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CALIBRATING LEAST SQUARES SEMIDEFINITE
PROGRAMMING WITH EQUALITY AND INEQUALITY
CONSTRAINTS*

YAN GAO? AND DEFENG SUNt#

Abstract. In this paper, we consider the least squares semidefinite programming with a large
number of equality and inequality constraints. One difficulty in finding an efficient method for
solving this problem is due to the presence of the inequality constraints. In this paper, we propose to
overcome this difficulty by reformulating the problem as a system of semismooth equations with two
level metric projection operators. We then design an inexact smoothing Newton method to solve the
resulting semismooth system. At each iteration, we use the BiCGStab iterative solver to obtain an
approximate solution to the generated smoothing Newton linear system. Our numerical experiments
confirm the high efficiency of the proposed method.
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1. Introduction. In this paper, we are interested in the following least squares
semidefinite programming (LSSDP):
min %HX - C?
st (A4, X)=b;, i=1,...,p,
(A, Xy > b, i=p+1,....,m,
X edsy,

(1)

where s.t. stands for subject to, S™ and S? are, respectively, the space of n x n
symmetric matrices and the cone of positive semidefinite matrices in 8", || - || is the
Frobenius norm induced by the standard trace inner product (-,-) in 8", C and A;,
i = 1,...,m, are given matrices in ", and b € R™. Mathematically, the LSSDP
problem (1) can be equivalently written as

min ¢
st (A4, X)=b;, i=1,...,p,
(2) (A, Xy > b, i=p+1,....,m,
1> X -l
X eSy.

Problem (2) is a linear optimization problem with linear equality /inequality, the sec-
ond order cone, and the positive semidefinite cone constraints. This suggests that one
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LSSDP PROBLEMS 1433

may then use well developed and publicly available software, based on interior point
methods (IPMs), such as SeDuMi [45], SDPT3 [48], and a few others to solve (2) and
thus the LSSDP problem (1), directly. This is indeed feasible on a Pentium IV PC
(the computing machine that we will use in our numerical experiments) as long as n is
small (say, 80 at most) and m is not too large (say, 5,000). The reason is that at each
iteration these solvers require us to formulate and solve a linear system with a dense
Schur complement matrix (for example, see [7]) of the size (m+1+7) x (m+1+n),
where 7i := In(n+1).

Realizing the difficulties in using IPMs to solve the LSSDP problem, in two recent
papers, Malick [29] and Boyd and Xiao [10] proposed, respectively, to apply classical
quasi-Newton methods (in particular, the BFGS method) and the projected gradi-
ent method to the Lagrangian dual of problem (1) as the objective function in the
corresponding Lagrangian dual (dual in short) problem is continuously differentiable.
Unlike the IPMs, these two dual based approaches are relatively inexpensive at each it-
eration as the dual problem is of dimension m only. The overall numerical performance
of these two approaches varies from problem to problem. They may take dozens of it-
erations for some testing examples and several hundreds or thousands for some others.

Historically, the Lagrangian dual based approach has been known to the optimiza-
tion and approximation theory communities for a long time and has been discussed
extensively during the last three decades. Rockafellar’s monograph [42] is an excellent
source to start with. The LSSDP problem (1) is a special case of the best approxi-
mation problem [15],

1
min §||x —c|?
(3) st. Az eb+ Q,
re K,

where X is a real Hilbert space equipped with a scalar product (-,-) and its induced
norm |- ||, A: X — R™ is a bounded linear operator, @ = {0}” x R% is a polyhedral
convex cone, 1 < p < m, g = m — p, and K is a closed convex cone in X. See
Deutsch [15] for a comprehensive treatment on the best approximation problems in
inner product spaces. The Lagrangian dual (see, e.g., Borwein and Lewis [9]) of the
best approximation problem (3) takes the form

1 . 1
max 2 [Iic(e+ A9+ (b.9) + 3 el
st.  ye9r,

where A* : R™ — X is the adjoint of A, Q* = RP x R‘i is the dual cone of Q, and
for any x € X, lIx(z) is the metric projection of z onto K i.e., IIx(x) is the unique
optimal solution to

(4)

1 2
min §||u —z|

st. uekK.
Define 6 : R™ — R by
1 . 1 m
(5) 0(y) := 5k (c+A Y12 = (b,y) - §HCH2, y ER™.

Note that —6(-) is the objective function in problem (4). This definition of 6(-)
is for the convenience of subsequent discussions. Such a defined function 6(-) is a
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1434 YAN GAO AND DEFENG SUN

convex function [42, 9]. From Zarantonello [51], we know that 6(-) is continuously
differentiable (but not twice continuously differentiable) with

Vo(y) = Allg(c+ A*y) — b, yeR™,

and that V(-) is Lipschitz continuous. Thus, the dual problem (4) turns out to be a
smooth convex optimization problem with a simple constraint:

min 6O(y)
st. oy e Qr.

(6)

Due to its wide applications in interpolation, the approximation theory com-
munity paid a lot of attention in the 1980s and 1990s to the best approximation
problem (3) when the inequality constraints are absent (i.e., ¢ = 0). See, for example,
[4, 17, 26, 30, 31], to name only a few. For a summary, see [32]. In the case when
g = 0, Micchelli and Utreras in their influential paper [31] suggested that a quasi-
Newton method be used to solve the dual problem (6), which is an unconstrained
convex optimization problem. In [16], Deutsch, Li, and Ward introduced a steep-
est descent method for solving the same problem. One particular well-studied best
approximation problem is the convex best interpolation problem, where K = {z €
L5[0,1] |z > 0 a.e. on [0,1]}. For the dual of the convex best interpolation problem,
Newton’s method appears to be very efficient [26, 4, 17] despite the fact that 6(-) may
not be twice differentiable. By using the superlinear (quadratic) convergence theory
of Clarke’s generalized Jacobian based Newton methods for solving semismooth equa-
tions (an important subclass of nonsmooth equations) established by Kummer [27] and
Qi and Sun [38], Dontchev, Qi, and Qi clearly explained the performance of Newton’s
method for solving the dual of the convex best approximation problem in [18, 19].

Since the metric projection operator Hsi (-) over the cone ST has been proven to
be strongly semismooth in [46], the effectiveness of Newton’s method for the convex
best interpolation problem inspired Qi and Sun [34] to study a quadratically conver-
gent inexact semismooth Newton method to solve the following nearest correlation
matrix problem under the W-weight (after an equivalent transformation):

1
min §||X -CJ?
(7) st (WY2XW-Y2), =1, i=1,...,n,
X eS8,

where the positive definite matrix W € §™ is given as the W-weight to the problem
and W1/2 is the positive square root of W. The nearest correlation matrix problem
(7) mainly comes from the finance and insurance/reinsurance industries [43, 50]. In
real-world applications, for instance, when doing scenarios analysis in stress testing,
some covariance entries are restricted to stay with their confidence intervals. This
naturally leads to a nearest correlation matrix problem of both equality and inequality
constraints, which is a special case of the LSSDP (1). See [1, 2] for related finance
problems of inequality constraints.

Higham first formulated the problem (7) in [25] and considered applying Dysktra’s
alternating projection algorithm [20] to solve it. Numerical experiments conducted in
[34, 8] demonstrate clearly that Newton’s method outperforms the alternating projec-
tion method and the BFGS method. In section 5, we can see that Newton’s method
combined with a conjugate gradient iterative solver is much faster than the alternating
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projection method and the BFGS method when W is a randomly generated diagonal
matrix.

The inexact semismooth Newton method introduced in [34] can certainly be used
to solve, at least conceptually, the LSSDP problem (1) in the absence of inequality
constraints (i.e., m = p), but it is not applicable to the cases with inequality con-
straints (i.e., m > p). The reason is that the globally convergent method in [34] can
only be applied to an unconstrained convex problem, while its corresponding dual
problem (6) with K = S is no longer an unconstrained convex optimization prob-
lem whenever there are inequality constraints in (1). Of course, one can still apply
the semismooth Newton method to the optimality condition of problem (6) in a lo-
cal sense. The problem is that the globalization techniques introduced in [34] are
no longer valid (see section 2 for more discussions on this). On the other hand, the
projected gradient method used by Boyd and Xiao [10] can converge at best linearly,
while the rate of convergence of a BFGS type method suggested by Malick [29] is
still an open question due to the fact that 6(-) fails to be twice continuously differ-
entiable (for a discussion on the convergence of BFGS type methods for problems of
such a nature, see Chen [12]). Thus, a natural question arises: can one still expect a
fast convergent numerical method for solving the LSSDP (1) with both equality and
inequality constraints? This paper will give an affirmative answer to this question
by introducing a quadratically convergent inexact smoothing Newton method, whose
ideas are largely borrowed from [37].

Just as the case for semismooth Newton methods, smoothing Newton methods
for solving nonsmooth equations were mainly developed by the optimization commu-
nity, in particular, the complementarity community (see [22] for an introduction on
complementarity problems and on smoothing Newton methods), and have not been
well received outside the optimization field. In this paper, we shall take the LSSDP
problem (1) as an example to introduce smoothing Newton methods to the numerical
linear algebra community.

The paper is organized as follows. In section 2, we present preliminaries on matrix-
valued functions. Section 3 presents a general introduction on an inexact smoothing
Newton method for solving nonsmooth equations and its convergence analysis. In
section 4, we apply the introduced inexact smoothing Newton method to the LSSDP
problem (1). We report our numerical results in section 5 and make our final conclu-
sions in section 6.

2. Preliminaries on matrix-valued functions. For subsequent discussions,
in this section we introduce some basic properties of matrix-valued functions related
to the LSSDP problem (1) and its dual.

Let F denote the feasible set of problem (1). Assume that F # (). Then problem
(1) has a unique optimal solution X. Let ¢ = m —p and Q = {0}” x R%. Denote
A: 8" — R™ by

<A1 ) X>
A(X) = , Xes".
(Am, X)

For any symmetric X € 8", we write X >~ 0 and X > 0 to represent that X is positive
semidefinite and positive definite, respectively. Then

F={XeS8"|AX)eb+Q, X =0},
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1436 YAN GAO AND DEFENG SUN

and the dual problem of (1) takes the form

. 1 . 1
. min 0(y) := 5 Tsy (C + AYI ~ (b.3) — 5ICI?
st. ye Q*=RPxRY.

The objective function (-) in (8) is a continuously differentiable convex function with
Vo(y) = Allsy (C + A'y) —b, y€eR™,

where the adjoint A4* : R™ — 8™ takes the form
(9) A(y) =) widi, yeR™.
i=1

One classical dual approach described by Rockafellar in [42, page 4], when specialized
to problem (1), is first to find an optimal solution g, if it exists, to the dual problem (8)
and then to obtain the unique optimal solution X to problem (1) via X = Ils» (C +
A*j). See Malick [29] and Boyd and Xiao [10] for the worked out details.

In order to apply a dual based optimization method to solve problem (1), we need
the following Slater condition to hold:

10) {A;}Y_, are linearly independent,
3 XY € F such that (4;, X% >b;, i=p+1,...,mand X" > 0.

The next proposition is a straightforward application of [42, Theorems 17 and 18].
PROPOSITION 2.1. Under the Slater condition (10), the following hold:
(i) There exists at least one § € Q* that solves the dual problem (8). The unique
solution to problem (1) is given by

(11) X = sy (C + Ap).

(ii) For every real number T, the constrained level set {y € Q" |0(y) < 7} is

closed, bounded, and convez.

Proposition 2.1 indicates that one should be able to use any gradient based opti-
mization method to find an optimal solution to the convex problem (8), and thus to
solve problem (1), as long as the Slater condition (10) holds. Note that for any given
y € R™, both 6(y) and VO(y) can be computed explicitly as the metric projector
sy () has long been known by statisticians to admit an analytic formula [44].

Since 6(+) is a convex function, § € Q* solves problem (8) if and only if it satisfies
the following variational inequality:

(12) (y—9,VO(y) >0 Vye Q.
Define F': R™ — R™ by
(13) Fy) =y —1Ilg-(y — VO(y)), yeR™.

Then one can easily check that § € Q* solves (12) if and only if F(g) = 0 [21]. Thus,
solving the dual problem (8) is equivalent to solving the following equation:

(14) Fy)=0, yeR™.
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Since both IIg« and sy are globally Lipschitz continuous, F' is globally Lipschitz
continuous. This means that though one cannot use the classical Newton method
to solve (14), one can still use Clarke’s generalized Jacobian based Newton methods
[27, 36, 38]. Unlike the case with equality constraints only, however, F'(-) is no longer
the gradient mapping of any real valued function. This means that we cannot use the
techniques in [34] to globalize Clarke’s generalized Jacobian based Newton methods.
In this paper, we shall introduce an inexact smoothing Newton method to overcome
this difficulty. For this purpose, we need smoothing functions for F(-).

Next, we shall first discuss smoothing functions for the metric projector Hsz(-).
Let X € 8™. Suppose that X has the spectral decomposition

(15) X = Pdiag(\1, ..., ) PT,

where A\; > --- > )\, are the eigenvalues of X and P is a corresponding orthogonal
matrix of orthonormal eigenvectors of X. Then, from [44],

(16) Isy (X) = Pdiag(max(0, A1), ..., max(0, A,)) P” .
Define
a:={i| >0}, B:={i| =0}, and y:={i | \; <0}.

Write P = [P, Ps P,| with P,, Pg, and P, containing the columns in P indexed
by «, B, and -y, respectively. Let ¢ : R x R — R be defined by the following Huber
smoothing function:

t 1ft2%,
1 2
(17) P(e,t) = 2—6(754—%) if —£<t<5, (et)€RxR,
0 ift<—<.
For any € € R, let
¢(‘€7)\1)
(18) P, X):=P PT.

#(g, An)
Note that when ¢ = 0, (0, X) = Ils» (X). By a famous result of Lowner [28], we
know that when € # 0 or 8 = 0,
(19) 'y (e, X)(H) = P[Q(g,\) o (PTHP)|PT VHecS",

where “o” denotes the Hadamard product, A = (A1,...,A,)7, and the symmetric
matrix Q(e, A) is given by

Qb(gv)\i) - (b(é‘, A) :
20 [96N], - oy SO IAEN
¢I)\I (E, /\z) S [0, 1] if \; = /\j ,

When € # 0 or 8 = (), the partial derivative of ®(-,-) with respect to € can be
computed by

P’ (e, X) = Pdiag(¢L(e, M1),..., ¢.(e,\n)) PT .
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1438 YAN GAO AND DEFENG SUN

Thus, ®(-,-) is continuously differentiable around (¢, X) € R x S" if ¢ # 0 or 8 = (.
Furthermore, ®(-,-) is globally Lipschitz continuous and strongly semismooth at any
(0,X) € R x 8™ [52]. In particular, for any ¢ | 0 and S™ 3 H — 0, it holds that

(21) O(e, X+ H)— 0(0,X) — (e, X + H)(e, H) = O(|| (¢, H)||?) .

Recall that for a locally Lipschitz continuous function I' from a finite dimensional
real Hilbert space X to R™, the B-subdifferential of I" at 2 € X" in the sense of Qi [36]
is defined by

opl'(z) :== {V|V = klim (%), o8 >z, zp € Dp} ,
—o0

where Dr is the set of points where I' is Fréchet differentiable. The generalized
Jacobian OT'(x) of T at x in the sense of Clarke [13] is just the convex hull of dgI'(z).

Define @5 : R x S8l — 818l by replacing the dimension n in the definition of
¢ : RxS™ — 8™ with [3]. As the case for ®(-,-), the mapping ®g/(-, ) is also Lipschitz
continuous. Then the B-subdifferentials dp®(0, X) of ® at (0, X') and 9P| (0, Z) of
@5 at (0,2) € R x SIPl in the sense of Qi [36] are both well defined. The following
result can be proven similarly as in [11, Proposition 5].

PROPOSITION 2.2. Suppose that X € S™ has the spectral decomposition as in
(15). Then V € 0p®(0, X) if and only if there exists V|g| € Op®|5/(0,0) such that for
all (e,H) e R x S",

PTHP, PTHP; Uary o (PTHP,)
(22) V(e,H)=P (PTHPs)T Vi (e, P] HPg) 0 pT
(PTHP,)T o UL 0 0

where U € 8™ is defined by

max{\;,0} + max{\;,0}
[ i [ 4125 ’

(23) UijZ: i,jzl,...,n,
where 0/0 is defined to be 1.

In order to define smoothing functions for F(-), we need to define smoothing func-
tions for IIg«(-). This, however, can be done in many different ways. For simplicity,
we shall use only the function ¢ given by (17) to define a smoothing function for
I« (-). Let ¢ : R x R™ — R™ be defined by

ifi=1,...,p,

fimptl...,m, (&%) ERXE.

2
24 i(e,2) = !
ey wea={ S
The function v is obviously continuously differentiable around any (e,z) € R x R™
as long as ¢ # 0 and is strongly semismooth everywhere.
Now, we are ready to define a smoothing function for F(-) itself. Let

(25) Y, y)=y—¢(e,y— (AP(e,C + A*y) — b)), (e,y) ERxR™.

By the definitions of T, ¢, and ®, we know that for any y € R™, F(y) = Y(0,y). We
summarize several useful properties of T in the next proposition.

PROPOSITION 2.3. Let T : R x R™ be defined by (25). Let y € R™. Then the
following hold:
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(i) T is globally Lipschitz continuous on R x R™.
(ii) T is continuously differentiable around (g,y) when e # 0. For any fizede € R,
Y(e,-) is a Po-function; i.e., for any (y,h) € R™ x R™ with y # h,

(26) ma}ﬁ(yi —hi)(Yi(e,y) — Yi(e,h)) >0,

Yi

and thus for any fived € # 0, Y| (¢,y) is a Po-matriz.
(iii) Y is strongly semismooth at (0,y). In particular, for any € | 0 and R™ >
h — 0 we have

T+ 1) = T00) =Ty +) (5 ) =00l n1).

(iv) For any h € R™,

0Y(0,9)(0,h) C h— 0¥ (0,y — VO(y))(0,h — A0p®(0,C + A*y)(0, A*h)) .

Proof. (i) Since both 1) and ® are globally Lipschitz continuous, T is also globally
Lipschitz continuous.

(ii) From the definitions of ¢ and ® we know that Y is continuously differentiable
around (g,y) € R x R™ when ¢ # 0.

Since, by part (i), T is continuous on R x R™, we need only to show that for any
0#¢e€R, Y(g-)is a Py-function.

Fix € # 0. Define g, : R™ — R™ by

9=(y) = A®(e,C+ A"y) —b, yeR™.
Then g. is continuously differentiable on R™. From (19) and (20), we have
(h, (9e)' ()h) = (h, A®x (e, X)(A"h)) = (A"h, P (e, X)(A"h)) =20 VheR™,

which implies that g. is a Py-function on R™. Let (y,h) € R™ x R™ with y # h.
Then there exists i € {1,...,m} with y; # h; such that

(yi = hi)((92)i(y) — (g)i(h)) = 0.
Furthermore, by noting that for any z € R™,

¢, (e,z) €[0,1], i=1,...,m,
we obtain that

(i = hi)(Lile,y) — Lile, h)) > 0.

This shows that (26) holds. Thus, T} (e, y) is a Py-matrix for any fixed ¢ # 0.

(iii) Since it can be checked directly that the composite of strongly semismooth
functions is still strongly semismooth [23], T is strongly semismooth at (0, y).

(iv) Since both ¢ and ® are directionally differentiable, for any (g,7y’) € R x R™
such that Y is Fréchet differentiable at (g, y’),

T'(e,y")(0,h) = h =" ((¢,2"); (0, h — AD'((¢,C + A™y); (0, A*h)))) ,
which, together with the semismoothness of ¢ and ®, implies
Y'(e,y')(0,h) € h — I, z')(O, h — Adop®(e,C + A*y')(0, A*h)) ,

where 2z’ :=y' — (A®(e,C + A*y') — b) . By taking (g,3') — (0,y) in the above inclu-
sion, we complete the proof. O
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1440 YAN GAO AND DEFENG SUN

3. An inexact smoothing Newton method. The purpose of this section is
to introduce an inexact smoothing Newton method for solving the general nonsmooth
equation

F(y)=0, yeR™,

where F' : R™ — R™ is a locally Lipschitz continuous function, which is not necessarily
the mapping defined in the last section. This inexact smoothing Newton method
is largely modified from the exact smoothing Newton method constructed in [37]
for solving complementarity and variational inequality problems. The motivation
to introduce an inexact version is completely from the computational point of view
because the costs of the exact smoothing Newton method for solving problems such
as the LSSDP problem (1) are prohibitive. We shall talk more about this in the
numerical section.
Let G: R x R™ — R™ be a locally Lipschitz continuous function satisfying

Gle,y) = F(y) as (g,9') = (0,9).

Furthermore, G is required to be continuously differentiable around any (&, y) unless
€ = 0. The existence of such a function G can be easily proven via convolution. Define
E:RxR™— R xR™ by

3

, (e,y) e RxR™.
M)} c.v)

Bew)=| g

Then solving the nonsmooth equation F(y) = 0 is equivalent to solving the following
smoothing-nonsmooth equation:

E(e,y)=0.

Our inexact smoothing Newton method is specifically designed for solving the latter.
Define the merit function ¢ : R x R™ — Ry by

o(e,y) = E,y)|*, (c,y) ERxR™.
Choose r € (0,1). Let
Cle,y) :==rmin{l,p(c,y)}, (c,9) ERxR™.

Then the inexact smoothing Newton method can be described as follows.
ALGORITHM 3.1 (an inexact smoothing Newton method).
Step 0. Let &€ € (0,00) and n € (0,1) be such that

6 :=V2max{ré,n} < 1.

Select constants p € (0,1), o € (0,1/2), 7 € (0,1), and 7 € [1,00). Let
€% :=¢ and y* € R™ be an arbitrary point. k := 0.
Step 1. If E(s¥,y*) = 0, then stop. Otherwise, compute

Ck = Tmin{law(gkayk)} and Nk = mln{Taf-HE(Ekayk)”}

Step 2. Solve the equation

(27) BER ) + B | ao | = [ 5]

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



LSSDP PROBLEMS 1441

approzimately such that
(28)  [|Rkll < min{nk||G(e", y*) + GL(E®, Y AP, I B(*, M)}
where
Aek = —cF 4+ (e
and
Aek
Rui= Gy + G | o |
Step 3. Let Il be the smallest nonnegative integer | satisfyin
P ) ) ying
(29) (" + p' A,y + p'AYP) < [L—20(1 - 8)p']p(e", y") .
Define
(e ) o= (e ph ALyt 4l AYF)

Step 4. Replace k by k+ 1 and go to Step 1.
LEMMA 3.2. If for some (€,3) € Ryy x R™, E'(£,7) is nonsingular, then there
exist an open neighborhood O of (€,7) and a positive number & € (0,1] such that for
any (e,y) € O and a € [0,a], € € Ry, F'(e,y) is nonsingular, and

(30) p(e +ale,y +aly) < [1-20(1 - d)alp(e,y),
where (Ae, Ay) € R x R™ satisfies
Ae = —e+((e,y)é

and
eem+aen | a5 || <memn

Proof. Since £ € Ry and E’'(E,§) is nonsingular, there exists an open neighbor-
hood O of (&,7) such that for any (¢,y) € O, e € Ry and E’(e, y) is nonsingular.
For any (e,y) € O, denote

R(g,y) :== G(e,y) + G'(¢,y) [ 22 } )

Then (Ae, Ay) is the unique solution of the following equation:

s+ pen | 5| =[50 ]

> <2VE(5,y)E(E,y), { 22 ]>
B
'Y)

] E(s,y>>
C)E 2Ry, Cleny)
ré) min{L, (e, 5)} + 2n0(e, )2 |Gl

Thus,
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1442 YAN GAO AND DEFENG SUN

which implies that if p(e,y) > 1, we have

(v )

< —20(e,y) + 2¢(r€) + 2n¢(e, y) /2| G(e, )|
< —2p(e,y) + 2max{ré, n} (e + ¢(e,y)/ 2/ p(e,y) — 2)
< —2¢(e,y) + 2v2max{ré, n}o(e, y)

(31) = 2(VZmax{ré,n} — 1)p(e,y)
and if ¢(e,y) < 1, we have

(s 3])

< =20(e,y) + 2e(ré)ple, y) + 2n¢(e, 1)V ?(|G(e, )|
< —2¢(e,y) + 2max{ré, n}p(e, y) 2 (ep(e, )2 + /(e y) — €2)
< —20(e,y) + 2v2max{ré, n}o(e, y)

(32)

2(vV2max{ré,n} —1)p(c,y).

Therefore, by inequalities (31) and (32), we have

(33) (Ve | 35 ]) < —20-06tc.

By using the fact that V(:,-) is uniformly continuous on O, we obtain from the
Taylor expansion that

ple + ale,y + alAy) = ¢(e,y) + « <ch(a,y), [ ﬁ; ]> +o(a) V(ey) €O,

which, together with (33), implies that there exists a positive number & € (0, 1] such
that for all « € [0, @], (30) holds. O
Let

(34) N = {(e,y) e = C(e,y)é} -

PROPOSITION 3.3. For each fivred k > 0, if ¥ € Ry, (¥,94%) € N, and
E'(* y*) is nonsingular, then for any o € [0, 1] such that

(35) e + aAe, yF + aAy®) < [1—20(1 - 8)a]p(e", y")

it holds that (e 4+ aAe®, y*F + aAy*) € N.
Proof. Note that (¢¥ y*) € NV, i.e., €8 > (¢, so Ae¥ = —eF + (& < 0. Thus, by
the definition of ¢, together with (35), we have

ek + alek — ((eF + aAek, y* + aAyF)e

> eF 4+ Aek — ((eF + aAek, Yk + aAyF)é
= (é — (" + alAe®, yF + alyF)é

(36) > 0.

This completes our proof. a

In order to discuss the global convergence of Algorithm 3.1 we need the following
assumption.
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Assumption 3.4. For any (e,y) € Ry x R™, E'(e,y) is nonsingular.

THEOREM 3.5. Suppose that Assumption 3.4 is satisfied. Then Algorithm 3.1 is
well defined and generates an infinite sequence {(c*,y*)} € N with the property that
any accumulation point (£,9) of {(e¥,y*)} is a solution of E(e,y) = 0.

Proof. 1t follows from Lemma 3.2, Proposition 3.3, and Assumption 3.4 that
Algorithm 3.1 is well defined and generates an infinite sequence {(¢*,y*)} € N.

From the design of Algorithm 3.1, p(e*+1, y*+1) < p(e¥, y*) for all k > 0. Hence,
the two sequences {p(e*,y*)} and {¢(e*,y*)} are monotonically decreasing. Since
both o(e¥,4*) and ((e*,y*) are nonnegative for k& > 0, there exist ¢ > 0 and ¢ > 0
such that ¢(e*,y*) — @ and ¢(e¥,y*) — ¢ as k — oo.

Let (£,7) be any accumulation point (if it exists) of {(¢*,y*)}. By taking a
subsequence if necessary, we may assume that {(*,4*)} converges to (&,7). Then

» = (p(éa g)v ¢= C(év g)v and (év g) eEN.

Suppose that ¢ > 0. Then, from ((¢,7) = rmin{l,¢(&,7)} and (£,7) € N,
we see that € € Ry . Thus, from Assumption 3.4, E’'(Z,§) exists and is invertible.
Hence, from Lemma 3.2, there exist an open neighborhood O of (,7) and a positive
number & € (0,1] such that for any (e,y) € O and all a € [0,a], € € Ry, E'(g,y)
is invertible, and (30) holds. Therefore, there exists a nonnegative integer [ such that
ol € (0,a] and p'* > p! for all k sufficiently large. Thus,

Py ) < [1=20(1 = 6)p"]p(e", ¥*) < [1 =20 (1 = 6)p'lp(e", ")

for all sufficiently large k. This contradicts the fact that the sequence {p(c*, y*)}
converges to @ > 0. This contradiction shows that ¢(&,7) = ¢ = 0. That is, F(&,7) =
0. The proof is completed. d

THEOREM 3.6. Suppose that Assumption 3.4 is satisfied and that (£,7) is an
accumulation point of the infinite sequence {(¢¥,y*)} generated by Algorithm 3.1.
Suppose that E is strongly semismooth at (£,y) and that all V € OpE(g,y) are
nonsingular. Then the whole sequence {(,4y*)} converges to (¢,7) quadratically,
i.e.,

(37) [ —e g™ =g = O(I" - &9 = )I?).

Proof. First, from Theorem 3.5, (£,7) is a solution of E(e,y) = 0. Then, since all
V € O E(&,y) are nonsingular, from [36], for all (¢¥,y*) sufficiently close to (£, 7),

1B (", ") = 0(1)

and
(38)

o (| Bt ) - Ee.) - Bk ) (
T O(p(k ) + O(IRi)
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Since E is locally Lipschitz continuous near (£,7), for all (¢¥,y*) close to (£,%) we
have

(39) o, y") = [|E(E", ") — BEDIIP = O(I(" — & 4" = 9)IIP)
and
IRell < mllG(e",y%) + GL(eF, yF) Ac¥||
< O(IE(E"y" )N (IG(*, ") + O(lask)))
(40) < O(|E("y*) — E9)?) -

Therefore, by using the assumption that E is strongly semismooth at (£,y) and the
relations (38), (39), and (40), we have for all (¥, y*) sufficiently close to (,7) that

(41) 1%, 5%) + (Aeh, Ay*) — (€9l = O(I (", ") — (&, 7)IIP) -

Finally, since E is strongly semismooth at (£,¢) and all V € g E(£,y) are non-
singular, we have for all (¢, y") sufficiently close to (£,7) that

1%, 9") = (€9 < OUIEE" v,
which, together with (41) and the Lipschitz continuity of E, implies that
p(eF + A gk 4+ AyF) = O(pP (€%, 41)) .
This shows that for all (¢¥,y*) sufficiently close to (£, 7),
(5, g1y = (F yF) + (Ack, Ayk) .

Thus, by using (41) we know that (37) holds. O

4. The LSSDP. In this section, we apply the general inexact smoothing Newton
method developed in the last section to the LSSDP (1).

Let F : R™ — R™ be defined by (13). Let x € (0,00) be a constant. Define
G:R xR™ — R™ by

(42) G(e,y) :==T(e,y) +rlely, (5,y) ERxR™,

where T : R x R™ — R™ is defined by (25). The reason for defining G by (42) is that

for any (¢,y) € RxR™ with € # 0, G} (¢,y) is a P-matrix (i.e., all its principal minors

are positive), thus nonsingular, while by part (ii) of Proposition 2.3, T/ (¢, y) is only

a Py-matrix (i.e., all its principal minors are nonnegative), which may be singular.
Let £ : R x R™ — R x R™ be defined by

€ € m
(43) E(e,y) :== [ Gle,y) } = [ T(e,y) + rlely | (e,y) e R x R™.
Let NV be defined by (34). Next, we discuss convergent properties of Algorithm 3.1
when it is applied to solve E(e,y) = 0.

THEOREM 4.1. Algorithm 3.1 is well defined and generates an infinite sequence
{(*¥,4%)} € N with the properties that any accumulation point (£,7) of {(e*,4y*)}
is a solution of E(e,y) = 0 and limy_,o ©(e¥,y*) = 0. Additionally, if the Slater
condition (10) holds, then {(¢¥,y*)} is bounded.
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Proof. From part (ii) of Proposition 2.3 and the definitions of G and E we know
that for any (e,y) € Ryy x R™, G (¢,y), and so E'(e,y) is a P-matrix. Then from
Theorem 3.5 we know that Algorithm 3.1 is well defined and generates an infinite
sequence {(*,4*)} € N with the property that any accumulation point (,7) of
{(e*,y*)} is a solution of E(e,y) = 0.

Since (¥, y*) is a decreasing sequence, limy_,, (¥, y*) exists. Let

@:= lim @(* y*) >0.
k— oo
If ¢ > 0, then there exists an ¢’ > 0 such that gk > ¢ forallk > 0. For any v > 0, let
L, ={y e R™"|||T(v,y) + kvy| < v, velé}.

Then it is not difficult to prove that for any v > 0, L, is bounded. In fact, suppose
that for some v > 0, L,, is unbounded. Then there exist two sequences {z'} and {v'}
such that lim;_, ||2!|| = oo and for all I > 1, ¢’ < ! < & and || Y (M, 2!) + w2 < w.
By taking subsequences if necessary, we may assume that lim; .., v' = 7 € [¢/, ] and

ieI®Ul~UlI’ Vie{l,...,m},

where

l—o0

J® = {z| lim zf-:oo, i:l,...,m},

I7%°:= i|l1imzf-:—oo,i:1,...,m , and
— 00

IV := {i|{#!} is uniformly bounded, i = 1,...,m}.

Then we have

(44) T 2Y) = —00 VieI™®
and
(45) T2 500 Viel ™.

For each [ > 1, define h! € R™ as follows:

hl =

3

{O ifielI*ul—, .
1=1,...,m.

2bifielrv,
Since, by part (ii) of Proposition 2.3, for any [ > 1, Y(¢/!,-) is a Py-function, by further
taking subsequences if necessary, we know that there exists ¢ € I°° U I~°° (note that
hé— = zé for all j € IV and [ > 1) such that

(2t = (v 2 — T Rh) >0 ViI> 1,

which is impossible in view of (44), (45), and the fact that {Y (!, h!)} is bounded
(note that Y is globally Lipschitz continuous). This shows that for any v > 0, L, is
bounded; i.e.,

{y eR"[|G(e,p) <v, e € [, €]}
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is bounded. This implies that {(¢*,y*)} is bounded. Thus, {(c*,3*)} has at least
one accumulation point, which is a solution of E(e,y) = 0, contradicting @ > 0.
Therefore, g = 0.

Suppose that the Slater condition (10) holds. Then from Proposition 2.1 we know
that the solution set of the dual problem is nonempty and compact. Thus, F(e,y) =0
also has a nonempty and compact solution set. Since part (ii) of Proposition 2.3
implies that E is a Py-function, the boundedness of {(g¥,y*)} follows directly from
[39, Theorem 2.5]. O

Assume that the Slater condition (10) holds. Let (¢, ) be an accumulation point
of the infinite sequence {(c*,y*)} generated by Algorithm 3.1. Then, by Theorem
4.1, we know that £ =0 and F(j) = 0; i.e., § € Q" = R? x RY is an optimal solution
to the dual problem (8). Let X := Ils» (C + A*y). By Proposition 2.1 we know that

X e 8% is the unique optimal solution to problem (1).

For quadratic convergence of Algorithm 3.1, we need the concept of constraint
nondegeneracy initiated by Robinson [40] and extensively developed by Bonnans and
Shapiro [6]. This concept is a generalization of the well-known linear independence
constraint qualification used in nonlinear programming. For a given closed K € &,
a finite dimensional real Hilbert space, as in convex analysis [41] we use Tk (x) to
denote the tangent cone of K at x € K. The largest linear space contained in Tk ()
is denoted by lin(TK(x)). Let Z be the identity mapping from S™ to §™. Then the

constraint nondegeneracy is said to hold at X if
A lin(To(A(X) — b)) R™
(16) (7)s+ (Mt )= (5 ).
T lin (Tgi (X )) S
where Q = {0}” x R%. Note that the constraint nondegenerate condition (46) is called

the primal nondegeneracy in [3]. .
Let Ind(X) denote the index set of active constraints at X,

Ind(X) = {i ] (A0, X) = biy i =p+1,....m},

and s be the number of elements in Ind(X). Without loss of generality, we assume
that

Ind(X)={p+1,...,p+s}.
Define A : 8" — RP*S by

<A17 X>
(47) AX) = : , Xes”,
(Apts, X)
and the adjoint of A is denoted by A*.

LEMMA 4.2. Let X := C + A"y have the spectral decomposition as in (15). Then
the constraint nondegenerate condition (46) holds at X if and only if for any h € RPTS,

(48) PTAh=0<=h=0.

Proof. Since the linearity space lin(Tg(A(X) — b)) in (46) can be computed
directly as

(49) lin(To(A(X) —b)) ={h e R™|h; =0, i=1,...,p, i € Ind(X)},
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we can see that (46) is reduced to

1 0}pts RP+s
()5 Litreny )= (557
which is equivalent to
(50) A(lin Tsy (X)) =R+,
Note that
X = Tlsy (X) = Pdiag(max(0, A1), . .., max(0, A,)) PT,
the tangent cone Ts» (X), which was first characterized by Arnold [5], takes the form
Tsy(X) = {B e 8" |[Ps P,]"B[Ps P,] = 0}.
Consequently,
(51) lin (Tsn (X)) = {Be€S"| P{ BP3 =0, P{BP, =0, P] BP, =0}.

Thus, from (50), the constraint nondegeneracy condition (46) holds if and only if (48)
holds. O

LEMMA 4.3. Let & : Rx 8™ — S™ be defined by (18). Assume that the constraint
nondegeneracy (46) holds at X. Then for any V € 0p®(0, X) we have

(52) (h, AV (0, A*h)) >0 Y0 #hecRPF.

Proof. Let V € 0p®(0,X). Suppose that there exists 0 # h € RPT such that
(52) fails to hold, i.e.,

(h, AV (0, A*h)) < 0.

Denote H = A*h. Then, by Proposition 2.2, there exists V|g € dp®(0,0) such
that

PTHP, PTHP, Uay o (PTHP,)
V(0,H)=P (PTHPs)T Vi5/(0, P{ HPg) 0 PT
(PTHP,)T o UL 0 0

where U € S" is defined by (23). Since (P HPs,Vj5(0, PYHPs)) > 0 and
(h, AV (0, A*h)) < 0, we obtain from (h, AV (0, A*h)) = (H,V (0, H)) that

P'HP,=0, P'HP;=0, and P'HP, =0,
ie.,
PTH =PT A*h=0.

On the other hand, since the constraint nondegeneracy (46) holds at X, from (48)
we know that h = 0. This contradiction shows that for any V' € dp®(0, X), (52)
holds. |
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PROPOSITION 4.4. Let T : R x R™ — R™ be defined by (25). Assume that the
constraint nondegeneracy (46) holds at X. Then for any W € 97 (0,7) we have

(53) max h;(W(0,h)); >0 VO0O#hecR™.

Proof. Let W € 0Y(0,%). Suppose that there exists 0 # h € R™ such that (53)
does not hold, i.e.,

(54) max h;(W(0,h)); <0.

Then from part (iv) of Proposition 2.3 we know that there exist D € dpy(0,2) and
V € 9p®(0, X) such that

(55)  W(0,h) = h— D(0,h — AV (0, A*h)) = h — D(0, h) + D(0, AV (0, A*h)) ,

where z := § — VO(y) = § — (A®(0, X) — b). By simple calculations, we can see that
there exists a nonnegative vector d € R™ satisfying

1 if1<i<p,
di=< €[0,1] ifp+1<i<p+s,
0 ifp+s+1<i<m

such that for any y € R™,
(D(0,y))i = diyi, 1=1,....m.

Thus, we obtain from (55) and (54) that

hi(AV (0, A*h)); <0 if1<i<p,
hi(AV(0,A*h)); <0or h; =0 ifp+1<i<p+s,
h; =0 ifp+s+1<i<m,

which implies
(h, AV (0, A*h)) = (h, AV(0, A*h)) <0,

where 0 £ h € RP* is defined by h; = hi,i=1,...,p+s. This, however, contradicts
(52) in Lemma 4.3. This contradiction shows that (53) holds. O

THEOREM 4.5. Let (£,y) be an accumulation point of the infinite sequence
{(*,94%)} generated by Algorithm 3.1. Assume that the constraint nondegeneracy
(46) holds at X. Then the whole sequence {(*,y*)} converges to (&,4) quadratically,
i.e.,

(56) [(*H —e g™ =) = O(I" - &4 = )?).

Proof. In order to apply Theorem 3.6 to obtain the quadratic convergence of
{(e*,y*)}, we need only to check that E is strongly semismooth at (£, 7) and that all
V € OpE(&,§) are nonsingular.

The strong semismoothness of F at (£, ) follows directly from part (iii) of Propo-
sition 2.3 and the fact that the modulus function |-| is strongly semismooth everywhere
on R. The nonsingularity of all matrices in dp F(£,y) can be proven as follows.
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Let V € OgE(&, ) be arbitrarily chosen. From Proposition 4.4 and the definition
of E, we know that for any 0 # d € R™*1,

maxd;(Vd); >0,

which, by [14, Theorem 3.3.4], implies that V is a P-matrix and so nonsingular. Then
the proof is completed. a

Theorem 4.5 says that Algorithm 3.1 can achieve quadratic convergence under
the assumption that the constraint nondegenerate condition (46) holds at X. Next,
we shall discuss this assumption by considering the following special LSSDP:

1
min §||X -C|?
st. X = eij, (Z,]) € B,

(57) Xij > lij, (i,5) € By,
Xij < uyj, (4,7) € Bu,
X e S,

where B., B, and B, are three index subsets of {(i,7)|1 < i < j < n} satisfying
B.nNB =0, B.NnB, =0, and l;; < wy; for any (i,5) € By N B,. Denote the
cardinalities of B., B;, and B, by p, ¢, and q,, respectively. Let m := p+ q; + qu-
For any (i,7) € {1,...,n} x {1,...,n}, define £¥ € R"*" by

y 1 if (s,t) = (4,5)
17 . ) ) )
(EY) st .——{ 0 otherwise, s, t=1,...,n.

Thus, problem (57) can be written as a special case of (1) with
{(AY, X)} i jyeB.
(58) A(X) = {47, X)}Yijyes, |, X €S",
—{(A4Y, X)}ijes.
and
{eij}iges.
b= {ljtajes :
—{uis}iges.

where A% := (€Y + &%), Then its dual problem takes the same form as (8) with
q = q + qu. The index set Ind(X) of active constraints at X now becomes

Ind(X) = gl U gu,
where
Bi={(i,j) € BI|{A"X) =1y} and B,:={(i,j) € Bu| (A7, X) = u;;}.

Let s be the cardinality of Ind(X). Then the mapping A : S® — RPT* defined by
(47) takes the form

{<Aij,X>}(i,j)€Bc
A(X) = {<Aij7X>}(i,j)egz
—{{A7, X)}

i,5)€By
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Recall that the constraint nondegenerate condition (46) holds at X if and only if
for any h € RPT%_(48) holds. A particular case for (48) to hold is when B, = {(i,i) |i =
1,...,n}, BpUB, =0, and b > 0 [34, 35]. Furthermore, if B, has a band structure,
(48) also holds as long as the corresponding band of the given matrix C is positive
definite [35]. In general, the equivalent constraint nondegenerate condition (48) may
fail to hold for problem (57). In [33], Qi establishes an interesting connection between
the constraint nondegeneracy and the positive semidefinite matrix completions on
chordal graphs.

5. Numerical results. In this section, we report our numerical experiments
conducted for testing the efficiency of Algorithm 3.1. The main task of Algorithm
3.1 for solving the LSSDP (1), at the kth iterate, is to solve the linear system (27)
with E(-) being defined by (43). In numerical implementation, we first obtain Ae* =
—ek + (1.6 by (27) and then apply the BiCGStab iterative solver of van der Vorst [49]
to the resulting linear system

(59) G'y(ak,yk)Ayk = —G(* y*) — GL(eF, yF) ALk

to obtain Ay”* such that it satisfies (28). The cost of using the BiCGStab iterative
solver to compute Ay* will be analyzed next.

For the sake of convenience, in subsequent analysis we suppress the superscript
k. By noting that G(e,y) and Y(e,y) are defined by (42) and (25), respectively, we
obtain that

Gy (e, y)Ay =T (c,y)Ay + keAy
= Ay — (e, 2)(Ay — ARy (g, X) (A" Ay)) + keAy
(60) = Ay —L(e,2) Ay + YL (e, 2) (AQ (¢, X) (A" Ay)) + keAy,

where z ==y — (A®(e, X) — b), X := C + A*y, and A* is given by (9). Let X have
the spectral decomposition (15). Then, by (19),

(61) D'y (¢, X)(A*Ay) = P[Q(e, \) o (PTA*AyP)|PT,

where (e, A) is given by (20).

From (60) and (61), we know that in order to compute the m by m matrix G (€, y)
one needs O(mn?) flops (m columns and O(n?) flops for entries in each column). This
implies that it is impractical to use direct methods to solve the linear system (59)
even when n and m are not large, say, n = 1,000 and m = 1,000. Given the fact that
the matrix G (¢,y) is nonsymmetric when problem (1) has inequality constraints,
i.e., ¢ # 0, it is natural to choose the BiCGStab as our iterative solver for solving the
linear system (59).

In order to speed up the convergence of the BiCGStab iterative solver, in the
following we shall introduce a diagonal preconditioner. Define the vector d € R™ as
the diagonal part of the coefficient matrix G/ (¢,y), i.e., d := diag(G} (¢,y)). Then
from (60) and (61) we know for each [ € {1,...,m} that

(62) di =[G, (e, 9)]u = G}, (e, ) )]y = 1 = ¢, (e, 21) + ¢, (e, z)wy + ke,
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where I; € R™ denotes the [th column of the identity matrix I and w; is defined by

wy = [ AP (e, X)(A*L) |,

(I, AP (e, X) (A1)

(AT, B (e, X)(A°T) )

(A*I, P[Q(g, \) o (PT AL, P)]PT)
(63) = (PTAP,Q(e,\) o (PTAP)).

Let D € R™*™ be defined by D := diag(d). On the one hand, the diagonal matrix
D is an obvious diagonal preconditioner for the linear system (59). On the other
hand, from (62) and (63), we know that for a large m it is expensive to compute the
diagonal matrix D because its computation needs O(mn?) flops. Of course, the cost
for computing D can be reduced if most of the matrices A; are sparse. For instance,
in problem (57), for each I € {1,...,m}, the matrix A; takes the form

A = %(Eiljl _|_8jlil)7

where

Be ifl=1,... p,
(ilvjl)e Bl 1fl:p+177p+ql7
B, ifl=p+q+1,...,m.

By taking into account such a special structure of A;, w; can be further simplified as

follows:

w; = <PTA1P, Q(E,)\) o (PTAIP»
1

(64) =3 [aiQ(g, A)(a?l)T + (@i, 0 a;,)Qe, A)(aj, © ajl)T} , 1=1,...,m,
where “o” denotes the Hadamard product of two vectors, a; is the ith row of P, and
a?:=a;oa;,i=1,...,n. Thus, in this case the diagonal matrix D can be computed

directly from (62) and (64) with a reduced cost of O(mn?) flops. However, when
m is much larger than n, say, m = O(n?), this cost is still too expensive. In our
numerical implementation, we use an estimated diagonal matrix of D as our diagonal
preconditioner. This estimated diagonal matrix can be obtained in O(n?®) flops as
follows.

Define @ € R™ and d € R™ by

- 1
(65) Wy = gale(a,)\)(a?l)T, l=1,...,m,
and
(66) dii=1-¢. (e.21) + ¢, (e, 2)i +re, 1=1,....m,

respectively. Let D= diag(J). It is easy to see that computing the diagonal matrix
D requires only O(n?) flops, which are independent of m. We simply use the diagonal
matrix D as our diagonal preconditioner. Numerical results further show that such a
heuristically estimated preconditioner works pretty well.

Remark 5.1. For the general LSSDP problem (1), if all the matrices A; are of
rank 1, we can still apply the above technique to obtain a diagonal preconditioner
with a cost of O(n?).
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In our numerical experiments we compare our inexact smoothing Newton method,
which is referred to as Smoothing in our numerical results, with the following methods
for solving the LSSDP with simple constraints (57):

(i)

(iii)

The projected gradient method (PGM) of Boyd and Xiao [10]. At the kth step,
the PGM computes

Yot =g (y* — pVo(y")),

where p € (0,2). Note that in this case the Lipschitz modulus of V6(y) is one.
We take p = 1.8 as it performs better than p = 1. The maximum number of
iterations is set as 5,000, and the stopping criterion is

Resy, := | VO(y*)|| < 107°.

Note that when there are no inequality constraints, i.e., m = p, the PGM
reduces to the gradient method (GM) of Higham [25].

The BFGS-SQP method of Chen [12] and Malick [29]. In [29], Malick suggested
using a BFGS type method to solve the dual problem (8). Here we adopt a
BFGS-SQP approach introduced by Chen [12] for solving a more general LC*
problem. For the dual problem (8), at the kth step, the BFGS-SQP method
solves the following quadratic program:

min  (VO(y*), Ay*) +
st yF+AyF e 0.

(AY*, (Bi + e ]) Ay")

N~

(67)

We use Algorithm 3.1 to compute the subproblem (67). The maximum num-
ber of iterations is set as 2,000, and the stopping criterion is the same as in
the PGM. For cases with equality constraints only, instead of using our own
code, we run the MATLAB package SDLS, which is an implementation of the
BFGS method for the dual problem and is written by Henrion and Malick [24].
The inexact semismooth Newton method of Qi and Sun [34], which is referred
to as Semismooth in our numerical results. This algorithm is particularly de-
signed for the nearest correlation matrix problem. In order to improve its
performance and for comparison purposes, we introduced a diagonal precon-
ditioner by using the same technique as in our inexact smoothing Newton
method. The stopping criterion is

Resy, := ||VO(y*)| < 107S.

The inexact interior point method of Toh, Tiitiincii, and Todd [47] for solving
the W-weighted nearest correlation matrix problem (7). This inexact interior
point method, referred to as IP-NCM here, uses a preconditioned symmetric
quasi-minimal residual iterative method as the iterative solver and can solve
equality constrained cases when applied to problem (57). The stopping cri-
terion is Resi < 10~7. Note that the “Res” defined in the IP-NCM method is
the relative residue rather than the absolute residue of the resulting Karush—
Kuhn-Tucker system of problem (57).

The stopping criterion chosen for Algorithm 3.1 is

Resy, := ||B(e*, y*)|| <1076.

The maximum number of BiCGStab steps at each iteration is set as 200. The other
parameters used in Algorithm 3.1 are set as r = 0.2, £ = 0.05, n = 0.5, p = 0.5,
c=05x10"% 7=0.01, 7 = 0.5, and £ = 0.01.
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Remark 5.2. For the BFGS and IP-NCM methods, memory is a big issue since they
both need to compute and store an m by m matrix at each iteration.

We implemented all algorithms in MATLAB 7.1 running on a PC Intel Pentium
IV of 2.40 GHz CPU and 512 MB of RAM. The testing examples are given below.

Ezample 5.1. The matrix C is the 387 x 387 1-day correlation matrix (as of June
15, 2006) from the lagged datasets of RiskMetrics.! For test purposes, we perturb C
to

C:=(1-a)C+aR,

where a € (0,1) and R is a randomly generated symmetric matrix with en-
tries in [—1,1]. The MATLAB code for generating the random matrix R is
as follows: R = 2.0%rand(387,387)-ones(387,387); R = triu(R)+triu(R,1)’;
for i=1:387; R(i,i) = 1; end. Here we take o = 0.1 and the index sets

Be:={(i,4)]i=1,...,387}, BiUB, =0, and e;; =1 for (i,7) € Be.

Note that this example corresponds exactly to the nearest correlation matrix problem.

Example 5.2. All the data are the same as in Example 5.1 except that e; €
[0,1] for (i,i) € B. are randomly generated. This example corresponds to the W-
weighted nearest correlation problem (7) when the weight matrix W is a randomly
generated diagonal matrix. It can also come from the local correlation stress test-
ing [35].

Example 5.3. The matrix C is a randomly generated n x n symmetric matrix with
entries in [—1,1] : C = 2.0*rand(n,n)-ones(n,n); C = triu(C)+triu(C,1)’;
for i=1:n; C(i,i) = 1; end. The index sets

B.={(,9)]i=1,...,n}and B, =B, ={(i,i+j)|i=1,...,n—j, j=1,2}.

We take e;; =1 for (4,i) € Be, l;; = —0.1 for (4,5) € By, and u;; = 0.1 for (¢,5) € By
and test for n = 500, 1,000, and 2,000, respectively. Note that in this example the
lower and upper bounds defined fixed elements in active set form a chordal graph,
and therefore, the constraint nondegeneracy (46) holds from [33, Theorem 3.7].

Ezxample 5.4. Let n = 387. The data C, B., and e;; are the same as in Example
5.1; i.e., C is the perturbed 387 x 387 correlation matrix and e; = 1 for (¢,7) €
Be = {(i,7)|i = 1,...,n}. The index sets By, B, C {(i,7)|1 < i < j < n} consist
of the indices of min(n,,n — i) randomly generated elements at the ith row of X,
it =1,...,n, with 7, taking the following values: (a) 7, = 1 (¢ = ¢, = 386); (b)
r =2 (@ = qu="771); (¢) iy =5 (@1 = gu = 1,920); (d) 7 = 10 (q1 = g = 3,815);
(e) iy =20 (¢t = qu = 7,530). We take l;; = —0.1 for (4,5) € B; and u,;; = 0.1 for
(i,4) € By.

Example 5.5. All the data are the same as in Example 5.4 except that

eii:Oé—F(l_Oé)W, (iai)EBea

where o = 0.1 and w is a randomly generated number in [0, 1].

Ezxample 5.6. The matrix C is the same as in Example 5.3, i.e., a randomly
generated n X n symmetric matrix with entries in [—1,1]. The index sets B., B;, and
B, are the same as in Example 5.4 with 7,, = 1, 5, and 10. We consider the following
two cases: (a) e;; =1, (4,7) € Be and (b) e;; = a+ (1 —a)w, (4,i) € Be, where a = 0.1
and w is a randomly generated number in [0,1]. We test for n = 500, 1,000, and
2,000, respectively.

Lhttp://www.riskmetrics.com/
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Ezxample 5.7. All the data are the same as in Example 5.4 except that [;; = 0.5
for (i,7) € B; and w;; = 0.8 for (i, ) € By.

Ezample 5.8. All the data are the same as in Example 5.7 except that [;; = 0.8
for (¢,7) € B; and u;; = 0.9 for (i,5) € B,.

Remark 5.3. In order to make the tested examples general and avoid any special
structures of the index sets, we randomly choose the elements which are to be fixed
or with lower and (or) upper bound in all the examples above except for Example 5.3
which is particularly designed to guarantee the constraint nondegeneracy assumption.

Our numerical results are reported in Tables 1-5. “Iter” and “Res” stand for
the number of total iterations and the residue at the final iterate of an algorithm,
respectively. “ 7 means that an algorithm reaches the set maximum number of
iterations before the accuracy is achieved, while “out of memory” means that our
computer runs out of memory. The maximum cputime set for each algorithm is 10
hours. So “> 10 hrs” indicates that an algorithm is terminated after 10 hours.

From the numerical results reported in Tables 1-5, we can see that for cases with
equality constraints only (Table 1), Newton-type methods (Semimsooth, IP-NCM, and
Smoothing) can achieve higher accuracy than the gradient based methods (GM and
BGFS). The Smoothing method is comparable to the well-tested Semismooth method

TABLE 1
| | Example 5.1 | Example 5.2 |
Method Iter cputime Res Iter cputime Res
GM 41 0:34 8.0e-6 5000* 58:49 4.4e-2
BFGS 17 0:16 8.4e-6 1203 14:20 9.1e-6
Semismooth 5 0:07 2.3e-7 12 0:15 3.8e-8
IP-NCM 11 0:54 8.0e-9 19 2:01 1.3e-8
Smoothing 5 0:07 4.6e-7 12 0:14 3.3e-7
TABLE 2
| Example 5.3 | n=>500 | n=1000 n=2000 |
Method Iter  cputime Res Iter  cputime Res Iter  cputime Res
PGM 108 3:12 9.7e-6 | 146 31:27  9.8e-6 | 197 5:07:04  9.8e-6
BFGS-SQP 41 16:26  9.4e-6 out of memory out of memory
Smoothing 7 0:21  2.1e-8 8 2:50  1.0e-7 9 25:19 4.1le-7
TABLE 3
| | | Example 5.4 | Example 5.5 |
Method Case Iter cputime Res Iter cputime Res
PGM (a) 993 12:13 9.9¢-6 5000* 1:02:14 2.6e-5
(b) 931 12:10 1.0e-5 5000* 1:03:23 2.7e-3
(c) 895 12:07 1.0e-5 5000* 1:05:23 1.8e-4
(d) 1018 13:42 1.0e-5 5000* 1:06:18 1.6e-4
(e) 824 11:38 9.9¢-6 5000* 1:06:33 5.3e-5
BFGS-SQP (a) 130 7:21 9.8e-6 350 0:35:00 9.3e-6
(b) 142 35:18 9.7e-6 450 3:37:53 1.0e-5
(c) out of memory out of memory
(d) — —
(o) — —
Smoothing (a) 7 0:25 8.9e-7 11 0:37 4.7e-7
(b) 8 0:24 1.0e-8 14 0:49 7.3e-8
(c) 8 0:23 1.7¢-8 16 0:52 5.2e-7
(d) 9 0:32 7.2e-8 24 1:47 2.4e-7
(e) 8 0:26 2.9e-7 22 1:36 2.7e-8
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TABLE 4
[ Example 5.6 | | n=>500 | n=1000 | n=2000 |
Method Case |f, | Iter cputime Res Iter cputime Res | Iter cputime Res
PGM (a) 1| 104 3:25 9.2e-6 | 140 28:56 9.9e-6 | 191  4:40:57 9.6e-6
5| 128 4:17 9.6e-6 | 165 35:30 9.7e-6 | 210  5:22:03 9.9e-6
10| 151 4:55 9.6e-6 | 183 39:35 9.9e-6 | 227  5:49:26 9.7e-6
(b) 1936 26:20 9.9e-6 | 1160  3:57:58 1.0e-5 | 412 >10 hrs 3.0e-2
5| 795 23:01 9.9e-6 | 1153  4:00:12 1.0e-5| 396 >10 hrs 3.4e-2
10 | 947 27:43 1.0e-5| 1205 4:11:30 1.0e-5| 392 >10 hrs 3.3e-2
BFGS-SQP (a) 1| 41 4:15 9.1e-6 | 45 35:44 9.0e-6 out of memory
5 out of memory out of memory ——
10 —— —— ——
() 1124 17:30 9.6e-6 | 141  3:04:18 9.9e-6 out of memory
5 out of memory out of memory ——
10 —— —— ——
Smoothing | (a) 1| 7 0:23 2.7e-8| 8 2:42 6.3e-9| 8 19:27 3.3e-8
5| 7 0:24 6.7e-7| 8 2:38 2.9e-7| 8 18:53 2.4e-7
10| 7 0:24 1.0e-6| 8 2:47 1.8e-7| 9 21:10 2.1e-8
(b) 11 9 0:29 7.4e-7| 10 3:22 3.9¢-9| 10 24:56  8.9e-9
5| 9 0:26 2.3e-7| 9 2:53 3.3e-7| 10 22:38 6.5e-8
10| 10 0:32 9.1e-9| 11 4:01 3.4e-7| 11 29:05 8.9e-9
TABLE 5
| | | Example 5.7 | Example 5.8 |
Method Case Iter cputime Res Iter cputime Res
PGM (a) 1437 18:51 1.0e-5 5000* 1:02:22 1.3e-3
(b) 1409 18:25 1.0e-5 5000* 1:05:55 4.0e-2
(c) 1483 19:55 1.0e-5 5000* 1:07:46 2.4e-2
(d) 1587 21:32 1.0e-5 5000* 1:08:35 7.1e-3
(e) 1335 18:15 9.9¢-6 5000* 1:04:22 4.0e-4
BFGS-SQP (a) 173 11:59 9.6e-6 413 0:39:52 9.9¢-6
(b) 171 46:33 9.6e-6 737 7:30:13 9.6e-6
(c) out of memory out of memory
(d) — —
(©) — -
Smoothing (a) 9 0:35 1.3e-8 11 0:58 8.8e-7
(b) 9 0:30 3.8e-8 21 2:46 6.4e-7
(c) 11 0:30 1.9e-7 33 4:19 4.2e-7
(d) 11 0:33 7.0e-7 31 3:31 8.2e-8
(e) 12 0:47 2.3e-7 35 6:00 9.8e-7

in terms of cputime. Both the Smoothing and Semismooth methods are faster (2-8
times) than the IP-NCM method for achieving similar accuracies. The performance of
the BFGS method varies from case to case. It is more competitive than the ITP-NCM
method for the tested unweighted nearest correlation matrix problems, but it is much
slower than the IP-NCM method for the weighted cases. The GM method is easy to
implement, but it may converge extremely slow or not converge at all due to truncated
numerical errors. For cases with both equality and inequality constraints (Tables
2-5), we have only three methods—PGM, BFGS-SQP, and Smoothing—to test. The
performance of the BFGS-SQP method is very poor partially because it has to solve
a quadratic programming problem at each iteration and needs much more memory
than the PGM and Smoothing methods. In all tested examples with both equality and
inequality constraints, the Smoothing method is much more efficient.

6. Conclusions. In this paper, we proposed a quadratically convergent inex-
act smoothing Newton method—Algorithm 3.1—for solving the LSSDP (1). Our
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approach is to reformulate the problem as a smoothing-nonsmooth system of equa-
tions. Under mild conditions, we showed that the reformulated system enjoys a desir-
able nonsingularity property, which is vital for applying the BiCGStab iterative solver
to the resulting smoothing Newton linear system. Our conducted numerical results?
clearly demonstrated that Algorithm 3.1 is very efficient for solving the LSSDP with
simple constraints (57), for which we introduced a simple diagonal preconditioner with
a low cost.
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