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The purpose of this note is to illustrate the performance of various variants of ADMM which
can be employed to solve an SDP problem of the form:

(P) min {〈c, x〉+ δK(x) + δKP (x) | AEx− bE = 0} ,

where K = Sn+ and P = {X ∈ Sn | X ≥ 0}. Its associate dual SDP is given by

(D) min
{
δK∗(s) + δK∗p(z)− 〈bE , yE〉 | s+ z +A∗EyE = c

}
.

Observe that (D) is naturally partition into three blocks of variables (s, z, y).
By using the framework of the 2-block semi-proximal ADMM proposed in [9] (presented as

Algorithm sPADMM2 below) for solving the following convex problem

min {f(y) + g(z) | F∗y + G∗z = c} ,

one can derive various variants of ADMM for solving either (P) or (D).

ADMM2-Prim It is derived by applying the classical ADMM directly (with τ = 1.618 and
S = 0, T = 0) to the follwing equivalent primal problem:

min

〈c, x〉+ (δK(u) + δKP (v)) |

 AE−I
−I

x+

 0 0
I 0
0 I

( u
v

)
=

 bE
0
0

 .

This is a convex problem with two blocks of variables with x as the first block and and (u, v)
as the second block.

sPADMM2-Prim It is derived by applying sPADMM2 (with τ = 1.618 and an appropriately
chosen S � 0, T = 0) to the follwing equivalent primal problem:

min

{
(〈c, x〉+ δK(x)) + δKP (v) |

(
AE
−I

)
x+

(
0
I

)
v =

(
bE
0

)}
.

ADMM2. It is derived by applying sPADMM2 (with τ = 1.95 and an appropriately chosen
S � 0. The convergence of the algorithm with this larger step-length is guaranteed as the
objective on the (yE , z)-part is linear) to the following equivalent dual problem:

min

{
(δK∗(s) + δK∗p(u))− 〈bE , yE〉 |

(
s
u

)
+

(
z +A∗EyE
−z

)
=

(
c
0

) }
.
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ADMM3c Our convergent semi-proximal ADMM algorithm (with τ = 1.618) solving (D). It is
derived from sPADMM2 with S = 0 and an appropriately chosen T � 0.

ADMM3g A convergent ADMM algorithm (with Gaussian back substitution) proposed in [B.
He, M. Tao, and X. Yuan, SIAM Journal on Optimization, 22 (2012), pp. 313–340] that is
applied directly to (D).

Algorithm sPADMM2: A generic 2-block semi-proximal ADMM.

Choose appropriate positive semidefinite linear operators S and T . Let σ > 0 and τ ∈ (0,∞) be
given parameters. Choose y0 ∈ dom(f), z0 ∈ dom(g), and x0 ∈ X . Perform the kth iteration as
follows:

Step 1. Compute yk+1 = arg minLσ(y, zk;xk) +
σ

2
‖y − yk‖2S .

Step 2. Compute zk+1 = arg minLσ(yk+1, z;xk) +
σ

2
‖z − zk‖2T .

Step 3. Compute xk+1 = xk + τσ(F∗yk+1 + G∗zk+1 − c).

In the literature, there are three types of 2-block ADMM:
(a) The classic (generic, common, standard, ...) ADMM takes S = 0 and T = 0 in Algorithm

sPADMM2.
(b) The classic (generic, common, standard, ...) proximal ADMM takes positive definite

proximal terms S � 0, T � 0.
(c) The semi-proximal ADMM, i.e., Algorithm sPADMM2, does not need either S or T to be

positive definite, and they need only to be positive semidefinite.
While both (a) and (b) have a long history, (c) is a relatively recent addition appearing in

Appendix B of [9] in 2013. Though version (c) is the most versatile algorithm, it was hardly
known to the ADMM community before the publication of this paper. As mentioned in Section
2 of the paper, the most important ADMM used in this paper is version (c), by taking S, T to
be only positive semidefinite but not positive definite and τ > 1 (in particular, τ = 1.618).

Figure 1 shows the performance profiles of ADMM3c, ADMM2, ADMM3g, ADMM-Prim and
sPADMM2-Prim for a total of about 170 problems tested in Section 5.1.2 of the paper. From
the performance profiles, one can safely conclude that among all the ADMM-type algorithms our
newly proposed ADMM3c is the most suitable, if not the best possible, for solving SDPs.
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Figure 1: Performance profiles of ADMM3c, ADMM2, ADMM3g, ADMM-Prim and sPADMM2-
Prim on [1, 10]

3


