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Summary

This thesis focuses on a class of optimization problems, which involve minimizing the
sum of a linear function and a proper closed simple convex function subject to an affine
constraint in the matrix space. Such optimization problems are said to be matrix opti-
mization problems (MOPs). Many important optimization problems in diverse applica-
tions arising from a wide range of fields such as engineering, finance, and so on, can be

cast in the form of MOPs.

In order to apply the proximal point algorithms (PPAs) to the MOP problems, as
an initial step, we shall study the properties of the corresponding Moreau-Yosida reg-
ularizations and proximal point mappings of MOPs. Therefore, we study one kind of
matrix-valued functions, so-called spectral operators, which include the gradients of the
Moreau-Yosida regularizations and the proximal point mappings. Specifically, the fol-
lowing fundamental properties of spectral operators, including the well-definiteness, the
directional differentiability, the Fréchet-differentiability, the locally Lipschitz continu-
ity, the p-order B(ouligand)-differentiability (0 < p < 1), the p-order G-semismooth
(0 < p < 1) and the characterization of Clarke’s generalized Jacobian, are studied sys-

temically.
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Summary

viii

In the second part of this thesis, we discuss the sensitivity analysis of MOP problems.
We mainly focus on the linear MCP problems involving Ky Fan k-norm epigraph cone
IC. Firstly, we study some important geometrical properties of the Ky Fan k-norm
epigraph cone K, including the characterizations of tangent cone and the (inner and
outer) second order tangent sets of C, the explicit expression of the support function of
the second order tangent set, the C?-cone reducibility of K, the characterization of the
critical cone of K. By using these properties, we state the constraint nondegeneracy, the
second order necessary condition and the (strong) second order sufficient condition of
the linear matrix cone programming (MCP) problem involving the epigraph cone of the
Ky Fan k-norm. Variational analysis on the metric projector over the Ky Fan k-norm
epigraph cone K is important for these studies. More specifically, the study of properties
of spectral operators in the first part of this thesis plays an essential role. For such linear
MCP problem, we establish the equivalent links among the strong regularity of the KK'T
point, the strong second order sufficient condition and constraint nondegeneracy, and
the nonsingularity of both the B-subdifferenitial and Clarke’s generalized Jacobian of
the nonsmooth system at a KKT point. Finally, the extensions of the corresponding

sensitivity results to other MOP problems are also considered.



Summary of Notation

For any Z € R™*", we denote by Z;; the (i, j)-th entry of Z.

For any Z € R"™*", we use z; to represent the jth column of Z, j =1,...,n. Let
J C{1,...,n} be an index set. We use Z7 to denote the sub-matrix of Z obtained

by removing all the columns of Z not in J. So for each j, we have Z;; = z;.

Let Z C {1,...,m} and J C {1,...,n} be two index sets. For any Z € R™*" we
use Z77 to denote the |Z| x | J| sub-matrix of Z obtained by removing all the rows

of Z not in Z and all the columns of Z not in J.

For any y € R", diag(y) denotes the diagonal matrix whose i-th diagonal entry is

Y, 1 =1,...,n.

e € R" denotes the vector with all components one. F € &™*™ denotes the m by

n matrix with all components one.

Let 8™ be the space of all real n x n symmetric matrices and O™ be the set of all

n x n orthogonal matrices.

[43

We use “o” to denote the Hadamard product between matrices, i.e., for any two

ix



Summary of Notation

matrices X and Y in R™*" the (4, j)-th entry of Z := XoY € ™ " is Z;; = X;;Y5;.

e For any given Z € R"™*" let ZI € R™*" be the Moore-Penrose pseudoinverse of

Z.

e For each X € R™* " | X]||y denotes the spectral or the operator norm, i.e., the

largest singular value of X.

e For each X € R™*" || X|« denotes the nuclear norm, i.e., the sum of the singular

values of X.

e For each X € R™*", || X||() denotes the Ky Fan k-norm, i.e., the sum of the

k-largest singular values of X, where 0 < k < min{m,n} is a positive integer.

e For each X € 8", s(;,)(X) denotes the sum of the k-largest eigenvalues of X, where

0 < k < n is a positive integer.

e Let Z and Z’ be two finite dimensional Euclidean spaces. and A : Z — Z’ be a
given linear operator. Denote the adjoint of A by A*, ie., A* : Z/ — Z is the

linear operator such that
(Az,y) = (2, A*y) VzeZ yeZ.
e For any subset C of a finite dimensional Euclidean space Z, let
dist(z,C) :=inf{||z —y||ly e C}, z€Z.

e For any subset C of a finite dimensional Euclidean space Z, let 05 : Z — (—00, 00]

be the support function of the set C, i.e.,

3o (z) ==sup{(x,z) |z € C}, z€Z.

e Given a set C, int C' denotes its interior, riC' denotes its relative interior, clC

denotes its closure, and bd C' denotes its boundary.



Summary of Notation xi

e A backslash denotes the set difference operation, that is A\ B = {z € A|z ¢ B}.

e Given a nonempty convex cone K of a finite dimensional Euclidean space Z. Let

K° be the polar of K, i.e.,

K°={z€Z|(z,x) <0Vze K}.

All further notations are either standard, or defined in the text.



Chapter

Introduction

1.1 Matrix optimization problems

Let X be the Cartesian product of several finite dimensional real (symmetric or non-
symmetric) matrix spaces. More specifically, let s be a positive integer and 0 < sy < s
be a nonnegative integer. For the given positive integers myq,...,my, and ngy41,..., N,
denote

X =8 X o x 8™ x RMsot X Msot1 5 RIMSXMs (1.1)

Without loss of generality, assume that my < ng, k = sp + 1,...,s. Let (-,-) be the
natural inner product of X and || - || be the induced norm. Let f : X — (—o0, 0] be
a closed proper convex function. The primal matriz optimization problem (MOP) takes

the form:
(P) min (C,X)+ f(X)
(1.2)
st. AX =0, XecX,
where A : X — RP is a linear operator; C € X and b € RP are given. Let f* : X —

(—o00, 00] be the conjugate function of f (see, e.g., [83]), i.e.,

fH(XT) =sup {(X*, X) - f(X) | X € X}, XTedX.



1.1 Matrix optimization problems

Then, the dual MOP can be written as

(D) max (by) — f*(X7)
(1.3)
st. Ay—-C=X",
where y € R and X* € X are the dual variables; A* : P — X is the adjoint of the

linear operator A.

If the closed proper convex function f is the indicator function of some closed convex
cone K of X, ie., f = 0x(:) : X = (—o0,+00], then the corresponding MOP is said to

be the matriz cone programming (MCP) problem. In this case, we have
FHUXT) = 0 (X7) = 0o (X7), X" e,
where K° C X is the polar of the closed convex cone K, i.e.,
KO={X"eX|(X,X") <o(X)VX € X} .

Thus, the primal and dual MCPs take the following form

(P) min (C,X) (D) max (b,y)
st AX =b, st. Afy—C=X*, (1.4)
X ek, X* e Ke.

The MOP is a broad framework, which includes many important optimization prob-
lems involving matrices arising from different areas such as engineering, finance, scientific
computing, applied mathematics. In such applications, the convex function f usually is
simple. For example, let X = 8" be real symmetric matrices space and K = S be the
cone of real positive semidefinite matrices in S". f = dsn (-) and f* = dgn(+). Then, the
corresponding MCP is said to be the semidefinite programming (SDP), which has many
interesting applications. For an excellent survey on this, see [105]. Below we list some

other examples of MOPs.



1.1 Matrix optimization problems

Matrix norm approximation. Given matrices By, By, ..., B, € R™*", the matriz
norm approzimation (MNA) problem is to find an affine combination of the matrices
which has the minimal spectral norm (the largest singular value of matrix), i.e.,

P
min { [ Bo+ " yBell2 |y € ® }. (L.5)
k=1
Such problems have been studied in the iterative linear algebra literature, e.g., [38, 99|
100], where the affine combination is a degree-p polynomial function of a given matrix.

More specifically, it is easy to see that the problem (1.5)) can be written as the dual MOP

form , i.e.,
(D) max (0,y) — f*(X7)

(1.6)
st. A'y—By=X",
where X = R™ " f* = || - ||2 is the spectral norm, and A* : RP — R™*™ is the linear
operator defined by )
Ay == yBp, yeR. (1.7)

k=1
Note that for (1.6)), the closed proper convex function f* is positively homogeneous. For

positively homogeneous convex functions, we have the following useful result (see, e.g.,

[83, Theorem 13.5 & 13.2]).

Proposition 1.1. Suppose £ be a finite dimensional Fuclidean space. Let g : £ —
(—00, 0] be a closed proper convex function. Then, g is positively homogeneous if and

only if g* is the indicator function of
C={z"e€&|(x,z") <glx)Vxe&}. (1.8)

If ¢ is a given norm function in £ and g” is the corresponding dual norm in &, then by
the definition of the dual norm g”, we know that C' = d¢(0) coincides with the unit ball

under the dual norm , i.e.,

99(0) = {z € &|g"(x) <1} .
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In particular, for the case that g = f* = || - ||2, by Proposition we have

F(X) = (f)"(X) = Sop+0)(X) -

Note that the dual norm of the spectral norm || - ||z is the nuclear norm || - |4, i.e., the
sum of all singular values of matrix. Thus, df*(0) coincides with the unit ball B} under

the dual norm || - ||, i.e.,
df*(0) =Bl == {X e R™"||X|. <1} .
Therefore, the corresponding primal problem of (1.5) can be written as

(P) min (Bg, X) + dp1(X)
(1.9)
st. AX =0,

where A : ®R™*" — RP is the adjoint of A*. Note that in some applications, a sparse
affine combination is desired, one can add a penalty term p||y||; with some p > 0 to the
objective function in meanwhile to use | - |3 to replace || - |2 to get the following
model
1 p
min { <1 Bo + Y ueBilly + pllyls [y € %7} (1.10)
k=1

Correspondingly, we can reformulate (1.10]) in terms of the dual MOP form:
1
(D) max (0,y) — §HX*H§ = pllzl
s.t. A*y—B():X*,
y==z,
where A* : RP — R™>" is the linear operator defined by (1.7). Note that for any norm

function g in £, we always have

Ly

L1
29)—

( (9”)?, (1.11)

where ¢gP is the corresponding dual norm of g. Let B% be the closed ball in ®P under

the I, norm with radius p > 0, i.e., B% := {2z € R | ||z||c < p}. Then, the primal form
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of (1.10) can be written as
1
(P) min (Bo, X) +(0,2) + §HXH3 + e, (z)

st. AX +x2=0.

Matrix completion. Given a matrix M € R™*" with entries in the index set
Q) given, the matrix completion problem seeks to find a low-rank matrix X such that
Xij = M;j for all (i, j) € 2. The problem of efficient recovery of a given low-rank matrix
has been intensively studied recently. In [I5], [16], [39], [47], [77], [78], etc, the authors
established the remarkable fact that under suitable incoherence assumptions, an m x n
matrix of rank r can be recovered with high probability from a random uniform sample
of O((m + n)rpolylog(m,n)) entries by solving the following nuclear norm minimization

problem:

min { | X1, | X5 = My v (5,) € 2}

The theoretical breakthrough achieved by Candes et al. has led to the rapid expansion
of the nuclear norm minimization approach to model application problems for which the
theoretical assumptions may not hold, for example, for problems with noisy data or that
the observed samples may not be completely random. Nevertheless, for those application
problems, the following model may be considered to accommodate problems with noisy

data:
min { 2| Pa(X) = Po(M)[} + p| X | X € ™"}, (112)

where Po(X) denotes the vector obtained by extracting the elements of X corresponding
to the index set 2 in lexicographical order, and p is a positive parameter. In the above
model, the error term is measured in ls norm of vector. One can of course use the [;-
norm or ls-norm of vectors if those norms are more appropriate for the applications

under consideration. As for the case of the matrix norm approximation, one can easily
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write (1.12)) in the following primal MOP form

. 1
(P) min <0,X>+<07Z>+5H3H§+pHXH*
st. AX —z=0,

where (2, X) € X = RIU x > b = Po(M) € RI® and the linear operator A :
Rmxn 5 R is given by A(X) = Po(X). Moreover, by Proposition and (1.11), we
know that the corresponding dual MOP of ([1.12)) can be written as

1., .
(D) max (b,y) — 5”2 H%_‘SB§<X )
st. Ay—X*=0, y+2"=0,

where A* : RI? — R™X" ig the adjoint of A, and BS C R™*™ is the closed ball under

the spectral norm || - [|2 with radius p > 0, i.e., B :={Z € R™" ||| Z||2 < p}.

Robust matrix completion/Robust PCA. Suppose that M € R"*"™ is a partially
given matrix for which the entries in the index set {2 are observed, but an unknown sparse
subset of the observed entries may be grossly corrupted. The problem here seeks to find
a low-rank matrix X and a sparse matrix ¥ such that M;; ~ X;; +Y;; for all (4,5) € Q,
where the sparse matrix Y attempts to identify the grossly corrupted entries in M, and
X attempts to complete the “cleaned” copy of M. This problem has been considered in
[14], and it is motivated by earlier results established in [18], [I12]. In [14] the following

convex optimization problem is solved to recover M:

min { || X + pl|Y 1| Pa(X) + Pa(Y) = Pa(M) } (1.13)

m n
where ||Y'||1 is the l;-norm of Y € R™*™ defined component-wised, i.e., |V || = Z Z|yij|’
i=1 j=1
and p is a positive parameter. In the event that the “cleaned” copy of M itself in (1.13))
is also contaminated with random noise, the following problem could be considered to

recover M:

. ]- mXxXn
min {§HPQ(X) + Po(Y) — PQ(M)”% + ?7(HXH* + PHYH1) | X, Y e R~ } , (1.14)
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where 7 is a positive parameter. Again, the lo-norm that is used in the first term can

be replaced by other norms such as the /;-norm or l,-norm of vectors if they are more

appropriate. In any case, both (1.13) and (L.14]) can be written in the form of MOP. We

omit the details.

Structured low rank matrix approximation. In many applications, one is often
faced with the problem of finding a low-rank matrix X € R™*™ which approximates
a given target matrix M but at the same time it is required to have certain structures
(such as being a Hankel matrix) so as to conform to the physical design of the application
problem [21I]. Suppose that the required structure is encoded in the constraints A(X) €
b+ Q. Then a simple generic formulation of such an approximation problem can take

the following form:
min {||X — M||p| A(X) € b+ Q, rank(X) <r}. (1.15)

Obviously it is generally NP hard to find the global optimal solution for the above prob-
lem. However, given a good starting point, it is quite possible that a local optimization
method such as variants of the alternating minimization method may be able to find a
local minimizer that is close to being globally optimal. One possible strategy to generate
a good starting point for a local optimization method to solve would be to solve

the following penalized version of ((1.15]):

min{m,n}

min {||X = M|[r+p > onX)|AX)eb+Q}, (1.16)
k=r+1

where 01(X) is the k-th largest singular value of X and p > 0 is a penalty parameter.
The above problem is not convex but we can attempt to solve it via a sequence of convex
relaxation problems as proposed in [37] as follows. Start with X° = 0 or any feasible

matrix X such that A(X®) € b+ Q. At the k-th iteration, solve

min { A X = XH[F 41X = Mllr+ p(1 X[l — (Hi, X)) | AX) €b+ Q) (117)



1.1 Matrix optimization problems

to get X**1 where X is a positive parameter and Hj, is a sub-gradient of the convex
function >} _, o (-) at the point X*. Once again, one may easily write (1.17) in the

form of MOP. Also, we omit the details.

System identification. For system identification problem, the objective is to fit a
discrete-time linear time-invariant dynamical system from observations of its inputs and
outputs. Let u(t) € R™ and yYmeas(t) € RP, t = 0,..., N be the sequences of inputs and
measured (noise) outputs, respectively. For each time ¢t € {0,..., N}, denote the state
of the dynamical system at time ¢ by the vectors x(t) € R", where n is the order of the

system. The dynamical system which we need to determine is assumed as following
z(t+1) = Az(t) + Bu(t), y(t) = Cz(t) + Du(t),

where the system order n, the matrices A, B, C, D, and the initial state x(0) are
the parameters to be estimated. In system identification literatures [52, 106, 104, 107],
the SVD low-rank approximation based subspace algorithms are used to estimate the
system order, and other model parameters. As mentioned in [59], the disadvantage of
this approach is that the matrix structure (e.g., the block Hankel structure) is not taken
into account before the model order is chosen. Therefore, it was suggested by [59] (see
also [60]) that instead of using the SVD low-rank approximation, one can use nuclear
norm minimization to estimate the system order, which preserves the linear (Hankel)
structure. The method proposed in [59] is based on computing y(t) € ®°, t =0,...,N
by solving the following convex optimization problem with a given positive weighting

parameter p

. 1
min {p\HULH*—i—QHY—YmeaSHQ} ) (1.18)

where Y = [y(0)7 T y<N)] S %pX(N+1)7 Yineas = [ymeas(o)a s 7ymeas(N)] € §Rp><(N+1)’ H
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is the block Hankel matrix defined as

PO O y(N=1) ]
I ORETORC yN =) |
|y yr+1) g2 e y(N)

and U" is a matrix whose columns form an orthogonal basis of the null space of the

following block Hankel matrix

L w(0)  w() w®) wWN—r) |
. u(l)  u(2) u(3) u(N —r+1)
L u(r) u(r+1) u(r+2) - u(N) |

Note that the optimization variable in 1) is the matrix Y € RP*V+D | Also, one can
easily write ([1.18) in the form of MOP. As we mentioned in matrix norm approximation
problems, by using (1.11)), one can find out the corresponding dual problem of (1.18])

directly. Again, we omit the details.

Fastest mixing Markov chain problem. Let G = (V,€) be a connected graph
with vertex set V = {1,...,n} and edge set £ C V x V. We assume that each vertex
has a self-loop, i.e., an edge from itself to itself. The corresponding Markov chain can be
describe via the transition probability matrix P € R"*"™, which satisfies P > 0, Pe = ¢
and P = PT, where the inequality P > 0 means elementwise and e € %" denotes the
vector of all ones. The fastest mixing Markov chain problem [10] (FMMC) is finding
the edge transition probabilities that give the fastest mixing Markov chain, i.e., that
minimize the second largest eigenvalue modulus (SLEM) p(P) of P. The eigenvalues of
P are real (since it is symmetric), and by Perron-Frobenius theory, no more than 1 in

magnitude. Therefore,we have

u(P) = max |X(P)| = o2(P),

1=2,...,n
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where o9 (P) is the second largest singular value. Then, the FMMC problem is equivalent

to the following optimization problem:

min  o1(P(p)) + o2(P(p)) = IP(p)ll(2)

st. p>0, Bp<e,

(1.19)

where || - ||() is Ky Fan k-norm of matrices, i.e., the sum of the k largest singular values
of a matrix; p € R™ denotes the vector of transition probabilities on the non-self-loop

edges; P =1+ P(p) = I + Y7 pBY with B = B\ = +1, B} = E\) = ~1 and all

other entries of E®) are zero; B € R™*P is the vertex-edge incidence matrix. Then, the
FMMC problem can be reformulated as the following dual MOP form
(D) max —[[Z]|

st. Pp—Z=1, p>0, Bp—e<0.
Note that for any given positive integer k, the dual norm of Ky Fan k-norm || - || (cf.
[3, Exercise IV.1.18]) is given by
1
15 gy~ = max{[|X ][z, 2 [l X}
Thus, the primal form of (1.19)) can be written as

(P) min (1,0) —(1,¥) + b5 (V)
st. PY—-u+BTv=0,

uz>0, v=>0,

where P* : R"*™ — R™ is the adjoint of the linear mapping P, and B(lz)* C R™*™ is the

closed unit ball of the dual norm || - ”?2)’ ie.,

By = {X e RV | X[y <1} = {X e RV [|IX]]2 <1, || X[ <2}.

Fastest distributed linear averaging problem. A matrix optimization prob-

lem, which is closely related to the fastest mixing Markov chain (FMMC) problem, is
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the fastest distributed linear averaging (FDLA) problem. Again, let G = (V,€) be a
connected graph (network) consisting of the vertex set V = {1,...,n} and edge set
€ C V x V. Suppose that each node i holds an initial scalar value z;(0) € R. Let
2(0) = (21(0),....2,(0))T € R be the vector of the initial node values on the network.

Distributed linear averaging is done by considering the following linear iteration
z(t+1)=Wz(t), t=0,1,..., (1.20)

where W € R"*" is the weight matrix, i.e., W; is the weight on x; at node i. Set
Wi; = 0 if the edge (i,j) ¢ £ and i # j. The distributed averaging problem arises
in the autonomous agents coordination problem. It has been extensively studied in
literature (e.g., [62]). Recently, the distributed averaging problem has found applications
in different areas such as formation fight of unmanned airplanes and clustered satellites,
and coordination of mobile robots. In such applications, one important problem is how
to choose the weight matrix W € R™ ™ such that the iteration converges and
it converges as fast as possible, which is so-called fastest distributed linear averaging
problem [58]. It was shown [58, Theorem 1] that the iteration converges to the

average for any given initial vector z(0) € R” if and only if W € R"*™ satisfies

W =el,

We=e,

1
p(W—eeT> <1,
n

where p : R™*™ — R denotes the spectral radius of a matrix. Moreover, the speed
of convergence can be measured by the so-called per-step convergence factor, which is
defined by

rep(W) = W = ~e .

Therefore, the fastest distributed linear averaging problem can be formulated as the
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following MOP problem:

1
min |[W — —eeT |2
n
st. efW=¢el', We=e, (1.21)
The FDLA problem is similar with the FMMC problem. The corresponding dual problem

also can be derived easily. We omit the details.

More examples of MOPs such as the reduced rank approximations of transition ma-
trices, the low rank approximations of doubly stochastic matrices, and the low rank
nonnegative approximation which preserves the left and right principal eigenvectors of a

square positive matrix, can be found in [46].

Finally, by considering the epigraph of the norm function, the MOP problem involving
the norm function can be written as the MCP form. In fact, these two concepts can be

connected by the following proposition.

Proposition 1.2. Suppose £ be a finite dimensional Fuclidean space. Assume that the
proper convex function g : € — (—o00, 00] is positively homogeneous, then the polar of the
epigraph of g is given by

(epig)° = |J n(-1,0),

p>0
where C' is given by (@
For example, consider the MOP problem (1.2) with f = || - [|4, a given norm function
defined in & (e.g., X = R™*" and f = || - |x)). We know from Proposition and

Proposition that the polar of the epigraph cone K = epil| - [|; can be written as

Ko = JAM=1,0£(0)) = {(-t,-Y) e R x X||Y ||} <t} = —epi - [I} ,
A>0

where [| - [ is the dual norm of [| - [[y. Then, the primal and dual MOPs can be rewritten
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as the following MCP forms

(P) min (C,X)+t (D) max (b,y)
st. AX =0, st. Ay—C=X",
t,X)eK, (-1, X*)eKe°,
where KC = epi| - [[; and K% = —epil| - [|}.

For many applications in eigenvalue optimization [69} [70, [7T], 55], the convex function
f in the MOP problem is positively homogeneous in X. For example, let X = S§"
and f = s(k)(-), the sum of k largest eigenvalues of the symmetric matrix. It is clear that
sk(+) is a positively homogeneous closed convex function in S™. Then, by Proposition

and Proposition we know that the corresponding primal and dual MOPs can be

rewritten as the following MCP forms

(P) min (C,X)+t (D) max (b,y)
st. AX =0, st. A*yw—-C=X*,
(t, X) e M, (—1,X*) e M°,

where the closed convex cone M := {(t,X) € R x 8" |s(;)(X) <t} is the epigraph of
(k) (), and M? is the polar of M given by M° = {J >, p(—1,C) with

C=0s4)(0) :={W eS"[tr(W) =k, 0<\(W)<1,i=1,...,n}.

Since MOPs include many important applications, the first question one must answer
is how to solve them. One possible approach is considering the SDP reformulation of the
MOP problems. Most of the MOP problems considering in this thesis are semidefinite
representable [2, Section 4.2]. For example, if f = || - ||z, the Ky Fan k-norm of matrix,
then the convex function f is semidefinite representable (SDr) i.e., there exists a linear

matrix inequality (LMI) such that

(t,X) €epif <= FJueR!: Asp(t,X,u)—C >0,
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where Agp, : B x R™*" x N7 — S" is a linear operator and C € 8". It is well-known

that for any (¢, X) € ® x R"m™*",

t—kz—(Z,Insn) >0,
Z =0,

Y

X[y <t =

0 X
Z — +2lpmin =0,
Xt o
where Z € ™" and z € R. In particular, when k = 1, i.e., f = || - |2, the spectral norm
of matrix, we have
th,, X
[X[la<t = &s™nrs | " = 0.
Xt t1,

See [2, Example 18(c) & 19] for more details on these. By employing the corresponding
semidefinite representation of f, most MOPs considering in this thesis can be reformu-
lated as SDP problems with extended dimensions. For instance, consider the matrix
norm approximation problem , which can be reformulated as the following SDP
problem:

min ¢

st. A%w—By=2,
v (1.22)

thy, Z
=0

— )

ZT tI,
where A* : R — R™*" is the linear operator defined by (1.7). Also, it is well-known
[10] that the FMMC problem ([1.19) has the following SDP reformulation

min s
st. —sI = P—(1/n)ee’ <sI,
(1.23)
P>0, Pe=e P=PT,
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where £ is the edge set of the given connected graph G. For the semidefinite repre-
sentations of the other MOPs we mentioned before, one can refer to [71], 1] for more

details.

By considering the corresponding SDP reformulations, most MOPs can be solved by
the well developed interior point methods (IPMs) based SDP solvers, such as SeDuMi
[92] and SDPT3 [103]. This SDP approach is fine as long as the sizes of the reformulated
problems are not large. However, for large scale problems, this approach becomes im-
practical, if possible at all, due to the fact that the computational cost of each iteration
of an IPM becomes prohibitively expensive. This is particular the case when n > m (if
assuming m < n). For example, for the matrix norm approximation problem , the
matrix variable of the equivalent SDP problem has the order 3(m +n)?. For the
extreme case that m = 1, instead of solving the SDP problem , one always want

to reformulate as the following second order cone programming (SOC) problem:
min ¢
st. Ay —By=z, (1.24)
V2T <t,

where By € R1X7 A* : RP — R1X" is the linear operator defined by , and z € R
Even if m =~ n (e.g., the symmetric case), the expansion of variable dimensions will
inevitably lead to extra computational cost. Thus, the SDP approach do not seem to be
viable for large scale MOPs. It is highly desirable for us to design algorithms that can

solve MOPs in the original matrix spaces.

Our idea for solving MOPs is built on the classical proximal point algorithms (PPAs)
I[85 [84]. The reason for doing so is because we have witnessed a lot of interests in apply-
ing augmented Lagrangian methods, or in general PPAs, to large scale SDP problems
during the last several years, e.g., [74, [63], 116l 117, 111]. Depending on how the inner

subproblems are solved, these methods can be classified into two categories: first order
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alternating direction based methods [63, [74, T11] and second order semismooth New-
ton based methods [116, 117]. The efficiency of all these methods depends on the fact
that the metric projector over the SDP cone admits a closed form solution [88], 40, [102].
Furthermore, the semismooth Newton based method [1106, [I17] also exploits a crucial
property — the strong semismoothness of this metric projector established in [95]. It will
be shown later that the similar properties of the MOP analogues play a crucial role in

the proximal point algorithm (PPA) for solving MOP problems.

Next, we briefly introduce the general framework of the PPA for solving the MOP
problem . The classical PPA is designed to solve the inclusion problems with max-
imal monotone operators [85, [84]. Let H be a finite dimensional real Hilbert space with
the inner product (-,-) and 7 : H — H be a multivalued, maximal monotone opera-
tor (see [85] for the definition). Given 2% € H, in order to solve the inclusion problem
0 € T(z) by the PPA, we need to solve iteratively a sequence of regularized inclusion
problems:

2" approximately solves 0 € T (x) + ;' (z — 2*). (1.25)

Denote P, (-) :== (I +n,T)~1(-). Then, equivalently, we have

where the given sequence {7} satisfies
0 <Mk TN < 00. (1.26)
Two convergence criteria for (1.26)) introduced by Rockafellar [85] as follows

|eF*t =P (2®)|| < ex, er >0, Zsk < oo, (1.27)

|2F Tt — P, (2F)]] < Gl —a¥), 6 >0, Zak < 0. (1.28)

For the convergence analysis of the general proximal point method, one may refer to [85),

Theorem 1 & 2]. Roughly speaking, under mild assumptions, condition (|1.27]) guarantees
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the global convergence of {z*}, in the sense that the sequence {z*} converges to one
solution of the inclusion problem 0 € T (). Moreover, if condition (1.28)) holds and 7 !
is Lipschitz continuous at the origin, then the sequence {z*} converges locally at a linear

rate and in particular, if 1., = 0o, the convergence is superlinear.

Consider the primal and dual MOP problems (1.2)) and (1.3). Let L : X x ®P — R

be the ordinary Lagrangian function for (1.2), i.e.,
L(X,y) =C, X))+ f(X)+(b—AX,y), XeX, yeRl.

The essential objective function of the primal and dual MOPs (1.2)) and (1.3)) are defined

by
C, X))+ f(X) it AX-b=0,
F(X):=sup L(X,y) = XeXx (1.29)
yeRr o0 otherwise,
and
Gly) = nf L(X,y)=(by) - f(Ay-C), yei. (1.30)
ex

Therefore, the primal and dual MOP problems can be written as the following inclusion

problems respectively
0€Tp(X):=0F(X) and 0¢€ Tg(y):=0G(y). (1.31)

Since F' and —G are closed proper convex functions, from [83], Corollary 31.5.2], we know
that OF and —9G are maximal monotone operators. Thus, the proximal point algorithm
can be used to solve the inclusion problems . In order to apply the PPA to MOPs,
we need to solve the inner problem in each step approximately. For example,

consider the primal MOP problem. Let n; > 0 be given. Then, we have
XM x (T4 Te)H(XF),
which is equivalent to

1
Xkl in { F(X)+ — || X — X¥|2} . 1.32
arg iy { F(X0) + 51X - X4 (1.32)
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Let ¥y, (X*) be the optimal function value of 1 , Le.,

1
XF) = min  F(X) 4+ — || X — X*2} .
VEm (X7) ;pelg{ (X) + 5] II}

By the definition of the essential primal objective function (1.29)), we have

1
XF) = min ¢ F(X)+ —[ X — X*|?
v (XY = i {FO0 + 51X - X2

1
= min < sup L(X, + — || X — XF*|?
Xex{y@%:;,( D+ ||

1
= in { (C, X X)+ (b— AX, — X - x* 2}
sup in {(C.X) + F(X)+ (b= AX.y) + 5| X - X

= sup O, (y; X"), (1.33)
yeRP

where O, (v; XF): %P — R is given by

1
Oy X*) = U (XF Ay = O) g (IXHP = IXF (A" = O )+ (b.)

with
g (X Ay = ) i= iy { £+ 51X — (XF Ay = DI} - (139

Therefore, from the definition of ©,, (y; X k), we know that in order to solve the inner
sub-problem efficiently, the properties of the function 1 ,, should be studied first.
In particular, as we mentioned before, similar as the SDP problems, the success of the
PPAs for MOPs depends crucially on the first and second order differential properties
of ¢y, . Actually, the function vy, : & — R defined in is called the Moreau-
Yosida regularization of f with respect to 7. The Moreau-Yosida regularization for
the general convex function has many important applications in different optimization
problems. There have been great efforts on studying the properties of the Moreau-Yosida
regularization (see, e.g., [41l [53]). Several fundamental properties of the Moreau-Yosida

regularization will be introduced in Section
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1.2 The Moreau-Yosida regularization and spectral opera-

tors

In this section, we first briefly introduce the Moreau-Yosida regularization and proximal

point mapping for general convex functions.

Definition 1.1. Let £ be a finite dimensional Fuclidean space. Suppose that g : £ —
(—o00,00] is a closed proper convex function. Let n > 0 be given. The Moreau-Yosida

reqularization g, : € — RN of g with respect to n is defined as

1
Yy () = min {g<z> + ol - $\I2} ree. (1.35)

It is well-known that for any given z € £, the minimization problem has unique
optimal solution. We denote such unique optimal solution as Py ,(x), the prozimal point
of x associated with g. In particular, if g = d¢(+) is the indicator function of the nonempty
closed convex set C'in £ and 1 = 1, then the corresponding proximal point of x € £ is the
metric projection Ilc(z) of x onto C, which is the unique optimal solution to following
convex optimization problem:

min =
s.t. yeC.
Next, we list some important properties of the Moreau-Yosida regularization as fol-

lows.

Proposition 1.3. Let g : € — (—o0,+0o0] be a closed proper convex function. Let
n > 0 be given, g, be the Moreau-Yosida reqularization of g, and Py, be the associated

prozimal point mapping. Then, the following properties hold.
(i) Both Py, and Qg =1 — Py, are firmly non-expansive, i.e., for any x,y € &,

1Py(2) = Pon@)I*? < (Pyn(a) = Pyn(y), 2 = y), (1.36)

[Qgn(x) — Qg,n(y)HQ < (Qon(®) — Qqy(y),z — y). (1.37)
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Consequently, both Py, and Qg are globally Lipschitz continuous with modulus 1.

(ii) g is continuously differentiable, and furthermore, it holds that
1 1
Vipgy(x) = Eng(ﬂf) = 5(17 — Pyy(z)), z€CE.

The following useful property is derived by Moreau [66] and so-called Moreau decom-

position.

Theorem 1.4. Let g : € — (—00,00] be a closed proper convex function and g* be its

conjugate. Then, any x € £ has the decomposition
Pg71($) + Pg*71({1,‘) =xT. (138)

Moreover, for any x € £, we have

1

o1(2) + Py (@) = Sl (1.39)

Suppose that the closed proper convex function g is positively homogenous. Then,

from Proposition we can obtain the following result directly.

Corollary 1.5. Suppose that the closed proper conver function g : € — (—00, 00| is
positively homogenous. Let g* be the conjugate of g and n > 0 be given. For any x € &,

we have

_ . [1
Qgn(r) =2 — Pyp(x) = nPg*J]—l(T] 13:) = arg min {sz — xH2 |z € nC} ,

where the closed convex set C' in &€ s defined by (@ Furthermore, for any x € £, we

have

_ 1
Vgn(T) + wg*mfl("? 1@ = %HxHQ

In applications, the closed proper convex functions f : X — (—o0, 0] in the MOP
problems are wunitarily invariant, i.e., for any X = (X1,..., X5, Xsgt+1,---,Xs) € &,

any orthogonal matrices U, € R™>*™% k=1 ... sand V € R™%>*" Lk =g9+1,...,s,

f(X) = fU X Uy, ... . UL X Usy , UL 1 X041 Vig1s .., UL X V5) (1.40)

S
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If the closed proper convex function f : X — (—o00,00] is unitarily invariant, then it
can be shown (Proposition in Chapter that the corresponding Moreau-Yosida
regularization 1y, is also unitarily invariant in X. Moreover, we will show that the

proximal mapping Py, : X — X can be written as
van(X):(Gl(X)a"'sz(X))v Xed,

with

Pkdiag(gk(n(X)))PkT k=1,...,s0,
Gi(X):=

Uy, [diag(ge(k(X))) 0]V k=so+1,....s,
and P, € O™k 1 <k <sg, U, € O™ V. € O™, 59+ 1<k < s such that
PoA(Xy)PT k=1,...,s0,
X, =
Uk[Z(Xk> O]VkT k=so+1,...,s,
where g : RM0T™ — RMOFM jg a vector valued function satisfying the so-called (mixed)
symmetric condition (Definition . It will be shown in Proposition Chapter [3| that

the proximal mapping Py, is a spectral operator (Definition [3.2)).

Spectral operators of matrices have many important applications in different fields,
such as matrix analysis [3], eigenvalue optimization [55], semidefinite programming [117],
semidefinite complementarity problems [20] [19] and low rank optimization [I3]. In such
applications, the properties of some special spectral operators have been extensively
studied by many researchers. Next, we will briefly review the related work. Usually, the
symmetric vector valued function g is either simple or easy to study. Therefore, a natural
question one may ask is that how can we study the properties of spectral operators from

the vector valued analogues?

For symmetric matrices, Lowner’s (symmetric) operator [61] is the first spectral op-

erator considered by the mathematical optimization community. Suppose that X € S™
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has the eigenvalue decomposition

MX) 0 0
x-p| " Az(.X) "ol (1.41)
00 An(X) |

where A1 (X) > A2(X) > ... > A\, (X) are the real eigenvalues of X (counting multiplic-
ity) being arranged in non-increasing order. Let g :  — R be a scalar function. The

corresponding Lowner operator is defined by

n
G(X) =) gN(X))pipi, Xes", (1.42)
i=1
where for each i € {1,...,n}, p; is the i-th column of P. Lowner’s operator is used in

many important applications, such as matrix analysis [3], conic optimization [97] and
complementary problems [19]. The properties of Léwner’s operator are well-studied in
the literature. For example, the well-definiteness can be found, e.g., [3, Chapter V]
and [43, Section 6.2]. Chen, Qi and Tseng [19, Proposition 4.6] showed that Léwner’s
operator G is locally Lipschitz continuous if and only if g is locally Lipschitz continuous.
The differentiability result of Lowner’s operator G can be largely derived from [31] or [49].
In particular, Chen, Qi and Tseng [19, Proposition 4.3] showed that G is differentiable
at X if and only if ¢ is differentiable at every eigenvalue of X. This result is also
implied in [56, Theorem 3.3] for the case that ¢ = Vh for some differentiable function
h : R — R. Chen, Qi and Tseng [20, Lemma 4 and Proposition 4.4] showed that
G is continuously differentiable if and only if ¢ is continuously differentiable near every
eigenvalue of X. For the related directional differentiability of G, one may refer to [89)] for
a nice derivation. Sun and Sun [95, Theorem 4.7] first provided the directional derivative
formula for Lowner’s operator G with respect to the absolute value function, i.e., g = |-|.
Also, they proved [95, Theorem 4.13] the strong semismoothness of the corresponding

Lowner’s operator G. It is an open question whether such a (tractable) characterization
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can be found for Lowner’s operator G with respect to any locally Lipschitz function g.
To our knowledge, such characterization can be found only for some special cases. For
example, the characterization of Clarke’s generalized Jacobian of Lowner’s operator GG
with respect to the absolute value function was provided by [72, Lemma 11]; Chen, Qi
and Tseng [20, Proposition 4.8] provided Clarke’s generalized Jacobian of G, where the

directional derivative of g has the one-side continuity property [20, the condition (24)].

Recently, in order to solve some fundamental optimization problems involving the
eigenvalues [55], one needs to consider a kind of (symmetric) spectral operators which are
more general than Lowner’s operators, in the sense that the functions ¢ in the definition
are vector-valued. In particular, Lewis [54] defined such kind of (symmetric)
spectral operators by considering the gradient of the symmetric function ¢, i.e., ¢ :

R™ — R satisfies that
¢(x) = ¢(Px) for any permutation matrix P and any = € R™.

Let g := V¢(-) : R — R"™. For any X € 8™ with the eigenvalue decomposition ([2.4)), the

corresponding (symmetric) spectral operator G : S — S™ [54] at X can be defined by
G(X) =Y gi(\X))pip; - (1.43)
i=1

Lewis [54] proved that such kind of function G is well-defined, by using the “block-
refineness” property of g. Also, it is easy to see that Lowner’s operator is indeed a
special symmetric spectral operator G defined by , where the vector valued func-
tion g is separable. It is well known that the eigenvalue function A(-) is not everywhere
differentiable. It is natural to expect that the composite function G could be not every-
where differentiable no matter how smooth ¢ is. It was therefore surprising when Lewis
and Sendov claimed in [56] that G is (continuously) differentiable at X if and only if
g is (continuously) differentiable at A(X). For the directional differentiability of G, it
is well known that the directional differentiability of g is not sufficient. In fact, Lewis

provided a count-example in [54] that g is directionally differentiable at A\(X) but G is
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not directionally differentiable at X. Therefore, Qi and Yang [75] proved that G is direc-
tionally differentiable at X if g is Hadamard directionally differentiable at A(X'), which
can be regarded as a sufficient condition. However, they didn’t provide the directional
derivative formula for G, which is important in nonsmooth analysis. In the same paper,
Qi and Yang [75] also proved that G is locally Lipschitz continuous at X if and only if g
is locally Lipschitz continuous at A(X), and G is (strongly) semismooth if and only if g is
(strongly) semismooth. However, the characterization of Clarke’s generalized Jacobian

of the general symmetric matrix valued function G is still an open question.

For nonsymmetric matrices, some special Lowner’s nonsymmetric operators were con-
sidered in applications. One well-known example is the soft thresholding (ST) operator,
which is widely used in many applications, such as the low rank optimization [13]. The
general Lowner’s nonsymmetric operators were first studied by Yang [114]. For the given

matrix Z € R™*" (assume that m < n), consider the singular value decomposition

Z=TU[x2) 0V =U[x(2) 0[V: Vo] =TUs(2)V; , (1.44)
where ] ]
o(Z) 0 0
o 0 ox(2Z) -+ 0 |
0 0 - on(2) |

and 01(Z) > 02(Z) > ... > o(Z) are the singular values of Z (counting multiplicity)

being arranged in non-increasing order. Let g : 84 — R be a scalar function. The

corresponding Lowner’s nonsymmetric operators [114] is defined by

G(2):=Tlg(x(2)) 0V = > glod2)wv!, Z e R, (1.45)

i=1
where ¢(X(2)) = diag(g(o1(2)),...,9(om(Z))). Yang [114] proved that g(0) = 0 is
the sufficient and necessary condition for the well-definiteness of Léwner’s nonsymmetric

operators G. By using the connection between the singular value decomposition of Z
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and the eigenvalue decomposition of the symmetric transformation [42, Theorem 7.3.7]
(see (2.28)-(2.30) in Section for more details), Yang [114] studied the correspond-
ing properties of Lowner’s nonsymmetric operators. In particular, it was shown that
Lowner’s nonsymmetric operators G inherit the (continuous) differentiability and the
Lipschitz continuity of g. For the (strong) semismoothness of G, Jiang, Sun and Toh [45]
first showed that the soft thresholding operator is strongly semismooth. By using similar
techniques, Yang [114] showed that the general Léwner’s nonsymmetric operators G is

(strongly) semismooth at Z € R™*™ if and only if ¢ is (strongly) semismooth at o(Z).

Recently, the metric projection operators over five different matrix cones have been
studied in [30]. In particular, they provided the closed form solutions of the metric
projection operators over the epigraphs of the spectral and nuclear matrix norm. Such
metric projection operators can not be covered by Lowner’s nonsymmetric operators. In
fact, those metric projection operators are spectral operators defined on X' = R x R™*",
which is considered in this thesis. Several important properties, including its closed form
solution, p-order B(ouligand)-differentiability (0 < p < 1) and strong semismoothness,

of the metric projection operators were studied in [30].

Motivated by [30], in this thesis, we study spectral operators under the more general
setting, i.e., the spectral operators considered in this thesis are defined on the Cartesian
product of several symmetric and nonsymmetric matrix spaces. On one hand, from
[30], we know that the directional derivatives of the metric projection operators over the
epigraphs of the spectral and nuclear matrix norm are the spectral operators defined
on the Cartesian product of several symmetric and nonsymmetric matrix spaces (see
Section for details). However, most properties of such kind of matrix functions (even
the well-definiteness of such functions), which are important to MOPs, are unknown.
Therefore, it is desired to start a systemic study of the general spectral operator. On the
other hand, in some applications, the convex function f in can be defined on the

Cartesian product of the symmetric and nonsymmetric matrix space. For example, in
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applications, one may want to minimize both the largest eigenvalue of a symmetric matrix

and the spectral norm of a nonsymmetric matrix under the certain linear constraint, i.e.,

min (C, (X,Y)) + max{\ (X),[|Y |2}
(1.46)

st. AX,Y)=0b,

where C € X = §" x R™*" (X,Y) € X, b e R, and A : X — RP is the given linear
operator. Therefore, the proximal point mapping Pr, and the gradient Vs, of the
convex function f = max{\(X),||Y|2} : X — (—o0, 0] is the spectral operator defined
in X = 8" x RM*" which is not covered by pervious work. Thus, it is necessary to
study the properties of spectral operators under such general setting. Specifically, the
following fundamental properties of spectral operators, including the well-definiteness,
the directional differentiability, the Fréchet-differentiability, the locally Lipschitz conti-
nuity, the p-order B-differentiability (0 < p < 1), the p-order G-semismooth (0 < p < 1)
and the characterization of Clarke’s generalized Jacobian, will be studied in the first
part of this thesis. The study of spectral operators is not only interesting in itself, but
it is also crucial for the study on the solutions of the Moreau-Yosida regularization of
matrix related functions. As mentioned before, in order to make MOPs tractable, we
must study the properties of the proximal point mapping Py, and the gradient Vs, of
the Moreau-Yosida regularization.

It is worth to note that the semismoothness of the proximal point mapping Py, for the
MOP problems considered in this thesis, also can be studied by using the corresponding

results on tame functions. Firstly, we introduce the concept of the o(rder)-minimal

structure (cf. [24], Definition 1.4]).

Definition 1.2. An o-minimal structure of R is a sequence M = {M;} with M; a

collection of subsets of R™ satisfying the following axioms.

(i) For everyt, My is closed under Boolean operators (finite unions, intersections and

complement).
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(ii) If A € My and B € My, then A x B belongs to Myyy.

(111) My contains all the subsets of the form {z € R™|p(x) = 0}, where p : R — R is

a polynomial function.

(iv) Let P : R™ — R"~L be the projection on the first n coordinates. If A € My, then
P(A) € M;.

(v) The elements of My are exactly the finite union of points and intervals.

The elements of o-minimal structure are called definable sets. A map F : A CR" — R™

is called definable if its graph is a definable subset of "™,

A set of R" is called tame with respect to an o-minimal structure, if its intersection
with the interval [—r, r]” for every r > 0 is definable in this structure, i.e., the element of
this structure. A mapping is tame if its graph is tame. One most often used o-minimal
structure is the class of semialgebraic subsets of R”. A set in R" is semialgebraic if it is

a finite union of sets of the form
{r e R"|pi(x) >0, ¢j(x)=0, i=1,...,a, j=1,...,b},

where p; : R* — R, i =1,...,aand ¢; : R" — R, j = 1,...,b are polynomials. A
mapping is semialgebraic if its graph is semialgebraic.
For tame functions, the following proposition was firstly established by Bolte et.al in

[4]. Also see [44] for another proof of the semismoothness.
Proposition 1.6. Let g : R — R™ be a locally Lipschitz continuous mapping.
(i) If g is tame, then g is semismooth.

(ii) If g is semialgebraic, then g is y-order semismooth with some v > 0.

Let &£ be a finite dimensional Euclidean space. If the closed proper convex function

g: & — (—00,00] is semialgebraic, then the Moreau-Yosida regularization 1, of g with
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respect to n > 0 at x is semialgebraic. Moreover, since the graph of the corresponding

proximal point mapping P, is of the form

1
ephP,, — {<x,y> € € xElglo) + 5l —alP = wg,n@c)} |

we know that P, , is also semialgebraic (cf. [44]). Since P, , is globally Lipschitz con-
tinuous, according to Proposition (ii), it yields that P, , is y-order semismooth with
some v > 0. Furthermore, most closed proper convex functions f in the MOP problem
are semialgebraic. For example, it is easy to verify that the indicator function
dsy(+) of the SDP cone and the Ky Fan k-norm | - [[(z) are semialgebraic. Therefore,
we know that the corresponding proximal point mapping Py () for MOPs are y-order
semismooth with some « > 0. However, we only know the existence of -y, which means

that we may not able to obtain the strong semismoothness of P, , by this approach.

1.3 Sensitivity analysis of MOPs

The second topic of this thesis is the sensitivity analysis of solutions to matrix opti-
mization problems (MOPs) subject to data perturbation. During the last three decades,
considerable progress has been made in this area (Bonnans and Shapiro [§], Facchinei
and Pang [33], Klatte and Kummer [48], Rockafellar and Wets [86]). Consider the opti-
mization problem

min  f(x)

st. G(z) eC,

(1.47)

where f: & = R and G : £ — Z are twice continuously differentiable functions, £ and
Z are two finite dimensional real vector spaces, and C is a closed convex set in Z. If
C is a polyhedral set (for the conventional nonlinear programming), the corresponding

perturbation analysis results are quite complete.

For the general non-polyhedral C, much less has been discovered. However, for the

non-polyhedral C which is C?-cone reducible, the sensitivity analysis of solutions for (1.47))
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have been systematically studied in literature [5 [7, 8]. Meanwhile, the theory of second
order optimality conditions of the optimization problem , which are closely related
with sensitivity analysis, has also been studied in [0, §]. Recently, for a local solution
of the nonlinear SDP problem, Sun [94] established various characterizations for the
strong regularity, which is one of the important concepts in sensitivity and perturbation
analysis introduced by Robinson [80]. More specifically, in [94], for a local solution of
the nonlinear SDP problem, the author proved that under the Robinson’s constraint
qualification, the strong second-order sufficient condition and constraint nondegeneracy,
the non-singularity of Clarke’s Jacobian of the Karush-Kuhn-Tucker (KKT) system and
the strong regularity of the KKT point are equivalent. Motived by this, Chan and Sun
[17] gained more insightful characterizations about the strong regularity of linear SDP
problems. They showed that the primal and dual constraint nondegeneracies, the strong
regularity, the non-singularity of the B(ouligand)-subdifferential of the KKT system, and
the non-singularity of the corresponding Clarke’s generalized Jacobian, at a KKT point
are all equivalent. For the (nonlinear and linear) SDP problems, variational analysis
on the metric projection operator over the cone of positive semidefinite matrices plays a
fundamental role in achieving these goals. One interesting question is that how to extend

these stability results on SDP problems to MOPs.

In stead of considering the general MOP problems, as a starting point, we mainly
focus on the sensitivity analysis of the MOP problems with some special structures. For
example, the proper closed convex function f: X — (—o00, 00| in is assumed to be
a unitarily invariant matrix norm (e.g., the Ky Fan k-norm) or a positively homogenous
function (e.g., the sum of k largest eigenvalues of the symmetric matrix). Also, we mainly

focus on the simple linear model as the MCP problems ((1.48)). For example, we can study
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the following linear MCP problem involving Ky Fan k-norm cone

min ((s,C), (t, X))

st. A(t,X) =0, (1.48)

(t,X)ek,

where K = epil|-[|(x) = {(t,X) € R x Rmx"| X1y < t}, (s,C) € RxR™*" b e RP are
given, and A :  x R™*" — RP is the given linear operator. Note that the matrix cone
K = epi||-||(x) includes the epigraphs of the spectral norm |[|-||2 (k = 1) and nuclear norm |-
I« (k =m) as two special cases. In this thesis, we first study some important geometrical
properties of the Ky Fan k-norm epigraph cone I, such as the characterizations of tangent
cone and the (inner and outer) second order tangent sets of K, the explicit expression
of the support function of the second order tangent set, the C2-cone reducibility of K,
the characterization of the critical cone of K. By using these properties, we state the
constraint nondegeneracy, the second order necessary condition and the (strong) second
order sufficient condition of the linear MCP problem . Finally, for the linear MCP
problem ([1.48)), we establish the equivalent links among the strong regularity of the KKT
point, the strong second order sufficient condition and constraint nondegeneracy, and the
non-singularity of both the B-subdifferential and Clarke’s generalized Jacobian of the
nonsmooth system at a KKT point. Variational analysis on the metric projector over the
Ky Fan k-norm epigraph cone K is very important for these studies. More specifically,
the study of properties of spectral operators, such as the directional differentiability,
the F-differentiability, the p-order G-semismooth and the characterization of Clarke’s

generalized Jacobian in the first part of this thesis, plays an essential role.

Since the model is simplified, we may lose some kind of generality, which means that
some MOP problems may not be covered by this work. However, it is worth taking into
consideration that the study on the basic models as the linear MCP involving the Ky
Fan k-norm cone can serve as a basic tools to study the sensitivity analysis of the more

complicated MOP problems. For some MOP problems, the corresponding sensitivity
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results can be obtained similarly by following the derivation of our basic model. For
example, we can extend the sensitivity results to the following linear MCP problem

involving the epigraph cone of the sum of k largest eigenvalues of the symmetric matrix
min ((s,C), (t, X))
st. A(t,X) =0, (1.49)
(t,X) e M,

where M = episgy(-) = {(t,X) € R x 8" [s()(X) <t}, (5,C) € R x ", b € R are
given, and A : R x ™ — RP is the given linear operator. In fact, by using the properties
of the eigenvalue function A(:) of the symmetric matrix, the corresponding variational
properties of M can be obtained in the similar but simple way to those of the Ky Fan
k-norm cone K. Moreover, by using the properties of the spectral operator (the metric
projection operator over the epigraph cone M), the corresponding sensitivity results on
the linear MCP problem can be derived directly. The extensions to other MOP

problems are also be discussed in this thesis.

1.4 Outline of the thesis

The thesis is organized as follows: to facilitate later discussions, we give some prelim-
inaries on the eigenvalue decomposition of symmetric matrices and the singular value
decomposition of general matrices in Chapter In Chapter |3] we study some funda-
mental properties of spectral operators. As an example, the corresponding properties
of the metric projection operator over the Ky Fan k-norm epigraph cone K and other
matrix cones are studied at the end of this chapter. Chapter 4] focus on the perturbation
analysis of the MOP problems. We mainly study some important geometrical properties
of the Ky Fan k-norm epigraph cone K and various characterizations for the strong reg-
ularity of the linear matrix cone programming involving Ky Fan k-norm. The extensions

to other MOP problems are discussed at the end of the chapter. Chapter [5| presents
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conclusions and some possible topic for future research.



Chapter

Preliminaries

Let £ and & be two finite dimensional real Euclidean spaces and O be an open set in
E. Suppose that ® : O C & — £’ is a locally Lipschitz continuous function on the open
set 0. According to Rademacher’s theorem, ® is almost everywhere differentiable (in
the sense of Fréchet) in O. Let Dg be the set of points in O where ® is differentiable.
Let ®'(z) be the derivative of ® at © € Dg. Then the B(ouligand)-subdifferential of ®
at x € O is denoted by [76]:

Ip®(z) ::{ lim @’(xk)},

Dgydxk—x
and Clarke’s generalized Jacobian of ® at x € O [23] takes the form:

09®(z) = conv{9pP(x)} ,

where “conv” stands for the convex hull in the usual sense of convex analysis [83]. A

function ® : O C €& — &’ is said to be Hadamard directionally differentiable at x € O if

the limit
D th') — @
ltigl (z+ t) (z) exists for any h € €. (2.1)
h! —h

It is clear that if ® is Hadamard directionally differentiable at z, then ® is directionally

differentiable at x, and the limit in (2.1 equals the directional derivative ®'(z;h) for

33
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any h € £. Let p > 0 be given. A function ® : O C & — £’ is said to be p-order

B(ouligand)-differentiable at = € O if for any h € £ with h — 0,
B(z +h) — B(x) — & (5 ) = O(h]|+) (2.2

Definition 2.1. Let £ and &' be two finite dimensional real FEuclidean spaces. We say
that ® : € — &' is (parabolic) second order directionally differentiable at x € &, if ® is

directionally differentiable at x and for any h,w € £

. O(z+th+ 3t?w) — &(z) — td'(z; h)
lim T
tl0 >t?

exists;

and the above limit is said to be the (parabolic) second order directional derivative of ®

at x along h,w, denoted by ®"(x; h,w).

Let ® : O C £ — & be a locally Lipschitz continuous function on the open set O.
The function @ is said to be G-semismooth at a point z € O if for any y — x and
V € 02(y),

O(y) — (z) = V(y —x) = olly — =]) .

A stronger notion than G-semismoothness is p-order G-semismoothness with p > 0. The

function @ is said to be p-order G-semismooth at z if for any y — = and V € 9®(y),
O(y) — () — V(y —z) = O(|ly — =[|'**).

In particular, the function ® is said to be strongly G-semismooth at x if ® is 1-order
G-semismooth at z. Furthermore, the function ® is said to be (p-order, strongly) semis-
mooth at x € O if (i) the directional derivative of ® at x along any direction h € &
exists; and (ii) ® is (p-order, strongly) G-semismooth.

The following result taken from [95, Theorem 3.7] provides a convenient tool for

proving the G-semismoothness of Lipschitz functions.

Lemma 2.1. Let ®: O C & — &' be a locally Lipschitz continuous function on the open

set O. Let p > 0 be a constant. If Z is a set of Lebesque measure zero in O, then ® is
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p-order G-semismooth (G-semismooth) at x if and only if for any y — x, y € Dg, and
y¢Zz,
Gly) — G(z) = G'(y)(y — ) = O(lly — «I"**) (= o(lly —I])) - (2.3)

It is easy to show that if ® : O C & — & is locally Lipschitz continuous and
directionally differentiable, then the directional derivative is globally Lipschitz continuous

(cf. [27] or [82 Theorem A.2(a)]). Therefore, we have the following lemma.

Lemma 2.2. Suppose that the function ® : O C €& — £’ is locally Lipschitz continuous
near x € £ with modulus L > 0 and directionally differentiable at x. Then the directional
deriwative ®'(x;-) : £ — &' is globally Lipschitz continuous on € with the same modulus

L.

In the next two subsections, we collect some useful preliminary results on symmetric

and non-symmetric matrices, which are important for our subsequent analysis.

2.1 The eigenvalue decomposition of symmetric matrices

Let 8™ be the space of all real n X n symmetric matrices and O™ be the set of all n x n
orthogonal matrices. Let Y € S™ be any given symmetric matrix. We use A\(Y) >
X (Y) > ... > M\(Y) to denote the real eigenvalues of Y (counting multiplicity) being
arranged in non-increasing order. Denote A(Y) := (A1(Y), A2(Y),..., A (Y))T € " and
A(Y) := diag(A\(Y)). Let P € O™ be such that

Y =PAY)P . (2.4)

We denote the set of such matrices P in the eigenvalue decomposition 1) by O™(Y).

Let 7i; > fis > ... > Ji, be the distinct eigenvalues of Y. Define
ap ={i|NY)=m, 1<i<n}, k=1,...,r. (2.5)

For each i € {1,...,n}, we define [;(Y) to be the number of eigenvalues that are equal

to Ai(Y) but are ranked before i (including 7) and ;(Y) to be the number of eigenvalues
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that are equal to \;(Y) but are ranked after i (excluding i), respectively, i.e., we define

1;(Y) and [;(Y) such that

Al(Y) = > )\z l (7)(Y) > )‘zfli(?)+1(Y) = )\1<Y) - = /\H[i(?) (Y)
> )‘i+[i(?)+1(?) > ... 2 M(Y). (2.6)
In later discussions, when the dependence of [; and l}-, i=1,...,n onY can be seen

clearly from the context, we often drop Y from these notations.

The inequality in the following lemma is known as Ky Fan’s inequality [34].

Lemma 2.3. Let A and B be two matrices in S™. Then
(A,B) < A(A)"A(B), (2.7)

where the equality holds if and only if A and B admit a simultaneous ordered eigenvalue

decomposition, i.e., there exists an orthogonal matric U € O™ such that
A=UANAUT and B=UAB)UT.

By elementary calculation, one can obtain the following simple observation easily.

Proposition 2.4. Let Q € O" be an orthogonal matriz such that QTA(Y)Q = A(Y).

Then, we have

Qakal:O’ k7l:17"'7r7k7élv (28)

Qakangkak = Z:kakQakak; = I\ak| ) k= ... (29)

The following result, which was stated in [96], was essentially proved in the derivation

of Lemma 4.12 in [95].

Proposition 2.5. For any 8" > H — 0, let Y := A(Y) + H. Suppose that P € O"
satisfies

Y = PA(Y)PT.
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Then, we have

Poye, = O([H]]) kl=1,...,r k#1, (2.10)
Poyor Py = Tl + OUIHIP) . k=1,....7, (2.11)

and there exist Qp € Okl =1,... r such that
Poor, = Qr+O(|H|), k=1,...,r. (2.12)
Moreover, we have

AY )aror, =AY )agar, = Qk Hoyo Qe + O(IHI?), k=1,....7. (2.13)

The next proposition follows easily from Proposition It has also been proved in

[20] based on a so-called “sin(©)” theorem in [91, Theorem 3.4].

Proposition 2.6. For any H € 8™, let P € O™ be an orthogonal matrix such that
Y + H = Pdiag(\(Y + H))PT. Then, for any S® > H — 0, we have

dist(P, 0"(Y)) = O(|| H]|)
The following proposition about the directional differentiability of the eigenvalue
function A(-) is well known. For example, see [51, Theorem 7] and [I0I), Proposition 1.4].

Proposition 2.7. Let Y € 8" have the eigenvalue decomposition . Then, for any

S™"> H — 0, we have
N(Y +H)—)\(Y) — )\li(FZ:kH?ak) =O(|H|*), i€ag k=1,...,r, (2.14)

where for each i € {1,...,n}, l; is defined in . Hence, for any given direction
H € 8", the eigenvalue function \;(-) is directionally differentiable at Y with N.(Y; H) =
N, (Ph HPgy), i €ap, k=1,...,7.

Next, let us consider the (parabolic) second order directional derivative (Defintion

of the eigenvalue function A(-). Suppose that H,WW € S™ are given. Denote

- 1
Y(t):Y+tH+§t2W, t>0.
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Consider the eigenvalue decomposition of Y'(¢), i.e.,

where U(t) € O™. Then, we have the following result (see [I15, Lemma 2.1]), which can

be used to study the second order directional differentiability of the eigenvalue function
A4).
Proposition 2.8. For each k € {1,...,7}, there exists Qi(t) € Ol such that

tHOtkOéle(t)

Uaper (t) = +O0(t? if1<I#k<n,
My — Pk
HTHT H, . t
Unpon, (t)TUak.ozk (t) Ilakl . tzz Qx(?) ( azcik )l2 ka( ) i O(tg) '

Let k € {1,...,7} be fixed. Consider the symmetric matrix ngHPak e Slonl, Let
R e Oloxl be such that
Pl HP,, = RA(P. HP,,)R". (2.15)

Denote the distinct eigenvalues of ng HP,, by i1 > fig > ... > fiz. Define

aj = {i|N(PL HP,,) = fij,1 <i < |agl}, j=1,...,7. (2.16)
For each i € ay, let I; € {1,...,|ag|} and k € {1,...,7} be such that
li:==1,(PL HP,,) and [; € d;, (2.17)

where [; is defined by ([2.6]).

Then Proposition leads to the following well known result.

Proposition 2.9 (e.g., [I01]). For any given H,W € S, denote Y (t) := Y +tH+1t>W,

t > 0. Then for any i € ag, k=1,...,r, we have for any t | 0,

MY (1) = N(Y)+ A, (P HPa,)

+’522,\l~i (R;—g%pgk [W —2H(X — AZJ,L)TH} PakRa,-C) +O(t?).
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Hence, the eigenvalue function \(-) is second order directionally differentiable at' Y with
V. _ T pT ~
N(Y;H W) = N <R&%Pak [W —2H(Y — M)t H} Padek> .

Suppose that Y € S™ has the eigenvalue decomposition 1} Let f: R — Rbea
scalar function. As we mentioned in Section the corresponding Lowner’s operator is

defined by [61]
F(Y) := Pdiag(F O (Y)), FOa(Y)), -, fORDN P =3 fOu(V)pi! - (2.18)
i=1
Let D := diag(d), where d € R" is a given vector. Assume that the scalar function f
is differentiable at each d; with the derivatives f'(d;), i = 1,...,n. Let fl}(D) € S" be
the first divided difference matrix whose (i, j)-th entry is given by
fldi) = f{d;) di £ d;,
(fH(D))i; = di — d; ii=1,...,n
f'(ds) if di = dj,
The following result for the differentiability of Lowner’s operator F' defined in can
be largely derived from [31I] or [49]. Actually, Proposition 4.3 of [I9] shows that F' is
differentiable at Y if and only if f is differentiable at every eigenvalue of Y. This result is
also implied in [56, Theorem 3.3] for the case that f = Vh for some differentiable function
h: R — R. Lemma 4 of [20] and Proposition 4.4 of [I9] show that F' is continuously
differentiable at Y if and only if f is continuously differentiable at every eigenvalue of

Y. For the related directional differentiability of F, one may refer to [89] for a nice

derivation.

Proposition 2.10. Let Y € S™ be given and have the eigenvalue decomposition .
Then, Léwner’s operator F is (continuously) differentiable atY if and only if for each
i€ {l,...,n}, f is (continuously) differentiable at \;(Y). In this case, the (Fréchet)
derivative of F at'Y is given by

T

FYH =P |fUAT)) o (FTH?)] P’ vHes". (2.19)
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The following second order differentiability of Lowner’s operator F' can be derived as

in [3, Exercise V.3.9].

Proposition 2.11. Let Y € S™ have the eigenvalue decomposition . If the scalar
function f is twice continuously differentiable at each \;(Y), i = 1,...,n, then Lowner’s

operator F is twice continuously differentiable at'Y .

Let Y € 8" be given. For each k € {1,...,r}, there exists 6 > 0 such that |fi; — fig| >

0k, V 1 <1 # k <r. Define a scalar function gi(-) : ® — R by
J . _ _
—(t— ik — ) it e (n+ % i+ %),

g =19 ¢ (2.20)

O : _ _
s a5 ifte ik — % ik — %),

\ 0 otherwise.

For each k € {1,...,r}, define Py : S — S™ by

Pe(Y): =Y pip], YeS", (2.21)

1€EQy
where P € O™ is an orthogonal matrix such that Y = Pdiag(A(Y))PT. For each k €
{1,...,7}, we know that there exists an open neighborhood N of Y such that Py is

at least twice continuously differentiable on A/. By shrinking A if necessary, we may

assume that for any Y € N and k,l € {1,...,r},
N(Y)#NY) Vieag jeaand k#1.

Define Qx(Y) € S™, k=1,...,r by

1
lf’LGOék, jeala k#la lzlv"wra
Ai(Y) —1Aj(Y)
(U(Y))y; = — ifica, jeay k£l 1=1,...,r, (2.22)
Ai(Y) = A;(Y)
0 otherwise .

Then, the following proposition follows from Proposition and Proposition [2.11]

directly.
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Proposition 2.12. For each k = 1,...,r, there exists an open neighborhood N of Y
such that Py, is at least twice continuously differentiable on N, and for any H € 8", the

first order derivative of P, at' Y € N is given by
PL(Y)H = P[Q.(Y) o (PTHP)]PT, (2.23)

where P € O™ is any orthogonal matriz such that Y = PA(Y)PT.

2.2 The singular value decomposition of matrices

From now on, without loss of generality, we always assume that m < n in this thesis.
Let Z € R™*™ be any given matrix. We use 01(Z) > 09(Z) > ... > o,(Z) to denote
the singular values of Z (counting multiplicity) being arranged in non-increasing order.
Let 0(Z) := (01(Z),09(Z),...,0m(Z))" € ®™ and %(Z) := diag(c(Z)). Let Z € RmM*"

admit the following singular value decomposition (SVD):

T

1" =Ts2)V, (2.24)

Z=U[2Z) 0|V =T[2(Z) 0][V1 Vs
where U € O™ and V = [Vl Vg] € O™ with V; € R and Vo € R The set
of such matrices (U, V) in the SVD ({2.24) is denoted by O™"(Z), i.e.,

O"(Z) = {(U,V) e 0" x 0" |Z =T [%(Z) 0]V'}.

Define the three index sets a, b and ¢ by

a:={iloy(Z)>0,1<i<m}, b:={i|o;(Z)=0,1<i<m}andc:={m+1,...,n}.
(2.25)

We use 71 > Uy > ... > U, to denote the nonzero distinct singular values of Z. Define
ap :={i|loi(Z) =, 1 <i<m}, k=1,...,7. (2.26)

For notational convenience, let a,+1 := b. For each i € {1,...,m}, we also define ;(Z)

to be the number of singular values that are equal to o;(Z) but are ranked before i
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(including i) and /;(Z) to be the number of singular values that are equal to o(Z) but

are ranked after i (excluding 7), respectively, i.e., we define [;(Z) and l; (Z) such that

o(2)z... 20,72 >0, zn(Z)=...=0iZ) = ... = 0,2 (2)
>0 1 an(Z) 2 > on(Z). (227)
In later discussions, when the dependence of [; and l~i, i=1,...,m, on Z can be seen

clearly from the context, we often drop Z from these notations.

Let B : R™*" — S™+" he the linear operator defined by

0 Z
B(Z) = . ZeRm™" (2.28)
zZT 0
We use Ig to denote the p by p anti-diagonal matrix whose anti-diagonal entries are all

ones and other entries are zeros. Denote

Ul=U,I' and V] =V,I!

lal laf *

Let

1 | U Uy 0 U i)
Pi= ’ ’ c omtn, (2.29)

V2. vovewn - v
It is well-known [42] Theorem 7.3.7] that

PTB(Z)P = A(B(Z)) = 0 0 0 : (2.30)

For notational convenience, we define two linear operators S : RP*P — SP and T :

RPXP — RPXP by
S(X) = %(X +XT) and T(X):= %(X —xT) ¥X eRP. (2.31)

The inequality in the following lemma is known as von Neumann’s trace inequality

[108].
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Lemma 2.13. Let Y and Z be two matrices in R™*™. Then
(Y, 2) <o(Y)'0(2), (2.32)

where the equality holds if Y and Z admit a simultaneous ordered singular value decom-

position, i.e., there exist orthogonal matrices U € O™ and V € O™ such that
Y =UXY) vl and Z=U[X(Z) 0)VT.

Similar as the symmetric case (Proposition [2.4]), we have the following simple obser-

vation.

Proposition 2.14. Let ¥ := X(Z). Then, the two orthogonal matrices P € O™ and
W e O" satisfy

P 0]=[2 0]W (2.33)
if and only if there exist Q € Ol9, Q' € Ol and Q" € O™ l9l such that

0 0
P= @ and W = @ ,
O Q/ 0 Q//
where Q = diag(Q1,Q2,...,Qr) is a block diagonal orthogonal matriz with the k-th

diagonal block given by Qi € Ol k=1, r.

Proof. “<=” Obvious.
“=" Define Xy := X4q. Let a:={1,...,n} \ a. From ([2.33), we obtain that
Paa Pab E—i— 0 Z—l— 0 Waa Waz‘z
Py, Py, 0 0 0 0 Waa Waa
which, implies

Paaz-i- = E+Waa, E_A,_Waa =0 and Pba2+ =0.

Since Y4 is nonsingular, we know that W,z = 0 and Py, = 0. Then, since W and P are

two orthogonal matrices, we also have

pr| T+ 0 S, 0

0 O 0 0
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which, implies W5, = 0 and P,;, = 0. Therefore, we know that

Poa 0 Waa 0
P = and W =

0 Py 0 Waa

where W, Pa € Olol, Py e O™ lal and W,z € ©"lal. By noting that

fidyqy o - 0
0 Follay -+ 0
Z+ - )
[ O 0 Fpdje, ]

from P,,Yy = 31 Wy, we obtain that

P1Poa;  BoPayay 0 HpPaya, 1 Waray iWaias - MWaya,
P1Pasay  Holasay -+ HpPasa, 1oWasay FoWagay -+ HoWasa,
L ﬁlParal EQPQTGQ e ETParar | L ﬁrWaral ETWCLTCLQ t HrWarar

By using the fact that 77, > 0, k =1,...,r, we obtain from (2.34)) that
Poar, = Wagays k=1,...,r,

Py = 0] " Wapay, kl=1,...,1m k#1.

Next, we shall show by induction that for each k € {1,...,r},
Poay =Waa, =0 and Pug, = We, =0 Vi=1,...,r, l #k.

First for £ = 1, since P and W are orthogonal matrices, we have

T T
_ T T
I|a1\ - ZPalazPalal = Z WalazWalal .
=1 =1

Therefore, by further using (2.35) and (2.36)), we obtain that

T

Z(l - (ﬁz_lﬂl)Q)Walaz W;fla, =0.
=2

(2.34)

(2.35)

(2.36)

(2.37)
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Since for each | € {2,3,...,7}, ﬁflﬂl > 1 and WalalW is symmetric and positive

aia;

semidefinite, we can easily conclude that

Wag =0 Y1=2,3,....r and W, L. =Wl

alal ajal *

From the condition that WTW = I,,,, we also have

]}a1| a1a1 alal E : ala1 alal-

Then, WL, Waia, = Ij4,| implies that

aial
z alal alal - 0

Therefore, we have Wy,q, = 0, for each | € {2,3,...,r}. By (2.36]), we know that (2.37))
holds for k£ = 1.

Now, suppose that for some p € {1,...,r — 1}, (2.37) holds for any k < p. We will
show that ([2.37) also holds for k = p+ 1. Since P and W are orthogonal matrices, from

the induction assumption we know that

T T
_ T _ T
Ilap+1| = § : Pap+1azPap+1az = § : Wap+1azWap+1az :
l:p+1 l:p-l—l

From ([2.35)) and (2.36)), we obtain that

T

1 2 T
Z (1 - (Ml /,Lp+1) )Wap+1alWap+1al = 0 .
l=p+2

Since ﬁflﬁpﬂ > 1 foreachl € {p+2,...,r}, it can then be checked easily that

— 1 _wT
Wapi1ay =0 Vie{p+2,...,r} and W irapes = Wapirapis -
So we have
T Z
I‘ap+1| Wap+1ap+1 Ap+10ap+41 + alap_H alap+1 ’
I=p+2
which, together with W1 virapis Wapiiaper = Lja, |, implies that

§ : azap+1 alap+1 =0.

l=p+2
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Therefore, we have Wy,q,,, = 0 for all I € {p+2,...,7}. From (2.36)), we know that
(2.37)) holds for k = p + 1.

Since ([2.37) holds for all k € {1,...,r}, we obtain from (2.35) that P,, = We,. Let
Q := Py = Waa, @ := Py and Q" := Waa. Then,

Q@ 0 Q 0
P = and W = ,
O Ql 0 Q//
where Q = diag(Q1,Q2,...,Q,) is a block diagonal orthogonal matrix with the k-th

diagonal block given by Qr = Py, q, € Olaxl k. =1,...,r. The proof is completed. O

By using (12.30]), one can derive the following proposition on the directional derivative
of the singular value function o(-) directly from ([2.14). For more details, see [57, Section
5.1].

Proposition 2.15. Suppose that Z € R™*™ has the singular value decomposition (m

For any R™*" 5 H — 0, we have

0i(Z+H)—0i(Z)—0l(Z;H) :O(HH||2), i=1,....,m, (2.38)
where
71 1177 . .
_ /\li (S(UakHVak)> if 1€ag, k=1,...,r,
oi(Z;H) = (2.39)

ali< [UZHVb U;;FHVQ} ) if ieb,
where for each i € {1,...,m}, l; is defined in .
The following proposition plays an important role of our study on spectral operators.

It also can be regarded as the nonsymmetric analogue to Proposition [2.5] for symmetric

matrices.

Proposition 2.16. For any R™*" 5 H — 0, let Z := [2(7) 0] + H. Suppose that
UecO™and V=V Vo] € O" with Vi € R™™ and Vo € R =™ satisfy

(2(2) 0] +H=U[2(2) 0|V =U[2(2) 0][Vi V)".
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Then, there exist Q € 014, @' € Ol and Q" € O™ l9l such that

0 0
U= “ +O(|H||) and V = “ +O(||H]), (2.40)

/ 0 QII

where @ = diag(Q1,Qo2,...,Qy) is a block diagonal orthogonal matriz with the k-th

diagonal block given by Qi € Olexl g =1,...,r. Furthermore, we have
2(Z)arar = 2(Darar = Qi S(Hapa)Qr + O(IHIP), k=1,....r (2.41)

and

[2(2)w = 2(Z)w 0] = Q" [Hy Hil Q"+ O(|HIP). (2.42)

Proof. Let Z := [2(Z) 0]. Let H € R™™ be given. We use I; to denote the p by p
anti-diagonal matrix whose anti-diagonal entries are all ones and other entries are zeros.
Denote

Ul=U,I" and V] =V,I!

lal la] *

Let

A
pto= L Vo U 0 U U e Rlmtn)x(mn) (2.43)
V2 v, v vave v, Vi

Then, from , we have
B(Z) =B(Z) + B(H) = PTA(B(Z))(P))T .

By Proposition we know that for any H — 0, there exists P/ € O™"(B(Z)) such
that

P~ P/ = O(|B(H)]) = O(IH]). (2.44)

On the other hand, suppose that UeOmand Ve O are two arbitrary orthogonal
matrices such that

Z=[x2) 0=U[xZ) oqvT.
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From Proposition [2.14] we know that

_ U _ U
T,=| “| and V,=| “ |, (2.45)
0 0
where Uy = diag(ﬁalal, ﬁa2a2, cee [Afarar) is a block diagonal orthogonal matrix with the

k-th diagonal block given by Usrar € Olerl k=1,...,r. Let

KOk

1 ﬁa ﬁb 0 ﬁb (72

.
V2| 0, 0 V2l -,

€ Rmn)x(men)

where

and V. =V,I

laf *

Ul =U,lI

la|
Then, from l) we know that the orthogonal matrix P! € Om+"(8(2)). By Proposi-
tion we know that there exist orthogonal matrices Ni, N, € Olael k. =1,....r and

M € O2blHn=m guch that
P' = P'diag(Ny,...,N,, M,N’,... NI).

Therefore, from (2.44]), we obtain that

U, U,diag(N1, No, ..., N,)
=1 +O(|H|)- (2.46)
Va Vadiag<N1,N2,...,Nr)

Denote

Q = Usadiag(N1, Na, ..., N;) .

Then, we know that @ = diag(Q1,Q2,...,Q,) is a block diagonal orthogonal matrix
with the k-th diagonal block given by Qi = Uy, Ni € Ol%l, k' =1,... 7. Thus, from

(2.45) and (2.46]), we obtain that

Q Q
Uy = +O(|H|) and V, = +O(I1H]) -

0 0
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Since U and @ are orthogonal matrices, from 0 = U'U, = QTUy,, + O(||H||), we obtain
that
Uap = O(| HI|) .

Therefore, we have

Iy = UL U + U Uy = UL Uy, + O(| H||?) -

a

By considering the singular value decomposition of Uy, we know that there exists an

orthogonal matrix Q' € O’ such that
Up =Q +O(|H|?).

Similarly, since V and @ are orthogonal matrices, from 0 = V.I'V; = QT Vs + O(||H||),
we know that

Vaa = O([|H|) ,
where @ = {1,...,n} \ a. Therefore, we have
Ia) = VagVaa + ViagVaa = VagVaa + O(| H|?) .

By considering the singular value decomposition of Vz5;, we know that there exists an

orthogonal matrix Q" € @"~lel such that
Via = Q"+ O(||H|?).

Thus,

Q@ 0 Q 0
U= +O(|H||) and V = +O(|H|) - (2.47)
0 Ql 0 Q//
Hence, ([2.40)) is proved.

From B(Z) + B(H) = PTA(B(Z))(P1)T and P' € O™ (B(Z)), we obtain that

AB(Z)) + (PHTB(H)P' = (PTT PTA(B(2))(PT)TPT. (2.48)
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Let P := (PN)TP" and B(H) := (PNTB(H)P". Then, we can re-write as
PT(A(B(Z)) + B(H))P = A(B(2)). (2.49)
By comparing both sides of , we obtain that
PIA(B(Z))Puy, + (P))TB(H)P) = AB(Z))aray, k=1,...,7. (2.50)
From in Proposition we know that

PLA(B(Z))Puy = P o, AB(Z)) arar Paya, + O(IH).

ap — apag

By noting that for each & € {1,...,7r}, A(B(Z))apar = 2(Z)agar = Frljay| and A(B(Z))agay, =

Y(Z)apa,, We obtain from (2.50) that
ﬁkf)T ﬁakak + (ng)TB(H)PJk = E(Z)akak + O(HHH2)7 k= 17 R

akag

By |) in Propositionﬁ we know that ﬁg;akﬁakak =l +O(IHI?), k=1,...,7.
Therefore, from ([2.43), we obtain that for each k € {1,...,r},

SWUa, HVay) = 2(Z)arar, — Fadjay) + OUH|?) = 2(Z) a0, = B(Z)aya, + OUH?) -
By , we know that
U HVa, = Qf Hopa, Qi + O(|H|*)
Therefore, we have
@k S(Hara)Qk = 2(Daya, = 2(Daya, + O(IHI?), k=1,....r.

Hence ([2.41)) is proved.
Next, we shall show that 1) holds. Since [2(7) O] +H=U[XZ) 0)VT, we
know that

UN([E(Z) 0] + H)Va=[S(Z)w 0] . (2.51)
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Again, from (2.47)), we know that

b louEn ] TouH

U Vaa

By comparing both sides of , we obtain that
Upp [S(Z)e 0] Vaa + Uy, [Hyp  Hye] Vaa + O(|H|)?) = [S(Z2)w 0] .
Since X(Z)y = 0, we have
Upp [(Hyy Hye) Vaa = [2(Z)w — 2(Z)w 0] + O(| H|?) .
From , we know that

U (Hoy Hye) Vaa = Q" [Hy, Hp) Q"+ O(|H|?).

Therefore,
QT Hy Hpl Q" = [S(Z)py — Z(Z)py, 0] +O(||H|?).
Hence (2.42)) is proved. The proof is completed. O

Let Z € R™*™ be given. For each k € {1,...,7}, define the mapping U, : R™*" —
§Rm><n by
Un(Z) = ww], ZeR™, (2.52)

i€ay
where U € O™ and V € O™ are such that Z = U [%(Z) 0]VT. For each k € {1,...,7},
by constructing the similar scalar function gi(-) in (2.20]), we can show that there exists
an open neighborhood N of Z such that Uy is continuously differentiable in N (see
[30, pp. 14-15] for details). By shrinking A if necessary, we may assume that for any
k,le{l,...,r},

0i(Z) >0, o0i(Z)#0;(Z) Viecag, j€a and k #1,
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For any fixed Z € N, define T';(Z) and Z(Z) € R™*™ and T1(Z) € RM*=m) | =

1,...,7 by
( L f k£l =1 1
if i € ag, j € ay, ,t=1,...,r+1,
0i(Z) — 0;(Z)
-1 e .
(Fk(Z))l]: m lf'leal,jeak, k?él,lzl,,r‘i‘l, (253)
i - Y
{ 0 otherwise,
1 o .
o Z) 0 (Z) ificag, jea, k#1,1=1,...;r+1,
i J
1
—— ifi€q, j€a, kK#EL, I=1,....,r+1,
(Ex(2))ij = Ui(Z)erUj(Z) (2.54)
i
a2 +oi(z) "
\ 0 otherwise
and
1 if 4 €
I 17 ag
(Tr(2))y; =4 oil2) j=1,...,n—m. (2.55)
0 otherwise,

Therefore, by Proposition and (2.28)), we are able to show that the following
proposition holds, i.e., there exists an open neighborhood N such that for each k €
{1,...,7}, Uy is at least twice continuously differentiable in N. See [30, Proposition

2.11] for more details.

Proposition 2.17. LetU, k= 1,...,r be defined by . Then, there exists an open
neighborhood N of Z such that for each k € {1,...,r}, Uy is at least twice continuously
differentiable in N, and for each k € {1,...,r} and any H € R™*™, the first order

derivative of Uy at Z € N is given by
Up(Z)H =U[Tk(Z) o SUTHVL) + Ex(Z) o T(UTHVOIVI' + U(Tk(2) 0 U HV2)Vy'

(2.56)
where (U, V) € O™™(Z) and the two linear operators S and T are defined by .

Finally, let us consider the (parabolic) second order directional derivative of the

singular value function o(-). Let Z € R™*™ be given. Since 0;(Z) = N(B(2)), i =
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1,...,m, we know from that for any given direction H,W € R™*"  the second
order directional derivatives of the singular value function o;(-), ¢ = 1,...,m are given
by

ol (Z;H W) = X/(B(Z); B(H),BW)), i=1,...,m. (2.57)

Therefore, from (2.30)), we know that the corresponding index sets oy of B(Z), k =

1,...,7+ 1 are given by
ap=ag, k=1,....r and app1={la|+1,...,]a] + 2] +n—m}.

Then, we know from (2.43) that

1 Ua, 1 Uy 0 Uy
P, = —= , k=1,...,r and P, ,=—+=
V2| v, V2|1 Vel 1
For any ¢ € {1,...,m}, consider the following two cases.

Case 1. i € ag, 1 < k < r. Consider the eigenvalue decomposition of the symmetric

matrix PL B(H) Py, = S(UL HV,,) € Slo#l e,
S(UJL HVy,) = RA(S(UL HV,, )R,

where R € Oloxl. Let {54]-}?:1 and [;, k be defined by 1| and () respectively for
ng B(H)P,,. From l} and by Proposition E we have

ol (Z: HW) = N, (RE PL [BOW) = 2B(H) (B(Z) = 0(Z) I )" BUH)| Pay R ) -

Case 2. i € b. Since (B(Z))! = B((?T)T), we have B(W) — 2B(H)(B(Z))'B(H) =
B(Y), where Y := W — OHZ'H e Rmxn., Next, consider the eigenvalue decomposition

of the symmetric matrix PL _B(H)P,,,,, i.e., let R € O2IF7=m guch that

Q41

Pr B(H)P,,. = RAPL B(H)P,., )R".

Q41 Qpr41
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On the other hand, it is easy to verify that

i AT+ A V2B AT - A
Bl B(H)P, , = % V2 BT 0 V2 BT
AT+ A V2B —AT - A
-I I 0 0 A B I 0 I
=%00ﬂ1 AT 0 0 o0 —IT |,
I -1 0 BT 0 0 0 V2I" 0

where A := U HV;, € R¥Il and B := UI'HV, € RPX=™). Denote K := [A B] €
RILXColtn—m) 1ot B e OV F = [} Fy] € OPH0=m) with F e RibHE—m)xb] ang

Fy € Rlbl+(n—m)x(n=m) 1,6 gych that
K =[A B]=E[X(K) 0]FT".
Let o7 > Uy > ... > Uy be the nonzero distinct singular values of K. Denote
a:={i|o;(K)>0,1<i<]|b|},
aj ={iloy(K)=v;, 1<i<|bl}, j=1,...,7, (2.58)
b:={i|oy(K)=0,1<i<|b}. (2.59)
Therefore, by [42, Theorem 7.3.7], we know that

1 | E o ET

R=J — ,
V2| B VoR, —F
I 1T 0
1
where J = E 0 0 V2I|¢€ O2|b|+"_m, ET = EI‘Tb‘ and FlT = Fll‘Tb‘. Therefore,
I -1 0
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for Y =W —2HZ'H e RMX" we have

R'PL B(Y)P, . R

Qr41
ET Fl
1 . - E 0 ET
= 3 0 V2FL | J'PL B(Y)Ps,,,J N
n V2F —-F
(ENT (-F))T
ET Fr 0 A B
1 E 0 ET
= 5 0 V2 FYf AT 0 0 s e (2.60)
F, V2F, -F
(ENT (~F)T || BT 0 o0 1

where [A' B'] := [UI'YV, UL'Y V3] € Rllx(bltn—m),
If [; € a, i.e., there exists a positive integer k € {1,...,7} such that [; € aj. Then,

from ([2.60)), we have

o} (Z;H,W) = N (S(Eg [A" B'|Fy),

where [; is defined by 1}

If I; € b, then @41 = {|@| +1,...,|a| + 2|b| + n — m} and

1 b 0 E;
. L b b

RdF-H
V2| B V2R -F

Let K/ = [A' B'] € RIIx(bl+7=m)  Then, from (2.60)), we obtain that

RY Pl B(Y)Pa., Ra,,

QF417 Q41

ET FT
1 ’ ’ o K ||EB 0o K
= 3 0 \/§F2T
. . KT 0 F, V2F, —F;
| (B) (=F)7
I 1 0 0 A" B I 0 I
1
= 510 0 Vv2rI AT 00 moo0o -1t ,
I

- 0 BT 0 0 0 V21T 0
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where [A” B"]:= [EgK’FE EBTK’FQ} € RIE><(bl+n=m) Therefore, we know that
o!(Z;H,W) = o, ([E{ K'F; EF K’F2]> ,

where K/ = [A" B'| = [Ul'YV, UL'YVa] € RIX(PIHn=m) and [; = 1, is defined by (2.27).

Finally, we have the following proposition.

Proposition 2.18. Let Z € R™*™ have the singular value decomposition . Suppose
that the direction H,W &€ R"™*™ qare given. Denote Y =W — QHZ H € pmxn.

(i) If 0;(Z) > 0, then
o (Z:H,W) = N, (RL PL [BOV) = 2B(H) (B(Z) = 0i(Z)Imsn) ' BUH)| Pa, Ra ) |

where R € Ol°xl satisfies

S(UL HVy,) = RA(S(UL HV,, )R,

and {dj}§:1 and l;, k be defined by 42161) and 42171) respectively for S(UZQHVak).

(ii) If 0:(Z) = 0 and oy, ([UT HV;, UL HV3]) > 0, then
ol (Z; H,W) = N (S(EL U YV, U YVo]Fs.)),
where E € OV, F = [Fy Fy] € OPIF(=m) sqtisfy
K =[UF'HV, UI'HV,] = E[2(K) 0|FT,
ag, s defined by and [; = l;; is defined by .
(iii) If 05(Z) = 0 and oy, ([ULHV, UL HV3]) =0, then
o/ (Z: H,W) = o, ([EET K'Fy, El K’FQ]) ,

where the index set b is defined by (2.59), K' = [A' B'] = UI'YV, UI'YVWy) e
RO (bl+n=mm) gnd I, =1, is defined by .



Chapter

Spectral operator of matrices

3.1 The well-definiteness

Let X be the Euclidean space defined by (1.1)) in Chapter [1} i.e.,

X =8 x ... x 8™ x RMso+1XMso+1 5 x RMsXNs

Denote mg = » ;0 mg, m = Zz:so+1 my, and n = Zi:so—‘rl ng. For any X :=

(X1, ooy Xogy Xsgt1y-- -5 Xs) € X, define k(X)) € R0 by
K(X) = (AN(X1), s AKX sy ), 0(Kag ), (X)) -

A matrix @ € RP*P is said to be a signed permutation matriz if each element of () has
exactly one nonzero entry in each row and each column, that entry being £1. For the

Euclidean space X', define the set Q by

Q:={Q :=(Q1,...,Qs) | Qr € P™, 1 <k <spand Qi € |P|", so+ 1<k <s},
(3.1)
where P 1 < k < sy are the sets of the permutation matrices in R™*™ and |P|"*,

so+ 1 < k < s are the sets of the signed permutation matrices in R"**"*_ For any

57
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Q € Q, the transpose of Q is defined by

Q"= (Q.....qQ") € Q.

For any & € R™0T™ and Q € Q, write x as the form @ := (x1,...,xs), where x}, € R"*,

k=1,...,s Then, for any € R and Q € Q, define the product Qx € R by

For any given & € R™°*™  define a subset Q, C Q by
Qr={QeQ|lz=Qx}. (3.2)

Let g : RMotm — RMo+M he given. For any © € R™0T re-write the function value

g(x) as the following form

g(x) = (g1(2), ..., gs(x)) ,

where gi(x) € R™, k = 1,...,s. The so-called (mized) symmetric property of the

function g is defined as follows.

Definition 3.1. A vector valued function g : R™OT™ — RMOTM s said to be (mived)

symmetric with respect to X if
g(z)=QTg(Qxr) YQc Qand x ¢ RmMot™ (3.3)
where the set Q is defined by .

For a given symmetric function g, the corresponding spectral operator G : X — X

is defined as follows.

Definition 3.2. The spectral operator G : X — X with respect to the symmetric function
g is defined by
GX):=(G1(X),...,G4(X)), XeX,
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where

Pydiag(gr(k(X))) PE if 1<k < s,
Gi(X) :=
Uy, [diag(gr(r(X))) 0] VI ifso+1<k<s,

and P, € Omk(Xk), 1 <k < s, (Uk,Vk) S Omk’nk(Xk), so+1<k<s, te.,

Py A(Xy)PL if 1 <k < sp,
X, =
Uk[E(Xk) O]VkT ifso+1<k<s.

Theorem 3.1. If g is symmetric, then the corresponding spectral operator G : X — X

1s well-defined.

Proof. For any given = (x1,...,2s) € R™™™ we know from (3.3 that for each

ke{l,...,s} if ()i = (xr)j, 1 < 4,5 < my, then

(gr(®))i = (gr(x)); » (3.4)

and for each k € {so +1,...,s}, if (xx); =0, 1 <i < my, then

(gr(x))i = 0. (3.5)

For the well-definiteness of G, it is sufficient to prove that for any given X, the function
value G(X) is independent of the choice of the orthogonal matrices P, € O™ (Xy),
1 <k <spand (Ug, Vi) € O™ (Xy), so+1 < k <s. By using and (3.7)), we can
prove this directly from Proposition [2.4 and Proposition [2.14] O

Next, consider the Moreau-Yosida regularization ¢y, : X — # and the proximal
point mapping Py, : X — X of the unitarily invariant closed proper convex function
f: X — (—o0,00] with respect to n > 0, which are introduced in Section Firstly,
it is well-known [I08| 25] (see e.g., [42]) that if the closed proper convex function f :
X — (—00, 00| is unitarily invariant, then there exists a closed proper convex function

g : RMo+tM 5 (—00, 0o] such that for any X € X,

f(X) = (gor)(X). (3.6)
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Moreover, it is easy to see that the closed proper convex function g : R™0T" — (—oco, o]

in (3.6) is invariant under permutations, i.e., for any & € R0

9(x) =g(Qz) VQeQ, (3.7)

where the set Q is defined by . Since g is a closed proper convex function in R™o+m
we know that for the given > 0, the Moreau-Yosida regularization v, ; and the proximal
mapping Py, of g with respect to n are well-defined. The relationship between 1, and
g is established in the following proposition. Moreover, we show that the proximal
point mapping Py, : X — X" is the spectral operator with respect to the proximal point
mapping Py, : R70F™ — gmotm,

Proposition 3.2. Let f: X — (—o0, 0] be a closed proper convex function. Let n > 0
be given. If f is unitarily invariant and g : R™T™ — (—o0, 00| is the closed proper
convex function which satisfies the condition (@, then the Moreau- Yosida reqularization

function ¢, of f is also unitarily invariant. Moreover, for any X € X, we have

¢f,n(X) = ¢g,n(”(X)) . (3.8)

Denote G(X) := Pry(X), X € X and g(z) := Py,(x), © € R™T™. Then, the vector

valued function g satisfies the condition
gx)=QTg(Qx) YQ e Qand x € RMOT™ (3.9)
where Q is defined in . Furthermore, we have
GX)=(Gi1(X),...,Gs(X)), XeXx, (3.10)

where

Prdiag(gr(w(X))) Pl k=1,...,50,
Gr(X) =

Uy [diag(ge(r(X))) O]V k=so+1,...,s,
and P, € Omk(Xk), 1 <k < s, (Uk,Vk) S Omk’nk(Xk), so+1<k<s, te.,
PkA(Xk)P]? kIl,...,So,
X =
Uk[2(Xk) O]VkT k=so+1,...,s.
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Proof. From the definitions of 9, and Py, it is easy to see that 1, is unitarily

invariant and (3.9) holds. Next, we will show that both (3.8) and (3.10|) hold.

Firstly, assume that X := (X1,..., X, Xso+1,- .-, Xs) € X satisfies
A(Xk) ]{7:1,...,80,
X, =
[E(Xk) 0} k=sg+1,...,s.
For any Z € X, by considering the corresponding eigenvalue and single value decompo-
sitions of Z;, k=1,...,s, we have
[(2)+ 5|12~ XIP = (9o r)(2) + 5| Z — X
Tz —(0ok —\Z -
2n g 2n
S

1 & 1
= (QOH)(Z)+;§ ||Zk—Xk||2+? E 1Zr — Xi|?
M= L —

For each k € {1,...,s0}, by Ky Fan’s inequality (Lemma [2.3]), we know that

1Zk — Xl = [IAM(Zk) = MXk)] -

Also, for each k € {sg+1,...,s}, by von Neumann’s trace inequality (Lemma , we
have

121 — Xkl = llo(Zk) — o(Xi)||
Then, we know that
1 1
f(Z)+ %HZ - X|* > g(r(2)) + %H:-:(Z) —k(X)|* vZex,

which means that
Vin(X) = Ygn(k(X)).

On the other hand, since g = Py, if choose Z* = diag(g(x(X))) € X, i.e.,
zZ*=(2i,...,Z;)

with
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then, we have
* ]' *
F(Z7) + %HZ — X|* = ¢y (k(X)).

Therefore, Z* is one optimal solution of the following problem

. 1
pin {72)+ 512 - I

By the uniqueness of Py ,(X), we know that
Pry(X)=2" and  tpp(X) = 1hgpn(k(X)). (3.11)
For the general X = (X1,..., X5, Xsgt1,.--,Xs) € X, let P, € O™ (X}), 1 <k <
so and (Ug, Vi) € O™ (Xy), so+1 <k <s, ie.,
P.A(Xy) P k=1,..., 50,
X =
Uk[E(Xk> O]VkT k=sg+1,...,s.
Define D := (Dy,...,Dy) € X by
A(Xk) ]4321,...,80,
Dy =
[X(Xk) 0] k=so+1,...,s.
Since 1), is unitarily invariant, we know from ({3.11)) that
Vin(X) = Ypy(D) = tgn(k(X)).
Also, since f is unitarily invariant, we have for any Z € X,
[(2)+ 512 - XI? = [(Z) + |1 Z - DI
2n N 2n ’
where Z = (Z, ..., Z,) € X satisfies

Przyp, k=1,...,s0,

Zy =
UngVk k=so+1,...,s.

Therefore, from (3.11)), we know that

G(X) = Py, (X) = P,(D) = (G1(X),...,G4(X))
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where

Prdiag(gr(k(X))) P k=1,...,s0,
Gi(X) :=

Uy [diag(gr(r(X))) 0]V k=so+1,...,s

The proof is completed. U

Next, we study several important properties of general spectral operators, includ-
ing the well-definiteness, the directional differentiability, the differentiability, the locally
Lipschitz continuity, the p-order B(ouligand)-differentiability (0 < p < 1), the p-order
G-semismooth (0 < p < 1) and the characterization of Clarke’s generalized Jacobian.
Without loss of generality, from now on, we just consider the case that X' = S™0 x R™*",

For any given X := (Y, Z) € X, let k := k(X)) = (A(Y),0(Z)). Denote
Z,:={1,...,mo} and Zp:={mo+1,...,mog+m}.
Then, the given symmetric function g : R0 — RMoT™ can be written as

g(z) = (g1(z), g2(x)), @ R

Define the matrices A(k) € 8™, &1(k), Ea(k) € R™™ and F(k) € R™* =™ (depend-
ing on X € X) by

(91(k))i — (91(K));

if (YY) # X\(Y),

(A®)); =4 M) = X() ijell,...,m}, (3.12)
0 otherwise,
(9:00) —(@(0); o,
if o; #*0i(Z),
(E1(K))ij = 0i(2) — 05(2) )7 eil2) ijell,....om}, (313)
0 otherwise,,
(92())i + (92(K)); if
if 0:(Z) + 0,(2) 0,
(Ea(K))ij = 0i(2) +0;(Z) i,je{l,...,m},
0 otherwise,

(3.14)
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and

C0)
(F(r))i =4 0ilZ) i(2) #0, ie{l,...,m}, je{l,....,n—m}. (3.15)

0 otherwise.

In later discussions, when the dependence of A(k), £1(k), E2(k) and F(k) on X can be

seen clearly from the context, we often drop x from these notations.

Let X := (Y,Z) € X be given. Consider the eigenvalue decomposition (2.4) of
Y € 8™ and the singular value decomposition 1’ of Z € R™*" respectively, i.e.,

T T

Y=PAY)P" and Z=U|[%(Z) 0]V, (3.16)

where P € O™, U € O™ and V = [V V3] € O" with V1 € R™™ and V, € Rx(=m),

Let
k:i=r(X)=(\Y),0(Z)) € R x R™.

We use iy > ... > I, to denote the distinct eigenvalues of Y and 71 > ... > 7, to
denote the nonzero distinct singular values of Z. Let ay, k = 1,..., 79 be the index sets
defined by for Y, and a, b, ¢, a;, | = 1,...,r be the index sets defined by and
for Z. Denote @ := {1,...,n} \ a. For notational convenience, define the index

sets

g1 ={jli=mo+iicaq}, (=1,...,r and apyqry1:={j|j=mo+1i,i€b}.
(3.17)

Since g is symmetric, we may define the vector g € Ro+7+1 by

(gl(ﬁ))ieak if 1 S k S To,

(92(R))icq, Hrot+l<k=ro+l<ro+r+1.

9k =

Moreover, let A € 8™, £, €y € R™*™ and F € R™*(=m) he the matrices defined
by 1'1D with respect to X. Hence, for the given X, define a linear operator
T:X—> X by for any 7z = (Zl,ZQ) = (Zl, [Zgl ZQQ]) S X,

T(Z) = (Tl(Zl),Tg(ZQ)) = (.710 Zl, Fl o S(ZQl) +§2 OT(Z21) fo ZQQ]) . (318)
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For any X = (Y, Z) € X, define

and

Gr(X) = G(X) - Gg(X), (3.20)

where Pr(Y), k=1,...,rp and Uj(Z),l = 1,...,r are given by (2.21) and (2.52)), respec-
tively. Therefore, the following lemma follows from Proposition and Proposition

directly.

Lemma 3.3. Let Gg : X — X be defined by . Then, there exists an open neigh-
borhood N of X = (?, 7) in X such that Gg is twice continuously differentiable on N,
and for any X > H = (A, B) — 0,

Gs(X + H) - Gs(X) = G5(X)H + O(|H|]*) .

with

B
=
|

s(

T0 r
(Y aPTIAY gl (2)B)
k=1 =1

= (Ao [E108(B)+E0T(B) Fo(By)|) = (Ti(A), T(B)) = T(H),
where H = (;L E), A= FTAF, B = [él Eg} = [UTBvl UTBV2:| ; and the linear

operator T : X — X is defined in .

3.2 The directional differentiability

Firstly, if we assume that the symmetric function g is directionally differentiable at K,
then, from the definition of directional derivative of g at K and the condition ({3.3)), it is

easy to see that the directional derivative ¢ := g'(&;-) : R™0T™ — RMo+T™ gatisfies

o(h) = QT¢(Qh) YQc Qr and Vhec RmT™ (3.21)
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where Qg is the subset defined for & in (3.2)). Note that Q = (Q1, ..., Qry+r, Qro+r+1) €
Qr if and only if Q;, € Plovl 1 <k <1, Qo € P4l 1 <1 <7 and Qryrri1 € [P

For any h € R™0+™ write ¢(h) as the form

(b(h') = ((bl(h)a s 7¢T0+T(h)v ¢T0+7‘+1(h)) :

Denote the Euclidean space W by
W= Sl s ox Slanl x Slal x x Slarl x glbix(n=lal)

Let ® : W — W be the spectral operator with respect to the symmetric function ¢, i.e.,
forany W = (Wh, ..., W, v, Wy irt1) €W,

W) = (@1(W),..., Dy (W), Bryiri1 (W) (3.22)

Qrdiag(pr(k(W)))QT if1<k<ro+r,
Or(W) = k=1,....,rg+r+1,

Mdiag(gy 471 (R(W))NT ik =ro+7+1,

where k(W) = AWA), ..., A\(Wyyip), 0(Wiggri1)) € R0 Q€ Olerl(Wy), 1 <
k<rg, ka € (’)“”'(WTOH), ro+1 <k =ro+l < ro+r; and (]\7, N) € O|b|’"*‘a|(W,«0+r+1),
N = [Ny Np| with Ny € Rin-lahxPl, Ny € Rivlebx(v=m). By Theorem 3.1} we know
from that the spectral operator ® : W — W is well-defined.

Define the first divided directional difference gl (X; H ) € X of g at X along the
direction H = (A, B) € X by

gM(X; H) := (gy](f; H), g} (X; ﬁ)) ,

with

gl/(X: H) = T1(4) + : : € 8™ (3.23)
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and
®po 1 (D(H)) - 0 0
V(X H) = To(B)+ ' ' - ' € pmxn
0 Dy 4r(D(H)) 0
0 0 Dyirs1 (D(H))
(3.24)
where the linear operator T': X — X is defined in (3.18)),
D(H) := (ﬁalm, e Ay gy S (Basay)s - .,S(Earar),éba) cW (3.25)

and H = (A,B) = (PTAF, [UTBvl UTBV2]>. Therefore, we have the following result

on the directional differentiability of spectral operators.

Theorem 3.4. Let X = (Y,Z) € 8™ x R™*" = X be given. Suppose that Y and
Z have the decompositions . The spectral operator G is Hadamard directionally
differentiable at X if and only if the symmetric function g is Hadamard directionally

differentiable at k(X). In particular, G is directionally differentiable at X and the

directional derivative at X along any direction H € X is given by
G'(X: H) = (Pgl/(X; )P, Ug) (X H)V") . (3.26)

Proof. “ <=7 Let H = (A, B) € X be any given direction. For any X > H' — H
and 7> 0, let X := X +7H' = (Y + 1A, Z + 7B’) = (Y, Z). Consider the eigenvalue

decomposition of Y and the singular value decomposition of Z, i.e.,
Y = PA(Y)PT and Z=U[X(Z) 0]VT. (3.27)

Denote k := k(X). Let Gg and Gg be defined by (3.19) and (3.20)), respectively.
Therefore, by Lemma we know that

1 ~ ~ = ~ o

lim —(Gs(X) - Gs(X)) = G5(X)H = (Ty(A), To(B)) = T(H),  (3.28)

Tl0 T
H'—-H
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where H = (A, B) with A = P' AP, B = [El EQ} - [UTBVl UTBVQ], and the
linear operator T' : X — X is given by .

On the other hand, for 7 and H' sufficiently close to 0 and H, we have Py(Y) =
ZpipiT, E=1,...,r0 and U(Z) = Zuw;‘r, I =1,...,r. Therefore, we know that

Gr(X) = G(X) - Gs(X) = ((G)r(X), (G2)r(X))

= (G1(X) = (G1)s(Y),G2(X) — (G2)s(Z))

- (Z Z [(g1(K)); — (91(R)):]pip? ,

k=11i1€ay
D lg2(k))i — (g2(R))iJuiv] + Z(QQ(H))iuiviT) : (3.29)
=1 i€aq i€b
For any 7 > 0 and H', let
% Z [(g91(k))i — (g1(R))ilpip]  if 1 < k < g,
Ak(7'7 H/) _ 1 1EQy
- Z[(m(ﬂ))i —(g2(R))iJuw] ifro+1<k=rog+l<ro+r

and
Aryirir (T, H') = " (ga(k))suiv] -
1€b
We first consider the case that X = (Y,Z) = (A(Y),[2(Z) 0]). Then, from (2.14),

(2.38) and (2.39)), for any 7 and H' € X sufficiently close to 0 and H, we have

AY) = AXY)+7N(Y; A')—I—O(72||H'H2) and o(Z)=o0(Z)+710'(Z; B')—I—O(7'2||H’||2),
(3.30)
where N (Y3 4') = (M(A4},4,), - - '7)‘(Alaroozr0)) € R™ and o/(Z; B') € R™ with

(0" (Z;B"))ay = NS(B, ), L=1,...,r and (¢/(Z;B")), = o([By, Bi.l)-

ajay
Denote h' := (N(Y;A"),0'(Z; B")) and h := (N(Y; A),0'(Z; B)). Since the functions

A(+) and o(-) are globally Lipschitz continuous, we know that

lim n +O(r|H'|*) =h. (3.31)

H'—-H
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Since g is Hadamard directionally differentiable at &, we know that

lim - (g(s(X))~g(R)) = lim ~lg(R+r(h+O(r|H'|)~g(R)] = o' (F: h) = 6(h),

where ¢ = ¢'(&;-) : Rmotm 5 RMo+™ gatisfies (3.21). Since pipl, i = 1,...,mg and

uiviT ,i=1,...,m are uniformly bounded, we know that for 7 and H’ sufficiently close
to 0 and H,
Py diag(¢r(h))Pa, +o(1) if1<k<rg
Ap(r,H') =
Ugdiag(dp(h))VE +0(1) ifro+1<k=ro+Ii<ro+r
and

Arytri1 (7, H') = Updiag(dry4r11(R)VyT + 0(1).

By li and 1’ in Proposition we know that there exist Q, € Ol k=1,... rg
and Q41 € Olal 1=1,...,r (depending on 7 and H’) such that for each i € ay,

O(r|H'|l)
Po, = | Qu+O(r|H'|) | > E=1...,m0,

o7 E)
o7 E) o7 E))
Ui = | Quopt +O(|H'|) | and Vo= | Qu+OF[H|) |- 1=1,....7.
o7 E) o7 H))
Therefore, we have
o) o7 E) O IE|P) |
AR H) = | OGIE)  Qudiag(én()QL + O IH')  OGIH) | +o(1)
o2 H|P) o7 E) o H'|P) |
_0 0 0_
= 0 Qudiag(dr(h)QL 0 | +O(|H'|) +0(1), 1<k <o+ (3.32)
0 0 0
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Meanwhile, by (2.40), we know that there exist M € Ol and N = [N; Ny] € o~ lal

with Ny € R(—laDxbl ang N, € Rn—la)x(n=m) gych that

O(r|H'|)) O(r| H'||)
Uy, = and [V, V| =
M + O(r|| H'|) N +O(r|[H'|)

Therefore, we obtain that

0 0
Apgira1 (1, H') = +O(7|H'||) + o(1). (3.33)
0 Mdiag(¢ro+r+1(h))N1T
On the other hand, from ([2.13]), we know that if 1 < k < o,

1
A, +0(1) = Aloay, = ~Qr(AY )agay, — FiiLjag) )@ + O(T|H'|I?). (3.34)

ifro+1<k=rog+I1<ry+r,

S(Baja) +0(1) = S(By,q,) = %QTO-FZ(E(Z)aZal = Uil1a))Qroys + O H'|I?) - (3.35)
and

[Bio Bec] +o(1) = [By, By] = %M(Z(Z)bb — Ty )NT +O(r|H'|?). (3.36)

Since Qk, k=1,...,7r9+7r, M and N are uniformly bounded, by taking a subsequence
if necessary, we assume that when 7 | 0 and H' — H, Qi, k = 1,...,79 +r, M and
N converge to the orthogonal matrices @k, k=1,...,r9+r, M and N, respectively.

Therefore, by taking limits in (3.34)), (3.35]) and (3.36)), we obtain from (3.30)) and (3.31))

that

Aakak - ika/\(‘40ékak)iQVCIS 1f 1 S k’ S TO?

S(Baa)) = QuA(S(Baya))QF  ifro+1<k=ro+1<ro+r

and

[Byy Bie] = M [S([Byw Bue]) 0] NT = MS([By Buye)NE
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Hence, by using the notation ([3.22)), we know from (3.32)) and (3.33]) that

¢, (D(H)) --- 0
ro
Ti(H) = lim > Aul(r H') = A e 5™
H'-H k=1
0 @, (D(H)) |
and
ro+r+1
To(H) = lim > Aw(r, H')
H'—H k=ro+1
Bryi1(D(H)) - 0 0
_ . . . . G %mxn’
0 (I)To—l—r(D(H)) 0
0 - 0 @ryir1(D(H)) |

where D(H) = (Aayays -5 Aargargs S(Bayar)s - - -» S(Baya, ), Bra). Therefore, by (3.29),

we obtain that

. 1 . 0 / ro+r+1 )
by ZGR(X) =l QA HY, D, A HY)
H' —»H H' —-H k=1 k=ro+1
= (T1(H),T2(H)). (3.37)

Next, consider the general case for X = (Y,Z) € X. For any X > H' — H and 7 > 0,
re-write (3.27)) as
AY)+P AP =P PAY)P'P and [2(Z) 0|+T BV =U U[X(Z) 0VTV.
~ =T =~ =T ~ =T — S 5 .
Let P=P P, U:=U Uand V:=V V. Let X := (Y, Z) € X with

Y =AY)+P AP and Z:=[x(Z) 0+U BV.

Then, we have

Gr(X) = (PGR(X)PT(G)r(X)V") .



3.2 The directional differentiability

72

Therefore, by (3.37), we know that

1 e
lim —Gr(X) = (PTl(H)PT,UTg(H)VT) . (3.38)
T T

H' -H

Thus, by combining (3.28) and (3.38) and noting that G(X) = G5(X), we obtain that

for any given H € X,

lm (G(X) - G(X)) = lim ~(Gs(X) - Gs(X) + Gr(X))

— (Pl X H)P U6 (V)

where ggu (X; H ) and gg] (X; H ) are given by and . This implies that G is
Hadamard directionally differentiable at X and holds.

“ =" Suppose that G is Hadamard directionally differentiable at X = (Y, Z). Let
P c O™ (Y) and (U,V) € O™*"(Z) be fixed. For any given direction h := (hy, hs) €
R0 x R™, suppose that R™ x ®™ > h' = (h),h}) — h. Let H = (A',B) ¢ X
with A’ := Fdiag(h’l)ﬁT and B’ := Uldiag(h}) O}VT. Denote A = Fdiag(hl)FT
and B := Uldiag(hs) O]VT. Then, we have H' — H := (A, B) as h' — h. By the
assumption, we know that

G'(X:H) = lim (G(X +7H) - G(X))

70 T
H'—~H

= i~ (Pdinglg (5 + 1) — ()P Ulding(g2 (5 + 7h) — 92() 07" .

h/—h
This implies that g(-) = (g1(), g2()) : R™0 x R™ — R™0 x R™ is Hadamard directionally

differentiable at ®. Hence, the proof is completed. O

Remark 3.1. Note that for general spectral operator G, we can not obtain the directional
differentiability at X if we only assume that g is directionally differentiable at k(X). In
fact, for the case that X = 8™, a counterexample can be found in [54]. However, since
X is a finite dimensional Fuclidean space, it is well-known that for locally Lipschitz

continuous functions, the directional differentiability in sense of Hadamard and Gateaux
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are equivalent (see e.g., [67, Theorem 1.13], [27, Lemma 3.2], [36, p.259]). Therefore, if
the spectral operator G is locally Lipschitz continuous near X (e.g., the proxvimal point
mapping Py ), then G is directionally differentiable at X if and only if the corresponding

symmetric function g is directionally differentiable at k(X).

3.3 The Fréchet differentiability

For any X = (Y, Z) € X, let
k= (\Y),0(2)) € RMoT™, (3.39)
Suppose that the symmetric mapping g with respect to X is F-differentiable at . Then,

by using the symmetric property of g, we obtain that the Jacobian matrix ¢g’'(k) is

symmetric and
gd(kKh=QT¢(K)Qh YQ € Q, and VheRmt™, (3.40)
Moreover, by using the block structure of Q € Q,,, we can derive the following lemma
easily.
Lemma 3.5. For any X € X, let k be given by . Suppose that the function g
is symmetric with respect to X and F-differentiable at k. Then, the Jacobian matrix
g' (k) € ™1™ satisfies
(g'(K))i = (9'(K))iri if ki =Ky,
(@'(K)ij = (g'(R))wy  ifki=ki, Kj =Ky, i#]jand i # ],
(gl(lﬁ)))z‘j = (g’(m))ji =0 if K; = 0, 1 € {mo + 1, ..., Mo + m} and 1 75 j
Define the matrices A (k) € ™0, EP(k), EP (k) € R™™ and FP (k) € Rmx(n—m)
(depending on X € X) by

(AP (k) = Ai( E (Y> e, me}, (3.41)

(9'(K))ii — (9'(r))i; otherwise,
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(gQ(K’))i - (gQ(K’))j if 0,(Z) # 0i(Z
(EP(k)); =4 “ilZ) —ai(Z) A7), ijef{l,....m}, (342)
(9'(K))ii — (g'(k))ij otherwise,
((6)i + @00
(& (K))ij == oi(2) +05(2) A 70, ije{l,....,m},
(9’ (K))ii — (¢'(r))i; otherwise,
(3.43)
and
(g2(K))i y
— if 0,(Z) #0,
(FP(K))i; =4 9i(2) ie{l,...,m}, je{l,...,n—m}.
(g (K))ii — (g'(k))i; otherwise.
(3.44)

In later discussions, when the dependence of A”, &P, &P and FP on X can be seen
clearly from the context, we often drop x from these notations.
Let X € X be given. By Lemma we know that the Jacobian matrix g'(K) €

S™0t™ can be written as

E11E|oc1||011\ T El(T0+T)E\041||ar| 0
g’ =
Crotr) 1 Elagllas] 0 Clrotr)(rotr) Elagfjar] O
0 0 0
ﬁlﬂaﬂ C 0 0
I : ‘ : ' , (3.45)
0 Mgl 0
i 0 o 0 ﬁr0+r+ll|b| |

where ¢ € S is a real symmetric matrix and 7 € R0 is a real vector with the

elements

g (®))i if lag| =1, 1 € ag,
e = (g'(®))a o k=1,...,mr0+7+1.

(9'(R))ii — (g'(R))i; if |ag| > 1, for any i # j € oy,
(3.46)
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P mo b oD mxm =D mX(n—m) :
Moreover, let A~ € §™0 £, &, € R and F~ e R be the matrices defined
in (3.41)-(3.44)) with respect to X. Therefore, for the given X, define a linear operator
L(E’ ) = (Ll(Ev ')’LQ(Ev )) X=X by
91(%, Z)I|a1| 0
L(r,Z) := esm (3.47a)
0 QTO (E, Z)I|O¢ro‘
and
9r0+1(E, Z)[|a1| 0 0 0
Lo(R, Z) = ' ' ' S ewmn, Z=(A,B)e X,
0 97«04_7«(%, Z)I|ar| 0 0
0 0 00
i i (3.47b)
where 0 (R,-): X = R, k=1,...,r9+ r are given by
70 ro+r
(R Z) = wtr(Aayay) + Y. Cawtr(S(Baa,)) - (3.48)
k'=1 k'=ro+i=ro+1

For the given X, define a linear operator 7 (&, ) : R™*" — RM*" by

T(,B) == [Ef’ 0 S(By) + &5 oT(By) F'o BQ} €RM*N B =[B; By € R,
(3.49)
Now, we are ready to state the result on the F-differentiability of spectral operators

in the following theorem.

Theorem 3.6. Let X = (Y, Z) € 8™ x R™*" = X be given. Suppose thatY and Z
have the decompositions . The spectral operator G is F-differentiable at X if and
only if the symmetric mapping g is F-differentiable ot K. In that case, the derivative of

G at X is given by for any H = (A, B) € X,

G (X)H = (P[Ll(z, H)+ A" o AP, U[Ls(®, H) + T(%, E)]VT) , (3.50)



3.3 The Fréchet differentiability

76

where H = (A,B) = (?TA?, UTBV), and L(R,-) and T (R,-) are defined in and
, respectively.
Proof. “<="Forany H = (A,B)e X, let X=X +H = (Y +A,Z+ B) =(Y,2).
Let Pe O™, U € O™ and V € O" be such that

Y = PAY)PT and Z=U[X(Z) O)VT. (3.51)

Denote k = k(X). Let Gg and Gp be defined by (3.19) and (3.20]), respectively.

Therefore, by Lemma [3.3] we know that for any X > H — 0,
Gs(X) - Gs(X) = Gy(X)H + O(|H|) = (T.(A). To(B)) + O(IH|?). (352
= v~ =T = = ~ = =T — =T =
where H = (A, B) with A = P' AP, B = [Bl BQ} - [U BV, U BVQ], and the
linear operator T'(-) = (T1(-), T2(:)) : X — X is given by (3.18]).

On the other hand, for H € X sufficiently close to zero, we have Py(Y) = Z pipiT,
1EQy
k=1,....,r0 and U(Z) = ZUWZ'T, l=1,...,r. Therefore, we know that
i€ay

Gr(X) = G(X) - Gs(X)

= ((G1)r(X),(G2)r(X)) = (G1(X) = (G1)s(Y), G2(X) — (G2)s(2))

0 ro+r+1
= (Do AwH), Y AH) ], (3.53)
k=1 k=ro+1

where

S (@8 — (@) idpi! 1<k <o,
A (H) — 1EQ
' S l(g2(k))s — (@a(@)ilua? o+ 1< k=ro+1<rtr

1€y

and

Argrir(H) = 3 (g () iusn] -

i€b
Firstly, we consider the case that X = (Y, Z) = (A(Y),[2(Z) 0]). Then, from
(2.14)), (2.38)) and (2.39)), for any H € X sufficiently close to 0, we know that

k=r(X)=RK+h+O(|H|?, (3.54)
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where h := (N(Y; A),0'(Z; B)) € R0 xR™ with (N (Y; A))a,, = MAapay ), k= 1,...,70,
(0'(Z: B))ay = \SBaa)), L=1,...,r and  (0'(Z: B))y = o([Bys Budl).
Since g is F-differentiable at K, we know that for any H € X sufficiently close to 0,

g(k) —g(®) = g(k+h+O(|H|?) - g(®)
= g'(®)(h+ O(|HIP*) + o(||hl))

= g(®h+o(|HJ).

Since pip;fp, 1=1,...,mg and uiv;f, i =1,...,m are uniformly bounded, we know that

for H sufficiently close to 0,

Po,diag((g'(R)h)a, ) Pa, +o(|[H|) if 1<k <,
Ap(H) =
Ug,diag((g'(R)h)a, )V +o(|HI)) ifro+1<k=ro+1<ro+r

and

Argiri1(H) = Updiag((g' (R)R)a,y4,40) Ve +o(|IH])).

By 1} and 1} in Proposition we know that there exist Q € Ol k=1,... rg
and Q41 € Olul 1 =1,... r (depending on H) such that for each i € ay,

O(|H])
P = | Qut+O(IH]) |- k=170,
OlH)
O(|H]) O(|H])
Ui = | Qut +O(IH]) | and Va = | Quypa + O(IH]) |+ 1=10r.
O(|H]) | o(lH|)

Therefore, since ||g'(R)h|| = O(|H||), we obtain that

0 0 0
AvH)=| 0 Qudiag((g'(®)h)o)QT 0 | +o([H]), 1<k<ro+r. (3.55)

0 0 0
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Meanwhile, by (2.40), we know that there exist M € Ol and N = [N; Ny] € o~ lal
(depending on H) with Ny € RM—1aDxbl and N, € R(r—lahx(n=m) guch that

O(| H|) O(l H[)
Up = and [V, V| =
M+ O(|| H) N+ O(||H|)
Therefore, we obtain that
0 0
Argtri1(H) = | | etiED. @50)
0 Mdlag((g/(ﬁ)h)ar0+r+1)Nl

By (3.45), we know that

(g'(®)h), = {
Tro+r+10([Bey  Be)

where 0(R,:) : X = R, k=1,...,79 + r are given by (3.48]). On the other hand, from
(2.13), (2.41)) and (2.42)), we know that for H sufficiently close to 0,

Or (R, H)6|ak| + ﬁk)\(Aakak) fl1<k<rg+r,
ifk=rg+r+1,

Aoyoy Qr(AY)ayay, — Frlia, Q1 + O H|1?)
= QrAM(A0,)QF +O(IH|PP), 1<k <o,
S(Baya) = Qr(E(2)aa — 7iliq)QF + O(|H|?)
= QkA(S(Bua))Qi +O(IH|?), mo+1<k=ro+l<ro+r,
(B Bl = M(Z(Z)eh — Zrs1liy)N{ + O(| H|?)

= MX([Bw Bi])N+O(|HIJ).

Therefore, from (3.55)) and (3.56]), we obtain that

0 0 0
Ac(H) = | 0 04(R, H)I oy + TkAaya, 0 | +o(lH[), 1<k<n,
0 0 0
| 0 0 0 ]
Ap(H) = | 0 0p(R, H)I )y + MtS(Bay,) 0 | To(lHI), ro+1<k=ro+l<ro+r,

0 0 0
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0 0 0
Argiri1(H) = +o([lH]))-

0 'r_]ro +r+1 Bbb 777“0+r+1 Bbc

Thus, from (3.85)), we have for any H sufficiently close to 0,

Gr(X)
f]lAalal 0 0
= | Lu(r, H) + o 0 , La(, H)
0 0 ﬁroAaroaro

77’!"0—‘,—15(3(11(11) 0 0 0 0

0 0 0 0
T +o([lH]),

0 0 ﬁro+rS(Barar) 0 0

i 0 0 0 Mro+r+18sb Tro+r+1Bbe |

(3.57)

where the linear operator L(RK,-) := (Li(R, "), L2(R,-)) : X — X is given by (3.47).

Next, consider the general X = (Y, Z) € X. For any H € X, re-write 1) as
s L pL o _ L 5 = 7 o7 77T TT7
AY)+ P AP=P PANY)P'P and [X(Z) 0]+U BV =U U[X(Z) 0]V V.
~ =T = =T ~ =T ¥ o :
Let P=P P,U:=U Uand V:=V V. Let X := (Y, Z) € X with

Y :=A(®Y) +P AP and Z:= [X(Z) 0] +U' BV.
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Then, since P, U and V are bounded, we know from 1} that

Gr(X)
=T —T
= (P@)RX)P . T(G)r(X)V") +o(|HI).
ﬁlgawq 0 0
= Ll(Eaﬁ)_‘_ 0 0 7L2(E7ﬁ)
0 0 ﬁro‘/z{a'roaro
ﬁro—&-ls(éalm) 0 0 0 0
0 0 0 0
+ +o([H]),
0 0 ﬁrg—&—rS(Barar) 0 0
L 0 0 0 ﬁr0+r+1§bb ﬁr0+r+1§bc i
(3.58)

Thus, by combining (3.52)) and (3.58) and noting that G(X) = Gs(X), we obtain that

for any H € X sufficiently close to 0,
~ Sir — T . P 5T Ty — TF — a7
G(X) - G(X) = (PlLi(r, H) + A” 0 AP T[Ly (5, H) + T (=, B)V") + ol H]).

Therefore, we know that G is F-differentiable at X and (3.50) holds.
“= " Let P € O™(Y) and (U,V) € O™*"(Z) be fixed. For any h := (hy, hs) €
R0 x R let H = (A, B) € X, where A := Pdiag(h))P’ and B := Uldiag(hs) 0]V .

Then, by the assumption, we know that for h sufficiently close to 0,
= .. _ 5T = .. _ T
(Pdlag(gl(k; +h)—g1(R))P ,Udiag(gz2(k + h) — g2(R))V; )
= GX+H)-GX)=G'(X)H +o(|H|).
Hence, for h sufficiently close to 0,

gE+h)—gk) = (gi(k+h)-g1(kK),g2(k+ h) — ga2(K))

= g (®h+o([h]).

The proof is competed. O
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Remark 3.2. It is easy to see that the formula is independent of the choice of
the orthogonal matrices P € O™ (Y) and (U,V) € O™"(Z) in .

Finally, let us consider the continuous differentiability of spectral operators as follows.

Theorem 3.7. Let X = (Y,Z) € 8™ x R™*" = X be given. Suppose that Y and Z
have the decompositions . The spectral operator G is continuously differentiable at

X if and only if the symmetric mapping g is continuously differentiable at rk(X).

Proof. “ <= " By the assumption, we know from Theroem [3.6|that there exists an open
neighborhood N of X such that G is differentiable on N, and for any X := (Y, Z) € N,

the derivative of G at X is given by

G'(X)H = (P[Li(k, H) + AP o A]PT, U[Ly(k, H) + T(x, BYVT), H=(A,B)€ X,
(3.59)
where P € O™, U € O™ and V € O" satisfy

Y = PA(Y)PT and Z=U[E(Z) O)VT,

k= (\Y),0(Z)) € R™ x R, H = (A, B) = (PTAP,UTBV), and L(R,) and T (R, ")
are defined in and with respect to X. We shall prove that
lim G(X)H - G(X)H YHcX. (3.60)
XX
Firstly, we will show that holds for the special case that X = (A(Y),[2(Z) 0])
and X = (A(Y),[2(Z) 0]). In this case, we may assume that P = P = I,,,, U = U = I,

and V=V =1I,. Let {E@} U {F#} be the standard basis of X, i.e.,

EW = (BW 0), 1<i<j<mg and FW =(0,F@) 1<i<m,1<j<n,

(3.61)
where for each 1 < i < j < mg, E) € §™0 is a matrix whose entries are zeros, except
the (i,7)-th and (j,4)-th entries are ones; For each 1 <i < m, 1 < j < n, F#) ¢ gmx»

is a matrix whose entries are zeros, except the (i, j)-th entry is one. Therefore, we only
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need to show (3.60) holds for all E(9) and F(9). Since A(-) and o(-) are globally Lipchitz

continuous, we know that for X sufficiently close to X,
N(Y)#XMN(Y) ifieag, jeapandl <k#k <,
Ui(Z) #Jj(Z) ifi €aqp,j€ayand 1 Sl%ll <r+41.
Without loss of generality, we only prove 1D holds for any Fi) 1<i<m,1< 7 <n.
Write F(9) as the form
Fld) — [ F Féz‘j)}
with Fl(ij ) € Rmxm and FQ(ij ) € gmx(n=m), Next, we consider the following several cases.

Case 1: 1 <i=j < m. In this case, since g’ is continuous at &, we know that

lim G'(X)F% = lim_ (0, [diag(g'(k)e;) 0]) = (0, [diag(g'(R)e;) 0]) = G (X)F')
X—X X—-X
where for each 1 < i < m, ¢; is a vector whose entries are zeros, except the i-th entry is

one.

Case 2: 1 <i#j<m,0;{Z)=0j(Z) and 0;(Z) = 0j(Z) > 0. Therefore, we know

that there exists [ € {1,...,r} such that i,j € a;. Since g’ is continuous at &, we know
from that
lim G'(X)F()
X—X
. ij i(k) +g;(K) (i5)
— tim (0, |((g/ (k) — (g/(k))y) S(ED) 4 T TIi) iy
Jin (0| (000~ @ 00)) S+ LELE (1)
_ i i(R) + g5 (R) (i7)
= 0, ! [ ! i SF(])“Fg(E) DT (R 0
(0| (@'~ (0 R) S + L0 ()
= G X)F),

Case 3: 1 <i# j <m and 0,(2) # 0;(Z) but 0,(Z) = 0;(Z) > 0. In this case, we

know that

G/(X)F(z]) _ (0’ [MS(FF])) + WT(Fl(lJ)) 0])
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and
Q/(X)F) = (0, [(<g'<n>>ii — (g (R))yy) () + WT(FW) o]) |

Let s,t € R™ be two vectors defined by

. . UP(Z) lfp#luja
UP(Z) lfp?élv . .
8p 1= and ¢, := oj(2) ifp=1, p=1,...,m.
O'j(Z) ifp =1 (Z) 5 )
g op=7,

Define s,t € R™0 x R™ as follows
s:=(A(Y),s) and t:=(\Y),t). (3.62)

It is clear that both s and ¢ converge to & as X — X. By noting that g is symmetric, we
know from (3.1]) that g;(t) = g;(k), since the vector t is obtained from ¢(Z) by swapping

the i-th and the j-th components. By the mean value theorem, we have

gi(k) —gj(r) _ gi(K) = gi(s) + gi(s) — gi(K)
0i(2) = 0j(%) 0i(Z) = 0j(%)
4 (0:(2) — 3(2) + () ~ 95(x)

0i(Z) = (%)

dgi(§) n gi(s) — gi(t) + gi(t) — g;(x)
O 0i(Z) — 0(Z)

A~

dg:(§)
0gi(&) i O

(0j(2) = 0i(2)) + 9i(t) — gj ()

Op; 0i(Z) —0;(2)
0gi(€)  9g(¢)
T Tt (3.63)

where £ € R0 x R™ lies between k and s and é € R™ x R™ is between s and t.
Consequently, we have £ — K and E — ® as X — X. By the continuity of g/, we know

that
. gi("") - gj(K') ! (— /=
lim =——+——=—-—~ = K))ii — K))ij-
Therefore, we have
lim G'(X)F% = G'(X)F) .
X—X
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Case 4: 1 <i+# j <mand 0,(Z) > 0 or 0;(Z) > 0 and 0;(Z) # 0;(Z). Then, we

have 0;(Z) > 0 or 0j(Z) > 0 and 0,(Z) # 0j(Z). Since g’ is continuous at K, we know

that

- @ — i 9i(K) = gj(K) o Gi)y . 9i(K) +9(K) 1 (i)

Jm @OOFD = i (0. ST 4 SE BT o))
_ gi(ﬁ) *gj(ﬁ) (i5) gz(ﬁ Jrgj(ﬁ) (i5)
- (o [ZE 2+ S TG o))
= G'(X)F%

Case 5: m+1<j <mn, 0;(Z) > 0. Since g’ is continuous at K, we obtain that

im0 oo 250 - oo 25001 -0

Case 6: 1 <i+# j<m,o0,Z)=0j(Z)=0and 0;(Z) = 0j(Z) > 0. Therefore, we
know that

G OOFD = (0. (g (k) - @/ 0)) S + S0 D7) 0 ).
Since g’ is continuous, we know from (3.45)) that

lim_(g'(k))ii = (9'(R))ii = Mrg+r+1 and  lim (g'(k))i; — 0. (3.64)
X—X X—-X

Let 5, € R™ be two vectors defined by

. . UP(Z) lfp#Z,j,
~ UP<Z> lfp# 2, ~
8p 1= and ¢, := —0j(Z) ifp=i, p=1,....,m.
—0j(2) ifp=i
—0i(Z) ifp=y,
Define §,t € R0 x R™ as follows
§:= (A\(Y),8) and £:=(\Y),t). (3.65)

Also, it clear that both § and £ converge to ® as X — X. Again, by noting that g is
(mixed) symmetric, we know from ({3.1)) that

gj(k) = —gi(t) and gi(r) = —g;(t).
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By the mean value theorem, we have

gi(k) +9i(k) _ gi(k) —gi(3) +gi(8) + gj(r)
0i(Z)+0i(Z) 0i(Z) +0i(Z)
99:C) (5.(2) + 0,(2)) + 9:(8) + g;(x)

Opi

0i(Z) +0j(2)
99:(Q) . 9i(8) = gi(t) + gi(t) + g;(k)
Opti 0i(Z) +0i(Z)

agi(o . TMJ,(UJ(Z) + Ui(Z)) +gi(t) +gj('<"')

Opi 0i(Z) + 0;(Z)
~0gi(¢) | 9gi(<)
= o + o, (3.66)

where ¢ € R x R™ is between k and § and f e R™ x R is between § and ¢.

Consequently, we know that (, g: — & as X — X. By the continuity of g’, we know from

B3 that

. gi("")"‘g'(’i)i 1=\ . e
th%m = (9'(R))ii + (9'(K))ij = Trgr+1 - (3.67)

Therefore, from (3.64) and (3.67), we have

lim G'(X)F) = (0, i1 F{7 0] ) = G X)FOD.
X—-X

Case 7: 1 < i # j <m, 0,(2) =0j(Z) =0, 0i(Z) # 0;(Z) and 0;(Z) > 0 or

0j(Z) > 0. By using s,t and $,1 defined in (]3.62[) and (]3.65[), respectively, since g’ is
continuous at K, we know from (3.63)) and (3.66|) that

" Y 9i(k) = gi(K) o i)y | 9i(K) +35(K) 1 i)
G = (0[S oG S e ) )

— (0, [ﬁro+r+1S(F1(ij)) + ﬁro+r+1T(Fl(ij)) OD

_ (0, [ﬁTO+T+1F1(ij) 0]) — G/(X)F)

Case 8: 1 < i # j <m, 0i(Z) =0j(Z) =0 and 0,(Z) = 0;(Z) = 0. By the

continuity of g’, we obtain that

Jm GEOF = dim (0, [(g/(0)ur” o) = (0, (g ®)uE 0])

= (0, [T_]r0+r+1F1(ij) OD =G/(X)F")
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Case 9: m+1<j<n,0;(Z)=0and 0;(Z) > 0. We know that

G'(X)F) = <0, [0 gg?)FQ(”D .

Let § € ™ be a vector given by

. op(Z) ifp#i,
Sp 1= p=1,...,m.

0 if p=1,
Define 5 = (A\(Y),5) € R™0 x R™. Therefore, we have § converges to K as X — X.

Since g is symmetric, we know that g;(s) = 0. By the mean value theorem, we have

gi(k)  gi(k) —gi(8)  0gi(p)

oi(Z)  0i(2) Opi

where p € ™0 x R™ is between k and §. Consequently, we have p converges to K as
X — X. By the continuity of g/, we know from 1D that

. gi(K)
lim
XX 0; (Z)

= (9'(R))ii = Trotr+t1 -
Thus,

lim_G'(X)F) = lim_ <0, [o gi("’)Féij’D = (0.[0 A F7]) = /X P
XX XX oi(Z)

Case 10: m+1 < j < n, 0;(Z) = 0 and 0;(Z) = 0. By the continuity of g’, we

know that

Xli—I?Y G'(X)F) = Xh—I?Y (0, [0 (g/(lﬂ’z))iiFQ(ij)}) — (07 {0 <g,(E))z‘z‘F2(ij)D — G'(X)F.

Finally, we consider the general case that

X = (PAY)PT,U[Z(2) 0]VT) and X = (PA(?)ﬁT’U[Z(Z) 0 VT).

We know that for any given H € X, any accumulation point of G'(X)H as X — X

can be written as G'(X)H, since the derivative formula is independent of the choice of
the orthogonal matrices P, U and V.

“ =" From the proof of the second part of Theorem [3.6] it is easy to see that if
G is continuously differentiable at X, then the symmetric mapping g is continuously

differentiable at . O
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3.4 The Lipschitz continuity

In this section, we consider the local Lipschitz continuity of the spectral operator G.

Firstly, by using the systemic property of g, we can obtain the following proposition.

Proposition 3.8. Let X = (Y,Z) € 8™ x R™*" = X be given. Suppose that the

symmetric mapping g is locally Lipschitz continuous near € = k(X)) with module L > 0,

i.e., there exists a positive constant 6o > 0 such that
lg(x) —g(k)| < Lk =K'l V&, k" € B(R,d).

Then, there exist a positive constant L' > 0 and a positive constant 6 > 0 such that for

any k € B(R,9),

lgi(k) —gj(k)] < L'lki—kj] V1<i#j<mo+mand K; # kj, (3.68)
lgi(k) +gi(k)] < L'ki+kj| Ymo+1<i,j<mo+m and k; +K; > 0(3.69)
lgi(k)] < L'|lki|] Vmog+1<i<mo+mandk; >0. (3.70)

Proof. For the convenience, let a,,4; = {j|j = mo+ 4,4 € ai}, 1 <1 < r and
Qrgtrt1 = {J|J = mo + 1,1 € b}. We know that there exists a positive constant d; > 0

such that for any k € B(R, d1),
|K,1'—K,j‘251>0 Vlgi;éjgmo—i—mandﬁi%ﬁj, (3.71)

’IQZ‘+I<,j|:K,i+K,jZ(51>O Vmo+1<i,5<mog+mandk; +K; >0. (3.72)

and

|I<Li|:h',i251>0 Vmo+1<i<mg+mandr; >0. (373)

Let 0 := min{dp,d1} > 0. Denote v := n}f}x{]gi(ﬁ) —g;(®)|,19:(F) + g;(R)|,|9:(R)|},
Ly := (2L5 +v)/6 and L' := max{L1,v/2L}. Let K be any fixed vector in B(g, §).
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Firstly, we consider the case that i # j € {1,...,mg+ m} and k; # ;. If K; # K},
then from (3.71]), we know that

lgi(k) —gi(K)] = 19i(k) — gi(R) + gi(R) — g;(K) + g;(K) — gj ()|

IA

2llg(k) —g(®)|| +v

2L +v
J

= Li|k; — Kjl. (3.74)

IN

ki — K

If K; = K, consider the vector t € R™0T™ defined by

kp ifp#i,7,
ty:=4 k; ifp=i, p=1,...,mg+m.
ki ifp=j,
It is easy to see that ||t — K| = ||k — K|| < §. Moreover, since g is symmetric, we know

that
gi(t) = g;(r) .
Therefore, for such 4, j, we have

9i(k) —g;(K)| = [gi(k) —gi(t) +gi(t) — g;(K)|

< lgi(k) —gi(t)| < L|k — t| = V2L|Kk; — K| . (3.75)

Thus, the inequality (3.68)) follows from (3.74) and (3.75)).

Secondly, we consider the case i,j5 € {mg +1,...,mp +m} and k; + k; > 0. If

R; + K; > 0, then we know from (3.72)) that

9i(k) + g;(K)] = |gi(r) — gi(R) + gi(R) + g;(K) — g;(K) + g;(r)|
< 2lg(k) —g®)|| +v
< 2L55—|— v s + Rj‘

= Ll‘ﬂi + Hj’ . (376)
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Ifx; +&; =0,ie., k; = K; = 0, consider the vector t € R+ defined by

kp i pF#i,7,

tp:: _K:] lfp:Z, p:1,,mO+m
—ki ifp=yj,
By noting that ®; = &; = 0, we obtain that ||t — k|| = ||k — | < §. Moreover, since g

is symmetric, we know that
gi(t) = —gj(k).

Therefore, for such 4, j, we have

9i(k) +g; (k)] = 1gi(k) — gi(t) + gi(t) + g;(K)| < |gi() — gi(D)]

< lg(w) —g@)ll < Llls — &l = V2L|Ki + ;] (3.77)

Then, the inequality (3.69) follows from (3.76]) and (3.77)).

Finally, we consider the case that i € {mo+1,...,mo+m} and k; > 0. If K; > 0,
then we know from ({3.73) that

9i(k)] = |gi(k) — gi(F) + gi(R)| < gi(k) — gi(K)| + |9i(F)]

_ 2L6+v
lg(r) —g(®)|| +v < T|Hl‘ < Ly|kil. (3.78)

IN

If ®; = 0, consider the vector s € R™0F™ defined by

Ky ifp#i,
Sp 1= p=1,....,mg+m.
0 ifp=i

Then, since k; > 0, we know that ||s — K|| < ||k — k|| < . Moreover, since g, we know

that
gi(s)=0.

Therefore, for such 4, we have

l9:(K)| = |gi(K) — gi(s)| < llg(k) — g(s)|| < Lllx — 8[| < L|wi| < V2L|ki|.  (3.79)
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Thus, the inequality (3.68)) follows from (3.78)) and (3.79)). This completed the proof. [J

Suppose that g is locally Lipschitz continuous near kK with the module L > 0. For
any fixed 0 < n < dy/+/n and y € B(R,00/(2v/n)) := {|ly — Rlloo < do/(2v/n)}, the
function g is integrable on V,(y) := {z € R" | ||y —2||co < 1/2} (in the sense of Lebesgue).

Therefore, we know that the function

1
a(n,y) = m/w(y)g(y)dy (3.80)

is well-defined on (0,dp/v/n] X Boo(R,d0/(2y/n)) and is said to be Steklov averaged
function of g. For convenience of discussion, we always define g(0,y) = g(y). Since g
is symmetric, it is easy to check that for each fixed 0 < n < §p/+/n, the function g(n,-)
is also symmetric on By (R, dp/(2y/n)). By the definition, we know that g(-, ) is locally
Lipschitz continuous on (0, dg/+/n | X Boo (R, 00/(2+4/n)) with the module L. Meanwhile, by

elementary calculation, we know that g(-, ) is continuously differentiable on (0, dp/+/n | x

B (R,00/(2y/n)) and for any fixed n € (0,00/+/n] and y € B (R, do/(2y/n)),

lgy(my)l < L. (3.81)

Moreover, we know that g(7, -) converges to g uniformly on the compact set Boo (K, 00/ (2+/1))

as 7 | 0. By using the formula (3.50]), the following results can be obtained from Theorem
and Proposition [3.§ directly.

Proposition 3.9. Suppose that the symmetric mapping g is locally Lipschitz continuous
near K, Let g(-,-) be the corresponding Steklov averaged function defined in . Then,
for any given n € (0,80/+/n], the spectral operator G(n,-) : X — X with respect to the
symmetric mapping g(n,-) is continuously differentiable on B.(X,d0/(2y/n)) := {X €
X |||&(X) — Elloo < 00/ (2/n)}, and there exist two positive constants §; > 0 and L > 0

such that
HG/(T],X)H <L V0<n< min{dy/v/n,d1} and X € B*(Y, So/(2v/n)) . (3.82)

Moreover, G(n,-) converges to G uniformly in the compact set B.(X,d0/(2y/n)) asn | 0.
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We state the main result of this section in the following theorem.

Theorem 3.10. Let X = (Y, Z) € 8™ x R™*" = X be given. Suppose that Y and Z
have the decompositions . The spectral operator G is locally Lipschitz continuous

near X if and only if the symmetric mapping g is locally Lipschitz continuous near

k= r(X).

Proof. “ <" Suppose that the symmetric mapping g is locally Lipschitz continuous

near k = k(X)) with module L > 0, i.e., there exists a positive constant dy > 0 such that
lg(k) —g(&")| < Lk - &'|| Vk,k" € B(R,d).

By Proposition for any given ) € (0, d9/+/n |, we may consider the continuously differ-
entiable spectral operator G(n,-) : X — X with respect to the Steklov averaged function
g(n,) of g. Since G(n,-) converges to G uniformly in the compact set B.(X,do/(2v/n))
as 1 J 0, we know that for any € > 0, there exists a constant do > 0 such that for any
0<n<ds
IG(n, X) - G(X)[[ < VX € Bi(X,00/(2v/n)).

Fix any X, X’ € B.(X,d0/(2y/n)) with X # X’. Meanwhile, by Proposition we
know that there exists §; > 0 such that holds. Let § := min{d1, &, 80/+/n}. Then,

by the mean value theorem, we know that

IG(X)-GX")| = IGX)-Gn,X)+Gn,X)-Gn,X")+Gn X")-GX')|
1
< 2+ H/ G'(n, X +t(X — X'))dt|
0

< L|IX - X'||+2 VO<n<3.

Since X, X’ € B.(X,d0/(2y/n)) and ¢ > 0 are arbitrary, by letting ¢ | 0, we obtain that
|G(X) -~ GX)| <TIX - X ¥X, X' € Bu(X,60/(2/7)).

Thus G is locally Lipchitz continuous near X.
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“

— 7 Suppose that G is locally Lipschitz continuous near X. For any y =
(y1,y2) € R x R, we may define Y := (diag(y1), [diag(y2) 0]) € X. Then, since g is
symmetric, we have G(Y') = (diag(gi(y)), [diag(g2(y)) 0]). Therefore, we obtain that

there exist a positive number k£ > 0 and a open neighborhood Nz such that
lg(y) -9 =1GY)-GY)| <LIY Y| = Llly -yl Vy.y' €Ng.

This completed the proof. U

3.5 The p-order Bouligand-differentiability

For the p-order B(ouligand)-differentiability of spectral operators, we have the following

result.

Theorem 3.11. Let X = (Y,Z) € 8™ x R™" = X be given. Suppose that Y and
7 have the decompositions . Let 0 < p <1 be given. If the symmetric function
g is locally Lipschitz continuous near k(X), then the spectral operator G is p-order B-

differentiable at X if and only if the symmetric mapping g is p-order B-differentiable at
K(X).

Proof. Without loss of generality, we just prove the results for the case p = 1.
“e="Forany H=(A,B) e X,let X=X+ H= (Y +A,Z+B)=(Y,Z). Let
PecOQm™ UeOmand V € O" be such that

Y = PA(Y)PT and Z=U[X(Z) 0]VT. (3.83)

Denote k = k(X). Let Gg and Gg be defined by (3.19) and (3.20]), respectively.
Therefore, by Lemma, we know that for any X > H — 0,

Gs(X) ~ Gs(X) = Gs(X)H + O(|H|?) = (Tu(A), Ta(B)) + O(|HI?),  (3.84)
where H = (A, B) with A = P' AP, B = [El §2} - [UTBvl UTBVQ], and the

linear operator T'(-) = (T1(-), T2(:)) : X — X is given by (3.18]).



3.5 The p-order Bouligand-differentiability

93

On the other hand, for H € X sufficiently close to zero, we know that Pr(Y) =
Zpip;fp, k=1,...,r0 and Uy(Z) = ZuiviT, l=1,...,r. Therefore,

i€ay i€ap

Gr(X) = G(X) - Gs(X)

= ((G1)r(X),(G2)r(X)) = (G1(X) — (G1)s(Y), G2(X) — (G2)s(2))

70 ro+r+1
= | Y anE), > AvH) |, (3.85)
k=1 k=ro+1
where
> l(g1(w))i — (gu(®))ilpip!  if 1 <k <,
Ak(H) — 1EQ
D Ug2(k))i — (g2(R))iluiv]  ifrg+1<k=ro+1<ro+r
1€aq;
and

Aryirr1(H) =Y (ga(r))iuv] -

i€b
Firstly, we consider the case that X = (Y, Z2) = (A(Y),[2(Z) 0]). Then, from
(2.14)), (2.38)) and (2.39)), for any H € X sufficiently close to 0, we know that

k=r(X)=Rk+h+O(|H|?, (3.86)
where h := (N(Y; A),0'(Z; B)) € R0 xR™ with (N (Y; A))a,, = MAapay ) k= 1,...,70,
(0'(Z;B))a, = M(S(Bayay)); L=1,...,r and (0'(Z;B)), = o([Bw Bue))-

Since g is locally Lipschitz continuous near ¥ and 1-order B-differentiable at K, we know

that for any H sufficiently close to 0,
9(k) —g(®) = g(k+h+O(H|) - g(F)

= g(k+h)—g)+O(H|?

= g'(®;h) + O(|H|?) = ¢(h) + O(|H|?).
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Since p;p!, i = 1,...,mg and u;v], i = 1,...,m are uniformly bounded, we know that

for H sufficiently close to 0,

Po,diag(or(h))Pa, + O(|H|]?) if 1 <k <o,
A(H) =
Ualdiag(qﬁk(h))Vg + O(HH”2) ifro+1<k=ro+Ii<rg+r

and

Argir1(H) = Updiag(¢rori1(R)VyT + O(|H|?).

By 1} and 1' in Proposition we know that there exist Q, € Ol k=1,... rg
and Q,41 € Ol 1=1,...r (depending on H) such that for each i € «y,

O(|H])
P = | Qu+O(IH]) |- k=170
O(|H])
O(|H]) O(|H])
Usi = | Quon +O(IH]) | and Va=| Qo+ O(IH|) |- 1=1....r.
O(|H]) - o(lH|)

Since g is locally Lipchitz continuous near & and directionally differentiable at &, we

know from Lemma that for H sufficiently close to 0,
lo(h)[| = llg'(®; h)|| = O(||H]) .

Therefore, we have

0 0 0
Ap(H)= | 0 Qudiag(r(h)QF 0o | +O(IH|?), 1<k<ro+r. (3.87)
0 0 0

Meanwhile, by 1) we know that there exist M € Ol and N = [Ny N,] € O lal
(depending on H) with Ny € R(—leDxbl and Ny € Rl x(n=m) guch that

O(|[ H|) O(lHJ)
Up = and [V, V| =

M+ O(|H|) N +O(||H||)
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Therefore, we obtain that

0 0
Aveiris (H) = | . +O(|H|?). (3.88)
0 Mdlag(¢r0+r+1(h'))N1

On the other hand, from (2.13)), we know that
Aagar, = Qu(AY )aray = Frliay)Qk + O(IHIP?), 1<k <o, (3.89)

S(Baar) = Qk(2(2)aa; — ilio,)Qk + O(IH|P), ro+1<k=ro+1<ro+r (3.90)
and
[Buy, Bl = M(S(2)w — Upiadpp)NY + O(|HI?) . (3.91)

Since the symmetric mapping ¢(-) = ¢'(R; -) is globally Lipschitz continuous on R0 x R"™,
by Theorem we know that the corresponding spectral operator ® defined by (3.22)
is globally Lipchitz continuous. Hence, we know from ([3.85)) that for H sufficiently close

to 0,
Gr(X) = (T1(H),T2(H)) + O(|H|?), (3.92)
where _ -
®1(D(H)) 0
T1(H) = : : esm,
0 @,,(D(H)) |
[ 0,,.1(D(H)) 0 o
TZ(H) = : B : : c §Rm><n’
0 - @y (D(H)) 0
i 0 T 0 Pry4r1(D(H)) ]

and D(H) = (Aayays - Aapyargs S(Bayar)s - - - S(Baya,), Bra) -
Next, consider the general case for X = (Y, Z) € X. For any H € X, re-write (3.83))

as

AY)+P AP=P PAY)PTP and [£(Z) 0|+U BV =0 U[L(Z) VIV.
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Let P = ﬁTP, U:=UUandV:=V'V. Let X := (Y,Z) € X with

Y =AY)+P AP and Z:=[5(Z) 0|+U BV.

Then, since P, U and V are bounded, we know from 1} that

Gr(X) = (P(G)R(X)P" T(G)r(X)V") = (PTL(H)P" UT(H)V' )+O(|H?).

(3.93)

Thus, by combining (3.84) and (3.93) and noting that G(X) = G5(X), we obtain that

for any H € X sufficiently close to 0,
G(X)-G(X)-G(X;H)=0(|H|?,

where G'(X; H) is given by . This implies that G is 1-order B-differentiable at
X.

“ =" Suppose that G is 1-order B-differentiable at X = (Y,Z). Let P € O™ (Y)
and (U, V) € O™*"(Z) be fixed. For any h := (hy,hs) € R™ xR™ let H = (A, B) € X,
where A := ?diag(hl)FT and B := Ul|diag(hs) O]VT. Then, by the assumption, we know
that for h sufficiently close to 0,

(Pdiag(g:(% + h) — g1(%))P", Udiag(ga(% + h) — g2(®))V )

= G(X+H)-GX)=G'(X;H)+O(|H|?).
Hence, for h sufficiently close to 0,

gE+h)—gk) = (gi(k+h)-gi1(K),g2(k+ h) - ga2(K))

= g'(®;h) + O(|h]?).

The proof is competed. O

3.6 The p-order G-semismoothness

In this section, we consider the p-order G-semismoothness of spectral operators.
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Theorem 3.12. Let X = (Y, Z) € 8™ x R™*" = X be given. Suppose that Y and Z

have the decompositions . Let 0 < p < 1 be given. If the symmetric mapping g

is locally Lipschitz continuous near k(X ), then the corresponding spectral operator G is

p-order G-semismooth at X if and only if g is p-order G-semismooth at k(X).

Proof. Let K = k(X). Without loss of generality, we consider the case that p = 1.
“e=7Forany H= (A,B) e X, let X =X+ H=(YY+A,Z+B)=(Y,2),
where Y € §™0 and Z € R"™*", Let P € O™, U € O™ and V € O" be such that

Y = PAY)PT and Z=U[X(Z) O)VT. (3.94)

Denote k = k(X). Let Gg and Gg be defined by (3.19) and (3.20]), respectively.
Therefore, by Lemma we know that there exists an open neighborhood N of X such

that Gg twice continuously differentiable on N , and
Gs(X) - Gs(X) = G5(X)H + O(|H|]?)

= (X aPi A gruth(2)B) + O( H?)
k=1 =1

- (i Gk P (Y) o A|PT,
k=1

> o1 {UTUZ) 0 S(By) + 2(2) o T(BNIVIT + U(X1(2) 0 EQWQT}) +O(IH|),
=1
(3.95)

where (Z, E) - (ﬁ, [El §2D = (PTAP,[UTBV: UTBV,)) = H; Qu(Y) € 8™, k =
1,...,7 is given by ([2.22); ['(2), E(Z) € R™™ and T;(Z) € R™ =™ [ =1,...,7

are given by (2.53)), (2.54) and (2.55]) respectively. Since g s locally Lipschitz continuous

near K, we know that for any X € X converging to X,

(91(k))i + O(|H|)) Vi € ap if 1 <k <o,

gk =
(92(r)); +O(|H|)Viea ifro+1<k=ro+1<rog+r.

Let A€ 8™, &, & € R™™ and F € R™*("~™) (depending on X € X) be the matrices

defined by (3.12)-(3.15]). Since g s locally Lipschitz continuous near &, we know that A,
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&1, & and F are uniformly bounded on N. Therefore, since P € O™, U € O™ and

V € O™ are also uniformly bounded, by shrinking N if necseeary, we know that for any

X eN,

Gs(X)-Gg(X) = (P(AOE)PT,U £10S(By) + & o T(By) foEQ} VT)+0(||H||2).
(3.96)

Let X € Dg NN , where D¢ is the set of points in X', where G is (F-)differentiable.
Let AP € §mo, &P, &P € ™™ and FP € R™*("=™) be the matrices defined in

(3.41)-(3.44)), respectively. Since G is differentiable at X', by Theorem [3.6] we know that
G'(X)H = (P[Ll(n, H) + AP o AJPT, U[Ls(k, H) + T(x, E)]VT) , (3.97)

where L(k,-) = (L1(k,-), La(k,-)) and T (k,-) are given by (3.47) and (3.49)), respec-
tively with K being replaced by . Denote

A(H) = (Ai(H), Ax(H)) = G'(X)H - (Gs(X) — Gs(X)).

From ([3.96) and (3.97), we obtain that

Ri(H) 0 0
0 Ry(H) --- 0
A(H) =P| o | PTroqEP)  (3.99)
0 0 Ry (H) |
and
RT0+1(H) 0 0
Ay(H)=U VI +O(|H|?), (3.99)
0 -+ Ryyir(H) 0
|0 0 Ryen(H)
where

Ry(H) = diag ((9(&, ﬁ))%) + (AP )arap © Aagays 1<k <70, (3.100)
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Rygia(H) = diag (00, H))a, ) + (€D )arar © S(Basar) + () © T(Buvar), 1 <1< 70,
Rygyry1(H) = diag ((9("% ﬁ))ar0+r+1>+ [(ng)bb 0 S(Buw) + (£)op © T(Byp) (FP)p 0 Bye

By , we obtain from that
AY)+P AP =P PA(Y)P"P and [S(Z) 0]+T BV =T U[2(2) OV'V.
Let H := (A,B) = (P' AP,U BV),P=P' P,U:=U Uand V:=V'V. Then,
PTAP = PTP'APP = PTAP and UTBV =U0TU BVV =UTBV.

From , and , we know that there exist Q € Ol k = 1,... 0,

Qro €0 1=1,... rand M € Ol N € ©"l9l such that

Pl AP, = PL AP, = Qf Auyo, Qi+ O(IH|?), 1<k <rg,

UrBV,, = Ur'BVy = QL Buya,Qrost + O(|H|?), 1<1<r
and

[Uy BV, U BVa] = [ﬁbTE‘A/b ﬁbTE‘A/z} = M" [Ebb B\bc} N +O(|[H|[*).
From , and , we obtain that
Pl APy = MY )agar — AY)aga, + O(IH|?), 1<k <rg,
S(WUa BVay) = Qf415(Baya))Qro 1+ O(| H|*) = S(Z)asr=2(Z)ara +O(1H|P), 1<1<r
and
UF BV, UTBVa] = M | By Bue| N = [2(Z)w — S(Z) 0] + O(HP).

Let h := (hy,hs) = (N(Y;A),0'(Z; B)) € ™0 x R™. Since A\(-) and o(:) are strongly

semismooth [96], we know that
Agpop = PL AP, = diag(N[(Y;A) : i € ay) + O(| H|?)

= diag((h1)a,) + O(|H|I?), 1<k <7, (3.103)
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S(Baa) = S(UFBV,) = diag(0}(Z;B) : i€ a) + O(|| H|?)
= diag((h2)q,) +O(|H|*), 1<1<r  (3.104)
and
|Bu Buc| = [U7 BV, UTBV:] = [diag(o}(Z; B): i € b) 0] +O(|H|P)
= [diag((h2)s) 0]+ O(|HI). (3.105)
Therefore, by , and , we obtain from and that
A(H) = (Pdiag ((¢'(r)h)z,) PT U [diag ((¢'(r)h)z,) 0] Vh) +O(|H|I?). (3.106)

On the other hand, for H € X sufficiently close to 0, we have Pr(Y) = Zpl-piT,

k=1,....,ro and U(Z) = Zuiv;, [ =1,...,r. Therefore, o
Gr(X) = G(X)-Gs(X)
70 ro+r+1
= (Yl — @@lpals S S lg209)i — (g2(®))iduseT(p.107)
k=1i€ay k=ro+1i€a;

Note that by Theorem we know that G is F-differentiable at X if and only if g is
F-differentiable at k. Since g is 1-order G-semismooth at &, A(-) and o(-) are strongly
semismooth at ¥ and Z [96], we obtain that for any Y € Dg NN (shrinking A if

necessary),

g(k) —g(®) = ¢'(k)(x—F)+O(|H|)
= g'(w)(h+O(|H|*) +O(|H|J)
= ((g'(wh)z,, (g'(K)h)z,) + O(| H|*).

Then, since P € O™, U € O™ and U € O™ are uniformly bounded, we obtain from

(B107) that

Gr(X) = (Pdiag ((¢'(k)h)z,) P*.U [diag ((g'(k)h)z,) 0] V') +O(IH]?).
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Thus, from (3.106f), we obtain that
A(H) = Gr(X) + O(|H|*) -
That is, for any X € Dg converging to X,

G(X)-GX)-G(X)H = Gs(X)-Gs(X)-G(X)H + Gr(X)

= —A(H)+Gr(X)=0(H|?.

“= " Let P € O™(Y) and (U,V) € O™"(Z) be fixed. Assume that k =
(A\,o) = K+ h € Dg and h = (hi,hy) € R x R sufficiently small. Let X =
(Fdiag(A)FTﬁ[diag(a) 0] VT) and H := (ﬁdiag(hl)FT,U[diag(a) 0] VT). Ther,

we know that X € Dg and converges to X. Therefore, we have
~ = .. _ 5T . _ T
G(X) — G(X) = (Pdiag(g:(% + h) — 91(R))P" , Udiag(gs(R + b) — g2(F))V1 )
and
G'(X)H = (Pdiag ((¢'(k)h)z,) P", U [diag ((¢'(k)h)z,) 0] V") .

Then, from the 1-order G-semismoothness of G at X, we know that g is 1-order G-

semismooth at K. O

3.7 The characterization of Clarke’s generalized Jacobian

Let X = (Y,Z) € 8™ x RM*" = X be given. In this section, we also assume that
g is Lipschitz continuous on an open neighborhood Nz C R™ x R™ of K = k(X).
Therefore, we know from Theorem that the corresponding spectral operator G is
locally Lipschitz continuous near X. In order to characterize the B-subdifferential and
Clarke’s generalized Jacobian of spectral operators, we first introduce some notations.

Define a subset D_é C Ng by

D$ = {(yl, y2) € Nx|g is F-differentiable at y, and y;, y2 are in non-increasing order} .
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For any k € Dé, let J(k,-): X — X be the linear operator given by

J(k,Z) = (Ji(k,A), J2(k,B)), Z=(AB)eX, (3.108)
with
(AD(K'))alal © Aalal T 0
Jl(K’7A): eS8
I 0 (AD(”"))aroam Qg g
and
D
(81 ( ))alal o S(Balal) 0 0
JQ(I‘E, B) = . . ’ ’ c §Rm><n7
0 (ng(K"))arar o 5(Baya,) 0
0 a 0 (T (%, B))pa

where AP (k) € 8™, P (k), EP (k) € R™™ and FP (k) € K™ (=™) are the matrices

given by (3.41)-(3.44)), respectively, and 7 (k,-) are given by (3.49)). Denote

Ve = {V(-):(Vl(-),VQ(-)):X—)X!V(-): lim L(m,-)—i—J(n,-)}, (3.109)

Dysk—F
where for each k € Dé, the linear operator L(k,-) : X — X is given by . Let Kx
be the set of linear operators such that K(-) = (Ki(-), Ka(-)) € Kg if and only if there
exist Qp € Ol k=1,... ;70 +7, Q' € OV Q" € 0"l and V = (V4, V3) € VZ such

that

K(Z) = (K\(2), K2(2)) = (QVi(2)Q", MV5(Z)NT) e X, Z=(A,B)€ X,
(3.110)
where @ = diag(Q1,...,Qr) € O™,

M = diag(Q’r‘o-‘rla s 7Q7’0+7"7 Q/) €O0™ and N = diag(QTo-ﬁ-ly KRN QT()-H"; Q//) cO" )

and Z = (QTAQ,MTBN) € X. Therefore, we obtain the following characterization of

the B(ouligand)-subdifferential 95 G(X) of the spectral operator G at X.
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Theorem 3.13. Let X = (Y, Z) € 8™ x R™*" = X be given. Suppose that Y and Z
have the decomposition . Assume that the symmetric mapping g is locally Lipschitz

continuous near € = k(X). Then, U € 9pG(X) if and only if there exists K =
(K1, Ks2) € Kg such that

U(H) = (P (Ki(H) + Ti(4)) P".U (Kx(H) + T(B)) V') VH = (A,B) € X,
(3.111)
where the linear operator T'(-) = (T1(:),T»(:)) : X — X is defined in and H =
(A4,B) = (FTAP, UTBV).
Proof. “ = ” By the definition of 95G(X), we know that there exists a sequence

{X'} in Dg converging to X such that

U= lim G'(X").

t—o00

For each X! = (Y, Z), let Pt € O™0, U' € O™ and V! € O™ be the orthogonal matrices
such that

Yi=PIAYH)(PHT and Z'=U'x(Z') o(VHT.

For each t, let k! = k(X?"). Let Gg and G g be defined by (3.19)) and (3.20]), respectively.
Therefore, by taking the subsequence if necessary, we know from Lemma[3.3|that for each

t, Gg is twice continuously differentiable at X! and

lim G%(X") = G%(X).

t—00

Hence, we know that
Jim G5(X"H = G5(X)H = (Ty(A). T3(B)) = T(H), H=(A,B)eX, (3.112)

where H = (A, B) with A = P' AP, B = [El EQ} - [UTBvl UTBVQ], and the
linear operator T'(-) = (T1(-), T2(:)) : X — X is given by (3.18]).
Next, consider the function Gr(-) = G(-) — Gs(-). By the assumption, we know that

G, is differentiable at each X*. Furthermore, since A(-) and o(-) are globally Lipschitz
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continuous, we may also assume that for each X?,
)\Z(Yt) 75 )\j(Yt) if 1 € ag, j€apand 1 <k 75 K <,

UZ‘(Zt) #Uj(Zt) ifi€a,j€arandl Sl;ﬁl, <r-+1.

Therefore, by (3.50]) in Theorem [3.6{and ([2.23]) and ([2.56]), we obtain that for each ¢ and

He X,
GR(X"YH = G'(X"H -Gy(X"H

= <ng7)k Z Gro+r1U(Z") )

- (Pt(Ll(nt, HY) + Ji(r', A% + 04(s', A1) (P,
U'(Lo(r!, HY) + Jo(s', BY) + @2(nt,§t))(vt)T) . (3.113)

where H' = (ﬁt,§t> = ((PHTAP', (U")TBV?"), and for each t, O1(k!, At) € 8™ and

O (k! Et) € R™*™ are given by
O1(k!, A = A(k')oA! and ©Oy(k!, BY) = [51(,4}) o S(BY) + & (kY o T(BY) F(k')o Bl ,

with A(k?) € 8™, & (k!), Ea(k!) € R™™ and F(k!') € R™*(—m) by

gi(k") = gr — gj (k") + g
(Z(Ht))ij . A Yt) — )\j(Yt)

ificag, jeayand 1 <k #K <rg,

0 ifi,jearand 1 <k <rg,
(3.114)
gi( t) gr0+l ( ) —+ gr0+l

ifica,jc€arand 1 <I#1'<r+1,

(Eu(s))ij = P10 7
0 ifi,jeqand1 <I<r+1,
(3.115)
9i(K") = Gro41 + 95(K") = Grorvr ..
f

g t\) .. . JZ‘(Zt)—FJj(Zt) ! 7,01“]¢b

(E2(K7))ij == (3.116)
0 ifi,jeb,

gi(""'t)_gr I .,
(F(k1)) T (3.117)
K'))ij = ? .
0 otherwise.
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t

Since k' converges to k¥ and by the continuity of g, we know that

lim A(k') =0, lim & (k) =0, lim &(kY) =0, andlim F(k')=0. (3.118)

t—o00 t—o00 t—o00 t—o00

Denote the linear operator L(k!,-) + J(k!,-) : X — X by
L(K/tv ) + J(K’ta ) = (Ll(’{t? ) + Jl(’{"’tv ')a LQ(K/tv ) + J2(K’t7 )) .

By taking subsequence if necessary, we may assume that the sequence of linear operators
{L(k!,-) + J(k!,-)} converges. Therefore, by (3.109), we know that there exists V =
(V1, Va) € Vg such that

lim L(k', )+ J(k',:) = V(). (3.119)

t—o00

Since {P'}, {U'} and {V'} are uniformly bounded, by taking subsequence if necessary,
we may assume that {P'}, {U'} and {V*} converge and denote the limits by P> € O™0,

U>*® € O™ and V> € O", respectively. Then, it is easy to see taht
BA DL v 0O A (N oco\T'
PAY)P =Y = P*A(Y)(P™)

and

US(Z) V' =Z=U®[2(Z) 0/(Vv>)T.

Therefore, from Proposition and Proposition we know that there exist Q) €
Olewl k=1,...,rg+r, Q € O and Q" € ©"~ 1ol such that

P*=PQ, U®=UM and V*®=VN,
with Q = diag(Q1,...,Qr,) € O™,

M= diag(QT0+la s aQTO+T7 Ql) €O0™ and N = diag(QT‘o+17 cee QTO+7‘5 Q”) cO".

Therefore, from (3.113)), (3.118)) and (3.119)), we obtain that for any H € X,

lim GR(X"H = (P""Vl(ﬁ)(Pm)T,U“%(ﬁ)(V“)T)

t—o0
= (PQViE)Q"P",UMVy(H)NTV)

_ (FKl(ﬁ)FT, UKg(ﬁ)VT) , (3.120)
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where H = (QTAQ, MTBN) = (Q"P' APQ, MTU' BVN) € X and

K(H) = (K\(H). K>(H)) = (QVi(H)Q", MVa(H)N") .

Finally, since G(-) = Gs(-) + Gg(+), from (3.112)) and (3.120), we know that (3.111])

holds.

“ <=7 Suppose that there exists K = (K1, K2) € Kg such that for any H € X,
(3.111) holds, i.e., there exist a sequence {k! = (A\,0!)} in Dg converges to Kk and
QreOlerl k=1, .ro+7r Q € Ol and Q" € O lal such that for any H € X,

U(H) = (P (Kl(ﬁ) n Tl(ﬁ)) P U (Kg(ﬁ) + TQ(E)) VT) ,
with

K(Z) = (K:(Z),K»(Z))

— lim (Q(Ll(mt72) + Ji(k', 2))QT, M(Ls(k', Z) +Jg(mt,2))NT>, Z=(A,B)eX

t—00

where Q = diag(Q1,..., Q) € O™,
M= diag(Qm-‘rl’ ce 7Q7’0+7"7 Q/) €O0™ and N= diag(QTo-i-h SRR QTO+T7 QH) eoO" )

and Z = (QTAQ, MTBN) € X. Denote P = PQ, U = UM and V = VN. For each t,
let

X, = (Y1, Z%) .= (Pdiag(\") PT, U[diag(c?) 0]V7T).

Then, we have

lim X{=X.

m—o0

Moreover, by Theorem we know that for each ¢, G is differentiable at X*. By (3.50)),

we know that for any H € X,

lim G'(X")H =U(H).

m—0o0

Hence, by the definition, we obtain that & € dgG(X). These complete the proof. O
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Remark 3.3. Let X € X be given. Note that for the given H € X, ?Tl(A)PT and
UTQ(E)VT are independent of the choice of P € O™ (Y) and (U,V) € O™"(Z) in
. Since Clarke’s generalized Jacobian OG(X) at X takes the form
OG(X) = conv {9pG(X)} ,

we know from that U € OpG(X) if and only if there exists K = (K1, K») € K
such that for any H = (A, B) € X,

U(H) = (F (El(ﬁ) + Tl(ﬁ)> P (E(ﬁ) + TQ(E)) VT) , (3.121)
where ff\(ﬁ) = (El(ﬁ),ff\g(ﬁ)) is the convex combination of some {K.(H)} in Kg
defined by .

Let X = (Y,Z) € 8™ x $M*" = X be given. Suppose that the symmetric mapping

g is also directionally differentiable at &. Define d : R0 — RMo+m Ly
d(h) :=g(F +h) — g(R) — g'(R;h), heR™™™.
Then, by and , we know that d is symmetric, i.e.,
dh)=QTd(Qh) VQ € Qx and h e R™™,
where Qg is a subset of Q defined by . On the orther hand, by the directional

differentiability of g, we know that d is differentiable at 0. If d is strictly differentiable

at 0, then we have
_ /
L d(w) — dw)

w,w’ —0 H’LU —’l,U/H

w#w!

Let {w! = (&', (")} € R™° x R™ be a sequence converging to 0. Suppose that 1 < i < m,

=0. (3.122)

1<j<n,i#j.
Case 1: 1 < i # j < m and ¢ # C; for all t. Consider the following sequence
{st = (€', 5)} in R™0 x R™ where for each p =1,...,m,
G ifp#i,7,
(s"), = ¢ ifp=1i, t=1,2,....

¢t ifp=j,
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It is clear that the sequence {s'} converges to 0. By the symmetry of d, we know that

foreach ¢ =1,...,mg +m,
dg(w') if ¢ # mo+i,mo +j,
dq(st) = dm0+j(wt) if g =mo +1, t=1,2,....

dpori(wt) if ¢ =mo + J,

Therefore, by (3.122)), we obtain that for such 4, j,

dm 7 ) — dm j ¢ dm % B — dm 7 t
=00 ¢ = ¢l =00 Jw* — st

Case 2: i €b,j €band (! >0or C; > 0 for all t. Consider the following sequence

{s8' = (&,3)} in R™0 x R™ with

¢ ifp#i,j,
=14 —¢ ifp=1i, t=1,2,....
—¢ ifp=4,

It is easy to see that s # w! for all . Also, we know that {8’} converges to 0. By the

symmetry of d (with respect to k), we know that for each ¢ = 1,...,mg + m,
dg(w') if ¢ # mo +14,mo + j,
dy(8") = —dpmyri(wt) if g =mo+1, t=1,2,....

—dpyri(w?) if g =mo+ J,

Therefore, by (3.122)), we obtain that for such 4, j,

lim dmo+i<wt) + dmo+j(wt) — lim dmo+i<wt) - (_dmo-i-j(wt))
t—o0 Clt + Cjt t—00 Cf + C]t
o dmgvi(W') — diny1i(8")
= lim v2 ot — 2] =0. (3.124)

Case 3: i € b and ¢! > 0 for all t. Consider the following sequence {s' = (¢',35")} in
RO x R™ with
toif i
(3, = G iHp7 t=1,2,....
0 ifp=i,
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It is easy to see that &' # w! for all t. Also, we know that {8'} converges to 0. By the

symmetry of d (with respect to k), we know that
dm0+i(§t) =0.

Therefore, by (3.122)), we obtain that for such 4,

- dpgpi(w') L dpyi(w') =0
tlggo ¢t o tgw ¢t—0
dm 7 t _dm 7 st
= i Grmoti(W) = dngi() (3.125)
t—00 |wt — st

As mentioned in Remark 3.1}, if the symmetric mapping g is locally Lipschitz continu-
ous near & = k(X ) and directionally differentiable at &, then the corresponding spectral
operator G is also directionally differentiable at X. Moreover, we have the following

useful result on 0G(X).

Theorem 3.14. Let X = (Y, Z) € X be given. Suppose thatY and Z have the decom-
position . Assume that the symmetric mapping g is locally Lipschitz continuous
near k = k(X). Assume that g is directionally differentiable at & and there exists an
open neighborhood N C R™+™ of zero such that the function d : RmMo+m — Rmotm
defined by

d(h) = g(F+h) - g(R) — g'(R;h), heR™™
is differentiable on N and strictly differentiable at 0. Then, we have
0pG(X) = 05%(0),
where ¥(-) := G'(X;-) : X — X is the directional derivative of G at X .

Proof. Let U € 9pG(X). By Theorem we know that there exists K = (K1, K2) €
Kz such that for any H € X, (3.111)) holds, i.e., there exist a sequence {k! = (\f,o%)} C
Dé converges to € and Qi € Ol k=1, . rg+r, Q € O and Q" € O el such

that for any H € X,

U(H) = (ﬁ (Kl(ﬁ) n Tl(ﬁ)) P <K2(ﬁ) n TQ(E)) VT) : (3.126)
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with

K(Z) = (Ki(Z), K3(Z))

= lim (Q(Ll(ﬁ'tvé) + Jl(Ktvz))QTaM(L2(Kt72) + JQ(K'tvz))NT> , 4= (AvB) eX,

t—o0

(3.127)

where for each k!, the linear operators L(k!,-) and J(k!,-) are defined by (3.47) and
(3.108)), respectively; @ = diag(Q1,...,Qr,) € O™,

M = diag(QTo+17 s 7Q7‘0+T7 Ql) € O™ and N = diag(QTO+1> R QTO+7'a QH) e o" ;
Z = (QTAQ,MTBN) € X. For each t, let w' := (¢, (') = k! — & € R™ x R™ and
W= (Wl W W) €8 x ... x St x RlbX(n=lal) — yy

with
deiag(wZ)Qg ifl<k<rg+r,
VV/,;5 =
Q'[diag(w! 1) 01Q" ifk=ro+r+1.

t

By noting that for each ¢, wf ,,., € §R‘b‘, we know that k(W?) = w!. Therefore, we

have

lim Wt=0eW.

t—o00

Moreover, for each t, define C* := (C%,C%) € X by

wi 0
t B . . . =T m
ci=pP| : L P esm™
0 Wi
and ~ _
Wi 0 0
t TT : - : : 2l mXn
0 Wi L, 0
I o - 0 W;0+7"+1 |
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Therefore, it is easy to see that
lim C'=0€ X.
t—o0

By recalling the notation D defined in (3.25)), we know that

D(CH=W'eWw Vi,

where for each t, C! = (?TCfP, UTCSV) From the directional derivative formula

(3.26]), we know that for each ¢ and any H = (A, B) € X,

W+ H) - 0(C) — (PIA]+ T ()P, D) + BBV

where Al € 80 and AL € R™*" are defined by

©,(D(C") + D(H)) — 0,(D(CY)) if k=K,

(Ai)akak/ =
0 otherwise,
and
(At) (I)TOJrl(D(ét) + D(ﬁ)) - ¢T0+Z(D(ét)) ifl1=10,
2)ajay =

0 otherwise,

kK =1,...

(3.128)

(3.129b)

where ® : W — W is the spectral operator with respect to the symmetric mapping

¢(-) :== ¢'(R;-) defined by (3.22)). Since d(-) = g(k + ) — g(K) — ¢'(K;-) is differentiable

on A and all k! € Dg, we know that for t sufficiently large, ¢ is differentiable at each

w! and

¢ (w') = g'(k") — d'(w').

(3.130)

Moreover, since d is strictly differentiable at 0 and d’(0) = 0 and {g'(k')} converges as

t — 00, we obtain that

lim ¢'(k") = lim ¢'(w").

t—o00 t—o00

(3.131)
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Therefore, we know from Theorem [3.6] that for any ¢ sufficiently large, ® : W — W is dif-
ferentiable at D(C"), and by using the formula 1) the derivative ®'(D(C"))D(H) €

W can be written as the following form:

®(D(C)D(H) = (QO{H)QT, .., Q1,0 (H)QY, ., QO (H)Q')
(3.132)

with
_ LY (w', D(H)) + (AD (w")aya, © (QF (D(H))Qr)  if 1<k <o+,

LY i (w', D(H)) + TO(w', QT (D(H))sg1r11Q") if k=ro+r+1,

(3.133)
where for each w', AD(w') € 8™, Ly(w',-) = ((Lg)i(w',-), .., (Lg)rgrri1(w',-)) :
W — W and Ty(w',-) : Rlblx(n—lal) _, RlbIx(n=lal) are defined by (]3.41[), (]3.47[) and (]3.49[)

with respect to the symmetric mapping ¢. For each ¢, let

R'(H):= (R\(H),R,(H)) € X (3.134)

with ~ _
O’i(ﬁ) . 0
R(H)=qQ| : . i |Qlesm
0 O;,(H) |
and
O! (H) 0 0
RLY(H)=M ' ' - ' NT ¢ gmxn
0 - Of,(H) 0
i 0 o 0 01€0+r+1(ﬁ) i

Hence, we know from (3.128)) and ([3.132)) that ¥ is differentiable at each C* and for any
He X,

V(CHH = (?[Rtl(ﬁ) + Ty (AP, URY(H) + TQ(E)]VT) . (3.135)
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By comparing with (3.126]), we know that the conclusion then follows if we show that

K = lim R'. (3.136)

t—o00
On the other hand, since the orthogonal matrices Q € O™, M € O™ and N € O™ are

fixed, it is sufficient to prove that

K(Z)= lim R(Z) VZe{EW}u{FW}, (3.137)

t—o00

where
(B} U{FD)} = {(QZ:Q". MZNT) : Z = (21, Z) € (B} U{F} |

{E)}U{F(9)} is the standard basis of X defined by (3.61)). For simplicity, we only show
that (3.137) holds for the case that each F(#) = (O,ﬁ(ij)) eX,1<i<m,1<j<n,
and the other cases can be shown similarly. Rewrite F() as the form
P — [ £ ﬁéij)}
with F{7) € gmxm and F\¥) ¢ Rmx(n=m)  Therefore, we know from (3.127) and (3.133)
that forany 1 <i<m, 1 <j <n,
- b pls) ERGINNTY i i
K(F6) = tlgrolo(O,M(Lg(n SIFWY + Io(k' FYW)))NT) ifd,j € ) for some 1 <1 <r+1,
0 otherwise.

and for each ¢

- t(FWY)) if i, g <<

R(F) — (0, R5(F"))) ifi,j € aq; for some 1 <[ <r+1,
0 otherwise.

Therefore, without loss of generality, we only need to consider the case that 7,5 € a; for

some 1 <[ <r+1.

Case 1: 1 <i=j <m. By (3.47), (3.108) and (3.133)), we know that

Ly(k', FW)) 4 Jy(w!, F9)) = [diag(g(k")e:) 0]

and

RY(F'7)) = M [diag(¢/(w')e;) 0] N,
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where for each 1 <17 < m, e; is a vector whose entries are zeros, except the i-th entry is

one. Therefore, from (3.131]), we know that
K(ﬁ(zj)) - thm (Oa M(L2<Hta F(Z])) + J2<Ht7 F(Z])))NT)
—00

o LEGDY) — lim RY(F)
= Jlim (0, Ry(F™*)) = lim R*(F™).

Case 2: i # j € q; for some 1 <1 <7 and o} # o, for any t sufficiently large. By

(3-47) and (3.108)), we know that for any ¢,

(Lz(,{t,p(ij)) + Jg(nt,F(ij))>
Pq

t t
g i\K') — g ik . .o .
m0+l(2 )t ’fftLO"r]( ) if (p7 Q) — (Z,j) or (q’p) — (Z,j),
= (Ui_aj) 1<p<m, 1<q¢g<n.

0 otherwise,

Meanwhile, by (3.133)), we know that for any t,

(RyF)) = (MTRy(F)N)
Pq Pq
Gmo+i w') — mo+j w' . .. ..
O+(2 )t ¢t0+]( ) lf (p7Q):(Z7]) or (qap):(laj)v
= (Q‘Cj) 1<p<m, 1<g<n.
0 otherwise,

For each t, since 7; = 7 and gp,+i(K) = Gmo+;j(K), we know that

gmo-ﬁ-i(’q't) - gmo-i-j(’{"'t) _ gmo-i-i(ﬁ + wt) — 9mo+j (E + wt)
2(0f — 07) a 2(¢t = ¢h)
_ Grmo+i(R + ") = G +i(R) + Gmo+j (R) = Gmo+j (R + w')
2(¢; = ¢)
dng+i(W') = dimg1j (W) | dmgti(w') — ¢m0+j(wt)/3 138
26 = ¢) 2(¢t = ¢) (3.138)

Therefore, since d is strictly differentiable at 0, by (3.123]), we obtain that

o It (5) = G () | Gmgi(0') — g (')

e T ) N ()

Therefore,
K(FW) = lim (0, M(Ly(k', F9)) + Jo(s', FO)NT)
—00

—— L)Yy — 15 t o (ig)
Jim (0, RY(F®))) = lim R'(F®©).
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Case 3: i # j € q; for some 1 <[ < r and o = o*;- for any t sufficiently large.

By (3.47) and (3.108), we know that for any ¢ sufficiently large and any 1 < p < m,
1<qg<n,
(La(s!, FD) + Jy(!, FOD))
Pq
((gl(mt))(m0+i)(m0+i) - (gl(nt))(mo+2)(mo+]))/2 if (p7 Q) or (q7p) = (7’7.7)7
0 otherwise.
Meanwhile, by (3.133]), we know that for any t sufficiently large and any 1 < p < m,

1<q<n,

(R'Q(F(iﬂ'))) - (MTR';(FW))N)

pq pq
((¢/(wt))(m0+i)(mo+i) - (¢/(wt))(mo+l)(mo+j))/2 if (p> Q) or (qap) = (Z7.])>
0 otherwise.

Therefore, from (3.131f), we know that

K(FU) = lim (0, M(Ly(r', F) 4 Jy(s!, F@))NT)

t—o00

= lim (0, RYy(FW)) = lim R'(F").
—00

t—o00

Case 4: i # j € band o} = 05- > 0 for any ¢ sufficiently large. By 1D and (3.108),

we know that for any ¢ sufficiently large,

Ly(x', F(m) + Jo (K", F(ij))

(9 (5")) tmo iy (moti) — (9 (K" (mo iy (mo ) S(FL) +

(gt (et .
I ti() + I (5) 1 ) O} |
O'i-l-O'j

Meanwhile, from (3.133]), we know that for any ¢ sufficiently large,
Ry(F%)) = MTRL(FU)N

¢m0+i (wt) + (lj)mo+j (wt)
G+G

= %ﬁ@ﬂ%mmmmr%WWmemmﬂﬂﬂﬂmﬂ- ﬂﬂm)ﬂ~
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For each t, since 7; = 7; = 0 and gmg+i(K) = gmo+;j(K) = 0, we know that

ng_H'(K,t) —+ gmo-l—j(K’t) _ gmo-i-i(ﬁ + wt) + Gmo+j (E + wt)
of + 0o} G+ ¢
_ 9mo+i (E + wt) — 9mo+i (E) — 9mo+j (E) + 9mo+j (E + wt)
G+
) s () | Ggs(W) + b (')

¢+ ¢+
Therefore, since d is strictly differentiable at 0, by (3.124]), we know that

lim gmoJri("Lt) + gmoJrj(’{t) — lim quoJri(wt) + ¢m0+j (wt)
t—o0 Uf —+ U;. t—o00 g i C; .

Hence, by (3.131f), we obtain that

K(F™) = 1im (0, M(Ly(k', F) + Jy(k', FiD))NT)

t—o00

_ 5 tFUDY) = 1im RY(F)
Jim (0, Ry (F™)) = lim R (F™).

Case 5: i # j € b and o! # O‘;- for any t sufficiently large. By (]3.47[) and (]3.108[), we

know that for any ¢ sufficiently large,

Ly(k!, FU9)) 4+ Jy(kt, F9))

ngJri(I{t?: - thnOJrj(Kt) S(Fl(lj)) + gmoJri(ntz + thnoJrj(Kt) T(Fl(”)) 0] )
i ~0j o; T

Meanwhile, from (3.133]), we know that for any ¢ sufficiently large,

RL(FU9)) = MTRL(FU)N

G =G GG

Therefore, by (3.138) and (3.139)), since d is strictly differentiable at 0, we know from

_ [¢mo+i(wt) — (z)mo-l-j(wt) S(Fl(ij)) + (bmo-i-i(wt) + (z)mo-l-j(wt)T(Fl(ij)) 0] _

(3.123) and (3.124) that

lim gmoJri(""“t) — gmoJrj(K’t) ¢mo+i(wt) - ¢mo+j (wt)
t—o0 o — 0 t—o0 f — Cj

and

lim gmo—i-i(""t) + gmo—l—j('{’t) . (bmo—i-i(wt) + (bmo—i-j (wt)
t—r00 of + 0o} t—00 G+ .
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Hence, we know that
K(FU)) = lim (0, M (La(, FUD) 4 Jy(k?, FU)NT) = lim (0, RY(FU9)Y)) = lim RYFW))
—00 —00 —00

Case 6: i # j € band 0! = ag- = 0 for any t sufficiently large. By 1} and (3.108)),

we know that for any ¢ sufficiently large,
Ly(k!, FU9)) 1+ Jy(kt, F))
= [ ) o irimosi) = (8 mo ismo+)) FLP 0] -
Meanwhile, from , we know that for any ¢ sufficiently large,
RY(FW)) = MTRL(FU))N
= [(((ﬁ'(wt))(moﬂ)(moﬂ) — (¢ (")) (g i) (o)) FL 0} :
Therefore, by , we obtain that

K(FW) = Jim (0, M (La(x, FO)4 gy (kt, FU)NT) = Jim (0, RY(FU9))) = lim RY(F@)).

t—o00

Case T: i € b, j € c and o} > 0 for any ¢ sufficiently large. By (3.47) and (3.108)),

we know that for any ¢ sufficiently large,
LQ(Ht,F(”)) + J2(Iit,F(”)) = {0 7gm°+l(ﬂ )FQ(”)] .
Meanwhile, from (3.133), we know that for any t sufficiently large,

RL(FW) = MTRL(FUW)N = [0 W FQ(%J)} _

Since 7; = 0 and gy,,+i(K) = 0, we have for each ¢,

gmo—i-i('{’t) _ gmo+i(E+ wt) — gmo-l-i(E) _ dmo-l-i(wt) + ¢m0+i(wt)
t - t - t t
gy G i i

Therefore, by (3.125)), we obtain that

K(FW) = lim (0, M(Ly(k', F9)) + Jo(s', FO)NT)
—00

—— L)Yy — 15 t o (ig)
Jim (0, RY(F®))) = lim R'(F®).
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Case 8: i € b, j € c and ¢! = 0 for any ¢ sufficiently large. By (3.47) and (3.108)),

we know that for any ¢ sufficiently large,
Ly(r!, FUD) + Jy(k!, F2))
= [0 (9" (E") (moti)imo+i) — (9" (E") (mo+i) (mo+5)) Fz(ij)} :
Meanwhile, from , we know that for any ¢ sufficiently large,
RL(FW)) = MTRL(FUW)N
= [0 (&' (W) (motiy(moti) = (8 (W) (mo 1) o)) Fz(ij)} :
Therefore, by , we obtain that
K(F@)) = lim (0, M(Lo(rt, F)) + Jy(kt, FED))NT)
lim (0, Ry(F))) = lim R'(F(9).

Finally, from (3.126]), (3.127) and (3.135]), we know that there exists a sequence

{C"'} C X in Dy converging to 0 such that
lim V(CHYH =U(H) YHeX.
t—00

This implies that
U € op¥(0).

Conversely, let U € Op¥(0). Then, there exists a sequence {C' := (C%,C)} C X

converging to 0 such that ¥ is differentiable at each C* and
U= lim ¥V'(C").
t—00

Meanwhile, we know from (3.128)) and (3.129)) that for each ¢, ¥ is differentiable at C*

if and only if the spectral operator ® is differentiable at D(é’t), where

Ct = (é{,é;) - (FTc{F,UTcgv) €8m0 KR p=1,2,... .
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By , we know that for each ¢,
D(C") = ((CDarars+- -+ (Cagarys S(Charan)s - S(CH)ava, ), (Chia) -
For each t, consider the decompositions
(Chagar = Qhdiag(wi) (@07, k=1,....70,

S((éé)azaz) = Qf«o-i-ldiag(wioﬁ-l)(Qioﬁ-l)Ta I=1,...,r
and
(Cha = Q" [diag(wlyy,41) 0] (@),

where for each ¢, Qf € Olewl k=1,...,r0, Q%H ceOal =1, r, Q" e 0Ol and

Q" e Onlal: gt € RMo x R™ satisfies

A(CDapay) 1<k <ro,

Wi, = AS(Chaa,)) fro+1<k=ro+l<ro+r
o((Ch)pa) if k=ro+r+1.
For each t, let &' := (wi,...,w} ) € R and ¢* := (w} ..., wl ., wh ) € R

Then, we have w' = (¢, (") for each ¢. For each ¢, let Q" = diag(Q%,...,QL,) € O™,

M = diag(QL, 1, ..., QL 1, Q") € O™ and N!'=diag(Q’ 41,--., Q% 4, Q") € O".

Since {Q'}, {M'} and {N*} are uniformly bounded, by taking subsequence if necessary,

we may assume that

lim Q' = Q= diag(Q1,...,Qy,) € O™,

t—o00
tli)m Mt = M= diag(QTo+la s 7QTO+T7 Ql) eo” )
t:li)m Nt = N= diag(QT(H-l) ) QTO+T7 Q”) eoO".

Since @ is differentiable at each D(é’t), we know from Theorem (3.6|that ¢ is differentiable

at each w'. Also, by (3.128) and (3.50) in Theorem we know that for any H =
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(A,B) e X,
UH) = lim v'(CHH
= (PIR:(H) + Tu(A) [P TR (H) + Ty(B)V' ), (3.140)
with

R=(Ri,R,) = lim R',
where for each ¢, R'(-) = (RY(-), R4(")) : X — X is a linear operator defined by (3.134).
Denote
P=PQeO™, U=UMecQO™ and V=VNecQO".

t

For ¢ sufficiently large, we have k' := K+ w' = (A, o!) = R0 x R7". Therefore, for such

t, we may define
X':= (V! Z") = (Pdiag(\")P", U [diag(c") 0] V') € x.

It is clear that the sequence { X'} converges to X. Meanwhile, since d is differentiable

on some neighborhood N, we know that for ¢ sufficiently large, g is differentiable at

each k! and holds. Moreover, since d is strictly differentiable at 0 and {¢'(w?)}

converges, we know that holds. Therefore, by Theorem [3.6] we know that for ¢

sufficiently large, G is differentiable at each X' and for any H = (A, B) € X,
G(XNH = (P(I(s', H)+ Ji(x', A) + 01 (", A) PT,

U(Lo(w!, H) + Jo(kt, B) + Oo(k!, E))VT) : (3.141)
where for each t, @1(#,21\) € 8™ and Os(k!, B\) € R™*™ are given by

O1(k!, A) = AP (k') o A— Ji(k', A) and Os(k!, B) = T(k',B) — Jo(k!, B),

AP (kY), T(k',-), L(k!,-) and J(k',-) are given by (3.41), (3.49), (3.47) and (3.108)),
respectively; and H= (21\, B\) = (PTAP, UTBV) = (QTEQ,MTEN). Therefore, since

w! converges to K, we know that

lim (@1(522),@2(,@2@)) — (Tl(ﬁ),TQ(E)) .

t—o00
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By taking subsequence if necessary, we may assume that {G'(X")} converges. Then,

from (3.141)), we know that for any H € X,
lim G'(X")H = (F (Kl(ﬁ) + Tl(ﬁ)) P (Kg(ﬁ) + T2(§)> VT> , (3.142)
t—o0
with
K(Z) = (K\(2). K>(2)) = lim (K{(2).K}(Z)). Z=(AB)cX,
where for each ¢,

(Ki(2),K§(2)) == (Q(Ll(nt, Z) + Ji(k', 2)QT, M(Ls(k', Z) + Ja(k!, Z))NT>

Similarly as the proof of Case 1-8 in the first part, by using the properties (3.131]), we
can prove that

R = lim K*.

t—o0

Therefore, by (3.140) and (3.142), we know that there exists a sequence {X'} in Dg

converging to X such that
tlim G (X"YH=U(H) YVHcX.
—00

Then, we have U € OgG(X). Therefore, the proof is completed. O

3.8 An example: the metric projector over the Ky Fan

k-norm epigraph cone

In this section, as an example of spectral operators, we study the metric projection
operator over the Ky Fan k-norm epigraph cone. Let K € R x R™*™ be the epigraph
of the Ky Fan k-norm, i.e., K = epil| - ||4). Note that the matrix cone K = epi| - ||
includes the epigraphs of the spectral norm ||-||2 (k = 1) and nuclear norm || - ||« (k = m).

Let I : B x R™*" — R x R™*™ be the metric projection operator over the epigraph
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of the Ky Fan k-norm, i.e., for any given (¢, X) € R x R™*" (¢, X) := Ix(t, X) is the

unique optimal solution of the following convex problem

1
min = ((r — )% +[|Y — X|]?)
2 (3.143)

Therefore, from Proposition we know that
E— . 7T
i (t, X) = (g1(t,0). U [diag (gs(t,0)) 0]V ) |

where 0 = o(X), (U,V) € O™"(X) and g(t,0) := (gi1(t,0),g2(t,0)) € R x R™ is the
metric projection operator over the polyhedral convex set epi || - [[x) € R x R™, i.e., the

unique optimal solution of the following convex problem

min 1 r—1)? —ol?
S (0= 17+ ly — o)) -

st Nyl <7,

where || - ||z) : R™ — R is the vector k-norm, i.e., the sum of the k largest components in
absolute value of any vector in R™. It is clear that g is a symmetric function. Therefore,

the metric projection operator Il is the spectral operator with respect to g.

Another important spectral operator which is closely related to the metric projection
operator over the epigraph of the Ky Fan k-norm is the metric projection operator over
the epigraph of s()(+) : 8™ — R, the sum of k largest eigenvalues of the symmetric matrix.
Let M = epi s()(-) be the epigraph of the positively homogenous convex function s (-).
Let [T : R x 8™ — R x 8™ be the metric projection operator over M, i.e., for any given
(t,X) € R x 8", (t,X) = Ip(t, X) is the unique optimal solution of the following

convex problem

1
min 7((7‘ — t)2 +IY — X||2)
2 (3.145)
s.t. S(k)(Y) <T.

Therefore, since s(k)(-) is unitarily invariant in 8™, from Proposition we know that

T (t, X) = (hl(t, \), Pdiag (ha(t, A))FT) ,
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where A = \(X), P € O"(X) and h(t,0) := (hi(t,A),ha(t,\)) € R x R™ is the metric
projection operator over the polyhedral convex set epis(k)(-) C R x R", i.e., the unique

optimal solution of the following convex problem

min } T —1)? —\|I?
S((r =02+ lly = A1) 5.116)

st sm(y) <7,

where s(k)(-) : ®” — R is the sum of the k£ largest components of any vector in R". It
is clear that h is a symmetric function with respect to ® x R™. Similarly, the metric
projection operator II4 is the spectral operator with respect to h.

For the definitions, it is easy to see that the symmetric functions g and h are similar.
In fact, several important properties of g and h have been well studied in [I13]. The cor-
responding properties of the spectral operators Ilx and IIx4 can be obtained by applying
the results for the general spectral operator which we obtained before. Therefore, from
now on, we mainly focus on the spectral operator Ilx, and the corresponding properties
of Iy can be obtained similarly. Since epil| - [[x) € R x R™ is a polyhedral convex
set, we know that the corresponding metric projection operator g is a piecewise linear
function (for a short proof, see [87, Chapter 2] or [93, Chapter 5]). By [113, Propo-
sition 4.1], we know that for any given (t,0) € R x R™, the unique optimal solution
(t,7) :=g(t,0) € R x R™ of can be easily obtained by applying [I13, Algorithm
1] and the computational cost is O(k(m — k + 1)). Moreover, by using [I13, Lemma 4.2

& 4.1], we have the following simple fact.

Lemma 3.15. Let (t,X) ¢ intK be given. Denote 0 = o(X). Then, the unique optimal
solution (t,7) = g(t,o) € R x R™ of (3.144)) satisfies the following conditions.

(i) If Gy, > 0, then there exist § > 0 and u € R such that

g=0—0u, (3.147)
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withu; =1,i=1,..., kg, u; =0, 1=k1+1,...,m,
Ug = €q, u5:ué, Zuizk—ko and uy =0,
i€
where 0 < kg < k—1 and k < k1 < m are two integers such that
012 ...20k >0kgtl =-.. =0 =...=0f) >0fy41=>-..>20,, >0
and

a={1,...,ko}, B=A{ko,...,k1} and y={k1+1,...,m}.

(it) If 5, = 0, then there exist 0 > 0 and u € R such that
oc=0—0u,

with
Uy = €, u5:ué and Zul <k-—ko,
ief
where 0 < kg < k — 1 is the integer such that

Il
Sl
o

Il

I
Sl
3

Il
o

012 20y > Okgtl = - -

and

a={1,...,ko} and B={ko,...,m}.

(3.148)

(3.149)

(3.150)

(3.151)

(3.152)

(3.153)

(3.154)

Other properties, including the close form solution, the directional differentiability,

and the F-differentiability, of the symmetric function g have also been studied in [IT3].

Therefore, the corresponding properties of the metric projection operator Il follow from

the results obtained in previous sections. Next, we list some of them as follows.

Let (t,X) € R x R™*™ be given. Consider the singular value decomposition of X,

ie.,

X=U[2(X) 0V,

(3.155)



3.8 An example: the metric projector over the Ky Fan k-norm cone

125

where (U,V) € O™"(X). Let a, b, ¢c and a;, [ = 1,...,7r be the index sets defined
by and for X. Since g is globally Lipschitz continuous with modulus 1,
directionally differentiable ([II3, Theorem 5.1]), we know from Theorem that the
metric projection operator Il is directionally differentiable everywhere. Next, we will
provide the directional derivative formula ITj-((¢, X); (-,-)) for the metric projector IIx
at any given point (¢, X) € R x R™*". Without lose of generality, we assume that
(t, X) ¢ int I U int K°, since otherwise IIx is continuously differentiable and the deriva-
tive ITj- (¢, X) is either the identity mapping or the zero mapping. For notational conve-
nience, denote (£,7) = g(t,0). For the given (¢, X), let £, & € S™ and F € Rmx(n—m)

be the matrices defined by (3.13)-(3.15), i.e.,

Ei—Ej

ifo’i;éaj,
(E1)iji=1q 7079 i,je{l,...,m}, (3.156)

0 otherwise,,

M ifO’i'f‘O’j?éO,
(Es)i =1 i i,je{l,...,m}, (3.157)

0 otherwise,,
and
i ity #£0,

(Fij =4 ie{l,....m}, je{l,...,n—m}. (3.158)

0  otherwise,

In order to introduce the directional derivative formula of the metric projector Ilx, we

consider the following two cases.

Case 1. (t,X) ¢ int CUint K° and &, > 0. Then, by the part (i) of Lemma

we know that there exist two integers ro,71 € {1,...,7} such that
0 1 r+1
OZZU% B = U a and vy = U a,
=1 I=ro+1 I=r1+1

where the index sets «, 8 and v are defined by (3.150f). Define

fri={iepflu =1}, Po:={ie€pf|0<u; <1} and fs:={ief|u; =0}.
(3.159)
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Then, by (3.147)) and (3.148)), we know from (3.156) that

(E)aay = Bajay, 1# VU and LI e {1,...,ro}or I e {r1 +1,...,7+ 1},
(El)alﬁl = Ealﬁl &Ild (gl)ﬁlal = Eﬂlllla l = 17 [ 7T0 )
(51)11153 = Eqp, and (51)53% =FEgyq, l=m+1,...;7+1,

(&1)ps =0.

For the given (¢, X) € R x ™™ define a linear operator T : R™*"™ — R™*™ by for any
Z =21 Zy] e R,

(E1)7708(Z55) + (E2)77 0 T(Z55)  (E1)5~ 0 S(Z74) + (E2)54 0 T(Z5~) Frec o Zxe

(51)77 °© S(ZAW) + (52)77 °© T(ZAW) Zoy Zye
(3.160)

Define the finite dimensional real Euclidean space W by
Wi=RxSlalx . xSlanl,

For any (¢, W) € W, let k(W) := (A(W1),...,A\(W,,)) € R¥1. Let C; € W be the
closed subset defined as following, if (¢, X) € bd K,

= {(4, W) e W[ S (W) + s (R5(W)) < c} , (3.161a)
=1

if (£, X) ¢ bd K,

Cr = {(c, W) € W tr(W)) + sig) (ks (W) < ¢, Y tr(W)) + (ug, k(W) = 4} ,
= = (3.161D)

where s(j,_p,) RIBl — R is the positively homogeneous convex function defined by

k—k
S(k—ko)(2) = Z zii, ze R (3.162)

o

—_

1=
By (3.147)), we know that for any 7,5 € 8, u; = u; if 0; = 0. Therefore, we know that

the closed subset Cp is convex. Also, it is easy to see that C; is a cone.
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From Proposition since the indicator function ¢, (-) is unitarily invariant, we
know that the metric projection operator Ilg, : W — W over the closed convex set C;

is the spectral operator with respect to the symmetric function ¢ = (¢g, @1,...,dr,) :

R x Rl ox Rlonl 5 R x Rlal s x Rland e,
I, (G W) = (20(¢, W), @1(¢, W), ..., 2, (¢, W) (3.163)
with @0(C, W) = ¢o(C, k(W) € R and
®,(¢C, W) = Rydiag (¢(¢, k(W)))RF e Sl 1=1,...,r,

where for each [ € {1,...,r}, R; € Olal(W)), and for any (¢, k) € RxRlo1l x . x Rlor |,

¢((, k) is the unique optimal solution of the following convex problem if (¢, X) € bd K,

min (0~ +|ld — &|?)

(3.164a)
st. (€a,da) + S(k—io)(dg) <,
if (£, X) ¢ bd K,
min (09— ¢ + ld — )
st (Car o) + Se_io)(d8) <71, (3.164b)

(€a,da) + (ug,dg) =1.
Define the first divided directional difference gl!((¢, X); (7, H)) € RxR"™*" of g at (¢, X)

along the direction (7, H) € R x R"™*" by

g™ (1. X): (r. 1)) = (g1 (1. 0: (7, 1)), 654, Xz (7. 1) (3.165)
with
g (. X); (r, H)) = ®o(r, D(H)) € R
and
[ ®,(r,D(H)) 0 0 00|
e xy ey —Ti+| 0 000 g,
0 0 @, (r,DH) 0 0
I 0 0 0 0 0 |
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where the linear mapping T is defined by (3.160)), H = [UTHV1 UTHVQ], and (1, D(H)) €

W with D(H) = (s@alal), s S(Hayyar, )).

Case 2. (t,X) ¢ int K Uint £° and 7 = 0. Then, by the part (ii) of Lemma

we know that there exists an integer ro € {1,...,r} such that
0 r+1
o= U a, fB= U a; (where a,41 =b),
=1 l=ro+1

where the index sets a and ( are given by (3.154]). Define

fr={iepBlu=1}, po:={iecPB|0<u; <1} and Pz:={ie f|u;=0}.
(3.166)
Then, by (3.147)), we know that

r
l=ro+1

Since 7; = 0 for any i € 3, we know from (3.151) and (3.152)) that the corresponding

matrices defined by (3.156))-(3.158)) satisfy

(gl)azal/ = Ealal/ Vi# I'e {1,...,70},
(E1)ps = (E2)pp =0 and Fp.=0.

For the given (¢, X) € R x ™™ define a linear operator T : ™™ — R™*™ by for any
Z =21 Zy] € R,

(gl)oca o S(Zaa) + (52)aa o T(Zaa) (gl)aﬁ o S(Zaﬁ) + (52)(16 o T(Zaﬁ) ]:ac o Zac

(&1)pa © S(Zga) + (£2)pa © T(Zpa) 0 0
(3.167)

T(7) =

Define the finite dimensional real Euclidean space W by
W= R x Slal s x Slarl s glbbx(bln=m)

For any ((,W) e W, let k(W) := (A(W1),...,A\(W,.),0(W,11)) € R™. Let C2 C W be
the closed subset defined as following if (¢, X) € bd K,

¢ = {(c,w> EW| Y (W) + [lks(W) i) < <} , (3.1682)
=1
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if (¢, X) ¢ bd K,

Co = {(47 W)eWw| Ztr(VVz) +[esW) [l (k=ko) < €, Ztr(VVl) + (ug, kp(W)) = C} ,
= = (3.168b)

where || - ||(r—go) : RIP — R is the positive homogeneous convex function defined by

k—ko
2l ooy = D l2lf, 2 e R

i=1
Again, by (3.151)), we know that for any 4, j € 8, u; = u; if 0; = 0. Therefore, we know
that the closed subset Co defined by (3.168)) is convex. Also, it is easy to see that Co is a
cone.

Similarly, since the indicator function d¢,(-) is unitarily invariant, we know from

Proposition that the metric projection operator Ilg, : W — W over the closed
convex set Cy is the spectral operator with respect to the symmetric function ¢ :=

(D0, D1y .y Py Prir) = R X Rl Rlarl 5 RIFE 5 0 5 Rlarl 5w Rlorl 5 BRIV e
e, (¢, W) = (®o((, W), @1(¢, W), ..., 8, (¢, W), @111 (¢, W) (3.169)

with @(¢, W) = ¢o(¢, k(W)) € R and
@l(g> W) = Rldlag (¢Z(C7 I{,(W)))REF € Slal‘> l=1,...,r,
®,41(C, W) = E[diag (¢,41(C, s(W))) 0]FT € Ri<(bhtn=m),
where R; € Olwl(Wy), 1 = 1,...,r, (E,F) € ObLbl+n=m(W/,_ 1) and for any ((, k) €
R x Rlel+I8l ¢(¢, k) is the unique optimal solution of the following convex problem if
(t,X) e bd,
1
min o ((n—¢)* + ||ld - |*)
2 (3.170a)
s.b. (earda) + lldsl k—ko) <7,
if (t,X) ¢ bd K,
min

S (=0 + 11— sl

st (€a,da) + HdﬁH(k—kO) <n, (3.170Db)

(ea,da) + <u57dﬁ> =n.
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Similarly, define the first divided directional difference g™ ((t, X); (7, H)) € R x R™*™ of

g at (¢, X) along the direction (7, H) € & x R™*" by

g (1. X): (. 1)) 2= (g1 0: (7 1)), 03 (1. ) (7. 1)) (3.171)

with

gl ((t,X); (r,H)) = @o(r, D(H)) € R

and

®,(r,D(H)) 0 0 0
. 0 0 0
= T(H)+ _ € R,
0 0 @, (r,D(H)) 0
I 0 0 0 &1 (7, D(H)) |

where the linear mapping T is defined by (3.167), (r, D(H)) € W with

D(H) = (S(Husar)s- -+ S(Haya,), i Hic])
and il = [U" HV, U HV4).
Consequently, from Theorem [3.4] we have the following results on the directional

differentiability of IIj.

Proposition 3.16. Let (t,X) ¢ int X Uint K° be given. Suppose X has the singular
value decomposition . Denote (t,X) =Tl (t,X). The metric projection operator
Ik is directionally differentiable at (t,X) and the directional derivative at (t,X) along

the direction (1, H) € R x R™*" is given by
= =T
MW ((t X); (r, H)) = (g1 (8 X): (7, 1)), Ugh (8, X): (7, )V )

where the first divided directional difference g ((t, X); (7, H)) € R x R™*™ is defined by
if ox(X) > 0, and defined by (3.171) if o (X) = 0.
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By [113], Theorem 5.2], the following characterization of the F(réchet)-differentiability
of Ik follows from Theorem directly.

Proposition 3.17. Let (t,X) € R x R™*" be given. Denote (t,X) = I (t, X). The
metric projection operator i is Fréchet differentiable if and only if (t, X) satisfies one

of the following conditions:

(i) | Xy <t;

(1) | X |k > t, ox(X) >0, k1 > k and By = 0, B3 = 0, where the index sets B1 and (3
are defined in ;

(’i’i’i) HXH(k) >, O'k(Y) >0, k1 =k;

() [| X[ > t, ox(X) =0, Zﬁ_lko Uko+i < k — ko and B1 = 0, where the index set [31
in defined in )

Note that (i) of Proposition is equivalent with (¢, X) € int K, and (iv) of Propo-
sition includes the case that (¢, X) € int £°. Moreover, the derivative formula of
ITxc can be obtained from Theorem immediately. For the sake of completeness, we

provide the formula as follows.

If ||X||(k) < t, then
Mo (t, X)(r, H) = (r, H), (7,H) € R x R
If || X || () > t, ox(X) > 0, k1 > k and 81 = 0, B3 = 0, then for any (7, H) € Rx R™*",

i (t, X)(r, H)

[ &,(r,D(H)) 0 0 0
— (®o(r, D(E)), T(T(H) + e 1)
0 0 @, (r,D(H)) 0
L 0 0 0 0 |

(3.172)
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where the linear mapping T is defined by (3.160), H = [UTHV1 UTHVQ], (1, D(ﬁ)) S

W with D(H) := (S(ﬁalal),...,S(fJ

arl arl

)), and ® : W — W is defined by (3.163

with respect to the symmetric function ¢ : Rx Rl9tlx .. xRlorl - RxRlarlx . xglar
ie., for any (¢, k) € R x RleHI8l (¢, k) is the unique optimal solution of the following

convex problem

min 2 ((n—)* + 4 x?)
st (eq,da) + (k—ko)w =, (3.173)

di:dj:w, i,] €0.

If | X ||y > t, ox(X) >0, ky = k, then for any (7, H) € R x R™*",

i (t, X)(r, H)

@1(T,D(H)) 0 0 0

— (®o(r, DU, T(T(H) + e 1)
0 0 @&, (r,D(H)) 0
L 0 0 0 0 |

(3.174)

where the linear mapping T is defined by (3.160)), H = [UTHV1 UTHVQ], (1, D(ﬁ)) €
)), and ® : W — W is defined by (3.163

CLTI arl

W with D(H) := (S(ﬁalal),...,S(ﬁ

with respect to the symmetric function ¢ : Rx Rlol s . xRlonl 5 RxRlarl s« xRlan
i.e., for any ((,k) € R X Rlol+18], ¢((, k) is the unique optimal solution of the following

convex problem

min 1 —()? d— kl|?
(0= + ld — &IP) -

st. (ea,da) + (eg,dg) =1.

If HXH(k) > t, op(X) = 0, Z:r;_lko Uko+i < k — ko and 1 = 0, then for any (7,H) €



3.8 An example: the metric projector over the Ky Fan k-norm cone

133

R x gmxn

(¢, X) (7, H)

<I>1(T,D(H)) 0 0 0
— (@o(r, D(H)),T(T(H) + ! ° ! T,
0 0 & (r,D(H)) 0
I 0 0 0 'I’r+1(T7D(fI)) ]

where the linear mapping T is defined by (3.167)), (7, D(I;T)) € W with

D(H) := (S(ﬁm),...,S(HW), [Hyp ﬁbc]) ,

and H = [UTHV1 UTHVQ], and ® : W — W is defined by (3.169) with respect to the
symmetric function ¢ : ¥ x K191l x . x Rlorl x RIOI 5 R x Rlorl s x Rlorl x R e, for

any (¢, k) € R x RI*HP $(¢, k) is the unique optimal solution of the following convex

problem
.1
min o ((n = ¢)* +[|d — x])
st. (eq,do) =1, (3.177)
dg =0.

Since the symmetric function g defined by is piecewise linear, it is well-
known that g is strongly semismooth everywhere (see, e.g., [33] Proposition 7.4.7]).
Therefore, we know from Theorem [3.12]that the metric projection operator Il is strongly
semismooth everywhere.

We end this section by considering the characterizations of B-subdifferenial 0gllx and
Clarke’s generalized Jacobian Ollx of the metric projector Ilx. Some useful observations
will also be presented. Let (¢, X) € R x R™*™ be given. Since the symmetric function
g is the metric projection operator over the polyhedral convex set epi || - [|(z) € R x R™,

we know that there exists an open neighborhood N € # x 2™ of zero such that

d(r,h) =g((t,o) + (1,h)) —g(t,0) —g'((t,0); (r,h)) =0 V(r,h) e N.
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Therefore, we know from Theorem that
8BH/C(7§, X) = 83\1/(0, 0) ,

where W(-,-) := II}-((t, X); (,-)) the directional derivative of IIx at (¢, X). Meanwhile,

by Proposition we obtain the following characterizations of dpllx and Ollk.

Proposition 3.18. Let (t,X) ¢ int X Uint K° be given. Suppose X has the singular
value decomposition . Denote (t,X) = Tk (t, X).

(i) If op(X) > 0, then V € 9pllx(t, X) (respectively, Ollx(t, X)) if and only if there
erists K = (Ko, K1, ..., K, ) € 0pll¢,(0,0) (respectively, 0ll¢, (0,0)) such that

V(T’H) = (%(T’H)v‘/l(TvH)) )

where H = UTHV, Vo(r,H) = K0(7'7D(f~f)),

K.(r,D(H)) 0 0 0 0

e 0 0 00| _r

Vi(r,H) =UT(H)V' +U N v,
0 0 K, (r,D(H)) 0 0
I 0 0 0 00

(3.178)

with D(H) = (S(I:falal), . -,S(ﬁama”)), and the linear mapping T is defined by

3.160)).

(ii) If op(X) = 0, then V € Ol (t, X) (respectively, Ollx(t, X)) if and only if there
exists K = (Ko, K1,...,K,, K,11) € 0pllc,(0,0) (respectively, 0ll¢,(0,0)) such
that

V(Ta H) = (%(T’H)v‘/l(Ta H)) )
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where H =T HV, Vi(r, H) = Ko(r, D(H)),

[ K (r,D(H)) 0 0 0 ]
Vi(r,H) =UTH)V' +T 0 0 B 0 v,
0 0 K,(r,D(H)) 0
0 0 0 K, (r,D(H))
) (3.179)

with D(H) = (S(ﬁalal),...,S(Hamr), [Hy I;'bc]), and the linear mapping T is

defined by .

The following observation is important to the sensitivity analysis on the linear MCP

involving the Ky Fan k-norm in Section

Lemma 3.19. Let (t,X) € R x R™*" be given. Denote (t,X) = I (t, X). Suppose that

V = (W, Vo) € 0llk(t, X). Assume that (AC, AT') € RxR™*™ satisfies V (A, AT') = 0.

(i) If op(X) > 0, then

~ANCly 0 00
Al = U 0 Afﬁg 0 0
0 0 0 0

where Afgﬁ 18 symmetric and
tr (ATgg) + (k — ko) AC =0,
~ 7T J—
where AI' =U" AT'V.

(ii) If ox(X) = 0, then

~Ally 0 0
AT =T

0 ATgs Al

where AT = UTAFV.

v, (3.180)
(3.181)
v, (3.182)
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Proof. Without loss of generality, assume that (¢, X) ¢ int K U int K°, since otherwise

the results hold trivially.

Case 1. 0,(X) > 0. Since for any (g2)i(t,0(X)) > (g2);(t,0(X)) > (g2)s(t,0(X))

for any i € o, j € 5, s € v and (g2);(t,0(X)) > 0 for any i € o U 3, we know from

(3.178) that

ATlg, 0 0 ATarargss O 0
Afaa - 0 .'. O ) Afﬁﬂ - 0 .'. O )
0 0 ATaya 0 0 Alaa,

ATga, = S(ATgp,) € Sl 1=1,... 7 and
AlTpe O 00
~ —T
Al'=U 0 ATgg 0 0 |V .

0 0 0 0

Therefore, we know that Afgg is symmetric.

For the given (¢, X), we first assume that k < kq, i.e., 83 # 0. Let W be the Euclid
space defined by
W =38lul x . x Slonl,

Since V (A, AT') = 0, we know from Proposition|3.18|that there exists K = (Ko, K1,...,K,,) €
e, (0,0) such that Ko(A¢, D(AT)) = 0 and

K/(AC,D(AT) =0, 1=1,...,r,

where Il¢, : W — W is the metric projection operator over the matrix cone C; C W

(defined in (3.161)), and D(AL) = (Alg,a,, - - -, Afa”arl) € W. Denote
Q:={(W1,...,W,,) e W|for each | € {1,...,71}, the eigenvalues of W, are distinct} .

Let D, € W be the set of points at which Il¢, is differentiable. Since the set W\ Q

measure zero (in sense of Lebesgue), we know from [109, Theorem 4] that

dll¢, (0,0) = convY,
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where T := {(n VVI'%IE(O O)chl(n, W)l (n, W)€ Dn,, N Q}

Next, we consider the elements of Y. Suppose that © € T. Then there exists a

sequence {(n@, W)} in Drie, N §2 such that
O(A¢, D(AT)) = lim T, (19, W9)(A¢, D(AT)).
q—o0

By (3.163), we know that Il¢, is the spectral operator with respect to the symmetric
function ¢ defined by (3.164). We know from Theorem that for each ¢, Ilg, is
differentiable at ({9, W) if and only if ¢ is differentiable at (7@, X(9)), where

AD = (AWD), . AWD)) € Rl sl

Correspondingly, for each ¢, let Rl(q) € C’)'al‘(VVl(Q)), Il =1,...,71. Moreover, we know

from [I13, Theorem 5.1] that for any (n, A) sufficiently close to (0, 0),

¢(777)‘) = ¢(t+7770-+>‘) —’l,[)(t,O’),

where 0 = 0(X)qaup and ¥ (t,0) = (g1(t,0(X)), (g2(t,0(X)))aus). Therefore, we know
that for ¢ sufficiently large, ¢ is differentiable at (@), A(@) if and only if 4 is differentiable

at (t + 19, o 4+ A9) and
&' (N ND) = ' (t + 9D o0 + A D)
For each ¢, denote
D@ .= ((R§q>)TAfm1R§q), . (RO)YTAT R<q>)

QprqQrq *hry

and

d9 = (Eﬂlq),...,Jg)) e Rlal x . x Rlanl

where for each | € {1,...,7m}, ci}‘” e Rlul is the vector whose elements are diagonal

elements of (Rl(q))TAfIalal Rl(q). For each ¢, denote

(P9, hD) .= ¢/ (D, A D) (A, J(q))
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Since for (n@, A(9) sufficiently close to (0,0), ki € f1 and k| € p3 (i.e., a C o/, B C B
and k < k), by considering the KKT condition of the convex problem (3.173)), we know

that there exists 6(2 > 0 such that

P9 = AC+09, (3.183)
hZ(fI) — &gq) _ 9((1)’ i=1,...,k), (3.184)
hgq) = h§‘q)7 Za] c 5/7
K Ky
S or? = N dY (k- k6@, (3.185)
i=ki+1 i=kgy+1

Therefore, we know from (3.184)) that

Pi(n@, A@) — %(77('1)7 (@)
A(Q) o )‘(Q)

)

=1 Vijea. (3.186)

For each ¢, denote

(AW, A@) .= (AP AW AW =11, (3@, WD) (A¢, D(AT)).

By (3.183)), (3.184), (3.186]) and (3.185]), we know from the derivative formula of spectral

operator (3.50]) that for each ¢,

AW = AC+609,

Al(q) = Afalal - 9<Q)I|al|7 l= 1’ -5 T0,

T1
Z tr (Al(q)) = ftr (AFﬁg) — (k — ko)e(q) .
l=ro+1

Finally, since K (A¢, D(AT)) = 0, by taking limits and convex combinations, we know

that there exists 6 > 0 such that
0 = AC+0
0 = Afalal_glml\? lzl,...,’l”o,

0 = tr(Algg) — (k —ko)f.
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Therefore, we know that (3.180) and (3.181)) hold.

For the case that k = ki, then we know from (iii) of Proposition that Il is
differentiable. Also, since the singular value function o () is globally Lipschitz continuous,
we know that when {(¢(9), X9)} sufficiently close to (¢, X), we have k = k}. Therefore, the

conclusion ([3.180]) and (3.181)) can be obtained easily by considering the KKT condition
of the convex problem ((3.175]).

Case 2. 04(X) = 0. Since for any 0;(X) > 0 for any i € o, we know from (3.179))

that
Alga, 0 0
Afaa = 0 0 )
0 0 Alayar,

Afalal - S(Afalal) 6 S'al‘, l — 1, “ e ,7"0 and

Alpe O 0 |_g
Al =T N v
0 Argg AFBC

Let W be the Euclid space defined by

W =Slalxx Slarl i glbbx(bln=m)
Since V (A, AT") = 0, we know from Propositionthat there exists K = (Ko, K1,...,K,11) €
e, (0,0) such that Ko(A¢, D(AT)) = 0 and

KA D(AT) =0, 1=1,...,r+1,

where Il¢, : W — W is the metric projection operator over the matrix cone Co C W
(defined in (3.168)), and D(AT) = (S(ATajar),.--,S(ATa,q,), [ATyw ALy]) € W.

Denote

Q:={W e W|foreach | € {1,...,r + 1}, the eigenvalues (singular values) of W, are distinct} .

Let Dr,, © W be the set of points at which Il¢, is differentiable. Since the set W\ Q

measure zero (in sense of Lebesgue), we know from [109, Theorem 4] that

0ll¢,(0,0) = convY,
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— 1 /
where T := {(n,W};IE(O,O)HCQ(n’ W)l (n, W) € Dn,, N Q}
Consider the elements of T. Suppose that © € T. Then there exists a sequence

{(n9, W@)} in Drie, N such that

O(A¢, D(AT)) = lim Ty, (n'?, WD) (A, D(AT)).

q—00
By , we know that Il¢, is the spectral operator with respect to the symmetric
function ¢ defined by (3.170). We know from Theorem that for each ¢, Il¢, is
differentiable at (7@, W(9)) if and only if ¢ is differentiable at ({9, k(@) where

K@ = <>\(W1(q)), CAW@), a(W,Ei)l)) e R,
Correspondingly, for each g, let
R? collw @), 1=1,....r and (EW, F@)e oPhbltr—my (D),
Moreover, we know from [I13, Theorem 5.1] that for any (n, k) sufficiently close to (0, 0),

¢(777'€) - ¢(t+7770+”’) —’(ﬁ(t,U),

where 0 = o(X) and ¥ (t,0) = 0(X). Therefore, we know that for ¢ sufficiently large, ¢

is differentiable at (7(?, (@) if and only if 4 is differentiable at (¢t + 79, o + k(9) and
¢ (N9, kD) = ' (t + 9D 0 + kD).
For each ¢, denote
DD — (R Taya B, (R Tay0, RO, ET [Ty Tyl F)
and

40 = (d9....d9.d0,) e Rl wonl

r

where for each [ € {1,...,7r}, cil(Q) e Rl is the vector whose elements are diagonal ele-
ments of (Rl(q))TAfI aay Rl(q) , and cigﬁl is the vector whose elements are diagonal elements

of ET[ﬁbb ﬁbC]F. For each ¢, denote

@ p@y . 4 (n@ 2@ 7(a)
(P, h'Y) = ¢ (n\V, N (AL, d'P)
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Since for (@, A@) sufficiently close to (0,0), ky € 81 (i.e., @ C o), by considering the
KKT conditions of the convex problems (3.173)), (3.175)) and (3.177)), we know that there
exists 0@ > 0 such that

P = AC+609, (3.187)

R — q9 _g@ i=1,... k. (3.188)

Therefore, we know from (3.188)) that
(9, kD) — 1,5],(77(11)7 k(D)

=1 Vi#j€ca. (3.189)
For each ¢, denote

(A, AD) = (AL, A, AR =TT, (59, WD) (A, D(AT)).

By (3.187]), (3.188)) and (3.189]), we know from the derivative formula of spectral operator

that for each g¢,
AW = AC+09,
Al(q) = Afalal _Q(Q)I‘a”’ l= 1""’T0'

Finally, since K (A¢, D(AT)) = 0, by taking limits and convex combinations, we know

that there exists 6 > 0 such that
0 = AC+6
0 = Alga — 004, [=1,...,70.
Therefore, we know that holds. O
3.8.1 The metric projectors over the epigraphs of the spectral norm
and nuclear norm

As we mentioned before, the closed form solutions of the metric projection operators

over the epigraphs of the spectral norm and nuclear norm are provided in [30]. On the
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other hand, for the matrix space R7*" if k = 1 then the Ky Fan k-norm is the spectral
norm of matrices, and if k = m then the Ky Fan k-norm is just the nuclear norm of
matrices. Therefore, by considering these two special cases, we list the corresponding
results on the metric projection operators over the epigraphs of the spectral norm and
nuclear norm. In this subsection, denote the epigraph cone of spectral norm by K, i.e.,
K:={(tX)eRxR™"|||X|2 <t}. Since the dual norm of the spectral norm is the
nuclear norm || - ||, we know from Proposition and Proposition that the polar of
K = epi| - ||2 is K° = —epi | - ||s. Moreover, by Moreau decomposition (Theorem [1.4)), we

have the following simple obversion
i« (8, X) = (¢, X) + U (—t,—X) V(t,X) e Rx ™", (3.190)

where * = epi || - ||« is the epigraph cone of the nuclear norm. Therefore, we will mainly
focus on the metric projector over . The related properties of the metric projector over

the epigraph of the nuclear norm can be readily derived by using (3.190)).

For any positive constant € > 0, denote the closed convex cone D5, by
Di = {(t,x) ERXR"|e "> x;, i=1,...,n}.

For any (t,z) € & x R, Ilps (¢, r) is the unique optimal solution to the following simple

quadratic convex optimization problem

o1
min 2 ((r =0+ lly — al?)
(3.191)
st. e lr>y, i=1,...,n.

Note that the problem (3.191) can be solved at a cost of O(n) operations (see [30] for
details). For any positive constant ¢ > 0, define the matrix cone M in S" as the

epigraph of the convex function e\ (), i.e.,
ME = {(t,X) € RxS"|e 1t >N\ (X)}.

For M3, we have the following result on the metric projection operator ITp4e .
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Proposition 3.20. Let X have the eigenvalue decomposition
X = Pdiag A\(X))P" ,
where P € O™. Then,
s (1, X) = (£, Pdiag(y)P') V¥ (t,X) € R x S”,

where (t,7) = Ips (£, \(X)) € R x R".

Define
K= {(t, X) € R x R™" el > || X[|o}

for e > 0. We drop € if it is 1, i.e., KC, the epigraph of the operator norm || - ||5. Consider
the metric projector over K¢, i.e., the unique optimal solution to the following convex

optimization problem

—

min f((r —t)2 |y — X||2)

\]

st. e lr>|Y|-2.

Proposition 3.21. For any (t,X) € R x R"™*", we have
e (t, X) = (1. [diag(y) 0]V"),

with

(t,7) = He: (t,0(X)) € R x R™,

where ez (t,0(X)) is the unique optimal solution to the following convex optimization

problem

.1
min (7~ 12 + ly - (X))
(3.192)
st. el > ||ylloo -

Note that the simple quadric convex problem (3.192)) can be solved in O(m) opera-
tions. Moreover, we have the following proposition about the directional differentiability

and Fréchet-differentiability of Ilce (¢, ).
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Proposition 3.22. Assume that € > 0 and (t,x) € R x R are given.

(i) The continuous mapping e (-,-) is piecewise linear and for any (n,h) € R x R"

sufficiently close to (0,0),
HCE(t +1,7+ h) - Hcs(th) = HEE(U, h) )

where C= := Tp(,z) N ((t,x) — (£,2))F is the critical cone of C° at (t,z) and
Te=(t, T) is the tangent cone of C¢ at (t,T).
(ii)) The mapping ee(-,-) is differentiable at (t,x) if and only if t > el|z||s, or

ellr|lo >t > —e 2|1 and |$]£+1 < (sp+et)/(k+e?), ort<—ctz|.

For convenience, write 0g(X) = 400 and 0,41(X) = —oco. Let sp = 0 and s, =

Zle 0i(X), k=1,...,m. Let k be the smallest integer k € {0,1,...,m} such that

ops1(X) < (sp +et)/(k +€2) < op(X). (3.193)
Denote

0(t,0(X)) = (sg+et)/(k+&). (3.194)
Define three index sets a, 8 and 7 in {1,...,n} by
a:={i|oi(X) > 0°(t,0(X))}, B:={i|loi(X)=0(t,0(X))}
and
v = {i]ou(X) <0°(t,0(X))}.

Let 6 := v/1 + k. Define a linear operator p : & x R™*" — R as follows

5+ Te(SULHV ) i ¢ > [ X,
p(n, H) =
0 otherwise .

Denote

(90(t, (X)), 9(t,0(X)) ) 1= e, (t 0(X))
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Define Q; € R™*™, Qy € R™*™ and Q3 € R™*("=™) (depending on X) as follows, for

any 7,7 € {1,...,m},

if 0;(X) # 0;(X),

0 otherwise,

if 03(X) + 0;(X) £0),

0 otherwise
and for any i € {1,...,m} and j € {1,...,n—m}

gi(tv U(X))
(Q3)Z‘j = oi(X)
0 if 03(X) =0,

if 0;(X) #0,

The following result can be derived directly from Theorem Note that from Part
(i) in Proposition we have Il¢- is Hadamard directionally differentiable at (¢, 0(X)).

Proposition 3.23. The metric projector over the matrixz cone KC, Ui (+,-) is directionally
differentiable at (t,X). For any given direction (n,H) € & x R™*", let A := UTHVL
B = UTHVQ. Then the directional derivative Ij((t, X); (n,H)) can be computed as

follows

(7’) ift > HXH2? then H;C((t7X)§ (U:H)) = ("7, H);

(i) if | Xl2 = ¢ > =[[X|l«, then I ((¢, X); (n, H)) = (77, H) with

7 o= 6 'i(n H),

7o 0 (Q1)ay 0 S(A)ay
T =0 0 W H)  S(A)s vy
()ya 0 S(A)ya  S(A)yps S(A)yy

| (9o T(A)aa ()apoT(A)ap | —7 | (Q23)ge © Baer |
T (22) (A)aa  (22)ab 0 T(A)ap V?—FU (23) V;F,
(22)pq 0 T(A)pg T(A)p, By
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where <¢8(n, H), \Ifé(n,H)> e R x SBl is given by
5 ) 7L v
(¥hn H), W0 (. 1)) = T (pln, H), SUHV 5).
In particular, if t = || X||2 > 0, we have that k =0, =1, a =0, p(n, H) =n and

| W, H) +T(A)ss Agy

n=4i(nH), H=T Vi +UBV,;
A%B Aw
(iii) if t = || X[l then Wy ((t, X); (n, H)) = (7, H) with
no= 0 (n H),
_ _| 71, 0 o 0 _
H = 07| ™ ) ViLT ) Vs,
0 ‘111(777H) ql?(naH)

where ¥3(n, H) € R, Wi(n, H) € RIXIBL and W(n, H) € RIP*C=m) gre given by

(wg(n,H)y [‘1"15(?771{) ‘Ifg(n,H)])

= Mty o (p(n, H), [UgHVB UEBFHVQ] ) ‘
(i) if t < —||X||«, then
I ((t, X); (n, H)) = (0,0).
The following proposition can be derived directly from Theorem and Proposition
B.221

Proposition 3.24. Ilx(-,-) is 1-order B-differentiable everywhere in f& x R™*™.

By Theorem and Proposition we obtain the following property on the F-
differentiability of IIx.

Proposition 3.25. The metric projector Ui (-,-) is differentiable at (t, X) € § x R™*"

if and only if (t, X) satisfies one of the following three conditions:

(1) ¢ > [ Xll2;
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(i) [[ X2 >t > = || X[l but 074, (X) < 6(t,0(X));

(iii) t < —|| X ||x.

In this case, for any (n,H) € R x R™*", I}-(t,X)(n,H) = (7, H), where under
condition (i), (M, H) = (n, H); under condition (ii),

m=206"p(n H)
and
H - T 6= p(n, H)I|a| (Ql>cw © S<A)a'y V{
()ya 0 S(A)ya S(A)yy
i U (92>aa o T<A)aa (QQ)ab o T(A)ab V’f i U (93)ac’ o Bac’ V%"
| (Q2)pa 0 T'(A)pa T(A), By

with A := UTHvl, B := UTHV;F; and under condition (iii), (7, H) = (0,0).

By applying Theorem and noting that Il¢ (-, -) is globally Lipschitz continuous
and piecewise linear, we have the following proposition.
Proposition 3.26. Ilx(-,-) is strongly semismooth everywhere in & x R™*™.

Note that for any (n,h) € £ x R" sufficiently close to (0,0),

Hee(t +n,z + h) —Te=(t, 2) = Uz(n, h) .
From Theorem we have the following result.
Proposition 3.27. Let (t,X) € R x R™*" be given. We have
Ipllk(t, X) = 0p¥(0,0),

where (-, ) = Te((t, X); (-, ))-

By Proposition we obtain the characterizations of dgllx and Ollx, which are
similar with the results in Proposition Finally, from the proof of Lemma we

can see easily that the corresponding results also hold for the epigraph of the spectral

norm.



Chapter

Sensitivity analysis of MOPs

In this chapter, we discuss the sensitivity analysis of the matrix optimization problems
(MOPs), which is defined in or in Chapter Instead of considering the
general MOP problems, as a starting point, we mainly focus on the sensitivity analysis
of the MOP problems with some special structures. For example, the proper closed
convex function f : X — (—o0, 00| in is assumed to be a unitarily invariant matrix
norm (e.g., the Ky Fan k-norm) or a positively homogenous function (e.g., the sum of k
largest eigenvalues of the symmetric matrix). Also, we mainly focus on the simple linear
model as the MCP problems . Certainly, since simplifications , we may lose some
kind of generality, which means that some MOP problems are not covered by this work.
However, it is worth taking into consideration that the study on the basic models as
the linear MCP involving the Ky Fan k-norm cone can serve as a basic tools to study
the sensitivity analysis of the more complicated MOP problems. For example, by using
the variational properties of the known cones (the second order cone, the SDP cone,
and others), it becomes possible to study the sensitivity analysis of the MOP problems
involving the second order cone and the SDP cone constraints. Also, the variational
results obtained in this chapter on the Ky Fan k-norm cone can be extended to the

other matrix cones e.g., the epigraph cone of the sum of k largest eigenvalues of the
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symmetric matrix. Thus, the corresponding sensitivity results for such MOPs can be
obtained similarly by following the derivation of the simple basic model. We will discuss

such kind of extensions at the end of this chapter.

As we mentioned, in this chapter, we mainly consider the linear MCP problem in-
volving the Ky Fan k-norm cone ( in Section . As two special cases, the linear
MCP problems with the Ky Fan k-norm cone include the linear MCP problems which
involve the epigraphs of the spectral and nuclear norms. We begin this chapter with a
study of the geometrical properties of the Ky Fan k-norm epigraph cone K = epi || - || (),
including the characterizations of tangent cone and the (inner and outer) second order
tangent sets of IC, the explicit expression of the support function of the second order tan-
gent set, the C2-cone reducibility of K, the characterization of the critical cone of K. By
using these properties, we state the constraint nondegeneracy, the second order necessary
condition and the (strong) second order sufficient condition of the linear MCP problem
. Finally, for the linear MCP problem , we establish the equivalent results
among the strong regularity of the KKT point, the strong second order sufficient condi-
tion and constraint nondegeneracy, and the non-singularity of both the B-subdifferenitial

and Clarke’s generalized Jacobian of the nonsmooth system at a KKT point.

Finally, note that the Ky Fan k-norm includes the following two special matrix norms:
the spectral norm (k = 1) and the nuclear norm (k = m). Therefore, all the results
obtained in this chapter hold for the linear MCP problems involving the epigraphs of
the spectral norm and the nuclear norm, which are two special cases of the linear MCP

problem involving the Ky Fan k-norm.

4.1 Variational geometry of the Ky Fan k-norm cone

Consider the epigraph cone K € & x R™*" of the Ky Fan k-norm, i.e.,

K= {(t,X) €Rx R™" ||| X[y <t} .
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In this section, we study some important geometric properties of X, including the char-

acterizations of the tangent cone, second order tangent sets and the critical cone of .

4.1.1 The tangent cone and the second order tangent sets

In this subsection, we first study the tangent cone Tx(f, X) [86, Definition 6.1] of the

closed convex cone K at the given point (£, X) € K, i.e.,
Te(t, X) = {(r, H) € R x R™*"[3p,, |0, dist ((£, X) + pn(7, H),K) = 0(pn) } -

For the given (£, X) € K, consider the following three cases.

Case 1. (£,X) € int K, ie., | X <. It is clear that
T (t, X) = R x R,
Hence, the lineality space of T (, X), i.e., the largest linear subspace in Tx (%, X), is given
by lin (T (t, X)) = R x R™*",

Case 2. (t,X) = (0,0) € bd K. It is easy to see that
Tie(t, X) = Tc(0,0) = K.

Then, the lineality space lin (7x (%, X)) coincides with {(0,0)}.
Case 3. (t,X) € bdK \ {(0,0)}, ie., [X|lxy =t and £ > 0. Let 7 = o(X) and
Y = diag (7). Therefore, there exist two nonnegative integers 0 < ko < k < k; < m such

that if 75 > 0,

012 ... 20y > Oyl = .- =0k = ... =0p; > Okj41 > ...>0m > 0;

51Z...Zako>5k0+1:...:5k:...25m:0.

Denote a = {1,...,ko} and B = {ko +1,...,k1}. Let U € O™, V = [V1 V3] € O" be

such that

X=UE oV’ .
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Since || X||x) = Zle 7; = t, we know from [23] Theorem 2.4.9] that the tangent cone of

K at the point (£, X) can be written as
— k —
Tie(£,X) = {(T, H) e Rx R | Y ol(X; H) < T} .
i=1

Let aq,...,a, be the index sets defined by 1' for X. For notational convenience, let
0 < 7y < r be the nonnegative integer such that a = U;°,a;. Therefore, by Proposition

we know that if G > 0, then

& k—k
77C(t_7Y> — {(7_7 H) c §R % %mxn’ ZO‘CI"(UZIHVW) + ZO )\z (S(UgHVg)) S T}; (41)
=1 =1
if 7, = 0, then
T k—k
Tt ) = {(r ) € R | S (@ 1V, + S o ([U0HV, TLHV)) <7}
=1 =1

(4.2)

Hence, the lineality space lin (7x(f, X)) takes the following forms: if 55 > 0,

lin (T (F, X)) = {(T, H) € R x R | S(U5HV 5) =
(4.3)
if o, =0,

70
lin (Tie(£, X)) = {(T, HyeRx R | Y (UL HV,) =7, [UgHVB U§HV2] - 0} .

=1
(4.4)

For the polar of I, the tangent cone Txo((,T') at any given point (¢,I') € K° can be

characterized as

Tio (G, T) = {(7, H) € R x ™" [ (¢, T); (7, H)) = (7, H) } .

For the given ({,T) € K°, we know from Theorem (the Moreau decomposition) that

for any (1, H) € & x R™*™

IT; °((§7F); (7—7 H)) = (T7 H) - Hk((&,f), (Tv H)) )

(T—Ztr (U, HV, )Im} ;
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which implies
Tre(C,T) = {(r. H) € R x K™ [ ((C,T); (1, H)) =0 .

Thus, the characterization of the tangent cone Txo (¢, I') at (¢, T") follows from Proposition

immediately. Actually, we may consider the singular value decomposition of T, i.e.,

T =TT v,

where (U,V) € O™™T). Let {a;}/_, and b be the index sets defined by (2.26) with
respect to I'. Assume that (¢,T') € bd K°\ {(0,0)}. We know that IIx((,T') = 0. Denote
B =A{1,...,m}. Let 81, B2 and (33 be the index sets defined by

Bii={ie{l,....om}o;T)==C}, PBo={ic{l,....,m}|0<aiT) < —(}

and B3 := {i € {1,...,m}|0;(T) = 0}, respectively. Since (¢,T') € bdK°\ {(0,0)}, we
know that the sets 81, 82 and S35 form a partition of 5. For any (7, H) € R x R™*"

denote H = UTH V and

h = (A(ﬁarar), o AHaa) o ([Hyp ﬁbc])) e R™.

Consider the following two cases.
Case 1. ||T|l. = —k(, i.e,, 1" 04(T) = —k(. We have
B m
Tico (¢,T) = {(T,H) ERXR™" | h; < —7Vi€pP, Zhi < —k‘T} .
i=1

Then, the corresponding lineality space lin (77@ @ f)) takes the following form:

lin (T’CO (C’F)) = {(T’ H) € R x g ‘ Erﬁlﬁl = _71\51\7 [Erbb ﬁbc] =0, Ztr(ﬁalaz) = _kT} :

=1

Case 2. ||T. < —k(, ie., >, 04(T) < —k(. We have

Tio(C,T) ={(r,H) e Rx R™ " |h; < —T Vi€ B} .
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Hence, the corresponding lineality space lin (T;Co («, f)) takes the following form:
lin (7> (C,T)) = {(Tv H) € R x R"™" | Hp\ 5, = —71\61\} '

Note that since ({,T') € bd K°\ {(0,0)}, we always have 31 # (. Also, it is obvious that
when (,T) € int K°, Tio (¢, T) = R x R™*",

Next, we study the characterization of the inner and outer second order tangent sets
of K. Let 7',%’2((5, X),(7,H)) and TZ((t,X), (7, H)) be the inner and outer second order
tangent sets [§, Definition 3.28], respectively, to K at (£, X) € K along the direction
(7,H) € Te(t, X), ie.,

and

where “limsup” and “lim inf” are Painlevé-Kuratowski outer and inner limit for sets (cf.
[86, Definition 4.1]). For the convex set, we have the following result (8, Proposition

3.34, (3.62) & (3.63)] ).

Proposition 4.1. Let C be a convez set. Then, for any x € C, h € To(x), the following
inclusions hold:
/2 ;2
T&(x,h) + Ty @) () € TE (2, h) € Ty 2y (h)

TC’Q(SU’ h) + TTC(:B)(h) - TCZ(xv h) - TTc(ac) (h) )

where Ty, (z)(h) is the tangent cone of To(x) at h € To(x).

Let (£, X) € K be given. Again, consider the following three cases.

Case 1. (t,X) € int K, i.e., | X|| < . Since Ti(t, X) = R x R™*" we know that for

any (7__7 H) € T’C(ﬂ Y)a

775’2((5, X), (7, H)) = TE((t, X), (7, H)) = R x R™*" = T2, (4.5)
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Case 2. (£,X) = (0,0) € K. Since R(0,0) = Tc(0,0) = K, where Ry(0,0) is the
radial cone of IC at (0,0) (see e.g., [8 Definition 2.54]), we know that for any (7, H) €
T (t, X), (0,0) € 7',% ((¢£,X),(7,H)). Therefore, for any given (7, H) € Tx(t, X), we

have

7272((_7 Y)? (7_—7F)> = 7-IC2(<E7 Y)? (’7‘,?)) = TT,C(ﬂY) (fvﬁ) =7 (4.6)

Case 3. (£,X) € bdK \ {(0,0)}, i.e., [ X[ x) =t and £ > 0. Let (7, H) € Tx(t, X)

be given. If Z o/(X;H) < 7,ie., (t,H) € int Txc(t, X ), then it is easy to see that

TE((EX), (7, H)) = T((EX), (7, H)) = R x R™" = T2, (4.7)
If % | 0/(X; H) = 7, then K can re-written as
K= {(t.X) € R x R™" | 4(t, X) <0} ,

where ¢(t, X) := || X || —t is a closed convex function. Since int K # () and the con-
vex and continuous function ¢ is (parabolically) second order directionally differentiable

(Definition at (£, X), we know from [8, Proposition 3.30] that

with k
T? .= {(?7, W) eRx R ZO’;’(Y; H,W) < 77} : (4.8)

i=1
where for each i € {1,...,k}, o/(X;H,W) is the (parabolic) second order directional

derivative of o;(-) at X along H and W, which is characterized by Proposition m
Remark 4.1. It has been shown that for any given (t,X) € K and (7, H) € Tx(t, X),

TE((EX), (7, H)) = TA(E.X), (7, H)) = T>.

Therefore, we denote the convex set T2 the second order tangent set to K at (£,X) € K

along the direction (7, H) € Ti(t, X).
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In order to study the second order optimality conditions of the linear MCP problem
(1.48), we need to consider the support function 02 (s -) of the second order tangent set
T2 to K at (t,X) € K along (7, H) € Tr(t, X), i.e.,

F2(C,T) = sup {Cn + (T, W) | (n, W) € T?},  (¢,T) € R x R

Let (£, X) € K and (7, H) € Ti(t, X) be given. From Proposition it is easy to see that
if (¢,T) € R x R"™*™ does not belong the polar of TT’C(EX)(?,F), then 07, (¢, I") = +oc.
In fact, since 77 ;%) (7, H) is nonempty, we may assume that there exists (n°, W°) €
T @) (7, H) such that
(€, 1), (n°, W?)) >0
Since T2 # 0, fix any (7, ) € T?2. Therefore, since for any p > 0,
p(n°, W) + (i, W) € Ty, 55y (7, H) + T* C T2,

we obtain that

PG T), (0, W)+ ((GT), (7, W) < 6°((¢,T) | T%),

which implies that 67-((,I') =

%mXTL

On the other hand, since K is a closed convex cone in R x , we have

In particular, we have

+(£,X) € Ta(£,X) C T,

K

Therefore, we know that if (¢,I') € (Tr ;%) (7, H))°, then

(¢, ek, ((GD),(tX)) =0 and ((¢,T),(7,H))=0. (4.9)

Therefore, we know that for any (¢,I') € & x R™*", 67, ((,I') = +oo, if ((,I') does not
satisfy the condition (4.9)).
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For the point (¢,I) € R x R™*", which satisfies the condition (4.9), consider the
following cases.

Case 1. (t,X) € int K. From , we know that 67, (¢,I") = 0.

Case 2. (t,X) = (0,0). For any (7, H) € Tx(0,0) = K, we know from and
that (¢,T) € (Tie(7, H))° = (T?)°, which implies 072(¢,I') = 0 for any (¢,I') € RxR™*".

Case 3. (f,X) € bdK \ {(0,0)}. If (7, H) € int Txe(f, X), then by (4.7), we know
that 3,(¢,T) = 0. Next, suppose that (7, H) € bd Tx(f,X) and (¢,T) # (0,0). Let
(t,X) := (t,X) + (¢,T). Then, by considering the singular value decomposition of X,
we know from the condition that

(£,X) = Ic(t, X) and (C,T) = Mo (t, X)

with

-1

X V' oand T=T[XT) OV,

X =UX(X) 0]V

where (U,V) € O™"(X). Let a, b, c and a;, | = 1,...,r be the index sets defined by

(2.25) and (2.26) for X. Denote & = (X ). Consider the following two sub-cases.

Case 3.1. G > 0. Then, (t,X) # (0,0). There exist two integers 0 < ko < k — 1

and k < k1 < m such that
012 ...2 0k > Okgtl =+ =0k = ... =0k > 0Okj41 > ...>0m =>0.

Since (f,X) = Ix(t, X) and (¢,T) = (¢, X) — (£, X). By the part (i) of Lemma [3.15] we

know that there exist § > 0 (since (¢, X) ¢ int ) and v € R such that
(=-0 and T = Uldiag(6u) O]VT, (4.10)
where u; =1,¢i=1,.... ko, u; =0,i=k1 +1,...,m,

k1—ko
1 > Ukog+1 > Ukn+2 > ... 2 Uk, > 0 and Z Uky+i = k— ko . (4.11)
=1
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Denote a« = {1,...,ko}, B={ko+1,...;ki} and vy ={k1 +1,...,m} and ¥ = a U S.
Since ((¢,T), (7, H)) = 0, by Ky Fan’s inequality (Lemma [2.3)), we know that

0 = ¢(F+(0,H)=(T+({U TV,U HV) =(¢7+ (U5 V5, U HV5)
—  —07 + (0diag (u5), S(U5 H V)
k1—ko
< —97‘—1—92tr (UaHVa) 16 > wperiki (S(Ugﬁvg)) . (4.12)

=1 =1
Since (7, H) € bd Ti(t, X), we know from |D that

By substitution, we know from and ( - ) that

k—ko k1—ko
0 < 6 (- > /\i(S(UgﬁVB))Jr > ukOHAZ-(S(UgHVﬁ)))
=1 =1

k—ko k1—ko
= 0| D (ko —DN(STHVE)) + Y whorihi(S(TUHV p))
i=1 i=k—ko+1
o k—ko k1—ko
< ko (STSHVE) | Y (ki =)+ D g | =0,
i=1 i=k—ko+1
which implies the equality in (4.12)) holds and
k—ko o o
S OXN(STHVE) = Y tkyyidi( ST H V). (4.13)

Next, consider the eigenvalue decomposition of the symmetric matrix S (Ugﬁvg) De-
note 7 := ki — kg and k := k — k. Let X := )\(S(UEFV;)) € ®™. Then, we know that

there exist two integers 0 < Eo < k—1andk < El < m such that

)\1Z"'z)\EO>)\E0+1:"':)\E:"':)\E1>)\E1+12"'2)\ﬁl'

Consider the corresponding index sets a;, I = 1,...,7 defined by (2.16). Let 7y €

{1,...,7} be such that ke a5y+1- Then, by 1) we have

Zukoﬂ'xz‘:SUP{<ZU7)\>’0§?J§€: <67y> :E7 yeg%m} )
=1
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ie., (Ukgt1s.--,Uky) € R™ is the solution of the maximize problem. Therefore, we know

from [I13, Lemma 2.2] that
Upgrs =1, i=1,... ko, Ugsi=0, i=Fk +1,...m (4.14)

and

k1—ko
1> Up a1 > Uy Tot2 >, > U >0 and Z U oot = k—ky. (4.15)
=1

Since the equality in (4.12) holds, by Lemma [2.3] (Ky Fan’s inequality), we know that the
symmetric matrices diag (ug) and S (Ugﬁvg) admit a simultaneous ordered eigenvalue

decomposition, i.e., there exists R € O™ such that
3 : T 5771 T 5T T
diag(ug) = Rdiag(ug)R" and S(UzH V)= RASUzHVz))R" .

On the other hand, since (7, H) € bd Tx(f, X), we know from (4.8) that (n, W) € T2
if and only if Ele o (X; H,W) <n,ie.,

7

f:tr (STaWV,)) f:tr (2Ps, |[B)(B(X) — tln4n) ' BO) | Pay)
=1 =1

+ ZO: tr (Rglﬁ;f [B(W) —2B(H)(B(X) — akImM)TB(H)} ?gRal)
=1
o

+3 N (RI P, [B(W) —2B(H)(B(X) — EkIern)TB(F)} ER&W)
=1

QAFg+1

<n. (4.16)
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Therefore, for any (n, W) € T2, by (4.10)), we obtain that

(n+ (L, W)

= o+ <UTrV, UTWV>

= Cn+ {diag (us), ST5 WV5) )

70
=T 71 e Ay
= 0>t (ST WV,) + (Sas(D), KT ST WV 5)R)
=1

— AmW) - Clizoltr (2P, [BE)BE) - L) BHE)| P
+ (Zos(0), 2P BE)(B(X) ~ Tidinsn) BHE)Ps )

where

An, W)

= 0 (Z (ST WV =3 (2Ps, [BADB(X) = i Ln1n) B()| Paj))
j=1 j=1

v <265(r), R (s@ngg;) — 2P B(H)(B(X) — EkIern)TB(F)Fg) R> . 417)

Next, we shall show that

max {A(n, W) | (n,W) € T*} =0.
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In fact, by (4.14), Lemma (Ky Fan’s inequality) and (4.15)), we have

<zgﬁ(r), RT (S(Ungg) — 2P} B(H)(B(X) — EkIern)TB(F)Fg) R>

< iu« (Rgfg [B(W) —2B(H)(B(X) — akImM)TB(F)} FﬁRal)
=1
o .
103wy i A (Rg%ﬂﬁﬂ [B(W) —2B(H)(B(X) —EkImM)TB(F)] FﬁR%H)
=1
<

iu« (Rgfg [B(W) —2B(H)(B(X) — akzmM)TB(ﬁ)} FﬁRal)
=1

o
+63 N <Rg%j§ [B(W) —2B(H)(B(X) — akfmn)fzs(ﬁ)] PﬁRa%H) . (418)
i=1

Therefore, we know from (4.16)), (4.17) and (4.18)) that for any (n, W) € T2, A(n, W) < 0.

Also, it is easy to see that there exists (n*, W*) € T2 such A(n*, W*) = 0. Then, since

72(0,0) = 0, we know that for any ((,I") satisfying the condition (4.9)),
T0 7 L s L o
572 T) = —¢Y (2P, [BIH)(B(X) = ls) B(H)| Po,)
=1
+ (2as(r), 2P BH)(B(X) — G Lnn) BH)Pg )
Case 3.2. 5, = 0. There exists an integer 0 < kg < k — 1 such that

012 20y >Okgtl = ... =0k = ... =0 =

o

Denote o = {1,...,ko} and B = {ko + 1,...,m}. Since ({,X) = Ilx(¢,X) and ((,T) =
(t,X) — (t,X), by the part (ii) of Lemma we know that there exist 6 > 0 (since
(t,X) ¢ int K) and u € RN such that

¢(=-0 and T =U[diag(fu) O]V, (4.19)
where u; =1, =1,..., ko,
m—ko
1> ugg41 > ... > Uy >0 and Zuk0+i§k—ko. (4.20)

i=1
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Let rg € {1,...,7r} be the integer such that a = U;° a;. Since ((¢,T), (7, H)) = 0, we

know from von Neumann’s trace inequality (Lemma [2.13)) that
(F+(0,H)=(T+ <[diag (Ou) O],UTHV>

0 m—ko

07 40> (s HVa) +0 S wpsios ([U’gﬁvﬁ Ugﬁvg]) . (4.21)
=1 =1

Since (7, H) € bd Tic(t, X), by (4.2)), we obtain that

k—ko

__ Z w(UnH Vo) + > o0 ([U5ETV, TRAT]) .
=1

=1

By substitution, we know from (4.21]) and (3.152)) that

0 < 0<m§0uko+ia¢([UgHV5 Ugﬂvzb_kfm([zfgﬂvﬂ UsHV3))
=1

i=1 )
k—ko

< GakqﬁgFVg Ugﬁvz}) 3 (urgri — 1) + mi T
=1

i=k—ko+1
which implies the equality in (4.21)) holds and
m—ko . . k—ko . o
> urgrios ([UsHVs UsHVs|) = 3 o ([U5HVs UHVS|) . (422)
i=1 1=1

Next, consider the singular value decomposition of [UZFVB UZFVQ}. Denote m =
o :

m — ko, k=k-— ko. Let =0 ([Ugﬁvﬁ» UgHVQD € §RT be the corresponding

1,...,7 be the index sets defined by 1} and b be the
index set of the zero singular value.

singular values. Let a;, j

If 5% > 0, then there exist two integers 0 < 7%0 < k—1andk < El < m such that

012...20E0>0E0+1:...

O‘E:...:UE1>0‘E1+12...20‘m20.

Let 79 € {1,...,7} be the integer such that ke a5y+1- Then, from 1} we have

m
Zukoﬂ'&i:sup{<y,5)\y:aﬁ—ze§)‘tm, 0<z,2<e, <e,x+z):kz} ,
i=1
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which implies that (ug, 41, - -, tm) € R™ is the solution of the maximize problem. There-

fore, we know from [I13, Lemma 2.3] that in this case,
Upgrs =1, i=1,... ko, Ugsi=0, i=Fk +1,...m (4.23)

and

k1 —ko

1> Uy Tor1 > Uy Tot2 >, > U >0 and Z U oot = k—Fky. (4.24)
=1

If 5% = 0, then there exists an integer 0 < %0 < k — 1 such that

G122 >, =

Again, from (4.22)) and [113, Lemma 2.3], we know that

Upgs =1, i=1,... ko, (4.25)

F1—ko
1>u >...2uk0+%120 and Z“k0+'150+i§k_k0' (4.26)
i=1

kothot1 = Ukgthor2 =
Since the equality in holds, by von Neumann’s trace inequality, we know that the
matrices [diag (ug) 0] and [U};FV§ UZFVQ} admit a simultaneous ordered singular
value decomposition, i.e., there exist two orthogonal matrices E € OBl F e OlBl+n-—m

such that
(diag (ug) 0] = Eldiag (ug) 0JFT and [Ugﬁvﬁ Ugﬁn} = Eldiag (5) 0]FT .

On the other hand, since (7, H) € bd Tx (£, X), we know from (4.8) that (n, W) € T2
if and only if Y% | o/ (X; H, W) < 5. Therefore, by (i) and (iii) of Proposition we
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know that if o7 > 0, then

Nt (ST, WV,) ~ itr (ﬁfj [B(ﬁ)([g@ - pjfmm)frs(ﬁ)} Faj)
j=1

J=1

To
Sy R S R ——
+3 b (E;fj UsWVs UsWVolFy, —2EL [UsHX HV; UsHX HVQ]FaJ)

j=1
R T i T i
[ o o
+3 N (S(E%H [UB(W —2HX H)V; Us(W —2HX H)VQ} F5F0+1)>
=1
<n; (4.27)
if o7 = 0, then
ror 70
—T  —T T [ fpr oy —1=5
S (ST WV )~ e (QP%, [B(H)(B(X) . yjImM)TB(H)} paj)
j=1 j=1
7 k—ko
+3 <EET] AF;, — 2B BFaj) + > oi(IEFAF; ETAR) - 2Bl BF; ET BFQ])
j=1 i=1
<7, (4.28)

where A := [TsWVy TsWVs and B := [U4HX HVy UgHX HVs). For any
(n,W) € T2, by (4.19)), we obtain that

(n+ (T, W) = (n+ (U TV, T WV) = ¢n+ ((5(T) 0],T WV)
03w STLWVL) 4 ([Ses() 0L ETTIWY, TIWTF)
j=1

70

= AW)-¢> o (ﬁfj [B(ﬁ)(ﬁ@ - ajImM)TB(H)} Ej)
j=1

+([Sgs(0) 0L ETU;HX HVy U;HX HV)F) |
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where
An, W)
= (n+0 f:tr (S(Ta WV, ) — itr (zﬁfj [B(F)(B(Y) - pjfmm)fzs’(ﬁ)} Faj)
i=1 j=1
+([Sgs() 0}, ET[UsWVs UgWVolF — ETUSHX HV U HX HV,JF) .
(4.29)
Similarly, we shall show that

max {A(n, W) | (n,W) € T*} =0.

In fact, if &7 > 0, then by Lemma m (von Neumann’s trace inequality), we know

from (4.23) and (4.24) that

([Sos(D) 0L ET[TEWV TWVAIF — BT HX AV, TyAX HVS)F)
o
< oo (BLO5WV, USWValFs, — 260 USHX'HY, USHX'EVR, )
j=1
F—Fo B L -
+ 3 N (SBL U5 - T X IV, Uy(W 2B X MV ) -

a7p+1
i=1

(4.30)

Then, by (4.27), (4.29) and , we know that A(n, W) < 0 for any (n, W) € T2

Also, it is easy to see that the maximize value can be obtained.

If o7 = 0, then by Lemma (von Neumann’s trace inequality), we know from

(4.25) and (4.26) that

S R — S R ——— i ———
<[255(F) 0], E'[UsWV, UsWVoF —ET[U,HX HVy UsHX HVQ]F>
7 k—ko
T T T T T T
< Su (EajAFaj - 2EajBFaj) +Y o ([Eg AF; ETAF) - 2[EIBF; E! BFQ]) .
=1 i=1
(4.31)
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Then, by (4.28), (4.29) and (4.31)), we know that A(n, W) < 0 for any (n, W) € T2. Also,

it is easy to see that the maximize value can be obtained. Then, since 5*72 (0,0) =0, we

know that for any (¢,T") satisfying the condition (4.9),
S (C,T) = —CZtr (2Ps, [BADB(X) = i Lnsa) BH)| Po, )
+([Sgs(D) 0, [T;HXHV, UsHXHV]) .

Next, we summary the result on the support function 67, of the second order tangent

set T2 as follows.

Proposition 4.2. Let (£,X) € K and (7, H) € Trc(t, X) be given. Suppose that (¢,T') €

R x R satisfies

(€.T)eks, (D), (X)) =0 and ((¢T),(7,H))=0.
(i) If (1, X) € int K, then 83(¢,T) = 0.
(i) If (£,X) € bd K and (7, H) € int Tic(£, X), then 85 (¢,T) = 0
(ili) If (£, X) € bd K, (7, H) € bd Tic(£, X) and 04(X) > 0, then

55 (CT) = —CZtr(QP [ *)(B(Y)—ﬂj1m+n)fs(ﬁ)]ﬁaj)

+ <256(r), 2P 4 B(H)(B(X) — 54 Im1n) B(H) Py

~_—

(iv) If (t,X) e bd K, (7, H) € bd Txc(t, X) and o(X) = 0, then
52(C,T) = —CZtr (2P, [ (H)(B(X) - aj1m+n)fzs(ﬁ)] P.,,)
+ <[255<r) 0, [T HX HV; UEFYTFVQD .

Definition 4.1. For any given (t,X) € K, define the linear quadratic function T(EY) :

R x R xR x R — R, which is linear in the first argument and quadratic in the
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second argument, by for any (¢,T) € R x R™*" and (1, H) € R x R™*", if op(X) > 0,

then

T (GO H) = ¢t 2Py, [BUB(X) = 75Len) BU) | P, )
j=1

+ <zﬁﬁ(r), 2P B(H)(B(X) — Vlonyn) B(H)Pg

~_

if ox(X) = 0, then
T (GO H) = =3 (2P, |BUH)(B(X) = 735na) 'BUH) | P, )
+([Bgs() OL[UHX'HV UsHX HV3))

Finally, we will show that the epigraph cone K = epi| - ||() of the Ky Fan k-norm
is C%-cone reducible at every point (£, X) € K. Hence, K is second order regular ([8,
Definition 3.85]) at every point. We first recall the definition of C2-cone reducible ([8,
Definition 3.135)).

Definition 4.2. Let Y and Z be two finite dimensional Fuclidean spaces. Let K C'Y and
C C Z be convex closed sets. We say that the set K is C?-reducible to the set C, at a point
y € K, if there exist a neighborhood U of yo and twice continuously differentiable mapping
E:U — Z such that (i) Z'(y) : Y — Z is onto, and (i) KNN = {y e U|E(y) € C}.
We say that the reduction is pointed if the tangent cone To(Z(y)) is pointed cone. If,
in addition, the set C — Z(jj) is a pointed conver closed cone, we say that K is C*-cone

reducible at y. We can assume without loss of generality that Z(y) = 0.

Proposition 4.3. The epigraph cone IC of the Ky Fan k-norm is C*-cone reducible at

every point (t,X) € K.

Proof. Since K is a pointed closed convex cone, we know that K is C?-cone reducible at
(t,X) if (£,X) € int K or (£, X) = (0,0). Therefore, we only need to consider the case
that (£, X) € bdK\ (0,0), i.e., | X[/ =% > 0. Let a and /8 be the index sets defined by

a={ie{l,...,m}oi(X)>0op(X)} and B={ic{l,...,m}|oy(X)=0r(X)}.
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Consider the singular value decomposition (3.155)) of X,

Denote & = o(X) and ¥ = X(X). Let a;, I = 1,...,7 and a,.1 = b be the index

sets defined by (2.25) and ([2.26])) with respect to Xy. Then, we know that there exists

ro € {1,...,7 4+ 1} such that

To

o= Ual and  apo,+1 = 3.
=1

For any Z € R™*™ and W € R"™*", recall the definition of the notations Z,, € <l
l=1,...,r+1and W, € prxlal 1 = 1,... 7, ie., the sub-matrices of Z and W
obtained by removing all the columns of Z and W not in a;, respectively. For simplicity,
we also use the notation Wy, , € R (lbl+lel) to represent the sub-matrix of any matrix

W e R™*" obtained by removing all the columns of W not in bU c.

Since the single value function o(-) is globally Lipschitz continuous, by using Propo-
sition we know that there exists an open neighborhood N' = N7 x Ny of (£, X)
such that for each [ € {1,...,7 + 1}, the following functions I : No — R™*™ and

Vi Ny — R defined by

UX) =) w(X)u(X)" and Vi(X) =) oi(X)u(X)", X eNy, (432

1€aq 1€a;
are well-defined (i.e., for each [ € {1,...,7 4+ 1} and any X € N, the function values
U;(X) and V(X)) are independent to the choice of the orthogonal pairs (U(X), V(X)) €
O™"(X)), where u;(X) € R and v;(X) € R", i € q; are the i-th columns of the
orthogonal matrices U(X) € O™ and V(X) € O™, respectively. By consider the line
operator B : RM*" — S™F" defined by and the corresponding orthogonal matrix
P € O™*" defined by (2.43)), we have for any X € N,
1| U(X) =

F(X):=Pu(B(X)) = > pi(BX)p:i(B(X))" = - ;=1
l l ez 21« v
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and

Fra(X) = Pra(BX) = Y p(BX))pi(BX))"

1€bUcUb’
| U (x) 0
0 Vr-i—l (X)

where V,1(X) = > 0i(X)vi(X)T + 3,0, vi(X)vi(X)T. We know from Proposition
that there exists an open neighborhood A of B(X) in ™™ such that Py(-), [ =
1,...,7 + 1 are twice continuously differentiable on N. Therefore, by shrinking the
neighborhood N' = ANj x Nj if necessary, we know that Fj(-), I = 1,...,7 + 1 are twice
continuously differentiable on Ay. Hence, the mappings U;(-) and V,(-), [ =1,...,r +1

are all twice continuously differentiable on N5.

Next, we first consider the special case that X = [i 0]. For any X € N, let
Ly(X) and Ry(X), Il = 1,...,7 + 1 be the left and right eigenspaces corresponding to
the single values {0;(X) : i € ¢;}. Actually, for any X € Na, the matrices U;(X) and
Vi(X), Il =1,...,7r+ 1 are the orthogonal projection matrices onto L;(X) and R;(X),
respectively. For any X € N3, denote the columns of ¢(X) € R™*™ and V(X)) € <",
I =1,...,r+ 1 by {{4(X));} and {(V;(X));}. It is obvious that the space spanned
by {(U(X)):} and {(V;(X))i} coincide with L;(X) and R;(X), respectively. Moreover,
for each [ € {1,...,r + 1}, we know that for all X sufficiently close to X, the columns
{U(X))i: i€ aq} and {(V(X));: ¢ € q;} are linearly independent. In fact, for any
X € Ny and each | € {1,...,r + 1}, from the definitions of U; € R™*™ and V; € R"*",

we know that the j'-th columns of U;(X) and V(X)) for all j' € a; are given by

U;(X) Vi;(X)
U(X))y =D Upri(X) : and  (V(X)); = > Vi(X)

JEq JEq

Unj(X) Vi (X)
(4.33)

Therefore, for each [ € {1,...,r+1}, suppose that the real numbers ¢; € R, i = 1,..., |a]
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such that
Z qz(Z/Il(X))Z =0.
i€ap
U1;(X)
Then, since for each [ € {1,...,r + 1}, the columns : , j € a; are linearly
Unj (X)
q1
independent, we obtain that the vector : e Rlel is the solution of the following
Q|as]
linear system
q1
Uqgya,(X) : =0.
Q)ay]

From 1) in Proposition since X = [i 0], for each [ € {1,...,r + 1}, we know
that for X sufficiently close to X, there exists Q; € Ol%! such that

Ualal(X) =Q+ O(”X - YH) :

Since the determinant function det(-) is continuous, for each [ € {1,...,r+ 1}, we know
that for all X sufficiently close to X, the matrix Up,q, (X) is invertible, which implies
¢i=0,7i=1,...,|a and the columns {((X)); : i € a;} are linearly independent. By
using the similar arguments, we also have that for X sufficiently close to X, the columns
{(U)(X)); : i € a;} are also linearly independent. Hence, by shrink N' = A7 x N5 if neces-
sary, we may conclude that for any X € N, {{U(X))i : i € a;} and {(Vi(X)); : © € i},
Il =1,...,7r+ 1 are the bases of L;(X) and R;(X), respectively. Furthermore, for each
Il €{1,...,r+ 1}, by applying the Gram-Schmit orthonormalization procedure to the
columns {(Uy(X)); : i € a;} and {(Vi(X)); : i € a;}, for any X € Ny, we obtain two ma-
trices My, (X) € ™1l and N, (X) € Rl such that the columns of M,, (X) are the
orthogonal bases of the left eigenspace L;(X) of X and the columns of Ny, (X) are the or-

thogonal bases of the right eigenspace R;(X) of X. Moreover, for each [ € {1,...,r+1},
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the mappings M,, : N2 — pmxlal and Ng, : Ny — prxlal are twice continuously dif-
ferentiable on A%. Therefore, we know that the mappings M, (X)T XN, (X) : No —
Rlalxlal 7 =1, ... rand M, ,, (X)T XN, ., (X) : Ny — REx(bIFleD are all twice continu-
ously differentiable on N2, and M, (X)TXNal (X),l=1,...,7+1 are diagonal matrices,
whose diagonal elements are the singular values {o;(X) : i € q;}. Since the singular
value function o(-) is globally Lipschitz continuous, by further shrinking N' = N7 x N3

if necessary, we have that for any [,I’ € {1,...,r + 1} and I </,
Oay| (Ma, (X)X Noy (X)) > 01 (Mg, (X)" XN, (X)) VX EN,.

In particular, we have

(X)"XNq,.,(X) =[Sp 0].

My, (X)"XNy(X) =%00, 1=1,...,7 and M,

Ar4+1

On the other hand, for each | € {1,...,7 + 1}, we know from (2.40) in Proposition
that for X sufficiently close to X,

Uij(X)=0(|X = X|)=U;;(X) and Vi(X)=0(|X —X||) =V;i(X) Vid¢a andje€q.

Therefore, we know from (4.33) that for each [ € {1,...,r+1}, 7/ € q; and any X € N5,

the j’-th column of U;(X) satisfies the following conditions
U(X))ry =O0(IX = X)) Vi'¢a,
U(X))iyr =Y Uy (X)Uirj(X) = Y Upri(X)Uij(X) = O(| X = X|*) Vi’ € ay but i’ # j'

JjEa J¢a;

and

U(X))yjr =Y Upi(X)? =1= Upi(X)* =1+ O(|IX = X|?),

JEa J¢a
which implies that
O(llx — X1
U(X))ar = | Lo, +O(IX = X|?)

o(llx - X))
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Similarly, we also have for each [ € {1,...,r+ 1} and any X € N>,

o(lIX — X1)
Vi(X))as = | Ijq +O(|IX = X|1?)
o(lIX - X1)

Thus, by considering the Gram-Schmit orthonormalization procedure, we obtain that for

each l € {1,...,r+ 1}, for any X € N>,

O(Jlx — X1|) O(Jlx — X))
Mo (X) = | I +O(|X =X|?) | and No(X)=| I, +O(|X - X|[?)
o(llx — X1) o(llx - X1)

Denote H := X — X. Therefore, we obtain that for each [ € {1,...,r}, for any X € N5,
Mo, (X)" X No, (X) = Moy (X)" ([S 0] + H) Noy(X) = Saja, + Harar + O(|H|?) (4.34)

and

Mar+1 (X)TXNar+1 (X) = Mar+1(X)T ([i 0] + H) Nar+1 (X)
= [Sw O]+ [Hpy Hpe] + O(|H|?). (4.35)

Next, consider the general case that X # [ 0]. Let (U,V) € O™"(X) be fixed.
Then, we know that
U'XV=[% 0+07 (X -X)V.
Denote H = UT(X —X)V. Tt is clear that o(X) = U(UTX V). Therefore, by replacing X
by U' XV in the previous arguments, we know that there exists an open neighborhood

N = N1 x N3 of (£, X) such that the mappings
F(X) = My, (T XV)TU XVN,, (U XV) e Rlalxlal g =1 ¢

and

Foiy(X) =M, (U XV)TU ' XVN,, ([0 XV) e Rltxl)
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are twice continuously differentiable on Ao, and for any X € N3, the matrices Fj(X),
l=1,...,7+1 are diagonal, and the diagonal elements are the singular values {o;(X) :

i € a;}. In particular, we have
E(Y) :ialaﬂ [l = 1,.. T and Fr—i—l(y) = [ibb O] =0.

Thus,

Y oil(X)=tr(F(X)), I=1,...,r. (4.36)

1€ay

Moreover, we obtain from (4.34]) and (4.35)) that for any X € N,

Fy(X) = Fi(X) = Hyay + O(|X = X|I*), 1=1,....7 (4.37)

and

Fri1(X) = Fra(X) = [Hyy, Hyel +O(|X = X[%). (4.38)

Finally, in order to show that K is C?-cone reducible at (¢, X) € bd K \ (0,0), we

consider the following two cases.

Case 1. 0;(X) > 0. Let 0 < kg <k —1 and k < k; < m be the integers such that

012 ...20k > Okgtl =+ =0 = ... =0k >0fy41 > ...>20m >0,

which implies that o = U2 a; and § = apy41. For each I € {1,...,79 + 1}, define the

linear mapping dj : plalxlar] _y gplail by
di(2) = (Z11. Zo2, - Zjayay) " Z € Rlul¥lenl (4.39)

Therefore, since || X||() = ¢, we know from 1’ that

k
KNN = {(t,X) eN| Zai(X) gt}

=1

k
- {(t,X) eN| S (0i(X) ) gt—f}
i=1

= {(t,X) eN| Z<€\az|’cz> +Sk,k0(cfi,~0+1) St—f} ,

=1
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where d; := d(Fi(X)—-Fi(X)),l=1,...,70+ 1 and S(k—ko) * RIBl - R is the positively
homogeneous convex function defined by (3.162)). Therefore, we may locally define the

mapping = : A — R x RI°| by

0

E(taX) = <t —t- Z<e|al,gl>agro+l) € R x %W'v (taX) EN.

=1

Thus, we have
9

KON = {(t,X) e N |E(t, X) ec}

where C C R x R/8! is a closed polyhedral convex cone defined by

C .= {(s,y) e R x Rl | S(h—ko) (y) < 5} :

Since any polyhedral convex set is C2-cone reducible, we know that C is C2-cone reducible.

Clearly, the mapping = is twice continuously differentiable on A. Moreover, we know

from 1} that the derivative Z/(£, X) of Z at (£, X) is given by

T0
2, X)(r,H) = <T — Y tr(Hoa), droﬂ(ﬁﬁﬁ)) eRx RO (7, H) e R x ™™,
=1

where H = UTHV, which implies that E’(f, X) : R x R 5 R x R is onto. Then,
we know from [90, Proposition 3.2] that K is C?-cone reducible at (¢, X).

Case 2. 01,(X) =0. Let 0 < kg < k — 1 be the integer such that

G1> .. >0y > Okl = =0k =... =0y =0,

which implies that o = Uj_,a; and 8 = a,;1. Therefore, we know that

kNN = {(t,m € N B (Xl ry < £~ fju(m(x»} .
=1
Define = : N — R x RIPIx b+ 1y
2(t, X) = (t - iu«(ﬂ(}()), Fr+1(X)> e R x R ¢ Xy e M.
=1

Then,
KON ={(t,X) e N|E(t, X) € epil - [[(k—ro) }
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Since t = Y";_; tr(Fi(X)) and F,41(X) = 0, we have Z(f, X) = (0,0). Also, the mapping
E is twice continuously differentiable on N. Moreover, by (4.37) and (4.38), we know
that the derivative Z/'(t, X) of Z at (£, X) is given by

T0
= (t,X)(r,H) = <T = tr(Haya,)s [Hup Hbc]> € R x RlbPUbIFeD (7 HY) € R x R
=1

where H = UTHV, which implies that Z/(£, X) : R x R — R x RO+ i5 onto.

bl (bl xel) 1

Since the closed convex cone epil| - [|(x—g,) € R x RN pointed, we obtain from

the definition that K is C2-cone reducible at (¢, X). O

4.1.2 The critical cone

The metric projector (£, X) = Ilx(t, X) of (t,X) € R x R™*" onto the cone K satisfies

the following complementary condition:
K>EX)L(t-t,X-X)ek°. (4.40)

The critical cone of K at (t, X) € RxR™*™, associated with the complementary problem

(4.40), is defined as
Cx(t,X):=Te(, X)N({t—1X - X)*.

Next, for the given (¢, X) € R x R™*" we want to characterize the critical cone Cx (¢, X)

of K.

If (¢, X) € int I, then it is clear that
C(t,X) =Ti(t, X) =R x R™".
If (t,X) € bd K, then (t, X) = (£, X),
Cre(t, X) = Tx(t, X),

where Tx(t, X), which is completely described by (4.1 and (4.2). Moreover, it is easy to
see that the affine hull of Cx(t, X) is

aff (Cre(t, X)) = R x R
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If (¢, X) € int K°, then (£, X) = (0,0) and
Cic(t, X) = Tr(0,0) N (¢, X)F = KN (t,X)F = {(0,0)}.

Next, we consider the case that (¢, X) ¢ K U int K°.

Case 1. 0;(X) > 0. Then, (1, H) € C(t, X) if and only if (7, H) € R x R™*" satisfies

(r,H) € Te(t, X) and {(r,H),(¢,I)) =0,

where (¢,T') = (t —t, X — X). Therefore, we know that the equality in (4.12) and (4.13)

hold for (7, H). Thus, we know that (7, H) satisfies the following conditions.

(i) The symmetric matrix S (U;H V) € Sl has the block-diagonal structure, i.e.,
forany L £ 1 € {ro+1,...,m}, (S(U5HVg))

aay

(ii) If k1 > k, for any i1 € 51, 19,19 € ﬂg and i3 € 63,

Ny (STFHV 5)) 2 My (ST HV5)) = ... = Niy, (SUFHV ) 2 \iy (ST H V).
(i) 3270 tr(Ta, H V) + 40 N (ST HV)) = .
Moreover, (1, H) € aff (Cx(t, X)) if and only if (7, H) satisfies

(i) The symmetric matrix S (UZ:H V) € Sl has the block-diagonal structure, i.e.,
forany L £ 1 € {ro+1,...,m}, (ST5HV ), =0;

ajay

(i) if k1 > &, M(STRH V) = ... = A (S(ULHVp)) for any i, € B; if k = ky,
Z;il tr(UZ;Hval) + tr (S(U;;vag)) =T.

Case 2. 0;(X) = 0. Then, (1, H) € C(t, X) if and only if (1, H) € R x R™*" satisfies

(r,H) € Te(t,X) and {(7,H),((,T)) =0,

where (¢,T) = (t —#, X — X). Also, we know that the equality in (4.21)) and (4.22) hold

for (7, H). Thus, (1, H) should satisfy the following conditions.
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(i) The matrix [UEHV/B UEHVQ] € RIBIXUBIHFP=m) has the following block-diagonal

structure
S B i,
aro+1H Va0 0 0 0
I 0 0 0 0
UsHVg UgHV3a] = L
0 0 U,HV,, 0 0
0 0 0 U, HVy Uy HVo
(4.41)
and the matrices UZZHVQZ, l=mr9+1,...,r are symmetric.

(ii) Denote h := ()\(UT HV

arg+1 arg+1

oo AU HV,)0([Uy HV, Ty HV,])) € RO
If Zie,@ u; = k — kg, then for any i; € B4, i2,iy € B2 and i3 € B3,
hilzhi2:~~-:hi2/2hi3 and hiQZO;
if Zieﬂ“i < k — ko, then h;; > 0 for any i; € 51, h;, =0 for any iz € f2 U (3.
ro —T =4 k—ko =T —— =1 =
(i) Y50 (U, H V) + S50 (U5 HV UGHV]) =7,

Moreover, (1, H) € aff Cxc(t, X) if and only if (7, H) satisfies

(i) The matrix [UgH Vs UZHVQ] € RIFIXUBI+7=m) hag the block-diagonal structure
(4.41) and the matrices UTHVG ,l=1r9+1,...,r are symmetric.
aj l

(i) If >°;c5ui =k — ko, then h; = ... = hy for any 4,7’ € B2; if Y ;.5 ui <k — ko, then

h;, = 0 for any iy € B2 U 3.

The following observation can be obtained from the characterization of the affine hull
of Cx.(t, X) and the characterization of Clarke’s generalized Jacobian of IIx (Proposition

3.13).

Lemma 4.4. Let (t,X) € R x R™*" be given. For any V = (Vy, V1) € Ol (¢, X), we
have

(Vo(r, H), Vi(r, H)) € aff (Cic(t, X)) ¥ (r, H) € R x R™*"
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Proof. Without loss of generality, we may assume that (¢, X) ¢ K U intK°, since
otherwise the result holds trivially (noting that if (¢, X) € bd K, aff(Ck(¢,X)) = R X
R™>™). On the other hand, since Ollx (¢, X) = conv{0dpIlx (¢, X)}, we only need to show

that for any fixed V = (V, V1) € Opllx(t, X) and (7, H) € R x R™*",
(a,A) = (Vo(r,H),Vi(1, H)) € aff (Cx(t, X)) . (4.42)

Denote (£, X) = (¢, X) and A := U AV = UT‘/l(T, H)V. Consider the following two

cases.

Case 1. 0;(X) > 0. For the fixed (¢, X), let 0 < kg < k—1 and k < k; < m be the
integers satisfying the condition . Let 81, B2 and (B3 be the index sets defined by
for (¢t,X). From and the definition of the linear mapping T', we
know that the symmetric matrix S (Avgﬁ) € Sl has the block-diagonal structure, i.e.,
forany l #1' € {ro+1,...,m}, S(Av)alal, =0.

If k1 > k, since the singular value function o(-) is globally Lipschitz continuous over
R™>" we know from the part (i) of Lemma [3.15] (see [I13, Lemma 4.2] for details) that
if (', X') € R x R™*™ sufficiently close to the given point (£, X), then o(X') > 0, k| > k

and
]{26 € b1 (k6 =k if B1 = @) and k‘,l € B3 (k‘ll =k if B3 = @), (443)

where (f’,y/) =k (t', X'),and 0 < k) < k —1 and k < k} < m are two integers defined
by (3.149) with respected to X . Assume that (', X') € Dri,. converging to (¢, X), where
Dn

< is the set of points in & x R"™*™ where Ik is differentiable. By the definition of

Opllx, Proposition (i) and (3.172)), we know from (3.173)) and (4.43]) that
S(Aﬁzﬁz) = CI|52| )
for some ¢ € R. Therefore, we obtain that

Ni(S(Apyp,)) = Aj(S(Ag,p,)) Vi, j€ B
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If k1 = k, since the singular value function o(-) is globally Lipschitz continuous, we
obtain similarly from the part (i) of Lemma (see 113 Lemma 4.2] for details) that

if (', X') sufficiently close to the given point (£, X), then o(X') > 0, k| =k and
ky€ B (kb =koif B =10), (4.44)

where (7, X) := Ik (#, X’), and 0 < ky < k—1and k < k] < m are two integers defined
by with respected to X . Assume that (t', X") € Dn, converging to (¢,X). By
the definition of Ogllx, Proposition (iii) and , we know from and
that )

Zojtr(,liam) +tr(S(Ags)) = a.

I=1

Therefore, from the obtained characterization of aff (Ck (¢, X)), we know that
holds.

Case 2. 0,(X) = 0. For the fixed (t,X), let 0 < kg < k — 1 be the integer
satisfying the condition . Let 1, B2 and B3 be the index sets defined by
for (t,X) and u € R be the vector satisfying the condition . From ((3.179)
and the definition of the linear mapping T', we know that [Avgg ;i/gc] has the
block-diagonal structure and the blocks ﬁalal, l=1,...,r are symmetric.

If > e g Ui < k — ko, then since the single value function o(+) is globally Lipschitz
continuous, we obtain that for (', X’) € R x R™*" sufficiently close to the given point

(t,X), there exist a positive number ¢’ > 0 and a integer kj € 51 (k{, = ko if 51 = 0)

such that
m
— —y 1
oy (X)) >0 > 03y (X)) and ¢ > ey ;lm(X/),
1=Ky

where ' = (Zfil oi(X") = t")/(k{ 4+ 1) > 0 (see [113, Lemma 4.1] for details). Thus, we

know from [113, Lemma 4.1] that o,(X') = 0, where (7, X') = Ik (#, X’) and 0 < ky <
k — 1 is the integer defined by (3.153) with respected to X . Assume that (t', X") € D,

converging to (t,X). By the definition of dpllx, Proposition (iv) and (3.176)),
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from (3.177) and k{, € B1, we obtain that h;, = 0 for any iy € [ U 3, where h =
(A(A“alal), M Aua), o ([An ,Zibc])) e R,

If > icpui = k — ko, then since (¢, X) ¢ int K, we know from [113| Lemma 4.1] that

ko
1
0= +1(Zai(X)—t): —" > ai(X) >0
0 i=1 0 iepius,

and og, (X) > 0 > op,+1(X),
01, (X) > 04,(X), 0i(X)=0 Viy € B, i2 € Ba, i3 € P,

which implies that 83 = b. Therefore, by the globally Lipschitz continuity of the single
value function o(-), we obtain that for (¢, X’) sufficiently close to (¢, X), if o%x(X') = 0,
then

k‘(’)EBl (k’éEk‘olfﬂlz(b),
where (7,X') = Ix(#,X’), and 0 < kj < k — 1 is the integer defined by (3.153) with

respected to X ; if ak(y/) > 0, then k] > k,
k‘()Eﬁl (k65k0 if,6’1=®) and k:i € B3 (kiEmifﬂgZ(b),

where (7,X') = Ii(t, X'), and 0 < ky < k—1and k < k] < m are two integers
defined by with respected to X' By taking subsequence if necessary, we may
assume that for the sequence {(t(9), X(9))} which converges to (¢, X), either o3 (X (@) = 0
or o,(X@) > 0 for all q. Therefore, if o (X(@) = 0 for all ¢, then by the definition

of dplli, Proposition (iv) and (3.176), from (3.177) and k{ € 1, we obtain that

h;, = 0 for any iy € B U f3; if ak(X(q)) > 0 for all ¢, then by the definition of dplli,
Proposition (ii) and (3.172), we know from ([3.173)) and (4.43)) that

hi=...=hy Yii€ps,

where h = ()\(Avalal), o MAga), o ([An Avbc])> e R8I, Therefore, from the obtained
characterization of aff (Cx (¢, X)), we know that (4.42)) holds in this case. The proof is

completed. O
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The following result plays an important role in our subsequent analysis.

Proposition 4.5. Suppose that (t,X) € K and ((,T') € K° satisfy ((£,X),((,T)) =
0. Let (t,X) = (£,X) + (,T) € R x R™*". Then for any V. € 0l (t,X) and
(At,AX),(AC,AT) € R x R such that (At,AX) = V(At+ A, AX + AT, it
holds that

(A AX), (MG AT)) = T o5 (G T). (AL AX)) | (4.45)

where the linear quadratic function T(EY)<" -) is defined in Definition .

Proof. By the assumption, we know that (£, X) = I (t,X) and (¢,I') = IIxo(t, X).
Without loss of generality, assume that (¢, X) ¢ int £ Uint K£°, since otherwise the result

holds trivially.

Suppose that X € R™*" has the singular value decomposition (3.155)), i.e., X =
UE(X) 0V withU € O™ and V € O". Let a, | = 1,...,7 and ap41 = b be the

corresponding index sets. Denote @ = o(X). Consider the following two cases.

Case 1. 7 > 0. There exist two integers 0 < kg < k — 1 and k < k1 < m such that

012 ...20k > Okgtl =--- =0k =...=0f >0Ok41 2> ...>0m, > 0.
Denote v = {1,...,ko} and 8 = {ko,...,k1}. Let ro,1 € {1,...,r} be the integers such
that o« = U2, and 8 = UL, . a. Since (¢, X) =Tlx(t, X) and (,T) = Mk (¢, X) =
(t,X) — (£, X), we know from the part (i) of Lemma that there exist # > 0 and

u € RN such that
{=t—1=-0 and T=X-X =Uldiag(67) 0]V
withw; =1,7=1,...,ko,u; =0, =k +1,...,m,

k1—ko
1> upy41 > Ugg2 > ... > up, >0 and Zuko+i:k_k0-
i=1

Therefore, we know that o; = o; = v; for any 7,5 € a;, | = 1,...,r +1 and u; =

u; = [ for any i,j € a;, | = 1o+ 1,...,r1 (noting that 7, = 7, for any | = ro +
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1,...,71). Denote vy ={k1 +1,...,m} and 7 := {1,...,m} \ 7. Let AX =T AXV =

[T AXV, U AXVy) = [AX) AXo]and AT = U ALV = [U' ATV, U ATV, =

[AT] ATy). Since (At,AX) = V(At 4+ AC,AX 4 AT), we know from Proposition

that there exists K = (Ko, K1, ...

ACD(AX + A

I)) and

AX = T(AX + AT

, K, ) € 0Il¢,(0,0) such that At = Ko(At +

Ki(At+ ACD(AX +AL)) 0 0 0
0 0 0
+ L :
0 0 K, (At+A¢D(AX +AT)) 0
0 0 0 0
where D(AX + AT) := (S(A)?alal + ATurar)s s S(DX g 0, + Afaﬁ%)), and the
linear mapping T is defined by (3.160)). Therefore, we have
S(AXgay) = Ki(At+ ACD(AX + AL)), 1=1,...,11, (4.46)
S(ATga,) =0, 1#0U and,I'=1,...,70, (4.47)
S(AXga,) =0, 1 £ and LI =79 +1,...,71, (4.48)
S(AXap) = (E1)ap 0 S(AXap) = (E1)ap © S(ATwp), (4.49)
S(AXar) = (E1)ary © S(AXur) = (E1)ay 0 S(ATwy), (4.50)
S(A)?ﬂ'y) —(&1)py 0 S(A)?ﬁ'y) = (&1)py 0 S(Afﬁw) 1 (4.51)
T(AX) — & o T(AX) = E o T(AT), (4.52)
A)Zﬁc - .7:7(3 o A)A(JVC = fﬁc o Afge s (453)
AT., ATl =0, (4.54)
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where SAQ = | (&)pa (E2)ps (E2)py |- By (4.46|), we have

(A, D(AX)) = K(At + A D(AX) + D(AD)).
Therefore, by (c) of [64, Proposition 1], we obtain that
DA+ (S(AKaa), S(BTaa,) ) = MO+ (D(BX), D(AT))
=1

- <K(At £ ACD(AX + AD)), (AL + AC, D(AX + ATD)) — K(AL+ AC, D(AX + Af))>

> 0

Therefore, by (4.47)), (4.48)) and (4.54), we have

AEAC + (AX1, AT 4 (AXy, AT')
= AACH (S(AXY), S(ATY) + (T(AX1), T(ATY)) + (AXye, Al5)
> 2 ((S(8Xap), S(ATap)) + (S(BKar), S(ATwy) + (S(8Xs,), S(AT5,)))

HT(AX), T(AT)) + (AXre, ATxe) - (4.55)

By (4.49), (4.50) and (4.51]), we have

<S(AX04,3 Araﬁ Z Z

=1 lU'=ro+1

HI,L/ fond
1S(AXaa) 1> = == [1S(A X gy, 1%

v — Uy — Uy

0 r+1

(S(AXar), S(ATe) =D

I=11=r;+1

SO K I

r1 r—+1 0

(S(AXpy), S(ATg)y = Y > =

l=rog+1U'=r1+1

1
_lf I1S(A X a7

I/l/



4.1 Variational geometry of the Ky Fan k-norm cone

183

which implies

2 (<S<A5caﬁ>, S(ATap) + (S(AXa), S(ATar)) + (S(AXs), S(ATg,)))

0 r+1
= _22 Z ”S A-Xaa )H2
vy — 1) iy

=1 l/—’l”o-‘r].

71 70 Hﬁ r+1 Qﬁ

4 e U
-2 ) ZHHS(AXWN)HQJF > 7 WHS(AXMZ,)HQ

U'=rg+1 =1 l=r1+1

Similarly, by (4.53), we know that

<AXWC,A1:%> = <AXanAfaC>+<AXBC7AF66>

T1

2.0 07
~ Oy
= _;_VIHAXGZCHQ_ Z HA*XOLI/CH2

U'=ro+1

By , we obtain that
(T(AX), T(AT))
= <T(A§aa)aT(Afaa)> + <T<A§ﬁﬂ)7T(Afﬁ/3)>

2 ((T(Kas), T(ATag)) + (T(Xer), T(BTar)) + (T(AX ), T(AT 1))

r0O TO T1

9#5
= -2 ) —— _V,HT AX a2 =2 Z > Sl T(AXae)I?
I=110=l ! ! I=ro+10U=ro+1
1 9+0,LL 70 r+1
v T YR ~

—22 Y. T Xaa )P -2Y ] Y — _V/HT(AXWZ,)HQ

I=1 U'=ro+1 =1 U=r41 L7

r1 r+1 G,UJZ

2> Y S IT(A X))

l=ro+1U'=r1+1 v

ro r+1 r1 r+1

o1
- —QZZ T AXaa)? =2 Y Z al |7 (A X gy

=1U=l l=ro+11'=1
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On the other hand, since ( = —6, from the direct calculation, we know that

_gitr (QFaTj [B(AX)(B(Y) — Ujlnin) ' B(AX )} Ej)
j=1

0 r—+1 9 _ ro r+1 9 _
2 2
= 22 Z Ty _pl”S<AXazal/)H +2ZZ T — oy HT(AXazal/)H
=1 U'=ro+1 I=11U=l

T0 0 -
+> —[|AXq]?
v
=1
and

<zﬂﬁ(f), 2P B(AX)(B(X) — v[m+n)TB(AX)ﬁ5>

71 0 Hﬂ r+1 Hﬂ
4 oyl v ~
= 2 3 | XIS A Kaa)IP + 30 SIS (A Ka)
V=ro+1 \ I=1 =41 L
S 2 op
! v 14 o
+2 3 > T A K )P+ DD AKX
l=ro+1l=1 } V=ro+1

Finally, by combining with (4.55)), we know that the inequality (4.45] holds.

Case 2. 7, = 0. There exists an integer 0 < ky < k — 1 such that
012+ 20k >Ek0+1:---26k:---:5m:0-

Again, define a = {1,... ko} and 8 = {ko,...,m}. Since (£, X) = [x(t, X) and ({,T) =
o (t, X) = (t,X) — (£, X), we know from the part (ii) of Lemma that there exist

¢ > 0 and u € R such that

{=t—1 and T =X —X = Uldiag (6m) 0]V

with
Uy = €, u5:ug and Zuigk—k‘o.
i€ep
Let ro € {1,...,7} be the integer such that

0 r+1

oz:Ual, 8= U a; (where a,+1 =b).

=1 l=ro+1
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Define
fr:={i€flu=1}, pa:={i€pP|0<wu; <1} and pfs:={i€f|u; =0}.

Then, we know that 5y U 8y = U;:roﬂ a; and B3 = a,+1 = b. Therefore, we know that
o;=0;=v forany i,j€a,l=1,...,r9, 0; =0 for any i € 3, and u; = u; = ; for
any t,j €a;, l=ro+1,...,7r+1.

Similarly, let AX = U AXV = [U AXV, U AXV,] = [AX) AX,] and AT =
U ATV = [T ATV, U ATV, = [AT, AT). Since (AL, AX) = V(AL + AC,AX +
AT), we know from Proposition that there exists K = (Ko, Ki,...,K,11) €
dMle,(0,0) such that At = Ko(At+ AC, D(AX + AT)) and

AX =T(AX + AT)

K (At+ ACD(AX + AT)) - 0 0
+ : T : - - : ’
0 o Ko (Ot+ ACD(AX + AT)) 0
0 e 0 K, 11(At+ A D(AX + AD))
where
D(AX + AD)

= (S(A)?alal 4+ ATuia))s s S(AX e 0 + ATwa ), [(AX + AD)y (AX + Af)bCD ,
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and the linear mapping T is defined by (3.167). Therefore, we have
S(AXaya) = Ki(At+ ACD(AX +AT)), 1=1,...,79, (4.56)

AXgya, = S(AXaye) = Kif(At+ A D(AX + AD)), =19 +1,...,1, (4.57)

[AXp AXy = K (At + ACD(AX + AT)), (4.58)
S(ATga,) =0, 1#0 and ,I'=1,...,7, (4.59)
AXga, =0, 1#0U and ,l'=rg+1,...,7+1, (4.60)
AXge=0, l=ro+1,...,7, (4.61)
S(DXap) = (E1)ap © S(AXag) = (E1)as © S(ATup), (4.62)
T(AXaa) = (E2)aa © T(AXaa) = (E2)aa © T(ATaa) (4.63)
T(AXap) = (E2)ap 0 T(AXap) = (E2)ap © T(ATag), (4.64)
AXpe — Foe 0 AXge = Foe 0 Alae, (4.65)

By —, we know that
(A, D(AX)) = K(At 4+ A D(AX) + D(AD)).
By (c) of [64, Proposition 1], we obtain that
AN+ Z (S(8%ua) S(OTwa)) + (5K AKncl, [ATy ATu])
=1
— AIAC+ <D(A)?), D(Af)>

- <K(At £ ACD(AX + AD)), (AL + AC, D(AX + AT)) — K(AL+ AC, D(AX + Af))>

> 0
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Therefore, by (4.57) and (4.59)-(4.61)), we have
AEAC 4 (AX, ATY) 4 (AXy, AT)
= AEACH (S(AX), S(ATY)) + (T(AX1), T(AT1)) + (AXae, Alac)

2(S(AXap), S(ATap)) + (T(AXaa), T(ATaa)) + 2T (AXag), T(AT5))

Y

+H{AXqe, Al ge) . (4.66)

By (4.62), we have

2<S(A)~(aﬁ)’ S(Afaﬁ»

T0 r+1 r+l 7o

9 /
= 23 3 IS Xaa P -2 30 S lflwus (&Ko) I?

=1 l/_T‘0+1 I'=rog+1 l=1

From (4.63)) and (4.64), we know that

(T(AXaa), T(ATaa)) + 2(T(AXag), T(AT45))

Wl 2 0 - 0"‘6#[/ 2
) D) PE VU P LD Dl PELI S 20 A

i 121 Uy VLTV

0
ro r+1 0 r+1 eu
l/

- _222_ HT AXalal’ ||2 22 Z V/HT(AXUZ‘W)HQ'

== =1 V'=ro+1 ¢

Similarly, by (4.65]), we obtain that

70

S 0
<AXaca AFozc> - - Z 7?||AXLLZC||2

On the other hand, by directly calculating, since { = —#, we know that

e ZO: tr (QFaTj [B(AX)(B(Y) — DiIin) B(AX )} EJ)

0 r+1 ro r+1
— 2§ § 1S( AXWZ, N+ 2§ § —||I7( AXWZ,)HQ
vy — — Uy
I=1 l'=ro+1 =1 U=l

2] ~
+ Z TPIHAXWCW :
=1
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Meanwhile, since <S(A)2alal,),T(A)~(alal,)> =0 forany l € {1,...,r9} and I’ € {ro +

1,...,r+ 1}, by directly calculating, we have

([26s(T) 0], [T5AX X' AX T, TEAX X AXT))

r+1 0 e'u
I v 2
=23 ) [ AXaa,l
Z/l I/l/
/'=ro+1 I=1
r+1 T0 GH r+1 0 9,[1,
i !
= 2 3 > o IS(AKaa )P 42 30 Y S T (A Ka, )
v — -V — vy
U'=ro+1 =1 U'=ro+1 I=1

Finally, by combining with (4.66)), we know that the inequality (4.45]) holds. The proof

is completed. O

Let (t,X) ¢ int K Uint K° be given. We know that both the zero mapping K° = 0
and the identity mapping K% = Z from W — W are elements of dgllc,(0,0), i = 1,2,

since both C;, i = 1,2 are closed convex cone in the subspace W. Let V% and V7 be

defined by (3.178)) or (3.179) with K being replaced by K° and K7, respectively. For

the given (¢, X) ¢ int L U int £°, define

ex(Opllk(t, X)) :== {V°, VI}. (4.67)

4.2 Second order optimality conditions and strong regular-

ity of MCPs

Consider the following linear matrix cone programming (MCP) involving the Ky Fan

k-norm

min ((s,C), (t, X))
st. A(t,X) =0, (4.68)
(t,X) € K,
where K = epil| - [k = {(t, X) [ [ X|x) < t}, (5,C) € R x R™*", b € NP are given, and

AR x R — RP s a linear operator. The first oder optimality condition, namely
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the Karush-Kuhn-Tucker (KKT) condition for takes the following form
Aty — (¢, 1) = (s,0),
A(t, X) =b, (4.69)
K> (X)L (T)eKe.
For the given feasible point (£, X) € R x R™*" let M(t,X) be the set of Lagrange
multipliers. (¢, X) is a stationary point of if and only if M(t, X) # 0.
Firstly, we introduce the concept of nondegeneracy for the general constraint, which
is first introduced by Robinson [81 [82]. Let X and )Y be two finite dimensional real
vector spaces each equipped with a inner product (-,-) and its induced norm || - ||. Let

g : X — Y be a continuously differentiable function and K be a nonempty and closed

convex set in . Consider the following general constraint
glx) e K, zekX. (4.70)

Assume that Z € X is a feasible solution to (4.70). Let Tx(g(Z)) be the tangent cone of
K at g(z). Denote the lineality space of Tk (g(z)) by lin(7x(g(z))). Then, we define the

constraint nondegeneracy condition for (4.70) as follows.

Definition 4.3. A feasible point T to the problem is constraint nondegenerate if
9'(2)X +1in(Tk(9(2))) = V. (4.71)

For the MCP problem (4.68), the Euclidean spaces X =) = R x R™*" g = (A, 1),
where 7 is the identical mapping in R x R™*"  and the convex set K = {0} x K. Then,
for a feasible point (£, X) € R x R™*", the constraint nondegeneracy can be specified as

follows.

Definition 4.4. We say that the constraint nondegeneracy holds at a feasible point

(t,X) € R x R™ " to the MCP problem if

{0} RP
R x R 4 - . (4.72)
lin(Txc (£, X)) R x Rmxn
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Let Z := ((f, X), 7, (¢, f)) € R x R™XN x P x B x RM*" be a KKT point satisfying
the KKT conditions (4.69)). Then, since K is a closed convex cone, we know from [32]

that

K> (tX)L(CT)eK®

— (t,X)-Hx(t+¢X+TD)=((,T) —ge(t+¢, X +T)=0.

Therefore, Z = ((t_, X),7, (¢, f)) satisfies the KKT condition l) if and only if Z is a

solution to the following non-smooth equation

[ oAyt |
F((th)>y> (C,F)) = A(t, X) —b =0, (4.73)
I (t,X) —TIg(t+ ¢, X + 1) |

where ((¢, X),y, (¢,T)) € R x R™X" x P x R x R™M>". 1t is well-known that both (4.69)

and (4.73]) are equivalent to the following generalized equation

(S,C) _A*y+ (QF) Nmman(t,X)
UIS A(t, X)—b + Ny (y) : (4.74)
| _(th) ] i N/CO (C7F) |

Robinson [80] introduced an important concept called strong regularity for a solution of

generalized equations. We define the strong regularity for (4.74]) as follows.

Definition 4.5. Let Z = R x R™*™" x RP x R x R™*". We say that a KKT point
Z = ((f, X), 7, (C_,f)) € Z is a strongly regular solution of the generalized equation
if there exist neighborhoods U of the origin 0 € Z and V of Z such that for every

6 € U, the following generalized equation

(Sa C) - A*y + (Cv F) N?RX?R"’X"(t’ X)

(XS A, X)—b + Ny (y) (4.75)

—(t, X) Nie (¢, T)
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has a unique solution in V, denoted by Zy(d), and the mapping Zy : U — V is Lipschitz

continuous.

The following result on the relationship between the strong regularity of (4.74) and
the locally Lipschitz homeomorphism of F' defined in (4.73|) can be proved in the similar

way to that of in [I7, Lemma 11]. We omit the proof here.

Lemma 4.6. Let Z = R x R x RP x R x R™*", Let F : Z — Z be defined by
and Z = ((t‘,Y),g, (E,f)) be a KKT point of the MCP problem. Then, F is
locally Lipschitz homeomorphism near Z if and only if Z is a strong regqular solution of

the generalized equation .

Let (£, X) be a feasible solution to the MCP problem (4.68). The critical cone C (£, X)
of (4.68)) at (£, X) is defined by

C(t,X) = {(r, H) € R x R™"| A(r, H) = 0, (r,H) € Txe(£, X), s7+ (C,H) <0} .
(4.76)

If (£, X) is a stationary point of MCP, i.e., M(f, X) is nonempty, then

Ct,X)={(r,H) e Rx R™" | A(r,H) =0, (1,H) € Tx(t,X), st+(C,H) =0} .

Let (,(¢,T)) € M(t,X). Denote (t,X) = (t+(, X +T). For such (7, ((,T)) € M(t, X),
we know from the KKT condition (4.69) that

CHt,X)={(r,H) e Rx R™" | A(r,H) =0, (1,H) € Cx(t, X)} , (4.77)
where Ci(t, X) is the critical cone of I at (¢, X), which is completely characterized in
Section {.1.2

For the MCP problem (4.68]), Robinson’s constraint qualification (CQ) (Robinson

[79]) can be equivalently written as

A {0} RP
R x RN 4 = . (4.78)

7 Tee (£, X) R x Rrxn
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The following result on the uniqueness of Lagrange multiplier of the MCP problem (4.68

can be obtained from [8, Proposition 4.50], directly.

Proposition 4.7. Let (t,X) be a feasible solution to the MCP problem and

(7,(¢,T)) € M(t,X). Suppose that (y,(C,T)) satisfies the following strict constraint

qualification:
A {0} RP
R x R 4 = . (4.79)
z Tie(t, X) N (7, (C.T)* R g

Then M(t, X) is a singleton.

Let G : R x R™*™ — RP x R™*™ be defined by
A(t, X)—b
G(t,X) = (t, X) € R x R,

(t, X)
Then, for any (7, ((,T)) € M(#,X) and (1, H) € C(f, X), the second order tangent set
7'{20}”C (G(¢,X),G'(t, X)(r, H)) to {0} x K at G(, X) along the direction G'(¢, X)(, H)
is given by

71'20}><IC (G(t: Y)? G/(Ev Y)(Ta H)) = 7:;%} (A(Ev Y) - ba A(Ta H)) X 7-IC2 ((ﬂ Y)v (7—7 H))
= Tioy < T

Since the support function value 6%, (y) = 0, we know that
{0}

5k 7, (C,T)) =625 (¢,T).
ﬁO}XK(y’ (C? )) T]%(C’ )
Let (£, X) € K be an optimal solution to the MCP problem (4.68). By Proposition
we have the following proposition.
Proposition 4.8. Let (t,X) be a feasible solution to the MCP problem such that
M(t, X) is nonempty. Then for any (y,((,T)) € M(t, X), one has
072(C 1) = Yx) ((C,T), (. H))  V(r, H) € C(t,X),

where the linear quadratic function T(fy)(', -) is defined in Definition .
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Recall that K is C2-cone reducible (Proposition 4.3). Note that {0} is also C?-cone
reducible, and the Cartesian product of C?-cone reducible sets is again C?-cone reducible.
Then, by combining Theorem 3.45, Proposition 3.136 and Theorem 3.137 in Bonnans

and Shapiro [8], we can state in the following theorem on the second order necessary

condition and the second order sufficient condition for the MCP problem (4.68)).

Theorem 4.9. Suppose that (t, X) is a locally optimal solution to the linear MCP

and Robinson’s CQ holds at (t, X). Then, the following inequality holds:

Cswp {—T(@ ((C,T), (r, H))} >0 V(r,H)eCEX). (4.80)
(@,(¢T)EM(EX)
Conversely, let (t,X) be a feasible solution to MCP such that M(t,X) is nonempty.

Suppose that Robinson’s CQ holds at (t,X). Then the following condition

s { T (GO ()} >0 V(nH) €CEX)\{(0,0))  (4.81)
(3. T)EMEX)

is necessary and sufficient for the quadratic growth condition at (t, X), i.e., ¥V (t,X) € N
such that (t, X) is feasible,

{(5,C), (6, X)) > {(5,C), (£, X)) + ¢ (£, X) = (t, X)|1?, (4.82)
for some constant ¢ > 0 and a neighborhood N of (t, X) is & x R™*".

For the stationary point (, X ), in order to introduce the strong second order sufficient

condition for the MCP problem (4.68)), we define the following outer approximation set

to the affine hull of C(¢, X) with respect to (7, ((,T)) € M(t, X) by
app(¥, (¢, 1)) :=={(r,H) e Rx R™ ™| A(T,H) =0, (1, H) € aff (Ck(¢, X))} . (4.83)

Therefore, the strong second order sufficient condition for the MCP problem (4.68)) is

defined as follows.

Definition 4.6. Let (£, X) be an optimal solution to such that M(t, X) is nonempty.

We say that the strong second order sufficient condition holds at (t, X) if

s {=Tx) (D), ()} >0 ¥(rH) € CEX)\{(0,0)},  (484)

(7,({D)eM(t,X)
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where for any (7, ((,T)) € M(£,X), g € RP, ({,T) € R x R™" and

Q

(Z?, Y) = ﬂ apP(ﬂ: (Ev f)) :
(7,(CD)EM(EX)
Let (7,(¢,T)) € M(t,X). Denote (t,X) = (t+ ¢, X +T'). Without loss of generality,
from now on, we always assume that (¢, X) ¢ int LUint £°. By [17, Lemma 1], it is clear

that U € 9gF((t,X), 7, (¢,T)) if and only if there exists a V' € dpllk(t, X) such that

—A*(Ay) + (A, AT)

U ((At, AX), Ay, (AG,AL)) = AN, AX) (4.85)

(At, AX) — V(A + AC, AX + AT)

for all ((At,AX), Ay, (A, AT)) € Z. Let ex(9pllk(t, X)) be defined by (4.67). For
VO VT ¢ ex(0pllk(t, X)), let U° and UZ be defined by (4.85)), respectively. Denote

ex (0pF((t,X),7, (¢, T))) = {UO, UI} .

Proposition 4.10. Let ((£,X), 7, (¢,T)) be a KKT point of the MCP problem . If
U° € ex (0pF((t,X),y,(¢,T))) is nonsingular, then the constraint nondegenerate condi-
tion holds at (t,X).

Proof. Assume on the contrary that (4.72)) does not hold. Then, we have

L i
0 0 P
R x XN ﬂ ?é e ’

7 lin(Tic (£, X)) 0 R x Rrmxn

which implies that there exists

L L
A 0
0 # (Ay, (AL, AT)) € Jx g
z

lin(7x (¢, X))
i

A
From (Ay, (A(,AL)) € R x R 5 we know that
T

(Ay, (AGATD)), (A(T, H), (1, H))) =0 V(r,H) € R x R™",
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which implies

A*(Ay) + (A AT) = —A*(Ay) + (=LA, —AT) =0.

1

0
Meanwhile, from (Ay, (A, AT)) € , we obtain that

lin(Tx (£, X))

—7NAC— (H,AT) =0 V(r,H) € lin(Tx(t, X)).
Therefore, we know from (4.3) and (4.4) that

T(U ATV) =0,

where the linear operator T' : R™*"™ — R™*" ig defined by (3.160) if 75 > 0, and (3.167))
if 3 = 0. By Proposition we know that V(—=A(, —AT') = 0 € R™*". Therefore,

since V(At — A AX — AT) =0 € R, for (At, AX) = (0,0), we have

Nt V(AL — N¢,AX — AT
— =0,
AX VP(At— ACAX — AT)

which implies that
—A*(Ay) + (=A¢, —ATD)
U°((At, AX), Ay, (—A¢, —AT)) = A(At, AX)

(A, AX) — VOAL — A, AX — AT)

Since 0 # (Ay, (A, AT)), we know that UY is singular. This contradiction shows that

the constraint nondegenerate condition 1' holds at (¢, X).

O

When M(%, X) is a singleton, we have the following result on the strong second order

sufficient condition (4.84]).

Proposition 4.11. Let (£, X) be a feasible point of the MCP problem . Assume

that M(t,X) = {g,((,T)}. If UL € ex(0F((t,X),7,(C,T))) is nonsingular, then the

strong second order sufficient condition holds at (t,X).
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Proof. Since M(t,X) = {yj, (¢, f)}, the strong second order sufficient condition (4.84])

can be written as

— Y ((CD). (. H) >0 V(. H) €app(y,(C.1) \ {(0,0)}. (4.86)

Suppose that the condition (4.86) does not hold at (£, X). By noting that for any
(r,H) € app(y, ((,T)), —Tix) ((¢,T),(r,H)) > 0, we know that there exists 0 #
(1, H) € app(y, (C,T)) such that

A(r,H)=0 and —7T;x (((.D), (. H)) =0.

Therefore, by the definition (Definition of Ti; %) ((¢,T),(r,H)) and the proof of
Proposition we know that if o4 (X) > 0,

"

H5151 Hﬁlﬁz

f[aa e Slal, € Slhil+lBl

H5251 HB252
Hg g, = (Hg,p,)", Hpyp, = (Hayp,)"

Hop, = (Hpyo)" =0, Hap, = (Hg,o)T =0, (4.87)

ﬁac = 07 ﬁﬁlc = 07 ﬁﬁzc = 07
where H = UTHV, and the index sets «, 3, v, and 5;, i = 1,2, 3 are defined by ([3.150))
and (3.159)), respectively; if o3 (X) = 0,

Hyo € S,

HOC/BQ = (ﬁﬁQOC)T = 01 Haﬂg = (ﬁ,35a)T = 07 (488)

where H = UTHV, and the index sets «, B8, and 3;, ¢ = 1,2,3 are defined by (3.154))
and (3.166), respectively. By Proposition we know from (4.87) and (4.88]) that

(r,H) = VZ(T,H).
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Finally, by (4.85)), we have for (Ay, (A, AT)) =0 € R x R x R™*" that

—A*(Ay) + (A AT

U*((r, H), Ay, (D¢ AT)) = A(r, H) —0,

(r,H) — VI(r + AC,H 4+ AT)

which, implies that U7 is singular. This contradiction shows that the strong second

order sufficient condition (4.86]) holds at (£, X). O

The following proposition relates the strong second order sufficient condition and
constraint nondegeneracy to the nonsingularity of Clarke’s Jacobian of the mapping F

and the strong regularity of a solution to the generalized equation (4.74]).

Proposition 4.12. Let (£, X) be a feasible solution of the MCP problem . Let
g e R, (C,T) € R x R™*™ be such that (3, ((,T)) € M(t,X). Consider the following

three statements:

(a) The strong second order sufficient condition holds at (t,X) and (t,X) is
constraint nondegenerate.

(b) Any element in OF ((t,X),7, ((,T)) is nonsingular.

(¢) The KKT point ((f, X), v, (5,F)) 18 a strong reqular solution of the generalized
equation .

It holds that (a) = (b) = (c).

Proof. “(a) = (b)” Since the constraint nondegeneracy condition holds at
(t,X), (7, (¢,T)) satisfies the strict constraint qualification . Thus, we know from
Proposition that M(f, X) = {(£, X), (9,((,T))}. The strong second order sufficient
condition then takes the following form

Yix) ((CD), (7, H)) >0 ¥ (r,H) € app(y, (C,T)) \ {(0,0)}. (4.89)
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Let (t,X) =T+ (X +T).

Let U be an arbitrary element in OF((f, X), 7, (¢,T)). We will show that U is non-
singular. Let ((At,AX), Ay, (—A(,—AT)) € R x R™*" x R x R x R™*™ be such
that

U (A, AX), Ay, (—AC,—AT)) = 0.

Then, we know that there exists a V' € Ollx (¢, X) such that

—A*(Ay) + (AC, AT)
U ((At, AX), Ay, (AG,AL)) = A(At, AX) =0. (4.90)

(At,AX) — V(A + AC, AX + ATL)

From the third equation of (4.90]), we know that (At, AX) = V(At + A, AX + AT).
By Lemma and the second equation of (4.90), we obtain that

(At, AX) € app(y, (G, 1)) -
From the first and second equations of , we know that
0=—(A(At, AX), Ay) + (At, AX), (A, AT)) = (AL, AX), (AL, AT))
which, together with the third equation of and Proposition implies that
0> —Y;x) (1), (A, AX)) .

Therefore, by (4.89), we have
(A, AX)=0.

Thus, (4.89) reduces to
—A*(Ly) + (A AT)
=0 (4.91)
V(A AT)
By the constraint nondegeneracy condition (4.72]), we know that there exist (a, A) €

R x R and (1, H) € lin(Tx(£, X)) such that

A(a,A) = —-Ay and (a+T7,A+H)=(A(AT). (4.92)
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By and the first equation of (4.91]), we know that
(By, Ay) + (AG, AT), (AG, AT))
= (—Ala,A),Ay) + ((a+71,A+ H), (A, AT))
= ((a,4), =A"(Ay) + (A, AL)) + (7, H), (AC, AL))
= TACH+ (H,AT) = 7AC + (H, AT), (4.93)

where H = U  HV and AT = U AT'V. Next, consider the following two cases.

Case 1. 04(X) > 0. Since (1, H) € lin(Tx (¢, X)), by (4.3), we know that

1 N
S tr(Hy o) | T
— (T ; r( lz)> 18]

Hence, from the part (i) of Lemma we know that

S(Hgg) =

fACIM 0 0 0
TAC+<I:’T7AF>:ACT+<}~I7 0 Afgﬂ 0 0 >

0 0 00

70
= ACT =AY tr(Hay,) + (S(Hgp), ATgg)  (since AT gg is symmetric)

0
= A(T—AC Z tr(Haya,) +

— Ztr alal ) tr AFBB)

ol
= —A(<—7+Ztr alal)—AC(T—Ztr am>:

=1

Case 2. 04(X) = 0. Since (1, H) € lin(Tx (¢, X)), by (4.4), we know that

70
Ztr(Halal) =7 and [Hﬁﬁ ch:| =0.

~Ally 0 0 >
0 Afﬁg Afﬁc

From the part (ii) of Lemma [3.19] we know that

TAC+ (H,AT') = ACT + <ﬁ1

T0
= ACT— N Z tr(Hyya,) = 0.
=1
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Thus, from (4.93), we obtain that
Ay=0 and (A(AT)=0.

This, together with (At, AX) = 0, shows that U is nonsingular.

“(b) = (c)” By Clarke’s inverse function theorem [22 23], we know that F' is
a locally Lipschitz homeomorphism near ((f, X), 7, (¢, f)) Thus, from Lemma
((t_, X), 7, (¢, f)) is a strong regular solution of the generalized equation 1' O

Now, we are ready to state our main results of this chapter.

Theorem 4.13. Let ((¢,X),7,(¢,T)) be a KKT point satisfying the KKT condition
4.69) and F be defined by . Then, the following statements are all equivalent:

(i) The KKT point ((t_, X), 7, (C,F)) is a strongly reqular solution of the generalized

equation :

(it) The function F is locally Lipschitz homeomorphism near ((t,X),, (¢,T)).

(i1i) The strong second order sufficient condition holds at (t,X) and (t,X) is

constraint nondegenerate.

(iv) Every element in OF((t, X),y, ((,T)) is nonsingular.

(v) Every element in OpF((t, X), 7, ((,T)) is nonsingular.

(vi) The two elements in ex (OpF((t,X),¥, ((,T)) are nonsingular.

Proof. The relation (i) <= (ii) follows from Lemma We know from Proposition

Proposition and Proposition that (iii) <= (iv) <= (v) <= (vi) = (4).
Finally, we know from [50] that (i) = (v). Thus, the proof is completed. O
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4.3 Extensions to other MOPs

In pervious sections, we have studied the variational analysis of the Ky Fan k-norm cone
and the sensitivity analysis of the linear MCP problem involving the Ky Fan k-norm
cone. In this section, we consider the extensions of the corresponding sensitivity results

to other MOP problems.

The first kind of MOPs considering in this section is the linear MCP problem involv-
ing the epigraph cone M of the sum of k largest eigenvalues of the symmetric matrix
( in Section , which comes from the applications such as eigenvalue optimiza-
tion [69, [70, [71), 55]. Note that the epigraph cone M can be regarded as the symmetric
counterpart of the Ky Fan k-norm cone K. By using the properties of the eigenvalue
function A(-) of the symmetric matrix (see e.g., Section , the corresponding vari-
ational properties of M such as the characterizations of tangent cone and the second
order tangent sets of M, the explicit expression of the support function of the second
order tangent set of M, the C2-cone reducibility of M and the characterization of the
critical cone of M, can be obtained in the similar but simple way to those of the Ky
Fan k-norm cone K. Similarly, we can state the constraint nondegeneracy, the second
order necessary condition and the (strong) second order sufficient condition of the linear
matrix cone programming (MCP) problem (1.49). Also, by using the properties of the
spectral operator (the metric projection operator over the epigraph cone M), for the
considering linear matrix cone programming (MCP) problem , we can consider the
relationships among the strong regularity of the KKT point, the strong second order
sufficient condition and constraint nondegeneracy, and the nonsingularity of both the
B-subdifferenitial and Clarke’s generalized Jacobian of the nonsmooth system at a KKT
point.

The second kind of MOPs considering in this section is the nonlinear MCP problems

with the Ky Fan k-norm cone IC, where the smooth objective function and constraints

in (4.68) are not necessary linear. For example, the problem (1.10]), (1.12)) and (L.14)




4.3 Extensions to other MOPs

202

can be reformulated as the nonlinear MCP problems with the Ky Fan k-norm cone K.
Since the epigraph cone K is C2-cone reducible, by combining the variational properties
of K which we obtained in this thesis and the sensitivity results for the general conic
programming in literature [B, [7, 8], we can establish the constraint nondegeneracy, the
second order necessary condition and the (strong) second order sufficient condition for
the nonlinear MCP problem involving /C directly. Furthermore, as the nonlinear SDP
problem [94], we can consider the various characterizations for the strong regularity for a
local solution of the nonlinear MCP with the Ky Fan k-norm cone K. Actually, the results
in Proposition for the linear MCP problem can be extended easily to the
nonlinear MCP problem involving the Ky Fan k-norm cone K. Finally, as the nonlinear
SDP problem [94], for a local solution of the considering nonlinear MCP problem, we are
able to consider the relationships among the strong second-order sufficient condition and
constraint nondegeneracy, the non-singularity of Clarke’s Jacobian of the Karush-Kuhn-
Tucker (KKT) system and the strong regularity of the KKT point, under the Robinson’s
CQ.

The third kind of MOPs considering in this section is the linear MCP problem
where the matrix cone K is the Cartesian product of the Ky Fan k-norm cone and some
well understood symmetric cones (e.g., nonnegative orthant, the second order cone and
the SDP cone). For example, the problem , and others can be reformulated
as this separable cone constraints MCP problem. Since the variational properties of such
symmetric cones are well studied in literature [33], [86], [35], [07] and all the cones consid-
ering right now are C?-cone reducible, by combining the variational properties of the Ky
Fan k-norm cone which we obtained before, we can derive the corresponding sensitivity
results for the linear MCP problem with the separable cone constraints. Therefore, the
sensitivity analysis results obtained in this chapter can be extended immediately to such

linear MCP problems.

Finally, as we mentioned before, the work done on the sensitivity analysis of MOPs
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is far from comprehensive. It can be seen that some MOP problems may not be cov-
ered by this work due to the inseparable structure. For example, in order to study the
sensitivity results of the MOP problem defined in , we must first study the varia-
tional properties of the epigraph cone Q of the positively homogenous convex function
f =max{A(), | - [l2} : 8™ x R™*™ — (—o00, 0] such as the characterizations of tangent
cone and the (inner and outer) second order tangent sets of Q, the explicit expression of
the support function of the second order tangent set of Q, the C?-cone reducibility of M
and the characterization of the critical cone of Q. Certainly, the properties of spectral
operators (the metric projection operator over the convex cone Q) will play an important

role in this study. Also, this is our future research direction.



Chapter

Conclusions

In this thesis, we study a class of optimization problems, which involve minimizing the
sum of a linear function and a proper closed convex function subject to an affine con-
straint in the matrix space. Such optimization problems are said to be matrix optimiza-
tion problems (MOPs). Many important optimization problems in diverse applications
arising from a wide range of fields can be cast in the form of MOPs. In order to solve
the defined MOP by the proximal point algorithms (PPAs), as an initial step, we do
a systematic study on spectral operators. Several fundamental properties of spectral
operators are studied, including the well-definiteness, the directional differentiability,
the Fréchet-differentiability, the locally Lipschitz continuity, the p-order B(ouligand)-
differentiability, the p-order G-semismooth and the characterization of Clarke’s gener-
alized Jacobian. This systematical study of spectral operators is of crucial importance
in terms of the study of MOPs, since it provides the powerful tools to study both the
efficient algorithms and the optimal theory of MOPs.

In the second part of this thesis, we discuss the sensitivity analysis of some MOP
problems. We mainly focus on the linear MCP problems involving the Ky Fan k-norm
epigraph cone K. Firstly, we study some important variational properties of the Ky Fan

k-norm epigraph cone K, including the characterizations of tangent cone and the (inner

204
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and outer) second order tangent sets of I, the explicit expression of the support function
of the second order tangent set, the C2-cone reducibility of IC, the characterization of the
critical cone of K. By using these properties, we state the constraint nondegeneracy, the
second order necessary condition and the (strong) second order sufficient condition of the
linear matrix cone programming (MCP) problem involving the Ky Fan k-norm. For such
linear MCP problems, we establish the equivalent links among the strong regularity of the
KKT point, the strong second order sufficient condition and constraint nondegeneracy,
and the non-singularity of both the B-subdifferenitial and Clarke’s generalized Jacobian
of the nonsmooth system at a KKT point. The extensions to other MOP problems are

also discussed.

The work done in this thesis is far from comprehensive. There are many interesting
topics for our future research. Firstly, the general framework of the classical PPAs for
MOPs discussed in this thesis is heuristics. For applications, a careful study on the
numerical implementation is an important issue. There is a great demand for efficient
and robust solvers for solving MOPs, especially for problems that are large scale. On
the other hand, our idea for solving MOPs is built on the classical PPA method. One
may use other methods to solve MOPs. For example, in order to design the efficient
and robust interior point method to MCPs, more insightful research on the geometry of
the non-symmetric matrix cones as the Ky Fan k-norm cone is needed. In this thesis,
we only study the sensitivity analysis of some MOP problems with special structures,
such as the linear MCP problems involving the Ky Fan k-norm epigraph cone K and
others. Another important research topic is the sensitivity analysis of the general MOP
problems such as the nonlinear MCP problems and the MOP problems and

with the general convex functions.
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