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Abstract
In this paper, we show that for a class of linearly constrained convex composite opti-
mization problems, an (inexact) symmetricGauss–Seidel basedmajorizedmulti-block
proximal alternating directionmethod ofmultipliers (ADMM) is equivalent to an inex-
act proximal augmented Lagrangian method. This equivalence not only provides new
perspectives for understanding some ADMM-type algorithms but also supplies mean-
ingful guidelines on implementing them to achieve better computational efficiency.
Even for the two-block case, a by-product of this equivalence is the convergence of the
whole sequence generated by the classic ADMM with a step-length that exceeds the
conventional upper bound of (1+ √

5)/2, if one part of the objective is linear. This is
exactly the problem setting inwhich the very first convergence analysis of ADMMwas
conducted by Gabay and Mercier (Comput Math Appl 2(1):17–40, 1976), but, even
under notably stronger assumptions, only the convergence of the primal sequence was
known. A collection of illustrative examples are provided to demonstrate the breadth
of applications for which our results can be used. Numerical experiments on solving
a large number of linear and convex quadratic semidefinite programming problems
are conducted to illustrate how the theoretical results established here can lead to
improvements on the corresponding practical implementations.
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1 Introduction

Let X, Y and Z be three finite-dimensional real Hilbert spaces each endowed with
an inner product denoted by 〈·, ·〉 and its induced norm denoted by ‖ · ‖, where Y :=
Y1 × · · · × Ys is the Cartesian product of s finite-dimensional real Hilbert spaces
Yi , i = 1, . . . , s, each endowed with the inner product, as well as the induced norm,
inherited from Y. For any given y ∈ Y, we can write y = (y1; . . . ; ys) with yi ∈
Yi ,∀ i = 1, . . . , s. Here, and throughout this paper, we use the notation (y1; . . . ; ys)
to mean that the vectors y1, . . . , ys are written symbolically in a column format.

In this paper, we shall focus on the following multi-block convex composite opti-
mization problem

min
y∈Y,z∈Z

{
p(y1)+ f (y)− 〈b, z〉|F∗y + G∗z = c

}
, (1.1)

where p : Y1 → (−∞,+∞] is a (possibly nonsmooth) closed proper convex func-
tion, f : Y → (−∞,+∞) is a continuously differentiable convex function whose
gradient is Lipschitz continuous, b ∈ Z and c ∈ X are the given data, and F∗ and G∗
are the adjoints of the given linear mappings F : X → Y and G : X → Z, respec-
tively. Despite the simple appearance of problem (1.1), we shall see in the next section
that this model actually encompasses various important classes of convex optimiza-
tion problems in both classical core convex programming as well as recently emerged
models from a broad range of real-world applications. A quintessential example of
problem (1.1) is the dual of the following convex composite quadratic programming

min
x

{
ψ(x)+ 1

2
〈x,Qx〉 − 〈c, x〉 | Gx = b

}
, (1.2)

where ψ : X → (−∞,+∞] is a closed proper convex function, Q : X → X is a
self-adjoint positive semidefinite linear operator, G : X → Z is a linear mapping, and
c ∈ X, b ∈ Range(G) (i.e., b is in the range space of the linear operator G) are the given
data. The dual of problem (1.2) in the minimization form can be written as follows:

min
y1,y2,z

{
ψ∗(y1)+ 1

2
〈y2,Qy2〉 − 〈b, z〉 ∣∣ y1 + Qy2 − G∗z = c

}
, (1.3)

where ψ∗ is the Fenchel conjugate of ψ , y1 ∈ X, y2 ∈ X and z ∈ Z, so that problem
(1.3) constitutes an instance of problem (1.1).

To solve problem (1.1), one of the most preferred approaches is the augmented
Lagrangian method (ALM) initiated by Hestenes [23] and Powell [42], and elegantly

123



On the equivalence of inexact proximal ALM and ADMM for a… 113

studied for general (without taking into account of the multi-block structure) con-
vex optimization problems in the seminal work of Rockafellar [45]. Given a penalty
parameter σ > 0, the augmented Lagrangian function corresponding to problem (1.1)
is defined by

Lσ (y, z; x) := p(y1)+ f (y)− 〈b, z〉 + 〈x,F∗y + G∗z − c〉 + σ

2
‖F∗y + G∗z − c‖2,

∀ (x, y, z) ∈ X × Y × Z.

Starting from a given initial multiplier x0 ∈ X, the ALM performs the following steps
at the kth iteration:

(1) compute (yk+1, zk+1) to (approximately) minimize the function Lσ (y, z; xk), and
(2) update the multipliers xk+1 := xk + τσ (F∗yk+1 +G∗zk+1 − c), where τ ∈ (0, 2)

is the step-length.

While one would really want to solve miny,z Lσ (y, z; xk) as it is without modifying
the augmented Lagrangian function, it can be expensive to minimize Lσ (y, z; xk)
with respect to both y and z simultaneously, due to the coupled quadratic term
in y and z. Thus, in practice, unless the ALM is converging rapidly, one would
generally want to replace the augmented Lagrangian subproblem with an easier-to-
solve surrogate by modifying the augmented Lagrangian function to decouple the
minimization with respect to y and z. Such a modification is especially desirable
during the initial phase of the ALM when its local superlinear convergence has yet
to kick in. The most obvious approach to decouple the subproblem for obtaining
(yk+1, zk+1) is to add to Lσ (y, z; xk) the proximal term σ

2 ‖(y; z) − (yk; zk)‖2�,
where � = λ2I − (F;G)(F;G)∗ with λ being the largest singular value of (F;G)
and I being the identity operator inY ×Z. However, such a modification to the aug-
mented Lagrangian function is generally too drastic and has the undesirable effect of
significantly slowing down the convergence of the ALM [6, Section 7]. This naturally
leads us to the important question on what is an appropriate proximal term to add to
Lσ (y, z; xk) such that the ALM subproblem is easier to solve while at the same time it
is less drastic than the obvious choicewe have justmentioned in the previous sentences.

We shall show in this paper that by adding an appropriately designed proximal term
to Lσ (y, z; xk), we can reduce the computation of the modified ALM subproblem to
sequentially updating y and z via computing

yk+1 ≈ min
y

{
Lσ (y, z

k; xk)
}

and zk+1 ≈ min
z

{
Lσ (y

k+1, z; xk)
}
.

The reader would have observed that the resulting proximal ALM updating scheme
is the same as the classic two-block ADMM (pioneered by Glowinski and Marroco
[21] and Gabay and Mercier [18]) that is applied to problem (1.1). However, there is a
crucial difference in that our convergence result holds true for the step-length τ in the
range (0, 2), whereas the classic two-block ADMM only allows the step-length to be
in the interval

(
0, (1+√

5)/2
)
if the convergence of the full sequence generated by the

algorithm is required. It is important to note that even with the sequential minimization
of y and z in themodifiedALMsubproblem, theminimization subproblemwith respect
to y can still be very difficult to solve due to the coupling of the blocks y1, . . . , ys in
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(1.1). One of themain contributionswemade in this paper is to show that bymajorizing
the function f (y) at yk with a quadratic function and by adding an extra proximal
term that is derived based on the block symmetric Gauss–Seidel (sGS) decomposition
theorem [32] for the quadratic term associated with y, we are able to update the sub-
blocks in y individually in a symmetric Gauss–Seidel fashion. A crucial implication of
this result is that the (inexact) block sGS decomposition based multi-block majorized
ADMM is equivalent to an inexact majorized proximal ALM. Consequently, we are
able to prove the convergence of the whole sequence generated by the former even
when the step-length is in the range (0, 2).

In this paper, we shall not delve into the vast literature on both ALM and ADMM,
as well as their variants, and their relationships to the proximal point method and
operator splitting methods. They are simply too abundant for us to list even a few of
them here. Thus, we shall only refer to those that are most relevant for our work in this
paper. Here we should mention that many attempts have been made in recent years
on designing convergent multi-block ADMM-type algorithms that can outperform the
directly extended multi-block (proximal ADMM) numerically. While the latter is not
guaranteed to converge even under the strong assumption that f ≡ 0, paradoxically
its practical numerical performance is often better than many convergent variants
that have been developed in the past; see for example [48]. Against this backdrop,
we should mention that the ADMM-type algorithms that have been progressively
designed in [6,30,48] not only come with convergence guarantee but they have also
been demonstrated to have superior numerical performance than the directly extended
ADMM, at least for a large number of convex conic programming problems. More
recently, those algorithms have found applications in various areas [1,2,9,17,27,31,
53,55,56]. Among those algorithms, the most general and versatile one is the recently
developed inexact majorized multi-block proximal ADMM in Chen et al. [6], which
we shall briefly describe in the next paragraph.

Under the assumption that the gradient of f is Lipschitz continuous, we know that
one can specify a fixed self-adjoint positive semidefinite linear operator �̂ f : Y → Y

and define at each y′ ∈ Y the following convex quadratic function

f̂ (y, y′) := f (y′)+ 〈∇ f (y′), y − y′〉 + 1

2
‖y − y′‖2

�̂ f , ∀ y ∈ Y, (1.4)

such that

f (y) ≤ f̂ (y, y′), ∀y, y′ ∈ Y and f (y′) = f̂ (y′, y′), ∀y′ ∈ Y.

Thus, we say that at each y′ ∈ Y, the function f̂ (·, y′) constitutes a majorization of the
function f . Let σ > 0 be the penalty parameter. Based on the notion of majorization
described above, the majorized augmented Lagrangian function of problem (1.1) is
defined by

Lσ

(
y, z; (x, y′)

) := p(y1)+ f̂ (y, y′)− 〈b, z〉 + 〈F∗y + G∗z − c, x〉
+ σ

2
‖F∗y+G∗z−c‖2, ∀ (y, z, x, y′)∈Y×Z×X×Y. (1.5)
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Let (x0, y0, z0) ∈ X × Y × Z be a given initial point with y01 ∈ dom p, and Di :
Yi → Yi , i = 1, . . . , s be the given self-adjoint linear operators, for the purpose of
facilitating the computations of the subproblems. For convenience, we denote for any
y = (y1; . . . ; ys) ∈ Y1 × · · · × Ys ,

y<i := (y1; . . . ; yi−1) and y>i := (yi+1; . . . ; ys), ∀ i = 1, . . . , s.

Then, the kth step of the (inexact) block sGS decomposition based majorized multi-
block proximal ADMM in [6], when applied to problem (1.1), takes the following
form with the convention that ‖yi − yki ‖2Di

:= 〈yi − yki , Di (yi − yki )〉 even if Di is
not positive definite

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
k+ 1

2
i ≈ arg min

yi∈Yi

{
Lσ

((
yk<i ; yi ; y

k+ 1
2

>i

)
, zk; (xk , yk)

)
+ 1

2‖yi − yki ‖2Di

}
, i = s, . . . , 2 ;

yk+1
i ≈ arg min

yi∈Yi

{
Lσ

((
yk+1
<i ; yi ; yk+

1
2

>i

)
, zk; (xk , yk)

)
+ 1

2‖yi − yki ‖2Di

}
, i = 1, . . . , s ;

zk+1 ≈ arg min
z∈Z

Lσ

(
yk+1, z; (xk , yk)

)
;

xk+1 = xk + τσ
(
F∗yk+1 + G∗zk+1 − c

)
,

(1.6)

where τ ∈
(
0, (1 + √

5)/2
)
was allowed in [6]. As one can observe from (1.5)

and (1.6), the quadratic majorization technique in Li et al. [29] was used to replace
the original augmented Lagrangian function by the majorized augmented Lagrangian
function. This in turn enables us to employ the inexact block sGS decomposition
technique in Li et al. [32] to sequentially update the sub-blocks of y individually.
More importantly, the algorithm is highly flexible in that all the subproblems are
allowed to be solved approximately to overcome possible numerical obstacles such
as, for example, when iterative solvers must be employed to solve large-scale linear
systems to overcome extreme memory requirement and prohibitive computing cost.
It has already been demonstrated in [6] that the inexact block sGS decomposition
based multi-block ADMM is far superior to the directly extended ADMM in solving
high-dimensional linear and convex quadratic semidefinite programming with the
step-length in (1.6) being restricted to be less than (1 + √

5)/2.
Our focus in this paper is to investigate whether the framework in (1.6) can be

proven to be convergent for problem (1.1) when the step-length τ is in the range
(0, 2). In particular, we will show that the inexact block sGS decomposition based
multi-block ADMM (1.6) is equivalent to an inexact majorized proximal ALM in the
sense that computations of yk+1, zk+1 and xk+1 in (1.6) can equivalently be written as

⎧
⎪⎨

⎪⎩

(
yk+1, zk+1

) ≈ arg min
(y, z)∈Y×Z

{
Lσ

(
y, z; (xk, yk))+ 1

2‖
(
y; z)− (yk; zk)‖2T

}
;

xk+1 = xk + τσ
(
F∗yk+1 + G∗zk+1 − c

)
,
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where T : Y × Z → Y × Z is a self-adjoint (not necessarily positive defi-
nite) linear operator whose precise definition will be given later, and ‖(y; z)‖2T :=
〈(y; z), T(y; z)〉, ∀ (y, z) ∈ Y × Z. This connection not only provides new theoret-
ical perspectives for analyzing multi-block ADMM-type algorithms, but also has the
potential of allowing them to achieve evenbetter computational efficiency since a larger
step-length beyond (1+√

5)/2 can nowbe taken in (1.6),without adding any extra con-
ditions or any additional verification steps such as those extensively used in [5,6,30,48].

The main contributions of this paper are as follows.

– We derive the equivalence of an (inexact) block sGS decomposition based multi-
block majorized proximal ADMM to an inexact majorized proximal ALM, and
establish the global and local convergence properties of the latter with the step-
length τ ∈ (0, 2). As a result, the global and local convergence properties of the
former even with τ ∈ (0, 2) are also established.

– Even for the most conventional two-block case, we are able for the first time
to rigorously characterize the connection between ADMM and proximal ALM.
Note that given the form of the updating rules of the classic ADMM and ALM,
although it is natural to view ADMM as an approximate version of the ALM, this
is not completely true as can be seen from our analysis in this paper. Indeed, to
alleviate the difficulty of solving the subproblems in the ALM, the classic ADMM
uses a single cycle of the Gauss–Seidel block minimization to replace the full
minimization of the augmented Lagrangian function in the ALM. This viewpoint
in fact motivated the study of the classic ADMM in the very first paper [21].
However, as was mentioned in [13,14], there were no known results in quantifying
this interpretation.

– As a by-product of the second contribution, this paper gives an affirmative answer
to the open question onwhether the dual sequence generated by the classic ADMM
with τ ∈ (0, 2) is convergent if one of the two functions in the objective is linear.1

This is the problem setting of the very first proof for the ADMM in Gabay and
Mercier [18, Theorem 3.1] in which the dual sequence is only guaranteed to be
bounded, even under very strong assumptions. The later proof of Glowinski [20,
Chapter 5, Theorem 5.1] established stronger results than [18] but it requires

τ ∈
(
0, (1 + √

5)/2
)
. Thereafter, only the latter interval, and especially the unit

step-length, has been considered. In fact, in a rigorous proof presented recently

in [5] for the classic two-block ADMM with τ ∈
(
0,
(
1 + √

5
)
/2
)
, it was shown

that the convergence of the dual sequence can be guaranteed under pretty weak
conditions but the convergence of the primal sequence requires more. Hence, it is
of much theoretical interest to clarify whether the dual sequence is convergent if
the objective contains a linear part while τ ≥ (1 + √

5
)
/2.

– We provide a fairly general criterion for choosing the possibly indefinite2 linear
operators Di , i = 1, . . . , s, in the proximal terms, which unifies those used in

1 This question was first resolved in [48] when the initial multiplier x0 satisfies Gx0 − b = 0 and all the
subproblems are solved exactly.
2 One may refer to [29] for the details that motivating the use of indefinite proximal terms in the 2-block
majorized proximal ADMM, especially [29, Section 6] on their computational merits, as well as [57] for
the similar results in multi-block cases.
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Chen et al. [6] and those used in Zhang et al. [57] to guarantee the viability of the
block sGS decomposition techniques and the convergence of the whole sequence
generated by the algorithm in (1.6). Recall that the proximal terms in [6] should
be positive semidefinite while in [57] the functions being majorized should be
separable with respect to each block of variables. Here, we do not require f to be
separable and indefinite proximal terms are allowed.

– We use a unified criterion, which is weaker than those used in [6], for choosing the
proximal terms in the algorithmic framework (1.6) and analyzing its convergence.
Note that in [6], compared with the condition [6, (3.2)] imposed on choosing
the proximal terms, a stronger condition [6, (5.26) of Theorem 5.1] was used to
guarantee the convergence of the algorithm. Here, we are able to get rid of such a
gap while using a weaker condition.

– We conduct extensive numerical experiments on solving the linear and convex
quadratic semidefinite programming (SDP) problems to demonstrate how the the-
oretical results obtained here can be exploited to improve the numerical efficiency
of the implementation on ADMM. Based on the numerical results, together with
the theoretical analysis in this paper, we are able to give a plausible explanation
as to why ADMM often performs well when the dual step-length is chosen to be
the golden ratio of 1.618. Meanwhile, a guiding principle on choosing the step-
length during the practical implementation of the algorithmic framework in (1.6)
is derived.

Here we emphasize again that for solving large-scale instances of the multi-block
problem (1.1), a successful multi-block ADMM-type algorithmmust not only possess
convergence guarantee but should also numerically perform at least as fast as the
directly extended ADMM. Based on our work in this paper, we can conclude that the
inexact block sGS decomposition based majorized proximal ADMM studied in [6]
indeed does possess those desirable properties. Moreover, this algorithm is a versatile
framework and one can apply it to problem (1.1) in different routines other than (1.6).
The reason that we are more interested in the iteration scheme (1.6) is not only for the
theoretical improvement one can achieve, but also for the practical merit it features for
solving large scale problems, especially when the dominating computational cost is in
performing the evaluations associated with the linear mappings G and G∗. A particular
case in point is the following problem:

min
x∈X

{
ψ(x)+ 1

2
〈x,Qx〉 − 〈c, x〉 | GE x = bE , GI x ≥ bI

}
, (1.7)

whereQ,ψ , and c have the samemeaning as in (1.3),GE : X → ZE andGI : X → ZI

are the given linear mappings, and b = (bE ; bI ) ∈ Z := ZE × ZI is a given vector.
By introducing a slack variable x ′ ∈ ZI , the above problem can be equivalently
reformulated as

min
x∈X,x ′∈ZI

{
ψ(x)+ 1

2
〈x,Qx〉 − 〈c, x〉 |

(
GE 0
GI IZI

)(
x
x ′
)

= b, x ′ ≤ 0

}
,
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where IZI is the identity operator in ZI . The corresponding dual problem in the
minimization form is then given by

min
y1,y′

2,z

{
p(y1)+ 1

2
〈y2,Qy2〉 − 〈b, z〉 |

(
y11
y12

)
+
(
Q
0

)
y2 −

(
G∗
E G∗

I
0 IZI

)
z =

(
c
0

)}
,

where y1 := (y11; y12) ∈ X × ZI , p(y1) := ψ∗
1 (y11) + δ+(y12) with δ+ being the

indicator function of the nonnegative orthant in ZI , y2 ∈ X and z ∈ Z. It is clear that
when problem (1.7) has a large number of inequality constraints, the dimension of Z
can be much larger than that of X. For such a scenario, the iteration scheme (1.6) is
more preferable since the more difficult subproblem involving z is solved only once
in each iteration.

Organization

This paper is organized as follows. In Sect. 2, we present a few important classes
of problems that can be handled by (1.1) to illustrate the wide applicability of this
model. In Sect. 3, we design an inexact majorized proximal ALM framework and
establish its global and local convergence properties. In Sect. 4, we show the key
result that the sequence generated by the inexact block sGS decomposition based
majorized proximal ADMM (1.6), together with a simple error tolerance criterion, is
equivalent to the sequence generated by the inexact ALM framework introduced in
Sect. 3. Accordingly, the convergence of the two-block ADMM with the step-length
in the interval of (0, 2) is also established for problem (1.1) with s = 1. In Sect. 5, we
conduct extensive numerical experiments on the 2-block dual linear SDP problems
and the multi-block dual convex quadratic SDP problems to illustrate the numerical
efficiency of the proposed algorithm, as well as the impact of the step-length on its
numerical performance. A few important practical observations from the numerical
results are also presented. Finally, we conclude this paper in the last section.

Notation

– LetH andH′ be two finite-dimensional real Hilbert spaces each endowed with an
inner product 〈·, ·〉 and its induced norm ‖ · ‖. We also use ‖ · ‖ to denote the norm
induced on the product space H × H′ by the inner product 〈(ν1, ν′

1), (ν2, ν
′
2)〉 :=

〈ν1, ν2〉 + 〈ν′
1, ν

′
2〉,∀ν1, ν2 ∈ H,∀ν′

1, ν
′
2 ∈ H′.

– For any linear mapO : H → H′, we useO∗ to denote its adjoint,O−1 to denote its
inverse (if invertible), O† to denote its Moore–Penrose pseudoinverse, Range(O)
to denote its range space, and ‖O‖ to denote its spectral norm.

– IfH′ = H and O is self-adjoint and positive semidefinite, there must be a unique
self-adjoint positive semidefinite operator, denoted byO1/2, such thatO1/2O1/2 =
O. In this case, for any ν, ν′ ∈ H we define 〈ν, ν′〉O := 〈Oν, ν′〉 and ‖ν‖O :=√〈ν,Oν〉 = ‖O1/2ν‖. If O is also invertible, O1/2 is invertible and we use the
notation that O−1/2 := (O1/2)−1.
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– Let O1, . . . ,Ok be k self-adjoint linear operators, we used Diag(O1, . . . ,Ok) to
denote the block-diagonal linear operator whose block-diagonal elements are in
the order of O1, . . . ,Ok .

– For any convex set H ⊆ H, we denote the relative interior of H by ri(H). When
the self-adjoint linear operator O : H → H positive definite, we define, for any
ν ∈ H,

distO(ν, H) := inf
ν′∈H

‖ν − ν′‖O and 
O
H (ν) = arg min

ν′∈H
‖ν − ν′‖O.

If O is the identity operator we just omit it from the notation so that dist(·, H)
and 
H (·) are the standard distance function and the metric projection operator,
respectively.

– Let θ : H → (−∞,+∞] be an arbitrary closed proper convex function. We use
dom θ to denote its effective domain, ∂θ to denote its subdifferential mapping, and
θ∗ to denote its conjugate function. Moreover, for a given self-adjoint and positive
definite linear operator O : H → H, we use ProxOθ to denote the Moreau-Yosida
proximal mapping of θ , which is defined by

ProxOθ (ν) := arg min
ν′∈H

{
θ(ν′)+ 1

2
‖ν − ν′‖2O

}
, ∀ν ∈ H.

Note that the mapping ProxOθ is globally Lipschitz continuous. IfO is the identity
operator, we will drop O from ProxOθ (·).

2 Illustrative examples

In this section, we present a few important classes of concrete problems, including
those in the classic core convex programming as well as those which are popularly
used in various real-world applications. As will be shown, these problems and/or their
dual problems have the form given by (1.1), so that the algorithm designed in this
paper can be utilized to solve them.

2.1 Convex composite quadratic programming

It is well known that many problems are subsumed under the convex composite
quadratic programming model (1.2) or the more concrete form (1.7). For example,
it includes the important classes of convex quadratic programming (QP), the convex
quadratic semidefinite programming (QSDP), and the convex quadratic programming
and weighted centering [41] (QPWC). As an illustration, consider a convex QSDP
problem in the following form

min
X∈Sn

{
1

2
〈X ,QX〉 − 〈C, X〉

∣∣∣AE X = bE , AI X ≥ bI , X ∈ Sn+
}
, (2.1)
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whereSn is the space of n×n real symmetricmatrices andSn+ is the closed convex cone
of positive semidefinite matrices in Sn ,Q : Sn → Sn is a positive semidefinite linear
operator, C ∈ Sn is a given matrix, and AE and AI are the linear maps from Sn to
the two finite-dimensional Euclidean spacesRmE andRmI that containing bE and bI ,
respectively. To solve this problem, one may consult the recently developed software
QSDPNAL in Li et al. [31] and the references therein. The algorithm implemented in
QSDPNAL is a two-phase augmented Lagrangianmethod inwhich the first phase is an
inexact sGS decomposition based multi-block proximal ADMM whose convergence
was established in [6, Theorem 5.1]. The solution generated in the first phase is used as
the initial point to warm-start the second phase algorithm, which is an ALM with the
inner subproblem in each iteration being solved via an inexact semismooth Newton
algorithm. In Sect. 5, we will use the QSDP problem (2.1) to test the algorithm studied
in this paper.

Besides the core optimization problems just mentioned above, there are many prob-
lems from real-word applications that can be cast in the form of (1.2) and the following
are only a few such examples.

Penalized and constrained regression models

In various statistical applications, the penalized and constrained (PAC) regression [25]
often arises in high-dimensional generalized linear models with linear equality and
inequality constraints. A concrete example of the PAC regression is the following
constrained lasso problem

min
x∈Rn

{
1

2
‖
x − η‖2 + λ‖x‖1 | AEx = bE , AI x ≥ bI

}
, (2.2)

where
 ∈ Rm×n , AE ∈ RmE×n , AI ∈ RmI×n , η ∈ Rm , bE ∈ RmE and bI ∈ RmI are
the given data, and λ > 0 is a given regularization parameter. The statistical properties
of problem (2.2) have been studied in [25]. For more details on the applications of the
model (2.2), one may refer to [19,25] and the references therein. In Gaines et al. [19],
the authors considered solving (2.2) by first reformulating it as a conventional QP via
letting x = x+−x− and adding the extra constraints x+ ≥ 0, x− ≥ 0, and then applying
the primal ADMM to solve the conventional QP, in which all the subproblems should
be solved exactly (or to very high accuracy) by iterative methods. Such a combination
may perform well for low dimensional problems with moderate sample sizes. But for
the more challenging and interesting high-dimensional cases where n is extremely
large and m � n, the approach in [19] is likely to face severe numerical difficulties
because of the presence of a huge number of constraints. Fortunately, the algorithm
we designed in this paper can precisely handle those difficult cases because the large
linear systems associated with the huge number of constraints are not required to solve
to very high accuracy by an iterative solver.

123



On the equivalence of inexact proximal ALM and ADMM for a… 121

Noisy matrix completion and rank-correction step

In Miao et al. [36], the authors introduced a rank-correction step for matrix comple-
tion with fixed basis coefficients to overcome the shortcomings of the nuclear norm
penalization model for such problems. Let X ∈ Vn1×n2 (whereVn1×n2 may represent
the space of n1 × n2 real or complex matrices or the space of n × n real symmetric
or Hermitian matrices) be the unknown true low-rank matrix and X̃m is an initial esti-
mator of X from the nuclear norm penalized least squares model. The rank-correction
step is to solve the following convex optimization problem

min
X

1
2m ‖y − Po(X)‖2 + ρm

(‖X‖∗ − 〈F(X̃m), X〉)

s.t. PA(X) = PA(X), ‖PB(X)‖∞ ≤ b,
(2.3)

where y = Po(X) + ε ∈ Rm is the observed data for the matrix X , Po is the linear
map corresponding to the observed entries, ε ∈ Rm is the unknown error, ρm > 0
is a given penalty parameter, and F : Vn1×n2 → Vn1×n2 is a spectral operator
[10] whose precise definition can be found in [36, Section 5]. Here the constraints
PA(X) = PA(X) and ‖PB(X)‖∞ ≤ b represent the fixed elements and bounded
elements of X , respectively. If F and the equality constraints are vacuous, problem
(2.3) is exactly the noise matrix completion model considered in [37], and a similar
matrix completion model can be found in [26]. One may view (2.3) as an instance of
problem (1.2), and whose corresponding linear operatorQ admits a very simple form.

2.2 Two-block problems

Next we present a few important classes of two-block problems whose objective
functions contain a linear part.

Semidefinite programming

One of the most prominent examples of problem (1.1) with 2 blocks of variables (i.e.,
s = 1) is the dual linear semidefinite programming (SDP) problem given by

min
Y , z

{
δSn+(Y )− 〈b, z〉 | Y + A∗z = C

}
, (2.4)

where A : Sn → Rm is a given linear map, and b ∈ Rm and C ∈ Sn are given data.
The notation δSn+ denotes the indicator function of Sn+. For problem (2.4), various
ADMM algorithms have been employed to solve the problem. As far as we are aware
of, the classic two-block ADMM with unit step-length was first employed in Povh et
al. [43] under the name of boundary point method for solving the SDP problem (2.4).
It was later extended in Malick et al. [34] with a convergence proof. The ADMM
approach was later used in the software SDPNAL developed by Zhao et al. [58] to
warm-start a semismooth Newton method based ALM for solving problem (2.4).
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In section 5, we will conduct extensive numerical experiments on solving a few
classes of linear SDP problems via the two-block ADMM algorithm but with the dual
step-length being chosen in the interval (0, 2), as it is guaranteed by this paper.

Equality constrained problems

Consider the equality constrained problem

min
x∈X

{
θ(x) | Gx = b

}
, (2.5)

where G : X → Rm is a linear map, b ∈ Rm is a given vector, and θ : X →
(−∞,+∞] is a simple closed proper convex function such that its proximal map-
ping can be computed efficiently. The dual problem of (2.5) can be written in the
minimization form as

min
y,z

{
θ∗(y)− 〈b, z〉 | y − G∗z = 0

}
. (2.6)

A concrete example of problem (2.5), with X := Rn and θ(x) := ‖x‖1, is the
basis pursuit (BP) problem [7], which has been wildly used in sparse signal recovery
and image restoration. Another example of (2.5) is the nuclear norm based matrix
completion problem for which X := Rn1×n2 and θ(x) = ‖x‖∗. Moreover, the so
called tensor completion problem [33] also falls into this category.

We note that for the application problems just mentioned above, the dimension
of X is generally much larger than m, i.e., the dimension of the linear constraints.
Therefore from the computational viewpoint, it is generally more economical to apply
the two-block ADMM to the dual problem (2.6) instead of the primal problem (2.5)
(by introducing an extra variable x ′ and adding the condition x − x ′ = 0) because the
former will solve smaller m × m linear systems in each iteration whereas the latter
will correspondingly need to solve much larger linear systems.

Composite problems

A composite problem can take the following form

min
z∈Z f

(
c − G∗z

)
, (2.7)

where f : Z → (−∞,+∞] is a (possibly nonsmooth) closed proper convex function
whose proximal mapping can be computed efficiently, G : Z → X is a given linear
operator and c ∈ X is given data. By introducing a slack variable, problem (2.7) can
be recast as

min
y,z

{
f (y) | y + G∗z = c

}
.

Problem (2.7) contains many real-world applications such as the well-known least
absolute deviation (LAD) problem (also known as least absolute error (LAE), least
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absolute value (LAV), least absolute residual (LAR), sum of absolute deviations, or
the �1-norm condition). The model (2.7) also includes the Huber fitting problem [24].
We shall not continue with more examples as there are too many applications to be
listed here to serve as a literature review.

Consensus optimization

Consider the following problem

min
z∈Z

{
n∑

i=1

fi
(
G∗
i z
)
}

, (2.8)

where each fi is a closed proper convex function and each Gi : Yi → Z is a lin-
ear operator. The model (2.8) includes the global variable consensus optimization and
general variable optimization, as well as their regularized versions (see [4, Section 7]),
which have been well applied in many areas such as machine learning, signal process-
ing and wireless communication [3,4,46,49,59]. In the consensus optimization setting,
it is usually preferable to solve subproblems each involving a subset of the component
functions f1, . . . , fn instead of all of them. Therefore, one can equivalently recast
problem (2.8) as

min
y,z

{
n∑

i=1

fi (yi ) | yi − G∗
i z = 0, 1 ≤ i ≤ n

}

. (2.9)

Obviously, when applying the two-block ADMM to solve (2.9), the subproblem with
respect to y is separated into n independent problems that can be solved in parallel. In
[4], the variable z in (2.9) is called the central collector. Besides, the network based
decentralized and distributed computation of the consensus optimization, such as the
distributed lasso in [35], also falls in the problems setting in this paper.

3 An inexact majorized ALMwith indefinite proximal terms

In this section, we present an inexact majorized indefinite-proximal ALM. This algo-
rithm, as well as its global and local convergence properties, not only constitutes
a generalization of the original (proximal) ALM, but also paves the way for us to
establish its equivalence relationship with the inexact block sGS decomposition based
indefinite-proximal multi-block ADMM in the next section.

LetX andW be two finite-dimensional real Hilbert spaces each endowed with an
inner product 〈·, ·〉 and its induced norm ‖ ·‖. We consider the following fairly general
linearly constrained convex optimization problem

min
w∈W

{
ϕ(w)+ h(w) | A∗w = c

}
, (3.1)
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where ϕ : W → (−∞,+∞] is a closed proper convex function, h : W →
(−∞,+∞) is a continuously differentiable convex function whose gradient is Lips-
chitz continuous, A : X → W is a linear mapping and c ∈ X is the given data. The
Karush–Kuhn–Tucker (KKT) system of problem (3.1) is given by

0 ∈ ∂ϕ(w)+ ∇h(w)+ Ax, A∗w − c = 0. (3.2)

For any (w, x) ∈ W×X that solve the KKT system (3.2), w is a solution to problem
(3.1) while x is a dual solution of (3.1).

The fact that the gradient of h is Lipschitz continuous implies that there exists a
self-adjoint positive semidefinite linear operator �̂h : W → W, such that for any
w′ ∈ W, h(w) ≤ ĥ(w,w′), where

ĥ(w,w′) := h(w′)+ 〈∇h(w′), w − w′〉 + 1

2
‖w − w′‖2

�̂h
, ∀w ∈ W. (3.3)

We call the function ĥ(·, w′) : W → (−∞,+∞) a majorization of h at w′. The
following result, whose proof can be found in [57, Lemma 3.2], will be used later.

Lemma 3.1 Suppose that (3.3) holds for any given w′ ∈ W. Then, it holds that

〈
∇h(w)− ∇h(w′), w′′ − w′〉 ≥ −1

4
‖w − w′′‖2

�̂h
, ∀w,w′, w′′ ∈ W.

Let σ > 0 be a given penalty parameter. The majorized augmented Lagrangian
function associated with problem (3.1) is defined by

Lσ (w; (x, w′)) := ϕ(w)+ ĥ(w,w′)+ 〈A∗w − c, x〉 + σ
2 ‖A∗w − c‖2,

∀(w, x, w′) ∈ W × X × W.
(3.4)

In the following, we propose an inexact majorized indefinite-proximal ALM for
solving problem (3.1). This algorithm is an extension of the proximal method of
multipliers developed by Rockafellar [45], with new ingredients added based on the
recent progress on using proximal terms which are not necessarily positive definite
[16,29,57] and the implementable inexact minimization criteria studied in [6]. For the
convenience of later convergence analysis, wemake the following blanket assumption.

Assumption 3.1 The solution set to the KKT system (3.2) is nonempty and S : W →
W is a given self-adjoint (not necessarily positive semidefinite) linear operator such
that

S � −1

2
�̂h and

1

2
�̂h + σAA∗ + S � 0. (3.5)

We are now ready to present Algorithm inPALM that will be studied in this section.
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Algorithm inPALM An inexact majorized indefinite-proximal ALM
Let {εk} be a summable sequence of nonnegative numbers. Choose an initial point
(x0, w0) ∈ X × W. For k = 0, 1, . . ., perform the following steps in each iteration.

Step 1. Compute

wk+1 ≈ wk+1 := arg min
w∈W

{
Lσ

(
w; (xk, wk)

)+ 1

2
‖w − wk‖2S

}
(3.6)

such that there exists a vector dk ∈ W satisfying ‖dk‖ ≤ εk and

dk ∈ ∂wLσ

(
wk+1; (xk, wk)

)+ S(wk+1 − wk). (3.7)

Step 2. Compute xk+1 := xk+τσ (A∗wk+1−c)with τ ∈ (0, 2) being the step-length.

We shall next proceed to analyze the global convergence, the rate of local conver-
gence and the iteration complexity of Algorithm inPALM. For notational convenience,
we collect the total quadratic information in the objective function of (3.6) as the fol-
lowing linear operator

M := �̂h + S + σAA∗. (3.8)

The following result presents two important inequalities for the subsequent analysis.
The first one characterizes the distance (with M being involved in the metric) from
the computed solution to the true solution of the subproblem in (3.6), while the sec-
ond one presents a non-monotone descent property about the sequence generated by
Algorithm inPALM.

Proposition 3.1 Suppose that Assumption 3.1 holds. Then,

(a) the sequence {(xk, wk)} generated by Algorithm inPALM and the auxiliary
sequence {wk} defined in (3.6) are well-defined, and it holds that

‖wk+1 − wk+1‖2M ≤ 〈dk, wk+1 − wk+1〉; (3.9)

(b) for any given (x∗, w∗) ∈ X × W that solves the KKT system (3.2) and k ≥ 1, it
holds that
(

1

2τσ
‖xk+1

e ‖2 + 1

2
‖wk+1

e ‖2
�̂h+S

)
−
(

1

2τσ
‖xke ‖2 + 1

2
‖wk

e‖2�̂h+S

)

≤ −
(
(2 − τ)σ

2
‖A∗wk+1

e ‖2 + 1

2
‖wk+1 − wk‖21

2 �̂h+S − 〈dk, wk+1
e 〉

)
,

(3.10)

where xe := x − x∗, ∀x ∈ X and we := w − w∗, ∀w ∈ W.
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Proof (a) From (3.5) and (3.8) we know thatM � 0. Hence, each of the subproblems
in Algorithm inPALM is strongly convex so that each wk+1 is uniquely determined
by (xk, wk). Note that, for the given εk ≥ 0, one can always find a certain wk+1

such that ‖dk‖ ≤ εk with dk being given in (3.7), see [12, Lemma 4.5]. Hence, Algo-
rithm inPALM is well-defined. According to (3.3) and (3.4), the objective function in
(3.6) is given by

ϕ(w)+ 〈∇h(wk)+ Axk, w〉 + σ

2
‖A∗w − c‖2 + 1

2
‖w − wk‖2

�̂h+S,

so that (3.7) implies that

dk ∈ ∂ϕ(wk+1)+ ∇h(wk)+ Axk + σA(A∗wk+1 − c)

+ (�̂h + S)(wk+1 − wk). (3.11)

Therefore, from the definitions of the Moreau–Yosida proximal mapping and M in
(3.8), one has that

wk+1 = ProxMϕ
(
M−1[dk − (∇h(wk)+ Axk − σAc − (�̂h + S)wk)

])
.

Consequently, by the Lipschitz continuity of ProxMϕ [28, Proposition 2.3] and the fact

that dk can be set as zero if wk+1 = wk+1, one can readily get (3.9).

(b) Let (x∗, w∗) ∈ X × W be an arbitrary solution to the KKT system (3.2). Obvi-
ously, one has that −∇h(w∗) − Ax∗ ∈ ∂ϕ(w∗) and A∗w∗ = c. This, together with
(3.11) and the maximal monotonicity of ∂ϕ, implies that

〈dk − ∇h(wk)+ ∇h(w∗)− Axke − σA(A∗wk+1 − c)

− (�̂h + S)(wk+1 − wk), wk+1
e 〉 ≥ 0.

Therefore, by using the fact that

A∗wk+1 − c = A∗wk+1
e = 1

τσ
(xk+1 − xk), (3.12)

one can obtain from the above inequality and Lemma 3.1 that

〈
dk , wk+1

e

〉
− 1

τσ

〈
xke , x

k+1 − xk
〉
− σ‖A∗wk+1

e ‖2 −
〈
(�̂h + S)(wk+1 − wk), wk+1

e

〉

≥
〈
∇h(wk)− ∇h(w∗), wk+1

e

〉
≥ −1

4
‖wk+1 − wk‖2

�̂h
= −1

2
‖wk+1 − wk‖21

2 �̂h
.

(3.13)

Note that 〈xke , xk+1 − xk〉 = 1
2‖xke ‖2 − 1

2‖xke ‖2 − 1
2‖xk+1 − xk‖2 and

〈
(�̂h + S)(wk+1 − wk), wk+1

e

〉
= 1

2
‖wk+1 − wk‖2

�̂h+S + 1

2
‖wk+1

e ‖2
�̂h+S − 1

2
‖wk

e‖2�̂h+S.

Then, (3.10) follows form (3.13) and this completes the proof of the proposition. ��
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3.1 Global convergence

For the convenience of our analysis, we define the following two linear operators

� := τσ

(
1

2
�̂h + S + (2 − τ)σ

6
AA∗

)
and

� := τσ

(
�̂h + S + (2 − τ)σ

3
AA∗

)
, (3.14)

which will be used in defining metrics inW. Note that τ ∈ (0, 2). If (3.5) in Assump-
tion 3.1 holds, one has that

⎧
⎪⎪⎨

⎪⎪⎩

1
τσ
� = 2−τ

6

( 1
2 �̂h + S + σAA∗)+ (1 − 2−τ

6

) ( 1
2 �̂h + S

)

� 2−τ
6

(
1
2 �̂h + S + σAA∗

)
� 0,

1
τσ
� = 1

τσ
�+ 1

2 �̂h + (2−τ)σ
6 AA∗ � 1

τσ
� � 0.

(3.15)

Moreover, we define the block-diagonal linear operator � : U → U by

�(x;w) :=
(
x;� 1

2w
)
, ∀(x, w) ∈ X × W, (3.16)

where � is given by (3.14). Now we establish the convergence theorem of Algo-
rithm inPALM. The corresponding proof mainly follows from the proof of [6,
Theorem 5.1] for the convergence of an inexact majorized semi-proximal ADMM
and the following result on quasi-Fejér monotone sequence will be used.

Lemma 3.2 Let {ak}k≥0 be a sequence of nonnegative real numbers sequence satis-
fying ak+1 ≤ ak + εk for all k ≥ 0, where {εk}k≥0 is a nonnegative and summable
sequence of real numbers. Then the {ak} converges to a unique limit point.
Theorem 3.1 Suppose that Assumption 3.1 holds and the sequence {(xk, wk)} is gen-
erated by Algorithm inPALM. Then,

(a) for any solution (x∗, w∗) ∈ X × W of the KKT system (3.2) and k ≥ 1, we have
that

∥∥∥(xk+1
e ;wk+1

e )

∥∥∥
2

�
−
∥∥∥(xke ;wk

e )

∥∥∥
2

�

≤ −
(
(2 − τ)

3τ
‖xk+1 − xk‖2 + ‖wk+1 − wk‖2� − 2τσ 〈dk, wk+1

e 〉
)
,

(3.17)

where xe := x − x∗, ∀x ∈ X and we := w − w∗, ∀w ∈ W;
(b) the sequence {(xk, wk)} is bounded;
(c) any accumulation point of the sequence {(xk, wk)} solves the KKT system (3.2);
(d) the whole sequence {(xk, wk)} converges to a solution to the KKT system (3.2).
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Proof (a) By using (3.14), together with the definitions of � and � in (3.10), and the
fact that A∗wk+1

e = 1
τσ
(xk+1 − xk), one can get

∥∥∥(xk+1
e ;wk+1

e )

∥∥∥
2

�
−
∥∥∥(xke ;wk

e )

∥∥∥
2

�
=
(
‖xk+1

e ‖2 + ‖wk+1
e ‖2�

)
−
(
‖xke ‖2 + ‖wk

e‖2�
)

≤ −τσ
(
2(2 − τ)σ

3
‖A∗wk+1

e ‖2 + (2 − τ)σ

3
‖A∗wk

e‖2

+‖wk+1 − wk‖21
2 �̂h+S − 2〈dk, wk+1

e 〉
)

≤ −
(
(2 − τ)

3τ
‖xk+1 − xk‖2 + τσ

(2 − τ)

3

(
σ‖A∗wk+1

e ‖2 + σ‖A∗wk
e‖2
)

+ τσ‖wk+1 − wk‖21
2 �̂h+S − 2τσ 〈dk, wk+1

e 〉
)

≤ −
(
(2 − τ)

3τ
‖xk+1 − xk‖2 + στ‖wk − wk+1‖2(2−τ)σ

6 AA∗+ 1
2 �̂h+S − 2τσ 〈dk, wk+1

e 〉
)
,

which, together with the definition of the linear operator � in (3.14), implies (3.17).

(b) Define xk+1 := xk + τσ (A∗wk+1 − c), ∀k ≥ 0. From (3.6), (3.7) and (3.17) one
can get that for any k ≥ 0,

∥∥∥(xk+1
e ;wk+1

e )

∥∥∥
2

�
≤
∥∥∥(xke ;wk

e )

∥∥∥
2

�
−
(
(2 − τ)

3τ
‖xk+1 − xk‖2 + ‖wk+1 − wk‖2�

)
.

Meanwhile, one can get that ‖(xk+1
e ;wk+1

e )‖� ≤ ‖(xke ;wk
e )‖�, ∀ k ≥ 0. Therefore,

it holds that

∥∥(xk+1
e ;wk+1

e )
∥∥
�

≤ ∥∥(xk+1
e ;wk+1

e )
∥∥
�

+ ∥∥(xk+1 − xk+1;wk+1 − wk+1)∥∥
�

≤ ∥∥(xke ;wk
e )
∥∥
�

+ ∥∥(τσA∗(wk+1 − wk+1);�1/2(wk+1 − wk+1)
)∥∥

= ∥∥(xke ;wk
e )
∥∥
�

+ ∥∥wk+1 − wk+1
∥∥
τ 2σ 2AA∗+� , ∀k ≥ 0. (3.18)

From (3.9) we know that ‖wk+1 −wk+1‖2M ≤ 〈M−1/2dk,M1/2(wk+1 −wk+1)〉, so
that

‖M1/2(wk+1 − wk+1)‖ ≤ ‖M−1/2dk‖ ≤ ‖M−1/2‖‖dk‖.

Therefore, it holds that

‖wk+1 − wk+1‖ ≤ ‖M−1/2‖‖M1/2(wk+1 − wk+1)‖
≤ ‖M−1/2‖‖M−1/2‖‖dk‖ ≤ ‖M−1‖εk, ∀k ≥ 0. (3.19)

Therefore, by combining (3.18) and (3.19) together we can get

∥∥(xk+1
e ;wk+1

e )
∥∥
�

≤ ∥∥(xke ;wk
e )
∥∥
�

+
√

‖τ 2σ 2AA∗ +�‖ ‖M−1‖εk, ∀k ≥ 0.
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Hence, the sequence
{‖(xk+1

e ;wk+1
e )‖�

}
is quasi-Fejér monotone, which converges

to a unique limit point by Lemma 3.2. Since � defined in (3.16) is positive definite,
we further know that the sequence {(xk, wk)} is bounded.
(c) From (3.17) we know that for any k ≥ 0,

k∑

i=0

{∥∥∥(xie;wi
e)

∥∥∥
2

�
−
∥∥∥(xi+1

e ;wi+1
e )

∥∥∥
2

�
+ 2τσεi‖wi+1

e ‖
}

≥
k∑

i=0

{
(2 − τ)

3τ
‖xi+1 − xi‖2 + ‖wi+1 − wi‖2�

}
.

(3.20)

Since {(xk, wk)} is bounded and {εk} is summable, it holds that

∞∑

i=0

{∥∥∥(xie;wi
e)

∥∥∥
2

�
−
∥∥∥(xi+1

e ;wi+1
e )

∥∥∥
2

�
+ 2τσεi‖wi+1

e ‖
}
< ∞,

which, together with (3.20) and the fact that � � 0, implies

lim
k→∞(x

k+1 − xk) = 0 and lim
k→∞(w

k+1 − wk) = 0. (3.21)

Suppose that the subsequence {(xk j , wk j )} of {(xk, wk)} converges to some limit point
(x∞, w∞). By taking limits on both sides of (3.11) and (3.12) along with k j and using
(3.21) and [44, Theorem 24.6], one can get

0 ∈ ∂ϕ(w∞)+ ∇h(w∞)+ Ax∞ and A∗w∞ − c = 0,

which implies that (x∞, w∞) is a solution to the KKT system (3.2).

(d) Note that (3.17) holds for any (x∗, w∗) satisfying the KKT system (3.2). Therefore,
we can choose x∗ = x∞ and w∗ = w∞ in (3.17):

‖(xk+1 − x∞;wk+1−w∞)‖2� ≤ ‖(xk − x∞;wk − w∞)‖2� + 2τσ‖wk+1 − w∞‖εk .

Note that {wk} is bounded. Then, the above inequality, together with Lemma 3.2,
implies that the quasi-Fejérmonotone sequence {‖(xk−x∞;wk−w∞)‖2�} converges.
Since (x∞, w∞) is a limit point of {(xk, wk)}, one has that

lim
k→0

‖(xk − x∞;wk − w∞)‖2� = 0,

which, together with the fact that � � 0, implies that the whole sequence {(xk, wk)}
converges to (x∞, w∞). This completes the proof of the theorem. ��
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3.2 Local convergence rate

In this section, we present the local convergence rate analysis of Algorithm inPALM.
For this purpose, we denoteU := X×W and consider the KKT residual mapping of
problem (3.1) defined by

R(u) = R(x, w) :=
(

c − A∗w
w − Proxϕ(w − ∇h(w)− Ax)

)
,

∀u = (x, w) ∈ X × W. (3.22)

Note that R(u) = 0 if and only if u = (x, w) is a solution to the KKT system (3.2),
whose solution set can therefore be characterized byK := {u |R(u) = 0}. Moreover,
the residual mapping R has the following property.

Lemma 3.3 Suppose that Assumption 3.1 holds and the sequence {uk := (xk, wk)} is
generated by Algorithm inPALM. Then, for any k ≥ 0,

‖R(uk+1)‖2 ≤ 1

τ 2σ 2 ‖xk − xk+1‖2 + 2‖�̂h + S‖
τσ

‖wk+1 − wk‖2�
+ 2‖(1 − τ−1)A(xk+1 − xk)+ dk‖2. (3.23)

Proof Note that (3.11) holds. Then, one can see that

wk+1 = Proxϕ

(
wk+1 + dk − ∇h(wk)− A

(
xk + xk+1 − xk

τ

)

− (�̂h + S
)
(wk+1 − wk)

)
.

By taking the above equality and c − A∗wk+1 = 1
τσ
(xk − xk+1) into the definition

of R(uk+1) in (3.22) and using the Lipschitz continuity of Proxϕ , one can get

‖R(uk+1)‖2 ≤ 1

τ 2σ 2 ‖xk − xk+1‖2 + 2‖(1 − τ−1)A(xk+1 − xk)+ dk‖2

+ 2‖∇h(wk+1)− ∇h(wk)− (�̂h + S
)
(wk+1 − wk)‖2. (3.24)

By using Clarke’s mean value theorem [8, Proposition 2.6.5] we know that for any
k ≥ 0 there exists a linear operator �k : W → W such that ∇h(wk+1)− ∇h(wk) =
�k(w

k+1 − wk) with 0 � �k � �̂h , so that

‖∇h(wk+1)− ∇h(wk)− (�̂h + S
)
(wk+1 − wk)‖2

= ‖(�̂h + S −�k
)
(wk+1 − wk)‖2

≤ ‖�̂h + S −�k‖〈wk+1 − wk,
(
�̂h + S −�k

)
(wk+1 − wk)〉
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≤ ‖�̂h + S‖〈wk+1 − wk,
(
�̂h + S

)
(wk+1 − wk)〉

≤ ‖�̂h + S‖
τσ

〈
wk+1 − wk, τσ

(
�̂h + S + (2 − τ)σ

3
AA∗)(wk+1 − wk)

〉
, ∀k ≥ 0,

(3.25)

where the last inequality comes form the fact that 0 < τ < 2. Then, by using the
definition of� in (3.14), one can readily see from (3.24) and (3.25) that (3.23) holds.
This completes the proof. ��
To analyze the linear convergence rate of Algorithm inPALM, we shall introduce the
following error bound condition.

Definition 3.1 The KKT residual mapping R defined in (3.22) is said to be metric
subregular3 [11, 3.8 [3H]] (with the modulus κ > 0) at u ∈ K for 0 ∈ U if there exists
a constant r > 0 such that

dist
(
u,K

) ≤ κ‖R(u)‖ , ∀u ∈ {u ∈ U | ‖u − u‖ ≤ r}. (3.26)

Suppose that Assumption 3.1 holds. We know from (3.14) and (3.15) that � � 0.
Hence, one can let ζ > 0 be the smallest real number such that ζ� � �. For notational
convenience, we define the following positive constants:

ρ := max

{
6σ 2(τ − 1)2‖A∗A‖ + 3

τσ 2(2 − τ)
,
2ζ‖�̂h + S‖

τσ

}
max

{
‖�‖, 1

}
, (3.27)

β := max
{√

ζ ,
√
3τ/(2 − τ)

}
, (3.28)

μ :=
√

τσ‖�̂h + S + 2

3
(1 + τ)σAA∗‖ ‖M−1‖. (3.29)

To ensure the local linear rate convergence of Algorithm inPALM, we need extra
conditions to control the error variable dk in each iteration. Hence, we make the
following assumption.

Assumption 3.2 There exists an integer k0 > 0 and a sequence of nonnegative real
numbers {ηk} such that

sup
k≥k0

{ηk} < 1/μ and ‖dk‖ ≤ ηk‖uk − uk+1‖, ∀ k ≥ k0. (3.30)

Now we are ready to present the local convergence rate of Algorithm inPALM.

Theorem 3.2 Suppose that Assumptions 3.1 and 3.2 hold. Let {uk = (xk, wk)} be the
sequence generated by Algorithm inPALM that converges to u∗ := (x∗, w∗) ∈ K.
Suppose that the KKT residual mapping R defined in (3.22) is metric subregular at

3 This is equivalent to say that R−1 is calm at 0 ∈ U for u ∈ K with the same modulus κ > 0, see [11,
Theorem 3H.3].
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u∗ for 0 ∈ U with the modulus κ > 0, in the sense that there exists a constant r > 0
such that (3.26) holds with u = u∗. Then, there exists a threshold k̄ > 0 such that for
for all k ≥ k̄,

dist�
(
uk+1,K

)
≤ ϑk dist�

(
uk,K

)
with

ϑk := 1

1 − μηk

⎛

⎝

√
κ2ρ

1 + κ2ρ
+ μηk(1 + β)

⎞

⎠ . (3.31)

Moreover, if it holds that

sup
k≥k̄

{ηk} < 1

μ(2 + β)

⎛

⎝1 −
√

κ2ρ

1 + κ2ρ

⎞

⎠ , (3.32)

then one has supk≥k̄{ϑk} < 1, and the convergence rate of dist�(uk,K) is Q-linear
when k ≥ k.

Proof Denote ue := u − u∗ for all u ∈ U and define xk+1 := xk + τσ (A∗wk+1 − c)
and uk+1 := (xk+1, wk+1), ∀k ≥ 0. Since {uk} converges to u∗ and {dk} converges to
0 as k → ∞, one has from (3.9) that {uk} also converges to u∗ as k → ∞. Therefore,
there exists a threshold k̄ > 0 such that

‖uk+1
e ‖ ≤ r and ‖uk+1

e ‖ ≤ r , ∀k ≥ k̄. (3.33)

According to Lemma 3.3, one can let uk+1 = uk+1 and dk = 0 in (3.23) and use the
fact that ζ� � � to obtain that

‖R(uk+1)‖2

≤
(
2(τ − 1)2‖A∗A‖

τ 2
+ 1

(τσ )2

)
‖xk+1 − xk‖2 + 2‖�̂h + S‖

τσ
‖wk+1 − wk‖2�

≤ max

{
6σ 2(τ − 1)2‖A∗A‖ + 3

τσ 2(2 − τ)
,
2ζ‖�̂h + S‖

τσ

}

(
(2−τ)
3τ ‖xk+1 − xk‖2 + ‖wk+1 − wk‖2�

)
.

(3.34)

Moreover, according to the definition of � in (3.16), one has that

dist2�
(
u,K

) ≤ max{‖�‖, 1}dist2(u,K), ∀ u ∈ U.

Then, by using the above inequality, together with (3.26), (3.33) and (3.34), we can
obtain with the constant ρ > 0 being defined in (3.27) that

dist2�(u
k+1,K) ≤ κ2 max{‖�‖, 1}‖R(uk+1)‖2

≤ κ2ρ

(
(2 − τ)

3τ
‖xk+1 − xk‖2 + ‖wk+1 − wk‖2�

)
, ∀ k ≥ k̄.

(3.35)
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It is easy to see from (3.17) that, for any k ≥ 0,

dist2�(u
k+1,K) ≤ dist2�(u

k,K)

−
(
(2 − τ)

3τ
‖xk+1 − xk‖2 + ‖wk+1 − wk‖2�

)
. (3.36)

Therefore, by combining (3.35) and (3.36) together we can get

dist2�(u
k+1,K) ≤ κ2ρ

1 + κ2ρ
dist2�(u

k,K), ∀ k ≥ k̄. (3.37)

From (3.36) and the fact that ζ� � � we know that

dist2�(u
k,K) ≥ min

{
(2 − τ)

3τ
,
1

ζ

}
‖uk − uk+1‖2�, ∀ k ≥ 0.

Therefore, it holds that

‖uk − uk+1‖� ≤ β dist�(u
k,K), ∀ k ≥ 0, (3.38)

where the constant β > 0 is given in (3.28). By using the triangle inequality, we have
that

‖uk −
�
K(u

k+1)‖� ≤ dist�(u
k,K)+ ‖
�

K(u
k)−
�

K(u
k+1)‖�, ∀k ≥ 0.

(3.39)

Moreover, from [28, Proposition 2.3] we know that

‖
�
K(u

k)−
�
K(u

k+1)‖2� ≤ 〈
�
K(u

k)−
�
K(u

k+1),�(uk − uk+1)〉, ∀ k ≥ 0.

Thus, one has

‖
�
K(u

k)−
�
K(u

k+1)‖� ≤ ‖uk − uk+1‖�, ∀k ≥ 0,

which together with (3.38) and (3.39), implies that

‖uk −
�
K(u

k+1)‖� ≤ (1 + β)dist�(u
k,K), ∀ k ≥ 0. (3.40)

From the definitions of � in (3.14) and � in (3.16) we know that

‖uk+1 − uk+1‖2� = (τσ )2‖A∗(wk+1 − wk+1)‖2 + ‖wk+1 − wk+1‖2�
=
〈
wk+1 − wk+1, τσ (�̂h + S + 2

3
(1 + τ)σAA∗)(wk+1 − wk+1)

〉
.
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Based on the above equality, one can see from (3.19) and (3.29) that

‖uk+1 − uk+1‖� ≤ μ‖dk‖. (3.41)

Since Assumption 3.2 holds, by using (3.30), (3.41) and the triangle inequality one
can get that

‖uk+1 −
�
K(u

k+1)‖� ≤ ‖uk+1 − uk+1‖� + dist�
(
uk+1,K

)

≤ μ‖dk‖ + dist�
(
uk+1,K

) ≤ μηk‖uk − uk+1‖ + dist�(u
k+1,K)

≤ μηk‖uk+1 −
�
K(u

k+1)‖� + μηk‖uk −
�
K(u

k+1)‖� + dist�(u
k+1,K), ∀k ≥ k̄.

Then, by using the fact that ‖uk+1 − 
�
K(u

k+1)‖� ≥ dist�(uk+1,K) and (3.40), we
can obtain that when k ≥ 0,

(1 − μηk)dist�(u
k+1,K) ≤ μηk(1 + β)dist�(u

k,K)+ dist�(u
k+1,K),

which, together with (3.37), implies (3.31). Finally, it is easy to see that supk≥k̄{ϑk} <
1 from (3.30) and (3.32). This completes the proof. ��
Remark 3.1 Note that if {ηk} → 0 as k → ∞, condition (3.32) holds eventually for k̄
sufficiently large.

3.3 Non-ergodic iteration complexity

With the inequalities established in the previous subsections, one can easily get the
following non-ergodic iteration complexity results for Algorithm inPALM.

Theorem 3.3 Suppose that Assumption 3.1 holds. Let {uk = (xk, wk)} be the sequence
generated by Algorithm inPALM that converges to u∗ := (x∗, w∗) ∈ K. Then, the
KKT residual mapping R defined in (3.22) satisfies

min
0≤ j≤k

‖R(u j )‖2 ≤ �/k and lim
k→∞

(
k · min

0≤ j≤k
‖R(u j )‖2) = 0, (3.42)

where the constant � is defined by

� := max

{
12σ 2(τ − 1)2‖A∗A‖ + 3

τσ 2(2 − τ)
,
2ζ‖�̂h + S‖

τσ

}
e (3.43)

with e := ‖u0e‖2� + 2τσ‖�−1/2‖(∑∞
j=0 ε j )

(‖u0e‖� + μ
∑∞

j=0 ε j
)+ 4

∑∞
j=1 ε

2
j .

Proof From (3.17) in Theorem 3.1(a) we know that ‖u j+1
e ‖� ≤ ‖u j

e‖�, ∀ j ≥ 0.
Moreover, (3.41) still holds with μ being given in (3.29), so that

‖u j+1 − u j+1‖� ≤ μ‖d j‖, ∀ j ≥ 0.
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Therefore,

‖w j+1
e ‖� ≤ ‖u j+1

e ‖� ≤ ‖u j
e‖� + μ‖dk‖ ≤ ‖u0e‖� + μ

∞∑

j=0

ε j , ∀ j ≥ 0.

Consequently, for any k ≥ 0

k∑

j=0

〈d j , w
j+1
e 〉 ≤ ‖�−1/2‖

⎛

⎝
k∑

j=0

‖d j‖
⎞

⎠ ‖w j+1
e ‖�

≤ ‖�−1/2‖
⎛

⎝
∞∑

j=0

ε j

⎞

⎠

⎛

⎝‖u0e‖� + μ

∞∑

j=0

ε j

⎞

⎠ . (3.44)

Also, from (3.17) of Theorem 3.1(a) we know that for any k ≥ 0,

‖u0e‖2� ≥ ‖u0e‖2� − ‖uk+1
e ‖2� =

k∑

j=0

(
‖u j

e‖2� − ‖u j+1
e ‖2�

)

≥
k∑

j=0

(
‖w j+1 − w j‖2� + 2 − τ

3τ
‖x j+1 − x j‖2

)
− 2τσ

k∑

j=0

〈d j , w
j+1
e 〉.

(3.45)

Moreover, from (3.23) we know that

‖R(uk+1)‖2 ≤ 4σ 2(τ − 1)2‖A∗A‖ + 1

τ 2σ 2 ‖xk+1 − xk‖2

+ 2ζ‖�̂h + S‖
τσ

‖wk+1 − wk‖2� + 4‖dk‖2.

Therefore, we can get from (3.44) and (3.45) that
∑∞

j=0 ‖R(u j+1)‖2 ≤ �. From here,
we can easily get required results in (3.42). ��

4 The equivalence property

In this section, we establish the equivalence of an inexact block sGS decomposition
basedmulti-block indefinite-proximal ADMM for solving problem (1.1) to the inexact
indefinite-proximal ALM presented in the previous section. The iteration scheme of
the former has already been briefly sketched in (1.6) in the introduction. Here we shall
formally present it as Algorithm sGS-inPADMM.

123



136 L. Chen et al.

Algorithm sGS-inPADMM An inexact block sGS decomposition based indefinite-
Proximal ADMM
Let {ε̃k} be a summable sequence of nonnegative real numbers, τ ∈ (0, 2) be the
(dual) step-length, and (x0, y0, z0) ∈ X× dom p ×Y2 × · · · ×Ys ×Z be the given
initial point. Choose the self-adjoint linear operators Di : Yi → Yi , i = 1, . . . , s.
For k = 0, 1, . . . , perform the following steps in each iteration.

Step 1. For i = s, . . . , 2, compute

y
k+ 1

2
i ≈ arg min

yi∈Yi

{
Lσ

((
yk<i ; yi ; y

k+ 1
2

>i

)
, zk; (xk, yk)

)
+ 1

2
‖yi − yki ‖2Di

}
,

such that there exists δ̃ki satisfying ‖δ̃ki ‖ ≤ ε̃k and

δ̃ki ∈ ∂yiLσ

((
yk<i ; y

k+ 1
2

i ; yk+
1
2

>i

)
, zk; (xk, yk)

)
+ Di

(
y
k+ 1

2
i − yki

)
.

Step 2. For i = 1, . . . , s, compute

yk+1
i ≈ arg min

yi∈Yi

{
Lσ

((
yk+1
<i ; yi ; yk+

1
2

>i

)
, zk; (xk, yk)

)
+ 1

2
‖yi − yki ‖2Di

}
,

such that there exists δki satisfying ‖δki ‖ ≤ ε̃k and

δki ∈ ∂yiLσ

((
yk+1
<i ; yk+1

i ; yk+
1
2

>i

)
, zk; (xk, yk)

)
+ Di

(
yk+1
i − yki

)
.

Step 3. Compute zk+1 ≈ arg min
z∈Z

{
Lσ

(
yk+1, z; (xk, yk))}, such that ‖γ k‖ ≤ ε̃k with

γ k := ∇zLσ

(
yk+1, zk+1; (xk, yk)

)
= Gxk − b + σG(F∗yk+1 + G∗zk+1 − c).

(4.1)

Step 4. Compute xk+1 := xk + τσ
(
F∗yk+1 + G∗zk+1 − c

)
.

Recall that the KKT system of problem (1.1) is defined by

0 ∈
(
∂ p(y1)

0

)
+ ∇ f (y)+ Fx, Gx − b = 0, F∗y + G∗z = c. (4.2)

We make the following assumption on problem (1.1) throughout this section.

Assumption 4.1 The solution set to the KKT system (4.2) is nonempty.
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Note that if Slater’s constraint qualification (SCQ) holds for problem (1.1), i.e.,

{
(y, z) | y1 ∈ ri (dom p), F∗y + G∗z = c

} �= ∅,

then we know from [44, Corollaries 28.2.2 & 28.3.1] that a vector (y, z) ∈ Y × Z is
a solution to problem (1.1) if and only if there exists a Lagrangian multiplier x ∈ X

such that (x, y, z) is a solution to the KKT system (4.2). Therefore, Assumption 4.1
holds if the SCQ holds and (1.1) has at least one optimal solution. Moreover, for any
(x, y, z) ∈ X × Y × Z satisfying (4.2), we know from [44, Corollary 30.5.1] that
(y, z) is an optimal solution to problem (1.1) and x is an optimal solution to its dual
problem.

Recall that the majorized augmented Lagrangian function of problem (1.1) was
given in (1.5). Note that one can always write Fx = (F1x; . . . ;Fs x), ∀x ∈ X

with each Fi : X → Yi being a given linear mapping. For later discussions, we
symbolically decompose the self-adjoint linear operator �̂ f in the following from

�̂ f =

⎛

⎜⎜⎜⎜
⎝

�̂
f
11 �̂

f
12 · · · �̂

f
1s

�̂
f
21 �̂

f
22 · · · �̂

f
2s

...
...

. . .
...

�̂
f
s1 �̂

f
s2 · · · �̂

f
ss

⎞

⎟⎟⎟⎟
⎠

with �̂
f
i j : Y j → Yi , ∀1 ≤ i, j ≤ s. (4.3)

Based on the above decomposition, we make the following assumption on choosing
the proximal terms in Algorithm sGS-inPADMM.

Assumption 4.2 The self-adjoint linear operators Di : Yi → Yi , i = 1, . . . , s in
Algorithm sGS-inPADMM are chosen such that

1

2
�̂

f
i i + σFiF∗

i + Di � 0 and D := Diag(D1, . . . ,Ds) � −1

2
�̂ f . (4.4)

We are now ready to prove the equivalence of Algorithm 1 and Algorithm sGS-in-
PADMM for solving problem (1.1). We begin by applying the inexact block sGS
decomposition technique in [32, Theorem 1] to express the procedure for computing
yk+1 in Steps 1 and 2 of Algorithm sGS-inPADMM in a more compact fashion. For
this purpose we define the following linear operator

N := �̂ f + σFF∗ + D. (4.5)

Note that the self-adjoint linear operatorN is positive semidefinite, if Assumption 4.2
holds. Moreover, as can be seen from (1.5), for any given (x, y′, z) ∈ X×Y×Z, the
linear operator N contains all the quadratic information of

Lσ

(
y, z; (x, y′)

)+ 1

2
‖y − y′‖2D
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with respect to y. Based on (4.3), the linear operator N can be decomposed as N =
Nd + Nu + N∗

u with Nd and Nu being the block-diagonal and the strict block-upper
triangular parts of N, respectively, i.e.,

Nd := Diag(N11, . . . ,Nss) with Ni i := �̂
f
i i + σFiF∗

i + Di , i = 1, . . . , s

and

Nu :=

⎛

⎜⎜⎜⎜
⎝

0 N12 · · · N1s

0 0
. . .

...
...

...
. . . N(s−1)s

0 0 · · · 0

⎞

⎟⎟⎟⎟
⎠

with Ni j = �̂
f
i j + σFiF∗

j , ∀ 1 ≤ i < j ≤ s.

(4.6)

For convenience, we denote in Algorithm sGS-inPADMM for each k ≥ 0, δ̃k1 := δk1,
δ̃k := (δ̃k1, δ̃

2
k . . . , δ̃

k
s ) and δ

k := (δk1, . . . , δ
k
s ). Suppose that Assumption 4.2 holds. We

can define the sequence {δksGS} ∈ Y by

δksGS := δk + NuN−1
d (δk − δ̃k). (4.7)

Moreover, we can define the linear operator

NsGS := NuN−1
d N∗

u . (4.8)

Based on the above definitions, we have the following result, which is a direct conse-
quence of [32, Theorem 1].

Lemma 4.1 Suppose that Assumption 4.2 holds. The iterate yk+1 in Step 2 of Algo-
rithm sGS-inPADMM is the unique solution to the perturbed proximal minimization
problem given by

yk+1 = arg min
y∈Y

{
Lσ

(
y, zk; (xk, yk)

)
+ 1

2
‖y − yk‖2D+NsGS

− 〈δksGS, y〉
}
. (4.9)

Moreover, it holds that N + NsGS = (Nd + Nu)N−1
d (Nd + N∗

u) � 0.

Remark 4.1 From (4.9) one can get the interpretation of the linear operator NsGS
defined in (4.8). That is, by adding the proximal term 1

2‖y − yk‖2D to the majorized
augmented Lagrangian function and conduct one cycle of the block sGS-type block
coordinate minimization via Steps 1 and 2 in Algorithm sGS-inPADMM, the resulted
yk+1 is then an inexact solution to the following problem

min
y∈Y

{
Lσ

(
y, zk; (xk, yk)

)
+ 1

2
‖y − yk‖2D + 1

2
‖y − yk‖2NsGS

}
,
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where the proximal term 1
2‖y − yk‖2NsGS

is generated due to the sGS-type iteration

with the linear operator NsGS being defined by (4.8) and (4.5), while δksGS defined in
(4.7) represents the error accumulated from δ̃k and δk after one cycle of the sGS-type
update.

The following elementary result4 will be frequently used later.

Lemma 4.2 The self-adjoint linear operator GG∗ is nonsingular (positive definite) on
the subspace Range(G) of Z.

Now, we start to establish the equivalence between Algorithm sGS-inPADMM
and Algorithm inPALM. The first step is to show that the procedure of obtaining
(yk+1, zk+1) in Algorithm sGS-inPADMM can be viewed as the procedure of getting
wk+1 in Algorithm inPALM. For this purpose, we define the block diagonal linear
operator T : Y × Z → Y × Z by

T
(
y; z) :=

((
D + NsGS + σFG∗[GG∗]†GF∗) y

0

)
, ∀ (y, z) ∈ Y × Z. (4.10)

Moreover, we define the sequence
{
�k
}
in Y by

�k := δksGS − FG∗[GG∗]†
(
γ k−1 − γ k − G(xk−1 − xk)

)
, k ≥ 0 (4.11)

with the convention that
{
x−1 := x0 − τσ (F∗y0 + G∗z0 − c),
γ−1 := −b + Gx−1 + σG(F∗y0 + G∗z0 − c).

(4.12)

Based on the above definitions and Lemma 4.1, we have the following result.

Proposition 4.1 Suppose that Assumption 4.2 holds. Then,

(a) Algorithm sGS-inPADMM is well-defined;
(b) the sequence {(xk, yk, zk)} generated by Algorithm sGS-inPADMM satisfies

(
�k; γ k

)
∈ ∂(y,z)Lσ

((
yk+1, zk+1); (xk, yk)

)

+ T
(
yk+1 − yk; zk+1 − zk

)
, ∀ k ≥ 0. (4.13)

Proof (a) Since Assumption 4.2 holds, it is easy to see from Lemma 4.1 that Steps 1
and 2 in algorithm sGS-inPADMM are well-defined for any k ≥ 0. Moreover, from
(4.1) we know that Step 3 of Algorithm sGS-inPADMM is well-defined if, for any
k ≥ 0, the following linear system with respect to z

Gxk − b + σG(F∗yk+1 + G∗z − c) = 0 (4.14)

4 This lemma can be directly verified via the singular value decomposition of the linear operator G and
some basic calculations from linear functional analysis.
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has a solution. Since b ∈ Range(G), we know that (b − Gxk)/σ − G(F∗yk+1 − c) ∈
Range(G). Therefore, Lemma 4.2 implies that the linear system

GG∗z = (b − Gxk)/σ − G(F∗yk+1 − c)

or equivalently the linear system (4.14), has a solution. Consequently, Algo-
rithm sGS-inPADMM is well-defined.

(b) From (4.1) and (4.12) we know that for any k ≥ 0,

γ k−1 = −b + Gxk−1 + σG(F∗yk + G∗zk − c) (4.15)

so that γ k−1 ∈ Range(G) and GG∗zk = (γ k−1+b−Gxk−1)/σ −GF∗yk +Gc. Hence,

GG∗(zk − zk+1) = 1

σ
(γ k−1 − γ k − Gxk−1 + Gxk)− GF∗(yk − yk+1), ∀ k ≥ 0.

Therefore, one can get5 that for any k ≥ 0,

σFG∗(zk − zk+1)

= FG∗[GG∗]†(γ k−1 − γ k − G(xk−1 − xk))+ σFG∗[GG∗]†GF∗(yk+1 − yk).

(4.16)

From (4.9) in Lemma 4.1 we know that, for any k ≥ 0,

δksGS ∈ ∂yLσ

(
yk+1, zk; (xk, yk))+ (D + NsGS

)
(yk+1 − yk)

= ∂yLσ

(
yk+1, zk+1; (xk, yk))+ (D + NsGS

)
(yk+1 − yk)

+ σFG∗(zk − zk+1
)
.

(4.17)

Then, by substituting (4.16) into (4.17) and using the definition of �k in (4.11), one
has that

�k ∈ ∂yLσ

(
yk+1, zk+1; (xk, yk)

)
+
(
D + NsGS + σFG∗[GG∗]†GF∗) (yk+1 − yk),

which, together with (4.1), implies that (4.13) holds. This completes the proof. ��
The following important result will be used later.

Proposition 4.2 Suppose that Assumptions 4.1 and 4.2 hold. Let {(xk, yk, zk)} be the
sequence generated by Algorithm sGS-inPADMM. Define ξ0 := ‖b − Gx0‖ and

ξk := |1 − τ |kξ0 + τ
k∑

i=1
|1 − τ |k−i ε̃i−1, ∀ k ≥ 1.

5 This can be routinely derived by using the singular value decomposition of G and the definition of the
Moore–Penrose pseudoinverse.
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Then, it holds that for all k ≥ 0, ‖b − Gxk‖ ≤ ξk and

∞∑

k=0

‖b − Gxk‖ ≤
∞∑

k=0

ξk < +∞.

Proof We know from Step 4 of Algorithm sGS-inPADMM and (4.12) that

xk = xk−1 + τσ
(
F∗yk + G∗zk − c

)
, ∀ k ≥ 0.

Hence, one has that

b − Gxk = b − Gxk−1 − τσG
(
F∗yk + G∗zk − c

)
, ∀ k ≥ 0.

Moreover, from (4.12) and (4.15) we know that

τ(γ k−1 + b − Gxk−1) = τσG
(
F∗yk + G∗zk − c

)
, ∀k ≥ 0.

Thus, by combining the above two equalities together, one can get

b − Gxk = b − Gxk−1 − τ
(
γ k−1 + b − Gxk−1)

= (1 − τ)
(
b − Gxk−1)− τγ k−1, ∀ k ≥ 0.

Consequently, it holds that

‖b − Gxk‖ ≤ |1 − τ | ‖b − Gxk−1‖ + τ‖γ k−1‖, ∀ k ≥ 0,

and hence

‖b − Gxk‖ ≤ |1 − τ |k ‖b − Gx0‖

+ τ

k∑

i=1

|1 − τ |k−i ‖γ i−1‖ ≤ ξk, ∀k ≥ 0. (4.18)

Note that τ ∈ (0, 2). It is easy to see that

∞∑

k=0

‖b − Gxk‖ ≤
∞∑

k=0

ξk ≤
( ∞∑

k=0

|1 − τ |k
)

ξ0 + τ

∞∑

k=1

k∑

i=1

|1 − τ |k−i ε̃i−1

≤
( ∞∑

k=0

|1 − τ |k
)

ξ0 + τ

( ∞∑

k=0

|1 − τ |k
)( ∞∑

i=0

ε̃i

)

< +∞,

which completes the proof. ��
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Now, we start to show that the sequence {(xk, yk, zk)} generated by Algo-
rithm sGS-inPADMM can be viewed as a sequence generated by Algorithm inPALM
from the same initial point. For this purpose, we define the spaceV := Y×Range(G),
and we define the linear operators B : X → V and P : V → V by

Bx := (Fx;Gx), ∀ x ∈ X and P(y, z) :=
(
�̂ f y ; 0

)
, ∀ (y, z) ∈ V.(4.19)

Moreover, we define the closed proper convex function φ : V → (−∞,+∞] by

φ(v) = φ(y, z) := p(y1)+ f (y)− 〈b, z〉, ∀ v = (y, z) ∈ V

and define

Lσ

(
v; (x, v′)

) := Lσ

(
y, z; (x, y′)

)
, ∀ v = (y, z) ∈ V, v′ = (y′, z′) ∈ V.

(4.20)

Based on the above definitions, problem (1.1) can be viewed as an instance of problem
(3.1). In this case, the following result is for the purpose of viewing Algorithm sGS-in-
PADMM as an instance of Algorithm inPALM.

Theorem 4.1 Suppose that Assumptions 4.1 and 4.2 hold. Let {(xk, yk, zk)} be the
sequence generated by Algorithm sGS-inPADMM. Define

vk :=
(
yk;
Range(G)(z

k)
)
, ∀ k ≥ 0. (4.21)

Then, for any k ≥ 0, it holds that

(a) the linear operators T, B and P defined in (4.10) and (4.19) satisfy

T � − 1
2P and

〈
v,
( 1
2P + σBB∗ + T

)
v
〉
> 0, ∀ v ∈ V \ {0}; (4.22)

(b) there exists a sequence of nonnegative real numbers {̂εk}, such that

‖(�k; γ k)‖ ≤ ε̂k and
∞∑

k=0

ε̂k < +∞;

(c) it holds that

vk+1 ≈ arg min
v∈V

{
Lσ

(
v; (xk, vk)

)
+ 1

2
‖v − vk‖2T

}

in the sense that
(
�k; γ k

)
∈ ∂vLσ

(
vk+1; (xk, vk)

)
+ T

(
vk+1 − vk

)
and

∥∥∥(�k; γ k)

∥∥∥ ≤ ε̂k .
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Proof (a) According to (4.4) in Assumption 4.2 we know thatD � − 1
2 �̂

f . Moreover,
from (4.8) we know that NsGS � 0. Thus, one can readily see from (4.10) and (4.19)
that T � − 1

2P. On the other hand, one can symbolically do the decomposition that

1

2
P + σBB∗ + T =

( 1
2 �̂

f + σFF∗ + D + NsGS + σFG∗[GG∗]†GF∗ σFG∗
σGF∗ σGG∗

)
.

From Lemma 4.2, we know that GG∗ is nonsingular on the Range(G). Therefore, by
using the definition ofV and the Schur complement condition for ensuring the positive
definiteness of a linear operator, we only need to show that 12 �̂

f +σFF∗+D+NsGS �
0 on Y. Suppose on the contrary that it is not positive definite. Then, there exists a
nonzero vector y ∈ Y such that

〈
y,
( 1
2 �̂

f + σFF∗ + D + NsGS
)
y
〉 = 〈y, ( 12 �̂ f + D + σFF∗) y

〉+ 〈y,NsGSy〉 = 0.

From (4.4) of Assumption 4.2 and (4.8) we know that 1
2 �̂

f + D + σFF∗ � 0 and
NsGS � 0, so that

〈
y,
( 1
2 �̂

f + D + σFF∗) y
〉 = 0 = 〈y,NsGSy〉 .

Then, by using (4.8) we can get that N∗
u y = 0. This, together with (4.6), implies that

0 =
〈
y,

(
1

2
�̂ f + D + σFF∗

)
y

〉

= 1

2

〈
y,
(
�̂ f + σFF∗) y

〉
+
〈
y,

(
1

2
σFF∗ + D

)
y

〉

= 1

2

〈
y,
(
�̂ f + σFF∗)

d
y
〉
+
〈
y,

(
1

2
σFF∗ + D

)
y

〉

=
〈
y,

(
1

2
(�̂ f )d + D

)
y

〉
+ σ

2

〈
y, (FF∗)d y

〉+ σ

2

〈
y,FF∗y

〉
, (4.23)

where

(�̂ f + σFF∗)d := Diag
(
�̂

f
11 + σF1F∗

1, . . . , �̂
f
ss + σFsF∗

s

)
,

(FF∗)d := Diag
(
F1F∗

1, . . . ,FsF∗
s

)
.

Since D � − 1
2 �̂

f implies 1
2 (�̂

f )d + D � 0, we obtain from (4.23) that

〈
y,

(
1

2
(�̂ f )d + D

)
y

〉
= σ

2

〈
y, (FF∗)d y

〉 = σ

2

〈
y,FF∗y

〉 = 0,

which contradicts the requirement in Assumption 4.2 that 1
2 �̂

f
i i + σFiF∗

i + Di � 0
for all i = 1, . . . , s. Therefore, it holds that 1

2 �̂
f + σFF∗ +D+NsGS � 0, and this

completes the proof of (a).
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(b) From the definition of {�k} in (4.11) one can see that for all k ≥ 0,

‖�k‖ ≤ ‖δksGS‖ + ‖FG∗[GG∗]†‖‖γ k−1 − γ k − G(xk−1 − xk)‖.

Then, by using the fact that max{‖δ̃ki ‖, ‖δki ‖, ‖γ k‖} ≤ ε̃k , we can get from Proposi-
tion 4.2 and the definition of δksGS in (4.7) that for all k ≥ 1,

‖(�k; γ k)‖ ≤ ‖γ k‖ + ‖�k‖
≤ ε̂k := (s + 1)ε̃k + 2s‖NuN−1

d ‖ε̃k + ‖FG∗[GG∗]†‖(ε̃k−1 + ξk−1 + ε̃k + ξk
)
.

Moreover, we define ε̂0 := ‖(�0; γ 0)‖. Then, according to Proposition 4.2 and the
fact that the sequence {ε̃k} is summable, we know that

∑∞
k=0 ε̂k < +∞.

(c) According to (4.10), (4.13) and (4.20), we only need to show that

∂(y,z)Lσ

((
yk+1, zk+1); (xk, yk)

)

= ∂(y,z)Lσ

((
yk+1,
Range(G)(z

k+1)
)
; (xk, yk)

)
, ∀ k ≥ 0.

From (1.4) and (1.5) we can get that

∂yLσ (y, z; (x, y′)) =
(
∂y1 p(y1)

0

)
+ ∇ f (y′)+ �̂ f (y − y′)+ Fx

+ σF(F∗y + G∗z − c)

and

∇zLσ (y, z; (x, y′)) = −b + Gx + σG(F∗y + G∗z − c).

Therefore, by using the fact that G∗zk+1 = G∗
Range(G)(zk+1), ∀ k ≥ 0, we know that
part (c) of the theorem holds. This completes the proof. ��
Remark 4.2 Onecan see that inAlgorithmsGS-inPADMM, the sequence {(xk , yk, zk)}
was generated, while the sequence {
Range(G)(zk)} has never been explicitly calcu-
lated. Note that once zk is computed, only the vector G∗zk is needed during the next
iteration, instead of zk itself. Since G∗zk = G∗
Range(G)(zk),∀ k ≥ 0, one may view
the sequence {
Range(G)(zk)} ∈ Range(G) as a shadow sequence of {zk}. It has never
been explicitly computed, but still plays an important role on establishing the conver-
gence of the algorithm. In fact, similar observations have been made and extensively
used in [30,31].

By combining the results of Theorem 3.1 and Theorem 4.1, one can readily get the
following convergence theorem of Algorithm sGS-inPADMM.

Theorem 4.2 Suppose that Assumptions 4.1 and 4.2 hold. Let {(xk, yk, zk)} be the
sequence generated by Algorithm sGS-inPADMM. Then,
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(a) the sequence
{(
yk,
Range(G)(zk)

)}
converges to a solution to problem (1.1) and

the sequence {xk} converges to a solution to the dual of (1.1);
(b) any accumulation point of the sequence {(yk, zk)} is a solution to problem (1.1);
(c) the sequence {p(yk1 ) + f (yk) − 〈b, zk〉} of the objective values converges to the

optimal value of problem (1.1), and

lim
k→∞(F

∗yk + G∗zk − c) = 0;

(d) it holds with K being the solution set to the KKT system (4.2) that

lim
k→∞ dist

(
(xk, yk, zk),K

)
= 0;

(e) if the linear operator G is surjective, the whole sequence {(xk, yk, zk)} converges
to a solution to the KKT system (4.2) of problem (1.1).

Proof (a) Note that the sequence
{
vk = (yk;
Range(G)(zk)

)}
defined in (4.21) lies in

Y×Range(G). By using Theorem 4.1(c), one can treat the sequence {(xk, vk)} gener-
ated by Algorithm sGS-inPADMM as the one generated by Algorithm inPALM with
the given initial point (x0, v0). In addition, (4.22) inTheorem4.1 guarantees that condi-
tion (3.5) inAssumption 3.1 holds. Thus, by Theorem3.1, the sequence {(xk , vk)} con-
verges to a solution to the KKT system (4.2), i.e., the sequences

{(
yk,
Range(G)(zk)

)}

and {xk} converge to a solution to problem (1.1) and its dual, respectively.
(b) From (a), we see that limk→∞(xk, yk,
Range(G)(zk)) = (x∗, y∗, z∗) which is a
solution to the KKT system (4.2). Since G∗zk = G∗
Range(G)(zk),∀ k ≥ 1, any accu-
mulation point, say z∞ of {zk} satisfies G∗z∞ = G∗z∗. Then, it is easy to verify that
(x∗, y∗, z∞) also satisfy the KKT system (4.2). Therefore, (y∗, z∞) is a solution to
problem (1.1).
(c) From (a) and the fact that the objective function of problem (1.1) is continuous
on its domain, we know that {p(yk1 ) + f (yk) − 〈b,
Range(G)(zk)〉} converges to the
optimal value of problem (1.1). Since b ∈ Range(G), it holds that for any k ≥ 1,
〈b, zk〉 = 〈b, 
Range(G)(zk)〉. Thus,

p(yk1 )+ f (yk)− 〈b,
Range(G)(z
k)〉 = p(yk1 )+ f (yk)− 〈b, zk〉, ∀k ≥ 1.

Therefore, the sequence {p(yk1 )+ f (yk)− 〈b, zk〉} converges to the optimal value of
problem (1.1). Meanwhile, since G∗zk = G∗
Range(G)(zk), we further have that

lim
k→∞

(
F∗yk + G∗zk − c

)
= lim

k→∞

(
F∗yk + G∗
Range(G)(z

k)− c
)

= 0.

(d) From (a), we have that (x∗, y∗, z∗), the limit point of {(xk, yk,
Range(G)(zk))},
is a solution to the KKT system (4.2), i.e., (x∗, y∗, z∗) ∈ K. Since G∗(zk −

Range(G)(zk)

) = 0 for any k ≥ 1, it is not difficult to see that

(
x∗, y∗, z∗ + (zk −
Range(G)(z

k)
)) ∈ K, ∀k ≥ 1.
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Therefore, it holds for all k ≥ 1

dist
(
(xk, yk, zk),K

)
≤ ‖xk − x∗‖ + ‖yk − y∗‖ + ‖
Range(G)(z

k)− z∗‖

and limk→∞ dist
(
(xk, yk, zk),K

) = 0.
(e) In this case, it holds that Range(G) = Z and zk = 
Range(G)(zk), ∀ k ≥ 0. The
result follows from (a), which completes the proof of the theorem. ��
We make the following remark on Theorem 4.2.

Remark 4.3 Without any additional assumptions on G, one can observe that the
solution set of problem (1.1) is unbounded and the sequence {zk} generated by Algo-
rithm sGS-inPADMM may also be unbounded. Fortunately, we are still able to show
in Theorem 4.2(a) and (c) that the sequence {(xk, yk,
Range(G)(zk)

)} converges to a
solution to the KKT system (4.2), and both the objective and the feasibility converge
to the optimal value and zero, respectively. Meanwhile, we would like to emphasize
that the surjectivity assumption on G in Theorem 4.2(e) is not restrictive at all. Indeed,
this assumption simply means that there are no redundant equations in the linear con-
straints Gx = b in the primal problem (1.2). If necessary, well established numerical
linear algebra techniques can be used to remove redundant equations from Gx = b.

4.1 The two-block case

Consider the two-block case thatY = Y1 and f is vacuous, i.e., the following problem

min
y,z

{
p(y)− 〈b, z〉 |F∗y + G∗z = c

}
. (4.24)

Assume that the KKT system of problem (4.24) admits a nonempty solution set K.
For such a two-block problem, Algorithm sGS-inPADMMwithout the proximal terms
and the inexact computations reduces to the classic ADMM. Then, by Theorem 4.2,
the sequence

{(
xk, yk,
Range (G)(zk)

)}
generated by the classic ADMMor its inexact

variants with τ ∈ (0, 2) (in the order that the y-subproblem is solved before the
z-subproblem) converges to a point in K if either F is surjective or p is strongly
convex. Moreover, if G is also surjective, we have that the sequence

{(
xk, yk, zk

)}

converges to a point in K. Note that the assumptions we made for problem (4.24) are
apparently weaker than those in [18], whereF is assumed to be the identity operator, G
is surjective, and p is assumed to be strongly convex. Moreover, in [18, Theorem 3.1],
only the convergence of the primal sequence {(yk, zk)} and the boundedness of the
dual sequence {xk} were obtained.

The detailed comparison between the results in this paper and those in [18] is
presented in Table 1. As can be observed from this table, the convergence result on the
dual sequence {xk} is easier to be derived than that of the primal sequence {(yk, zk)},
and this result is consistent with the results in [5] for the classic ADMM and the ALM
in [45]. Hence, the results derived in this paper properly resolves the questions we
have mentioned in the introduction.
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Table 1 Comparison between [18] and this paper

Item Ref

[18] This paper

Updating rules z ⇒ y ⇒ x & τ ∈ (0, 2) y ⇒ z ⇒ x & τ ∈ (0, 2)

Assumptions-y p strongly convex p strongly convex p strongly convex

and F the identity operator or F surjective or F surjective

Assumptions-z G surjective – G surjective

Sequences {(yk , zk )} → SOL dist
(
(xk , yk , zk ),K

)
→ 0 {(yk , zk )} → SOL

{xk } bounded {xk } → X {xk } → X

In the table ‘SOL’ denotes the solution set to problem (4.24), ‘X’ denotes the set of multipliers (the solution
set to the dual problem) to problem (4.24), and ‘K’ denotes the solution set to the KKT system or problem
(4.24), i.e.,K = X×SOL. The symbol → means that the sequence on its left-hand-side is convergent, and
converges to a point in its right-hand-side

At last, we should mention that, in Sun et al. [48, Theorem 3.3 (iv)], a similar result
to ours has been derived with the requirements that the initial multiplier x0 satisfies
Gx0−b = 0 and all the subproblems are solved exactly. Here, we are able to relax these
requirements to the most general case and extend our results to the more interesting
and challenging multi-block problems.

4.2 Linear rate of convergence and iteration complexity

Theorem 3.2 has provided a tool, which can be used together with Theorem 4.1 to
analyze the linear convergence rate of the sequence generated by Algorithm sGS-in-
PADMM, i.e., one only need to verify whether (3.30) is valid for this sequence,
provided that the metric subregular property (3.26) holds. However, such a verifi-
cation is not as straightforward as it conceptually seems.

Here, we establish a linear convergence result for the case that the linear system in
step 3 of Algorithm sGS-inPADMM is solve exactly, but leave the general cases as a
topic for further study. For this purpose, we view problem (1.1) as an instance of (3.1)
with

⎧
⎨

⎩

ϕ(w) := p(y1),
h(w) := f (y)− 〈b, z〉,
A∗w := F∗y + G∗z,

∀w = (y, z) ∈ W := Y × Z. (4.25)

Then, the corresponding KKT residual mapping of problem (1.1) can be given by
(3.22). Moreover, the self-adjoint linear operator � defined in (3.16) is given by

�(x; (y; z)) = (x;� 1
2 (y; z)), where � = τσ (P + T + (2−τ)σ

3 AA∗) with T and P
being defined in (4.10) and (4.19), respectively. In fact, we further have that

�
(
x; (y; z)) = �

(
x; (y;
Range (G)(z)

))
, ∀(x, y, z) ∈ X × Y × Z. (4.26)
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Theorem 4.3 Suppose that Assumptions 4.1 and 4.2 hold. Let {uk = (xk, wk)} with
wk := (yk; zk) be the sequence generated by Algorithm sGS-inPADMM such that
{vk := (xk, yk,
Range (G)(zk)

)} converges to v∗ ∈ K. It holds that

dist�(u
k,K) = dist�(v

k,K), ∀k ≥ 0. (4.27)

Suppose that b − Gx0 = 0 and γ k = 0 for all k ≥ 0. Suppose that the KKT residual
mapping R defined in (3.22) [with the notation in (4.25)] is metric subregular at v∗
for 0 ∈ U with the modulus κ > 0, in the sense that there exists a constant r > 0 such
that (3.26) holds with u = v∗. Let {η̃k} be a given sequence of nonnegative numbers
that converges to 0 in the limit. Suppose that in addition to satisfyingmax{‖δ̃ki ‖, ‖δki ‖ |
i = 1, . . . , s} ≤ ε̃k , there exists an integer k0 > 0 such that for any k ≥ k0, it holds
that

max
1≤i≤s

{
‖δ̃ki ‖, ‖δki ‖

}
≤ η̃k‖vk − vk+1‖. (4.28)

Then, for all k sufficiently large, it holds that dist�(uk+1,K) ≤ ϑk dist�(uk,K) with
supk≥k0{ϑk} < 1, i.e., the convergence rate of dist�(uk,K) is Q-linear when k is
sufficiently large.

Proof By (4.26), we have that for all k ≥ 0,

dist2�(u
k,K) = inf

u∈K
1

2
〈uk − u, �(uk − u)〉 = inf

u∈K
1

2
〈uk − u, �(vk)−�(u)〉

= inf
u∈K

1

2
〈vk − u, �(vk − u)〉 = dist2�(v

k,K),

i.e., (4.27) holds. Since b − Gx0 = 0 and γ k = 0 for all k ≥ 0, according to (4.18)
one has that

‖b − Gxk‖ ≤ |1 − τ |k ‖b − Gx0‖ + τ

k∑

i=1

|1 − τ |k−i ‖γ i−1‖ = 0, ∀k ≥ 0.

Therefore, by (4.7) and (4.11) one knows that

�k := δksGS − FG∗(GG∗)−1G(xk − xk−1) = δk + NuN−1
d (δk − δ̃k).

Thus, we can get that for all k ≥ 0,

‖dk‖ = ‖�k‖ ≤ (1 + 2‖NuN−1
d ‖)max{‖δ̃‖, ‖δ̃‖}

≤ √
s
(
1 + 2‖NuN−1

d ‖
)
η̃k‖vk − vk+1‖,
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where dk := (�̂k; γ k) ∈ W. Define ηk = √
s(1+ 2‖NuN−1

d ‖)η̃k . Then, it holds that
ηk → 0 and ‖dk‖ ≤ ηk‖vk − vk+1‖. Therefore, by Theorem 3.2, we know that for all
k sufficiently large

dist�(v
k,K) ≤ ϑk dist�(v

k,K)

with supk≥k0{ϑk} < 1, which, together with (4.27), implies

dist�(u
k,K) ≤ ϑk dist�(u

k,K) for all k sufficiently large.

This completes the proof. ��
Remark 4.4 Note that, different from the condition (3.30) in Assumption 3.2, the
condition (4.28) here is generally not directly verifiable during the numerical imple-
mentation. However, Theorem 4.3 does provide us a very important theoretical
guideline on implementing Algorithm sGS-inPADMM, i.e., in the kth iteration, it
is likely to be beneficial to solve the subproblems to an accuracy higher than the dual
feasibility ‖F∗yk + G∗zk − c‖. In fact, this phenomenon has already been observed
during our numerical experiments. We should also mention that even for the 2-block
case, the study on the linear convergence of inexact ADMMs with shorter step-length

τ ∈ (0, 1+√
5

2

)
is still not as mature as the study for their exact counterparts, especially

when compared with the recently developed results, e.g., in [22,57]. Suitable criteria
that generalize the condition (3.30) for terminating the subproblems are still lacking.
We note that the results presented in Theorem 4.3 are still far from complete, and more
effort should be spent on this part in the future.

Finally, different from the above discussions on the convergence rate, we can estab-
lish the following non-ergodic iteration complexity for the sequence generated by
Algorithm sGS-inPADMM by a direct application of Theorem 4.1.

Theorem 4.4 Suppose that Assumptions 4.2 and 4.1 hold. Let {uk = (xk, wk)} with
wk := (yk; zk) be the sequence generated by Algorithm sGS-inPADMM such that
{vk := (xk, yk,
Range (G)(zk)

)} converges to v∗ ∈ K. It holds that the KKT residual
(3.22), with B and P given by (4.19), satisfies

min
0≤ j≤k

‖R(u j )‖2 ≤ �/k, and lim
k→∞

{
k · min

0≤ j≤k
‖R(u j )‖2

}
= 0,

where the constant � is defined as in (3.43) but with

e := ‖u0e‖2� + 2τσ‖�−1/2‖
(

∞∑
j=0

ε̃ j

)(

‖u0e‖� + μ
∞∑
j=0

ε̃ j

)

+ 4

(
∞∑
j=1

ε̃2j

)

and u0e = u0 − v∗.
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Proof From (4.26), we know that

‖u0 − v∗‖2� = 〈�(u0 − v∗), u0 − v∗〉
= 〈�(v0)−�(v∗), u0 − v∗〉 = ‖v0 − v∗‖2�. (4.29)

According to (3.22), (4.2) and (4.25), one has that

R(u) =
⎛

⎝
c − F∗y + G∗z

y − ProxP (y − ∇ f (y)− Fx)
Gx − b

⎞

⎠ , ∀u = (x, y, z) ∈ X × Y × Z.

Since for all k ≥ 0, G∗zk = G
Range(G∗)(z
k), one has thatR(uk) = R(vk). Therefore,

by using (4.22) in Theorem 4.1(a), Theorem 3.3 and (4.29), one has the results of this
theorem holds. This completes the proof. ��

5 Numerical experiments

In this section, we conduct numerical experiments on solving dual linear SDP and dual
convex quadratic SDP problems via Algorithm sGS-inPADMM with the dual step-
length τ taking values beyond the standard restriction of (1+ √

5)/2. For linear SDP
problems, the algorithm reduces to the two-block ADMM, and the aim is two-fold. On
the one hand, as the ADMM is among the most important first-order algorithms for
solving SDP problems, it is of importance to know to what extent can the numerical
efficiency be improved if the observation on the dual step-length made in this paper
is incorporated. On the other hand, as the upper bound of the step-length has been
enlarged, it is also important to see whether a step-length that is very close to the
upper bound will lead to better or worse numerical performance.

A standard linear SDP problem has the following form:

min
X

{〈C, X〉 | AX = b, X ∈ Sn+} (5.1)

and its corresponding dual is given as in (2.4). To avoid repetition,we refer the reader to
(2.4) for the notation used. The (majorized) augmentedLagrangian function associated
with problem (2.4) is given by

Lσ (S, z; X) = δSn+(S)− 〈b, z〉 + 〈X , S + A∗z − C〉 + σ
2 ‖S + A∗z − C‖2,

∀(S, z, X) ∈ Sn × Rm × Sn,

where σ > 0 is the given penalty parameter.When applied to solving problem problem
(2.4), at the kth step of the two-block ADMM the following steps are performed:

⎧
⎨

⎩

Sk+1 = 
Sn+(C − A∗zk − Xk/σ),

zk+1 = (AA∗)−1
(A(C − Sk+1)− (AXk − b)/σ

)
,

Xk+1 = Xk + τσ (Sk+1 + A∗zk+1 − C),
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where the step-length τ is allowed to be in the range (0, 2) based on Theorem 4.1 and
the discussions in Sect. 4.1. We emphasize again that this is in contrast to the usual
interval of (0, (1+ √

5)/2) allowed by the convergence analysis of Glowinski in [20,
Theorem 5.1].

On the other hand, as was briefly introduced in Sect. 2.1, the convex QSDP problem
was formally given in (2.1), whose dual problem, in minimization form, is a multi-
block problem given by

min
S,W ,zE ,zI

δSn+(S)+ δ
R

mI+
(zI )+ 1

2 〈W ,QW 〉 − 〈bE , zE 〉 − 〈bI , zI 〉
s.t. S − QW + A∗

EzE + A∗
I zI + C = 0.

(5.2)

Note that problem (2.1) was subsumed as an instance of the convex quadratic
composition optimization problem (1.7). Therefore, to fit the framework of Algo-
rithm sGS-inPADMM, we write the dual of problem (2.1) in the minimization form
as

min
S,W ,s,zE ,zI

δSn+(S)+ δ
R

mI+
(s)+ 1

2 〈W ,QW 〉 − 〈bE , zE 〉 − 〈bI , zI 〉

s.t.

{
S − QW + A∗

EzE + A∗
I zI + C = 0,

D(s − zI ) = 0,

(5.3)

where D ∈ RmI×mI is a given positive definite diagonal matrix which is incorporated
here for for the purpose of scaling the variables to ensure the numerical stability.

The convex QSDP problem (2.1) is solved via its dual (5.3), whose (majorized)
augmented Lagrangian function is defined by

Lσ (S,W , zE , zI , s; X , x)
:= (δSn+(S)+ δ

R
mI+
(s)
)+ 1

2 〈W , QW 〉 − 〈bE , zE 〉 − 〈bI , zI 〉
+〈X , S − QW + A∗

EzE + A∗
I zI + C〉 + 〈D(s − zI ), x〉

+σ
2 ‖S − QW + A∗

EzE + A∗
I zI + C‖2 + σ

2 ‖D(s − zI )‖2,
∀(S,W , zE , zI , s; X , x) ∈ Sn × Sn × RmE × RmI × RmI × Sn × RmI .

where σ > 0 is the given penalty parameter and and we have used X ∈ Sn and
x ∈ RmI to denote the Lagrange multipliers which are introduced for the two groups
of equality constraints in (5.3). During the kth iteration of Algorithm sGS-inPADMM
with given (Sk,Wk, zkE , z

k
I , s

k) and (Xk, xk), we update the variables in the order of

(
zk+1/2
E ⇒ Wk+1/2

︸ ︷︷ ︸
backward GS

⇒ (Sk+1, sk+1) ⇒ Wk+1 ⇒ zk+1
E︸ ︷︷ ︸

forward GS

)
⇒ zk+1

I ⇒
(
Xk+1, xk+1

)

︸ ︷︷ ︸
τ∈(0,2)

.

Note that the term 〈bI , zI 〉 is treated as the linear term in the framework of (1.1). We
made this choice because for the test instances that we will consider later, the linear
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system that must be solved to update zI is much larger than that for updating zE , and
in this way, the larger linear system will be solved only once in each iteration.

The numerical results in the subsequent two subsections are obtained by using
Matlab R2017b on a HP Elitedesk (64-bit Windows 10 system) with one Intel Core
i7-4770SProcessor (4Cores, 3.1−3.9GHz) and 16GBRAM(with the virtualmemory
turned off).

5.1 Numerical results on linear SDP problems

Based on the first-order optimality condition for problem (5.1), we terminate all the
tested algorithms if

ηSDP := max{ηD, ηP , ηS} ≤ 10−6,

where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ηD = ‖A∗z + S − C‖
1 + ‖C‖ , ηP = ‖AX − b‖

1 + ‖b‖ ,

ηS = max

{‖X −
Sn+(X)‖
1 + ‖X‖ ,

|〈X , S〉|
1 + ‖X‖ + ‖S‖

}

with the maximum number of iterations set at 100,000. In addition, we also measure
the duality gap:

ηgap := 〈C, X〉 − 〈b, z〉
1 + |〈C, X〉| + |〈b, z〉| .

During our preliminary tests, we found that using a step-length smaller than 1 is not
as good as using the unit step-length. Therefore, we shall only consider the cases that
τ ≥ 1. Note that the known theoretical upper bound of the step-length τ in the classic

ADMM for solving general convex programming is 1+√
5

2 ≈ 1.618034. Although
it has been observed empirically that the ADMM with the step-length τ = 1.618
works quite well, this phenomenon still requires further understanding since the value
1.618 is quite close to the theoretical upper bound and such an aggressive choice may
result in unstable numerical performance. Fortunately, the above concern is partially
alleviated by the theoretical results obtained in this paper. Indeed, for a large class
convex optimization problems, one can use τ = 1.618 confidently since it has a “safe”
distance to the renewed theoretical upper bound of 2. For this class of problems, it is
thus very interesting to see what would happen if the step-length τ is very close to 2.
Therefore, we tested five choices of the step-length, i.e., τ = 1, 1.618, 1.90, 1.99 and
1.999. For convenience, we use ADMM(τ ) to denote the algorithm with the specific
step-length τ .

We tested 6 categories of linear SDP problems, including the random sparse SDP
problems tested in [34], the semidefinite relaxation of frequency assignment problems
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Fig. 1 Comparison of the computational efficiency of the classic two-block ADMM with different step-
lengths

(FAP) [15], the relaxation of maximum stable set problems [47,50,52], the SDP relax-
ation of binary integer quadratic (BIQ) problems from [54], the SDP relaxation of
rank-1 tensor approximations (R1TA) [38,39], and the SDP relaxations of clustering
problems [40]. One may refer to [56,58] for detailed descriptions and the data sources
of these problems. All these algorithms are tested by running the Matlab pack-
age SDPNAL+ (version 1.0, available at http://www.math.nus.edu.sg/~mattohkc/
SDPNALplus.html). The records of the computational results are provided in the
first table of the supplementary materials. Here, we should mention that even though
all the problems we tested have been successfully solved by at least one of the tested
algorithms, there are a few categories of SDP problems that are beyond the capability
of the ADMM, see, e.g., [58].

Figure 1 presents the computational performance of the ADMM with all the five
choices of step-lengths. The original scalable Matlab-generated figure with more
details is available in the supplementarymaterials. The left panel shows the comparison
between ADMM (1) and all the other algorithms, while the right panel shows the
comparison between ADMM (1.618) and all the others. As can be seen from Fig. 1,
ADMM (1.618) has an impressive improvement over ADMM (1) and ADMM (1.9)
works even better than ADMM (1.618) for more than 80% of the tested instances.
Furthermore, ADMM (1.99) can perform marginally better than ADMM (1.9) for
about 60% of the tested instances but for about 10% of them, its performance is
apparently worse. However, ADMM (1.999) has a significantly worse performance
than ADMM (1.99) even though its step-length is just slightly larger than 1.99. This
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can be partially explained by the fact that the step-length of 1.999 is too close to the
theoretical upper bound of 2.

From both the theoretical analysis and numerical experiments in this paper, one
can see that in general it is a good idea to use a step-length that is larger than 1,
e.g., τ = 1.618, when solving linear SDP problems. Meanwhile, we can even set
the step-length to be larger than 1.618, say τ = 1.9, to get even better numerical
performance.

5.2 Numerical results on convex QSDP problems

The KKT system of problem (5.2) is given by

⎧
⎪⎨

⎪⎩

S − QW + A∗
EzE + A∗

I zI + C = 0, AE X − bE = 0,

QX − QW = 0, X ∈ Sn+, S ∈ Sn+, 〈X , S〉 = 0,

AI X − bI ≥ 0, zI ≥ 0, 〈AI X − bI , zI 〉 = 0.

(5.4)

Based on the optimality conditions given in (5.4), we measure the accuracy of an
approximate (computed) solution (X , Z ,W , S, yE , yI ) for the convex QSDP (2.1)
and its dual (5.2) via

ηqsdp = max {ηD, ηP , ηW , ηS, ηI } , (5.5)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ηD = ‖S − QW + A∗
EzE + A∗

I zI + C‖
1 + ‖C‖ , ηP = ‖AE X − bE‖

1 + ‖bE‖ ,

ηW = ‖QX − QW‖
1 + ‖Q‖ , ηS = max

{‖X −
Sn+(X)‖
1 + ‖X‖ ,

|〈X , S〉|
1 + ‖X‖ + ‖S‖

}
,

ηI = max

{‖min(0, zI )‖
1 + ‖zI ‖ ,

‖min(0, AI X − bI )‖
1 + ‖bI ‖ ,

|〈AI X − bI , zI 〉|
1 + ‖AI x − bI ‖ + ‖zI ‖

}
.

Additionally, we measure the objective values and the duality gap:

ηgap := Objprimal − Objdual

1 +
∣∣∣Objprimal

∣∣∣+ ∣∣Objdual
∣∣
,

where

Objprimal := 1

2
〈X ,QX〉 − 〈C, X〉, and

Objdual := −1

2
〈W , QW 〉 + 〈bE , zE 〉 + 〈bI , zI 〉.

In our numerical experiments, similar to [6], we used QSDP test instances based on
the SDP problems arising from the relaxation of the binary integer quadratic (BIQ)
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programming with a large number of inequality constraints that was introduced by
Sun et al. [48] for getting tighter bounds. The problems that we actually solve have
the following form:

min
1

2
〈X , QX〉 + 1

2
〈Q, X〉 + 〈c, x〉

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

diag(X)− x = 0, X =
(
X x

xT 1

)

∈ Sn+,

xi − Xi j ≥ 0, x j − Xi j ≥ 0, Xi j − xi − x j ≥ −1, ∀ 1 ≤ i < j ≤ n − 1.

The data for Q and c are taken from the Biq Mac Library maintained byWiegele [54].
We solve the QSDP (2.1) via its dual (5.3) with the matrix D = (

√‖AI ‖/2)IRmI .
We use the directly extended multi-block ADMM with step-length τ = 1 as the
benchmark (which we named as ‘Directly Extended’), and compare it with
Algorithm sGS-inPADMM, which was implemented in 6 different ways, i.e., 2 groups
of algorithms with each using 3 types of different step-lengths, i.e., τ = 1, 1.618 and
1.9, which are chosen according to the numerical results in Sect. 5.1. For conve-
nience, we use the name ‘sGS-PADMM’ to mean that Algorithm sGS-inPADMM is
implemented such that all the subproblems are solved exactly via direct solvers or
adding appropriate proximal terms, and use ‘sGS-inPADMM’ to mean that Algo-
rithm sGS-inPADMM is implemented such that the subproblems are allowed to be
solved inexactly via iterative solvers. The details of all the seven tested algorithms are
presented in Table 2.

For all the algorithms applied to problem (5.3), the subproblems corresponding to
the block variable (S, s) can be solved analytically by computing the projections onto
Sn+ × R

mI+ . For the subproblems corresponding to zE , linear systems of equations
must be solved with the same coefficient matrix AEA∗

E . As the linear systems are
not too large, we solve them via the Cholesky factorization (computed only once) of
AEA∗

E . For the subproblems corresponding to zI andW , we need to solve very large
scale linear systems of equations, so that they are either solved via a preconditioned
conjugate gradient method with preconditioners that are described in [6, Section 7.1]
(for sGS-inPADMM), or solved directly by adding an appropriate proximal term
to the subproblems to get closed-form solutions (for sGS-PADMM). Moreover, in the
implementation of the sGS-PADMM, all the subproblems in the forward Gauss–Seidel
sweep are directly solved, while in the implementation of sGS-inPADMM we used
the strategy described in [6, Remark 4.1(b)] to decide whether the computation of
the subproblems in the forward GS sweep can be skipped (see [6, Section 7.2] for
more details on using this technique). We used a similar strategy as described in [27,
Section 4.4] to adaptively adjust the penalty parameter σ and used the same technique
as in [6] to control the error tolerance for solving the subproblems, i.e., {ε̃k}k≥0 is
chosen such that αε̃k ≤ 1/k1.2, where α > 0 is a positive constant based on the
problem data.

We have tested 147 instances of convex QSDP problems with n ranging from 51
to 501. The linear operator Q was chosen as the symmetrized Kronecker operator
Q(X) = 1

2 (AXB + BX A) with A and B being two randomly generated symmetric
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Fig. 2 Comparison of the computational efficiency of the 7 algorithms

positive semidefinite matrices such that rank(A) = 10 and rank(B) ≈ n/5, respec-
tively, as was used in [6,51]. The maximum iteration number is set at 500,000. The
detail computational results are provided in the second table of the supplementary
materials.

Figure 2 shows the numerical performance of the 7 tested algorithms described
in Table 2 on solving the convex QSDP problems to the accuracy of 10−6 in terms
of ηqsdp in (5.5). The original scalable Matlab-generated figure with more details
is available in the supplementary materials. One can readily see from the figure that
sGS-inPADMM overwhelmingly outperforms sGS-PADMM, no matter which step-
length τ was used. This evidently shows the considerable advantage of catering for
approximate solutions in the subproblems of Algorithm sGS-inPADMM. Moreover,
for both sGS-PADMM and sGS-inPADMM, the step-length τ = 1.618 is able to bring
a noticeable improvement on the numerical efficiency, compared with using the unit
step-length. Meanwhile, the choice of τ = 1.9 can perform even better in general.
Even this is more apparent for sGS-PADMM, in which all the subproblems are solved
exactly. We can see that sGS-inPADMM with τ = 1.9 performs the best among all
the tested algorithms for almost 65% of all the tested problems. Hence, the numerical
results clearly demonstrate the merit of using a larger step-length and the flexibility
of inexactly solving the subproblems.
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6 Conclusions

In this paper, we have shown that, for a class of convex composite programming
problems, the sequence generated by an inexact sGS decomposition basedmulti-block
majorized (proximal) ADMM is equivalent to the sequence generated by an inexact
proximal ALM starting with the same initial point. The convergence of the inexact
majorized proximal ALMwas first established, and the convergence of themulti-block
ADMM-type algorithm follows readily because of the newly discovered equivalence.
As a consequence of this equivalence, we are able to provide a very general answer to
the open question onwhether thewhole sequence generated by the classicADMMwith
τ ∈ (0, 2) for a conventional two-block problemwith one part of its objective function
being linear, is convergent. Numerical experiments on solving a large number of linear
and convex quadratic SDP problems are conducted. The numerical results show that
one can achieve even better numerical performance of the ADMM if the step-length
is chosen to be larger than the conventional upper bound of (1 + √

5)/2, and one can
get a considerable improvement by allowing inexact subproblems together with the
large step-lengths on the multi-block ADMM for convex quadratic SDP problems.We
hope that our theoretical analysis and numerical results can inspire more insightful
studies on the ADMM-type algorithms. While the current paper was under the second
round of review, it has been observed in the paper of Liang Chen, Defeng Sun, Kim-
Chuan Toh, Ning Zhang [J. Comput. Math. (2019) https://doi.org/10.4208/jcm.1803-
m2018-0278] that the block diagonal linear operator D in (4.4) can be replaced by
a general self-adjoint linear operator without affecting the convergence of Algorithm
sGS-inPADMM.
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paper.
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