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Higham (2002, IMA J. Numer. Anal. 22, 329-343) considered two types of nearest correlation ma-

trix problems, namely th&/-weighted case and thd-weighted case. While thé/-weighted case has

since been well studied to make several Lagrangian dual-based efficient numerical methods available, the
H-weighted case remains numerically challenging. The difficulty of extending those methods from the
W-weighted case to thel-weighted case lies in the fact that an analytic formula for the metric projec-
tion onto the positive semidefinite cone under thaveight, unlike the case under thg-weight, is not
available. In this paper we introduce an augmented Lagrangian dual-based approach that avoids the ex-
plicit computation of the metric projection under tHeweight. This method solves a sequence of uncon-
strained convex optimization problems, each of which can be efficiently solved by an inexact semismooth
Newton method combined with the conjugate gradient method. Numerical experiments demonstrate that
the augmented Lagrangian dual approach is not only fast but also robust.

Keywordsaugmented Lagrangian; semismooth Newton method; conjugate gradient method; nearest cor-
relation matrix.

1. Introduction

In Higham (2002 the author considered two typesn#arest correlation matriproblems. One is under
the W-weighting:

min FIWY2(X — G)WY2)2
suchthat Xj =1, i=1,...,n, (1.1
XeSh,
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whereS" and S are the space afi x n symmetric matrices and the cone of positive semidefinite
matrices inS", respectively|-|| is the Frobenius norm induced by the standard trace inner product in
S" and the matridxG € S" is given. The positive-definite matri¥/ € S" is known as thaV-weight to

the problem andV/2 is the positive square root &f.
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The constraints in1(.1), collectively known as theorrelation constraintsspecify that any feasible
matrix to (L.1) is a correlation matrix. Solving thé/-weighted problemX(.1) is equivalent to solving a
problem of the following type (cfQi & Sun, 2006 Section 4.1):

min 31X — GJI?
such that diagV—Y2XW~12) =g, (1.2)
Xedst,

wheree € R" is the vector of all ones. We often u¥e:= 0 to denoteX € S”. The metric projection of
X € 8" onto S under the Frobenius north. || is often denoted by and sometimes byYSQ(X) to
highlight its dependence oS}

The other type of nearest correlation problem that was considered by Higham is undér the
weighting:

min 3IH o (X — G)|I?
suchthat X;j =1, i=1,...,n, (1.3)
XedSt,
where the weighting is now in the sense of Hadamard, (&4 B)ijj = Ajj Bjj. Here the matrixH
is symmetric and each of its entries is non-negative, Hg.,> O for alli, j = 1,..., n (in Higham

(2002, eachH;j was assumed to be positive.) We refer the readBhamsali & Wisg2007) for concrete
examples in finance to see hddvwas constructed, whetd is known as a confidence matrix. We note
that, in the special case thit = E, the matrix of all ones,1(.3) turns out to beX.2) with W = |, the
identity matrix.

The W-weighted problemX.1) has been well studied sintétigham (2002 and now there are sev-
eral good methods for it, including the alternating projection metttigham 2002, the gradient and
guasi-Newton methods$valick, 2004 Boyd & Xiao, 2005, the inexact semismooth Newton method
combined with the conjugate gradient (CG) solv®i & Sun, 2009 and its modified version with
several (preconditioned) iterative solveBo¢sdorf 2007 Borsdorf & Higham 2009 and the inexact
interior-point methods (IPMs) with iterative solverBof et al, 2007 Toh, 2008. All of these meth-
ods, except the inexact IPMs, crucially rely on the fact that the projection of a given n¥ateixS"
onto S under theW-weighting, denoted bﬂ“é\ﬁ(X), which is the optimal solution of the following

problem:
min SIWY2(Y — Xywt/2)2
suchthat Y € S},

is given by the formula (seldigham 2002 Theorem 3.2)

H‘\é\ﬁ (X) = WY2(WY2X W/2) , wi/2,

It has long been known by statisticians that, for sy S", its metric projectionA, overS", which
also equalsﬂ"SQ(A), admits an explicit formulaJchwertman & Allen1979. This means that, for any

X € 8", one can comput& ¥, (X) explicitly.
+

0T0Z ‘T Judy uo alodebuls Jo Alsianiun [euoneN Je Bio'sreulnolpioyxo-eufewl//:dny wolj papeojumoq


http://imajna.oxfordjournals.org

THE H-WEIGHTED NEAREST CORRELATION MATRIX PROBLEM 3of21

To simplify the subsequent discussions we assume, without loss of generalityytkat! (for
reasons for this se®i & Sun, 2006 Section 4.1). We note that), = IIgn (). To see how the metric
projection operatoHSQ(-) is involved in the derivation of these methods mentioned above and also to
motivate our method for thel-weighted case, let us consider the Lagrangian function of proklez)) (

I(X,y) = %ux - GlI?+y"(b—diagX)), (X,y) € ST xR", (1.4)

whereb := e. Since problem.2) automatically satisfies the generalized Slater constraint qualification,
from the duality theory developed bByockafellar(1974), we know that problem1(2) can be equiva-
lently solved by its Lagrangian dual problem

maxi min I (X, , 1.5
yeRn[XeSQ ( y)] (1.5)
which, via the metric projectof-),, can be equivalently reformulated as the following unconstrained
optimization problem (seRockafellar(1974), Malick (2004, andBoyd & Xiao (2005 for details):

. 1 . 1
min 0(y) == = (G + diag(y))+ I = by — Z|IG|I, (1.6)
yeR" 2 2

in the sense that, i € R" is an optimal solution to1(.6), thenX := (G + diag(y)) solves (..2). Here
diag(y) is the diagonal matrix whose diagonal entries are the componepts of

The objective functiorg(-) in (1.6) is known to be once continuously differentiable and convex
(Rockafellar 1974, despite the fact that the projection operatdr. is not differentiable everywhere.
Therefore the gradient method and quasi-Newton methods can be developed tol)lelrctly.
Malick (2004 remarked that the alternating projection method is actually the gradient methddgjor (
with a constant step length of 1. These methods converge, at best, linearly. Bé¢auseconvex
and coercive Rockafellar 1974, solving (L.6) is equivalent to finding a poing € R" satisfying its
optimality condition

Vé(y) = diag(G + diag(y))+ —b =0.
We define
F(y) := diag(G + diag(y))+, yeR"

The functionF () is Lipschitz continuous and thus the generalized Jacaldigr) in the sense oflarke
(1983 is well defined. For any € R" let 924(y) := dF (y). The generalized Newton method takes the
following form:

Y =y vl va(Y), ke d®(y¥), k=0,1,.... (1.7)

A formula for calculatingy e 626 (y) can be found in Qi & Sun2006 p. 378). Clarke’s Jacobian-based
generalized Newton method.{) was thoroughly analysed i & Sun (2006 and was proven to be
guadratically convergent. Numerical experiments conducteégi i& Sun (2006, Borsdorf(2007 and
Borsdorf & Higham(2009 seem to confirm that the generalized Newton mettiod,(combined with
iterative solvers, is the most effective one available so far.
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For theH-weighted problem.3) all of those Lagrangian dual-based methods mentioned above are
not applicable, mainly due to the lack of a computable formula for the projectioh ©fS" onto S%
under theH -weighting, that is, the optimal solution, denotHg'no(X), to the following problem:

+

o1
m|n§||H o (Y =X)|I>, suchthaty € ST

is not known to have an explicit formufaFor this reason the Lagrangian dual problem, which takes the
following form for the H-weighted case:

i _1 o (X — 2, yT(b — di
?;%ﬁ({x@f%'(x’y)'_z'm X=06)I*+y (b dlag(X))}, (1.8)

cannot be reduced to an unconstrained smooth optimization problem in the dual space sirigr to (
for theW-weighted case. Consequently, compared to the original problem, the Lagrangian dual problem
(1.8) does not provide us with a better choice in terms of algorithmic design. This implies, in partic-
ular, that the Newton method for th&-weighted case cannot be straightforwardly extended to the
H-weighted case.

A natural question then arises: Can we still expect an efficient dual approach for-tiheighted
case? This paper will provide an affirmative answer to this question by exploiting the augmented La-
grangian dual approach—the augmented Lagrangian method, develoBedkafellar(1976ab) in his
pioneering work on convex optimization problems. tet 0 be a parameter. By using the fact ti$4t
is a self-dual convex cone, we know frafvierzbicki & Kurcyusz(1977) that the augmented Lagrangian
function for theH-weighted problemX(.3) takes the following form:

1
Le(X,y, Z):=5lIH o (X = G)II? + y" (b — diag(X)) + gub — diag(X) |1

1 2 2
+ 52 =X 1" = 1211, (1.9)

where(X,y,Z) € 8" x R™ x S" andb = e. The augmented Lagrangian dual problem takes the
following form:

' Z) = — min Le(X,y, 2) | 11
yeRT'z”esn{”"(y’ ) == min Le(X,, )] (1.10)

The major computational task in the augmented Lagrangian dual approach, as outl®&pHB3.Q), at
each step for a givety, Z) € R" x 8", is to solve the following unconstrained optimization problem:

min Lc(X,y, Z). 1.11
Xedn C( 5y9 ) ( )

1it was stated iJohnsoret al. (1998 Corollary 2.2) that, whei is positive definiteHE'nO(X) is uniquely determined by the
+

equation
Ho Hgf(X) =(HoX)4.

This does not seem to be true even for this special case. A counterexample is

1 e 1 2
H= , X= , 0<e<1/2
e 1 2 1
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Note that, for anyy, Z) € R" x S", we have that (-, y, Z) is a convex and continuously differentiable
function. Therefore the gradient method and quasi-Newton methods can be developed in theory for
solving (1.11). However, our numerical experiments show that the gradient method is extremely slow
and hence disregarded. The size of the variabla (1.11) is ni := n(n + 1)/2. Maintaining am x i
positive-definite matrix is extremely expensive due to memory problems, evenrwiemall, sayn =
100. This rules out the quasi-Newton methods in whicli anfi positive-definite matrix is maintained
and updated at each iteration (limited memory quasi-Newton methods may still be exploited, but their §
convergence analysis is hardly satisfactory).

The main purpose of this paper is to show that Newton’s method is an efficient method for solv-
ing (1.11). The Newton method that we are going to use is quite similad @) (vith the difference
that the number of the unknowns in the Newton equation herg ishich is O(n?), instead ofn.
These equations, even whanis relatively large, say = 1,000, do not create too much difficulty
when the CG method is employed to solve them. The major reason behind this is thkintbighted
problem (.3) may satisfy two important mathematical properties, nanmmnstraint nondegeneracy
andthe strong second-order sufficieabndition (SSOSC) (see Secti@). These two properties not
only ensure that the Newton equations encountered in the Newton method are well conditioned, butg'
also guarantee that the augmented Lagrangian method possesses a fast linear convergence, a propedly
established byrockafellar(1976ab) for general convex optimization problems. We will confirm all of
those results in the main body of the paper.

Before commenting on other approaches, we would like to emphasize why a semismooth Newton
method is possible for the augmented Lagrangian dual protletf)( while it is not for the Lagrangian
dual problem {.8). The major reason is that the inner optimization problentii@ is unconstrained
and convex. Solving this inner optimization problem is equivalent to solving the semismooth equation

ewl//:dny wouy papeojum
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(3.8). Moreover, the second-order information (i.e., the generalized Heg%igX)) can be completely =
calculated by 3.9). Therefore Newton's method can be developed. However, such calculations are not %.
available for the inner optimization problem of the Lagrangian dual probie@. ( 3
We note that a similar approach was also conducteg@ii& Sun (2009, where the problem con- c
sidered was of th&V-weighted type with a background in correlation stress testing, which required 2
a large number of correlations to be fixed beforehand. Theoretically, being an augmented Lagrangian%'
dual-based method, the approaclQin& Sun (2009 can be extended to theé-weighted case consid- <
ered here. Indeed, it wa3i & Sun (2009, together withQi & Sun (2006, that inspired us to further %
investigate the effectiveness of the augmented Lagrangian dual approach Fbwkehted problem =
(1.3. ]
The type of IPMs was deliberately left out of the above discussions because it deserves its own%
particular comments. As early amhnsonet al. (1998, the authors started to use IPMs to solve S
H-weighted matrix optimization problems of various types. Hheveighted nearest correlation matrix >
problem (L.3) can be reformulated as a linear optimization problem with mixed semidefinite and second- S
order cone constraint$l{gham 2002 Toh et al,, 2007). Consequently, publicly available IPMs-based =
software such as SeDuMs{urm 1999 or SDPT3 Tutlindl et al., 2003 can be applied to solve these §
o

problems directly. However, since at each iteration these solvers require us to formulate and solve a
dense Schur complement matrix (Bforchers & Young 2007, which for problem {.3) amounts to a

linear system of dimensiofm + n) x (n+ n), the size of theH-weighted problem that can be solved on

a Pentium IV PC (the computing machine that we are using) is limited to a small number=s89 or

100 at most. The serious and competitive implementation of inexact IPMs was carried Talt &tyal.

(2007), for solving a special class of convex quadratic semidefinite programming (QSDP) including the
W-weighted problemX(.1), andToh (2008, for a general convex QSDP with tit¢-weighted problem
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(1.1) being targeted and tested in particular. The search direction usexhi(2008 was obtained by
solving theaugmented equatiowia the preconditioned symmetric quasi-minimal residgB8SQMR)
iterative solver. It is this QSDP solver that we are going to compare with. Our numerical tests show that
the augmented Lagrangian dual approach forhhaeighted nearest correlation probleind) is not

only faster, but also more robust.

The paper is organized as follows. In Sectbwe study some mathematical properties of Hhe
weighted problem(.3), mainly on constraint nondegeneracy and the SSOSC. S&i®an the aug-
mented Lagrangian method. We first outline an abstract form of the method in S&dtidn Section
3.2 we present two practical algorithms. One is the semismooth Newton-CG method for solving sub-
problems of the typel(11) encountered in the augmented Lagrangian method, which is detailed in the
second algorithm. Convergence analysis for the two algorithms is included in S8cidive report
numerical results in Sectiohand conclude the paper in Section

2. Mathematical properties of the H -weighted case

This section gives a brief account of the two mathematical properties ¢f theighted problemX(.3)
mentioned in Sectiod. The two properties will justify the use of the augmented Lagrangian method,
which is to be introduced in the next section.

2.1 The constraint nondegeneracy property

Let us cast the probleni (3) into the following convex QSDP:

min 2(X, Q(X)) = (C, X) + 3[H 0 G||2
such that diagX) = b, (2.1)
XeSh,

whereQ =HoHo,C=HoHoGandb=e.

For anyX € S! let TSR(X) be the tangent cone & at X and Iin(ngr(X)) be the largest linear
space contained iﬁ_S_Q(X). We say thatonstraint nondegeneradyolds at a pointX satisfying the
constraints in2.1) if

diag(lin Tgn (X)) = R". (2.2)
For the origin of constraint nondegeneracy, its various forms and its role in general optimization, see
Bonnans & Shapir@g1998 2000, Robinson(1984 1987 2003 andShapiro & Fan(1995.

Constraint nondegeneracy can be easily verified for the correlation constraints 2L8f'. Suppose
that X has the spectral decomposition

X = P diag(A4, ..., An)PT, (2.3)

wherel; > --- > A, are the eigenvalues of andP is a corresponding orthogonal matrix of orthonor-
mal eigenvectors. Then, froBchwertman & Allen(1979, Higham(1988 andTseng(1998, we know
that

X4 = P diagimax©, 11), ..., max0, 1n))P". (2.4)
We define
o:={il4 >0}, p:={il4i=0 and y :={i|4 <O}
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We write P = [P, Py P,], whereP, contains columns it indexed bya, andPg and P, are defined
similarly. The tangent conésy (X4) was first characterized bArnold (1971) as follows:

Tsn (X4) = (B € S"|[P;P,]"B[PsP,] = 0}.
Consequently, we have
lin (Tsn(X4)) = {BeS"|PfBP; =0,P;BP, =0,P/BP, =0}.
Equivalently, we have
Bio Bup Bay| Baa € S,
lin (Tsp(X4))={PBPTIB=|Bj, 0 0 |,ByeRxA 1. (2.5)
B, O 0 By, € RlIxI7

The following result says that any point satisfying the correlation constraints is constraint nondegener-
ate. It can be proved similarly to Proposition 4.2 in Bdfal (2007, where the proof used a characteri-
zation of constraint nondegeneracyAlizadehet al. (1997 and Qi & Sun 006 Lemma 3.3), and the
result is stated only for optimal solutions. We provide here a proof for the general case.

PROPOSITION2.1 Any point satisfying the correlation constraifdsag(X) = e, X € S} is constraint
nondegenerate.

Proof. Let X e S" satisfy the correlation constraints. Suppose Kdtas the spectral decomposition
(2.3). BecauseX is positive semidefinitey = @. Also, because digX) = e, we have thatr # 0.
Moreover, this diagonal constraint also implies (§8& Sun, 2006 Lemma 3.3)

> Pi>0 i=1...n (2.6)

lea

To show that condition?.2) holds atX, it suffices to prove that
(diag(lin Tsn (X))* = {0}.

Letv € R" be an arbitrary element of the left-hand side set of the above equation. We shall prove that
v = 0. It follows that, for anyP BPT € lin (Tsn (X)), we have

0= (v, diag(PBP")) = (diag(v), PBP') = (P"diag(v) P, B), (2.7)
whereB is from (2.5). The structure oB implies that

PTdiagw)P, = 0,

0T0Z ‘T Judy uo alodebuls Jo Alsianiun [euoneN Je Bio'sreulnolpioyxo-eufewl//:dny wolj papeojumoq

which in turn implies that
0 = diag(v) P, = diag(v)(P, o P,).
Summing each row of the above matrix equation yields

O=0i » PZ, i=1...n

lea

The property 2.6) ensures that; = 0 for each = 1, ..., n. This completes our proof. a
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2.2 The strong second-order sufficient condition
Now let us consider the Karush—Kuhn—Tucker (KKT) system of the QSDI, hamely,

Q(X) —diagly) — Z=C,
diag(X) = b, (2.8)
X=0,2Z%>=0,(X,2Z)=0.
Any triple (X, ¥, Z) € S" x R™ x S" satisfying @.8) is called a KKT point of 2.1). By using the fact

that S is a self-dual cone, we know frofBaves(197) that (X, ¥, Z) € S" x R™ x S" satisfies the
KKT conditions @.8) if and only if it satisfies the following system of nonsmooth equations:

9(X) — C — diag(y) — Z 0
F(X,y,Z):= b — diag(X) =l0], Xy,2)eS"xR™"xS". (2.9)
Z—[Z-X]4 0

Apparently,F is globally Lipschitz continuous everywhere @ is also. L
Let (X,Vy,Z) € S" x R™ x 8" be a KKT point of problemZ.1). We defineX := X — Z. Suppose
that X has the spectral decompositich3). We define

app(¥, Z) := {B e S"|diag(B) = 0, P;BP, =0, PJBP, = 0}. (2.10)
Note that apf(y, Z) is independent of the choice Bfin (2.3) (seeSun 2006 equations (38) and (39)).
We also define
MX) :={(V, 2)|(X, ¥, Z) is a KKT point of (2.1)}.
The setM(X) is known to be the set of Lagrange multiplietsX. For theH-weighted problem.3)

M (X) contains a unique poirfy, Z) because constraint nondegeneracy hatd$ by Propositior2.1
For a proof of this seBonnans & Shapirg200Q Theorem 5.85). We say that the SSOSC halds if

(B,HoHoB)+7%x(Z,B) >0 VO0# Beapp(y, 2), (2.11)
where the term¥y(Z, B) is defined by
Yx(Z, B) = (Z, BX'B),

andX ' is the Moore—Penrose pseudoinven$eX. Note thatYy(Z, B) is quadratic inB and is always
non-negativebecauseZ = 0 andX > 0. Note also that, in the left-hand side @11), the first term
(B,H o HoB) > 0if there existi, j € {1,...,n} such thatH;; Bj; # 0. Therefore we have the
following statement.

PrROPOSITION2.2 Let(X,Vy, Z) be the unique KKT point of thél-weighted nearest correlation matrix
problem (.3). If forany 0# B € app(y, Z) thereexist, j € {1, ..., n} suchthaBjj; # 0andH;j > 0,
then the SSOSC2(11) holdsat X.

We now make several remarks about the SSOSCI).
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(i) The SSOSC was first proposed Byn (2006 in a study of the strong regularity of nonlinear
semidefinite programming (NSDP). The original definition runs over th$€X). As this set
is a singleton in our case? (L)) is just a specialization of the original one givenSan (2006
Definition 3.2).

(i) In some practical cases (sBdansali & Wise 2001 the diagonal weightslj; are assignedero
values (i.e.,Hijj = 0, wherei = 1,...,n). This does not have any effect oB.11) because,
for any B € app(y, Z), we must haveB;; = 0, wherel = 1, ..., n (see the definition2.10).
Therefore the diagonal weights ih have no contribution to the valu®, H o H o B).

(iii) Furthermore, for the SSOSQ@(11) to hold at X one does not have to assume that all of the
off-diagonal weights are positive. In fact, as the following example shows, some of them are
allowed to bezerowithout damaging the SSOSC. This example also shows that too many zero
off-diagonal weights do destroy the SSOC1().

EXAMPLE 2.3 Consider théd-weighted problem(.3) in S* with data given by

1 01T 1 -1 1 -1
0111 -1 1 -1 1
H= and G =
1111 1 -1 1 05
1 11 1 -1 1 05 1
Such a matrixG is known as a pseudocorrelation matrix becaude< Gijj < 1, Gjj = 1 for all

i,j =1,...,4, andimin(G) = —0.8860 < 0. After running our augmented Lagrangian dual method,
namely, Algorithm3.3, with some help of analytical cross validation, we found a KKT poXyty, Z)
with

1 -1 71T —T1 0 0 11—1 1-11
_ -1 1 -1 1 _ 0 0 1-11 11—1 ]
X = , Z= + diag(y),
1 -—-11 1 72 1—1 1-1n1 0 72— 05
-1 T ) 1 1-79 71—1 »-05 0

andyy = yo = 211(1 — 71), ¥3 = Y4 = Y1 — 72(r2 — 0.5) and
71 = (1 +/109/108) /43 — (-1 + /109108 /413 and 7, =1- 72

ThereforeX is an optimal solution (but we cannot assess at this moment if it is the unique solution).
The matrixX := X — Z has the spectral decompositidh3) with

_05822 —00000 07071 0401 2,950
05822 00000 07071 —0.4013 1.0495

P=1 _04013 07071 00000 —05822| 2™ * 7| _0.4283|"
—04013 07071 —0.0000 05822 13293

Hencep = ¢ andy = {3, 4}, implying that
appy. Z) = (B € S*diag(B) = 0, P BP, = 0}.
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Only some elementary calculations are new required to verify that, foiBasyapp(y, Z), we have
B1o = 0. In other words, if B%4 B € app(y, Z) then there must exist an off-diagonal elemBpt # 0,
with (i, j) ¢ {(1, 2), (2, 1)}. Consequently, for sucB we must have

(B,HoHoB))Hi?Bizj > 0,

that is, the SSOSC(11) holds even if some off-diagonal weights lih arezera Because of the fulfil-
ment of the SSOSC, we can now clailvat X is indeed the unique optimal solution. We also note that
the strict complementarity condition holds for this example.

However, ifH contains more zero off-diagonal weights then the SSGSTI may no longer hold.
For example, iH becomes

B PO R

01
10
01
10

P O R R

andG remains unchanged, then an optimal solution found by AlgorBt#hasy = 0andZ = 0 as a
pair of the Lagrange multipliers. This implies that= ¢ and hence

app(y, Z) = {B e S diag(B) = 0}.
There exists G B € app(y, Z) such that B, H o H o B) = 0. We also note that the terifi;(Z, B)
always equals Becaus& = 0. Therefore the SSOSQ.(1) fails to hold.

One may wonder why we used Algoriti@i3to give the seemingly nontrivial Examp2e3in S*. Is
it possible to have an exampledt#? The answer is surprisingly no, as long@ss a pseudocorrelation
matrix. We give a brief proof of this result below.
Suppose thal € S has only one zero off-diagonal weight, namétig, = 0, and thatH;; > O for
all (i, ) & (1,2, (2, 1)). Let
1 71
G=|nn 1 3|, -1<7<1 i=123

o 13 1
The following fact can easily be verified.
FACT 2.4 For arbitrary chosetyp, 73 € [—1, 1] thematrix
1 113 1
X =| 113 1 13
72 73 1

is a nearest correlation matrix @ under theH -weight (there may be more than one nearest correlation
matrix). If 7 = +1 andr3 = £1 thenX is the unique nearest correlation matrix.
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Because of this fact antli2 = 0O, the corresponding Lagrange multiplidos Xarey =0 e R3
andZ = 0 € S3. This implies that

app(y, Z) = {B e S°|diag(B) = 0}.

Let B € S3 be such thaBy» # 0 andBijj =0for (i, j) & {(1, 2), (2, 1)}. It follows thatB € app(y, Z)
and(B, H o H o B) = 0. Thus the SSOSQ(1]) fails to hold because”y(f, B) is alwayszera The
argument certainly extends td containing moreerooff-diagonal weights. Hence the SSOSC is never
satisfied inS® whenH contains zero off-diagonal weights. The prerequisit€ dfeing a pseudocorrela-
tion matrix is crucial in the above argument. Whénis not restricted to be a pseudocorrelation matrix,
it is indeed possible to construct an exampleSthshowing that the SSOSC may still hold even when
H contains someerooff-diagonal weights (se®i, 2009 Example 3.9).

Let the mappind= be defined byZ.9). The following result states the local invertibility & near
the KKT point (X, ¥, Z) that is important for the convergence analysis of the augmented Lagrangian
method for solving théd -weighted problemX(.3).

PROPOSITION2.5 If the assumption made in Propositiai2 is satisfied, in particular, iHjj > 0 for
alli, j =1,...,n, then there exist a neighbourhoad of (X, ¥, Z) in S" x R" x S" and a constant
¢ > 0 such that

IF(X,y,2) = FX ¥V, DI = MKy, 2) = (X, ¥, ) Y(X,y,Z)and(X, ¥, Z) e N.

The proof of this proposition follows directly from Propositiodd and2.2 andSun (2006 Theo-
rem 4.1).

3. The augmented Lagrangian method

As we discussed in Sectidh the Lagrangian dual approach is not applicable toHheeighted prob-

lem (1.3) because the metric projection onf§ under theH-weighting does not have an explicitly
computable formula. The consequence is that its corresponding Lagrangian dual problem does not re
duce to an explicitly defined unconstrained smooth optimization problem. Compared with the original
problem (.3), not much benefit would be gained through considering the Lagrangian dual problem.

In this section, we will demonstrate that the augmented Lagrangian dual approach works well in
theory for theH-weighted case. The two mathematical properties in the preceding section justify the
use of the method. For simplicity, for the remainder of this paper we shall asbyme 0, which
implies the SSOSC at the solution.

3.1 Outline of the augmented Lagrangian method

Let the augmented Lagrangian function be definedbg) (with ¢ > 0. The augmented Lagrangian
method for solving1.3) can be stated as follows. Leg > 0 be given. Le(y?, %) € R™ x S be the
initial estimated Lagrange multiplier. At theth iteration, determine

0T0Z ‘T Judy uo alodebuls Jo AlsiaAiun [euoneN 1e Bio'sreulnolpioyxo eufewl/:dny woly papeojumod
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and updatey 1 by

Ck+1:=Ck OF Cky1 > Ck (3.3)

according to certain rules.

As for the global convergence and the rate of convergence of the augmented Lagrangian method for
the H-weighted problemX(.3), we can directly use the convergence theory developed by Rockafellar
(1976a Theorem 21976k Theorem 5) for general convex programming problems, supported by Pro
position2.5. We will state such a result (Theore3r) for the practical Algorithn8.3.

Recall that, for any giverty > 0, the convex functiong, (-) defined in (.10 is continuously
differentiable with

(3.4)

ok ( —(b — diag(Xk*+1)) )
V‘)Ck(y s Z ) = .

(28— (ZF — Xk

This means that the sequenidg®*?, Zk*1)} generated by the augmented Lagrangian metBobj

(3.3) can be regarded as a gradient descent method applied to the augmented Lagrangian dual problem

(1.10 with a step lengtlek at thekth iteration:
(Y, 24 = (vF, 2 — Ve (99, 29, k=0,1,.... (3.5)

Consequently, one may expect a slow convergence inherited by the gradient method. Interestingly, The-
orem3.4implies that the sequendéy*+1, Zkt1)} converges tqy, Z) at a linear rate that is inversely
proportional tock for all ¢k sufficiently large. This fast convergence has a recent new interpretation

in the context of NSDP: locally, the augmented Lagrangian method can be treated as an approximate
semismooth Newton method (s8anet al,, 2008 for the equation

ve (Y, Z) =0, (3.6)

as long as is sufficiently large. In fact, it was proven Bunet al. (2008 (in the NSDP setting) that,
for anyc large enoughV . is semismooth aty, Z) and one has the following estimate:

V1i=cZ+ 0™

forall V e 8(Vve) (¥, Z). Thus, by using the fact tha( V) (-) is upper semicontinuous, for a} = ¢
sufficiently large, the term—cvaCk(yk, Z%) in (3.5 can be regarded as a good approximation to the
semismooth Newton directionV, 2 Vg, (yX, ZK), whereVi e (Vg )(y¥, Z¥) for the semismooth
equation 8.6). It is this interpretation that attracted us to attempt to apply the augmented Lagrangian
method to theH -weighted problemX(.3) in the first place.

3.2 A semismooth Newton-CG method

Section3.1 outlined a theoretical augmented Lagrangian method. But one critical issue has not been
addressed yet: How to solve the subprobl&d) This issue is fundamentally important because the
method is not going to be useful anyway if solving each subproblem is difficult. We propose the use of
a semismooth Newton-CG method to sol@el) and explain in this subsection why it works.

Fix c > 0 and(y, Z) € R" x 8". We define

0(X) = Lo(X,y,Z), XedSM
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Our aim is to develop Newton'’s method for the problem

min 0(X). (3.7)

Sinced(+) is a convex function, solving3(7) is equivalent to solving the following nonsmooth equation
(see the definitions of andC in (2.1)):
0= VO(X) = Q(X) —diagly + c(b — diag(X))) — lgn(Z —cX)—C. (3.8)

It was proven inSun & Sun(2002 that the projection operatdisn (-) is strongly semismooth (see
Chenet al, 2003 for some extensions). Since all other term&#x(-) are linear, 8.8) is a semismooth
equation for which the generalized Newton’s method has been well developeduiseeer, 1988 Qi
& Sun, 1993. Let aHSQ(Z — ¢X) denote the generalized JacobianIZanr () at(Z — cX). Then the

generalized Jacobian 8f9(-) at X, denoted by20(X) (also known as the generalized Hessiaf 6f
at X), is given by

0%0(X) = Q + ¢(Z + o115 (Z — cX)). (3.9)
The Newton method for the semismooth equati®)(is then defined by
Xk = xk— vt vexky), Vkead?d(X), k=0,1,.... (3.10)

The implementation of the Newton metho8l10 requires the availability o/ € 820(X) and the
nonsingularity ofV, both of which can be easily realized. ARye 620 (X) has the formula

V=0+cZ+W), Wealg(Z-cX).

The identity operataf is obviously positive semidefinite and so is aiyin 0llsn (Z —cX) (seeMeng

etal, 2005 Proposition 1). The positive definitenessbtomes from that of becaus®® =HoHo and

Hij > 0. An explicit formula for anyw e 0llsn(Z—cX) can be found ifPanget al. (2003 Lemma 11).
Now we are ready to describe the algorithm for solving probl&m)(

ALGORITHM 3.1 (A semismooth Newton-CG method)

Step0: Let X0 e SM, ne0,1),ue 01,71 € (01), 12 € (1,00), 73 € (1,00) andp € (0,1) be
given. Letj := 0.

Stepl: Select an elemerit; e 920(X}), and computes; := min{z1, 72| VO(X))||}. Then apply
the CG methodHestenes & Stiefell952 starting with the zero vector as the initial search
direction to

VO(X)) + (V) +5)1)4X =0 (3.11)
to find a search directiod X such that
IVOXT) + (V) + 51 1) AXI|| < 7y IVOXH)]I, (3.12)

wherey; := min{y, 73| VO(X1)|}.
Step2: Letl;j be the smallest non-negative intesuch that

O(X1 4 pl (ax1)) —0(XT) < up'(vo(X)), 4XT).
Settj := pli andXi*1 1= XJ 4+ t;(4X]).
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Step3: Replace] by j +1 and go to Step 1.

Note that, since for each> 0 we have thaVj +s; | is positive definite, one can always use the CG
method to find4 X! such that3.12) is satisfied. Furthermore, since the CG method is applied with the
zero vector as the initial search direction, it is not difficult to see thdt is always a descent direction
for (-) at X!. In fact, we have that

. , _ 1 _
= IVO(XH)|2 < (=VO(XD), aXT) < | VO(X)|?, 3.13
Zmax(Vj + Sj I)” X0 S Amin(Vj + §j I)|| I ( )

where for any matrixA € S" the smallest and largest eigenvaluefofire represented bimin(A) and
Amax(A), respectively. For a proof of3(13 seezZhaoet al. (2008. Therefore Algorithm3.1 is well
defined as long a¥6(X!) # 0, and its convergence analysis can be conducted in a similar way to that
in Qi & Sun (2006 Theorem 5.3). We state these results in the next theorem, whose proof is omitted for
brevity.

THEOREM 3.2 Suppose that in Algorithi®.1 we haveW)_(Xj) # 0 for all j > 0. Then Algorithm
3.1is well defined and the generated iteration sequégXdg converges to the unique solutioti of
problem B.7) quadratically.

In our numerical experiments the parameters used in Algor8hhare set as followsy = 1072,
=101 70 =102, 7, = 10,73 = 10* andp = 0.5.

3.3 A practical augmented Lagrangian method

Section3.2 addressed the fundamental issue of solving probled).(In order to use the augmented
Lagrangian method3(2) for solving theH-weighted problemX.3), we need to know when to termi-
nate Algorithm3.1without affecting the convergence of the augmented Lagrangian method outlined in
Section3.1s0 as to make the method practical. Fortunatbckafellar(1976ab) has already provided
a solution to this.

For eachk > 0 we define

O(X) == Lo (X, ¥, Z5), Xes"

Sinced is strongly convex, we can use the following stopping criteria considered by Rockafellar for
general convex optimization problems ($eckafellar 1976ab) but tailored to our needs:

1 k+1y),2 35 -
2—_||V9k(x e < 20" sk > O,Zak < 00,
min k=0
1 52 i (3.14)
VoK I2 < (e, 26 — (vF, Z9I2 k> 0, Dok < oo,
2. 2ck
min k=0
IVOXTH < /el (y T, 2498 — (v%, 29, 0<d—0,
wherehmin := min{Hij li, j = 1, ..., n} and(yk+1, Z*+1) is defined by .2).

Finally, a ready-to-implement version of the augmented Lagrangian metad(8.3) can be
described as follows.
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ALGORITHM 3.3 (A practical augmented Lagrangian method)

Step0: Letcy > 0 andx > 1 be given. LetX® e S" be arbitrary. Lety® € R" andz° e S" be the
initial estimated Lagrange multipliers. Liet= 0.

Stepl: Apply Algorithm 3.1to the problem
in (X
Jin, k(X)
with 6(-) = 6k(-) and the starting poinkX to obtain X**1 satisfying the stopping criterion
(3.19.

Step2: Compute(y*t1, zk+1) by (3.2) and updatey 1 = Cx OF Ci1 = KCk.
Step3: Replacek by k 4+ 1 and go to Step 1.

As for the convergence of the algorithm, we can directly Bsekafellar(1976a Theorem 2) and
(1976h Theorem 5) for general convex programming problems combined with Propo2iBda get
the following convergence theorem for AlgorithBrB.

THEOREM3.4 Let(X, y, Z) be the unique KKT point of probleni.(3). Let¢ > 0 be the constant given
in Proposition2.5. Let (XK, y, ZK) be the sequence generated by AlgoritBr8 with limy_,s ck =
Coo < 00. Then

lim (X, <+, 2K — (X, y, Z)
k— 0o
and for allk sufficiently large we have

I(y<HL, Z5Y — (9, 2)1 < all (YK, 2 = (3, D)1,

IXMHE = X < gl (v, 24 — (v, 291,
where
ac=[cP+ D) +all-00)T > aw=0("+c) 2
and
a=C(l+q)/o — A, =(/Cxo.

4. Numerical results

In this section we report our numerical experiments conducted foHthweeighted nearest correlation
problem (.3) in MATLAB 7.1 running on a PC Intel Pentium IV of 2.40 GHz CPU and 512 MB of
RAM.

In our numerical experiments the initial penalty parametgeis set to be 10 and the constant
scalark is set to be 4. The initial point(X2, y9) is obtained by calling the quadratically convergent
Newton method presented @i & Sun (2006 for solving the equally weighted nearest correlation
matrix problem

min 2IX - G2
suchthat X;j =1, i=1,...,n,
Xest
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andZ9is set to be
Z%:= X% — G — diag(y°).
The stopping criterion for terminating AlgorithB3is
Toly < 5.0 x 107,

where
Tolp := [F(x°, y°, 29|

and for eactk > 0 we have
Tolk 41 := max(|| Ve(XF ), |Ib — diag X1, 2% — g0 (Z* — cX¥) 11/ /).

Note that the three terms in defining {fp{ correspond to the three conditions in the KKT syst@m)(
In Step 1 of Algorithm3.3, X+ is computed to satisfy

[ VO (X 1) < min{0.01, 0.5 x Toli},

which is based on3(14). In Step 2,ck1 is updated taxy1 = xC if Tolky1 > %Tolk andcy41 = Ck
otherwise.

To simulate the possible realistic situations, tHeweight matrixH is generated with all entries
uniformly distributed in [01, 10], except for 2x 100 entries in [M1, 100]. The MATLABcode for
generating such a matrid is as follows:

sprand(n,n,0.5); WO = triu(W0)+ triu(Wwo0,1)’; W0 = (WO0+W0")/2;
= 0.01*ones(n,n) + 99.99  *WO;

W1 = rand(n,n); W1 = triu(Wl) + triu(W1,1); W1 = (W1+W1')/2;

H = 0.1 *ones(n,n)+9.9 »W1;

sprand(n,1,min(10/n,1)); | = find(s>0);

d = sprand(n,1,min(10/n,1)); J = find(d>0);

if length(l) >0 & length(J)>0

H(1,J) = WO0(1,J); H(J,I) = WO0(J,l); end

H = (H+H)/2;

2 =
o O
1l

(%]
1

Our first example is a 38% 387 correlation matrix case taken from the database of the RiskMetrics.

ExXAMPLE 4.1 The correlation matri is the 387x 387 1-day correlation matrix (as of 15 June 2006)
from the lagged data sets of RiskMetrieg{w.riskmetrics.com/stddownload edu.html ).
For testing purposes we pertugto

G=0QA-a)G+aE,

whereo € (0, 1) andE is a randomly generated symmetric matrix with entries+t[1]. TheMATLAB
code for generating isg = 2.0 *rand(387,387) - ones(387,387); E = triu(E) +
triu(gE,1); E = (E+E)/2 .We also seGjj = 1,wherel =1,...,n.

Our second example is randomly generated with 100, 500, 1,000 and 1500, respectively.
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ExAMPLE 4.2 Acorrelationmatrixisfirstgenerated by usifndATLABs built-in functionrandcorr:
x=10. "[-4:4/(n-1):0]; G=gallery('randcorr’,n *x/sum(x)) . It is then perturbed
to

G=0-a)G+aE,

wherea e (0, 1) andE is randomly generated as in Examgld: E = 2.0 *rand(n,n) - ones
(n,n) E = triu(E) + triu(g,1) E = (E+E)/2 andG;j issettobe 1for=1,...,n.

The small added termE in the above examples changes the correlation matrix into a pseudocor-
relation matrix. Our numerical results are reported in Tatllasd2, wherelP-QSDP refers to Toh's
inexact IPM with the PSQMR as the iterative solvéolf, 2008. Iter andLiSys stand for the num-
ber of total iterations and the number of total linear systems solved, respeciesyepresents the
relative residue computed at the last iterate and is given by

Res := max{|| V& (Xt Y|l /(1+ ICI), b — diag X ) [1/(L + bl [(X*FE, Z¥41) /(1 + |obijl)),
where
o1 K+1 2
obj = E||H o (X = @)~

In Tablel, ‘+’ means that th€SQMReaches the maximum number of steps set at 1000 and, in Table
2, ‘out of memory ’means that our PC runs out of memory.

From Tabled and2 and other similar testing results not reported here, we have observed that our al-
gorithm is not only faster but also more robust with respect to the perturbed noise teeell P-QSDP,
particularly, for those cases in which a good initial correlation matrix estimation is available, as in many
real-world situations. Taking Tablk as an example, we can see that AlgoritBr8 takes almost the
same time for different, while IP-QSDP is much more sensitivedaand terminates prematurely for
a = 0.005. It is also worth mentioning that the main costs of AlgoritBi8include two parts, namely,
the full spectral decomposition of matrices for computing the fun@j@n and the CG steps for solving
the linear systems3(12. In cases when the condition number in the linear systed? is large, the
latter dominates the computing time. This explains why, in Tapklgorithm 3.3 (and also IP-QSDP)
may take more computing time even when the perturbation is smaller.

TABLE 1 Numerical results of Example1

Algorithm o CPU time Iter LiSys Res

3.3 0.1 0:04:52 13 36 A x107°
0.05 0:04:12 12 29 7 x 1078
0.01 0:04:58 12 27 Bx10°
0.005 0:04:16 11 21 T x 10°°

IP-QSDP 0.1 0:17:43 17 34 T x10°8
0.05 0:18:36 18 36 3x10°8
0.01 0:37:28 25 50 B x 1078

0.005 0:36:21 17 34 Bx10Y
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TABLE 2 Numerical results of Exampke?2

Algorithm n o CPU time Iter LiSys Res
3.3 100 a1 0:00:10 10 24 1 x10°8
0.05 0:00:10 8 22 1x10°8
0.01 0:00:16 8 22 Bx 108
0.005 0:00:41 8 34 1x10°8
IP-QSDP 0.1 0:01:27 14 28 ®x 1078
0.05 0:02:08 16 32 % x 107°
0.01 0:03:36 19 38 Bx 1078
0.005 0:06:05 18 36 Bx 108
3.3 500 Q1 0:06:22 10 26 & x 107°
0.05 0:05:53 9 23 & x 107
0.01 0:08:06 10 24 1x107°
0.005 0:08:49 9 24 3 x107°
IP-QSDP 0.1 0:41:22 14 28 % x 1078
0.05 0:39:47 14 28 gx10°8
0.01 1:34:16 19 38 Bx 1078
0.005 1:46:42 19 38 2x10°8
3.3 1,000 Q1 0:42:24 14 32 Bx 1078
0.05 0:36:12 11 29 Bx 1010
0.01 0:34:59 10 26 Dx107°
0.005 0:33:30 9 22 ?x107°
IP-QSDP 0.1 3:13:58 14 28 D x 108
0.05 4:36:47 15 30 Bx 108
0.01 8:00:46 21 42 Bx 1078
0.005 6:39:58 21 42 A x10°8
3.3 1,500 Q1 2:01:48 12 31 8 x 10710
0.05 1:54:57 11 27 P x107°
0.01 1:46:43 9 25 B x 10°°
0.005 2:06:06 9 26 1x107°
IP-QSDP — — — — out of memory

5. Conclusions

The convergence theory for the augmented Lagrangian method for the convex optimization problem
has been well established Rockafellar(1976ab). The main purpose of this paper is to demonstrate
that this method is not only fast, but also robust for Hheveighted correlation matrix problem. The-
oretically, one only needs to verify the conditions usedRickafellar(1976ab). It turns out that the
constraint nondegeneracy property and the SSOSC are sufficient in order to apply Rockafellar's con-
vergence results. We outlined how the two properties naturally lead to the linear convergence of the
method.

The key element for the practical efficiency of the augmented Lagrangian dual approach is the semis-
mooth Newton-CG algorithm introduced in this paper. We believe that the excellent numerical results
reported in this paper are largely due to this semismooth Newton-CG algorithm.
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Finally, we note that, in a straightforward way, we may extend this approach to deal with a more
general version that allows certain elements to be fixed or contained in some confidence intervals, i.e.,

min $IH o (X = G)|I?

suchthat X;j =1, i=1,...,n,
Xij = lij, (,)) € B, (5.1) 9
o s
XI] gulj: (Ial)EBLh C:_)
(<)
Xedst, §
whereB) and By are two index subsets ¢fi, j)|1 < i < j < n}, ljj e [-1,1]for all (i, j) € B, §
uij € [-1,1]forall (i, j) € By andlijj < ujj forany(i, j) € B N By. We omit the details here as our =
theoretical analysis still holds and there are no other methods available to allow us to make a comparison_'i_'
for problems of reasonable sizes. el
i)
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