given point (ζ̄,Γ) ∈ K◦ can be

characterized as

TK◦(ζ̄,Γ) =
{

(τ,H) ∈ < × <m×n |Π′K◦((ζ̄,Γ); (τ,H)) = (τ,H)
}
.

For the given (ζ̄,Γ) ∈ K◦, we know from Theorem 1.4 (the Moreau decomposition) that

for any (τ,H) ∈ < × <m×n,

Π′K◦((ζ̄,Γ); (τ,H)) = (τ,H)−Π′K((ζ̄,Γ); (τ,H)) ,
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which implies

TK◦(ζ̄,Γ) =
{

(τ,H) ∈ < × <m×n |Π′K((ζ̄,Γ); (τ,H)) = 0
}
.

Thus, the characterization of the tangent cone TK◦(ζ̄,Γ) at (ζ̄,Γ) follows from Proposition

3.16 immediately. Actually, we may consider the singular value decomposition of Γ, i.e.,

Γ = U [Σ(Γ) 0]V
T
,

where (U, V ) ∈ Om,n(Γ). Let {al}rl=1 and b be the index sets defined by (2.26) with

respect to Γ. Assume that (ζ̄,Γ) ∈ bdK◦ \ {(0, 0)}. We know that ΠK(ζ̄,Γ) = 0. Denote

β = {1, . . . ,m}. Let β1, β2 and β3 be the index sets defined by

β1 :=
{
i ∈ {1, . . . ,m} |σi(Γ) = −ζ̄

}
, β2 :=

{
i ∈ {1, . . . ,m} | 0 < σi(Γ) < −ζ̄

}
and β3 :=

{
i ∈ {1, . . . ,m} |σi(Γ) = 0

}
, respectively. Since (ζ̄,Γ) ∈ bdK◦ \ {(0, 0)}, we

know that the sets β1, β2 and β3 form a partition of β. For any (τ,H) ∈ < × <m×n,

denote H̃ = U
T
HV and

h =
(
λ(H̃arar), . . . , λ(H̃arar), σ([H̃bb H̃bc])

)
∈ <m .

Consider the following two cases.

Case 1. ‖Γ‖∗ = −kζ̄, i.e.,
∑m

i=1 σi(Γ) = −kζ̄. We have

TK◦(ζ̄,Γ) =

{
(τ,H) ∈ < × <m×n |hi ≤ −τ ∀ i ∈ β1,

m∑
i=1

hi ≤ −kτ

}
.

Then, the corresponding lineality space lin
(
TK◦(ζ̄,Γ)

)
takes the following form:

lin
(
TK◦(ζ̄,Γ)

)
=

{
(τ,H) ∈ < × <m×n | H̃β1β1 = −τI|β1|, [H̃bb H̃bc] = 0,

r∑
l=1

tr(H̃alal) = −kτ

}
.

Case 2. ‖Γ‖∗ < −kζ̄, i.e.,
∑m

i=1 σi(Γ) < −kζ̄. We have

TK◦(ζ̄,Γ) =
{

(τ,H) ∈ < × <m×n |hi ≤ −τ ∀ i ∈ β1

}
.
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Hence, the corresponding lineality space lin
(
TK◦(ζ̄,Γ)

)
takes the following form:

lin
(
TK◦(ζ̄,Γ)

)
=
{

(τ,H) ∈ < × <m×n | H̃β1β1 = −τI|β1|

}
.

Note that since (ζ̄,Γ) ∈ bdK◦ \ {(0, 0)}, we always have β1 6= ∅. Also, it is obvious that

when (ζ̄,Γ) ∈ intK◦, TK◦(ζ̄,Γ) = <× <m×n.

Next, we study the characterization of the inner and outer second order tangent sets

of K. Let T i,2K ((t̄, X), (τ̄ , H)) and T 2
K((t̄, X), (τ̄ , H)) be the inner and outer second order

tangent sets [8, Definition 3.28], respectively, to K at (t̄, X) ∈ K along the direction

(τ̄ , H) ∈ TK(t̄, X), i.e.,

T i,2K ((t̄, X), (τ̄ , H)) := lim inf
ρ↓0

K − (t̄, X)− ρ(τ̄ , H)
1
2ρ

2

and

T 2
K((t̄, X), (τ̄ , H)) := lim sup

ρ↓0

K − (t̄, X)− ρ(τ̄ , H)
1
2ρ

2
,

where “lim sup” and “lim inf” are Painlevé-Kuratowski outer and inner limit for sets (cf.

[86, Definition 4.1]). For the convex set, we have the following result ([8, Proposition

3.34, (3.62) & (3.63)] ).

Proposition 4.1. Let C be a convex set. Then, for any x ∈ C, h ∈ TC(x), the following

inclusions hold:

T i,2C (x, h) + TTC(x)(h) ⊆ T i,2C (x, h) ⊆ TTC(x)(h) ,

T 2
C (x, h) + TTC(x)(h) ⊆ T 2

C (x, h) ⊆ TTC(x)(h) ,

where TTC(x)(h) is the tangent cone of TC(x) at h ∈ TC(x).

Let (t̄, X) ∈ K be given. Again, consider the following three cases.

Case 1. (t̄, X) ∈ intK, i.e., ‖X‖ < t̄. Since TK(t̄, X) = <×<m×n, we know that for

any (τ̄ , H) ∈ TK(t̄, X),

T i,2K ((t̄, X), (τ̄ , H)) = T 2
K((t̄, X), (τ̄ , H)) = <× <m×n = T 2 . (4.5)
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Case 2. (t̄, X) = (0, 0) ∈ K. Since RK(0, 0) = TK(0, 0) = K, where RK(0, 0) is the

radial cone of K at (0, 0) (see e.g., [8, Definition 2.54]), we know that for any (τ̄ , H) ∈

TK(t̄, X), (0, 0) ∈ T i,2K ((t̄, X), (τ̄ , H)). Therefore, for any given (τ̄ , H) ∈ TK(t̄, X), we

have

T i,2K ((t̄, X), (τ̄ , H)) = T 2
K((t̄, X), (τ̄ , H)) = TTK(t̄,X)(τ̄ , H) = T 2 . (4.6)

Case 3. (t̄, X) ∈ bdK \ {(0, 0)}, i.e., ‖X‖(k) = t̄ and t̄ > 0. Let (τ̄ , H) ∈ TK(t̄, X)

be given. If
∑k

i=1 σ
′
i(X;H) < τ̄ , i.e., (t̄, H) ∈ int TK(t̄, X), then it is easy to see that

T i,2K ((t̄, X), (τ̄ , H)) = T 2
K((t̄, X), (τ̄ , H)) = <× <m×n = T 2 . (4.7)

If
∑k

i=1 σ
′
i(X;H) = τ̄ , then K can re-written as

K =
{

(t,X) ∈ < × <m×n |φ(t,X) ≤ 0
}
,

where φ(t,X) := ‖X‖(k) − t is a closed convex function. Since intK 6= ∅ and the con-

vex and continuous function φ is (parabolically) second order directionally differentiable

(Definition 2.1) at (t̄, X), we know from [8, Proposition 3.30] that

T i,2K ((t̄, X), (τ̄ , H)) = T 2
K((t̄, X), (τ̄ , H)) = T 2

with

T 2 :=
{

(η,W ) ∈ < × <m×n |
k∑
i=1

σ′′i (X;H,W ) ≤ η
}
, (4.8)

where for each i ∈ {1, . . . , k}, σ′′i (X;H,W ) is the (parabolic) second order directional

derivative of σi(·) at X along H and W , which is characterized by Proposition 2.18.

Remark 4.1. It has been shown that for any given (t̄, X) ∈ K and (τ̄ , H) ∈ TK(t̄, X),

T i,2K ((t̄, X), (τ̄ , H)) = T 2
K((t̄, X), (τ̄ , H)) = T 2 .

Therefore, we denote the convex set T 2 the second order tangent set to K at (t̄, X) ∈ K

along the direction (τ̄ , H) ∈ TK(t̄, X).
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In order to study the second order optimality conditions of the linear MCP problem

(1.48), we need to consider the support function δ∗T 2(·, ·) of the second order tangent set

T 2 to K at (t̄, X) ∈ K along (τ̄ , H) ∈ TK(t̄, X), i.e.,

δ∗T 2(ζ,Γ) = sup
{
ζη + 〈Γ,W 〉 | (η,W ) ∈ T 2

}
, (ζ,Γ) ∈ < × <m×n .

Let (t̄, X) ∈ K and (τ̄ , H) ∈ TK(t̄, X) be given. From Proposition 4.1, it is easy to see that

if (ζ,Γ) ∈ < × <m×n does not belong the polar of TTK(t̄,X)(τ̄ , H), then δ∗T 2(ζ,Γ) ≡ +∞.

In fact, since TTK(t̄,X)(τ̄ , H) is nonempty, we may assume that there exists (η◦,W ◦) ∈

TTK(t̄,X)(τ̄ , H) such that

〈(ζ,Γ), (η◦,W ◦)〉 > 0 .

Since T 2 6= ∅, fix any (η̃, W̃ ) ∈ T 2. Therefore, since for any ρ > 0,

ρ(η◦,W ◦) + (η̃, W̃ ) ∈ TTK(t̄,X)(τ̄ , H) + T 2 ⊆ T 2 ,

we obtain that

ρ〈(ζ,Γ), (η◦,W ◦)〉+ 〈(ζ,Γ), (η̃, W̃ )〉 ≤ δ∗((ζ,Γ) | T 2) ,

which implies that δ∗T 2(ζ,Γ) = +∞.

On the other hand, since K is a closed convex cone in <× <m×n, we have

K ⊆ TK(t̄, X) ⊆ TTK(t̄,X)(τ̄ , H) .

In particular, we have

±(t̄, X) ∈ TK(t̄, X) ⊆ TTK(t̄,X)(τ̄ , H) and ± (τ̄ , H) ∈ TTK(t̄,X)(τ̄ , H) .

Therefore, we know that if (ζ,Γ) ∈ (TTK(t̄,X)(τ̄ , H))◦, then

(ζ,Γ) ∈ K◦, 〈(ζ,Γ), (t̄, X)〉 = 0 and 〈(ζ,Γ), (τ̄ , H)〉 = 0 . (4.9)

Therefore, we know that for any (ζ,Γ) ∈ < × <m×n, δ∗T 2(ζ,Γ) ≡ +∞, if (ζ,Γ) does not

satisfy the condition (4.9).
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For the point (ζ,Γ) ∈ < × <m×n, which satisfies the condition (4.9), consider the

following cases.

Case 1. (t̄, X) ∈ intK. From (4.5), we know that δ∗T 2(ζ,Γ) = 0.

Case 2. (t̄, X) = (0, 0). For any (τ̄ , H) ∈ TK(0, 0) = K, we know from (4.6) and (4.9)

that (ζ,Γ) ∈ (TK(τ̄ , H))◦ = (T 2)◦, which implies δ∗T 2(ζ,Γ) = 0 for any (ζ,Γ) ∈ <×<m×n.

Case 3. (t̄, X) ∈ bdK \ {(0, 0)}. If (τ̄ , H) ∈ int TK(t̄, X), then by (4.7), we know

that δ∗T 2(ζ,Γ) = 0. Next, suppose that (τ̄ , H) ∈ bd TK(t̄, X) and (ζ,Γ) 6= (0, 0). Let

(t,X) := (t̄, X) + (ζ,Γ). Then, by considering the singular value decomposition of X,

we know from the condition (4.9) that

(t̄, X) = ΠK(t,X) and (ζ,Γ) = ΠK◦(t,X)

with

X = U [Σ(X) 0]V
T

and Γ = U [Σ(Γ) 0]V
T
,

where (U, V ) ∈ Om,n(X). Let a, b, c and al, l = 1, . . . , r be the index sets defined by

(2.25) and (2.26) for X. Denote σ = σ(X). Consider the following two sub-cases.

Case 3.1. σk > 0. Then, (t̄, X) 6= (0, 0). There exist two integers 0 ≤ k0 ≤ k − 1

and k ≤ k1 ≤ m such that

σ1 ≥ . . . ≥ σk0 > σk0+1 = . . . = σk = . . . = σk1 > σk1+1 ≥ . . . ≥ σm ≥ 0 .

Since (t̄, X) = ΠK(t,X) and (ζ,Γ) = (t,X)− (t̄, X). By the part (i) of Lemma 3.15, we

know that there exist θ > 0 (since (t,X) /∈ intK) and u ∈ <m+ such that

ζ = −θ and Γ = U [diag (θu) 0]V
T
, (4.10)

where ui = 1, i = 1, . . . , k0, ui = 0, i = k1 + 1, . . . ,m,

1 ≥ uk0+1 ≥ uk0+2 ≥ . . . ≥ uk1 ≥ 0 and

k1−k0∑
i=1

uk0+i = k − k0 . (4.11)
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Denote α = {1, . . . , k0}, β = {k0 + 1, . . . , k1} and γ = {k1 + 1, . . . ,m} and γ = α ∪ β.

Since 〈(ζ,Γ), (τ̄ , H)〉 = 0, by Ky Fan’s inequality (Lemma 2.3), we know that

0 = ζτ̄ + 〈Γ, H〉 = ζτ̄ + 〈UTΓV ,U
T
H V 〉 = ζτ̄ + 〈UTγ ΓV γ , U

T
γH V γ〉

= −θτ̄ + 〈θdiag (uγ̄), S(U
T
γH V γ)〉

≤ −θτ̄ + θ

r0∑
l=1

tr (U
T
al
H V al) + θ

k1−k0∑
i=1

uk0+iλi

(
S(U

T
βH V β)

)
. (4.12)

Since (τ̄ , H) ∈ bd TK(t̄, X), we know from (4.1) that

τ̄ =

r0∑
l=1

tr(U
T
al
H V al) +

k−k0∑
i=1

λi

(
S(U

T
βH V β)

)
.

By substitution, we know from (4.12) and (4.11) that

0 ≤ θ

(
−
k−k0∑
i=1

λi(S(U
T
βH V β)) +

k1−k0∑
i=1

uk0+iλi(S(U
T
βH V β))

)

= θ

k−k0∑
i=1

(uk0+i − 1)λi(S(U
T
βH V β)) +

k1−k0∑
i=k−k0+1

uk0+iλi(S(U
T
βH V β))


≤ θλk−k0(S(U

T
βH V β))

k−k0∑
i=1

(uk0+i − 1) +

k1−k0∑
i=k−k0+1

uk0+i

 = 0 ,

which implies the equality in (4.12) holds and

k−k0∑
i=1

λi(S(U
T
βH V β)) =

k1−k0∑
i=1

uk0+iλi(S(U
T
βH V β)) . (4.13)

Next, consider the eigenvalue decomposition of the symmetric matrix S(U
T
βH V

T
β ). De-

note m̃ := k1− k0 and k̃ := k− k0. Let λ̃ := λ(S(U
T
βH V

T
β )) ∈ <m̃. Then, we know that

there exist two integers 0 ≤ k̃0 ≤ k̃ − 1 and k̃ ≤ k̃1 ≤ m̃ such that

λ̃1 ≥ . . . ≥ λ̃k̃0
> λ̃

k̃0+1
= . . . = λ̃

k̃
= . . . = λ̃

k̃1
> λ̃

k̃1+1
≥ . . . ≥ λ̃m̃ .

Consider the corresponding index sets α̃l, l = 1, . . . , r̃ defined by (2.16). Let r̃0 ∈

{1, . . . , r̃} be such that k̃ ∈ α̃r̃0+1. Then, by (4.13), we have

m̃∑
i=1

uk0+iλ̃i = sup
{
〈y, λ〉 | 0 ≤ y ≤ e, 〈e, y〉 = k̃, y ∈ <m̃

}
,
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i.e., (uk0+1, . . . , uk1) ∈ <m̃ is the solution of the maximize problem. Therefore, we know

from [113, Lemma 2.2] that

uk0+i = 1, i = 1, . . . , k̃0, uk0+i = 0, i = k̃1 + 1, . . . m̃ (4.14)

and

1 ≥ u
k0+k̃0+1

≥ u
k0+k̃0+2

≥ . . . ≥ u
k0+k̃1

≥ 0 and

k̃1−k̃0∑
i=1

u
k0+k̃0+i

= k̃ − k̃0 . (4.15)

Since the equality in (4.12) holds, by Lemma 2.3 (Ky Fan’s inequality), we know that the

symmetric matrices diag (uβ) and S(U
T
βH V

T
β ) admit a simultaneous ordered eigenvalue

decomposition, i.e., there exists R ∈ Om̃ such that

diag(uβ) = Rdiag(uβ)RT and S(U
T
βH V

T
β ) = RΛ(S(U

T
βH V

T
β ))RT .

On the other hand, since (τ̄ , H) ∈ bd TK(t̄, X), we know from (4.8) that (η,W ) ∈ T 2

if and only if
∑k

i=1 σ
′′
i (X;H,W ) ≤ η, i.e.,

r0∑
l=1

tr (S(U
T
al
WV

T
al

))−
r0∑
l=1

tr
(

2P
T
al

[
B(H)(B(X)− ν̄lIm+n)†B(H)

]
P al

)

+

r̃0∑
l=1

tr
(
RTα̃lP

T
β

[
B(W )− 2B(H)(B(X)− σkIm+n)†B(H)

]
P βRα̃l

)

+

k̃−k̃0∑
i=1

λi

(
RTα̃r̃0+1

P
T
β

[
B(W )− 2B(H)(B(X)− σkIm+n)†B(H)

]
P βRα̃r̃0+1

)
≤ η . (4.16)
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Therefore, for any (η,W ) ∈ T 2, by (4.10), we obtain that

ζη + 〈Γ,W 〉

= ζη +
〈
U
T

ΓV ,U
T
WV

〉
= ζη +

〈
θdiag (uγ), S(U

T
γWV γ)

〉
= ζη + θ

r0∑
l=1

tr (S(U
T
al
WV

T
al

)) +
〈

Σββ(Γ), RTS(U
T
βWV

T
β )R

〉

= ∆(η,W )− ζ
r0∑
l=1

tr
(

2P
T
al

[
B(H)(B(X)− ν̄lIm+n)†B(H)

]
P al

)
+
〈

Σββ(Γ), 2P
T
βB(H)(B(X)− σkIm+n)†B(H)P β

〉
,

where

∆(η,W )

= ζη + θ

 r0∑
j=1

tr (S(U
T
ajWV

T
aj ))−

r0∑
j=1

tr
(

2P
T
aj

[
B(H)(B(X)− ν̄jIm+n)†B(H)

]
P aj

)
+
〈

Σββ(Γ), RT
(
S(U

T
βWV

T
β )− 2P

T
βB(H)(B(X)− σkIm+n)†B(H)P β

)
R
〉
. (4.17)

Next, we shall show that

max
{

∆(η,W ) | (η,W ) ∈ T 2
}

= 0 .
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In fact, by (4.14), Lemma 2.3 (Ky Fan’s inequality) and (4.15), we have〈
Σββ(Γ), RT

(
S(U

T
βWV

T
β )− 2P

T
βB(H)(B(X)− σkIm+n)†B(H)P β

)
R
〉

≤
r̃0∑
l=1

tr
(
RTα̃lP

T
β

[
B(W )− 2B(H)(B(X)− σkIm+n)†B(H)

]
P βRα̃l

)

+θ

k̃1−k̃0∑
i=1

u
k0+k̃0+i

λi

(
RTα̃r̃0+1

P
T
β

[
B(W )− 2B(H)(B(X)− σkIm+n)†B(H)

]
P βRα̃r̃0+1

)

≤
r̃0∑
l=1

tr
(
RTα̃lP

T
β

[
B(W )− 2B(H)(B(X)− σkIm+n)†B(H)

]
P βRα̃l

)

+θ

k̃−k̃0∑
i=1

λi

(
RTα̃r̃0+1

P
T
β

[
B(W )− 2B(H)(B(X)− σkIm+n)†B(H)

]
P βRα̃r̃0+1

)
. (4.18)

Therefore, we know from (4.16), (4.17) and (4.18) that for any (η,W ) ∈ T 2, ∆(η,W ) ≤ 0.

Also, it is easy to see that there exists (η∗,W ∗) ∈ T 2 such ∆(η∗,W ∗) = 0 . Then, since

δ∗T 2(0, 0) = 0, we know that for any (ζ,Γ) satisfying the condition (4.9),

δ∗T 2(ζ,Γ) = −ζ
r0∑
l=1

tr
(

2P
T
al

[
B(H)(B(X)− ν̄lIm+n)†B(H)

]
P al

)
+
〈

Σββ(Γ), 2P
T
βB(H)(B(X)− σkIm+n)†B(H)P β

〉
.

Case 3.2. σk = 0. There exists an integer 0 ≤ k0 ≤ k − 1 such that

σ1 ≥ · · · ≥ σk0 > σk0+1 = . . . = σk = . . . = σm = 0 .

Denote α = {1, . . . , k0} and β = {k0 + 1, . . . ,m}. Since (t̄, X) = ΠK(t,X) and (ζ,Γ) =

(t,X) − (t̄, X), by the part (ii) of Lemma 3.15, we know that there exist θ > 0 (since

(t,X) /∈ intK) and u ∈ <m+ such that

ζ = −θ and Γ = U [diag (θu) 0]V
T
, (4.19)

where ui = 1, i = 1, . . . , k0,

1 ≥ uk0+1 ≥ . . . ≥ um ≥ 0 and

m−k0∑
i=1

uk0+i ≤ k − k0 . (4.20)
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Let r0 ∈ {1, . . . , r} be the integer such that α = ∪r0l=1al. Since 〈(ζ,Γ), (τ ,H)〉 = 0, we

know from von Neumann’s trace inequality (Lemma 2.13) that

0 = ζτ + 〈Γ, H〉 = ζτ +
〈

[diag (θu) 0], U
T
H V

〉
≤ −θτ + θ

r0∑
l=1

tr (U
T
al
H V al) + θ

m−k0∑
i=1

uk0+iσi

([
U
T
βH V β U

T
βH V 2

])
. (4.21)

Since (τ ,H) ∈ bd TK(t̄, X), by (4.2), we obtain that

τ =

r0∑
l=1

tr(U
T
al
H V al) +

k−k0∑
i=1

σi

([
U
T
βH V β U

T
βH V 2

])
.

By substitution, we know from (4.21) and (3.152) that

0 ≤ θ

(
m−k0∑
i=1

uk0+iσi

([
U
T
βH V β U

T
βH V 2

])
−
k−k0∑
i=1

σi

([
U
T
βH V β U

T
βH V 2

]))

≤ θσk

([
U
T
βH V β U

T
βH V 2

])k−k0∑
i=1

(uk0+i − 1) +

m−k0∑
i=k−k0+1

uk0+i

 ≤ 0 ,

which implies the equality in (4.21) holds and

m−k0∑
i=1

uk0+iσi

([
U
T
βH V β U

T
βH V 2

])
=

k−k0∑
i=1

σi

([
U
T
βH V β U

T
βH V 2

])
. (4.22)

Next, consider the singular value decomposition of
[
U
T
βH V β U

T
βH V 2

]
. Denote m̃ =

m − k0, k̃ = k − k0. Let σ̃ := σ
([
U
T
βH V β U

T
βH V 2

])
∈ <m̃+ be the corresponding

singular values. Let ãj , j = 1, . . . , r̃ be the index sets defined by (2.26) and b̃ be the

index set of the zero singular value.

If σ̃
k̃
> 0, then there exist two integers 0 ≤ k̃0 ≤ k̃ − 1 and k̃ ≤ k̃1 ≤ m̃ such that

σ̃1 ≥ . . . ≥ σ̃k̃0
> σ̃

k̃0+1
= . . . = σ̃

k̃
= . . . = σ̃

k̃1
> σ̃

k̃1+1
≥ . . . ≥ σ̃m̃ ≥ 0 .

Let r̃0 ∈ {1, . . . , r̃} be the integer such that k̃ ∈ ãr̃0+1. Then, from (4.22), we have

m̃∑
i=1

uk0+iσ̃i = sup
{
〈y, σ̃〉 | y = x− z ∈ <m̃, 0 ≤ x, z ≤ e, 〈e, x+ z〉 = k̃

}
,
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which implies that (uk0+1, . . . , um) ∈ <m̃ is the solution of the maximize problem. There-

fore, we know from [113, Lemma 2.3] that in this case,

uk0+i = 1, i = 1, . . . , k̃0, uk0+i = 0, i = k̃1 + 1, . . . m̃ (4.23)

and

1 ≥ u
k0+k̃0+1

≥ u
k0+k̃0+2

≥ . . . ≥ u
k0+k̃1

≥ 0 and

k̃1−k̃0∑
i=1

u
k0+k̃0+i

= k̃ − k̃0 . (4.24)

If σ̃
k̃

= 0, then there exists an integer 0 ≤ k̃0 ≤ k̃ − 1 such that

σ̃1 ≥ · · · ≥ σ̃k̃0
> σ̃

k̃0+1
= . . . = σ̃

k̃
= . . . = σ̃m̃ = 0 .

Again, from (4.22) and [113, Lemma 2.3], we know that

uk0+i = 1, i = 1, . . . , k̃0 , (4.25)

1 ≥ u
k0+k̃0+1

≥ u
k0+k̃0+2

≥ . . . ≥ u
k0+k̃1

≥ 0 and

k̃1−k̃0∑
i=1

u
k0+k̃0+i

≤ k̃ − k̃0 . (4.26)

Since the equality in (4.21) holds, by von Neumann’s trace inequality, we know that the

matrices [diag (uβ) 0] and
[
U
T
βH V β U

T
βH V 2

]
admit a simultaneous ordered singular

value decomposition, i.e., there exist two orthogonal matrices E ∈ O|β|, F ∈ O|β|+n−m

such that

[diag (uβ) 0] = E[diag (uβ) 0]F T and
[
U
T
βH V β U

T
βH V 2

]
= E[diag (σ̃) 0]F T .

On the other hand, since (τ ,H) ∈ bd TK(t̄, X), we know from (4.8) that (η,W ) ∈ T 2

if and only if
∑k

i=1 σ
′′
i (X;H,W ) ≤ η. Therefore, by (ii) and (iii) of Proposition 2.18, we
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know that if σ̃
k̃
> 0, then

r0∑
j=1

tr (S(U
T
ajWV

T
aj ))−

r0∑
j=1

tr
(

2P
T
aj

[
B(H)(B(X)− ν̄jIm+n)†B(H)

]
P aj

)

+

r̃0∑
j=1

tr
(
ETãj [U

T
βWV β U

T
βWV 2]Fãj − 2ETãj [U

T
βHX

†
H V β U

T
βHX

†
H V 2]Fãj

)

+

k̃−k̃0∑
i=1

λi

(
S(ETãr̃0+1

[
U
T
β (W − 2HX

†
H)V β U

T
β (W − 2HX

†
H)V 2

]
Fãr̃0+1

)
)

≤ η ; (4.27)

if σ̃
k̃

= 0, then

r0r∑
j=1

tr (S(U
T
ajWV

T
aj ))−

r0∑
j=1

tr
(

2P
T
aj

[
B(H)(B(X)− ν̄jIm+n)†B(H)

]
P aj

)

+
r̃∑
j=1

tr
(
ETãjAFãj − 2ETãjBFãj

)
+

k̃−k̃0∑
i=1

σi

(
[ET

b̃
AF

b̃
ET
b̃
AF2]− 2[ET

b̃
BF

b̃
ET
b̃
BF2]

)
≤ η , (4.28)

where A := [U
T
βWV β U

T
βWV 2] and B := [U

T
βHX

†
H V β U

T
βHX

†
H V 2]. For any

(η,W ) ∈ T 2, by (4.19), we obtain that

ζη + 〈Γ,W 〉 = ζη + 〈UTΓV ,U
T
WV 〉 = ζη + 〈[Σ(Γ) 0], U

T
WV 〉

= ζη + θ

r0∑
j=1

tr (S(U
T
ajWV

T
aj )) +

〈
[Σββ(Γ) 0], ET [U

T
βWV β U

T
βWV 2]F

〉

= ∆(η,W )− ζ
r0∑
j=1

tr
(

2P
T
aj

[
B(H)(B(X)− ν̄jIm+n)†B(H)

]
P aj

)
+
〈

[Σββ(Γ) 0], ET [U
T
βHX

†
H V β U

T
βHX

†
H V 2]F

〉
,
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where

∆(η,W )

= ζη + θ

 r0∑
j=1

tr (S(U
T
ajWV

T
aj ))−

r0∑
j=1

tr
(

2P
T
aj

[
B(H)(B(X)− ν̄jIm+n)†B(H)

]
P aj

)
+
〈

[Σββ(Γ) 0], ET [U
T
βWV β U

T
βWV 2]F − ET [U

T
βHX

†
H V β U

T
βHX

†
H V 2]F

〉
.

(4.29)

Similarly, we shall show that

max
{

∆(η,W ) | (η,W ) ∈ T 2
}

= 0 .

In fact, if σ̃
k̃
> 0, then by Lemma 2.13 (von Neumann’s trace inequality), we know

from (4.23) and (4.24) that〈
[Σββ(Γ) 0], ET [U

T
βWV β U

T
βWV 2]F − ET [U

T
βHX

†
H V β U

T
βHX

†
H V 2]F

〉
≤

r̃0∑
j=1

tr
(
ETãj [U

T
βWV β U

T
βWV 2]Fãj − 2ETãj [U

T
βHX

†
H V β U

T
βHX

†
H V 2]Fãj

)

+

k̃−k̃0∑
i=1

λi

(
S(ETãr̃0+1

[U
T
β (W − 2HX

†
H)V β U

T
β (W − 2HX

†
H)V 2]Fãr̃0+1

)
)
.

(4.30)

Then, by (4.27), (4.29) and (4.30), we know that ∆(η,W ) ≤ 0 for any (η,W ) ∈ T 2.

Also, it is easy to see that the maximize value can be obtained.

If σ̃
k̃

= 0, then by Lemma 2.13 (von Neumann’s trace inequality), we know from

(4.25) and (4.26) that〈
[Σββ(Γ) 0], ET [U

T
βWV b U

T
βWV 2]F − ET [U

T
βHX

†
H V β U

T
βHX

†
H V 2]F

〉
≤

r̃∑
j=1

tr
(
ETãjAFãj − 2ETãjBFãj

)
+

k̃−k̃0∑
i=1

σi

(
[ET

b̃
AF

b̃
ET
b̃
AF2]− 2[ET

b̃
BF

b̃
ET
b̃
BF2]

)
.

(4.31)
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Then, by (4.28), (4.29) and (4.31), we know that ∆(η,W ) ≤ 0 for any (η,W ) ∈ T 2. Also,

it is easy to see that the maximize value can be obtained. Then, since δ∗T 2(0, 0) = 0, we

know that for any (ζ,Γ) satisfying the condition (4.9),

δ∗T 2(ζ,Γ) = −ζ
r0∑
j=1

tr
(

2P
T
aj

[
B(H)(B(X)− ν̄jIm+n)†B(H)

]
P aj

)
+
〈

[Σββ(Γ) 0], [U
T
βHX

†
H V β U

T
βHX

†
H V 2]

〉
.

Next, we summary the result on the support function δ∗T 2 of the second order tangent

set T 2 as follows.

Proposition 4.2. Let (t̄, X) ∈ K and (τ̄ , H) ∈ TK(t̄, X) be given. Suppose that (ζ,Γ) ∈

< × <m×n satisfies

(ζ,Γ) ∈ K◦, 〈(ζ,Γ), (t̄, X)〉 = 0 and 〈(ζ,Γ), (τ̄ , H)〉 = 0 .

(i) If (t̄, X) ∈ intK, then δ∗T 2(ζ,Γ) = 0.

(ii) If (t̄, X) ∈ bdK and (τ̄ , H) ∈ int TK(t̄, X), then δ∗T 2(ζ,Γ) = 0.

(iii) If (t̄, X) ∈ bdK, (τ̄ , H) ∈ bd TK(t̄, X) and σk(X) > 0, then

δ∗T 2(ζ,Γ) = −ζ
r0∑
j=1

tr
(

2P
T
aj

[
B(H)(B(X)− ν̄jIm+n)†B(H)

]
P aj

)
+
〈

Σββ(Γ), 2P
T
βB(H)(B(X)− σkIm+n)†B(H)P β

〉
.

(iv) If (t̄, X) ∈ bdK, (τ̄ , H) ∈ bd TK(t̄, X) and σk(X) = 0, then

δ∗T 2(ζ,Γ) = −ζ
r0∑
j=1

tr
(

2P
T
aj

[
B(H)(B(X)− ν̄jIm+n)†B(H)

]
P aj

)
+
〈

[Σββ(Γ) 0], [U
T
βHX

†
H V β U

T
βHX

†
H V 2]

〉
.

Definition 4.1. For any given (t̄, X) ∈ K, define the linear quadratic function Υ(t̄,X) :

< × <m×n × < × <m×n → <, which is linear in the first argument and quadratic in the
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second argument, by for any (ζ,Γ) ∈ < × <m×n and (τ,H) ∈ < × <m×n, if σk(X) > 0,

then

Υ(t̄,X) ((ζ,Γ), (τ,H)) := −ζ
r0∑
j=1

tr
(

2P
T
aj

[
B(H)(B(X)− ν̄jIm+n)†B(H)

]
P aj

)
+
〈

Σββ(Γ), 2P
T
βB(H)(B(X)− νIm+n)†B(H)P β

〉
;

if σk(X) = 0, then

Υ(t̄,X) ((ζ,Γ), (τ,H)) := −ζ
r0∑
j=1

tr
(

2P
T
aj

[
B(H)(B(X)− ν̄jIm+n)†B(H)

]
P aj

)
+
〈

[Σββ(Γ) 0], [U
T
βHX

†
H V β U

T
βHX

†
H V 2]

〉
.

Finally, we will show that the epigraph cone K = epi‖ · ‖(k) of the Ky Fan k-norm

is C2-cone reducible at every point (t̄, X) ∈ K. Hence, K is second order regular ([8,

Definition 3.85]) at every point. We first recall the definition of C2-cone reducible ([8,

Definition 3.135]).

Definition 4.2. Let Y and Z be two finite dimensional Euclidean spaces. Let K ⊆ Y and

C ⊂ Z be convex closed sets. We say that the set K is C2-reducible to the set C, at a point

ȳ ∈ K, if there exist a neighborhood U of y0 and twice continuously differentiable mapping

Ξ : U → Z such that (i) Ξ′(ȳ) : Y → Z is onto, and (ii) K ∩ N = {y ∈ U |Ξ(ȳ) ∈ C}.

We say that the reduction is pointed if the tangent cone TC(Ξ(ȳ)) is pointed cone. If,

in addition, the set C − Ξ(ȳ) is a pointed convex closed cone, we say that K is C2-cone

reducible at ȳ. We can assume without loss of generality that Ξ(ȳ) = 0.

Proposition 4.3. The epigraph cone K of the Ky Fan k-norm is C2-cone reducible at

every point (t̄, X) ∈ K.

Proof. Since K is a pointed closed convex cone, we know that K is C2-cone reducible at

(t̄, X) if (t̄, X) ∈ intK or (t̄, X) = (0, 0). Therefore, we only need to consider the case

that (t̄, X) ∈ bdK\ (0, 0), i.e., ‖X‖(k) = t̄ > 0. Let α and β be the index sets defined by

α = {i ∈ {1, . . . ,m} |σi(X) > σk(X)} and β = {i ∈ {1, . . . ,m} |σi(X) = σk(X)} .
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Consider the singular value decomposition (3.155) of X,

X = U [Σ(X) 0]V
T
.

Denote σ = σ(X) and Σ = Σ(X). Let al, l = 1, . . . , r and ar+1 = b be the index

sets defined by (2.25) and (2.26) with respect to X0. Then, we know that there exists

r0 ∈ {1, . . . , r + 1} such that

α =

r0⋃
l=1

al and ar0+1 = β .

For any Z ∈ <m×n and W ∈ <n×n, recall the definition of the notations Zal ∈ <m×|al|,

l = 1, . . . , r + 1 and Wal ∈ <n×|al|, l = 1, . . . , r, i.e., the sub-matrices of Z and W

obtained by removing all the columns of Z and W not in al, respectively. For simplicity,

we also use the notation War+1 ∈ <n×(|b|+|c|) to represent the sub-matrix of any matrix

W ∈ <n×n obtained by removing all the columns of W not in b ∪ c.

Since the single value function σ(·) is globally Lipschitz continuous, by using Propo-

sition 2.14, we know that there exists an open neighborhood N = N1 × N2 of (t̄, X)

such that for each l ∈ {1, . . . , r + 1}, the following functions Ul : N2 → <m×m and

Vl : N2 → <n×n defined by

Ul(X) :=
∑
i∈al

ui(X)ui(X)T and Vl(X) =
∑
i∈al

vi(X)vi(X)T , X ∈ N2 , (4.32)

are well-defined (i.e., for each l ∈ {1, . . . , r + 1} and any X ∈ N2, the function values

Ul(X) and Vl(X) are independent to the choice of the orthogonal pairs (U(X), V (X)) ∈

Om,n(X)), where ui(X) ∈ <m and vi(X) ∈ <n, i ∈ al are the i-th columns of the

orthogonal matrices U(X) ∈ Om and V (X) ∈ On, respectively. By consider the line

operator B : <m×n → Sm+n defined by (2.28) and the corresponding orthogonal matrix

P ∈ Om+n defined by (2.43), we have for any X ∈ N2,

Fl(X) := Pl(B(X)) =
∑
i∈al

pi(B(X))pi(B(X))T =
1

2

 Ul(X) ∗

∗ Vl(X)

 , l = 1, . . . , r
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and

Fr+1(X) := Pr+1(B(X)) =
∑

i∈b∪c∪b′
pi(B(X))pi(B(X))T

=

 Ur+1(X) 0

0 Vr+1(X)

 ,
where Vr+1(X) =

∑
i∈b vi(X)vi(X)T +

∑
i∈c vi(X)vi(X)T . We know from Proposition

2.12 that there exists an open neighborhood N̂ of B(X) in Sm+n such that Pl(·), l =

1, . . . , r + 1 are twice continuously differentiable on N̂ . Therefore, by shrinking the

neighborhood N = N1 ×N2 if necessary, we know that Fl(·), l = 1, . . . , r + 1 are twice

continuously differentiable on N2. Hence, the mappings Ul(·) and Vl(·), l = 1, . . . , r + 1

are all twice continuously differentiable on N2.

Next, we first consider the special case that X =
[
Σ 0

]
. For any X ∈ N2, let

Ll(X) and Rl(X), l = 1, . . . , r + 1 be the left and right eigenspaces corresponding to

the single values {σi(X) : i ∈ al}. Actually, for any X ∈ N2, the matrices Ul(X) and

Vl(X), l = 1, . . . , r + 1 are the orthogonal projection matrices onto Ll(X) and Rl(X),

respectively. For any X ∈ N2, denote the columns of Ul(X) ∈ <m×m and Vl(X) ∈ <n×n,

l = 1, . . . , r + 1 by {(Ul(X))i} and {(Vl(X))i}. It is obvious that the space spanned

by {(Ul(X))i} and {(Vl(X))i} coincide with Ll(X) and Rl(X), respectively. Moreover,

for each l ∈ {1, . . . , r + 1}, we know that for all X sufficiently close to X, the columns

{(Ul(X))i : i ∈ al} and {(Vl(X))i : i ∈ al} are linearly independent. In fact, for any

X ∈ N2 and each l ∈ {1, . . . , r + 1}, from the definitions of Ul ∈ <m×m and Vl ∈ <n×n,

we know that the j′-th columns of Ul(X) and Vl(X) for all j′ ∈ al are given by

(Ul(X))j′ =
∑
j∈al

Uj′j(X)


U1j(X)

...

Unj(X)

 and (Vl(X))j′ =
∑
j∈al

Vj′j(X)


V1j(X)

...

Vnj(X)

 .
(4.33)

Therefore, for each l ∈ {1, . . . , r+1}, suppose that the real numbers qi ∈ <, i = 1, . . . , |al|
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such that ∑
i∈al

qi(Ul(X))i = 0 .

Then, since for each l ∈ {1, . . . , r + 1}, the columns


U1j(X)

...

Unj(X)

, j ∈ al are linearly

independent, we obtain that the vector


q1

...

q|al|

 ∈ <|al| is the solution of the following

linear system

Ualal(X)


q1

...

q|al|

 = 0 .

From (2.40) in Proposition 2.16, since X =
[
Σ 0

]
, for each l ∈ {1, . . . , r + 1}, we know

that for X sufficiently close to X, there exists Ql ∈ O|al| such that

Ualal(X) = Ql +O(‖X −X‖) .

Since the determinant function det(·) is continuous, for each l ∈ {1, . . . , r+ 1}, we know

that for all X sufficiently close to X, the matrix Ualal(X) is invertible, which implies

qi = 0, i = 1, . . . , |al| and the columns {(Ul(X))i : i ∈ al} are linearly independent. By

using the similar arguments, we also have that for X sufficiently close to X, the columns

{(Ul(X))i : i ∈ al} are also linearly independent. Hence, by shrink N = N1×N2 if neces-

sary, we may conclude that for any X ∈ N2, {(Ul(X))i : i ∈ al} and {(Vl(X))i : i ∈ al},

l = 1, . . . , r + 1 are the bases of Ll(X) and Rl(X), respectively. Furthermore, for each

l ∈ {1, . . . , r + 1}, by applying the Gram-Schmit orthonormalization procedure to the

columns {(Ul(X))i : i ∈ al} and {(Vl(X))i : i ∈ al}, for any X ∈ N2, we obtain two ma-

trices Mal(X) ∈ <m×|al| and Nal(X) ∈ <n×|al| such that the columns of Mal(X) are the

orthogonal bases of the left eigenspace Ll(X) of X and the columns of Nal(X) are the or-

thogonal bases of the right eigenspace Rl(X) of X. Moreover, for each l ∈ {1, . . . , r+ 1},
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the mappings Mal : N2 → <m×|al| and Nal : N2 → <m×|al| are twice continuously dif-

ferentiable on N2. Therefore, we know that the mappings Mal(X)TXNal(X) : N2 →

<|al|×|al|, l = 1, . . . , r and Mar+1(X)TXNar+1(X) : N2 → <b×(|b|+|c|) are all twice continu-

ously differentiable on N2, and Mal(X)TXNal(X), l = 1, . . . , r+1 are diagonal matrices,

whose diagonal elements are the singular values {σi(X) : i ∈ al}. Since the singular

value function σ(·) is globally Lipschitz continuous, by further shrinking N = N1 × N2

if necessary, we have that for any l, l′ ∈ {1, . . . , r + 1} and l < l′,

σ|al|
(
Mal(X)TXNal(X)

)
> σ1

(
Mal′ (X)TXNal′ (X)

)
∀X ∈ N2 .

In particular, we have

Mal(X)TXNal(X) = Σalal , l = 1, . . . , r and Mar+1(X)TXNar+1(X) = [Σbb 0] .

On the other hand, for each l ∈ {1, . . . , r + 1}, we know from (2.40) in Proposition

2.16 that for X sufficiently close to X,

Uij(X) = O(‖X −X‖) = Uji(X) and Vij(X) = O(‖X −X‖) = Vji(X) ∀ i /∈ al and j ∈ al .

Therefore, we know from (4.33) that for each l ∈ {1, . . . , r+ 1}, j′ ∈ al and any X ∈ N2,

the j′-th column of Ul(X) satisfies the following conditions

(Ul(X))i′j′ = O(‖X −X‖) ∀ i′ /∈ al ,

(Ul(X))i′j′ =
∑
j∈al

Uj′j(X)Ui′j(X) =
∑
j /∈al

Uj′j(X)Ui′j(X) = O(‖X −X‖2) ∀ i′ ∈ al but i′ 6= j′

and

(Ul(X))j′j′ =
∑
j∈al

Uj′j(X)2 = 1−
∑
j /∈al

Uj′j(X)2 = 1 +O(‖X −X‖2) ,

which implies that

(Ul(X))al =


O(‖X −X‖)

I|al| +O(‖X −X‖2)

O(‖X −X‖)

 .
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Similarly, we also have for each l ∈ {1, . . . , r + 1} and any X ∈ N2,

(Vl(X))al =


O(‖X −X‖)

I|al| +O(‖X −X‖2)

O(‖X −X‖)

 .
Thus, by considering the Gram-Schmit orthonormalization procedure, we obtain that for

each l ∈ {1, . . . , r + 1}, for any X ∈ N2,

Mal(X) =


O(‖X −X‖)

I|al| +O(‖X −X‖2)

O(‖X −X‖)

 and Nal(X) =


O(‖X −X‖)

I|al| +O(‖X −X‖2)

O(‖X −X‖)

 .

Denote H := X −X. Therefore, we obtain that for each l ∈ {1, . . . , r}, for any X ∈ N2,

Mal(X)TXNal(X) = Mal(X)T
(
[Σ 0] +H

)
Nal(X) = Σalal +Halal +O(‖H‖2) (4.34)

and

Mar+1(X)TXNar+1(X) = Mar+1(X)T
(
[Σ 0] +H

)
Nar+1(X)

= [Σbb 0] + [Hbb Hbc] +O(‖H‖2) . (4.35)

Next, consider the general case that X 6= [Σ 0]. Let (U, V ) ∈ Om,n(X) be fixed.

Then, we know that

U
T
XV = [Σ 0] + U

T
(X −X)V .

Denote H̃ = U
T

(X−X)V . It is clear that σ(X) = σ(U
T
XV ). Therefore, by replacing X

by U
T
XV in the previous arguments, we know that there exists an open neighborhood

N = N1 ×N2 of (t̄, X) such that the mappings

Fl(X) = Mal(U
T
XV )TU

T
XVNal(U

T
XV ) ∈ <|al|×|al|, l = 1, . . . , r

and

Fr+1(X) = Mar+1(U
T
XV )TU

T
XVNar+1(U

T
XV ) ∈ <|b|×(|b|+|c|)
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are twice continuously differentiable on N2, and for any X ∈ N2, the matrices Fl(X),

l = 1, . . . , r + 1 are diagonal, and the diagonal elements are the singular values {σi(X) :

i ∈ al}. In particular, we have

Fl(X) = Σalal , l = 1, . . . , r and Fr+1(X) = [Σbb 0] = 0 .

Thus, ∑
i∈al

σi(X) = tr(Fl(X)), l = 1, . . . , r . (4.36)

Moreover, we obtain from (4.34) and (4.35) that for any X ∈ N2,

Fl(X)− Fl(X) = H̃alal +O(‖X −X‖2), l = 1, . . . , r (4.37)

and

Fr+1(X)− Fr+1(X) = [H̃bb H̃bc] +O(‖X −X‖2) . (4.38)

Finally, in order to show that K is C2-cone reducible at (t̄, X) ∈ bdK \ (0, 0), we

consider the following two cases.

Case 1. σk(X) > 0. Let 0 ≤ k0 ≤ k − 1 and k ≤ k1 ≤ m be the integers such that

σ1 ≥ . . . ≥ σk0 > σk0+1 = . . . = σk = . . . = σk1 > σk1+1 ≥ . . . ≥ σm ≥ 0 ,

which implies that α = ∪r0l=1al and β = ar0+1. For each l ∈ {1, . . . , r0 + 1}, define the

linear mapping dl : <|al|×|al| → <|al| by

dl(Z) = (Z11, Z22, . . . , Z|al||al|)
T , Z ∈ <|al|×|al| . (4.39)

Therefore, since ‖X‖(k) = t̄, we know from (4.36) that

K ∩N =

{
(t,X) ∈ N |

k∑
i=1

σi(X) ≤ t

}

=

{
(t,X) ∈ N |

k∑
i=1

(σi(X)− σi) ≤ t− t̄

}

=

{
(t,X) ∈ N |

r0∑
l=1

〈
e|al|, d̃l

〉
+ sk−k0(d̃r0+1) ≤ t− t̄

}
,
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where d̃l := dl(Fl(X)− Fl(X)), l = 1, . . . , r0 + 1 and s(k−k0) : <|β| → < is the positively

homogeneous convex function defined by (3.162). Therefore, we may locally define the

mapping Ξ̃ : N → <×<|β| by

Ξ̃(t,X) =

(
t− t̄−

r0∑
l=1

〈e|al|, d̃l〉, d̃r0+1

)
∈ < × <|β|, (t,X) ∈ N .

Thus, we have

K ∩N =
{

(t,X) ∈ N | Ξ̃(t,X) ∈ C̃
}
,

where C̃ ⊆ < × <|β| is a closed polyhedral convex cone defined by

C̃ :=
{

(s, y) ∈ < × <|β| | s(k−k0)(y) ≤ s
}
.

Since any polyhedral convex set is C2-cone reducible, we know that C̃ is C2-cone reducible.

Clearly, the mapping Ξ̃ is twice continuously differentiable on N . Moreover, we know

from (4.37) that the derivative Ξ̃′(t̄, X) of Ξ̃ at (t̄, X) is given by

Ξ̃′(t̄, X)(τ,H) =

(
τ −

r0∑
l=1

tr(H̃alal),dr0+1(H̃ββ)

)
∈ < × <|β|, (τ,H) ∈ < × <m×n ,

where H̃ = U
T
HV , which implies that Ξ̃′(t̄, X) : < × <m×n → <× <|β| is onto. Then,

we know from [90, Proposition 3.2] that K is C2-cone reducible at (t̄, X).

Case 2. σk(X) = 0. Let 0 ≤ k0 ≤ k − 1 be the integer such that

σ1 ≥ . . . ≥ σk0 > σk0+1 = . . . = σk = . . . = σm = 0 ,

which implies that α = ∪rl=1al and β = ar+1. Therefore, we know that

K ∩N =

{
(t,X) ∈ N | ‖Fr+1(X)‖(k−k0) ≤ t−

r∑
l=1

tr(Fl(X))

}
.

Define Ξ : N → <×<|b|×(|b|+|c|) by

Ξ(t,X) :=

(
t−

r∑
l=1

tr(Fl(X)),Fr+1(X)

)
∈ < × <|b|×(|b|+|c|), (t,X) ∈ N .

Then,

K ∩N =
{

(t,X) ∈ N |Ξ(t,X) ∈ epi‖ · ‖(k−k0)

}
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Since t̄ =
∑r

l=1 tr(Fl(X)) and Fr+1(X) = 0, we have Ξ(t̄, X) = (0, 0). Also, the mapping

Ξ is twice continuously differentiable on N . Moreover, by (4.37) and (4.38), we know

that the derivative Ξ′(t̄, X) of Ξ at (t̄, X) is given by

Ξ′(t̄, X)(τ,H) =

(
τ −

r0∑
l=1

tr(H̃alal), [H̃bb H̃bc]

)
∈ < × <|b|×(|b|+|c|), (τ,H) ∈ < × <m×n ,

where H̃ = U
T
HV , which implies that Ξ′(t̄, X) : < × <m×n → <× <|b|×(|b|+|c|) is onto.

Since the closed convex cone epi‖ · ‖(k−k0) ⊆ <× <|b|×(|b|×|c|) is pointed, we obtain from

the definition that K is C2-cone reducible at (t̄, X). �

4.1.2 The critical cone

The metric projector (t̄, X) = ΠK(t,X) of (t,X) ∈ < × <m×n onto the cone K satisfies

the following complementary condition:

K 3 (t̄, X) ⊥ (t− t̄, X −X) ∈ K◦ . (4.40)

The critical cone of K at (t,X) ∈ <×<m×n, associated with the complementary problem

(4.40), is defined as

CK(t,X) := TK(t̄, X) ∩ (t− t̄, X −X)⊥ .

Next, for the given (t,X) ∈ <×<m×n, we want to characterize the critical cone CK(t,X)

of K.

If (t,X) ∈ intK, then it is clear that

CK(t,X) = TK(t̄, X) = <× <m×n .

If (t,X) ∈ bdK, then (t,X) = (t̄, X),

CK(t,X) = TK(t̄, X) ,

where TK(t̄, X), which is completely described by (4.1) and (4.2). Moreover, it is easy to

see that the affine hull of CK(t,X) is

aff(CK(t,X)) = <× <m×n .
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If (t,X) ∈ intK◦, then (t̄, X) = (0, 0) and

CK(t,X) = TK(0, 0) ∩ (t,X)⊥ = K ∩ (t,X)⊥ = {(0, 0)} .

Next, we consider the case that (t,X) /∈ K ∪ intK◦.

Case 1. σk(X) > 0. Then, (τ,H) ∈ C(t,X) if and only if (τ,H) ∈ <×<m×n satisfies

(τ,H) ∈ TK(t̄, X) and 〈(τ,H), (ζ,Γ)〉 = 0 ,

where (ζ,Γ) = (t− t̄, X −X). Therefore, we know that the equality in (4.12) and (4.13)

hold for (τ,H). Thus, we know that (τ,H) satisfies the following conditions.

(i) The symmetric matrix S(U
T
βH V β) ∈ S |β| has the block-diagonal structure, i.e.,

for any l 6= l′ ∈ {r0 + 1, . . . , r1},
(
S(U

T
βH V β)

)
alal′

= 0.

(ii) If k1 > k, for any i1 ∈ β1, i2, i2′ ∈ β2 and i3 ∈ β3,

λi1(S(U
T

βH V β)) ≥ λi2(S(U
T

βH V β)) = . . . = λi2′ (S(U
T

βH V β)) ≥ λi3(S(U
T

βH V β)) .

(iii)
∑r0

l=1 tr(U
T
al
H V al) +

∑k−k0
i=1 λi

(
S(U

T
βH V β)

)
= τ .

Moreover, (τ,H) ∈ aff (CK(t,X)) if and only if (τ,H) satisfies

(i) The symmetric matrix S(U
T
βH V β) ∈ S |β| has the block-diagonal structure, i.e.,

for any l 6= l′ ∈ {r0 + 1, . . . , r1},
(
S(U

T
βH V β)

)
alal′

= 0;

(ii) if k1 > k, λi(S(U
T
βH V β)) = . . . = λi′(S(U

T
βH V β)) for any i, i′ ∈ β2; if k = k1,∑r0

l=1 tr(U
T
al
H V al) + tr

(
S(U

T
βH V β)

)
= τ .

Case 2. σk(X) = 0. Then, (τ,H) ∈ C(t,X) if and only if (τ,H) ∈ <×<m×n satisfies

(τ,H) ∈ TK(t̄, X) and 〈(τ,H), (ζ,Γ)〉 = 0 ,

where (ζ,Γ) = (t− t̄, X −X). Also, we know that the equality in (4.21) and (4.22) hold

for (τ,H). Thus, (τ,H) should satisfy the following conditions.
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(i) The matrix [U
T
βH V β U

T
βHV 2] ∈ <|β|×(|β|+n−m) has the following block-diagonal

structure

[U
T
βH V β U

T
βHV 2] =



U
T
ar0+1

H V ar0+1 0 0 0 0

0
. . . 0 0 0

0 0 U
T
arH V ar 0 0

0 0 0 U
T
b H V b U

T
b H V 2


(4.41)

and the matrices U
T
al
H V al , l = r0 + 1, . . . , r are symmetric.

(ii) Denote h :=
(
λ(U

T
ar0+1

H V ar0+1), . . . , λ(U
T
arH V ar), σ([U

T
b H V b U

T
b H V 2])

)
∈ <|β|.

If
∑

i∈β ui = k − k0, then for any i1 ∈ β1, i2, i2′ ∈ β2 and i3 ∈ β3,

hi1 ≥ hi2 = . . . = hi2′ ≥ hi3 and hi2 ≥ 0 ;

if
∑

i∈β ui < k − k0, then hi1 ≥ 0 for any i1 ∈ β1, hi2 = 0 for any i2 ∈ β2 ∪ β3.

(iii)
∑r0

j=1 tr(U
T
ajH V aj ) +

∑k−k0
i=1 σi

(
[U

T
βH V β U

T
βHV 2]

)
= τ .

Moreover, (τ,H) ∈ aff CK(t,X) if and only if (τ,H) satisfies

(i) The matrix [U
T
βH V β U

T
βHV 2] ∈ <|β|×(|β|+n−m) has the block-diagonal structure

(4.41) and the matrices U
T
al
H V al , l = r0 + 1, . . . , r are symmetric.

(ii) If
∑

i∈β ui = k− k0, then hi = . . . = hi′ for any i, i′ ∈ β2; if
∑

i∈β ui < k− k0, then

hi2 = 0 for any i2 ∈ β2 ∪ β3.

The following observation can be obtained from the characterization of the affine hull

of CK(t,X) and the characterization of Clarke’s generalized Jacobian of ΠK (Proposition

3.18).

Lemma 4.4. Let (t,X) ∈ < × <m×n be given. For any V = (V0,V1) ∈ ∂ΠK(t,X), we

have

(V0(τ,H),V1(τ,H)) ∈ aff (CK(t,X)) ∀ (τ,H) ∈ < × <m×n .
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Proof. Without loss of generality, we may assume that (t,X) /∈ K ∪ intK◦, since

otherwise the result holds trivially (noting that if (t,X) ∈ bdK, aff(CK(t,X)) = < ×

<m×n). On the other hand, since ∂ΠK(t,X) = conv{∂BΠK(t,X)}, we only need to show

that for any fixed V = (V0,V1) ∈ ∂BΠK(t,X) and (τ,H) ∈ < × <m×n,

(a,A) := (V0(τ,H),V1(τ,H)) ∈ aff (CK(t,X)) . (4.42)

Denote (t̄, X) = ΠK(t,X) and Ã := U
T
AV = U

T
V1(τ,H)V . Consider the following two

cases.

Case 1. σk(X) > 0. For the fixed (t,X), let 0 ≤ k0 ≤ k − 1 and k ≤ k1 ≤ m be the

integers satisfying the condition (3.149). Let β1, β2 and β3 be the index sets defined by

(3.159) for (t,X). From (3.178) and the definition (3.160) of the linear mapping T , we

know that the symmetric matrix S(Ãββ) ∈ S |β| has the block-diagonal structure, i.e.,

for any l 6= l′ ∈ {r0 + 1, . . . , r1}, S(Ã)alal′ = 0.

If k1 > k, since the singular value function σ(·) is globally Lipschitz continuous over

<m×n, we know from the part (i) of Lemma 3.15 (see [113, Lemma 4.2] for details) that

if (t′, X ′) ∈ <×<m×n sufficiently close to the given point (t,X), then σk(X
′
) > 0, k′1 > k

and

k′0 ∈ β1 (k′0 ≡ k0 if β1 = ∅) and k′1 ∈ β3 (k′1 ≡ k1 if β3 = ∅) , (4.43)

where (t̄′, X
′
) = ΠK(t′, X ′), and 0 ≤ k′0 ≤ k− 1 and k ≤ k′1 ≤ m are two integers defined

by (3.149) with respected to X
′
. Assume that (t′, X ′) ∈ DΠK converging to (t,X), where

DΠK is the set of points in < × <m×n where ΠK is differentiable. By the definition of

∂BΠK, Proposition 3.17 (ii) and (3.172), we know from (3.173) and (4.43) that

S(Ãβ2β2) = cI|β2| ,

for some c ∈ <. Therefore, we obtain that

λi(S(Ãβ2β2)) = λj(S(Ãβ2β2)) ∀ i, j ∈ β2 .
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If k1 = k, since the singular value function σ(·) is globally Lipschitz continuous, we

obtain similarly from the part (i) of Lemma 3.15 (see [113, Lemma 4.2] for details) that

if (t′, X ′) sufficiently close to the given point (t,X), then σk(X
′
) > 0, k′1 ≡ k and

k′0 ∈ β1 (k′0 ≡ k0 if β1 = ∅) , (4.44)

where (t̄′, X
′
) := ΠK(t′, X ′), and 0 ≤ k′0 ≤ k−1 and k ≤ k′1 ≤ m are two integers defined

by (3.149) with respected to X
′
. Assume that (t′, X ′) ∈ DΠK converging to (t,X). By

the definition of ∂BΠK, Proposition 3.17 (iii) and (3.174), we know from (3.175) and

(4.44) that
r0∑
l=1

tr(Ãalal) + tr(S(Ãββ)) = a .

Therefore, from the obtained characterization of aff (CK(t,X)), we know that (4.42)

holds.

Case 2. σk(X) = 0. For the fixed (t,X), let 0 ≤ k0 ≤ k − 1 be the integer

satisfying the condition (3.153). Let β1, β2 and β3 be the index sets defined by (3.166)

for (t,X) and u ∈ <m+ be the vector satisfying the condition (3.152). From (3.179)

and the definition (3.167) of the linear mapping T , we know that [Ãββ Ãβc] has the

block-diagonal structure (4.41) and the blocks Ãalal , l = 1, . . . , r are symmetric.

If
∑

i∈β ui < k − k0, then since the single value function σ(·) is globally Lipschitz

continuous, we obtain that for (t′, X ′) ∈ < × <m×n sufficiently close to the given point

(t,X), there exist a positive number θ′ > 0 and a integer k′0 ∈ β1 (k′0 ≡ k0 if β1 = ∅)

such that

σk′0(X
′
) > θ′ ≥ σk′0+1(X

′
) and θ′ >

1

k′0 + 1

m∑
i=k′0+1

σi(X
′) ,

where θ′ = (
∑k′0

i=1 σi(X
′)− t′)/(k′0 + 1) > 0 (see [113, Lemma 4.1] for details). Thus, we

know from [113, Lemma 4.1] that σk(X
′
) = 0, where (t̄′, X

′
) = ΠK(t′, X ′) and 0 ≤ k′0 ≤

k− 1 is the integer defined by (3.153) with respected to X
′
. Assume that (t′, X ′) ∈ DΠK

converging to (t,X). By the definition of ∂BΠK, Proposition 3.17 (iv) and (3.176),
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from (3.177) and k′0 ∈ β1, we obtain that hi2 = 0 for any i2 ∈ β2 ∪ β3, where h =(
λ(Ãa1a1), . . . , λ(Ãarar), σ([Ãbb Ãbc])

)
∈ <|β|.

If
∑

i∈β ui = k − k0, then since (t,X) /∈ intK, we know from [113, Lemma 4.1] that

θ :=
1

k0 + 1
(

k0∑
i=1

σi(X)− t) =
1

k − k0

∑
i∈β1∪β2

σi(X) > 0

and σk0(X) > θ ≥ σk0+1(X),

σi1(X) > σi2(X), σi(X) = 0 ∀ i1 ∈ β1, i2 ∈ β2, i3 ∈ β3 ,

which implies that β3 = b. Therefore, by the globally Lipschitz continuity of the single

value function σ(·), we obtain that for (t′, X ′) sufficiently close to (t,X), if σk(X
′
) = 0,

then

k′0 ∈ β1 (k′0 ≡ k0 if β1 = ∅) ,

where (t̄′, X
′
) = ΠK(t′, X ′), and 0 ≤ k′0 ≤ k − 1 is the integer defined by (3.153) with

respected to X
′
; if σk(X

′
) > 0, then k′1 > k,

k′0 ∈ β1 (k′0 ≡ k0 if β1 = ∅) and k′1 ∈ β3 (k′1 ≡ m if β3 = ∅) ,

where (t̄′, X
′
) = ΠK(t′, X ′), and 0 ≤ k′0 ≤ k − 1 and k ≤ k′1 ≤ m are two integers

defined by (3.149) with respected to X
′
. By taking subsequence if necessary, we may

assume that for the sequence {(t(q), X(q))} which converges to (t,X), either σk(X
(q)) = 0

or σk(X
(q)) > 0 for all q. Therefore, if σk(X

(q)) = 0 for all q, then by the definition

of ∂BΠK, Proposition 3.17 (iv) and (3.176), from (3.177) and k′0 ∈ β1, we obtain that

hi2 = 0 for any i2 ∈ β2 ∪ β3; if σk(X
(q)) > 0 for all q, then by the definition of ∂BΠK,

Proposition 3.17 (ii) and (3.172), we know from (3.173) and (4.43) that

hi = . . . = hi′ ∀ i, i′ ∈ β2 ,

where h =
(
λ(Ãa1a1), . . . , λ(Ãarar), σ([Ãbb Ãbc])

)
∈ <|β|. Therefore, from the obtained

characterization of aff (CK(t,X)), we know that (4.42) holds in this case. The proof is

completed. �
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The following result plays an important role in our subsequent analysis.

Proposition 4.5. Suppose that (t̄, X) ∈ K and (ζ̄,Γ) ∈ K◦ satisfy 〈(t̄, X), (ζ̄,Γ)〉 =

0. Let (t,X) = (t̄, X) + (ζ̄,Γ) ∈ < × <m×n. Then for any V ∈ ∂ΠK(t,X) and

(4t,4X), (4ζ,4Γ) ∈ < × <m×n such that (4t,4X) = V (4t + 4ζ,4X + 4Γ), it

holds that

〈(4t,4X), (4ζ,4Γ)〉 ≥ −Υ(t̄,X)

(
(ζ̄,Γ), (4t,4X)

)
, (4.45)

where the linear quadratic function Υ(t̄,X)(·, ·) is defined in Definition 4.1.

Proof. By the assumption, we know that (t̄, X) = ΠK(t,X) and (ζ̄,Γ) = ΠK◦(t,X).

Without loss of generality, assume that (t,X) /∈ intK∪ intK◦, since otherwise the result

holds trivially.

Suppose that X ∈ <m×n has the singular value decomposition (3.155), i.e., X =

U [Σ(X) 0]V
T

with U ∈ Om and V ∈ On. Let al, l = 1, . . . , r and ar+1 = b be the

corresponding index sets. Denote σ = σ(X). Consider the following two cases.

Case 1. σk > 0. There exist two integers 0 ≤ k0 ≤ k − 1 and k ≤ k1 ≤ m such that

σ1 ≥ . . . ≥ σk0 > σk0+1 = . . . = σk = . . . = σk1 > σk1+1 ≥ . . . ≥ σm ≥ 0 .

Denote α = {1, . . . , k0} and β = {k0, . . . , k1}. Let r0, r1 ∈ {1, . . . , r} be the integers such

that α = ∪r0l=1al and β = ∪r1l=r0+1al. Since (t̄, X) = ΠK(t,X) and (ζ̄,Γ) = ΠK◦(t,X) =

(t,X) − (t̄, X), we know from the part (i) of Lemma 3.15 that there exist θ > 0 and

u ∈ <m+ such that

ζ̄ = t− t̄ = −θ and Γ = X −X = U [diag (θu) 0]V
T

with ui = 1, i = 1, . . . , k0, ui = 0, i = k1 + 1, . . . ,m,

1 ≥ uk0+1 ≥ uk0+2 ≥ . . . ≥ uk1 ≥ 0 and

k1−k0∑
i=1

uk0+i = k − k0 .

Therefore, we know that σi = σj ≡ νl for any i, j ∈ al, l = 1, . . . , r + 1 and ui =

uj ≡ µl for any i, j ∈ al, l = r0 + 1, . . . , r1 (noting that νl ≡ σk for any l = r0 +
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1, . . . , r1). Denote γ = {k1 + 1, . . . ,m} and γ := {1, . . . ,m} \ γ. Let 4X̃ = U
T4XV =

[U
T4XV 1 U

T4XV 2] = [4X̃1 4X̃2] and 4Γ̃ = U
T4ΓV = [U

T4ΓV 1 U
T4ΓV 2] =

[4Γ̃1 4Γ̃2]. Since (4t,4X) = V (4t + 4ζ,4X + 4Γ), we know from Proposition

3.18 that there exists K = (K0,K1, . . . ,Kr1) ∈ ∂ΠC1(0, 0) such that 4t = K0(4t +

4ζ,D(4X̃ +4Γ̃)) and

4X̃ = T (4X̃ +4Γ̃)

+


K1(4t+4ζ,D(4X̃ +4Γ̃)) 0 0 0

0
. . . 0 0

0 0 Kr1(4t+4ζ,D(4X̃ +4Γ̃)) 0

0 0 0 0

 ,

where D(4X̃ +4Γ̃) :=
(
S(4X̃a1a1 +4Γ̃a1a1), . . . , S(4X̃ar1ar1

+4Γ̃ar1ar1 )
)

, and the

linear mapping T is defined by (3.160). Therefore, we have

S(4X̃alal) = Kl(4t+4ζ,D(4X̃ +4Γ̃)), l = 1, . . . , r1 , (4.46)

S(4Γ̃alal′ ) = 0, l 6= l′ and l, l′ = 1, . . . , r0 , (4.47)

S(4X̃alal′ ) = 0, l 6= l′ and l, l′ = r0 + 1, . . . , r1 , (4.48)

S(4X̃αβ)− (E1)αβ ◦ S(4X̃αβ) = (E1)αβ ◦ S(4Γ̃αβ) , (4.49)

S(4X̃αγ)− (E1)αγ ◦ S(4X̃αγ) = (E1)αγ ◦ S(4Γ̃αγ) , (4.50)

S(4X̃βγ)− (E1)βγ ◦ S(4X̃βγ) = (E1)βγ ◦ S(4Γ̃βγ) , (4.51)

T (4X̃)− Ê2 ◦ T (4X̃) = Ê2 ◦ T (4Γ̃) , (4.52)

4X̃γc −Fγc ◦ 4X̃γc = Fγc ◦ 4Γ̃γc , (4.53)[
4Γ̃γγ 4Γ̃γc

]
= 0 , (4.54)
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where Ê2 =


(E2)αα (E2)αβ (E2)αγ

(E2)βα (E2)ββ (E2)βγ

(E2)γα (E2)γβ 0

. By (4.46), we have

(4t,D(4X̃)) = K(4t+4ζ,D(4X̃) +D(4Γ̃)) .

Therefore, by (c) of [64, Proposition 1], we obtain that

4t4ζ +

r1∑
l=1

〈
S(4X̃alal), S(4Γ̃alal)

〉
= 4t4ζ +

〈
D(4X̃),D(4Γ̃)

〉
=

〈
K(4t+4ζ,D(4X̃ +4Γ̃)), (4t+4ζ,D(4X̃ +4Γ̃))−K(4t+4ζ,D(4X̃ +4Γ̃))

〉
≥ 0

Therefore, by (4.47), (4.48) and (4.54), we have

4t4ζ + 〈4X̃1,4Γ̃1〉+ 〈4X̃2,4Γ̃2〉

= 4t4ζ + 〈S(4X̃1), S(4Γ̃1)〉+ 〈T (4X̃1), T (4Γ̃1)〉+ 〈4X̃γc,4Γ̃γc〉

≥ 2
(
〈S(4X̃αβ), S(4Γ̃αβ)〉+ 〈S(4X̃αγ), S(4Γ̃αγ)〉+ 〈S(4X̃βγ), S(4Γ̃βγ)〉

)
+〈T (4X̃), T (4Γ̃)〉+ 〈4X̃γc,4Γ̃γc〉 . (4.55)

By (4.49), (4.50) and (4.51), we have

〈S(4X̃αβ), S(4Γ̃αβ)〉 =

r0∑
l=1

r1∑
l′=r0+1

θ

νl − νl′
‖S(4X̃alal′ )‖

2 − θµl′

νl − νl′
‖S(4X̃alal′ )‖

2 ,

〈S(4X̃αγ), S(4Γ̃αγ)〉 =

r0∑
l=1

r+1∑
l′=r1+1

θ

νl − νl′
‖S(4X̃alal′ )‖

2 ,

〈S(4X̃βγ), S(4Γ̃βγ)〉 =

r1∑
l=r0+1

r+1∑
l′=r1+1

− θµl
νl′ − νl

‖S(4X̃alal′ )‖
2 ,
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which implies

2
(
〈S(4X̃αβ), S(4Γ̃αβ)〉+ 〈S(4X̃αγ), S(4Γ̃αγ)〉+ 〈S(4X̃βγ), S(4Γ̃βγ)〉

)
= −2

r0∑
l=1

r+1∑
l′=r0+1

θ

νl′ − νl
‖S(4X̃alal′ )‖

2

−2

r1∑
l′=r0+1

 r0∑
l=1

θµl′

νl − νl′
‖S(4X̃alal′ )‖

2 +
r+1∑

l=r1+1

θµl′

νl − νl′
‖S(4X̃alal′ )‖

2

 .

Similarly, by (4.53), we know that

〈4X̃γc,4Γ̃γc〉 = 〈4X̃αc,4Γ̃αc〉+ 〈4X̃βc,4Γ̃βc〉

= −
r0∑
l=1

θ

−νl
‖4X̃alc‖

2 −
r1∑

l′=r0+1

θµl′

−ν
‖4X̃al′c‖

2 .

By (4.52), we obtain that

〈T (4X̃), T (4Γ̃)〉

= 〈T (4X̃αα), T (4Γ̃αα)〉+ 〈T (4X̃ββ), T (4Γ̃ββ)〉

+2
(
〈T (4X̃αβ), T (4Γ̃αβ)〉+ 〈T (4X̃αγ), T (4Γ̃αγ)〉+ 〈T (4X̃βγ), T (4Γ̃βγ)〉

)
= −2

r0∑
l=1

r0∑
l′=l

θ

−νl − νl′
‖T (4X̃alal′ )‖

2 − 2

r1∑
l=r0+1

r1∑
l′=r0+1

θµl
−2ν
‖T (4X̃alal′ )‖

2

−2

r0∑
l=1

r1∑
l′=r0+1

θ + θµl′

−νl − ν
‖T (4X̃alal′ )‖

2 − 2

r0∑
l=1

r+1∑
l′=r1+1

θ

−νl − νl′
‖T (4X̃alal′ )‖

2

−2

r1∑
l=r0+1

r+1∑
l′=r1+1

θµl
−νl′ − ν

‖T (4X̃alal′ )‖
2

= −2

r0∑
l=1

r+1∑
l′=l

θ

−vl − vl′
‖T (4X̃alal′ )‖

2 − 2

r1∑
l=r0+1

r+1∑
l′=1

θµl
−νl′ − ν

‖T (4X̃alal′ )‖
2 .
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On the other hand, since ζ = −θ, from the direct calculation, we know that

−ζ̄
r0∑
j=1

tr
(

2P
T
aj

[
B(4X)(B(X)− ν̄jIm+n)†B(4X)

]
P aj

)

= 2

r0∑
l=1

r+1∑
l′=r0+1

θ

νl′ − νl
‖S(4X̃alal′ )‖

2 + 2

r0∑
l=1

r+1∑
l′=l

θ

−vl − vl′
‖T (4X̃alal′ )‖

2

+

r0∑
l=1

θ

−νl
‖4X̃alc‖

2

and 〈
Σββ(Γ), 2P

T
βB(4X)(B(X)− νIm+n)†B(4X)P β

〉
= 2

r1∑
l′=r0+1

 r0∑
l=1

θµl′

νl − ν
‖S(4X̃alal′ )‖

2 +

r+1∑
l=r1+1

θµl′

νl − ν
‖S(4X̃alal′ )‖

2


+2

r1∑
l=r0+1

r+1∑
l′=1

θµl
−νl′ − ν

‖T (4X̃alal′ )‖
2 +

r1∑
l′=r0+1

θµl′

−ν
‖4X̃al′c‖

2 .

Finally, by combining with (4.55), we know that the inequality (4.45) holds.

Case 2. σk = 0. There exists an integer 0 ≤ k0 ≤ k − 1 such that

σ1 ≥ · · · ≥ σk0 > σk0+1 = . . . = σk = . . . = σm = 0 .

Again, define α = {1, . . . , k0} and β = {k0, . . . ,m}. Since (t̄, X) = ΠK(t,X) and (ζ̄,Γ) =

ΠK◦(t,X) = (t,X) − (t̄, X), we know from the part (ii) of Lemma 3.15 that there exist

θ > 0 and u ∈ <m+ such that

ζ = t− t̄ and Γ = X −X = U [diag (θu) 0]V
T

with

uα = e, uβ = u↓β and
∑
i∈β

ui ≤ k − k0 .

Let r0 ∈ {1, . . . , r} be the integer such that

α =

r0⋃
l=1

al, β =
r+1⋃

l=r0+1

al (where ar+1 = b) .
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Define

β1 := {i ∈ β |ui = 1}, β2 := {i ∈ β | 0 < ui < 1} and β3 := {i ∈ β |ui = 0} .

Then, we know that β1 ∪ β2 =
⋃r
l=r0+1 al and β3 = ar+1 = b. Therefore, we know that

σi = σj ≡ νl for any i, j ∈ al, l = 1, . . . , r0, σi = 0 for any i ∈ β, and ui = uj ≡ µl for

any i, j ∈ al, l = r0 + 1, . . . , r + 1.

Similarly, let 4X̃ = U
T4XV = [U

T4XV 1 U
T4XV 2] = [4X̃1 4X̃2] and 4Γ̃ =

U
T4ΓV = [U

T4ΓV 1 U
T4ΓV 2] = [4Γ̃1 4Γ̃2]. Since (4t,4X) = V (4t+4ζ,4X +

4Γ), we know from Proposition 3.18 that there exists K = (K0,K1, . . . ,Kr+1) ∈

∂ΠC2(0, 0) such that 4t = K0(4t+4ζ,D(4X̃ +4Γ̃)) and

4X̃ = T (4X̃ +4Γ̃)

+


K1(4t+4ζ,D(4X̃ +4Γ̃)) · · · 0 0

...
. . .

...
...

0 · · · Kr(4t+4ζ,D(4X̃ +4Γ̃)) 0

0 · · · 0 Kr+1(4t+4ζ,D(4X̃ +4Γ̃))

 ,
where

D(4X̃ +4Γ̃)

:=
(
S(4X̃a1a1 +4Γ̃a1a1), . . . , S(4X̃arar +4Γ̃arar),

[
(4X̃ +4Γ̃)bb (4X̃ +4Γ̃)bc

])
,
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and the linear mapping T is defined by (3.167). Therefore, we have

S(4X̃alal) = Kl(4t+4ζ,D(4X̃ +4Γ̃)), l = 1, . . . , r0 , (4.56)

4X̃alal = S(4X̃alal) = Kl(4t+4ζ,D(4X̃ +4Γ̃)), l = r0 + 1, . . . , r , (4.57)

[4X̃bb 4X̃bc] = Kr+1(4t+4ζ,D(4X̃ +4Γ̃)) , (4.58)

S(4Γ̃alal′ ) = 0, l 6= l′ and l, l′ = 1, . . . , r0 , (4.59)

4X̃alal′ = 0, l 6= l′ and l, l′ = r0 + 1, . . . , r + 1 , (4.60)

4X̃alc = 0, l = r0 + 1, . . . , r , (4.61)

S(4X̃αβ)− (E1)αβ ◦ S(4X̃αβ) = (E1)αβ ◦ S(4Γ̃αβ) , (4.62)

T (4X̃αα)− (E2)αα ◦ T (4X̃αα) = (E2)αα ◦ T (4Γ̃αα) , (4.63)

T (4X̃αβ)− (E2)αβ ◦ T (4X̃αβ) = (E2)αβ ◦ T (4Γ̃αβ) , (4.64)

4X̃αc −Fαc ◦ 4X̃αc = Fαc ◦ 4Γ̃αc , (4.65)

By (4.56)-(4.58), we know that

(4t,D(4X̃)) = K(4t+4ζ,D(4X̃) +D(4Γ̃)) .

By (c) of [64, Proposition 1], we obtain that

4t4ζ +

r∑
l=1

〈
S(4X̃alal), S(4Γ̃alal)

〉
+
〈

[4X̃bb 4X̃bc], [4Γ̃bb 4Γ̃bc]
〉

= 4t4ζ +
〈
D(4X̃),D(4Γ̃)

〉
=

〈
K(4t+4ζ,D(4X̃ +4Γ̃)), (4t+4ζ,D(4X̃ +4Γ̃))−K(4t+4ζ,D(4X̃ +4Γ̃))

〉
≥ 0
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Therefore, by (4.57) and (4.59)-(4.61), we have

4t4ζ + 〈4X̃1,4Γ̃1〉+ 〈4X̃2,4Γ̃2〉

= 4t4ζ + 〈S(4X̃1), S(4Γ̃1)〉+ 〈T (4X̃1), T (4Γ̃1)〉+ 〈4X̃αc,4Γ̃αc〉

≥ 2〈S(4X̃αβ), S(4Γ̃αβ)〉+ 〈T (4X̃αα), T (4Γ̃αα)〉+ 2〈T (4X̃αβ), T (4Γ̃αβ)〉

+〈4X̃αc,4Γ̃αc〉 . (4.66)

By (4.62), we have

2〈S(4X̃αβ), S(4Γ̃αβ)〉

= −2

r0∑
l=1

r+1∑
l′=r0+1

θ

νl′ − νl
‖S(4X̃alal′ )‖

2 − 2

r+1∑
l′=r0+1

r0∑
l=1

θµl′

νl − νl′
‖S(4X̃alal′ )‖

2 .

From (4.63) and (4.64), we know that

〈T (4X̃αα), T (4Γ̃αα)〉+ 2〈T (4X̃αβ), T (4Γ̃αβ)〉

= −2

r0∑
l=1

r0∑
l′=l

θ

−νl − νl′
‖T (4X̃alal′ )‖

2 − 2

r0∑
l=1

r+1∑
l′=r0+1

θ + θµl′

−νl − νl′
‖T (4X̃alal′ )‖

2

= −2

r0∑
l=1

r+1∑
l′=l

θ

−νl − νl′
‖T (4X̃alal′ )‖

2 − 2

r0∑
l=1

r+1∑
l′=r0+1

θµl′

−νl − νl′
‖T (4X̃alal′ )‖

2 .

Similarly, by (4.65), we obtain that

〈4X̃αc,4Γ̃αc〉 = −
r0∑
l=1

θ

−νl
‖4X̃alc‖

2 .

On the other hand, by directly calculating, since ζ = −θ, we know that

−ζ̄
r0∑
j=1

tr
(

2P
T
aj

[
B(4X)(B(X)− ν̄jIm+n)†B(4X)

]
P aj

)

= 2

r0∑
l=1

r+1∑
l′=r0+1

θ

νl′ − νl
‖S(4X̃alal′ )‖

2 + 2

r0∑
l=1

r+1∑
l′=l

θ

−νl − νl′
‖T (4X̃alal′ )‖

2

+

r0∑
l=1

θ

−νl
‖4X̃alc‖

2 .
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Meanwhile, since
〈
S(4X̃alal′ ), T (4X̃alal′ )

〉
= 0 for any l ∈ {1, . . . , r0} and l′ ∈ {r0 +

1, . . . , r + 1}, by directly calculating, we have〈
[Σββ(Γ) 0], [U

T
β4XX

†4X V β U
T
β4XX

†4X V 2]
〉

= 2
r+1∑

l′=r0+1

r0∑
l=1

θµl′

νl − νl′
‖4X̃alal′‖

2

= 2

r+1∑
l′=r0+1

r0∑
l=1

θµl′

νl − νl′
‖S(4X̃alal′ )‖

2 + 2

r+1∑
l′=r0+1

r0∑
l=1

θµl′

−νl − νl′
‖T (4X̃alal′ )‖

2 .

Finally, by combining with (4.66), we know that the inequality (4.45) holds. The proof

is completed. �

Let (t,X) /∈ intK ∪ intK◦ be given. We know that both the zero mapping K0 ≡ 0

and the identity mapping KI ≡ I from W → W are elements of ∂BΠCi(0, 0), i = 1, 2,

since both Ci, i = 1, 2 are closed convex cone in the subspace W. Let V 0 and V I be

defined by (3.178) or (3.179) with K being replaced by K0 and KI , respectively. For

the given (t,X) /∈ intK ∪ intK◦, define

ex(∂BΠK(t,X)) := {V 0,V I} . (4.67)

4.2 Second order optimality conditions and strong regular-

ity of MCPs

Consider the following linear matrix cone programming (MCP) involving the Ky Fan

k-norm

min 〈(s, C), (t,X)〉

s.t. A(t,X) = b ,

(t,X) ∈ K ,

(4.68)

where K = epi‖ · ‖(k) = {(t,X) | ‖X‖(k) ≤ t}, (s, C) ∈ < × <m×n, b ∈ <p are given, and

A : < × <m×n → <p is a linear operator. The first oder optimality condition, namely
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the Karush-Kuhn-Tucker (KKT) condition for (4.68) takes the following form
A∗y − (ζ,Γ) = (s, C) ,

A(t,X) = b ,

K 3 (t,X) ⊥ (ζ,Γ) ∈ K◦ .

(4.69)

For the given feasible point (t̄, X) ∈ < × <m×n, let M(t̄, X) be the set of Lagrange

multipliers. (t̄, X) is a stationary point of (4.68) if and only if M(t̄, X) 6= ∅.

Firstly, we introduce the concept of nondegeneracy for the general constraint, which

is first introduced by Robinson [81, 82]. Let X and Y be two finite dimensional real

vector spaces each equipped with a inner product 〈·, ·〉 and its induced norm ‖ · ‖. Let

g : X → Y be a continuously differentiable function and K be a nonempty and closed

convex set in Y. Consider the following general constraint

g(x) ∈ K, x ∈ X . (4.70)

Assume that x̄ ∈ X is a feasible solution to (4.70). Let TK(g(x̄)) be the tangent cone of

K at g(x̄). Denote the lineality space of TK(g(x̄)) by lin(TK(g(x̄))). Then, we define the

constraint nondegeneracy condition for (4.70) as follows.

Definition 4.3. A feasible point x̄ to the problem (4.70) is constraint nondegenerate if

g′(x̄)X + lin(TK(g(x̄))) = Y . (4.71)

For the MCP problem (4.68), the Euclidean spaces X = Y = <× <m×n, g = (A, I),

where I is the identical mapping in <×<m×n, and the convex set K ≡ {0} ×K. Then,

for a feasible point (t̄, X) ∈ <×<m×n, the constraint nondegeneracy can be specified as

follows.

Definition 4.4. We say that the constraint nondegeneracy holds at a feasible point

(t̄, X) ∈ < × <m×n to the MCP problem (4.68) if A
I

<× <m×n +

 {0}

lin(TK(t̄, X))

 =

 <p

<× <m×n

 . (4.72)
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Let Z :=
(
(t̄, X), ȳ, (ζ̄,Γ)

)
∈ <×<m×n ×<p ×<×<m×n be a KKT point satisfying

the KKT conditions (4.69). Then, since K is a closed convex cone, we know from [32]

that

K 3 (t,X) ⊥ (ζ,Γ) ∈ K◦

⇐⇒ (t,X)−ΠK(t+ ζ,X + Γ) = (ζ,Γ)−ΠK◦(t+ ζ,X + Γ) = 0 .

Therefore, Z =
(
(t̄, X), ȳ, (ζ̄,Γ)

)
satisfies the KKT condition (4.69) if and only if Z is a

solution to the following non-smooth equation

F ((t,X), y, (ζ,Γ)) :=


(s, C)−A∗y + (ζ,Γ)

A(t,X)− b

(t,X)−ΠK(t+ ζ,X + Γ)

 = 0 , (4.73)

where ((t,X), y, (ζ,Γ)) ∈ <×<m×n×<p×<×<m×n. It is well-known that both (4.69)

and (4.73) are equivalent to the following generalized equation

0 ∈


(s, C)−A∗y + (ζ,Γ)

A(t,X)− b

−(t,X)

+


N<×<m×n(t,X)

N<p(y)

NK◦(ζ,Γ)

 . (4.74)

Robinson [80] introduced an important concept called strong regularity for a solution of

generalized equations. We define the strong regularity for (4.74) as follows.

Definition 4.5. Let Z ≡ < × <m×n × <p × < × <m×n. We say that a KKT point

Z =
(
(t̄, X), ȳ, (ζ̄,Γ)

)
∈ Z is a strongly regular solution of the generalized equation

(4.74) if there exist neighborhoods U of the origin 0 ∈ Z and V of Z such that for every

δ ∈ U , the following generalized equation

δ ∈


(s, C)−A∗y + (ζ,Γ)

A(t,X)− b

−(t,X)

+


N<×<m×n(t,X)

N<p(y)

NK◦(ζ,Γ)

 (4.75)
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has a unique solution in V, denoted by ZV(δ), and the mapping ZV : U → V is Lipschitz

continuous.

The following result on the relationship between the strong regularity of (4.74) and

the locally Lipschitz homeomorphism of F defined in (4.73) can be proved in the similar

way to that of in [17, Lemma 11]. We omit the proof here.

Lemma 4.6. Let Z ≡ < × <m×n × <p × < × <m×n. Let F : Z → Z be defined by

(4.73) and Z =
(
(t̄, X), ȳ, (ζ̄,Γ)

)
be a KKT point of the MCP problem. Then, F is

locally Lipschitz homeomorphism near Z if and only if Z is a strong regular solution of

the generalized equation (4.74).

Let (t̄, X) be a feasible solution to the MCP problem (4.68). The critical cone C(t̄, X)

of (4.68) at (t̄, X) is defined by

C(t̄, X) :=
{

(τ,H) ∈ < × <m×n | A(τ,H) = 0, (τ,H) ∈ TK(t̄, X), sτ + 〈C,H〉 ≤ 0
}
.

(4.76)

If (t̄, X) is a stationary point of MCP, i.e., M(t̄, X) is nonempty, then

C(t̄, X) =
{

(τ,H) ∈ < × <m×n | A(τ,H) = 0, (τ,H) ∈ TK(t̄, X), sτ + 〈C,H〉 = 0
}
.

Let (ȳ, (ζ̄,Γ)) ∈M(t̄, X). Denote (t,X) = (t̄+ ζ̄, X+Γ). For such (ȳ, (ζ̄,Γ)) ∈M(t̄, X),

we know from the KKT condition (4.69) that

C(t̄, X) =
{

(τ,H) ∈ < × <m×n | A(τ,H) = 0, (τ,H) ∈ CK(t,X)
}
, (4.77)

where CK(t,X) is the critical cone of K at (t,X), which is completely characterized in

Section 4.1.2.

For the MCP problem (4.68), Robinson’s constraint qualification (CQ) (Robinson

[79]) can be equivalently written as A
I

<× <m×n +

 {0}

TK(t̄, X)

 =

 <p

<× <m×n

 . (4.78)
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The following result on the uniqueness of Lagrange multiplier of the MCP problem (4.68

can be obtained from [8, Proposition 4.50], directly.

Proposition 4.7. Let (t̄, X) be a feasible solution to the MCP problem (4.68) and

(ȳ, (ζ̄,Γ)) ∈ M(t̄, X). Suppose that (ȳ, (ζ̄,Γ)) satisfies the following strict constraint

qualification: A
I

<× <m×n +

 {0}

TK(t̄, X) ∩ (ȳ, (ζ̄,Γ))⊥

 =

 <p

<× <m×n

 . (4.79)

Then M(t̄, X) is a singleton.

Let G : <× <m×n → <p ×<m×n be defined by

G(t,X) :=

 A(t,X)− b

(t,X)

 (t,X) ∈ < × <m×n .

Then, for any (ȳ, (ζ̄,Γ)) ∈ M(t̄, X) and (τ,H) ∈ C(t̄, X), the second order tangent set

T 2
{0}×K

(
G(t̄, X), G′(t̄, X)(τ,H)

)
to {0}×K at G(t̄, X) along the direction G′(t̄, X)(τ,H)

is given by

T 2
{0}×K

(
G(t̄, X), G′(t̄, X)(τ,H)

)
= T 2

{0}
(
A(t̄, X)− b,A(τ,H)

)
× T 2
K
(
(t̄, X), (τ,H)

)
= T 2

{0} × T
2
K .

Since the support function value δ∗T 2
{0}

(ȳ) = 0, we know that

δ∗T 2
{0}×K

(ȳ, (ζ̄,Γ)) = δ∗T 2
K

(ζ̄,Γ) .

Let (t̄, X) ∈ K be an optimal solution to the MCP problem (4.68). By Proposition

4.2, we have the following proposition.

Proposition 4.8. Let (t̄, X) be a feasible solution to the MCP problem (4.68) such that

M(t̄, X) is nonempty. Then for any (ȳ, (ζ̄,Γ)) ∈M(t̄, X), one has

δ∗T 2
K

(ζ̄,Γ) = Υ(t̄,X)

(
(ζ̄,Γ), (τ,H)

)
∀ (τ,H) ∈ C(t̄, X) ,

where the linear quadratic function Υ(t̄,X)(·, ·) is defined in Definition 4.1.
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Recall that K is C2-cone reducible (Proposition 4.3). Note that {0} is also C2-cone

reducible, and the Cartesian product of C2-cone reducible sets is again C2-cone reducible.

Then, by combining Theorem 3.45, Proposition 3.136 and Theorem 3.137 in Bonnans

and Shapiro [8], we can state in the following theorem on the second order necessary

condition and the second order sufficient condition for the MCP problem (4.68).

Theorem 4.9. Suppose that (t̄, X) is a locally optimal solution to the linear MCP (4.68)

and Robinson’s CQ holds at (t̄, X). Then, the following inequality holds:

sup
(ȳ,(ζ̄,Γ))∈M(t̄,X)

{
−Υ(t̄,X)

(
(ζ̄,Γ), (τ,H)

)}
≥ 0 ∀ (τ,H) ∈ C(t̄, X) . (4.80)

Conversely, let (t̄, X) be a feasible solution to MCP such that M(t̄, X) is nonempty.

Suppose that Robinson’s CQ holds at (t̄, X). Then the following condition

sup
(ȳ,(ζ̄,Γ))∈M(t̄,X)

{
−Υ(t̄,X)

(
(ζ̄,Γ), (τ,H)

)}
> 0 ∀ (τ,H) ∈ C(t̄, X) \ {(0, 0)} (4.81)

is necessary and sufficient for the quadratic growth condition at (t̄, X), i.e., ∀ (t,X) ∈ N

such that (t,X) is feasible,

〈(s, C), (t,X)〉 ≥ 〈(s, C), (t̄, X)〉+ c‖(t̄, X)− (t,X)‖2 , (4.82)

for some constant c > 0 and a neighborhood N of (t̄, X) is <× <m×n.

For the stationary point (t̄, X), in order to introduce the strong second order sufficient

condition for the MCP problem (4.68), we define the following outer approximation set

to the affine hull of C(t̄, X) with respect to (ȳ, (ζ̄,Γ)) ∈M(t̄, X) by

app(ȳ, (ζ̄,Γ)) :=
{

(τ,H) ∈ < × <m×n | A(τ,H) = 0, (τ,H) ∈ aff(CK(t,X))
}
. (4.83)

Therefore, the strong second order sufficient condition for the MCP problem (4.68) is

defined as follows.

Definition 4.6. Let (t̄, X) be an optimal solution to (4.68) such thatM(t̄, X) is nonempty.

We say that the strong second order sufficient condition holds at (t̄, X) if

sup
(ȳ,(ζ̄,Γ))∈M(t̄,X)

{
−Υ(t̄,X)

(
(ζ̄,Γ), (τ,H)

)}
> 0 ∀ (τ,H) ∈ Ĉ(t̄, X) \ {(0, 0)} , (4.84)
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where for any (ȳ, (ζ̄,Γ)) ∈M(t̄, X), ȳ ∈ <p, (ζ̄,Γ) ∈ < × <m×n and

Ĉ(t̄, X) :=
⋂

(ȳ,(ζ̄,Γ))∈M(t̄,X)

app(ȳ, (ζ̄,Γ)) .

Let (ȳ, (ζ̄,Γ)) ∈M(t̄, X). Denote (t,X) ≡ (t̄+ ζ̄, X + Γ). Without loss of generality,

from now on, we always assume that (t,X) /∈ intK∪ intK◦. By [17, Lemma 1], it is clear

that U ∈ ∂BF ((t̄, X), ȳ, (ζ̄,Γ)) if and only if there exists a V ∈ ∂BΠK(t,X) such that

U ((4t,4X),4y, (4ζ,4Γ)) =


−A∗(4y) + (4ζ,4Γ)

A(4t,4X)

(4t,4X)− V (4t+4ζ,4X +4Γ)

 (4.85)

for all ((4t,4X),4y, (4ζ,4Γ)) ∈ Z. Let ex(∂BΠK(t,X)) be defined by (4.67). For

V 0,V I ∈ ex(∂BΠK(t,X)), let U0 and UI be defined by (4.85), respectively. Denote

ex
(
∂BF ((t̄, X), ȳ, (ζ̄,Γ))

)
:=
{
U0,UI

}
.

Proposition 4.10. Let
(
(t̄, X), ȳ, (ζ̄,Γ)

)
be a KKT point of the MCP problem (4.68). If

U0 ∈ ex
(
∂BF ((t̄, X), ȳ, (ζ̄,Γ))

)
is nonsingular, then the constraint nondegenerate condi-

tion (4.72) holds at (t̄, X).

Proof. Assume on the contrary that (4.72) does not hold. Then, we have
 A
I

<× <m×n

⊥⋂ 0

lin(TK(t̄, X))


⊥

6=

 0

0

 ∈
 <p

<× <m×n

 ,
which implies that there exists

0 6= (4y, (4ζ,4Γ)) ∈


 A
I

<× <m×n

⊥⋂ 0

lin(TK(t̄, X))


⊥

.

From (4y, (4ζ,4Γ)) ∈


 A
I

<× <m×n

⊥

, we know that

〈(4y, (4ζ,4Γ)), (A(τ,H), (τ,H))〉 = 0 ∀ (τ,H) ∈ < × <m×n ,
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which implies

A∗(4y) + (4ζ,4Γ) = −A∗(4y) + (−4ζ,−4Γ) = 0 .

Meanwhile, from (4y, (4ζ,4Γ)) ∈

 0

lin(TK(t̄, X))


⊥

, we obtain that

−τ4ζ − 〈H,4Γ〉 = 0 ∀ (τ,H) ∈ lin(TK(t̄, X)) .

Therefore, we know from (4.3) and (4.4) that

T (U
T4ΓV ) = 0 ,

where the linear operator T : <m×n → <m×n is defined by (3.160) if σk > 0, and (3.167)

if σk = 0. By Proposition 3.18, we know that V 0
1 (−4ζ,−4Γ) = 0 ∈ <m×n. Therefore,

since V 0
0 (4t−4ζ,4X −4Γ) ≡ 0 ∈ <, for (4t,4X) ≡ (0, 0), we have 4t

4X

−
 V 0

0 (4t−4ζ,4X −4Γ)

V 0
1 (4t−4ζ,4X −4Γ)

 = 0 ,

which implies that

U0((4t,4X),4y, (−4ζ,−4Γ)) =


−A∗(4y) + (−4ζ,−4Γ)

A(4t,4X)

(4t,4X)− V 0(4t−4ζ,4X −4Γ)

 = 0 .

Since 0 6= (4y, (4ζ,4Γ)), we know that U0 is singular. This contradiction shows that

the constraint nondegenerate condition (4.72) holds at (t̄, X). �

WhenM(t̄, X) is a singleton, we have the following result on the strong second order

sufficient condition (4.84).

Proposition 4.11. Let (t̄, X) be a feasible point of the MCP problem (4.68). Assume

that M(t̄, X) = {ȳ, (ζ̄,Γ)}. If UI ∈ ex(∂BF ((t̄, X), ȳ, (ζ̄,Γ))) is nonsingular, then the

strong second order sufficient condition (4.84) holds at (t̄, X).
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Proof. Since M(t̄, X) =
{
ȳ, (ζ̄,Γ)

}
, the strong second order sufficient condition (4.84)

can be written as

−Υ(t̄,X)

(
(ζ̄,Γ), (τ,H)

)
> 0 ∀ (τ,H) ∈ app(ȳ, (ζ̄,Γ)) \ {(0, 0)} . (4.86)

Suppose that the condition (4.86) does not hold at (t̄, X). By noting that for any

(τ,H) ∈ app(ȳ, (ζ̄,Γ)), −Υ(t̄,X)

(
(ζ̄,Γ), (τ,H)

)
≥ 0, we know that there exists 0 6=

(τ,H) ∈ app(ȳ, (ζ̄,Γ)) such that

A(τ,H) = 0 and −Υ(t̄,X)

(
(ζ̄,Γ), (τ,H)

)
= 0 .

Therefore, by the definition (Definition 4.1) of Υ(t̄,X)

(
(ζ̄,Γ), (τ,H)

)
and the proof of

Proposition 4.5, we know that if σk(X) > 0,

H̃αα ∈ S |α|,

 H̃β1β1 H̃β1β2

H̃β2β1 H̃β2β2

 ∈ S |β1|+|β2| ,

H̃β1β3 = (H̃β3β1)T , H̃β2β3 = (H̃β3β2)T

H̃αβ2 = (H̃β2α)T = 0, H̃αβ3 = (H̃β3α)T = 0 ,

H̃αγ = (H̃γα)T = 0 ,

H̃β1γ = (H̃γβ1)T = 0, H̃β2γ = (H̃γβ2)T = 0 ,

H̃αc = 0, H̃β1c = 0, H̃β2c = 0 ,

(4.87)

where H̃ = U
T
HV , and the index sets α, β, γ, and βi, i = 1, 2, 3 are defined by (3.150)

and (3.159), respectively; if σk(X) = 0,
H̃αα ∈ S |α| ,

H̃αβ2 = (H̃β2α)T = 0, H̃αβ3 = (H̃β3α)T = 0 ,

H̃αc = 0 ,

(4.88)

where H̃ = U
T
HV , and the index sets α, β, and βi, i = 1, 2, 3 are defined by (3.154)

and (3.166), respectively. By Proposition 3.18, we know from (4.87) and (4.88) that

(τ,H) = V I(τ,H) .
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Finally, by (4.85), we have for (4y, (4ζ,4Γ)) = 0 ∈ <p ×<× <m×n that

UI((τ,H),4y, (4ζ,4Γ)) =


−A∗(4y) + (4ζ,4Γ)

A(τ,H)

(τ,H)− V I(τ +4ζ,H +4Γ)

 = 0 ,

which, implies that UI is singular. This contradiction shows that the strong second

order sufficient condition (4.86) holds at (t̄, X). �

The following proposition relates the strong second order sufficient condition and

constraint nondegeneracy to the nonsingularity of Clarke’s Jacobian of the mapping F

and the strong regularity of a solution to the generalized equation (4.74).

Proposition 4.12. Let (t̄, X) be a feasible solution of the MCP problem (4.68). Let

ȳ ∈ <p, (ζ̄,Γ) ∈ < × <m×n be such that (ȳ, (ζ̄,Γ)) ∈ M(t̄, X). Consider the following

three statements:

(a) The strong second order sufficient condition (4.84) holds at (t̄, X) and (t̄, X) is

constraint nondegenerate.

(b) Any element in ∂F ((t̄, X), ȳ, (ζ̄,Γ)) is nonsingular.

(c) The KKT point
(
(t̄, X), ȳ, (ζ̄,Γ)

)
is a strong regular solution of the generalized

equation (4.74).

It holds that (a) =⇒ (b) =⇒ (c).

Proof. “(a) =⇒ (b)” Since the constraint nondegeneracy condition (4.72) holds at

(t̄, X), (ȳ, (ζ̄,Γ)) satisfies the strict constraint qualification (4.79). Thus, we know from

Proposition 4.7 that M(t̄, X) = {(t̄, X), (ȳ, (ζ̄,Γ))}. The strong second order sufficient

condition (4.84) then takes the following form

−Υ(t̄,X)

(
(ζ̄,Γ), (τ,H)

)
> 0 ∀ (τ,H) ∈ app(ȳ, (ζ̄,Γ)) \ {(0, 0)} . (4.89)
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Let (t,X) = (t̄+ ζ̄, X + Γ).

Let U be an arbitrary element in ∂F ((t̄, X), ȳ, (ζ̄,Γ)). We will show that U is non-

singular. Let ((4t,4X),4y, (−4ζ,−4Γ)) ∈ < × <m×n × <p × < × <m×n be such

that

U ((4t,4X),4y, (−4ζ,−4Γ)) = 0 .

Then, we know that there exists a V ∈ ∂ΠK(t,X) such that

U ((4t,4X),4y, (4ζ,4Γ)) =


−A∗(4y) + (4ζ,4Γ)

A(4t,4X)

(4t,4X)− V (4t+4ζ,4X +4Γ)

 = 0 . (4.90)

From the third equation of (4.90), we know that (4t,4X) = V (4t +4ζ,4X +4Γ).

By Lemma 4.4 and the second equation of (4.90), we obtain that

(4t,4X) ∈ app(ȳ, (ζ̄,Γ)) .

From the first and second equations of (4.90), we know that

0 = −〈A(4t,4X),4y〉+ 〈(4t,4X), (4ζ,4Γ)〉 = 〈(4t,4X), (4ζ,4Γ)〉 ,

which, together with the third equation of (4.90) and Proposition 4.5, implies that

0 ≥ −Υ(t̄,X)

(
(ζ̄,Γ), (4t,4X)

)
.

Therefore, by (4.89), we have

(4t,4X) = 0 .

Thus, (4.89) reduces to  −A∗(4y) + (4ζ,4Γ)

V (4ζ,4Γ)

 = 0 (4.91)

By the constraint nondegeneracy condition (4.72), we know that there exist (a,A) ∈

< × <m×n and (τ,H) ∈ lin(TK(t̄, X)) such that

A(a,A) = −4y and (a+ τ,A+H) = (4ζ,4Γ) . (4.92)
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By (4.92) and the first equation of (4.91), we know that

〈4y,4y〉+ 〈(4ζ,4Γ), (4ζ,4Γ)〉

= 〈−A(a,A),4y〉+ 〈(a+ τ,A+H), (4ζ,4Γ)〉

= 〈(a,A),−A∗(4y) + (4ζ,4Γ)〉+ 〈(τ,H), (4ζ,4Γ)〉

= τ4ζ + 〈H,4Γ〉 = τ4ζ + 〈H̃,4Γ̃〉 , (4.93)

where H̃ = U
T
HV and 4Γ̃ = U

T4ΓV . Next, consider the following two cases.

Case 1. σk(X) > 0. Since (τ,H) ∈ lin(TK(t̄, X)), by (4.3), we know that

S(H̃ββ) =
1

k − k0

(
τ −

r0∑
l=1

tr(H̃alal)

)
I|β| .

Hence, from the part (i) of Lemma 3.19, we know that

τ4ζ + 〈H̃,4Γ̃〉 = 4ζτ +

〈
H̃,


−4ζI|α| 0 0 0

0 4Γ̃ββ 0 0

0 0 0 0


〉

= 4ζτ −4ζ
r0∑
l=1

tr(H̃alal) + 〈S(H̃ββ),4Γ̃ββ〉 (since 4Γ̃ββ is symmetric)

= 4ζτ −4ζ
r0∑
l=1

tr(H̃alal) +
1

k − k0

(
τ −

r0∑
l=1

tr(H̃alal)

)
tr(4Γ̃ββ)

= −4ζ

(
−τ +

r0∑
l=1

tr(H̃alal)

)
−4ζ

(
τ −

r0∑
l=1

tr(H̃alal)

)
= 0 .

Case 2. σk(X) = 0. Since (τ,H) ∈ lin(TK(t̄, X)), by (4.4), we know that

r0∑
l=1

tr(H̃alal) = τ and
[
H̃ββ H̃βc

]
= 0 .

From the part (ii) of Lemma 3.19, we know that

τ4ζ + 〈H̃,4Γ̃〉 = 4ζτ +

〈
H̃,

 −4ζI|α| 0 0

0 4Γ̃ββ 4Γ̃βc

〉

= 4ζτ −4ζ
r0∑
l=1

tr(H̃alal) = 0 .
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Thus, from (4.93), we obtain that

4y = 0 and (4ζ,4Γ) = 0 .

This, together with (4t,4X) = 0, shows that U is nonsingular.

“(b) =⇒ (c)” By Clarke’s inverse function theorem [22, 23], we know that F is

a locally Lipschitz homeomorphism near
(
(t̄, X), ȳ, (ζ̄,Γ)

)
. Thus, from Lemma 4.6,(

(t̄, X), ȳ, (ζ̄,Γ)
)

is a strong regular solution of the generalized equation (4.74). �

Now, we are ready to state our main results of this chapter.

Theorem 4.13. Let
(
(t̄, X), ȳ, (ζ̄,Γ)

)
be a KKT point satisfying the KKT condition

(4.69) and F be defined by (4.73). Then, the following statements are all equivalent:

(i) The KKT point
(
(t̄, X), ȳ, (ζ̄,Γ)

)
is a strongly regular solution of the generalized

equation (4.74).

(ii) The function F is locally Lipschitz homeomorphism near
(
(t̄, X), ȳ, (ζ̄,Γ)

)
.

(iii) The strong second order sufficient condition (4.84) holds at (t̄, X) and (t̄, X) is

constraint nondegenerate.

(iv) Every element in ∂F ((t̄, X), ȳ, (ζ̄,Γ)) is nonsingular.

(v) Every element in ∂BF ((t̄, X), ȳ, (ζ̄,Γ)) is nonsingular.

(vi) The two elements in ex
(
∂BF ((t̄, X), ȳ, (ζ̄,Γ)

)
are nonsingular.

Proof. The relation (i) ⇐⇒ (ii) follows from Lemma 4.6. We know from Proposition

4.12, Proposition 4.10 and Proposition 4.11 that (iii)⇐⇒ (iv)⇐⇒ (v)⇐⇒ (vi) =⇒ (i).

Finally, we know from [50] that (ii) =⇒ (v). Thus, the proof is completed. �
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4.3 Extensions to other MOPs

In pervious sections, we have studied the variational analysis of the Ky Fan k-norm cone

and the sensitivity analysis of the linear MCP problem involving the Ky Fan k-norm

cone. In this section, we consider the extensions of the corresponding sensitivity results

to other MOP problems.

The first kind of MOPs considering in this section is the linear MCP problem involv-

ing the epigraph cone M of the sum of k largest eigenvalues of the symmetric matrix

((1.49) in Section 1.3), which comes from the applications such as eigenvalue optimiza-

tion [69, 70, 71, 55]. Note that the epigraph cone M can be regarded as the symmetric

counterpart of the Ky Fan k-norm cone K. By using the properties of the eigenvalue

function λ(·) of the symmetric matrix (see e.g., Section 2.1), the corresponding vari-

ational properties of M such as the characterizations of tangent cone and the second

order tangent sets of M, the explicit expression of the support function of the second

order tangent set of M, the C2-cone reducibility of M and the characterization of the

critical cone of M, can be obtained in the similar but simple way to those of the Ky

Fan k-norm cone K. Similarly, we can state the constraint nondegeneracy, the second

order necessary condition and the (strong) second order sufficient condition of the linear

matrix cone programming (MCP) problem (1.49). Also, by using the properties of the

spectral operator (the metric projection operator over the epigraph cone M), for the

considering linear matrix cone programming (MCP) problem (1.49), we can consider the

relationships among the strong regularity of the KKT point, the strong second order

sufficient condition and constraint nondegeneracy, and the nonsingularity of both the

B-subdifferenitial and Clarke’s generalized Jacobian of the nonsmooth system at a KKT

point.

The second kind of MOPs considering in this section is the nonlinear MCP problems

with the Ky Fan k-norm cone K, where the smooth objective function and constraints

in (4.68) are not necessary linear. For example, the problem (1.10), (1.12) and (1.14)
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can be reformulated as the nonlinear MCP problems with the Ky Fan k-norm cone K.

Since the epigraph cone K is C2-cone reducible, by combining the variational properties

of K which we obtained in this thesis and the sensitivity results for the general conic

programming in literature [5, 7, 8], we can establish the constraint nondegeneracy, the

second order necessary condition and the (strong) second order sufficient condition for

the nonlinear MCP problem involving K directly. Furthermore, as the nonlinear SDP

problem [94], we can consider the various characterizations for the strong regularity for a

local solution of the nonlinear MCP with the Ky Fan k-norm cone K. Actually, the results

in Proposition 4.12 for the linear MCP problem (4.68) can be extended easily to the

nonlinear MCP problem involving the Ky Fan k-norm cone K. Finally, as the nonlinear

SDP problem [94], for a local solution of the considering nonlinear MCP problem, we are

able to consider the relationships among the strong second-order sufficient condition and

constraint nondegeneracy, the non-singularity of Clarke’s Jacobian of the Karush-Kuhn-

Tucker (KKT) system and the strong regularity of the KKT point, under the Robinson’s

CQ.

The third kind of MOPs considering in this section is the linear MCP problem (1.4)

where the matrix cone K is the Cartesian product of the Ky Fan k-norm cone and some

well understood symmetric cones (e.g., nonnegative orthant, the second order cone and

the SDP cone). For example, the problem (1.17), (1.18) and others can be reformulated

as this separable cone constraints MCP problem. Since the variational properties of such

symmetric cones are well studied in literature [33, 86, 35, 97] and all the cones consid-

ering right now are C2-cone reducible, by combining the variational properties of the Ky

Fan k-norm cone which we obtained before, we can derive the corresponding sensitivity

results for the linear MCP problem with the separable cone constraints. Therefore, the

sensitivity analysis results obtained in this chapter can be extended immediately to such

linear MCP problems.

Finally, as we mentioned before, the work done on the sensitivity analysis of MOPs
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is far from comprehensive. It can be seen that some MOP problems may not be cov-

ered by this work due to the inseparable structure. For example, in order to study the

sensitivity results of the MOP problem defined in (1.46), we must first study the varia-

tional properties of the epigraph cone Q of the positively homogenous convex function

f ≡ max{λ(·), ‖ · ‖2} : Sn × <m×n → (−∞,∞] such as the characterizations of tangent

cone and the (inner and outer) second order tangent sets of Q, the explicit expression of

the support function of the second order tangent set of Q, the C2-cone reducibility ofM

and the characterization of the critical cone of Q. Certainly, the properties of spectral

operators (the metric projection operator over the convex cone Q) will play an important

role in this study. Also, this is our future research direction.



Chapter 5
Conclusions

In this thesis, we study a class of optimization problems, which involve minimizing the

sum of a linear function and a proper closed convex function subject to an affine con-

straint in the matrix space. Such optimization problems are said to be matrix optimiza-

tion problems (MOPs). Many important optimization problems in diverse applications

arising from a wide range of fields can be cast in the form of MOPs. In order to solve

the defined MOP by the proximal point algorithms (PPAs), as an initial step, we do

a systematic study on spectral operators. Several fundamental properties of spectral

operators are studied, including the well-definiteness, the directional differentiability,

the Fréchet-differentiability, the locally Lipschitz continuity, the ρ-order B(ouligand)-

differentiability, the ρ-order G-semismooth and the characterization of Clarke’s gener-

alized Jacobian. This systematical study of spectral operators is of crucial importance

in terms of the study of MOPs, since it provides the powerful tools to study both the

efficient algorithms and the optimal theory of MOPs.

In the second part of this thesis, we discuss the sensitivity analysis of some MOP

problems. We mainly focus on the linear MCP problems involving the Ky Fan k-norm

epigraph cone K. Firstly, we study some important variational properties of the Ky Fan

k-norm epigraph cone K, including the characterizations of tangent cone and the (inner

204
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and outer) second order tangent sets of K, the explicit expression of the support function

of the second order tangent set, the C2-cone reducibility of K, the characterization of the

critical cone of K. By using these properties, we state the constraint nondegeneracy, the

second order necessary condition and the (strong) second order sufficient condition of the

linear matrix cone programming (MCP) problem involving the Ky Fan k-norm. For such

linear MCP problems, we establish the equivalent links among the strong regularity of the

KKT point, the strong second order sufficient condition and constraint nondegeneracy,

and the non-singularity of both the B-subdifferenitial and Clarke’s generalized Jacobian

of the nonsmooth system at a KKT point. The extensions to other MOP problems are

also discussed.

The work done in this thesis is far from comprehensive. There are many interesting

topics for our future research. Firstly, the general framework of the classical PPAs for

MOPs discussed in this thesis is heuristics. For applications, a careful study on the

numerical implementation is an important issue. There is a great demand for efficient

and robust solvers for solving MOPs, especially for problems that are large scale. On

the other hand, our idea for solving MOPs is built on the classical PPA method. One

may use other methods to solve MOPs. For example, in order to design the efficient

and robust interior point method to MCPs, more insightful research on the geometry of

the non-symmetric matrix cones as the Ky Fan k-norm cone is needed. In this thesis,

we only study the sensitivity analysis of some MOP problems with special structures,

such as the linear MCP problems involving the Ky Fan k-norm epigraph cone K and

others. Another important research topic is the sensitivity analysis of the general MOP

problems such as the nonlinear MCP problems and the MOP problems (1.2) and (1.3)

with the general convex functions.
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