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Linear programming

Consider the following linear programming

min 〈c, x〉
s.t. Ax = b,

x ≥ 0,

where A : <n → <m, b ∈ <m and c ∈ <n. Define the Lagrange function
as follows:

L(x; y, s) := 〈c, x〉+ 〈y, b−Ax〉 − 〈s, x〉.
Then the (Lagrange) dual of linear programming is defined as

max
y∈<m,s≥0

{
inf
x∈<n

L(x; y, s)

}
.
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Lagrange dual of linear programming

By noting that for any (x, y, s) ∈ <n ×<m ×<n,

L(x; y, s) := 〈x, c−A∗y − s〉+ 〈y, b〉,

we get an explicit formula for the dual problem as in the following

max 〈b, y〉
s.t. A∗y + s = c,

s ≥ 0

or equivalently

max 〈b, y〉
s.t. A∗y ≤ c.

No body will question the above (Lagrange) dual!
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Linear conic programming and its dual

In the same vein, we can write down the (linear) conic programming

min 〈c, x〉
s.t. Ax = b,

x ∈ K

and its (Lagrange) dual

max 〈b, y〉
s.t. A∗y + s = c,

s ∈ K∗,

where K is a closed convex cone and K∗ is its dual, e.g., K is the
second-order-cone or the PSD (positive and semidefinte) cone.
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Convex quadratic programming

Now let us turn to the convex quadratic programming (CQP)

min
x∈X

{1

2
〈x,Qx〉+ 〈c, x〉+ ψ(x)

∣∣∣ Ax = b
}

ψ : X → (−∞,+∞] is a closed proper convex polyhedral function,
e.g., ψ(·) = δP (·), the indicator function over a convex polyhedral set
[simple]

Q : X → X satisfying Q = Q∗, Q � 0

A : X → Y is a given linear mapping

b ∈ Y is a given vector

c ∈ X is given

X and Y are two finite-dimensional real Euclidean spaces.
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Convex quadratic programming (continued)

Equivalently,

min
u,x∈X

{1

2
〈x,Qx〉+ 〈c, x〉+ ψ(u)

∣∣∣ Ax = b, x− u = 0
}

The corresponding Lagrange function is

L(u, x; y, s) := 1
2 〈x,Qx〉+ 〈c, x〉+ ψ(u) + 〈y, b−Ax〉+ 〈s, u− x〉

= 1
2 〈x,Qx〉+ 〈x, c−A∗y − s〉+ ψ(u) + 〈s, u〉+ 〈y, b〉

and the Lagrange dual of CQP takes the form of

max
y∈Y,s∈X

{
inf

u∈X ,x∈X
L(u, x; y, s)

}
or

max
y∈Y,s∈X

{
〈y, b〉+ inf

u∈X

{
ψ(u)+〈s, u〉

}
+ inf
x∈X

{1

2
〈x,Qx〉+〈x, c−A∗y−s〉

}}
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Wolfe dual

By simplifying, we get the following Lagrange dual

max
y∈Y,s∈X

{
− ψ∗(−s) + 〈y, b〉+ θ(y, s)

}
,

where

θ(y, s) := inf
x∈X

{1

2
〈x,Qx〉+ 〈x, c−A∗y − s〉

}
and ψ∗(·) is the Fenchel conjugate of ψ defined by

ψ∗(s) := sup
u∈X
{〈s, u〉 − ψ(u)}.

Since the computation of θ(y, s) is complicated, instead one normally
considers the following Wolfe dual

max
s∈X ,x∈X ,y∈Y

{
− ψ∗(−s)− 1

2
〈x,Qx〉+ 〈y, b〉

∣∣∣ s−Qx+A∗y = c
}
.
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Limitations of the Wolfe dual

Note that in the Wolfe dual (in the minimization format)

min
s∈X ,x∈X ,y∈Y

{
ψ∗(−s) +

1

2
〈x,Qx〉 − 〈y, b〉

∣∣∣ s−Qx+A∗y = c
}
,

the primal variable x is also involved. But more seriously, its solution set,
if nonempty, is always unbounded as long as Q � 0 (the null space of Q is
uncontrollable).

It lacks unification with linear conic programming

The deep equivalent connections between (LICQ) strict MFCQ of the
primal and the (strong) second order sufficient conditions of the
restricted Wolfe dual are lost

The dual based approaches such as the augmented Lagrangian
method cannot be used. For example, the software SDPNAL (Zhao,
Sun and Toh; SIOPT 2010) for solving the dual of semidefinite
programming cannot be extended to the Wolfe dual

In a word, neither theory nor computation supports the Wolfe dual
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Restricted Wolfe dual

Our remedy is to consider the following restricted Wolfe dual (in the
minimization format)

min
s∈X ,x′∈X ′,y∈Y

{
ψ∗(−s) +

1

2
〈x′,Qx′〉 − 〈y, b〉

∣∣∣ s−Qx′ +A∗y = c
}
,

where X ′ is the range space of Q, i.e.,

X ′ := Range (Q).

One can easily check that Q : X ′ → X ′ is self-adjoint and positive definite
even if Q : X → X is not positive definite. Note that if Q = 0, then
X ′ = {0} (in this case Q is still positive definite on X ′ – using definition
to verify it!). Also note that x′ in the dual is differen from x in the primal,
which does not need to stay in Range (Q).
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Nice properties of the restricted Wolfe dual

Different from the Wolfe dual, the restricted Wolfe dual possesses the
following nice properties:

It unifies with linear conic programming

The wonderful equivalent connections between the (LICQ) strict
MFCQ of the primal and the (strong) second order sufficient
conditions of the restricted Wolfe dual are kept

The dual based approaches such as the augmented Lagrangian
method can be employed. For example, Li, Sun and Toh (MPC,
2018) has successfully extended the software SDPNAL for solving the
dual of semidefinite programming to the restricted Wolfe dual of the
convex quadratic semidefinite programming (software QSDPNAL)

In a word, both theory and computation favor the restricted Wolfe
dual

Too good to be true? — the key is to keep in Range (Q). But, how?
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Augmented Lagrange function of restricted Wolfe dual

For given σ > 0, the augmented Lagrange function of the restriced Wolfe
dual of the convex quadratic programming can be written as

Lσ(s, x′, y;x) := ψ∗(−s) + 1
2 〈x′,Qx′〉 − 〈y, b〉

+〈x, s−Qx′ +A∗y − c〉+ σ
2 ‖s−Qx′ +A∗y − c‖2,

which, fixing the dual variable x, is a proper closed convex function in the
first block variable s plus a convex quadratic function in terms of (s, x′, y).
Note that y can be further split into many pieces as you please.

The above property of the augmented Lagrange function is also true for
the CQP in the primal form.
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Augmented Lagrange function of the primal CQP

For given σ > 0, the augmented Lagrange function of the CQP (primal)

min
u,x∈X

{1

2
〈x,Qx〉+ 〈c, x〉+ ψ(u)

∣∣∣ Ax = b, x− u = 0
}

takes the form of

Lσ(u, x; y, s) := ψ(u) + 1
2 〈x,Qx〉+ 〈c, x〉+ 〈y, b−Ax〉+ 〈s, u− x〉

+σ
2 ‖b−Ax‖2 + σ

2 ‖u− x‖2,

which, fixing the dual variables y and s, is a proper closed convex function
in the first block variable u plus a convex quadratic function in terms of
(u, x). Note that x can be further split into as many pieces as you like.

Note that the augmented Lagrange function for the convex QP in the
primal form does not contain a nonsmooth term for x even if it is
non-separable for x.

The (mysterious?) forms of the two augmented Lagrange functions lead to
the discovery of the symmetric Gauss-Seidel decomposition theorem!
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Convex composite quadratic programming

Actually, we can consider more general convex composite quadratic
programming (CCQP)

min
x∈X

{
ψ(x) +

1

2
〈x,Qx〉 − 〈c, x〉

∣∣∣ AEx = bE , AIx− bI ∈ K
}

ψ : X → (−∞,+∞] is a closed proper convex function [simple]

Q : X → X satisfying Q = Q∗, Q � 0

AE : X → Z1 and AI : X → Z2, given linear mappings

b = (bE ; bI) ∈ Z := Z1 ×Z2, given vector

c ∈ X is given.

K ⊆ Z2 is a closed convex set (cone) [simple]

X , Z1, and Z2 are finite-dimensional real Euclidean spaces
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CCQP and its restricted Wolfe dual

Equivalently,

min
x∈X ,x′∈Z2

{
ψ(x) + δK(x′) +

1

2
〈x,Qx〉 − 〈c, x〉

∣∣∣ (AE 0
AI −I

)(
x
x′

)
= b
}
,

whose restricted Wolfe dual (in the minimization format) is

min
s∈Y,z∈Z

y′∈Range(Q)

{
p(s) +

1

2
〈y′,Qy′〉 − 〈b, z〉

∣∣∣ s+ (Q
0

)
y′ −

(
A∗E A∗I
0 −I

)
z =

(
c
0

)}

s := (u, v) ∈ Y := X × Z2

p(s) := p(u, v) = ψ∗(u) + δ∗K(v)

δK(·) is the indicator function over K
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Gauss-Seidel method for solving Qx = b

Update only one element of the variable x in each iteration.

Input: Q ∈ <n×n,b ∈ <n and x0 ∈ <n
for k = 0, 1, . . .

for i = 1, . . . , n

xk+1
i := Q−1

ii

(
bi −

∑i−1
j=1 Qijx

k+1
j −

∑n
j=i+1 Qijx

k
j

)
end for

end for

Converges if Q is diagonally dominant, or symmetric positive definite.

Was it really the original form invented by Gauss or Seidel? We were
taught so in the textbooks...
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F. Gauss and L. Seidel

Johann Carl Friedrich Gauß
(30 April 1777--23 February 1855)

Philipp Ludwig von Seidel
(23 October 1821--13 August 1896)

*Photos from Wikipedia
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Gauss-Seidel iteration – resources

Mentioned in a private letter1 from Gauss to Gerling in 1823.
A publication was not delivered before 1874 by Seidel.

|00005||

1In Carl Friedrich Gauss Werke 9, Geodäsie, 278-281 (1903). English translation in J.-L.
Chabert (Ed.), A History of Algorithms, Springer-Verlag, Berlin, Heidelberg, 297–298 (1999).
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Gauss’ letter to Gerling

|00284||

......

|00284||

......

......
Gauss considered a 4 dimensional symmetric positive semidefinite but
singular linear equation.
Starting from (a, b, c, d) = (0, 0, 0, 0), update exactly one variable
from {a, b, c, d} each time via a certain rule.
Gauss worked with integers: an inexact iterative method!
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Gauss’ algorithm and conclusion
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Seidel’s method

To solve the linear equation

Ax = b with A ∈ <m×n, b ∈ <m,

Seidel defined the quadratic function

q(x) :=
1

2
‖Ax− b‖22 =

1

2
〈x, (A∗A)x〉 − 〈b, Ax〉+

1

2
‖b‖2

to solve the corresponding normal equation

Qx = A∗b with Q := A∗A.

Update only one component of the vector x each step to reduce the
value of q.

The most rational thing (according to Seidel): choose the index that
brings the maximum update (decrease) of q.
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Gauss-Seidel

The now well-known Gauss-Seidel iterative method:

Forget the “optimal” choice indicated by Gauss and Seidel.

Changes are carried “cyclically”.

Successively update the elements of x in a fixed order.

Turn to the first one if the last one is updated.

What have been taking about is actually only the sequential
Gauss-Seidel method – a much over simplified one.

How about turning to the penultimate one and so on after the last
one is updated

such as the symmetric Gauss-Seidel (sGS) iterative method2?

Note that for n = 2, GS ≡ sGS, which means that the two-block case
is indeed special. Maybe sGS is the real tool?

2R.E. Bank, T.F. Dupont, and H. Yserentant, “The hierarchical basis multigrid
method”, Numerische Mathematik 52, 427–458 (1988).
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Comparison: GS vs. sGS

GS

x1 x2 · · · xn

x1 x2 · · · · · ·

one cycle

sGS

x1 x2 · · · xn−1

xn−1

xn

x2

x1

· · ·

x2 · · · · · ·

one cycle
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A general form of symmetric Gauss-Seidel iteration

Consider the block vector
x = (x1,x2, . . . ,xs) ∈ X := X1 ×X2 × · · · × Xs. Given a positive
semidefinite linear operator Q such that

Qx ≡


Q11 Q12 · · · Q1s

Q∗12 Q22 · · · Q2s

...
...

. . .
...

Q∗1s Q∗2s · · · Qss




x1

x2

...
xs

 , Qii � 0.

Let p : X1 → (−∞,+∞] be a given closed proper convex function. Let
the quadratic function

q(x) := 1
2 〈x, Qx〉 − 〈r, x〉.
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Consider the problem min
x∈X

p(x1) + q(x)

Block GS and block sGS (no conditions) are applicable.

For sGS, one can get iteration complexity + linear convergence under
error bounds with no efforts

But, more importantly, block sGS can be used together with the
celebrated acceleration technique of Nesterov3.

3Yu. E. Nesterov, “A method of solving a convex programming problem with
convergence rate O(1/k2)”, Soviet Mathematics Doklady 27(2), 372–376 (1983).
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An inexact block sGS iteration

Consider the following block decomposition:

Ux ≡


0 Q12 · · · Q1s

. . .
...

. . . Q(s−1)s
0




x1

x2

...
xs

 .

Then Q = U∗ +D + U , where Dx = (Q11x1, . . . ,Qssxs).

Let δ̂ ≡ (δ̂1, . . . , δ̂s) and δ+ ≡ (δ+1 , . . . , δ
+
s ) with δ̂1 = δ+1 being given error

tolerance vectors. Define

∆(δ̂, δ+) := δ+ + UD−1(δ+ − δ̂), T := UD−1U∗ (sGS decomp. op.).

Note that T � 0 is NOT positive definite. Let y ∈ X be given. Define

x+ := arg min
x∈X

{
p(x1) + q(x) +

1

2
‖x− y‖2T − 〈∆(δ̂, δ+), x〉

}
. (1)

(1) looks complicated, but is much easier to solve!
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An inexact block sGS decomposition theorem

Theorem (Li-Sun-Toh, MP 2019)

Given y. For i = s, . . . , 2, define

x̂i := arg min
xi

{ p(y1) + q(y≤i−1,xi, x̂≥i+1)− 〈δ̂i, xi〉}

= Q−1ii
(
ri + δ̂i −

∑i−1
j=1Q∗jiyj −

∑s
j=i+1Qijx̂j

)
computed in the backward GS cycle. The optimal solution x+ in (1)
can be obtained exactly via

x+
1 = arg min

x1

{ p(x1) + q(x1, x̂≥2)− 〈δ+1 , x1〉},
x+
i = arg min

xi

{ p(x+
1 ) + q(x+

≤i−1,xi, x̂≥i+1)− 〈δ+i , xi〉}

= Q−1ii (ri + δ+i −
∑i−1
j=1Q∗jix+

j −
∑s
j=i+1Qijx̂j), i ≥ 2,

where x+
i , i = 1, 2, . . . , s, is computed in the forward GS cycle.

Reduces to the classical block sGS if both p(·) ≡ 0 and δ = 0.
Caution: Such a theorem is not available for GS even if p(·) ≡ 0.
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An inexact APG (accelerated proximal gradient)

Consider

min{F (x) := p(x) + f(x) | x ∈ X}

with ‖∇f(x)−∇f(x′)‖ ≤ L‖x− x′‖ ∀ x,x′ ∈ X .

Algorithm. Input y1 = x0 ∈ dom(p), t1 = 1. Iterate

1. Find an approximate minimizer xk to

min
y∈X

{
p(y) + f(yk) + 〈∇f(yk), y − yk〉+

1

2
〈y − yk, Hk(y − yk)〉

}
,

where Hk � 0 is a priorily given linear operator.

2. Compute tk+1 =
1+
√

1+4t2k
2 , yk+1 = xk +

(
tk−1
tk+1

)
(xk − xk−1).
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An inexact APG

Consider the following admissible conditions

F (xk) ≤ p(xk) + f(yk) + 〈∇f(yk), xk − yk〉+ 1
2
〈xk − yk, Hk(x

k − yk)〉,

∇f(yk) +Hj(x
k − yk) + γk =: δk with ‖H−1/2

k δk‖ ≤ εk√
2tk

,

where γk ∈ ∂p(xk) = the set of subgradients of p at xk, {εk} is a
nonnegative summable sequence. Note tk ≈ k/2 for k large.

Theorem (Jiang-Sun-Toh, SIOPT 2012)

Suppose that the above conditions hold and Hk−1 � Hk � 0 for all k.
Then

0 ≤ F (xk)− F (x∗) ≤ 2

(k + 1)2

[(
‖x0 − x∗‖H1

+
√

6
k∑
j=1

εj
)2]

.
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An inexact APG

Apply the inexact APG to

min{F (x) := p(x1) + f(x) | x ∈ X}.

Since ∇f(·) is Lipschitz continuous, ∃ a symmetric PSD linear operator
Q : X → X such that

Q � M, ∀ M ∈ ∂2f(x), ∀ x ∈ X

and Qii � 0 for all i.
Given yk, we have for all x ∈ X ,

f(x) ≤ qk(x) := f(yk) + 〈∇f(yk), x− yk〉+ 1

2
〈x− yk, Q(x− yk)〉.

APG subproblem: need to solve a nonsmooth composite QP of the form

min
x∈X
{p(x1) + qk(x)}, x = (x1,x2, . . . ,xs),

which is not easy to solve!
Idea: add an additional proximal term to make it easier (too easy bad too)!

30



Elimination of one block via the Danskin theorem

Let x = (x1,x2, . . . ,xs) ∈ X := X1 ×X2 × · · · × Xs and the
corresponding optimization problem

min{p(x1) + ϕ(z) + φ(z,x) | z ∈ Z, x ∈ X}

= min{p(x1) + f(x) | x ∈ X} ,

where p(·), ϕ(·) are convex functions (possibly nonsmooth), and

f(x) = min{ϕ(z) + φ(z,x) | z ∈ Z},

z(x) = argmin{. . .}.

Assume that ϕ, φ satisfy the conditions in the next theorem, then f has
Lipschitz continuous gradient ∇f(x) = ∇xφ(z(x),x).
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A Danskin-type theorem

ϕ : Z → (−∞,∞] is a closed proper convex function.
φ(·, ·) : Z × X → < is a convex function.
φ(z, ·) : Ω→ < is continuously differentiable on Ω for each z.
∇xφ(z,x) is continuous on dom(ϕ)× Ω.

Consider f : Ω→ [−∞,+∞) defined by

f(x) = inf
z∈Z
{ϕ(z) + φ(z,x)}, x ∈ Ω.

Condition: The minimizer z(x) is unique for each x and is bounded on a
compact set.
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A Danskin-type theorem

Theorem

(i) If ∃ an open neighborhood Nx of x such that z(·) is bounded on any
compact subset of Nx, then the convex function f is differentiable on Nx

and
∇f(x′) = ∇xφ(z(x′),x′) ∀x′ ∈ Nx.

(ii) Suppose that z(·) is bounded on any nonempty compact subset of Z.
Assume that for any z ∈ dom(ϕ), ∇xφ(z, ·) is Lipschitz continuous on Z
and ∃ Σ � 0 such that for all x ∈ X and z ∈ dom(ϕ),

Σ � H ∀H ∈ ∂2xxφ(z,x).

Then, ∇f(·) is Lipschitz continuous on X with the Lipschitz constant
||Σ‖2 (the spectral norm of Σ) and for any x ∈ X ,

Σ � G ∀G ∈ ∂2f(x),

where ∂2f(x) denotes the generalized Hessian of f at x.
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An inexact accelerated block coordinate gradient descent
method

min{p(x1) + ϕ(z) + φ(z,x) | z ∈ Z, x ∈ X}

Algorithm 2. Input y1 = x0 ∈ dom(p)× X2 × · · · × Xs, t1 = 1. Let {εk}
be a nonnegative summable sequence. Iterate

1. Suppose δki , δ̂
k
i ∈ Xi, i = 1, . . . , s, with δ̂k1 = δk1 , are error vectors

such that

max{‖δk‖, ‖δ̂k‖} ≤ εk/(
√

2tk),

zk = arg min
z

{
ϕ(z) + φ(z,yk)

}
, (elimination via Danskin)

xk = arg min
x

{
p(x1) + qk(x) +

1

2
‖x− yk‖2T − 〈∆(δ̂k, δk), x〉

}
.

(inexact sGS)

2. Compute tk+1 =
1+
√

1+4t2k
2 , yk+1 = xk +

(
tk−1
tk+1

)
(xk − xk−1).
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An inexact accelerated block coordinate gradient descent
method

Theorem

Let H = Q+ T and β = 2‖D−1/2‖+ ‖H−1/2‖. The sequence {(zk,xk)}
generated by Algorithm 2 satisfies

0 ≤ F (xk)− F (x∗) ≤ 2

(k + 1)2

[(
‖x0 − x∗‖H +

√
6β

k∑
j=1

εj
)2]

.
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CCQP

Consider the convex optimization model:

min θ(y1) + f(y1, y2, . . . , ys)

s.t. A∗1y1 +A∗2y2 + · · ·+A∗sys = c .
(2)

Linear mappings: Ai, i = 1, . . . , s, A∗y =
∑s
i=1A∗i yi, y := (y1, . . . , ys).

Closed proper convex function θ : Y1 → (−∞,+∞] and convex quadratic
function f(y) = 1

2 〈y, Qy〉 − 〈b, y〉. Then, (2) can be written compactly as

min{θ(y1) + f(y) | A∗y = c},

which is a very general CCQP.
Given σ > 0, the augmented Lagrangian function of the CCQP is

Lσ(y;x) = θ(y1) + f(y) + 〈x, A∗y − c〉+
σ

2
‖A∗y − c‖2︸ ︷︷ ︸

quadratic

.
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CCQP

The proximal augmented Lagrangian method (pALM) for the CCQP:

Given (y0, x0) in the domain and τ ∈ (0, 2). For k = 0, 1, . . .

Step 1. yk+1 ≈ arg minLσ(y;xk) +
1

2
‖y − yk‖2T

= arg min
y

{
θ(y1) + f(y) + 〈xk, A∗y− c〉+ σ

2
‖A∗y− c‖2 +

1

2
‖y− yk‖2T

}
.

Step 2. xk+1 = xk + τσ(A∗yk+1 − c).

T is the block sGS decomposition operator of Q+ σAA∗, which does
not need to be formulated explicitly. Note that T � 0 but T � 0. So
it is not a classical pALM, but a “semiproximal” ALM.

yk+1 is obtained via the inexact block sGS procedure [s blocks in
total].

In practice, the dual step-length τ is often chosen in [1.618, 1.95], e.g,
τ = 1.9.
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Extensions (1)

In the sGS procedure, the coefficient matrices of the linear systems to
be solved only need to be factorized once at the start of the
procedure. The additional costs of the repetitions are minimal and
can be offset by the larger step length τ ∈ (0, 2).

There are many applications that can be “solved” via block sGS +
pALM if the solution accuracy is not a big concern.

We can also deal with problems whose objective functions involving
non-quadratic smooth functions via majorizations.

To make the algorithms even faster, we often introduce indefinite
proximal terms with guaranteed convergence for τ ∈ (0, 2).
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Extensions (2)

One can deal with TWO nonsmooth blocks plus many smooth blocks: use
the sGS decomposition theorem + (indefinite-) semiproximal ADMM
(pADMM) (now τ ∈ (0, (1 +

√
5)/2):

min
x∈X ,y∈Y

{
p(x1) + f(x1, . . . , xm) + q(y1) + g(y1, . . . , yn)

}
s.t.

∑m
i=1A∗i xi +

∑n
j=1 B∗j yj = c → A∗x+ B∗y = c

(3)

x = (x1, . . . , xm) ∈ X := X1 × . . .×Xm
y = (y1, . . . , yn) ∈ Y := Y1 × . . .× Yn
p : X1 → (−∞,∞], q : Y1 → (−∞,∞] are proper closed convex;

f : X → <, g : Y → < are continuously differentiable convex functions
with Lipschitz continuous gradients; Ai : Z → Xi, Bj : Z → Yi are given
linear maps.

Note that problem (3) is extremely general: multi-block ADMM is
naturally introduced with guaranteed convergence.
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Example: QP with Birkhoff polytope constraints

Convex QP:

(P) min

{
1

2
〈X, QX〉+ 〈G, X〉 | X ∈ Bn

}
,

Self-adjoint linear operator Q � 0 and the and Birkhoff polytope:

Bn := {X ∈ <n×n | Xe = e, XT e = e,X ≥ 0}

e ∈ <n: the vector of all ones.

(D) min

{
δ∗Bn

(Z) +
1

2
〈W, QW 〉 | Z +QW +G = 0, W ∈ Range(Q)

}
δ∗Bn

: the conjugate of the indicator function δBn

ALM function for (D), given σ > 0

Lσ(Z,W ;X) = δ∗Bn
(Z) +

1

2
〈W, QW 〉 − 〈X, Z +QW +G〉

+
σ

2
‖Z +QW +G‖2
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ALM for (D)

Algorithm ALM: An augmented Lagrangian method for (D).

Given σ0 > 0, iterates k = 0, 1, . . .

Step 1. Compute

(Zk+1,W k+1) ≈ argmin

{
Ψk(Z,W ) := Lσk

(Z,W ;Xk)

| (Z,W ) ∈ <n×n × Range(Q)

}
.

Step 2. Compute

Xk+1 = Xk − σk(Zk+1 +QW k+1 +G).

Update σk+1 ↑ σ∞ ≤ ∞.

Convex piecewise linear-quadratic minimization:

error bound holds =⇒ ALM converges asymptotically superlinearly
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Semismooth Newton-CG method for inner problem

For any W ∈ Range(Q),

ψ(W ) := inf
Z
Lσ(Z,W ; X̂), Z(W ) := X̂ − σ(QW +G)

Subproblem solution (Z,W ):

W = arg min {ψ(W ) |W ∈ Range(Q)} ,
Z = σ−1

(
Z(W )−ΠBn(Z(W ))

)
For all W ∈ Range(Q),

∇ψ(W ) = QW −QΠBn
(Z(W ))

Semismooth Newton CG solves nonsmooth piecewise affine equation

∇ψ(W ) = 0, W ∈ Range(Q).
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Semismooth Newton-CG method for inner problem

Given Ŵ , linear operator M : <n×n → <n×n

M(∆W ) := (Q+ σQPHSQ)∆W, ∀∆W ∈ <n×n

PHS : the HS-Jacobian of ΠBn
at Z(Ŵ )

j-th iter., solve linear system (CG)

MjdW +∇ψ(W j) = 0, dW ∈ Range(Q)

Global convergence: Line search (using ψ(W ))

Local convergence:
positive definiteness of M on Range(Q) =⇒ at least superlinear
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Numerical results

Given A,B ∈ Sn, quadratic assignment problem (QAP):

min{〈X, AXB〉 | X ∈ {0, 1}n×n ∩Bn}

Convex relaxation [Anstreicher et al. MP, 2001]:

min{〈X, QX〉 | X ∈ Bn}

Self-adjoint linear operator Q(X) := AXB − SX −XT, Q � 0

Matrices S, T ∈ Sn obtained from [Anstreicher et al. MP, 2001]

Relative KKT residual:

η =
‖X −ΠBn(X −QX)‖

1 + ‖X‖+ ‖QX‖

Matrices A,B from QAPLIB
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Numerical results for QAP
“a”: Gurobi, “b”: ALM

iter η time

problem n a | b (itersub) a|b a|b
lipa80a 80 11 | 25 (68) 1.3-6 | 7.3-8 2:46 | 01
lipa90a 90 11 | 20 (54) 2.7-6 | 8.8-8 5:32 | 01
sko100a 100 14 | 26 (95) 8.5-6 | 8.5-8 2:06 | 11
tai100a 100 11 | 18 (52) 1.3-6 | 9.5-8 10:31 | 02
tai100b 100 11 | 27 (98) 1.3-6 | 9.1-8 10:31 | 13
tai80b 80 11 | 27 (98) 1.2-6 | 8.5-8 2:36 | 07
tai256c 256 * | 2 ( 4) * | 2.1-16 * | 00
tai150b 150 19 | 27 (94) 4.3-7 | 9.3-8 2:46:17 | 13
tho150 150 16 | 24 (96) 5.6-6 | 9.9-8 18:52 | 22

“*”: Gurobi out of memory (128 G RAM)

“tai150b”: Gurobi reports error, “small positive term” needed
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