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NONSINGULARITY IN SEMIDEFINITE PROGRAMMING∗
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Abstract. It is known that the Karush–Kuhn–Tucker (KKT) conditions of semidefinite pro-
gramming can be reformulated as a nonsmooth system via the metric projector over the cone of
symmetric and positive semidefinite matrices. We show in this paper that the primal and dual
constraint nondegeneracies, the strong regularity, the nonsingularity of the B-subdifferential of this
nonsmooth system, and the nonsingularity of the corresponding Clarke’s generalized Jacobian, at a
KKT point, are all equivalent. Moreover, we prove the equivalence between each of these conditions
and the nonsingularity of Clarke’s generalized Jacobian of the smoothed counterpart of this non-
smooth system used in several globally convergent smoothing Newton methods. In particular, we
establish the quadratic convergence of these methods under the primal and dual constraint nonde-
generacies, but without the strict complementarity.
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1. Introduction. The standard semidefinite programming (SDP) problem takes
the form

(1)

min 〈C,X〉

s.t. AX = b ,

X ∈ Sn
+ ,

where C ∈ Sn, the linear space of all n×n real symmetric matrices, 〈·, ·〉 is the usual
Frobenius inner product in Sn, A is a linear operator from Sn to �m, b ∈ �m, and
Sn

+ is the cone of all n × n positive semidefinite matrices in Sn. Let A∗ : �m → Sn

be the adjoint of A. The dual form of the SDP problem (1) is

(2)

max bT y

s.t. A∗y + S = C ,

S ∈ Sn
+ .

The Karush–Kuhn–Tucker (KKT) conditions, i.e., the first order optimality condi-
tions, for the SDP problem (1) and its dual (2) are

(3)

⎧⎪⎨⎪⎩
A∗y + S = C ,

AX = b ,

Sn
+ � X ⊥ S ∈ Sn

+ ,
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NONDEGENERACY, REGULARITY, AND NONSINGULARITY 371

where “X ⊥ S” means that X and S are perpendicular to each other, i.e., 〈X,S〉 = 0.
Any point (X, ȳ, S) ∈ Sn ×�m × Sn satisfying (3) is called a KKT point.

Due to its mathematical elegance and wide applications, the research on SDP has
been extremely active after the discovery of polynomial time interior point algorithms
[1, 27] for solving this problem. For an excellent survey on this, see [47]. Our research
in this paper is motivated by [42] on various characterizations of strong regularity, one
of the most important concepts in sensitivity and perturbation analysis, introduced
by Robinson in his seminal paper [32], for a local optimal solution of the general
nonlinear SDP problem. The basic question we want to ask here is: What does the
strong regularity mean for the SDP problem (1) and its dual (2)?

Certainly, all conditions equivalent to the strong regularity presented in [42] for
the general nonlinear SDP problem apply to the SDP problem (1), too. However,
due to the special structure of the SDP problem (1) and its dual, one may be able to
obtain more insightful characterizations about the strong regularity. This is exactly
the primary objective of this paper.

For the purpose of achieving this objective, we study the B-subdifferential and
Clarke’s generalized Jacobian of the nonsmooth system reformulated from (3). We
show that the primal and dual constraint nondegeneracies, the strong regularity, the
nonsingularity of the B-subdifferential of this nonsmooth system, and the nonsingu-
larity of the corresponding Clarke’s generalized Jacobian, at a KKT point (X, ȳ, S) ∈
Sn × �m × Sn, are all equivalent. The equivalence of the nonsingularity of the
B-subdifferential and the nonsingularity of Clarke’s generalized Jacobian comes as
a surprise, at least to the authors, as we know that the nonsingularity of the B-
subdifferential is only a necessary condition for the strong regularity, while the non-
singularity of Clarke’s generalized Jacobian is a sufficient condition for the strong
regularity (for more discussions, see [15, 28]). It is true, by [42, Theorem 4.1], that
the nonsingularity of Clarke’s generalized Jacobian is also necessary for the strong
regularity in the context of SDP problems. However, it is never known if the nonsin-
gularity of the B-subdifferential is sufficient, too. Here, the unique structure exhibited
in SDP problems (1) and (2) plays a key role for us in proving these conditions equiva-
lent. Consequently, the quadratic convergence of some local nonsmooth Newton-type
methods studied in [18, 14] follows from any one of these equivalent conditions. In
fact, by combining the two papers [18, 19, 14], we know that the primal and dual con-
straint nondegeneracies are sufficient for the nonsingularity of the B-subdifferential.
On the other hand, our equivalent results imply that they are also necessary for the
nonsingularity of the B-subdifferential.

The second objective of this paper, largely motivated by the first, is to study under
what conditions the globally convergent smoothing Newton methods studied in [9,
10, 20, 46] for solving SDP problems (1) and (2) possess local quadratic convergence,
without assuming the strict complementary condition. We achieve this objective
by showing that the nonsingularity of the B-subdifferential of one smoothed system
used in [9, 10, 20, 46] and the nonsingularity of Clarke’s generalized Jacobian of this
smoothed system are both equivalent to any of the above-stated equivalent conditions,
in particular, the primal and dual constraint nondegeneracies.

The organization of this paper is as follows. In section 2, we study some useful
properties of the B-subdifferential and Clarke’s generalized Jacobian for Lipschitz
functions, particularly for the metric projector over Sn

+ and its smoothed counterpart.
The promised equivalent conditions are given in section 3. In section 4, we prove the
quadratic convergence of some smoothing Newton methods under the primal and
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372 ZI XIAN CHAN AND DEFENG SUN

dual constraint nondegenerate conditions, but without the strict complementarity
condition. We give our conclusions in section 5.

2. Generalized Jacobians. Assume that X , Y, and Z are three finite dimen-
sional real vector spaces, each equipped with a scalar product 〈·, ·〉 and its induced
norm ‖ ·‖, O is an open set in Y, and Ξ : O ⊆ Y → Z is a locally Lipschitz continuous
function on the open set O. By the well-known Rademacher theorem [37, section 9.J],
we know that Ξ is almost everywhere F(réchet)-differentiable in O. Denote by DΞ the
set of all points in O where Ξ is F-differentiable. Then Clarke’s generalized Jacobian
of Ξ at y ∈ O is defined as follows [12]:

∂Ξ(y) := conv{ ∂BΞ(y) },

where “conv” denotes the convex hull and the B-subdifferential ∂BΞ(y), a name coined
by Qi in [29], of Ξ at y takes the form

∂BΞ(y) := {V : V = lim
k→∞

Ξ′(yk) , yk → y , yk ∈ DΞ}.

The next lemma, which is originally proven in [42, Lemma 2.1] under the addi-
tional assumption of directional differentiability, is a useful property about charac-
terizing the B-subdifferential of composite functions. Here we drop the condition of
directional differentiability and provide a self-contained proof as it may have applica-
tions in other places where the directional differentiability is not readily available.

Lemma 1. Let Ψ : X → Y be a continuously differentiable function on an open
neighborhood N̂ of x̄ and Ξ : O ⊆ Y → Z be a locally Lipschitz continuous function on
an open set O containing ȳ := Ψ(x̄). Define Φ : N̂ → Z by Φ(x) := Ξ(Ψ(x)), x ∈ N̂ .
Suppose that Ψ′(x̄) : X → Y is onto. Then there exists an open neighborhood of x̄ such
that Φ is F-differentiable at x in this neighborhood if and only if Ξ is F-differentiable
at Ψ(x) and

(4) ∂BΦ(x̄) = ∂BΞ(ȳ)Ψ′(x̄) .

Proof. Shrink N̂ , if necessary, assume that Ψ(N̂) ⊆ O, and for each x ∈ N̂ , Ψ′(x)

is onto. Then Φ is Lipschitz continuous on N̂ .

We shall first show that Φ is F-differentiable at x ∈ N̂ if and only if Ξ is F-
differentiable at Ψ(x), which, by the definition of the B-subdifferential, implies

∂BΦ(x̄) ⊆ ∂BΞ(ȳ)Ψ′(x̄).

By the definition of Φ, we know that if Ξ is F-differentiable at Ψ(x), then Φ is F-

differentiable at x ∈ N̂ . Now, assume that Φ is F-differentiable at x ∈ N̂ . Since
A := Ψ′(x) is onto, AA∗ is invertible, where A∗ : Y → X is the adjoint of A. For any
Δy ∈ Y, let

Δx := A∗(AA∗)−1Δy .
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NONDEGENERACY, REGULARITY, AND NONSINGULARITY 373

Then, for any Y � Δy → 0, we have

‖Ξ(Ψ(x) + Δy) − Ξ(Ψ(x)) − Φ′(x)(A∗(AA∗)−1Δy)‖

= ‖Ξ(Ψ(x) + AΔx) − Φ(x) − Φ′(x)(Δx)‖
≤ ‖Φ(x + Δx) − Φ(x) − Φ′(x)(Δx)‖ + O(‖Ξ(Ψ(x + Δx)) − Ξ(Ψ(x) + AΔx)‖)

= o(‖Δx‖) + O(‖Ψ(x + Δx) − (Ψ(x) + AΔx)‖)

= o(‖Δx‖) + O(‖Ψ(x + Δx) − Ψ(x) − Ψ′(x)(Δx)‖)

= o(‖Δx‖) = o(‖Δy‖) ,

which implies that Ξ is F-differentiable at Ψ(x). This proves the first part of our
conclusion.

Next, we show that the following inclusion holds:

∂BΦ(x̄) ⊇ ∂BΞ(ȳ)Ψ′(x̄).

This part’s proof follows exactly the proof of the second part of Lemma 2.1 in [42].
Let W ∈ ∂BΞ(ȳ) be an arbitrary element. Then there exists a sequence {yk} in O
converging to ȳ such that Ξ is F-differentiable at yk and W = limk→∞ Ξ′(yk). Let
A := Ψ′(x̄). By applying the classical inverse function theorem to

Ψ
(
x̄ + A

∗
(y − ȳ)

)
− Ψ(x̄) = 0,

we obtain that there exists a sequence {ỹk} in O converging to ȳ such that

Ψ
(
x̄ + A

∗
(ỹk − ȳ)

)
− Ψ(x̄) = yk − Ψ(x̄)

for all k sufficiently large. Let x̃k := x̄ + A
∗
(ỹk − ȳ). Then yk = Ψ(x̃k) and Φ is

F-differentiable at x̃k with

Φ′(x̃k) = Ξ′(yk)Ψ′(x̃k).

By using the fact that ỹk → ȳ implies x̃k → x̄, we know that there exists a V ∈ ∂BΦ(x̄)
such that

WΨ′(x̄) = lim
k→∞

Ξ′(yk) lim
k→∞

Ψ′(x̃k) = lim
k→∞

Φ′(x̃k) = V ∈ ∂BΦ(x̄).

The proof is completed.
For any nonempty closed convex set K ⊆ Z, let ΠK : Z → Z denote the metric

projector over K. That is, for any y ∈ Z, ΠK(y) is the unique optimal solution to
the convex programming problem

(5)
min

1

2
〈z − y, z − y〉

s.t. z ∈ K.

Since the metric projector ΠK(·) is globally Lipschitz continuous with modulus 1 [49],
ΠK(·) is F-differentiable almost everywhere in Z. Thus, for any y ∈ Z, ∂ΠK(y) is
well defined. In particular, it is shown in [25, Proposition 1] that for any y ∈ Z,
V ∈ ∂ΠK(y) is self-adjoint and satisfies

(6) V 
 V 2, i.e., 〈d, V d〉 ≥
〈
d, V 2d

〉
∀ d ∈ Z .
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374 ZI XIAN CHAN AND DEFENG SUN

In our subsequent analysis, we need a finer characterization about the B-subdif-
ferential and Clarke’s generalized Jacobian of ΠSn

+
(·) and its smoothed counterpart.

We write A 
 0 and A � 0 to mean that A is a symmetric positive semidefinite
matrix and a symmetric positive definite matrix, respectively. For any A ∈ Sn, let
A+ := ΠSn

+
(A) be the metric projection of A onto Sn

+ under the usual Frobenius inner
product in Sn. Assume that A has the spectral decomposition

(7) A = PΛPT ,

where Λ is the diagonal matrix of eigenvalues λ1 ≥ · · · ≥ λn of A and P is a corre-
sponding orthogonal matrix of orthonormal eigenvectors. Then

A+ = PΛ+P
T ,

where Λ+ is the diagonal matrix whose diagonal entries are the nonnegative parts of
the respective diagonal entries of Λ. The formula for A+ has been used by statisticians
for several decades, e.g., [38, Theorem 1]. Higham [16] and Tseng [48] brought it to
the attention of the optimization community. Define three index sets of positive, zero,
and negative eigenvalues of A, respectively, as

α := {i : λi > 0}, β := {i : λi = 0}, γ := {i : λi < 0}.

Write

Λ =

⎡⎢⎣ Λα 0 0

0 0 0

0 0 Λγ

⎤⎥⎦ and P = [ Pα Pβ Pγ ]

with Pα ∈ �n×|α|, Pβ ∈ �n×|β|, and Pγ ∈ �n×|γ|. For this eigenvalue vector λ ∈ �n,
define the corresponding symmetric matrix U ∈ Sn with entries

(8) Uij :=
max{λi, 0} + max{λj , 0}

|λi | + |λj |
, i, j = 1, . . . , n,

where 0/0 is defined to be 1.
We know from Bonnans, Cominetti, and Shapiro [5, 6] that ΠSn

+
is directionally

differentiable everywhere in Sn, and from Sun and Sun [43] that ΠSn
+

is strongly
semismooth everywhere in Sn and the directional derivative Π′

Sn
+
(A;H) of ΠSn

+
at A

with direction H ∈ Sn is given by

(9) Π′
Sn

+
(A;H) = P

⎡⎢⎢⎣
H̃αα H̃αβ Uαγ ◦ H̃αγ

H̃T
αβ ΠS|β|

+
(H̃ββ) 0

H̃T
αγ ◦ UT

αγ 0 0

⎤⎥⎥⎦PT ,

where H̃ := PTHP and “◦” denotes the Hadamard product. For a general discussion
on (strongly) semismooth functions, see [26, 29, 31]. The tangent cone of Sn

+ at A+,
in the sense of convex analysis [36], can be characterized as

TSn
+
(A+) = {B ∈ Sn : B = Π′

Sn
+
(A+;B)} = {B ∈ Sn : [Pβ Pγ ]TB [Pβ Pγ ] 
 0} .

Note, however, that the characterization of TSn
+
(A+) was first obtained by Arnold [3]

without using the directional derivative Π′
Sn

+
(A+;H). The linearity space of TSn

+
(A+),
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i.e., the largest linear space in TSn
+
(A+), denoted by lin

(
TSn

+
(A+)

)
, then takes the

following form:

(10) lin
(
TSn

+
(A+)

)
= {B ∈ Sn : PT

β BPβ = 0, PT
β BPγ = 0, PT

γ BPγ = 0} .

The critical cone of Sn
+ at A ∈ Sn, associated with the convex optimization problem

(5) with K = Sn
+, is defined as

(11)
C(A;Sn

+) : = TSn
+
(A+) ∩ (A+ −A)⊥

= {B ∈ Sn : PT
β BPβ 
 0, PT

β BPγ = 0, PT
γ BPγ = 0} ,

where (A+ − A)⊥ := {B ∈ Sn : 〈B,A+ − A〉 = 0}. Therefore, the affine hull of
C(A;Sn

+), which we denote aff(C(A;Sn
+)), can be written as

(12) aff
(
C(A;Sn

+)
)

=
{
B ∈ Sn : PT

β BPγ = 0, PT
γ BPγ = 0

}
.

In the case that β = ∅ holds, i.e., the case that A is nonsingular, ΠSn
+
(·) is F-

differentiable at A and (9) reduces to the famous result of Löwner [22]:

(13) Π′
Sn

+
(A)H = P

[
H̃αα Uαγ ◦ H̃αγ

H̃T
αγ ◦ UT

αγ 0

]
PT ∀H ∈ Sn .

From (13), one may compute the B-subdifferential and Clarke’s generalized Ja-
cobian of ΠSn

+
(·) by their definitions.1 This has been done by a number of authors

[9, 20, 23, 24, 28]. One difficulty in obtaining good formulas for ∂BΠSn
+
(A) and

∂ΠSn
+
(A) is that they both depend on the orthogonal matrices P in the spectral de-

composition of A. This difficulty can be overcome by employing the following link
developed by Pang, Sun, and Sun [28] on ∂BΠSn

+
(A) and the B-subdifferential of

Θ(·) := Π′
Sn

+
(A; ·) at the origin

(14) ∂BΠSn
+
(A) = ∂BΘ(0) .

This link leads to the following useful result on ∂BΠSn
+
(A) and ∂ΠSn

+
(A). See Sun

[42, Proposition 2.2] for a short proof.
Proposition 2. Suppose that A ∈ Sn has the spectral decomposition as in

(7). Then a V ∈ ∂BΠSn
+
(A) (respectively, ∂ΠSn

+
(A)) if and only if there exists a

V|β| ∈ ∂BΠS|β|
+

(0) (respectively, ∂ΠS|β|
+

(0)) such that

(15) V (H) = P

⎡⎢⎢⎣
H̃αα H̃αβ Uαγ ◦ H̃αγ

H̃T
αβ V|β|(H̃ββ) 0

H̃T
αγ ◦ UT

αγ 0 0

⎤⎥⎥⎦PT ∀H ∈ Sn,

where H̃ := PTHP .
Proposition 2 simply says that in order to compute ∂BΠSn

+
(A) and ∂ΠSn

+
(A), one

needs only to fix an arbitrary orthogonal matrix P satisfying (7) and compute the

1Note that in numerical computations it is generally impossible to compute exactly the spectral
decomposition of A as in (7). Instead, the right-hand side of (7) is the true spectral decomposition
of a nearby matrix of A [8]. Consequently, the numerically computed subdifferentials are actually
for this nearby matrix. In this paper, we will not address this numerical issue further.
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corresponding “caged” part ∂BΠS|β|
+

(0) (hence ∂ΠS|β|
+

(0)), which is much easier to

handle. To see this, let Q|β| be the set of all orthogonal matrices of order |β| × |β|
and

�|β|
> :=

{
z ∈ �|β| : z1 ≥ · · · ≥ z|β| and zi �= 0 ∀ i

}
.

Let p : � → � be the “plus” function defined by p(t) ≡ max(0, t), t ∈ �. For any

z ∈ �|β|
> , let p[1](z) represent the first divided difference matrix used in matrix analysis

for p(·) at z [4]:

(16)
[
p[1](z)

]
ij

=

⎧⎪⎨⎪⎩
p(zi) − p(zj)

zi − zj
∈ [0, 1] if zi �= zj ,

p′(zi) ∈ {0, 1} if zi = zj ,

i, j = 1, . . . , n .

Then, by (9) and (13), one can readily draw the conclusion that V|β| ∈ ∂BΠS|β|
+

(0) if

and only if there exist Q ∈ Q|β| and Ω ∈ U|β| such that

(17) V|β|(Z) = Q [ Ω ◦ (QTZQ) ]QT ∀Z ∈ S |β| ,

where

U|β| :=
{
Ω : Ω = lim

k→∞
p[1](zk), zk → 0, zk ∈ �|β|

>

}
.

In [23], Malick and Sendov gave a detailed account on the structure of U|β|. In this
paper, we do not need the exact structure of U|β| except for the following fact that
for any Ω ∈ U|β|,

Ωij ∈ [0, 1], i, j = 1, . . . , |β| .

Note that both the zero mapping V 0
|β| ≡ 0 and the identity mapping V I

|β| = I from

S |β| → S |β| are elements in ∂BΠS|β|
+

(0). Let V 0 and V I be defined by (15) with V|β|

being replaced by V 0
|β| and V I

|β|, respectively. Define

(18) ex (∂BΠSn
+
(A)) :=

{
V 0, V I }.

Using the fact that both V 0 and V I are elements in ∂BΠSn
+
(A), we have

ex (∂BΠSn
+
(A)) ⊆ ∂BΠSn

+
(A) .

Since ΠSn
+
(·) is not differentiable everywhere, several papers [9, 10, 20, 46] on

smoothing Newton methods, for solving the SDP problem and beyond, consider the
following smoothed counterpart of ΠSn

+
(·):

(19) Φ(ε,A) :=
[
A +

√
ε2I + A2

]
/2, (ε,A) ∈ � × Sn ,

where we use I to represent the identity matrix of appropriate dimension. Note that
the function Φ(·, ·) is continuously differentiable around any (ε,A) ∈ �×Sn if ε2I+A2

is nonsingular and when ε = 0, Φ(0, A) = ΠSn
+
(A). Furthermore, Φ(·, ·) is globally

Lipschitz continuous and strongly semismooth at any (0, A) ∈ �× Sn [46]. For some
extensions on these properties, see [44].
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Let φ : �2 → � be defined by

φ(ε, t) =
[
t +
√

ε2 + t2
]
/2, (ε, t) ∈ � × � .

Let A have the spectral decomposition in (7). Then, by matrix analysis [4, 17], we
have

Φ(ε,A) = P

⎡⎢⎣ φ(ε, λ1)
. . .

φ(ε, λn)

⎤⎥⎦PT .

For any (ε, x) ∈ �×�n such that ε2+x2
i > 0 for all i, we use Û(ε, x) ∈ Sn to represent

the first divided difference matrix for φ(ε, ·) at x given by

(20)
[
Û(ε, x)

]
ij

=

⎧⎪⎨⎪⎩
φ(ε, xi) − φ(ε, xj)

xi − xj
∈ [0, 1] if xi �= xj ,

φ′
xi

(ε, xi) ∈ [0, 1] if xi = xj ,

i, j = 1, . . . , n .

Then, according to Lemma 2.3 in [46], we know that for any ε ∈ � such that ε2+λ2
i > 0

for all i (i.e., ε2I + A2 is nonsingular), and any (τ,H) ∈ � × Sn, we have

(21) Φ′(ε,A)(τ,H) = P [ Û(ε, λ) ◦ (PTHP ) + τD(ε, λ) ]PT

and

(22) Φ′((0, A); (τ,H)) = P

⎡⎢⎢⎣
H̃αα H̃αβ Uαγ ◦ H̃αγ

H̃T
αβ Φ|β|(τ, H̃ββ) 0

H̃T
αγ ◦ UT

αγ 0 0

⎤⎥⎥⎦PT ,

where H̃ = PTHP , D(ε, λ) ∈ Sn is the diagonal matrix given by

(23) D(ε, λ) =

⎡⎢⎣ φ′
ε(ε, λ1)

. . .

φ′
ε(ε, λn)

⎤⎥⎦ ,

U ∈ Sn is defined by (8), and for any (t, Z) ∈ � × S |β|,

(24) Φ|β|(t, Z) :=
[
Z +

√
t2I + Z2

]
/2 .

Define Ψ : �× Sn → �× Sn by

Ψ(τ,H) := (τ, PTHP ), (τ,H) ∈ � × Sn,

and Ξ : �× Sn → Sn by

(25) Ξ(t,M) := P

⎡⎢⎣ Mαα Mαβ Uαγ ◦Mαγ

MT
αβ Φ|β|(t,Mββ) 0

MT
αγ ◦ UT

αγ 0 0

⎤⎥⎦PT ,

where (t,M) ∈ � × Sn. Write Γ(·, ·) ≡ Φ′((0, A); (·, ·)). Then, we have

(26) Γ(τ,H) = Ξ(Ψ(τ,H)), (τ,H) ∈ � × Sn .
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378 ZI XIAN CHAN AND DEFENG SUN

Since for any (τ,H) ∈ �×Sn, Ψ′(τ,H) : �×Sn → �×Sn is onto, we know from the
first part of Lemma 1 that Γ is F-differentiable at (τ,H) ∈ �× Sn if and only if Ξ is

F-differentiable at Ψ(τ,H), which is equivalent to the nonsingularity of τ2I +(H̃ββ)2,

where H̃ = PTHP . Thus, we have the following lemma.
Lemma 3. For any (τ,H) ∈ � × Sn, let H̃ = PTHP . Then Γ(·, ·) ≡ Φ′

((0, A); (·, ·)) is F-differentiable at (τ,H) ∈ � × Sn if and only if τ2I + (H̃ββ)2 is
nonsingular.

The following lemma establishes the equivalence between ∂BΦ(0, A) and ∂BΓ(0, 0),
which is analogous to (14) for operators ΠSn

+
and Θ. Its proof largely follows that

given in [28, Lemma 11], but with new difficulties to overcome.
Lemma 4. Suppose that A ∈ Sn has the spectral decomposition in (7). For

Γ(·, ·) ≡ Φ′((0, A); (·, ·)), it holds that

(27) ∂BΦ(0, A) = ∂BΓ(0, 0) .

Proof. Let V ∈ ∂BΦ(0, A). Then, by (21), (22), and the definition of ∂BΦ(0, A),
there exists a sequence {(εk, Ak)} in � × Sn converging to (0, A) with ε2

kI + (Ak)2

being nonsingular such that V = limk→∞Φ′(εk, A
k). Let Ak ≡ P kΛk(P k)T be the

orthogonal decomposition of Ak, where Λk is the diagonal matrix whose diagonal
entries are the eigenvalues λk

1 ≥ · · · ≥ λk
n of Ak and P k is a corresponding matrix of

orthonormal eigenvectors. Writing each Λk in the same form as Λ,

Λk =

⎡⎢⎣ Λk
α 0 0

0 Λk
β 0

0 0 Λk
γ

⎤⎥⎦ ,

we have Λ = limk→∞Λk, which implies that Λk
α and Λk

γ are nonsingular matrices for

all k sufficiently large and limk→∞Λk
β = 0. For each k, let Uk ≡ Û(εk, λ

k) be defined

by (20) and Dk ≡ D(εk, λ
k) be defined by (23), respectively. Then, for an arbitrarily

chosen (τ,H) ∈ � × Sn with H̃k = (P k)THP k, we obtain from (21) that

(28) Φ′(εk, A
k)(τ,H) = P k

[
Uk ◦ (P k)THP k + τDk

]
(P k)T .

By taking a subsequence if necessary, we may assume that {P k} is a convergent
sequence with limit P∞ ≡ limk→∞P k. This matrix P∞ will play the role of the
matrix P in the spectral decomposition (7). Without causing any confusion, we will
simply use P , rather than P∞, in our subsequent analysis. Since both {Uk} and {Dk}
are uniformly bounded, by further taking subsequences if necessary, we may assume
that both sequences {Uk} and {Dk} converge. Taking limits on both sides of (28),
we obtain

PTV (τ,H)P =

⎡⎢⎢⎣
H̃αα H̃αβ Uαγ ◦ H̃αγ

H̃T
αβ lim

k→∞
Uk
ββ ◦ H̃ββ 0

H̃T
αγ ◦ UT

αγ 0 0

⎤⎥⎥⎦

+ τ

⎡⎢⎣ 0 0 0

0 lim
k→∞

Dk
β 0

0 0 0

⎤⎥⎦ ,D
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where

Dk
β =

⎡⎢⎣ φ′
ε(εk, λ

k
|α|+1)

. . .

φ′
ε(εk, λ

k
|α|+|β|)

⎤⎥⎦ .

For each k, define

Mk := P

⎡⎢⎣ 0 0 0

0 Λk
β 0

0 0 0

⎤⎥⎦PT .

Let M̃k := PTMkP . Because ε2
kI + (M̃k

ββ)2 = ε2
kI + (Λk

β)2 is nonsingular, Γ is

F-differentiable at (εk,M
k) with

Γ′(εk,M
k)(τ,H) = lim

t↓0

{
Γ(εk + tτ,Mk + tH) − Γ(εk,M

k)

t

}

= P

⎡⎢⎢⎢⎢⎢⎣
H̃αα H̃αβ Uαγ ◦ H̃αγ

H̃T
αβ lim

t↓0

Φ|β|(εk + tτ,Λk
β + tH̃ββ) − Φ|β|(εk,Λ

k
β)

t
0

H̃T
αγ ◦ UT

αγ 0 0

⎤⎥⎥⎥⎥⎥⎦ PT

= P

⎡⎢⎢⎣
H̃αα H̃αβ Uαγ ◦ H̃αγ

H̃T
αβ Uk

ββ ◦ H̃ββ + τDk
β 0

H̃T
αγ ◦ UT

αγ 0 0

⎤⎥⎥⎦ PT ,

where we have applied (21) to Φ|β| defined by (24) at (εk,Λ
k
β). Thus,

V (τ,H) = lim
k→∞

Γ′(εk,M
k)(τ,H) .

Since (τ,H) ∈ � × Sn is arbitrary, it follows that V ∈ ∂BΓ(0, 0).

Conversely, let V ∈ ∂BΓ(0, 0). Since, from Lemma 3, Γ is F-differentiable at

(ε,M) ∈ � × Sn if and only if ε2I + (M̃ββ)2 is nonsingular with M̃ = PTMP , there

exists a sequence {(εk,Mk)} ∈ �×Sn converging to (0, 0) such that ε2
kI + (M̃k

ββ)2 is

nonsingular for each k and V = limk→∞ Γ′(εk,M
k), where M̃k = PTMkP . Let M̃k

ββ

have the spectral decomposition

M̃k
ββ = QkΛ̃k

β(Qk)T ,

where Qk ∈ Q|β| is an orthogonal matrix in S |β| and Λ̃k
β is the diagonal matrix whose

diagonal entries are the eigenvalues z̃k1 ≥ · · · ≥ z̃k|β| of M̃k
ββ . Let λ̃k ∈ �n be such that

if i ∈ α ∪ γ, then λ̃k
i = λi and if i ∈ β, λ̃k

i is the (i − |α|)th eigenvalue of M̃k
ββ , i.e.,
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z̃k(i−|α|). Then, by (22), for any (τ,H) ∈ � × Sn we have

(29)

Γ′(εk,M
k)(τ,H) = lim

t↓0

{
Γ(εk + tτ,Mk + tH) − Γ(εk,M

k)

t

}

= P

⎡⎢⎢⎢⎢⎢⎣
H̃αα H̃αβ Uαγ ◦ H̃αγ

H̃T
αβ lim

t↓0

Φ|β|(εk + tτ, M̃k
ββ + tH̃ββ) − Φ|β|(εk, M̃

k
ββ)

t
0

H̃T
αγ ◦ UT

αγ 0 0

⎤⎥⎥⎥⎥⎥⎦ PT

with H̃ = PTHP and

(30)

lim
t↓0

Φ|β|(εk + tτ, M̃k
ββ + tH̃ββ) − Φ|β|(εk, M̃

k
ββ)

t

= Qk

(
lim
t↓0

Φ|β|(εk + tτ, Λ̃k
β + t(Qk)T H̃ββQ

k) − Φ|β|(εk, Λ̃
k
β)

t

)
(Qk)T

= Qk
[
Ω̃k ◦ ( (Qk)T H̃ββQ

k ) + τ S̃k
]
(Qk)T ,

where we have used (21) for Φ|β| and the fact that Φ|β| is F-differentiable at (εk, Λ̃
k
β)

because ε2
kI + (Λ̃k

β)2 is nonsingular,

(Ω̃k)ij =

⎧⎪⎪⎨⎪⎪⎩
φ(εk, z̃

k
i ) − φ(εk, z̃

k
j )

z̃ki − z̃kj
if z̃ki �= z̃kj ,

φ′
z̃k
i
(ε, z̃ki ) if z̃ki = z̃kj ,

i, j = 1, . . . , |β| ,

and

S̃k =

⎡⎢⎣ φ′
ε(εk, z̃

k
1 )

. . .

φ′
ε(εk, z̃

k
|β|)

⎤⎥⎦ .

Define

Ak = A + P

⎡⎢⎣ 0 0 0

0 M̃k
ββ 0

0 0 0

⎤⎥⎦PT and Ãk = PTAkP =

⎡⎢⎣ Λα 0 0

0 M̃k
ββ 0

0 0 Λγ

⎤⎥⎦ .

Since, for each k, ε2
kI + (M̃k

ββ)2 is nonsingular, the matrix ε2
kI + (Ak)2 = P [ε2

kI +

(Ãk)2]PT is also nonsingular. Thus, Φ is F-differentiable at (εk, A
k). Let

P k ≡ [ P k
α P k

β P k
γ ] = [ Pα PβQ

k Pγ ]

and Λ̃k be the diagonal matrix whose diagonal entries are components of λ̃k. Then

Ak = P kΛ̃k(P k)T ,
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which, together with (21), implies that for any (τ,H) ∈ � × Sn, we have

(31) Φ′(εk, A
k)(τ,H) = P k [ Ũk ◦ ((P k)THP k) + τD̃k ] (P k)T ,

where Ũk ≡ Û(εk, λ̃
k) and D̃k ≡ D(εk, λ̃

k). Since {Qk}, {Ũk}, and {D̃k} are all
uniformly bounded, by taking subsequences if necessary, we may assume that all
these three sequences converge. By simple computations, we obtain

lim
k→∞

Ũk
ij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if i ∈ α, j ∈ α ∪ β,

Uij if i ∈ α, j ∈ γ,

lim
k→∞

(Ω̃k)(i−|α|)(j−|α|) if i ∈ β, j ∈ β,

0 if i ∈ β ∪ γ, j ∈ γ,

i, j = 1, . . . , n,

and

lim
k→∞

D̃k =

⎡⎢⎢⎣
0 0 0

0 lim
k→∞

S̃k 0

0 0 0

⎤⎥⎥⎦ ,

which, together with (31), (29), and (30), imply that for any (τ,H) ∈ � × Sn,

lim
k→∞

(P k)T
[
Γ′(εk,M

k)(τ,H) − Φ′(εk, A
k)(τ,H)

]
P k = 0 .

Consequently, we can conclude V (τ,H) = limk→∞ Φ′(εk, A
k)(τ,H) for all (τ,H) ∈

� × Sn, which implies V ∈ ∂BΦ(0, A). Hence, (27) holds.
Lemma 4 allows us to completely characterize ∂BΦ(0, A) (hence, ∂Φ(0, A)).
Proposition 5. Suppose that A ∈ Sn has the spectral decomposition in (7).

Then a V ∈ ∂BΦ(0, A) (respectively, ∂Φ(0, A)) if and only if there exists a V|β| ∈
∂BΦ|β|(0, 0) (respectively, ∂Φ|β|(0, 0)) such that

(32) V (τ,H) = P

⎡⎢⎢⎣
H̃αα H̃αβ Uαγ ◦ H̃αγ

H̃T
αβ V|β|(τ, H̃ββ) 0

H̃T
αγ ◦ UT

αγ 0 0

⎤⎥⎥⎦PT

for all (τ,H) ∈ � × Sn, where H̃ = PTHP .
Proof. We need only to prove that (32) holds for V ∈ ∂BΦ(0, A) and V|β| ∈

∂BΦ|β|(0, 0) as the case for Clarke’s generalized Jacobian can be proved similarly.
Let Ψ(τ,H) := (τ, PTHP ) for any (τ,H) ∈ � × Sn, and let Ξ : � × Sn → Sn

be defined by (25). Then, since Ψ′(τ,H) : � × Sn → �× Sn is onto, we know from
Lemma 1 that

∂BΓ(0, 0) = ∂BΞ(0, 0)Ψ′(0, 0) ,

which, together with (27) in Lemma 4, completes the proof.
Just as in the case for the metric projector ΠSn

+
, Proposition 5 says that in

order to compute ∂BΦ(0, A) and ∂Φ(0, A), one needs only to fix P and compute the
corresponding easy part ∂BΦ|β|(0, 0) (hence, ∂Φ|β|(0, 0)). For any (ε, z) ∈ � × �|β|

with ε2+z2
i > 0 for all i, let Ω̂(ε, z) be defined by (20) with n and x being replaced by
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|β| and z, respectively. Then, by (22) and (21), one can readily draw the conclusion

that V|β| ∈ ∂BΦ|β|(0, 0) if and only if there exist Q ∈ Q|β| and Ω ∈ Û|β| such that

(33) V|β|(0, Z) = Q [ Ω ◦ (QTZQ) ]QT ∀Z ∈ S |β| ,

where

Û|β| :=
{
Ω : Ω = lim

k→∞
Ω̂(εk, z

k), (εk, z
k) → (0, 0),

(zk)1 ≥ · · · ≥ (zk)|β|, ε2
k + (zki )2 > 0 ∀ i

}
.

Note that for any Ω ∈ Ûβ , it holds that Ωij ∈ [0, 1], i, j = 1, . . . , |β|.
The next proposition establishes a link between ∂BΠSn

+
(A) and ∂BΦ(0, A), and

so a link between ∂ΠSn
+
(A) and ∂Φ(0, A).

Proposition 6. For any V0 ∈ ∂BΠSn
+
(A), there exists V ∈ ∂BΦ(0, A) such that

(34) V0(H) = V (0, H) ∀H ∈ Sn .

Proof. By comparing Proposition 2, together with (17), with Proposition 5, to-
gether with (33), we can derive the conclusion directly.

We conclude this section by presenting a useful inequality for elements in ∂Φ(0, A),
which is analogous to (6) for the metric projector ΠK with K = Sn

+.

Proposition 7. For any V ∈ ∂Φ(0, A), it holds that

(35) 〈H − V (0, H), V (0, H)〉 ≥ 0 ∀H ∈ Sn .

Proof. Let V ∈ ∂Φ(0, A). Then, by Carathéodory’s theorem, there exist a positive
integer κ and V i ∈ ∂BΦ(0, A), i = 1, . . . , κ, such that V is the convex combination
of V 1, . . . , V κ. Let t1, . . . , tκ be such that V =

∑κ
i=1 tiV

i, where ti ≥ 0, i = 1, . . . , κ,
and

∑κ
i=1 ti = 1.

From Sun, Sun, and Qi [46, Proposition 3.1], we know that for each i ∈ {1, . . . , κ},

(36) 〈H − V i(0, H), V i(0, H)〉 ≥ 0 ∀H ∈ Sn .

In order to prove that (35) holds for V , let θ(X) := 〈X,X〉, X ∈ Sn. By the convexity
of θ, we have for any H ∈ Sn that

θ(V (0, H)) = θ

(
κ∑

i=1

tiV
i(0, H)

)
≤

κ∑
i=1

ti θ(V
i(0, H)) =

κ∑
i=1

ti〈V i(0, H), V i(0, H)〉 ,

which, together with (36) and the definition of θ, implies

〈V (0, H), V (0, H)〉 ≤
κ∑

i=1

ti〈H,V i(0, H)〉 =

〈
H,

κ∑
i=1

tiV
i(0, H)

〉
= 〈H,V (0, H)〉 .

Thus, (35) holds.
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3. Equivalent conditions. Let X and Y be two finite dimensional real vector
spaces each equipped with a scalar product 〈·, ·〉 and its induced norm ‖ · ‖. Let
g : X → Y be a continuously differentiable function and K be a nonempty and closed
convex set in Y. Consider the following feasible problem:

(37) g(x) ∈ K , x ∈ X .

Assume that x̄ ∈ X is a feasible solution to (37). Let TK(g(x̄)) be the tangent
cone of K and NK(g(x̄)) be the normal cone of K at g(x̄), respectively. We write
lin(TK(g(x̄))) for the linearity space of TK(g(x̄)). Then we can define the following
nondegeneracy condition for problem (37).

Definition 8. We say that a feasible point x̄ to problem (37) is constraint
nondegenerate if

(38) g′(x̄)X + lin
(
TK(g(x̄))

)
= Y .

The concept of nondegeneracy for the abstract problem (37) first appeared in
Robinson [33, 34]. The name “constraint nondegeneracy” was coined by Robinson
in [35]. The nondegenerate constraint condition (38) including its various equivalent
forms was extensively used in [7, 40] for sensitivity and stability analysis in optimiza-
tion and variational inequalities. If Y is the Euclidean space �m and K = {0}m1×�m2

+

with m1 + m2 = m, then the constraint nondegenerate condition (38) is equivalent
to the well-known linear independence constraint qualification [33, 40]. Here we shall
apply Definition 8 to both the SDP problem (1) and its dual (2) to define the primal
constraint nondegeneracy and the dual constraint nondegeneracy, respectively.

Definition 9. We say that the primal constraint nondegeneracy holds at a fea-
sible solution X ∈ Sn

+ to the SDP problem (1) if

(39)

[
A
I

]
Sn +

[
{0}

lin
(
TSn

+
(X)

) ] =

[
�m

Sn

]

or, equivalently,

(40) A lin
(
TSn

+
(X)

)
= �m ,

where I is the identity mapping from Sn to Sn. Similarly, we say that the dual
constraint nondegeneracy holds at a feasible solution (ȳ, S) ∈ �m × Sn

+ to the dual
problem (2) if

(41)

[
A∗ I
0 I

](
�m

Sn

)
+

[
{0}

lin
(
TSn

+
(S)
) ] =

[
Sn

Sn

]

or, equivalently,

(42) A∗�m + lin
(
TSn

+
(S)
)

= Sn .

Note that in the literature constraint nondegeneracy is called different names.
Shapiro and Fan [41] and Shapiro [39] termed it transversality. Primal constraint
nondegeneracy and dual constraint nondegeneracy are better known as primal non-
degeneracy and dual nondegeneracy, respectively, in the interior point methods com-
munity. See, for example, Alizadeh, Haeber, and Overton [2]. To avoid potential
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384 ZI XIAN CHAN AND DEFENG SUN

confusion, we will stick to Robinson’s terminology here and interpret different usages
of constraint nondegeneracy in terms of Definition 9.

Let Z ≡ (X, ȳ, S) ∈ Sn×�m×Sn be a KKT point satisfying the KKT conditions
(3). Since Sn

+ is a self-dual cone, from [13] we know that

Sn
+ � X ⊥ S ∈ Sn

+ ⇐⇒ −X ∈ NSn
+
(S)(43)

⇐⇒ S − ΠSn
+
[S −X ] = X − ΠSn

+
[X − S ] = 0 .

Therefore, (X, ȳ, S) ∈ Sn ×�m × Sn satisfies (3) if and only if (X, ȳ, S) is a solution
to the nonsmooth system of equations

(44) F (X, y, S) ≡

⎡⎢⎣ C −A∗y − S

AX − b

S − ΠSn
+
[S −X ]

⎤⎥⎦ =

⎡⎢⎣ C −A∗y − S

AX − b

X − ΠSn
+
[X − S ]

⎤⎥⎦ = 0 ,

where (X, y, S) ∈ Sn ×�m × Sn.
Note that both the KKT conditions (3) and the nonsmooth system (44) can be

written as the following special generalized equation:

(45) 0 ∈

⎡⎢⎣ C −A∗y − S

AX − b

X

⎤⎥⎦+

⎡⎢⎣ NSn(X)

N	m(y)

NSn
+
(S)

⎤⎥⎦ .

In [32], Robinson introduced an important concept called strong regularity for a solu-
tion of generalized equations. Here we define only the strong regularity for (45) rather
than for the general problems.

Definition 10. Let Z ≡ Sn × �m × Sn. We say that a KKT point Z ≡
(X, ȳ, S) ∈ Z is a strongly regular solution of the generalized equation (45) if there
exist neighborhoods B of the origin 0 ∈ Z and V of Z such that for every δ ∈ B, the
generalized equation

(46) δ ∈

⎡⎢⎣ C −A∗y − S

AX − b

X

⎤⎥⎦+

⎡⎢⎣ NSn(X)

N	m(y)

NSn
+
(S)

⎤⎥⎦
has a unique solution in V, denoted by ZV(δ), and the mapping ZV : B → V is
Lipschitz continuous.

Recall that F is said to be a locally Lipschitz homeomorphism near Z if there
exists an open neighborhood V of Z such that the restricted mapping F |V : V → F (V)
is Lipschitz continuous and bijective, and its inverse is also Lipschitz continuous.
The following result, which holds in a more general framework, shows that F is
a locally Lipschitz homeomorphism near Z if and only if Z is a strongly regular
solution of the generalized equation (45). This is almost intuitively true. For the sake
of completeness, however, we include a short proof.

Lemma 11. Let Z ≡ Sn × �m × Sn. Let F : Z → Z be defined by (44) and
Z be a KKT point of the SDP problem. Then, it holds that F is a locally Lipschitz
homeomorphism near Z if and only if Z is a strongly regular solution of the generalized
equation (45).
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Proof. “=⇒” Assume that F is a locally Lipschitz homeomorphism near Z. Then,
there exists an open neighborhood V of Z such that F (V) is an open neighborhood of

the origin 0 ∈ Z, and for any δ̂ ∈ F (V), the equation F (Z) = δ̂ has a unique solution

ẐV(δ̂) in V and ẐV : F (V) → V is Lipschitz continuous.
For any δ = (δ1, δ2, δ3) ∈ B ≡ 1

2F (V), let Z(δ) = (X(δ), y(δ), S(δ)) be a solution,
if one exists, to (46). Write δ ≡ (δ1, δ2, δ3) ∈ Sn ×�m × Sn. Then we have⎡⎢⎣ C −A∗y(δ) − S(δ)

AX(δ) − b

(S(δ) + δ3) − ΠSn
+
[ (S(δ) + δ3) −X(δ) ]

⎤⎥⎦ =

⎡⎢⎣ δ1

δ2

δ3

⎤⎥⎦ ,

i.e.,

F (X(δ), y(δ), S(δ) + δ3) =

⎡⎢⎣ δ1 − δ3

δ2

δ3

⎤⎥⎦ .

Then Z(δ) uniquely exists in V and

Z(δ) = ẐV(δ1 − δ3, δ2, δ3) −

⎡⎣ 0
0
δ3

⎤⎦ .

Hence, Z(·) is Lipschitz continuous on B.
“⇐=” Assume that Z is a strongly regular solution of the generalized equation

(45). Then, there exist neighborhoods B of the origin 0 ∈ Z and V of Z, and a locally
Lipschitz function ZV : B → V such that for any δ ∈ B, ZV(δ) is the unique solution in
V to (46). By reversing the arguments in the first part of the proof, we can conclude

that for any δ̂ ≡ (δ̂1, δ̂2, δ̂3) ∈ ( 1
2B)∩(Sn×�m×Sn ), F (Z) = δ̂ has a unique solution

Ẑ(δ̂) ∈ V given by Ẑ(δ̂) = ZV(δ̂1 + δ̂3, δ̂2, δ̂3) +

⎡⎣ 0
0

δ̂3

⎤⎦ ,

which implies that Ẑ(·) is Lipschitz continuous on 1
2B. Thus, F is Lipschitz homeo-

morphism near Z.
The concept of strong regularity for general nonlinear semidefinite programming

is closely related to another concept called the strong second order sufficient condition
as shown by Sun in [42]. Here we will only present the strong second order sufficient
condition in terms of the SDP problem (1). First, for any B ∈ Sn, we define a
linear-quadratic function ΥB : Sn × Sn → �.

Definition 12 ([42, Definition 2.1]). For any given B ∈ Sn, define the linear-
quadratic function ΥB : Sn × Sn → �, which is linear in the first argument and
quadratic in the second argument, by

ΥB(S,H) := 2
〈
S,HB†H

〉
, (S,H) ∈ Sn × Sn,

where B† is the Moore–Penrose pseudoinverse of B.
Let X ∈ Sn

+ be an optimal solution to the SDP problem (1). Denote M(X) by

the set of points (y, S) ∈ �m × Sn such that (X, y, S) is a KKT point, i.e., for any
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386 ZI XIAN CHAN AND DEFENG SUN

(y, S) ∈ M(X), (X, y, S) satisfies the KKT conditions (3). Let (ȳ, S) ∈ M(X). Write
A ≡ X − S. By using the fact that Sn

+ � X ⊥ S ∈ Sn
+, we may assume that A has

the spectral decomposition as in (7) by replacing A with A and

(47)

A = P

⎡⎢⎣Λα 0 0

0 0 0

0 0 Λγ

⎤⎥⎦PT , X = P

⎡⎢⎣Λα 0 0

0 0 0

0 0 0

⎤⎥⎦PT , S = P

⎡⎢⎣ 0 0 0

0 0 0

0 0 −Λγ

⎤⎥⎦PT .

Write P = [ Pα Pβ Pγ ] . Then, according to (10) and (12), we have

lin
(
TSn

+
(X)

)
= {B ∈ Sn : PT

β BPβ = 0, PT
β BPγ = 0, PT

γ BPγ = 0} ,(48)

lin
(
TSn

+
(S)
)

= {B ∈ Sn : PT
α BPα = 0, PT

α BPβ = 0, PT
β BPβ = 0} ,(49)

and

aff
(
C(A;Sn

+)
)

=
{
B ∈ Sn : PT

β BPγ = 0, PT
γ BPγ = 0

}
.

Define

(50)

app(ȳ, S) :=
{
B ∈ Sn : AB = 0, B ∈ aff

(
C(A;Sn

+)
)}

= {B ∈ Sn : AB = 0, PT
β BPγ = 0, PT

γ BPγ = 0} .

Then we can state the strong second order sufficient condition for the SDP problem
tailored from Sun [42] for the general nonlinear SDP problem.

Definition 13. Let X ∈ Sn
+ be an optimal solution to the SDP problem (1). We

say that the strong second order sufficient condition holds at X if

(51) sup
(y,S)∈M(X)

{−ΥX(−S,H)} > 0 ∀ 0 �= H ∈
{ ⋂

(y,S)∈M(X)

app(y, S)
}
.

The strong second order sufficient condition (51) may look very complicated.
When M(X) is a singleton, the following result gives a very simple characterization.

Lemma 14. Let X ∈ Sn
+ be an optimal solution to the SDP problem (1). Assume

that M(X) = {(ȳ, S)}. Let X and S have the spectral decompositions as in (47).
Then the strong second order sufficient condition (51) holds at X if and only if, for
any H ∈ Sn, the following conditions hold

(52) AH = 0, PT
β HPγ = 0, PT

γ HPγ = 0, and PT
α HPγ = 0 =⇒ H = 0 .

Proof. For any H ∈ Sn, write H̃ = PTHP . Since M(X) = {(ȳ, S)}, the strong
second order sufficient condition (51) becomes

−ΥX(−S,H) > 0 ∀H ∈ app(ȳ, S)\{0} ,

which, by the definition of ΥX(−S,H) and (47), is equivalent to

2
∑

i∈α,j∈γ

−λj

λi
(H̃ij)

2 > 0 ∀H ∈ app(ȳ, S)\{0} .D
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For details, see [42]. Then, by (50), the strong second order sufficient condition (51)
holds at X if and only if

AH = 0, H̃βγ = 0, H̃γγ = 0, and H �= 0 =⇒ H̃αγ �= 0 ∀H ∈ Sn ,

which is equivalent to (52). This completes the proof.
Next, we shall establish a link between the strong second order sufficient condition

and the dual constraint nondegeneracy.2

Proposition 15. Let X ∈ Sn
+ be an optimal solution to the SDP problem (1).

Under the assumption M(X) = {(ȳ, S)}, the following are equivalent:
(i) The strong second order sufficient condition (51) holds at X.
(ii) The dual constraint nondegenerate condition (42) holds at (ȳ, S).
Proof. Let X and S have the spectral decompositions as in (47). For any H ∈ Sn,

let H̃ = PTHP . We prove “(i) =⇒ (ii)” first. By Lemma 14, (i) holds if and only if
we have the following implication:

(53) AH = 0, H̃βγ = 0, H̃γγ = 0, and H̃αγ = 0 =⇒ H = 0 ∀H ∈ Sn .

Suppose, for the sake of contradiction, that the dual constraint nondegenerate condi-
tion (42) does not hold at (ȳ, S). Then, we have

(54) [A∗�m ]⊥ ∩
[
lin
(
TSn

+
(S)
)]⊥ �= {0}.

Take an arbitrary 0 �= H ∈ [A∗�m ]⊥ ∩
[
lin
(
TSn

+
(S)
) ]⊥

. We obtain from H ∈
[A∗�m ]

⊥
that

(55) 〈H,A∗y〉 = 0 ∀ y ∈ �m =⇒ 〈AH, y〉 = 0 ∀ y ∈ �m =⇒ AH = 0

and from H ∈
[
lin
(
TSn

+
(S)
) ]⊥

that

〈PTHP,PTBP 〉 = 〈H,B〉 = 0 ∀B ∈ lin
(
TSn

+
(S)
)
,

which, together with (49), implies

(56) PT
α HPγ = 0, PT

β HPγ = 0, and PT
γ HPγ = 0 .

By making use of (53), (55), and (56), we obtain H = 0, which contradicts the choice
of H. This contradiction shows that (ii) holds.

Next, we show “(ii) =⇒ (i).” Since the dual constraint nondegenerate condition

(42) holds at (ȳ, S), for any H ∈ Sn such that AH = 0, H̃βγ = 0, H̃γγ = 0, and

H̃αγ = 0, there exist y ∈ �m and S ∈ lin
(
TSn

+
(S)
)

such that

H = A∗y + S ,

which, together with (49), implies

〈H,H〉 = 〈H,A∗y + S〉 = 〈AH, y〉 + 〈H,S〉 = 0 + 〈PTHP,PTSP 〉

=

〈⎡⎣ H̃αα H̃αβ 0

H̃T
αβ H̃ββ 0

0 0 0

⎤⎦ ,

⎡⎣ 0 0 PT
α SPγ

0 0 PT
β SPγ

PT
γ SPα PT

γ SPβ PT
γ SPγ

⎤⎦〉 = 0 .

2A similar statement for the dual SDP problem (2) also holds. We omit it here for brevity.
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Therefore, by Lemma 14, it follows that (i) holds.
Let (X, ȳ, S) ∈ Sn×�m×Sn be a KKT point satisfying the KKT conditions (3),

and let F be defined by (44). As we menioned in the introduction, by combining the
two papers [14] and [18], we know that if the primal constraint nondegeneracy holds
at X and the dual constraint nondegeneracy holds at (ȳ, S), then every element in
∂BF (X, ȳ, S) is nonsingular. Actually, Proposition 15 and [42, Proposition 3.2] allow
us to prove even the nonsingularity of Clarke’s generalized Jacobian ∂F (X, ȳ, S) under
the same primal and dual constraint nondegenerate conditions.

Proposition 16. Let (X, ȳ, S) ∈ Sn × �m × Sn be a KKT point. Assume that
the primal constraint nondegenerate condition (40) holds at X and the dual constraint
nondegenerate condition (42) holds at (ȳ, S), respectively. Then, every element in
∂F (X, ȳ, S) is nonsingular.

Proof. Since the primal constraint nondegenerate condition (40) implies that
M(X) = {(ȳ, S)}, we know from Proposition 15 that the strong second order sufficient
condition (51) holds at X. Consequently, by [42, Proposition 3.2], every element in
∂F (X, ȳ, S) is nonsingular.

Proposition 16 says that the primal and dual constraint nondegenerate conditions
are sufficient for the nonsingularity of all elements in ∂F (X, ȳ, S). Next, we shall
show that the nonsingularity of only two elements in ∂BF (X, ȳ, S) will imply both
the primal and dual constraint nondegenerate conditions.

From Lemma 1, we know that W ∈ ∂BF (X, ȳ, S) if and only if there exists a
V ∈ ∂BΠSn

+
(A) such that

(57) W (ΔX,Δy,ΔS) =

⎡⎢⎣ −A∗ (Δy) − ΔS

A (ΔX)

ΔX − V (ΔX − ΔS)

⎤⎥⎦
for all (ΔX,Δy,ΔS) ∈ Sn × �m × Sn, where A ≡ X − S. Let ex (∂BΠSn

+
(A)) be

defined by (18). For V 0, V I ∈ ex (∂BΠSn
+
(A)), let W 0 and W I be defined by (57),

respectively. Denote

(58) ex (∂BF (X, ȳ, S)) :=
{
W 0,W I } ⊆ ∂BF (X, ȳ, S) .

Proposition 17. Let (X, ȳ, S) ∈ Sn×�m×Sn be a KKT point. If both W 0 and
W I in ex (∂BF (X, ȳ, S)) are nonsingular, then the primal constraint nondegenerate
condition (40) holds at X and the dual constraint nondegenerate condition (42) holds
at (ȳ, S), respectively.

Proof. First we show that the nonsingularity of W 0 implies the primal constraint
nondegenerate condition (40). Assume on the contrary that (40) does not hold. Since,
equivalently, (39) fails to hold, too, we have{[

A
I

]
Sn

}⊥

∩
[

0

lin
(
TSn

+
(X)

) ]⊥ �=
[

0
0

]
∈
[

�m

Sn

]
,

which implies that there exists 0 �= (Δy,ΔS) ∈ {[AI ]Sn}⊥ ∩
[

0
lin (TSn

+
(X))

]⊥
. We

obtain from (Δy,ΔS) ∈ {[AI ]Sn}⊥ that

(59)
〈
(Δy,ΔS), (AH,H)

〉
= 0 ∀H ∈ Sn =⇒ A∗(Δy) + ΔS = 0,
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and from (Δy,ΔS) ∈
[

0
lin (TSn

+
(X))

]⊥
we obtain that〈

PT (ΔS)P, PTHP
〉

=
〈
ΔS,H

〉
= 0 ∀H ∈ lin

(
TSn

+
(X)

)
,

which, together with (48), implies

(60) PT
α (ΔS)Pα = 0, PT

α (ΔS)Pβ = 0, and PT
α (ΔS)Pγ = 0 .

Let U ∈ Sn be defined by (8). Recall from Proposition 2 that for V 0 ∈ ex (∂BΠSn
+
(A)),

it holds that

V 0(ΔS) = P

⎡⎢⎢⎣
PT
α (ΔS)Pα PT

α (ΔS)Pβ Uαγ ◦ (PT
α (ΔS)Pγ)(

PT
α (ΔS)Pβ

)T
0 0(

PT
α (ΔS)Pγ

)T ◦ UT
αγ 0 0

⎤⎥⎥⎦PT ,

which, together with (60), implies V 0(ΔS) = 0 ∈ Sn. Therefore, by (57) and (59),
we have for ΔX ≡ 0 that

W 0(ΔX,Δy,ΔS) =

⎡⎢⎣ −A∗(Δy) − ΔS

A (ΔX)

ΔX − V 0(ΔX − ΔS)

⎤⎥⎦ =

⎡⎢⎣ 0

0

V 0(ΔS)

⎤⎥⎦ = 0 ,

which implies that W 0 is singular. This contradiction shows that the primal constraint
nondegenerate condition (40) holds at X.

Next, we show that the nonsingularity of W I implies the dual constraint nonde-
generate condition (42). Suppose not. Then,

[A∗�m]
⊥ ∩

[
lin
(
TSn

+
(S)
) ]⊥ �= {0} .

Let 0 �= ΔX ∈ [A∗�m]
⊥ ∩

[
lin
(
TSn

+
(S)
) ]⊥

. We obtain from ΔX ∈ [A∗�m]
⊥

that

(61) 〈ΔX,A∗y〉 = 0 ∀ y ∈ �m =⇒ A(ΔX) = 0

and from ΔX ∈
[
lin
(
TSn

+
(S)
) ]⊥

that〈
PT (ΔX)P, PTSP

〉
=
〈
ΔX,S

〉
= 0 ∀S ∈ lin

(
TSn

+
(S)
)
,

which, together with (49), implies

(62) PT
α (ΔX)Pγ = 0, PT

β (ΔX)Pγ = 0, and PT
γ (ΔX)Pγ = 0 .

From Proposition 2, for V I ∈ ex (∂BΠSn
+
(A)), it holds that

V I(ΔX) = P

⎡⎢⎢⎣
PT
α (ΔX)Pα PT

α (ΔX)Pβ Uαγ ◦ (PT
α (ΔX)Pγ)(

PT
α (ΔX)Pβ

)T
PT
β (ΔX)Pβ 0(

PT
α (ΔX)Pγ

)T ◦ UT
αγ 0 0

⎤⎥⎥⎦PT ,

which, together with (62), implies V I(ΔX) = ΔX. Therefore, by (57) and (61), we
have for (Δy,ΔS) ≡ (0, 0) ∈ �m × Sn that

W I(ΔX,Δy,ΔS) =

⎡⎢⎣ −A∗(Δy) − ΔS

A(ΔX)

ΔX − V I(ΔX − ΔS)

⎤⎥⎦ =

⎡⎢⎣ 0

0

ΔX − V I(ΔX)

⎤⎥⎦ = 0 ,D
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which implies that W I is singular. This contradiction shows that the dual constraint
nondegenerate condition (42) holds at (ȳ, S). This completes the proof.

Now, we are ready to state our main result of this paper.
Theorem 18. Let (X, ȳ, S) ∈ Sn×�m×Sn be a KKT point satisfying the KKT

conditions (3), and let F be defined by (44). Then, the following are all equivalent:
(i) The KKT point (X, ȳ, S) is a strongly regular solution of the generalized equation

(45).
(ii) The function F is a locally Lipschitz homeomorphism near (X, ȳ, S).
(iii) The primal constraint nondegenerate condition (40) holds at X, and the dual

constraint nondegenerate condition (42) holds at (ȳ, S).
(iv) Every element in ∂F (X, ȳ, S) is nonsingular.
(v) Every element in ∂BF (X, ȳ, S) is nonsingular.
(vi) The two elements in ex

(
∂BF (X, ȳ, S)

)
are nonsingular.

Proof. We already know from Lemma 11 that (i) ⇐⇒ (ii) and from Proposi-
tions 16 and 17 that (iii) ⇐⇒ (iv) ⇐⇒ (v) ⇐⇒ (vi). Furthermore, Clarke’s inverse
function theorem for Lipschitz functions [11, 12] implies that (iv) =⇒ (ii). The proof
of this theorem will be complete if one can show that (ii) =⇒ (v). However, the
latter has been known to be true since 1991 [21] (Gowda [15] even obtained a stronger
conclusion than this by employing the degree theory).

Remark 19. Note that the relations (i) ⇐⇒ (ii) ⇐⇒ (iv) even hold for the general
nonlinear semidefinite programming case [42, Theorem 4.1], whose proof further relies
on a number of important results achieved by Bonnans and Shapiro in their excellent
monograph [7] on sensitivity analysis in optimization and variational inequalities.
Here, the structure displayed uniquely by the SDP problem (1) allows us to derive
these relations directly by avoiding the detour employed in [42] for the nonlinear
SDP problem. An SDP example satisfying (iii) but with the strict complementary
condition failing to hold can be found in [2]. See also [20].

4. Quadratic convergence of smoothing Newton methods. In this section,
we shall show how the theoretical results obtained in sections 2 and 3 can be used to
provide a quadratic convergence analysis on smoothing Newton methods for solving
the nonsmooth equation F (X, y, S) = 0, where F is defined by (44). Let Φ : �×Sn →
Sn be defined by (19). We then introduce the following smoothing function for F :

(63) G(ε,X, y, S) ≡

⎡⎢⎣ C −A∗y − S

AX − b

S − Φ(ε, S −X)

⎤⎥⎦ =

⎡⎢⎣ C −A∗y − S

AX − b

X − Φ(ε,X − S)

⎤⎥⎦ ,

where (ε,X, y, S) ∈ �× Sn ×�m × Sn. The above function G is continuously differ-
entiable around any (ε,X, y, S) ∈ �×Sn×�m×Sn when ε �= 0 and has been used by
several authors [9, 10, 20, 46] to design smoothing Newton methods for solving SDP
problems (1) and (2).

Define E : �× Sn ×�m × Sn → �× Sn ×�m × Sn by

(64) E(ε,X, y, S) ≡
[

ε

G(ε,X, y, S)

]
, (ε,X, y, S) ∈ � × Sn ×�m × Sn .

Then we have

F (X, y, S) = 0 ⇐⇒ E(ε,X, y, S) = 0 ∀ (ε,X, y, S) ∈ � × Sn ×�m × Sn .
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Let (X, ȳ, S) ∈ Sn × �m × Sn be a KKT point satisfying the KKT conditions (3).
Then

E(0, X, ȳ, S) = 0 .

Write A ≡ X − S. Let A, X, and S have the spectral decompositions as in
(47). Let the linear-quadratic function ΥX(·, ·) be defined as in Definition 12. Then,
we have the following result, which will play a key role in our analysis of quadratic
convergence of smoothing Newton methods.

Proposition 20. Let V ∈ ∂Φ(0, A). Then, for any ΔX and ΔS in Sn such that
ΔX = V (0,ΔX − ΔS), it holds that

(65) 〈ΔX,ΔS〉 ≤ ΥX(−S,ΔX) .

Proof. Let ΔX and ΔS be in Sn such that ΔX = V (0,ΔX − ΔS). Write

ΔX̃ ≡ PT (ΔX)P and ΔS̃ ≡ PT (ΔS)P . Let Φ|β| be defined by (24). Then, by
Proposition 5, there exists V|β| ∈ ∂Φ|β|(0, 0) such that

V (0,ΔX − ΔS) = P

⎡⎢⎣ ΔH̃αα ΔH̃αβ Uαγ ◦ ΔH̃αγ

(ΔH̃αβ)T V|β|(0,ΔH̃ββ) 0

(ΔH̃αγ)T ◦ UT
αγ 0 0

⎤⎥⎦PT ,

where ΔH̃ ≡ ΔX̃ − ΔS̃ and U ∈ Sn is defined by (8). Thus, by using ΔX =
V (0,ΔX − ΔS), we obtain

ΔS̃αα = 0, ΔS̃αβ = 0, ΔX̃βγ = 0, ΔX̃γγ = 0,(66)

ΔX̃ββ = V|β|(0,ΔX̃ββ − ΔS̃ββ) ,(67)

and

(68) ΔX̃αγ − Uαγ ◦ ΔX̃αγ = −Uαγ ◦ ΔS̃αγ .

By applying Proposition 7 to Φ|β| and using (67), we obtain

(69)
〈ΔX̃ββ ,−ΔS̃ββ〉

=
〈
V|β|(0,ΔX̃ββ − ΔS̃ββ), (ΔX̃ββ − ΔS̃ββ) − V|β|(0,ΔX̃ββ − ΔS̃ββ)

〉
≥ 0 ,

Therefore, from (66), (68), and (69), we have

〈ΔX,ΔS〉 = 〈ΔX̃,ΔS̃〉

= 〈ΔX̃ββ ,ΔS̃ββ〉 + 2〈ΔX̃αγ ,ΔS̃αγ〉

≤ 2〈ΔX̃αγ ,ΔS̃αγ〉

= 2
∑

i∈α,j∈γ

λj

λi
((ΔX̃)ij)

2 ,

which, together with the fact that

ΥX(−S,ΔX) = 2
∑

i∈α,j∈γ

λj

λi
((ΔX̃)ij)

2 ,
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shows that (65) holds.
The following result relates the nonsingularity of ∂BE(0, X, ȳ, S) and ∂E(0, X, ȳ,

S) to both the primal constraint nondegeneracy and the dual constraint nondegener-
acy.

Proposition 21. Let (X, ȳ, S) ∈ Sn × �m × Sn be a KKT point satisfying the
KKT conditions (3), and let E be defined by (64). Then the following are equivalent:
(i) The primal constraint nondegenerate condition (40) holds at X, and the dual

constraint nondegenerate condition (42) holds at (ȳ, S).
(ii) Every element in ∂BE(0, X, ȳ, S) is nonsingular.
(iii) Every element in ∂E(0, X, ȳ, S) is nonsingular.

Proof. Since “(iii) =⇒ (ii)” holds trivially and “(ii) =⇒ (i)” follows from Propo-
sition 6 and Theorem 18 directly, we need only to show “(i) =⇒ (iii).” So in the
remaining part of our proof we always assume that part (i) holds.

Let W be an arbitrary element in ∂E(0, X, ȳ, S). We need to show that W is
nonsingular. Let (Δε,ΔX,Δy,ΔS) ∈ � × Sn ×�m ×�n be such that

W (Δε,ΔX,Δy,ΔS) = 0.

Then, by Lemma 1, there exists V ∈ ∂Φ(0, A) such that

W (Δε,ΔX,Δy,ΔS) =

⎡⎢⎢⎢⎣
Δε

−A∗ (Δy) − ΔS

A (ΔX)

ΔX − V (Δε,ΔX − ΔS)

⎤⎥⎥⎥⎦ = 0 ,

which implies that Δε = 0. Thus, we have

(70) W (0,ΔX,Δy,ΔS) =

⎡⎢⎢⎢⎣
0

−A∗ (Δy) − ΔS

A (ΔX)

ΔX − V (0,ΔX − ΔS)

⎤⎥⎥⎥⎦ = 0 .

Since the primal constraint nondegenerate condition (40) implies M(X) = {(ȳ, S)},
we know from Proposition 15 that the strong second order sufficient condition (51)
holds at X and takes the form

(71) −ΥX(−S,H) > 0 ∀ 0 �= H ∈ app(ȳ, S) ,

where the set app(ȳ, S) is defined by (50). From Proposition 5, (70), and (50), we
know that

(72) ΔX ∈ app(ȳ, S) .

By the second and the third equations of (70), we obtain that

0 = 〈ΔX,−A∗(Δy) − ΔS〉 + 〈Δy,A (ΔX)〉 = 〈ΔX,−ΔS〉 ,

which, together with Proposition 20 and the last equation of (70), implies that

ΥX(−S,ΔX) ≥ 0 .
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Hence, from (71) and (72), we can conclude that

ΔX = 0 .

Thus, from (70), we get

(73)

[
A∗ (Δy) + ΔS

V (0,−ΔS)

]
= 0 ,

which, by Proposition 5, gives rise to

(74) PT
α (ΔS)Pα = 0, PT

α (ΔS)Pβ = 0, and PT
α (ΔS)Pγ = 0 .

From (39), which is equivalent to the primal constraint nondegenerate condition (40),
we know that there exist X ∈ Sn and S ∈ lin

(
TSn

+
(X)

)
such that

AX = Δy and X + S = ΔS ,

which, together with (74), (49), and the first equation of (73), imply

〈Δy,Δy〉 + 〈ΔS,ΔS〉 = 〈AX,Δy〉 + 〈X + S,ΔS〉

= 〈AX,Δy〉 + 〈X,−A∗(Δy)〉 + 〈S,ΔS〉

= 〈S,ΔS〉 = 〈PTSP, PT (ΔS)P 〉 = 0 .

Thus, Δy = 0 and ΔS = 0, which, together with Δε = 0 and ΔX = 0, imply the
following:

W (Δε,ΔX,Δy,ΔS) = 0 =⇒ (Δε,ΔX,Δy,ΔS) = 0 .

This shows that W is nonsingular. So, the proof is completed.
The significance of Proposition 21 is that it allows us to offer a quadratic conver-

gence analysis on several globally convergent smoothing Newton methods presented
in [9, 10, 20, 46] for solving the SDP problem even when the strict complementarity
condition is not satisfied, i.e., when the condition X + S � 0 fails to hold. Instead
of working on these different smoothing Newton methods one by one (with some
necessary modifications), for simplicity we use only the smoothing Newton method
presented in [46] as an example of how this objective can be achieved.

For any (ε,X, y, S) ∈ �×Sn×�m×Sn, write Z ≡ (X, y, S) and define f(ε, Z) :=
‖E(ε, Z)‖2 and θ(ε, Z) : = rmin{1, f(ε, Z)}. Let ε̄ ∈ (0,∞) and r ∈ (0, 1) be such
that rε̄ < 1. The smoothing Newton method presented in [46] can then be stated as
follows.
Algorithm I (a squared smoothing Newton method).
Step 0. Select constants δ ∈ (0, 1) and σ ∈ (0, 1/2). Let ε0 := ε̄, Z0 ∈ Sn×�m×Sn

be an arbitrary point, and k := 0.
Step 1. If E(εk, Z

k) = 0, then stop. Otherwise, let θk := θ(εk, Z
k).

Step 2. Compute (Δεk,ΔZk) by

(75) E(εk, Z
k) + E′(εk, Z

k)(Δεk,ΔZk) = θk

[
ε̄

0

]
.D
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Step 3. Let lk be the smallest nonnegative integer l satisfying

(76) f(εk + δlΔεk, Z
k + δlΔZk) ≤ [ 1 − 2σ(1 − rε̄)δl ]f(εk, Z

k) .

Define (εk+1, Z
k+1) := (εk + δlkΔεk, Z

k + δlkΔZk).
Step 4. Replace k by k + 1 and go to Step 1.

The well posedness of Algorithm I hinges on the nonsingularity of E′(ε, Z) for
any ε > 0, which is equivalent to the surjectivity of the linear operator A : Sn → �m

[46]. The two conditions required for quadratic convergence of Algorithm I are (i) the
strong semismoothness of the smoothing function E and (ii) the nonsingularity of all
W ∈ ∂BE(0, Z∗) (or all W ∈ ∂E(0, Z∗)). However, (i) has been proven in [46] and (ii)
can be derived from Proposition 21 under both the primal constraint nondegeneracy
and the dual constraint nondegeneracy. Thus, by employing the standard convergence
analysis detailed in [30] for the vector version of the squared smoothing Newton
method, we have the following convergence theorem. For more explanation, see [46].

Theorem 22. Assume that A : Sn → �m is onto. Then an infinite se-
quence {(εk, Zk)} is generated by Algorithm I and each accumulation point (0, Z)
of {(εk, Zk)} is a solution of E(ε, Z) = 0. Let Z = (X, ȳ, S) ∈ Sn × �m × Sn. If
the primal constraint nondegenerate condition (40) holds at X and the dual constraint
nondegenerate condition (42) holds at (ȳ, S), then the whole sequence {(εk, Zk)} con-
verges to (0, Z),

(77) ‖ (εk+1, Z
k+1) − (0, Z) ‖ = O(‖ (εk, Z

k) − (0, Z) ‖2),

and

(78) εk+1 = O(ε2
k) .

Note that in Theorem 22, the quadratic convergence does not rely on the strict
complementarity—one common condition that was assumed in all known smoothing
Newton methods for solving the SDP problem (1) and its dual, as far as we know.
The smoothing function G can certainly take other forms. For example, in order
to improve the global convergence of Algorithm I, one may consider Tikhonov-type
regularized smoothing functions such as

(79)

G(ε,X, y, S) :=

⎡⎢⎣ C −A∗y − S + εX

AX − b + εy

S − Φ
(
ε, S − (X + εS)

)
⎤⎥⎦ =

⎡⎢⎣ C −A∗y − S + εX

AX − b + εy

X − Φ
(
(X + εS) − S

)
+ εS

⎤⎥⎦ .

The quadratic convergence of Algorithm I will not be affected because, by Lemma 1,
the set ∂BE(0, X, S, Y ) is still kept the same for any (X, y, S) ∈ Sn ×�m ×Sn if one
replaces the smoothing function G in (64) by the one given in (79).

5. Conclusions. In this paper, we presented several equivalent links among the
primal and dual constraint nondegenerate conditions, the strong regularity, and the
nonsingularity of both the B-subdifferential and Clarke’s generalized Jacobian of a
nonsmooth system at a KKT point in the context of linear semidefinite program-
ming. These links were further used to derive for the first time a quadratic conver-
gence analysis of globally convergent smoothing Newton methods without assuming
the strict complementarity. Variational analysis on the metric projector over the cone
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of positive semidefinite matrices and its smoothed counterpart plays a fundamental
role in achieving these. Given the fact that the metric projector over the more gen-
eral symmetric cone behaves quite similarly to the metric projector over the cone of
positive semidefinite matrices [45], one is tempted to wonder if the results obtained
in this paper can be extended to linear symmetric cone programming. We leave this
interesting question as our future research topic.
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