
J Optim Theory Appl (2016) 169:1013–1041
DOI 10.1007/s10957-016-0877-2

On the Convergence Properties of a Majorized
Alternating Direction Method of Multipliers
for Linearly Constrained Convex Optimization
Problems with Coupled Objective Functions

Ying Cui1 · Xudong Li1 · Defeng Sun2 ·
Kim-Chuan Toh1

Received: 31 January 2015 / Accepted: 18 January 2016 / Published online: 2 February 2016
© Springer Science+Business Media New York 2016
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1 Introduction

In this paper, we discuss the convergence of the alternating direction method of mul-
tipliers (ADMM) for minimizing linearly constrained convex optimization problems
with coupled objective functions. More precisely, the concerned objective function
consists of two nonsmooth separable functions and a coupled smooth one. This type
of problems arises frequently in many fields of applications, including signal process-
ing, image restoration, machine learning, and etc.

Onepopularway to solve this class of problems is thewell studied classic augmented
Lagrangian method (ALM). The ALMminimizes the augmented Lagrangian function
with respect to all the decision variables simultaneously, regardless of whether the
objective function is coupled or not before updating the Lagrangian multiplier along
the (sub-)gradient ascent direction of the dual problem. Numerically, however, to
solve the inner subproblems exactly or approximately with a high accuracy in the
ALM, which may not be necessary at early stages, can be a time consuming task
due to the non-separable structure combined with the two nonsmooth functions in the
augmented Lagrangian function.

When the objective function is separable, i.e., the coupled smooth function is not
present, one can alleviate the numerical difficulty in the ALM by directly applying the
ADMM. The global convergence of the ADMM with separable objective functions
has been extensively studied in the literature; see, for examples, [1–5]. For a recent
survey, see Eckstein and Yao [6]. Meanwhile, there are very few papers on the ADMM
targeting the optimization problems with coupled objective functions except for the
work of Hong et al. [7], where the authors studied a majorized multi-block ADMM
for linearly constrained optimization problems with non-separable objectives. Hong
et al. [7] provided a very general convergence analysis of their majorized ADMM,
assuming that the step length is a sufficiently small fixed number or converging to
zero, among other conditions. Since a large step length is almost always desired in
practice, one needs to develop a new convergence theorem beyond the one in [7].

In this paper, we conduct a thorough convergence analysis on our proposed
majorized ADMM (see Sect. 3) when it is applied to the optimization problems
with non-separable objective functions. This majorized ADMM reduces to the clas-
sic ADMM when the coupled term is absent from the objective. By making use of
nonsmooth analysis, especially the generalized Mean-Value Theorem, we are able
to establish the global convergence and the iteration complexity for our majorized
ADMM with the step length taken as large as 1.618. To the best of our knowledge,
this is the first paper providing the convergence properties of the (majorized) ADMM
with a large step length for solving linearly constrained convex optimization problems
with coupled smooth objective functions.

The remaining parts of our paper are organized as follows. In next section, we state
the targeted optimization problems and provide some preliminary results. Section 3
focuses on our framework of a majorized ADMM and two important inequalities for
the convergence analysis. In Sect. 4, we prove the global convergence and several
iteration complexity results of the proposed algorithm. We conclude our paper in the
last section.
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2 Preliminaries

Consider the following convex optimization problem:

min
u,v

[θ(u, v) := p(u) + q(v) + φ(u, v) |A∗u + B∗v = c], (1)

where p : U →] − ∞,∞], q : V →] − ∞,∞] are two closed and proper convex
functions (possibly nonsmooth), φ : U × V →] − ∞,∞[ is a smooth and convex
function, whose gradient mapping is Lipschitz continuous,A : X → U and B : X →
V are two given linear operators, c ∈ X is a given vector, and U ,V and X are three
real finite dimensional Euclidean spaces, each equipped with an inner product 〈·, ·〉
and its induced norm ‖ · ‖.

One particular example of problem (1) is the following problem, whose objective is
the sum of a quadratic function and a squared distance function to a closed and convex
set:

min
u,v

[
1

2

〈 (
u
v

)
, Q̃

(
u
v

) 〉
+ ρ

2

∥∥∥∥
(
u
v

)
− ΠK1

(
u
v

)∥∥∥∥
2 ∣∣∣∣A∗u + B∗v = c, u ∈ K2, v ∈ K3

]
,

(2)

where ρ > 0 is a penalty parameter, Q̃ : U × V → U × V is a self-ajoint positive
semidefinite linear operator,K1 ⊆ U ×V ,K2 ⊆ U andK3 ⊆ V are closed and convex
sets and ΠK1(·, ·) denotes the metric projection onto K1.

The augmented Lagrangian function for problem (1) associated with the parameter
σ > 0 is defined as

Lσ (u, v; x) := θ(u, v) + 〈x,A∗u + B∗v − c〉 + σ

2
‖A∗u

+B∗v − c‖2, ∀ (u, v, x) ∈ U × V × X . (3)

Even if φ(·, ·) is not separable, one can still apply the classic ADMM scheme for
solving problem (1) as follows:

uk+1 = argmin
u

Lσ (u, vk; xk),
vk+1 = argmin

v
Lσ (uk+1, v; xk),

xk+1 = xk + τσ (A∗uk+1 + B∗vk+1 − c),

(4)

where τ > 0 is the step length. However, its convergence analysis is largely non-
existent in the literature. One way to deal with the non-separability of φ(·, ·) is to

introduce a new variable w =
(
u
v

)
. By letting Ã∗ =

⎛
⎝A
I1
0

⎞
⎠, B̃∗ =

⎛
⎝ B

0
I2

⎞
⎠, C̃∗ =

⎛
⎝ 0 0

−I1 0
0 −I2

⎞
⎠ and c̃ =

⎛
⎝ c
0
0

⎞
⎠ with identity maps I1 : U → U and I2 : V → V , we

can rewrite the optimization problem (2) equivalently as
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min
u,v,w

[θ̃ (u, v, w) := p(u) + q(v) + φ(w) | Ã∗u + B̃∗v + C̃∗w = c̃]. (5)

For given σ > 0, the corresponding augmented Lagrangian function for problem
(5) is

L̃σ (u, v, w; x)= θ̃ (u, v, w)+〈x, Ã∗u+B̃∗v+C̃∗w−c̃〉+ σ

2
‖Ã∗u+B̃∗v+C̃∗w−c̃‖2,

where (u, v, w) ∈ U × V × (U × V) and x ∈ X . Directly applying the three-block
ADMM yields the following framework:

uk+1 = argmin
u

L̃σ (u, vk, wk; xk),
vk+1 = argmin

v
L̃σ (uk+1, v, wk; xk),

wk+1 = argmin
w

L̃σ (uk+1, vk+1, w; xk),
xk+1 = xk + τσ (Ã∗uk+1 + B̃∗vk+1 + C̃∗wk+1 − c̃),

where τ > 0 is the step length. Even though numerically the three-block ADMM
works well for many applications, generally it is not a convergent algorithm even if τ

is as small as 10−8, as shown in the counterexamples given by Chen et al. [8].
As is mentioned in the Introduction section, Hong et al. [7] proposed to combine

the majorization technique within the ADMM framework. When specialized to the
two-block case for problem (1), their algorithm works as follows:

uk+1 = argmin
u

[p(u) + 〈xk,A∗u〉 + ĥ1(u; uk, vk)],
vk+1 = argmin

v
[q(v) + 〈xk,B∗v〉 + ĥ2(v; uk+1, vk)],

xk+1 = xk + αkσ(A∗uk+1 + B∗vk+1 − c), (6)

where ĥ1(u; uk, vk) and ĥ2(v; uk+1, vk) are majorization functions of φ(u, v) +
σ
2 ‖A∗u + B∗v − c‖2 at (uk, vk) and (uk+1, vk), respectively, and αk > 0 is the
step length.

Similar to Hong et al.’s work [7], our approach also relies on the majorization
technique applied to the smooth coupled function φ(·, ·). One difference is that we
majorize φ(u, v) at (uk, vk) before the (k + 1)th iteration instead of changing the
majorization function based on (uk+1, vk)when updating vk+1 as in (6). Interestingly,
if φ(·, ·) merely consists of quadratically coupled functions and separable smooth
functions, then ourmajorizedADMM is exactly the same as the one proposed byHong
et al. under a proper choice of the majorization functions. Moreover, for applications
such as (2), a potential advantage of our method is that we only need to compute the
projection ΠK1(·, ·) once in order to compute ∇φ(·, ·) as a part of the majorization
function within one iteration, while the procedure (6) needs to compute ΠK1(·, ·) at
two different points (uk, vk) and (uk+1, vk).

Next, we summarize several necessary results to be used in our subsequent analysis.
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Denote w :=
(
u
v

)
. Since φ(·) is assumed to be a convex function with a Lipschitz

continuous gradient, ∇2φ(·) exists almost everywhere. Thus, the following Clarke’s
generalized Hessian at given w ∈ U × V is well defined [9]:

∂2φ(w) := conv

{
lim

wk→w
∇2φ(wk),∇2φ(wk) exists

}
, (7)

where “conv{S}” denotes the convex hull of a given set S. Note that for any W ∈
∂2φ(w) with w ∈ U ×V ,W is self-adjoint and positive semidefinite. In [10], Hiriart-
Urruty et al. provide a second order Mean-Value Theorem for φ, which states that for
any w′ and w in U ×V , there exists z ∈ [w′, w], which is the line segment connecting
w′ and w, and W ∈ ∂2φ(z) such that

φ(w) := φ(w′) + 〈∇φ(w′), w − w′〉 + 1

2
〈w − w′,W(w − w′)〉 .

Since ∇φ is assumed to be globally Lipschitz continuous, there exist two self-
adjoint positive semidefinite linear operators Q and H : U × V → U × V such that
for any w ∈ U × V ,

Q 
 W 
 Q + H, ∀W ∈ ∂2φ(w). (8)

Here, Q and H are independent of w. Thus, for any w,w′ ∈ U × V , we have

φ(w) ≥ φ(w′) + 〈∇φ(w′), w − w′〉 + 1

2
‖w′ − w‖2Q, (9)

φ(w) ≤ φ̂(w;w′) := φ(w′) + 〈∇φ(w′), w − w′〉 + 1

2
‖w′ − w‖2Q+H. (10)

In this paper, we further assume that

H = Diag (D1,D2), (11)

where D1 : U → U and D2 : V → V are two self-adjoint positive semidefinite
linear operators. In fact, this kind of structure naturally appears in applications like
(2), where the best possible lower bound of the generalized Hessian is Q̃ and the best
possible upper bound of the generalized Hessian is Q̃+I, where I : U ×V → U ×V
is the identity operator. For this case, the tightest estimation ofH is I, which is block
diagonal. Since the coupled function φ(u, v) consists of two block variables u and

v, the operators Q and W can be decomposed accordingly as Q =
(
Q11 Q12
Q∗

12 Q22

)
and

W =
(
W11 W12
W∗

12 W22

)
, where W11, Q11 : U → U and W22, Q22 : V → V are

self-adjoint positive semidefinite linear operators, and W12, Q12 : V → U are two
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linear mappings, whose adjoints are denoted by W∗
12 and Q∗

12, respectively. Denote
η ∈ [0, 1] as a constant that satisfies

|〈u, (W12 − Q12)v〉| ≤ η

2
(‖u‖2D1

+ ‖v‖2D2
), ∀W ∈ ∂2φ(u, v), u ∈ U , v ∈ V.

(12)

Note that (12) always holds true for η = 1, according to the Cauchy-Schwarz
inequality.

In order to prove the convergence of the proposed majorized ADMM, the following
constraint qualification is needed:

Assumption 2.1 There exists (û, v̂)∈ ri (dom(p)×dom(q)) such thatA∗û+B∗v̂=c.

Let ∂p and ∂q be the subdifferential mappings of p and q, respectively. Define the
set-valued mapping F by

F(u, v, x) := ∇φ(w) +
(

∂p(u) + Ax
∂q(v) + Bx

)
, ∀ (u, v, x) ∈ U × V × X .

Under Assumption 2.1,1 (ū, v̄) is optimal to (1) if and only if there exists x̄ ∈ X
such that the following Karush–Kuhn–Tucker (KKT) condition holds:

0 ∈ F(ū, v̄, x̄), A∗ū + B∗v̄ = c, (13)

which is equivalent to the following variational inequality:

(p(u) + q(v)) − (p(ū) + q(v̄)) + 〈w − w̄,∇φ(w̄)〉 + 〈u − ū,Ax̄〉 + 〈v − v̄,Bx̄〉
−〈x − x̄,A∗ū + B∗v̄ − c〉 ≥ 0, ∀ (u, v, x) ∈ U × V × X . (14)

Also recall that for any ξ , ζ in the same space and a self-adjoint positive semidefinite
operator G, it holds that

〈ξ,Gζ 〉 = 1

2

(
‖ξ‖2G + ‖ζ‖2G − ‖ξ − ζ‖2G

)
= 1

2

(
‖ξ + ζ‖2G − ‖ξ‖2G − ‖ζ‖2G

)
.

(15)

3 A Majorized Alternating Direction Method of Multipliers with
Coupled Objective Functions

In this section, we will first present the framework of our majorized ADMM, and
then prove two important inequalities that play an essential role for our convergence
analysis.

1 We may instead directly assume the existence of a KKT point without imposing Assumption 2.1 in our
convergence analysis.

123



J Optim Theory Appl (2016) 169:1013–1041 1019

Let σ > 0. For given w′ = (u′, v′) ∈ U × V , define the following majorized
augmented Lagrangian function associated with problem (1):

L̂σ (w; (x, w′)) := p(u)+q(v)+φ̂(w;w′)+〈x,A∗u + B∗v−c〉+ σ

2
‖A∗u+B∗v−c‖2,

where (w, x) = (u, v, x) ∈ U × V × X , and the majorized function φ̂ is given by
(10). Then, our proposed algorithm works as follows:

Majorized ADMM: A majorized ADMM with coupled objective functions

Choose an initial point (u0, v0, x0) ∈ dom(p) × dom(q) ×X and parameters τ > 0.
Let S and T be given self-adjoint positive semidefinite linear operators. For k =
0, 1, 2, · · · , perform the kth iteration as follows:

Step 1. Compute uk+1 = argmin
u∈U

[L̂σ (u, vk; (xk, wk)) + 1

2
‖u − uk‖2S ].

Step 2. Compute vk+1 = argmin
v∈V

[L̂σ (uk+1, v; (xk, wk)) + 1

2
‖v − vk‖2T ].

Step 3. Compute xk+1 = xk + τσ (A∗uk+1 + B∗vk+1 − c).

In order to simplify subsequent discussions, for k = 0, 1, 2, . . ., define

x̃ k+1 := xk + σ
(
A∗uk+1 + B∗vk+1 − c

)
,

Ξk+1 :=
∥∥∥vk+1 − vk

∥∥∥2
D2+T

+ η

∥∥∥uk+1 − uk
∥∥∥2
D1

,

Θk+1 :=
∥∥∥uk+1 − uk

∥∥∥2
S

+
∥∥∥vk+1 − vk

∥∥∥2
T

+ 1

4

∥∥∥wk+1 − wk
∥∥∥2
Q

,

Γk+1 := Θk+1 + min
(
τ, 1 + τ − τ 2

) ∥∥∥vk+1 − vk
∥∥∥2

σBB∗

−
∥∥∥uk+1 − uk

∥∥∥2
ηD1

−
∥∥∥vk+1 − vk

∥∥∥2
ηD2

(16)

and denote, for (u, v, x) ∈ U × V × X ,

Φk(u, v, x) := 1

τσ

∥∥∥xk − x
∥∥∥2 +

∥∥∥uk − u
∥∥∥2
D1+S

+
∥∥∥vk − v

∥∥∥2
Q22+D2+T

+1

2

∥∥∥wk − w

∥∥∥2
Q

+ σ

∥∥∥A∗u + B∗vk − c
∥∥∥2 ,

Ψk(u, v, x) := Φk(u, v, x) +
∥∥∥wk − w

∥∥∥2
Q

+max(1 − τ, 1 − τ−1)σ

∥∥∥A∗uk + B∗vk − c
∥∥∥2 . (17)
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Proposition 3.1 Suppose that the solution set of problem (1) is nonempty andAssump-
tion 2.1 holds. Assume that S and T are chosen such that the sequence {(uk, vk, xk)}
is well defined. Then, the following conclusions hold:

(i) For τ ∈]0, 1], we have that for any k ≥ 0 and (u, v, x) ∈ U × V × X ,

(
p
(
uk+1

)
+ q

(
vk+1

))
− (p(u) + q(v)) +

〈
wk+1 − w,∇φ(w)

〉
+
〈
uk+1 − u,Ax

〉
+
〈
vk+1 − v,Bx

〉
−
〈
x̃ k+1 − x,A∗u + B∗v − c

〉
+ 1

2
(Φk+1(u, v, x) − Φk(u, v, x))

≤ −1

2

(
Θk+1 + σ

∥∥∥A∗uk+1 + B∗vk − c
∥∥∥2

+(1 − τ)σ

∥∥∥A∗uk+1 + B∗vk+1 − c
∥∥∥2) . (18)

(ii) For τ ≥ 0, we have that for any k ≥ 1 and (u, v, x) ∈ U × V × X ,

(
p
(
uk+1

)
+ q

(
vk+1

))
− (p(u) + q(v)) +

〈
wk+1 − w,∇φ(w)

〉
+
〈
uk+1 − u,Ax

〉
+
〈
vk+1 − v,Bx

〉
−
〈
x̃ k+1 − x,A∗u + B∗v − c

〉
+ 1

2
(Ψk+1(u, v, x)

+Ξk+1 − (Ψk(u, v, x) + Ξk))

≤ −1

2

(
Γk+1 + min(1, 1 + τ−1 − τ)σ

∥∥∥A∗uk+1 + B∗vk+1 − c
∥∥∥2) .

(19)

Proof In the majorized ADMM iteration scheme, the optimality condition for
(uk+1, vk+1) is

0 ∈ ∂p
(
uk+1

)
+ ∇uφ

(
wk

)
+ Ax̃ k+1

+ (Q11 + D1 + S) (uk+1 − uk) + σAB∗ (vk − vk+1
)

,

0 ∈ ∂q
(
vk+1

)
+ ∇vφ(wk) + Bx̃ k+1

+ (Q22 + D2 + T )
(
vk+1 − vk

)
+ Q∗

12

(
uk+1 − uk

)
, (20)

which can be reformulated as

−Ax̃ k+1 − ∇uφ
(
wk

) − (Q11 + D1 + S)
(
uk+1 − uk

) − σAB∗ (vk − vk+1
) ∈ ∂p(uk+1),

−Bx̃ k+1 − ∇vφ
(
wk

) − (Q22 + D2 + T )
(
vk+1 − vk

) − Q∗
12

(
uk+1 − uk

) ∈ ∂q
(
vk+1

)
.

(21)
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Therefore, by the convexity of p and q, we have that for any u ∈ U and v ∈ V ,

p(u) ≥ p
(
uk+1

)
−
〈
u− uk+1,Ax̃ k+1+ ∇uφ

(
wk

)
+ (Q11 + D1 + S)

(
uk+1 − uk

)
+ σAB∗ (vk − vk+1

)〉
,

q(v) ≥ q
(
vk+1

)
−
〈
v − vk+1,Bx̃ k+1+∇vφ

(
wk

)
+ (Q22 + D2+T )

(
vk+1 − vk

)
+Q∗

12

(
uk+1 − uk

)〉
. (22)

By taking (w,w′) = (w,wk) and (wk+1, w) in (9), and (w,w′) = (wk+1, wk) in
(10), we know that

φ(w) ≥ φ
(
wk

) + 〈∇φ
(
wk

)
, w − wk

〉 + 1
2

∥∥w − wk
∥∥2
Q ,

φ
(
wk+1

) ≥ φ(w) + 〈∇φ(w),wk+1 − w
〉 + 1

2

∥∥wk+1 − w
∥∥2
Q ,

φ
(
wk+1

) ≤ φ
(
wk

) + 〈∇φ
(
wk

)
, wk+1 − wk

〉 + 1
2

∥∥wk+1 − wk
∥∥2
Q+H .

(23)

Putting the above three inequalities together, we get

〈
∇φ

(
wk

)
− ∇φ(w),wk+1 − w

〉
≥ 1

2

(∥∥∥wk − w

∥∥∥2
Q

+
∥∥∥wk+1 − w

∥∥∥2
Q

)

−1

2

∥∥∥wk+1 − wk
∥∥∥2
Q+H

. (24)

Substituting (24) into the sum of the two inequalities in (22) and by the assumption
(11) and the identity (15), we can further obtain that

(
p
(
uk+1

)
+q

(
vk+1

))
−(p(u)+q(v)) +

〈
wk+1 − w,∇φ(w)

〉
+
〈
uk+1 − u,Ax

〉
+
〈
vk+1 − v,Bx

〉
−
〈
x̃ k+1 − x,A∗u + B∗v − c

〉
≤ σ

〈
B∗(vk+1 − vk),A∗(uk+1 − u)

〉
+
〈
vk+1 − vk,Q∗

12(u
k+1 − u)

〉
−1

2

(∥∥∥uk+1 − uk
∥∥∥2
S

+
∥∥∥uk+1 − u

∥∥∥2
D1+S

−
∥∥∥uk − u

∥∥∥2
D1+S

)

−1

2

(∥∥∥vk+1 − vk
∥∥∥2
T

+
∥∥∥vk+1 − v

∥∥∥2
D2+T

−
∥∥∥vk − v

∥∥∥2
D2+T

)

− 1

2τσ

(∥∥∥xk+1 − xk
∥∥∥2 +

∥∥∥xk+1 − x
∥∥∥2 −

∥∥∥xk − x
∥∥∥2)

−(1 − τ)σ

∥∥∥A∗uk+1 + B∗vk+1 − c
∥∥∥2 −

∥∥∥wk+1 − w

∥∥∥2
Q

.

(25)
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(i) Assume that τ ∈]0, 1]. Then, we get that
〈
vk+1 − vkQ∗

12

(
uk+1 − u

)〉
=
〈(

0
vk+1 − vk

)
, Q(wk+1 − w)

〉

−
〈
Q22

(
vk+1 − vk

)
, vk+1 − v

〉
≤ 1

2

(∥∥∥vk+1 − vk
∥∥∥2
Q22

+
∥∥∥wk+1 − w

∥∥∥2
Q

)

−1

2

(∥∥∥vk+1 − vk
∥∥∥2
Q22

+
∥∥∥vk+1 − v

∥∥∥2
Q22

−
∥∥∥vk − v

∥∥∥2
Q22

)

= 1

2

∥∥∥wk+1 − w

∥∥∥2
Q

+ 1

2

(∥∥∥vk − v

∥∥∥2
Q22

−
∥∥∥vk+1 − v

∥∥∥2
Q22

)
, (26)

where the inequality is obtained by the Cauchy-Schwarz inequality. By some simple
manipulations we can also see that

σ
〈
B∗ (vk+1 − vk

)
,A∗ (uk+1 − u

)〉
= σ

2

(∥∥∥A∗uk+1 + B∗vk+1 − c
∥∥∥2 −

∥∥∥A∗uk+1 + B∗vk − c
∥∥∥2)

+σ

2

(∥∥∥A∗u + B∗vk − c
∥∥∥2 −

∥∥∥A∗u + B∗vk+1 − c
∥∥∥2) . (27)

Finally, by substituting (26) and (27) into (25) and recalling the definition of
Φk+1(·, ·, ·) and Θk+1 in (16) and (17), we have that

(
p
(
uk+1

)
+q

(
vk+1

))
−(p(u)+q(v))+

〈
wk+1 − w,∇φ(w)

〉
+
〈
uk+1 − u,Ax

〉
+
〈
vk+1−v,Bx

〉
−
〈
x̃ k+1−x,A∗u+B∗v − c

〉
+ 1

2
(Φk+1(u, v, x) − Φk(u, v, x))

≤ −1

2

(∥∥∥uk+1 − uk
∥∥∥2
S

+
∥∥∥vk+1 − vk

∥∥∥2
T

+ 1

2

∥∥∥wk+1 − w

∥∥∥2
Q

+ 1

2

∥∥∥wk − w

∥∥∥2
Q

+σ

∥∥∥A∗uk+1 + B∗vk − c
∥∥∥2 + (1 − τ)σ

∥∥∥A∗uk+1 + B∗vk+1 − c
∥∥∥2)

≤−1

2

(
Θk+1+σ

∥∥∥A∗uk+1+B∗vk−c
∥∥∥2 + (1 − τ)σ

∥∥∥A∗uk+1+B∗vk+1−c
∥∥∥2) ,

where the last inequality comes from the fact that 1
2‖wk+1 − w‖2Q + 1

2‖wk − w‖2Q ≥
1
4‖wk+1 − wk‖2Q. This completes the proof of part (i).

(ii) Assume that τ ≥ 0. In this part, first we shall estimate the following term

σ
〈
B∗ (vk+1 − vk

)
,A∗uk+1 + B∗vk+1 − c

〉
+
〈
vk+1 − vk ,Q∗

12

(
uk+1 − u

)
+ Q22

(
vk+1 − v

)〉
.
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It follows from (21) that

−Bx̃k+1 − ∇vφ
(
wk

)
− (Q22 + D2 + T )

(
vk+1 − vk

)
− Q∗

12

(
uk+1 − uk

)
∈ ∂q

(
vk+1

)
,

−Bx̃k − ∇vφ
(
wk−1

)
− (Q22 + D2 + T )

(
vk − vk−1

)
− Q∗

12

(
uk − uk−1

)
∈ ∂q

(
vk
)

.

(28)

Since ∇φ is globally Lipschitz continuous, it is known from Clarke’s Mean-Value
Theorem [9, Proposition 2.6.5] that there exists a self-adjoint and positive semidefinite
operator Wk ∈ conv{∂2φ([wk−1, wk])} such that

∇φ
(
wk

)
− ∇φ

(
wk−1

)
= Wk

(
wk − wk−1

)
,

where the set conv{∂2φ[wk−1, wk]} denotes the convex hull of all pointsW ∈ ∂2φ(z)

for any z ∈ [wk−1, wk]. Denote Wk :=
(

Wk
11 Wk

12
(Wk

12)
∗ Wk

22

)
, where Wk

11 : U → U ,

Wk
22 : V → V are self-adjoint positive semidefinite operators and Wk

12 : U → V is a
linear operator. By using (28) and the monotonicity of ∂q(·), we obtain that

−
〈
B
(
x̃ k+1 − x̃ k

)
, vk+1 − vk

〉
−
〈
Q22

(
vk+1 − vk

)
+ Q∗

12

(
uk+1 − uk

)
, vk+1 − vk

〉
≥
〈
∇vφ

(
wk

)
− ∇vφ

(
wk−1

)
, vk+1 − vk

〉
−
〈
(Q22 + D2 + T )

(
vk − vk−1

)
, vk+1 − vk

〉
+
∥∥∥vk+1 − vk

∥∥∥2
T +D2

−
〈
uk − uk−1,Q12

(
vk+1 − vk

)〉
=
〈
uk − uk−1,

(
Wk

12 − Q12

) (
vk+1 − vk

)〉
−
〈(
Q22 + D2 + T − Wk

22

) (
vk − vk−1

)
, vk+1 − vk

〉
+
∥∥∥vk+1 − vk

∥∥∥2
T +D2

≥ −η

2

(∥∥∥uk − uk−1
∥∥∥2
D1

+
∥∥∥vk+1 − vk

∥∥∥2
D2

)

−1

2

(∥∥∥vk+1 − vk
∥∥∥2
T +D2

+
∥∥∥vk − vk−1

∥∥∥2
T +D2

)
+
∥∥∥vk+1 − vk

∥∥∥2
T +D2

= 1

2

∥∥∥vk+1 − vk
∥∥∥2
T +(1−η)D2

− 1

2

∥∥∥vk − vk−1
∥∥∥2
T +D2

− η

2

∥∥∥uk − uk−1
∥∥∥2
D1

,

where the second inequality is obtained from (12) and the fact that Wk
22 � Q22.

Therefore, in light of μk+1 = (1 − τ)σ 〈B∗(vk+1 − vk),A∗uk + B∗vk − c〉, we can
estimate the cross term

σ
〈
B∗ (vk+1 − vk

)
,A∗uk+1 + B∗vk+1 − c

〉
+
〈
Q∗

12

(
uk+1 − u

)
+ Q22

(
vk+1 − v

)
, vk+1 − vk

〉
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= (1 − τ)σ
〈
B∗ (vk+1 − vk

)
,A∗uk + B∗vk − c

〉
+
〈
B∗ (vk+1 − vk

)
, x̃ k+1 − x̃ k

〉
+
〈
Q∗

12

(
uk − u

)
+ Q22

(
vk − v

)
, vk+1 − vk

〉
+〈Q∗

12

(
uk+1 − uk

)
+ Q22

(
vk+1 − vk

)
, vk+1 − vk〉

≤ μk+1 + 1

2

(∥∥∥wk − w

∥∥∥2
Q

+
∥∥∥vk+1 − vk

∥∥∥2
Q22

)

−1

2

∥∥∥vk+1 − vk
∥∥∥2
T +(1−η)D2

+ 1

2

∥∥∥vk − vk−1
∥∥∥2
T +D2

+η

2

∥∥∥uk − uk−1
∥∥∥2
D1

. (29)

Finally, by the Cauchy-Schwarz inequality we know that

μk+1 ≤

⎧⎪⎪⎨
⎪⎪⎩

1

2
(1 − τ)σ

(∥∥∥B∗ (vk+1 − vk
)∥∥∥2 +

∥∥∥A∗uk + B∗vk − c
∥∥∥2) , τ ∈]0, 1],

1

2
(τ − 1)σ

(
τ

∥∥∥B∗ (vk+1 − vk
)∥∥∥2 + τ−1

∥∥∥A∗uk + B∗vk − c
∥∥∥2) , τ > 1.

(30)

Substituting (29) and (30) into (25) and by somemanipulations, we can obtain (19).
This completes the proof of part (ii). ��

4 Convergence Analysis

With all the preparations given in the previous sections, we can now discuss the main
convergence results of our paper.

4.1 The Global Convergence

First we prove that under mild conditions, the iteration sequence {(uk, vk, xk)} gen-
erated by the majorized ADMM with τ ∈]0, 1+√

5
2 [ converges to an optimal solution

of problem (1) and its dual.
Let w̄ = (ū, v̄) ∈ U × V be an optimal solution of (1) and x̄ ∈ X be the corre-

sponding optimal multiplier. For k = 0, 1, 2, . . ., define

uke := uk − ū, vke := vk − v̄, wk
e := wk − w̄, xke := xk − x̄ .

Theorem 4.1 Suppose that the solution set of (1) is nonempty and Assumption 2.1
holds. Assume that S and T are chosen such that

Q11 + σAA∗ + S � 0 and Q22 + σBB∗ + T � 0.
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(i) Assume that τ ∈]0, 1]. If for any w =
(
u
v

)
∈ U × V , it holds that

〈w, [Q + Diag (S + (1 − τ)σAA∗, T + (1 − τ)σBB∗)]w〉 = 0 ⇒ ‖u‖‖v‖ = 0,

(31)

then the generated sequence {(uk, vk)} converges to an optimal solution of (1), and
{xk} converges to the corresponding optimal multiplier.

(ii) Assume that τ ∈]0, 1+√
5

2 [. Under the conditions that

M := 1

4
Q + Diag (S − ηD1, T − ηD2) � 0,

1

4
Q11 + S + σAA∗ − ηD1 � 0,

1

4
Q22 + T + σBB∗ − ηD2 � 0,

(32)

and for any w =
(
u
v

)
∈ U × V , it holds that

〈w, [M + σDiag (AA∗,BB∗)]w〉 = 0 ⇒ ‖u‖‖v‖ = 0, (33)

the generated sequence {(uk, vk)} converges to an optimal solution of (1) and {xk}
converges to the corresponding optimal multiplier.

Proof (i) Let τ ∈]0, 1]. By letting (u, v, x) = (ū, v̄, x̄) in (18) and the optimality
condition (14), we can obtain that for any k ≥ 0,

Φk+1(ū, v̄, x̄) − Φk(ū, v̄, x̄) ≤
−
(
Θk+1 + σ‖A∗uk+1 + B∗vk − c‖2 + (1 − τ)σ‖A∗uk+1 + B∗vk+1 − c‖2

)
.

(34)

The above inequality shows that {Φk+1(ū, v̄, x̄)} is bounded, which implies that
{‖xk+1‖}, {‖wk+1

e ‖Q}, {‖uk+1
e ‖S} and {‖vk+1

e ‖Q22+σBB∗+T } are all bounded. From
the positive definiteness of Q22 + σBB∗ + T , we can see that {‖vk+1

e ‖} is bounded.
By using the inequalities

∥∥∥A∗uk+1
e

∥∥∥ ≤
∥∥∥A∗uk+1

e + B∗vk+1
e

∥∥∥ +
∥∥∥B∗vk+1

e

∥∥∥
≤ τσ

(∥∥∥xk+1
e

∥∥∥ +
∥∥∥xke∥∥∥) +

∥∥∥B∗vk+1
e

∥∥∥ ,

∥∥∥uk+1
e

∥∥∥
Q11

≤
∥∥∥wk+1

e

∥∥∥
Q

+
∥∥∥vk+1

e

∥∥∥
Q22

,

we know that the sequence {‖uk+1
e ‖σAA∗+Q11} is also bounded. Therefore,

{‖uk+1
e ‖Q11+σAA∗+S} is bounded. By the positive definiteness ofQ11 + σAA∗ +S,

we know that {‖uk+1
e ‖} is bounded. On the whole, the sequence {(uk, vk, xk)} is

bounded. Thus, there exists a subsequence {(uki , vki , xki )} converging to a cluster
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point, say (u∞, v∞, x∞). Next, we will prove that (u∞, v∞) is optimal to (1) and x∞
is the corresponding optimal multiplier.

The inequality (34) also implies that

lim
k→∞

∥∥∥A∗uk+1 + B∗vk − c
∥∥∥ = 0, lim

k→∞(1 − τ)

∥∥∥A∗uk+1 + B∗vk+1 − c
∥∥∥ = 0,

lim
k→∞

∥∥∥wk+1 − wk
∥∥∥
Q+Diag (S,T )

= 0. (35)

For τ ∈]0, 1[, since lim
k→∞ ‖A∗uk+1 + B∗vk+1 − c‖ = 0, by using (35) we see that

lim
k→∞

∥∥∥A∗(uk+1 − uk)
∥∥∥ ≤ lim

k→∞

(∥∥∥A∗uk+1 + B∗vk − c
∥∥∥ +

∥∥∥A∗uk + B∗vk − c
∥∥∥) = 0,

lim
k→∞

∥∥∥B∗(vk+1 − vk)

∥∥∥ ≤ lim
k→∞

(∥∥∥A∗uk+1 + B∗vk+1 − c
∥∥∥ +

∥∥∥A∗uk+1 + B∗vk − c
∥∥∥) = 0,

which implies lim
k→∞ ‖wk+1 − wk‖Q+Diag (S+σAA∗,T +σBB∗) = 0. Therefore, for

τ ∈]0, 1], we have lim
k→∞ ‖wk+1 − wk‖Q+Diag (S+(1−τ)σAA∗,T +(1−τ)σBB∗) = 0. By

picking a subsequence of {(uki , vki )} if necessary,we can see that either lim
ki→∞ ‖uki+1−

uki ‖ = 0 or lim
ki→∞ ‖vki+1 − vki ‖ = 0 by the condition (31). Without any loss of

generality we assume that lim
ki→∞ ‖vki+1 − vki ‖ = 0. Thus,

lim
ki→∞

∥∥∥A∗(uki+1 − uki )
∥∥∥ ≤ lim

k→∞

(∥∥∥A∗uki+1 + B∗vki − c
∥∥∥ +

∥∥∥A∗uki + B∗vki−1 − c
∥∥∥

+
∥∥∥B∗ (vki − vki−1

)∥∥∥) = 0,

lim
ki→∞

∥∥∥uki+1 − uki
∥∥∥
Q11

≤ lim
ki→∞

(∥∥∥wki+1 − wki
∥∥∥
Q

+
∥∥∥vki+1 − vki

∥∥∥
Q22

)
= 0. (36)

Therefore, lim
ki→∞ ‖uki+1 − uki ‖Q11+S+σAA∗ = 0. This implies lim

ki→∞ ‖uki+1 −
uki ‖ = 0 by the positive definiteness of Q11 + S + σAA∗.

Now, taking limits on both sides of (20) along the subsequence {(uki , vki , xki )}, and
by using the closedness of the graphs of ∂p, ∂q and the continuity of ∇φ, we obtain

0 ∈ F(u∞, v∞, x∞), A∗u∞ + B∗v∞ = c.

This indicates that (u∞, v∞) is an optimal solution to (1) and x∞ is the cor-
responding optimal multiplier. Since (u∞, v∞, x∞) satisfies (13), all the above
arguments involving (ū, v̄, x̄) can be replaced by (u∞, v∞, x∞). Thus the subse-
quence {Φki (u

∞, v∞, x∞)} converges to 0 as ki → ∞. Since {Φki (u
∞, v∞, x∞)} is

non-increasing, we obtain that
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lim
k→∞ Φk+1

(
u∞, v∞, x∞) = lim

k→∞ (τσ )−1
∥∥∥xk+1 − x∞

∥∥∥2
+
∥∥∥vk+1 − v∞

∥∥∥2
σBB∗

+T + Q22 +
∥∥∥uk+1 − u∞

∥∥∥2
S

+
∥∥∥wk+1 − w∞

∥∥∥2
Q

= 0. (37)

From this we can immediately get lim
k→∞ xk+1 = x∞ and lim

k→∞ vk+1 = v∞. Similar

to (36), we have that lim
k→∞ σ‖A∗(uk+1 − u∞)‖ = 0 and lim

k→∞ ‖uk+1 − u∞‖Q11 = 0,

which, together with, (37) imply that lim
k→∞ ‖uk+1 − u∞‖ = 0 by the positive definite-

ness ofQ11 +S + σAA∗. Therefore, the whole sequence {(uk, vk, xk)} converges to
(u∞, v∞, x∞), the unique limit of the sequence. This completes the proof for the first
case.
(ii) From the inequality (19) and the optimality condition (14) we know that for any
k ≥ 1,

(Ψk+1(ū, v̄, x̄) + Ξk+1) − (Ψk(ū, v̄, x̄) + Ξk)

≤ −
(

Γk+1 + min
(
1, 1 + τ−1 − τ

)
σ

∥∥∥A∗uk+1 + B∗vk+1 − c
∥∥∥2) . (38)

By the assumptions τ ∈]0, 1+√
5

2 [ and M � 0, we can obtain that Γk+1 ≥ 0 and
min(1, 1+ τ−1 − τ) ≥ 0. Then, both {Ψk+1(ū, v̄, x̄)} and {Ξk+1} are bounded. Thus,
by a similar approach to case (i), we see that the sequence {(uk, vk, xk)} is bounded.
Therefore, there exists a subsequence {(uki , vki , xki )} that converges to a cluster point,
say (u∞, v∞, x∞). Next, we will prove that (u∞, v∞) is optimal to problem (1) and
x∞ is the corresponding optimal multiplier. The inequality (38) also implies that

lim
k→∞

∥∥∥xk+1 − xk
∥∥∥ = lim

k→∞(τσ )−1
∥∥∥A∗uk+1 + B∗vk+1 − c

∥∥∥ = 0,

lim
k→∞

∥∥∥wk+1 − wk
∥∥∥
M

= 0, lim
k→∞

∥∥∥B∗ (vk+1 − vk
)∥∥∥ = 0.

By the relationship

lim
k→∞

∥∥∥A∗(uk+1 − uk)
∥∥∥ ≤ lim

k→∞

(∥∥∥A∗uk+1 + B∗vk+1 − c
∥∥∥

+
∥∥∥A∗uk + B∗vk − c

∥∥∥
+
∥∥∥B∗ (vk+1 − vk

)∥∥∥) = 0,

we can further get lim
k→∞ ‖wk+1 − wk‖M+Diag (σAA∗,σBB∗) = 0. Thus, by the con-

dition (33) and taking a subsequence of {(uki , vki )} if necessary, we can get either
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lim
k→∞ ‖uki+1 − uki ‖ = 0 or lim

k→∞ ‖vki+1 − vki ‖ = 0. Again, similar to case (i),

we can see that, in fact, both of them would hold by the positive definiteness of
1
4Q11 + S + σAA∗ − ηD1 and 1

4Q22 + T + σBB∗ − ηD22. The remaining proof
about the convergence of the whole sequence {(uk, vk, xk)} follows exactly the same
as in case (i). This completes the proof for the second case. ��

Remark 4.1 In Theorem 4.1, for τ ∈]0, 1], a sufficient condition for the convergence
is

Q + Diag
(
S + (1 − τ)σAA∗, T + (1 − τ)σBB∗) � 0,

and for τ ∈ [1, 1+√
5

2 [, a sufficient condition for the convergence is

1

4
Q + Diag (S − ηD1, T − ηD2) � 0 and

1

4
Q + Diag

(
S + σAA∗ − ηD1, T + σBB∗ − ηD2

) � 0.

Remark 4.2 An interesting application of Theorem 4.1 is for the linearly constrained
convex optimization problem with a quadratically coupled objective function of the
form

φ(w) = 1

2

〈
w, Q̃w

〉 + f (u) + g(v),

where Q̃ : U × V → U × V is a self-adjoint positive semidefinite linear operator,
f : U →] − ∞,∞[ and g : V →] − ∞,∞[ are two convex and smooth functions
with Lipschitz continuous gradients. In this case, there exist four self-adjoint positive
semidefinite operators Σ f , Σ̂ f : U → U and Σg, Σ̂g : V → V such that

Σ f 
 ξ 
 Σ̂ f , ∀ξ ∈ ∂2 f (u), u ∈ U and Σg 
 ζ 
 Σ̂g, ∀ζ ∈ ∂2g(v), v ∈ V,

where ∂2 f and ∂2g are defined in (7). Then, by letting Q = Q̃ + Diag (Σ f ,Σg) in
(9) and Q + H = Q̃ + Diag (Σ̂ f , Σ̂g) in (10), we have η = 0 in (12). This implies

thatM � 0 always holds in (32). Therefore, for τ ∈]0, 1+√
5

2 [, the conditions for the
convergence can be equivalently written as

Q̃11 + Σ f + S + σAA∗ � 0, Q̃22 + Σg + T + σBB∗ � 0 (39)

and

〈
w,

[
Q̃ + Diag

(
Σ f + S + σAA∗,Σg + T + σBB∗)]w

〉 = 0 ⇒ ‖u‖‖v‖ = 0.

(40)
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A sufficient condition for ensuring (39) and (40) to hold is

Q̃ + Diag
(
Σ f + S + σAA∗,Σg + T + σBB∗) � 0.

If Q̃ = 0, i.e., if the objective function of the original problem (1) is separable,
then we will recover the convergence conditions given in [11] for a majorized ADMM
with semi-proximal terms.

4.2 The Non-ergodic Iteration Complexity for General Coupled Objective
Functions

In this subsection, we will present the non-ergodic iteration complexity for the
majorized ADMM in terms of the KKT optimality condition.

Before showing themain result, we first present the following Lemma,which shows
the nonincreasing property of the difference between two consecutive iteration points
when the step length τ = 1. This property has also been discussed byHe andYuan [12]
for the classic ADMMwith τ = 1. For k = 0, 1, 2, . . ., denote the following notation:

Δxk+1 := xk+1 − xk, Δuk+1 := uk+1 − uk, Δvk+1 := vk+1 − vk,

Δwk+1 := wk+1 − wk .

Lemma 4.1 Assume that τ = 1. Then, for any k ≥ 1, it holds that

∥∥∥Δxk+1
∥∥∥2

σ−1I
+
∥∥∥Δuk+1

∥∥∥2
S

+
∥∥∥Δvk+1

∥∥∥2
T +σBB∗+Q22

+
∥∥∥Δwk+1

∥∥∥2
Q+H

≤
∥∥∥Δxk

∥∥∥2
σ−1I

+
∥∥∥Δuk

∥∥∥2
S

+
∥∥∥Δvk

∥∥∥2
T +σBB∗+Q22

+
∥∥∥Δwk

∥∥∥2
Q+H

. (41)

Proof For τ = 1 and k ≥ 1, the optimality conditions at the (k+1)th and kth iterations
can be written as

−Axk+1 − ∇uφ
(
wk

)
− (Q11 + D1 + S)Δuk+1 + σAB∗Δvk+1 ∈ ∂p

(
uk+1

)
,

−Bxk+1 − ∇vφ
(
wk

)
− (Q22 + D2 + T ) Δvk+1 − Q∗

12Δuk+1 ∈ ∂q
(
vk+1

)

and

−Axk − ∇uφ
(
wk−1

)
− (Q11 + D1 + S) Δuk + σAB∗Δvk ∈ ∂p

(
uk
)

,

−Bxk − ∇vφ
(
wk−1

)
− (Q22 + D2 + T )Δvk − Q∗

12Δuk ∈ ∂q
(
vk
)

.
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By the monotonicity of the subdifferential of the convex functions p and q, we have
the following inequalities:

〈
Δuk+1,AΔxk+1 +

(
∇uφ

(
wk

)
− ∇uφ

(
wk−1

))
+ (Q11 + D1 + S)

×
(
Δuk+1 − Δuk

)
− σAB∗ (Δvk+1 − Δvk

)〉
≤ 0,

〈Δvk+1,BΔxk+1 +
(
∇vφ

(
wk

)
− ∇vφ

(
wk−1

))
+ (Q22 + D2 + T )

×
(
Δvk+1 − Δvk

)
+ Q∗

12

(
Δuk+1 − Δuk

)
〉 ≤ 0.

Adding the above two inequalities together, and using the fact that

Δxk+1 − Δxk = σ(A∗Δuk+1 + B∗Δvk+1),

we get

σ−1
〈
Δxk+1,Δxk+1 − Δxk

〉
+
〈
Δuk+1,S

(
Δuk+1 − Δuk

)〉
+
〈
Δvk+1, T

(
Δvk+1 − Δvk

)〉
+
〈
Δwk+1,∇φ

(
wk

)
− ∇φ

(
wk−1

)
+ (Q + H)

(
Δwk+1 − Δwk

)〉
−
〈
Δuk+1,

(
σAB∗ + Q12

) (
Δvk+1 − Δvk

)〉
≤ 0. (42)

Since∇φ is globally Lipschitz continuous, there exists a self-adjoint positive semi-
definite linear operator Wk ∈ conv{∂2φ([wk−1, wk])} such that

∇φ
(
wk

)
− ∇φ

(
wk−1

)
= Wk

(
wk − wk−1

)
. (43)

By using the Cauchy-Schwarz inequality and (15), we see that

〈
Δuk+1, σAB∗ (Δvk+1 − Δvk

)〉
= σ

〈
A∗Δuk+1,B∗Δvk+1

〉
− σ

〈
A∗Δuk+1,B∗Δvk

〉
≤ 1

2

(
σ

∥∥∥A∗Δuk+1 + B∗Δvk+1
∥∥∥2 −

∥∥∥Δuk+1
∥∥∥2

σAA∗ −
∥∥∥Δvk+1

∥∥∥2
σBB∗

)

+1

2

(∥∥∥Δuk+1
∥∥∥2

σAA∗ +
∥∥∥Δvk

∥∥∥2
σBB∗

)

= 1

2

∥∥∥Δxk+1 − Δxk
∥∥∥2

σ−1I
− 1

2

(∥∥∥Δvk+1
∥∥∥2

σBB∗ −
∥∥∥Δvk

∥∥∥2
σBB∗

)
. (44)

By substituting (43) and (44) into (42) and some simple calculations, we have that
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(∥∥∥Δxk+1
∥∥∥2

σ−1I
−
∥∥∥Δxk

∥∥∥2
σ−1I

+
∥∥∥Δxk+1 − Δxk

∥∥∥2
σ−1I

)

+
(∥∥∥Δuk+1

∥∥∥2
S

−
∥∥∥Δuk

∥∥∥2
S

+
∥∥∥Δuk+1 − Δuk

∥∥∥2
S

)

+
(∥∥∥Δvk+1

∥∥∥2
T

−
∥∥∥Δvk

∥∥∥2
T

+
∥∥∥Δvk+1 − Δvk

∥∥∥2
T

)

+2
∥∥∥Δwk+1

∥∥∥2
Q+H

−
(∥∥∥Δwk+1

∥∥∥2
Q+H−Wk

−
∥∥∥Δwk+1 − Δwk

∥∥∥2
Q+H−Wk

+
∥∥∥Δwk

∥∥∥2
Q+H−Wk

)

−
(∥∥∥Δwk+1

∥∥∥2
Q

+
∥∥∥Δvk

∥∥∥2
Q22

−
∥∥∥Δvk+1

∥∥∥2
Q22

)

−
(∥∥∥Δxk+1 − Δxk

∥∥∥2
σ−1I

−
∥∥∥Δvk+1

∥∥∥2
σBB∗ +

∥∥∥Δvk
∥∥∥2

σBB∗

)
≤ 0,

which can be recast as

∥∥∥Δxk+1
∥∥∥2

σ−1I
+
∥∥∥Δuk+1

∥∥∥2
S

+
∥∥∥Δvk+1

∥∥∥2
T +σBB∗+Q22

+
∥∥∥Δwk+1

∥∥∥2
Q+H

≤
∥∥∥Δxk

∥∥∥2
σ−1I

+
∥∥∥Δuk

∥∥∥2
S

+
∥∥∥Δvk

∥∥∥2
T +σBB∗+Q22

+
∥∥∥Δwk

∥∥∥2
Q+H

−
(∥∥∥Δuk+1 − Δuk

∥∥∥2
S

+
∥∥∥Δvk+1 − Δvk

∥∥∥2
T

+
∥∥∥Δwk+1 − Δwk

∥∥∥2
Q+H−Wk

+
∥∥∥Δwk+1

∥∥∥2
Wk−Q

+
∥∥∥Δwk

∥∥∥2
Wk

)

≤
∥∥∥Δxk

∥∥∥2
σ−1I

+
∥∥∥Δuk

∥∥∥2
S

+
∥∥∥Δvk

∥∥∥2
T +σBB∗+Q22

+
∥∥∥Δwk

∥∥∥2
Q+H

,

where the last inequality is obtained by the relationship (8).

Theorem 4.2 Suppose that the solution set of (1) is nonempty and Assumption 2.1
holds. Assume that one of the following conditions holds:

(i) τ ∈]0, 1], O1 := 1

4
Q + Diag

(
S + (1 − τ)σAA∗, T + (1 − τ)σBB∗) � 0;

(ii) τ ∈]0, 1+√
5

2 [, 1
4
Q + Diag (S − ηD1, T − ηD2) � 0 , O2 := 1

4
Q + Diag (S +

σAA∗ − ηD1, T + σBB∗ − ηD2) � 0.

Then, there exists a constant C only depending on the initial point and the optimal
solution set, such that the sequence {(uk, vk, xk)} generated by the majorized ADMM
satisfies that for k ≥ 1,

min
1≤i≤k

[
dist2

(
0, F

(
ui+1, vi+1, xi+1

))
+
∥∥∥A∗ui+1+B∗vi+1−c

∥∥∥2] ≤ C/k. (45)
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and for the limiting case we have that

lim
k→∞ k

(
min
1≤i≤k

[
dist2

(
0, F

(
ui+1, vi+1, xi+1

))
+
∥∥∥A∗ui+1 + B∗vi+1 − c

∥∥∥2]) = 0.

(46)

Furthermore, when the step length τ = 1, it holds that

lim
k→∞ k

(
dist2

(
0, F

(
uk+1, vk+1, xk+1

))
+
∥∥∥A∗uk+1 + B∗vk+1 − c

∥∥∥2) = 0.

(47)

i.e., the “ min
1≤i≤k

” can be removed from (46).

Proof From the optimality condition for (uk+1, vk+1), we know that

(−(1 − τ)σA
(
A∗uk+1 + B∗vk+1 − c

) − σAB∗ (vk − vk+1
) − S

(
uk+1 − uk

)
+Q12

(
vk+1 − vk

) − (1 − τ)σB
(
A∗uk+1 + B∗vk+1 − c

) − T
(
vk+1 − vk

) )

− (Q + H)
(
wk+1 − wk

)
+ ∇φ

(
wk+1

)
− ∇φ

(
wk

)
∈ F

(
uk+1, vk+1, xk+1

)
.

Therefore, we can obtain that

dist2
(
0, F

(
uk+1, vk+1, xk+1

))
+
∥∥∥A∗uk+1 + B∗vk+1 − c

∥∥∥2
≤ 5

∥∥∥σAB∗ (vk+1 − vk
)∥∥∥2

+5(1 − τ)2σ 2
(
‖A‖2 + ‖B‖2

) ∥∥∥A∗uk+1 + B∗vk+1 − c
∥∥∥2

+5
∥∥∥(Q + H)

(
wk+1 − wk

)
− ∇φ

(
wk+1

)
+ ∇φ

(
wk

)∥∥∥2
+5

∥∥∥Q12

(
vk+1 − vk

)∥∥∥2 + 5
∥∥∥T (

vk+1 − vk
)∥∥∥2

+5
∥∥∥S (

uk+1 − uk
)∥∥∥2 +

∥∥∥A∗uk+1 + B∗vk+1 − c
∥∥∥2

≤ 5σ ‖A‖2
∥∥∥vk+1 − vk

∥∥∥2
σBB∗

+
(
5(1 − τ)2σ 2

(∥∥∥A‖2 + ‖B
∥∥∥2) + 1

)∥∥∥A∗uk+1 + B∗vk+1 − c
∥∥∥2

+5
∥∥∥√Q∗

12Q12

∥∥∥ ∥∥∥vk+1 − vk
∥∥∥2√

Q∗
12Q12

+5 ‖H‖
∥∥∥wk+1 − wk

∥∥∥2
H

+ 5 ‖S‖
∥∥∥uk+1 − uk

∥∥∥2
S

+5 ‖T ‖
∥∥∥vk+1 − vk

∥∥∥2
T

≤ C1

∥∥∥wk+1 − wk
∥∥∥2
Ô

+C2

∥∥∥A∗uk+1 + B∗vk+1 − c
∥∥∥2 , (48)
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where

C1 = 5max(σ‖A‖2, ‖√Q∗
12Q12‖, ‖H‖, ‖S‖, ‖T ‖),

C2 = 5(1 − τ)2σ 2(‖A‖2 + ‖B‖2) + 1,
Ô = H + Diag (S, T + σBB∗ + √

Q∗
12Q12),

and the second inequality comes from the fact that there exists some Wk ∈
conv{∂2φ([wk−1, wk])} such that

‖(Q + H)(wk+1 − wk) − ∇φ(wk+1) + ∇φ(wk)‖2
= ‖(Q + H − Wk)(wk+1 − wk)‖2 ≤ ‖H‖‖wk+1 − wk‖2H.

Next, we will estimate the upper bounds for ‖wk+1 − wk‖2Ô and ‖A∗uk+1 +
B∗vk+1 − c‖2 by only involving the initial point and the optimal solution set under
the two different conditions.

First, assume condition (i) holds. For τ ∈]0, 1], by using (34) in the proof of
Theorem 4.1, we have that,

‖wi+1 − wi‖21
4Q+Diag (S,T )

+ σ‖A∗ui+1

+B∗vi − c‖2 + (1 − τ)σ‖A∗ui+1 + B∗vi+1 − c‖2
≤ Φi (ū, v̄, x̄) − Φi+1(ū, v̄, x̄), i ≥ 1,

which implies

k∑
i=1

(‖wi+1 − wi‖21
4Q+Diag (S,T )

+ σ‖A∗ui+1 + B∗vi − c‖2 + (1 − τ)σ‖A∗ui+1

+B∗vi+1 − c‖2 ≤ Φ1(ū, v̄, x̄) − Φk+1(ū, v̄, x̄) ≤ Φ1(ū, v̄, x̄).

This shows that

k∑
i=1

‖wi+1 − wi‖21
4Q+Diag(S,T )

≤ Φ1(ū, v̄, x̄),

k∑
i=1

σ‖A∗ui+1 + B∗vi − c‖2 ≤ Φ1(ū, v̄, x̄),

k∑
i=1

(1 − τ)σ‖A∗ui+1 + B∗vi+1 − c‖2 ≤ Φ1(ū, v̄, x̄). (49)

From the above three inequalities we can also get that
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(1 − τ)

k∑
i=1

‖ui+1 − ui‖2σAA∗ ≤ (1 − τ)

k∑
i=1

(2σ‖A∗ui+1 + B∗vi − c‖2

+2σ‖A∗ui + B∗vi − c‖2) ≤ 2(2 − τ)Φ1(ū, v̄, x̄),

(1 − τ)

k∑
i=1

‖vi+1 − vi‖2σBB∗ ≤ (1 − τ)

k∑
i=1

(2σ‖A∗ui+1 + B∗vi

−c‖2 + 2σ‖A∗ui+1 + B∗vi+1 − c‖2) ≤ 2(2 − τ)Φ1(ū, v̄, x̄).

With the notation of operator O1 we have that

k∑
i=1

‖wi+1 − wi‖2O1
=

k∑
i=1

‖wi+1 − wi‖21
4Q+Diag(S,T )

+
k∑

i=1

‖wi+1 − wi‖2(1−τ)Diag(σAA∗,BB∗)

≤ (9 − 4τ)Φ1(ū, v̄, x̄). (50)

If τ ∈]0, 1[, then we further have that

k∑
i=1

‖A∗ui+1 + B∗vi+1 − c‖2 ≤ (1 − τ)−1σ−1Φ1(ū, v̄, x̄). (51)

If τ = 1, then by the condition that O1 = 1

4
Q + Diag (S, T ) � 0, we have that

k∑
i=1

‖A∗ui+1 + B∗vi+1 − c‖2

≤
k∑

i=1

(2‖A∗ui+1 + B∗vi − c‖2 + 2‖vi+1 − vi‖2BB∗)

≤
k∑

i=1

(2‖A∗ui+1 + B∗vi − c‖2 + 2‖O− 1
2

1 Diag (0,BB∗)O− 1
2

1 ‖‖wi+1 − wi‖2O1
)

≤ (2σ−1 + (18 − 8τ)‖O− 1
2

1 Diag (0,BB∗)O− 1
2

1 ‖)Φ1(ū, v̄, x̄), (52)

where the second inequality is obtained by the fact that for any ξ , a self-adjoint positive

definite operatorGwith square rootG 1
2 and a self-adjoint positive semidefinite operator

Ĝ defined in the same Euclidean space, it always holds that ‖ξ‖2Ĝ = 〈ξ, Ĝξ 〉 =
〈ξ, (G 1

2G− 1
2 )Ĝ(G− 1

2G 1
2 )ξ 〉 = 〈G 1

2 ξ, (G− 1
2 ĜG− 1

2 )G 1
2 ξ 〉 ≤ ‖G− 1

2 ĜG− 1
2 ‖‖ξ‖2G .
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Therefore, by using (48), (50) and the positive definiteness of operatorO1, we know
that

min
1≤i≤k

[dist2(0, F(ui+1, vi+1, xi+1)) + ‖A∗ui+1 + B∗vi+1 − c‖2]

≤ (

k∑
i=1

(dist2(0, F(ui+1, vi+1, xi+1)) + ‖A∗ui+1 + B∗vi+1 − c‖2))/k

≤ CΦ1(ū, v̄, x̄)/k,

where

C =
⎧⎨
⎩C1(9 − 4τ)‖O− 1

2
1 ÔO− 1

2
1 ‖ + C2(1 − τ)−1σ−1, τ ∈]0, 1[,

C1(9 − 4τ)‖O− 1
2

1 ÔO− 1
2

1 ‖ + C2(2σ−1 + (18 − 8τ)‖O− 1
2

1 Diag (0,BB∗)O− 1
2

1 ‖), τ = 1.

To prove the limiting case (46), by using inequalities (50), (51), (52) and [11,
Lemma2.1], we have that

min
1≤i≤k

‖wi+1 − wi‖2O1
= o(1/k), min

1≤i≤k
‖A∗ui+1 + B∗vi+1 − c‖2 = o(1/k),

which, together with (48), imply that

lim
k→∞ k( min

1≤i≤k
[dist2(0, F(ui+1, vi+1, xi+1)) + ‖A∗ui+1 + B∗vi+1 − c‖2])

≤ lim
k→∞ k( min

1≤i≤k
[C1‖O− 1

2
1 ÔO− 1

2
1 ‖‖wi+1 − wi‖2O1

+ C2‖A∗ui+1 + B∗vi+1 − c‖2]) = 0.

Next, we shall prove (47) under the condition (i) and τ = 1. By (49), (52) and the
positive definiteness of the self-adjoint linear operator 1

4Q + Diag (S, T ), we know
that

∞∑
i=1

‖wi+1 − wi‖2 < ∞,

∞∑
i=1

‖xi+1 − xi‖2 < ∞. (53)

Then, by using Lemma 4.1, (53) and [13, Lemma1.2], we know that

lim
k→∞ k(‖wk+1 − wk‖2Q+H+Diag (S,T +σBB∗+Q22)

+ ‖xk+1 − xk‖2
σ−1I) = 0.

Since Q + H + Diag (S, T + σBB∗ + Q22) � Q + Diag (S, T ) � 0, we obtain
that

lim
k→∞ k‖wk+1 − wk‖2 = 0, lim

k→∞ k‖xk+1 − xk‖2
σ−1I = 0,
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which, together with (48), imply

lim
k→∞ k(dist2(0, F(uk+1, vk+1, xk+1)) + ‖A∗uk+1 + B∗vk+1 − c‖2) = 0.

It completes the proof of the conclusions under condition (i).

For τ ∈]0, 1+√
5

2 [, let ρ(τ) = min(τ, 1 + τ − τ 2). We know from (32) that for

τ ∈]0, 1+√
5

2 [ and any k ≥ 1,

k∑
i=1

‖wi+1 − wi‖21
4Q+diag (S−ηD1,T −ηD2)

+ ρ(τ)‖vi+1 − vi‖2σBB∗

+ρ(τ)

τ
σ‖A∗ui+1 + B∗vi+1 − c‖2 ≤

(Ψ1(ū, v̄, x̄) + Ξ1) − (Ψk+1(ū, v̄, x̄) + Ξk+1) ≤ Ψ1(ū, v̄, x̄) + Ξ1.

Thus, by the positive semidefiniteness of 1
4Q+Diag (S − ηD1, T − ηD2), we can

get that

k∑
i=1

‖wi+1 − wi‖21
4Q+diag (S−ηD1,T −ηD2)

≤ Ψ1(ū, v̄, x̄) + Ξ1,

k∑
i=1

‖vi+1 − vi‖2σBB∗ ≤ (Ψ1(ū, v̄, x̄) + Ξ1)/ρ(τ),

k∑
i=1

σ‖A∗ui+1 + B∗vi+1 − c‖2 ≤ τ(Ψ1(ū, v̄, x̄) + Ξ1)/ρ(τ), (54)

which implies

k∑
i=1

‖ui+1 − ui‖2σAA∗ ≤
k∑

i=1

(3σ‖A∗ui+1 + B∗vi+1 − c‖2 + 3σ‖A∗ui

+B∗vi − c‖2 + 3‖vi+1 − vi‖2σBB∗)

≤ (6τ + 2)(Ψ1(ū, v̄, x̄) + Ξ1)/ρ(τ). (55)

Combining (54) and (55) one can find that

k∑
i=1

‖wi+1 − wi‖2O2
=

k∑
i=1

‖wi+1 − wi‖21
4Q+diag (S−ηD1,T −ηD2)

+
k∑

i=1

‖wi+1 − wi‖2Diag (σAA∗,σBB∗)

≤ (1 + (6τ + 3)/ρ(τ))(Ψ1(ū, v̄, x̄) + Ξ1). (56)
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Therefore, by using (48), (54), (56), and recalling the positive definiteness of oper-
ator O2, we finally have that

min
1≤i≤k

[dist2(0, F(ui+1, vi+1, xi+1)) + ‖A∗ui+1 + B∗vi+1 − c‖2]

≤ ( k∑
i=1

(dist2(0, F(ui+1, vi+1, xi+1)) + ‖A∗ui+1 + B∗vi+1 − c‖2)/k
≤ C ′(Ψ1(ū, v̄, x̄) + Ξ1)/k,

where C ′ = C1‖O− 1
2

2 ÔO− 1
2

2 ‖(1 + (6τ + 3)/ρ(τ)) + C2σ
−1τ/ρ(τ). The limiting

property (46) and (47) can be derived in the same way as for the case under condition
(i).

This completes the proof of Theorem 4.2. ��

Remark 4.3 Theorem 4.2 gives the non-ergodic complexity of the KKT optimality
condition, which does not seem to be known even for the classic ADMM with sepa-
rable objective functions. For the latter, related results about the non-ergodic iteration
complexity for the primal feasibility and the objective functions of the special clas-
sic ADMM with τ = 1 can be found in Davis and Yin [14]. When τ �= 1, instead
of showing the behavior of the current kth iteration point, we provide a non-ergodic
complexity property on the “best point among the first k iterations”, indicating that
the iteration sequence may satisfy the O(1/k) tolerance of the KKT system before
the kth step. Thus, it may be of some interest to see whether the slightly better result
with the “min1≤i≤k” being removed from (46) holds for τ �= 1.

4.3 The Ergodic Iteration Complexity for General Coupled Objective Functions

In this subsection, we will discuss the ergodic iteration complexity of the majorized
ADMM for solving problem (1). For k = 1, 2, · · · , denote

x̂ k := 1

k

k∑
i=1

x̃ i+1, ûk := 1

k

k∑
i=1

ui+1, v̂k := 1

k

k∑
i=1

vi+1, ŵk := (ûk, v̂k)

and

Λk+1 := ‖uk+1
e ‖2D1+S + ‖vk+1

e ‖2D2+T +Q22+σBB∗ + (τσ )−1‖xk+1‖2,
Λk+1 := Λk+1 + Ξk+1 + ‖wk+1

e ‖2Q + max(1 − τ, 1 − τ−1)σ‖A∗uk+1 + B∗vk+1 − c‖2.

Theorem 4.3 Suppose that S and T are chosen such that

Q11 + σAA∗ + S � 0 and Q22 + σBB∗ + T � 0.
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Assume that either (a) τ ∈]0, 1] and (31) holds, or (b) τ ∈]0, 1+√
5

2 [ and (32) and
(33) hold. Then, there exist constants D1 and D2 that depend only on the initial point
and the optimal solution set such that for k ≥ 1, the following conclusions hold:

(i)

‖A∗ûk + B∗v̂k − c‖ ≤ D1/k. (57)

(ii) For case (b), if we further assume that S − ηD1 � 0 and T − ηD2 � 0, then

|θ(ûk, v̂k) − θ(ū, v̄)| ≤ D2/k. (58)

The inequality (58) holds for case (a) without additional assumptions.

Proof (i) Under the conditions for case (a), (34) indicates that {Φk+1(ū, v̄, x̄)} is a
non-increasing sequence, which implies that

(τσ )−1‖xk+1 − x̄‖2 ≤ Φk+1(ū, v̄, x̄) ≤ Φ1(ū, v̄, x̄).

Similarly, under the conditions for case (b), we can get from (38) that

(τσ )−1‖xk+1 − x̄‖2 ≤ Ψk+1(ū, v̄, x̄) + Ξk+1 ≤ Ψ1(ū, v̄, x̄) + Ξ1.

Therefore, in terms of the ergodic primal feasibility, we have that

‖A∗ûk + B∗v̂k − c‖2

= ‖1
k

k∑
i=1

(A∗ui+1 + B∗vi+1 − c)‖2

= ‖(τσ )−1(xk+1 − x1)‖2/k2
≤ 2‖(τσ )−1(xk+1 − x̄)‖2/k2 + 2‖(τσ )−1(x1 − x̄)‖2/k2 ≤ C3/k

2, (59)

where

C3 =
{
2(τσ )−1Φ1(ū, v̄, x̄) + 2‖(τσ )−1(x1 − x̄)‖2 for case (a),
2(τσ )−1(Ψ1(ū, v̄, x̄) + Ξ1) + 2‖(τσ )−1(x1 − x̄)‖2 for case (b).

Then, by taking the square root on inequality (59), we can obtain (57).
(ii) For the complexity of primal objective functions, first, we know from (13) that

p(u) ≥ p(ū) + 〈−Ax̄ − ∇uφ(w̄), u − ū〉, ∀u ∈ U ,

q(v) ≥ q(v̄) + 〈−Bx̄ − ∇vφ(w̄), v − v̄〉, ∀v ∈ V.

Therefore, summing them up and by noting A∗ū + B∗v̄ = c and the convexity of
function φ, we have that

θ(u, v) − θ(ū, v̄) ≥ −〈x̄,A∗u + B∗v − c〉 + φ(w) − φ(w̄) − 〈∇φ(w̄), w − w̄〉
≥ −〈x̄,A∗u + B∗v − c〉, ∀u ∈ U , v ∈ V.
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Thus, with (u, v) = (ûk, v̂k), it holds that

θ(ûk, v̂k) − θ(ū, v̄) ≥ −〈x̄,A∗ûk + B∗v̂k − c〉
≥ −1

2
(
1

k
‖x̄‖2 + k‖A∗ûk + B∗v̂k − c‖2)

≥ −1

2
(‖x̄‖2 + C3)/k, (60)

where C3 is the same constant as in (59).
For the reverse part, by (9) and (10) we can obtain that for any i ≥ 1,

φ(wi+1) ≤ φ(wi ) + 〈∇φ(wi ), wi+1 − wi 〉 + 1

2
‖wi+1 − wi‖2Q+H,

φ(w̄) ≥ φ(wi ) + 〈∇φ(wi ), w̄ − wi 〉 + 1

2
‖w̄ − wi‖2Q,

which indicates that

φ(wi+1) − φ(w̄) ≤ 〈∇φ(wi ), wi+1 − w̄〉 + 1

2
‖wi+1 − wi‖2Q+H − 1

2
‖wi − w̄‖2Q.

(61)

Thus, (22) and (61) imply that for τ ∈]0, 1] and any i ≥ 1,

θ(ui+1, vi+1) − θ(ū, v̄)

≤ 1

2
‖wi+1 − wi‖2Q+H − 1

2
‖wi − w̄‖2Q + 〈w̄ − wi+1,Q(wi+1 − wi )〉

+〈ū − ui+1,Ax̃ i+1〉 + 〈v̄ − vi+1,Bx̃ i+1〉 − 〈vi+1 − vi ,Q∗
12(ū − ui+1)〉

+σ 〈A∗(ui+1 − ū),B∗(vi+1 − vi )〉 + 〈ū − ui+1, (D1 + S)(ui+1 − ui )〉
+〈v̄ − vi+1, (D2 + T )(vi+1 − vi )〉

≤ 1

2
(Λi − Λi+1) − 1

2
(‖ui+1 − ui‖2S + ‖vi+1 − vi‖2T + σ‖A∗ui+1 + B∗vi − c‖2

+σ(1 − τ)‖A∗ui+1 + B∗vi+1 − c‖2) ≤ 1

2
(Λi − Λi+1). (62)

Therefore, summing up the above inequalities over i = 1, · · · k and by using the
convexity of function θ we can obtain that

θ(ûk, v̂k) − θ(ū, v̄) ≤ (Λ1(u, v, x) − Λk+1(u, v, x))/2k ≤ Λ1/2k. (63)

The inequalities (60) and (63) indicate that (58) holds for case (a).
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Next, assume that the conditions for case (b) hold. Similar to (62), we have that

θ(ui+1, vi+1) − θ(ū, v̄)

≤ 1

2
(Λi −Λi+1) − 1

2
(‖ui+1−ui‖2S−ηD1

+‖vi+1−vi‖2T +min(τ,1+τ−τ 2)σBB∗−ηD2

+min(1, 1 + τ−1 − τ)σ‖A∗ui+1 + B∗vi+1 − c‖2).

By the assumptions that S − ηD1 � 0 and T − ηD2 � 0, we can obtain that

θ(ûk, v̂k) − θ(ū, v̄) ≤ (Λ1 − Λk+1)/2k ≤ Λ1/2k. (64)

Thus, by (63) and (64) we can obtain (58). ��

Below we make a remark about the results in Theorem 4.3.

Remark 4.4 The results in Theorem 4.3, which are on the ergodic complexity of the
primal feasibility and the objective function, respectively, are extended from the work
of Davis and Yin [14] on the classic ADMM with separable objective functions.
However, there is no corresponding result available on the dual problem. Therefore, it
will be very interesting to see if one can develop a more explicit ergodic complexity
result containing all the three parts in the KKT condition.

5 Conclusions

In this paper, we establish the convergence properties for the majorized ADMMwith a
large step length to solve linearly constrained convex programming, whose objective
function includes a coupled smooth function. From Theorem 4.1, one can see the

influence of the coupled objective on the convergence condition. For τ ∈]0, 1+√
5

2 [,
a joint condition like (31) or (33) is needed to analyze the behaviour of the iteration
sequence.One can further observe that the parameterη, which controls the off-diagonal
term of the generalized Hessian, also affects the choice of proximal operators S and
T . However, as is pointed out in Remark 4.2, when the coupled function is convex
quadratic, η = 0 and the corresponding influence would disappear. Although, in this
paper we focus on the two-block case, it is not hard to see that, with the help of the
Schur complement technique introduced in [15], one can apply ourmajorizedADMM
to solve large scale convex optimization problems with many smooth blocks.
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