
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. OPTIM. c© 2019 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 2785–2813

COMPUTING THE BEST APPROXIMATION OVER THE
INTERSECTION OF A POLYHEDRAL SET AND THE DOUBLY

NONNEGATIVE CONE∗
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Abstract. This paper introduces an efficient algorithm for computing the best approximation
of a given matrix onto the intersection of linear equalities, inequalities, and the doubly nonnegative
cone (the cone of all positive semidefinite matrices whose elements are nonnegative). In contrast to
directly applying the block coordinate descent type methods, we propose an inexact accelerated (two-)
block coordinate descent algorithm to tackle the four-block unconstrained nonsmooth dual program.
The proposed algorithm hinges on the superlinearly convergent semismooth Newton method to solve
each of the two subproblems generated from the (two-)block coordinate descent, which have no closed
form solutions due to the merger of the original four blocks of variables. The O(1/k2) iteration
complexity of the proposed algorithm is established. Extensive numerical results over various large
scale semidefinite programming instances from relaxations of combinatorial problems demonstrate
the effectiveness of the proposed algorithm.
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1. Introduction. In this paper, we are interested in solving the best approx-
imation problem over the intersection of affine spaces defined by linear equalities,
inequalities, and the doubly nonnegative cone. Mathematically, the optimization
problem takes the form of

minimize
X∈Sn

1

2
‖X −G ‖2

subject to AX = b, BX ≥ d, X ∈ Sn+ , X ≥ 0,
(1)

where A : Sn → RmE , B : Sn → RmI are linear operators, G ∈ Sn, b ∈ RmE , d ∈ RmI
are given data, and Sn and Sn+ are the cones of all n × n symmetric matrices and
positive semidefinite matrices, respectively.

Problem (1) is a special quadratic semidefinite programming that is challenging
to solve when there is a large number of equality and inequality constraints. On one
hand, pure first-order methods, such as the alternating direction method of multipli-
ers, may need many iteration cycles until moderate accuracy can be reached. This is
not desirable since within each cycle one needs to project a matrix onto the positive
semidefinite cone that is presumably computationally intensive. On the other hand,
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2786 YING CUI, DEFENG SUN, AND KIM-CHUAN TOH

the second-order interior point method suffers from the inherent ill-conditioning of the
Newton system so that it is not effective to use the iterative algorithm to solve the
corresponding large-scale linear equations in order to obtain the search direction. It
is thus important to develop an efficient computational framework that properly inte-
grates the first-order and second-order methods to solve the conic best approximation
problem (1).

In this paper, by leveraging on the strong convexity of the best approximation
problem, we take a dual approach to solve (1) based on the observation that its dual
problem, with the form of

minimize
w

h(w) +

4∑
i=1

ϕi(wi), w , (w1, w2, w3, w4),(2)

is a convex nonsmooth problem without coupling constraints between the blocks.
Here h is a convex differentiable function whose gradient is Lipschitz continuous, and
ϕ1, . . . , ϕ4 are proper closed convex functions; see section 2 for the detailed derivations
of this dual formulation. This nonsmooth-decoupling feature is a key reason for us to
develop a sequential dual-updating scheme with convergence guarantee.

Naturally, one may consider the block coordinate (gradient) descent (BCD)
method, whose computational complexity is at best O(1/k), to solve the four block
unconstrained problem (2). See the papers [55, 54, 6, 46, 27] and the recent survey [59]
for extensive discussions of this method. A key factor for determining the efficiency
of the BCD method is the number of blocks that are updated sequentially during one
iteration, since there is always a trade-off between such a number of blocks and the
difficulty for solving the subproblems for each block. One may notice that solving
the conic program (1) is different in nature from solving those problems arising in
computational statistics and machine learning. The properties of the latter problems,
such as the low computational cost of calculating one component of the gradient or
solving one subproblem, and the need for only low accuracy solutions, are conducive
for the efficient implementations of a multiblock (usually at least hundreds-of-block)
coordinate descent method. However, with the focus of solving the conic program (1)
to a higher accuracy, we have the following issues to resolve:

• Treating (2) as a single block problem and solving all the variables simulta-
neously is difficult due to the degeneracy of this problem.

• Directly applying the four-block BCD method is inefficient as it potentially
will need many more iteration cycles compared with those of three or fewer
blocks. (This observation is indeed confirmed by the numerical experiments
in section 5. As mentioned in the previous paragraph, within each iteration
cycle, the algorithm may involve a computationally intensive step such as the
projection onto the positive semidefinite cone.

To address the above issues, we propose to divide the four variables (w1, . . . , w4) into
two groups and solve problem (2) via a two-block inexact majorized BCD method.
The subproblems with regard to each group may be nondegenerate and relatively easy
to solve by Newton-type methods. In order to make the overall algorithm converge
fast, we also adopt Nesterov’s acceleration technique for gradient type methods [39]
in this alternating minimization scheme. In addition to incorporating the acceleration
technique into the BCD framework, it is also important to allow the inexact compu-
tation of each block, which is essential if the resulting subproblems within each block
are solved by iterative algorithms.
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BEST APPROXIMATION ON A CONVEX SUBSET OF DNN CONE 2787

Related work. There are some pioneering papers on incorporating the tech-
niques of blockwise updating and Nesterov’s acceleration into solving multiblock con-
vex optimization problems. In particular, Nesterov [40] studied the acceleration of
the randomize BCD method for solving smooth convex problems. The dependence
of the complexity bounds on the Lipschitz constant of the gradient for each block is
further improved in [34, 36, 1, 41, 13]. With the presence of the separable nonsmooth
functions in the objective, the accelerated randomized proximal coordinate gradient
method is studied in [19, 20] and also allows parallel computation. The accelerated
linear rates for the strongly convex case is further established in [35]. It has also
been noticed in [45, 30] that proper incorporation of the second-order information in
approximating the blocks can speed up the convergence rate of the randomized BCD
method. When there are only two blocks of variables and the smooth part of the
objective is a quadratic function, the accelerated BCD algorithm is discussed in [8].
Different from the other cited work in this paragraph, the updating order is determin-
istic in the latter work. It is worth mentioning that the deterministic (more precisely,
cyclic) BCD method outperforms its random counterpart, both theoretically and nu-
merically, for solving convex quadratic problems with a diagonally dominant Hessian
matrix [25]. In fact, we have also observed similar superiority of the cyclic BCD over
the randomized version in our numerical experiments.

Incorporating inexact updates into the accelerated (proximal) gradient methods
is also an active research area. Both deterministic and stochastic types of error are
considered in the existing literature. The former type is studied in [11] for smooth
problems and in [49, 29] for nonsmooth problems. In addition, the paper [12] provides
a comprehensive treatment of the inexact oracle that allows the application of the
accelerated gradient method of smooth convex optimization to solve nonsmooth or
weakly smooth convex problems. An additive stochastic noise model is considered
in [33, 23, 24] and the optimal complexity bounds are derived for smooth convex
problems, with or without the strong convexity of the objective function. A unified
analysis of the deterministic and stochastic oracles for (constrained) smooth problems
is conducted in [17, 10].

Our work is also closely related to the work of [51], which adopts an inexact ac-
celerated BCD method to solve the doubly nonnegative best approximation problem.
However, an additional regularization term related to the linear inequalities is added
in [51], which leads to only two nonsmooth separable functions in the correspond-
ing dual program. Furthermore, by Danskin’s theorem [18, Theorem 10.2.1], one of
the nonsmooth blocks can be solved implicitly and the accelerated proximal gradient
(APG) method initiated by Nesterov [39] is thus applicable to the resulting problem.
Different from [51], here we directly solve the original best approximation problem in
(1) without adding any regularization term. This leads to a dual problem with four
separable nonsmooth functions such that the algorithmic framework in [51] no longer
applicable.

Our contributions. The key ingredient of our proposed algorithm is a combina-
tion of the inexactness, deterministic blockwise-updating, as well as the Nesterov-type
acceleration technique to solve the dual of strongly convex conic optimization prob-
lems. The main contributions of our paper are as follows.

• Theoretically, we design an inexact two-block accelerated BCD method for
solving (2) where h is a general smooth coupled function that is not neces-
sarily quadratic. A key feature of the method is the inexactness framework
that allows us to apply the two-block based method to solve the four-block
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2788 YING CUI, DEFENG SUN, AND KIM-CHUAN TOH

problem (2) by viewing the four blocks as two larger blocks each containing
two smaller blocks. Theoretically, we establish the O(1/k2) complexity of the
proposed inexact accelerated BCD method. To the best of our knowledge, this
is the first time that such optimal complexity is derived for the deterministic
inexact (two)-block coordinate descent method. To achieve good practical
performance, we suggest a proper way to merge several variables into one
block so that only small proximal terms are added to the BCD subproblems.
We also address the important issue of finding efficient algorithms to solve
the BCD subproblems.

• Numerically, we provide an efficient solver based on the proposed method for
solving the important class of best approximation problems of the form (1)
that involves the positive semidefinite cone constraint and a large number of
linear equality and inequality constraints. Our experiments on a large number
of data instances from the Biq Mac Library maintained by A. Wiegele demon-
strate that our solver is at least 3 to 4 times faster than other (accelerated)
BCD-type methods.

• Finally, it is worth mentioning that besides being the dual formulation of the
best approximation problem (1), problem (2) can be viewed as the dual of a
more general class of strongly convex conic optimization problems,

minimize
x∈X

f(x) + φ(x)

subject to Ax = b, g(x) ∈ C, x ∈ K,
(3)

where X, Y, and Z are three finite-dimensional Euclidean spaces, f : X→ R is
a smooth and strongly convex function, φ : X→ (−∞,+∞] is a closed proper
convex function, A : X → Y is a linear operator, b ∈ Y is the given data,
C ⊆ Z and K ⊆ X are two closed convex cones, and g : X → Z is a smooth
and C-convex map for some closed convex set C (see, e.g., [47, Example 4′])
satisfying

g (αx1 + (1− α)x2) − [αg(x1) + (1− α)g(x2) ] ∈ C ∀ x1, x2 ∈ g−1(C),
∀ α ∈ (0, 1).

In order to make our discussions more general, we will directly derive the
dual of (3) in the next section. In addition, many optimization problems
themselves have the form of (2), such as the robust principle component
analysis [58] and the robust matrix completion problem [31].

The rest of the paper is organized as follows. In the next section, we derive the
dual form of problem (3) and propose the inexact majorized accelerated BCD method.
Section 3 is devoted to the analysis of O(1/k2) iteration complexity of the proposed
algorithm. In section 4, we describe the implementation of this inexact framework for
solving the dual program (2). Newton-type algorithms for solving the subproblems are
also discussed in this section. Numerical results are reported in section 5, where we
show the effectiveness of our proposed algorithm via comparison with several variants
of the BCD-type methods. We conclude our paper in section 6.

2. Formulation of the dual problem and the algorithmic framework.
By introducing an auxiliary variable x̃ = x and reformulating (3) as

minimize
x,x̃∈X

f(x) + φ(x̃)

subject to Ax = b, g(x) ∈ C, x ∈ K, x = x̃,
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BEST APPROXIMATION ON A CONVEX SUBSET OF DNN CONE 2789

we derive the following Lagrangian function associated with the dual variable (y, λ, s, z)
∈ Y× Z× X× X:

L(x, x̃; y, λ, s, z) , f(x) + φ(x̃)− 〈 y, Ax− b 〉 − 〈λ, g(x) 〉 − 〈 s, x 〉 − 〈 z, x− x̃ 〉,

which leads to the dual program

maximize
y,λ,s,z

ψ(A∗y + s+ z, λ) + 〈b, y〉 − φ∗(−z)

subject to λ ∈ C∗, s ∈ K∗.
(4)

Here A∗ is the adjoint of A, φ∗ is the conjugate function of φ, C∗ and K∗ are the dual
cones of C and K, and the function ψ : X× C∗ → R is defined as

ψ(w, λ) , inf
x∈X
{ f(x)− 〈w, x〉 − 〈λ, g(x) 〉 } , (w, λ) ∈ X× C∗.

Since g is assumed to be C-convex, the term −〈λ, g(x) 〉 is convex with respect to x for
λ ∈ C∗. The optimal solution of the above problem is thus a singleton by the strong
convexity of f . In addition, the function ψ is concave and continuously differentiable
with Lipschitz continuous gradient [18, Theorem 10.2.1]. It therefore follows that the
dual problem (4) is a special case of (2).

In what follows, we introduce an inexact majorized accelerated two-block coordi-
nate descent method (imABCD) to solve (2). By grouping the four blocks of variables
(w1, w2, w3, w4) into two larger blocks, we can express (2) in the following two-block
format:

minimize
u,v

θ(w) , h(w)+p(u)+q(v), w ≡ (u, v), u ≡ (w1, w2) ∈ U, v ≡ (w3, w4) ∈ V,
(5)

where p(u) = ϕ1(w1) + ϕ2(w2) and q(v) = ϕ3(w3) + ϕ4(w4) are proper closed convex
functions, and U, V are two appropriately defined finite-dimensional Euclidean spaces.
Since ∇h is assumed to be globally Lipschitz continuous, there exist two self-adjoint
positive semidefinite linear operators Q and Q̂ : U× V→ U× V such that


h(w) ≥ h(w′) + 〈∇h(w′), w − w′〉+

1

2
‖w − w′‖2Q ,

h(w) ≤ ĥ(w;w′) , h(w′) + 〈∇h(w′), w − w′〉 +
1

2
‖w − w′‖2Q̂ ,

∀ w,w′ ∈ U× V.

(6)

The operators Q and Q̂ may be decomposed into the following 2× 2 block structures
as

Qw ≡
(
Q11 Q12

Q∗12 Q22

)(
u
v

)
, Q̂w ≡

(
Q̂11 Q̂12

Q̂∗12 Q̂22

)(
u
v

)
, w ∈ U× V,

where Q11, Q̂11 : U → U and Q22, Q̂22 : V → V are self-adjoint positive semidefinite
linear operators, and Q12, Q̂12 : V → U are two linear mappings whose adjoints
are given by Q∗12 and Q̂∗12, respectively. The following assumption is made in the
subsequent discussions.
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2790 YING CUI, DEFENG SUN, AND KIM-CHUAN TOH

Assumption 1. There exist two self-adjoint positive semidefinite linear operators
D1 : U→ U and D2 : V→ V such that

Q̂ = Q+ Diag (D1,D2) .

Furthermore, Q̂ satisfies that Q̂11 = Q11 +D1 � 0 and Q̂22 = Q22 +D2 � 0.

Below is our proposed algorithm for solving problem (2) via the two-block
program (5).

imABCD: An inexact majorized accelerated block coordinate descent algorithm
for (5)

Initialization. Choose an initial point (u1, v1) = (ũ0, ṽ0) ∈ dom p × dom q and a
nonnegative nonincreasing sequence {εk}. Let t1 = 1. Perform the following steps in
each iteration for k ≥ 1.

Step 1. Compute
ũk = argmin

u∈U

{
p(u) + ĥ

(
u, vk;wk

)
+
〈
δku, u

〉}
,

ṽk = argmin
v∈V

{
q(v) + ĥ

(
ũk, v;wk

)
+
〈
δkv , v

〉}(7)

such that (δku, δ
k
v ) ∈ U× V satisfies max{‖Q̂−1/211 δku‖, ‖Q̂

−1/2
22 δkv‖} ≤ εk. Denote w̃k =

(ũk, ṽk).

Step 2. Compute


tk+1 =

1

2

(
1 +

√
1 + 4t2k

)
,

wk+1 = w̃k +
tk − 1

tk+1

(
w̃k − w̃k−1

)
.

The above imABCD algorithm can be taken as an accelerated as well as an
inexact version of the alternating minimization method. When εk ≡ 0 for all k ≥ 0,
the proposed algorithm reduces to an exact version of the majorized accelerated block
coordinate descent (mABCD) method. Since Nesterov’s acceleration technique is able
to improve the complexity of the gradient-type method from O(1/k) to O(1/k2), it is
interesting for us to investigate whether this acceleration technique can be extended to
the two-block coordinate descent method without random selection of the updating
blocks. In fact, extensive numerical experiments in the existing literature indicate
that the acceleration technique may substantially improve the efficiency of the BCD
algorithm; see, e.g., the numerical comparison in [51]. The study of this subject is
thus critical for understanding the reasons behind this phenomenon.

Finally, we need to mention that the vectors δku, δkv in (7) should be interpreted
as the residual errors incurred when solving problem (7) without the terms

〈
δku, u

〉
and

〈
δkv , v

〉
. For ease of presentation, we will focus our subsequent discussion only

on the u-block, but note that a similar discussion can be adapted for the v-block.
Suppose an approximate optimal solution ũk has been computed. Then we can find
an appropriate residual vector δku such that δku ∈ ∂p(ũk) +∇ĥ(ũk, vk;wk). Given the
residual vector δku, the inexact criteria

‖Q̂−1/211 δku‖ ≤ εk(8)
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in Step 1 of the above imABCD algorithm can be checked numerically. Next we
describe the precise mechanism to check the condition at a given trial approximate
solution ũk;try (obtained from an inexact algorithm for the u-block at the kth iteration
without the term

〈
δku, u

〉
). First compute

ûk , Proxp

(
ũk;try −∇ĥ

(
ũk;try, vk;wk

))
,

δku , ũk;try − ûk +∇ĥ
(
ûk, vk;wk

)
−∇ĥ

(
ũk;try, vk;wk

)
.

Then it holds that δku ∈ ∂p(ûk) + ∇ĥ(ûk, vk;wk). Thus if δku satisfies the required
condition in (8), then we may set ũk = ûk.

3. The O(1/k2) complexity of the objective values. In order to simplify
the subsequent discussions, we introduce the positive semidefinite operator H : U ×
V→ U× V defined by

H , Diag (D1 , D2 +Q22 ).(9)

We also write Ω as the optimal solution set of (2). We start by presenting the following
simple lemma concerning the properties of the sequence {tk}.

Lemma 1. The sequence {tk}k≥1 generated by the imABCD algorithm satisfies
the following properties:

(a) 1− 1

tk+1
=

t2k
t2k+1

. (b)
k + 1

2
≤ tk ≤

5

8
k +

3

8
≤ k .

(c) Assume any w+, w′ in U× V. Consider w = (1− 1
tk

)w+ + 1
tk
w′. Then

t2k [ θ(w)− θ(w′) ] ≤ t2k−1
[
θ(w+)− θ(w′)

]
.(10)

Proof. By noting that t2k+1 − tk+1 = t2k, property (a) can be obtained directly.
Property (b) can be derived by induction from the inequalities

tk+1 =
1 + 2tk

√
1 + 1/(4t2k)

2
≤ 1 + 2tk(1 + 1/(8t2k))

2

=
1

2
+ tk +

1

8tk
≤ 5

8
+ tk ≤

5k

8
+ t1 =

5k

8
+ 1

and

tk+1 =
1 +

√
1 + 4t2k
2

≥ 1 + 2tk
2

≥ k + 2t1
2

=
k + 2

2
.

(c) From the convexity of θ, we have that

t2k θ(w) ≤
(
t2k − tk

)
θ(w+) + tk θ(w

′) = t2k−1 θ(w
+) +

(
t2k − t2k−1

)
θ(w′).

From here, we get the desired inequality.

In the following, we shall first provide the O(1/k2) complexity of the ABCD
method with subproblems being solved exactly, and then extend the analysis to the
inexact case.
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3.1. The case where the subproblems are being solved exactly. The
analysis in this subsection is partially motivated by the recent paper [8] in which the
authors consider the O(1/k2) complexity of an accelerated BCD method for (2) where
h is a special least-squares quadratic function. Here we extend this nice result to a
more general setting where h is only required to be a smooth function.

The lemma below shows an important property of the objective values for the
sequence generated by the mABCD algorithm, which is essential to prove the main
global complexity result.

Lemma 2. Suppose that Assumption 1 holds. Let the sequences {w̃k} , {(ũk, ṽk)}
and {wk} = {(uk, vk)} be generated by the mABCD algorithm. Then for any k ≥ 1,
it holds that

θ(w̃k)− θ(w) ≤ 1

2
‖w − wk ‖2H −

1

2
‖w − w̃k ‖2H ∀ w ∈ U× V,

where the operator H is defined in (9). In particular, if w∗ is an optimal solution of
(2), then

‖w∗ − w̃k‖H ≤ ‖w∗ − wk ‖H.

Proof. By applying the optimality condition to the subproblems in (7), we derive
that  0 ∈ ∂p

(
ũk
)

+∇uh
(
wk
)

+ Q̂11

(
ũk − uk

)
,

0 ∈ ∂q
(
ṽk
)

+∇vh
(
wk
)

+Q∗12
(
ũk − uk

)
+ Q̂22

(
ṽk − vk

)
.

Thus, it follows from the convexity of p(·) and q(·) that


p(u) ≥ p

(
ũk
)

+
〈
u− ũk, −∇uh(wk)− Q̂11(ũk − uk)

〉
∀ u ∈ U,

q(v) ≥ q(ṽk) +
〈
v − ṽk, −∇vh(wk)−Q∗12(ũk − uk)− Q̂22(ṽk − vk)

〉
∀ v ∈ V.

(11)

Based on the inequalities in (6) that
h(w̃k) ≤ h(wk) +

〈
∇h(wk), w̃k − wk

〉
+

1

2
‖ w̃k − wk ‖2Q̂ ,

h(w) ≥ h(wk) +
〈
∇h(wk), w − wk

〉
+

1

2
‖w − wk ‖2Q ,

we get

h(w)− h
(
w̃k
)
≥
〈
∇h
(
wk
)
, w − w̃k

〉
+

1

2
‖w − wk ‖2Q −

1

2
‖ w̃k − wk ‖2Q̂ .(12)

By the Cauchy–Schwarz inequality, we also have

2
〈
ũk−u, Q12 (ṽk−vk)

〉
= 2

〈
Q
(
w̃k − w

)
,

(
0

ṽk−vk
)〉
−2

〈
Q22

(
ṽk−v

)
, ṽk−vk

〉(13)

≤
(
‖ w̃k − w ‖2Q + ‖ ṽk − vk ‖2Q22

)
−
(
‖ ṽk−v ‖2Q22

+‖ ṽk−vk ‖2Q22
− ‖ vk − v ‖2Q22

)
= ‖ w̃k − w ‖2Q + ‖ vk − v ‖2Q22

− ‖ ṽk − v ‖2Q22
.
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Summing up the inequalities (11) and (12) and substituting the resulting inequality
into (13), we obtain

2
(
θ(w)− θ

(
w̃k
) )

≥
(∥∥w−wk ∥∥2Q−∥∥ w̃k−wk ∥∥2Q̂)−2

〈
w−w̃k, Q̂

(
w̃k−wk

)〉
−2
〈
ũk−u,Q12

(
ṽk−vk

)〉
≥
∥∥w − wk ∥∥2Q − ∥∥ w̃k − wk ∥∥2Q̂ − (∥∥w − wk ∥∥2Q̂ − ∥∥w − w̃k ∥∥2Q̂ − ∥∥ w̃k − wk ∥∥2Q̂)
−
(∥∥ w̃k − w ∥∥2Q+

∥∥ vk − v ∥∥2Q22
−
∥∥ ṽk−v ∥∥2Q22

)
=
∥∥w−w̃k ∥∥2H− ∥∥w − wk ∥∥2H ,

where the last equality is due to Assumption 1. The stated inequality therefore
follows.

Based on the above lemma, we next show the O(1/k2) complexity for the sequence
of objective values obtained by the mABCD algorithm.

Theorem 2. Suppose that Assumption 1 holds and the solution set Ω of the prob-
lem (2) is nonempty. Let w∗ , (u∗, v∗) ∈ Ω. Then the sequence {w̃k} , {(ũk, ṽk)}
generated by the mABCD algorithm satisfies that

θ(w̃k)− θ(w∗) ≤ 2 ‖ w̃0 − w∗ ‖2H
(k + 1)2

∀ k ≥ 1.

Proof. Letting w = (1 − 1
tk

)w̃k−1 + 1
tk
w∗ in Lemma 2, we derive that, for any

k ≥ 2,

t2kθ(w)−t2kθ(w̃k)≥1

2

∥∥(tk − 1)w̃k−1 + w∗ − tkw̃k
∥∥2
H−

1

2

∥∥(tk−1)w̃k−1 + w∗−tkwk
∥∥2
H .

By applying Lemma 1(c) with w+ = w̃k−1 and w′ = w∗, we get

t2k [ θ(w)− θ(w∗) ] ≤ t2k−1
[
θ
(
w̃k−1

)
− θ(w∗)

]
.

By combining the above inequalities and noting that wk = w̃k−1 + tk−1−1
tk

(w̃k−1 −
w̃k−2), we get for k ≥ 2,

t2k [ θ(w̃k)− θ(w∗) ] +
1

2

∥∥ tkw̃k − w∗ − (tk − 1)w̃k−1
∥∥2
H

≤ t2k−1 [ θ(w̃k−1)− θ(w∗) ] +
1

2

∥∥ tk−1w̃k−1 − w∗ − (tk−1 − 1)w̃k−2
∥∥2
H.

By applying Lemma 2 again for k = 1 and w = w∗, we get

θ(w̃1)−θ(w∗) ≤ 1

2
‖w1−w∗ ‖2H−

1

2
‖ w̃1−w∗ ‖2H =

1

2
‖ w̃0−w∗ ‖2H−

1

2
‖ w̃1−w∗ ‖2H .

It therefore follows that, for all k ≥ 1,

t2k
[
θ
(
w̃k
)
− θ(w∗)

]
+

1

2
‖ tkw̃k − w∗ − (tk − 1)w̃k−1 ‖2H

≤ t2k−1 [ θ
(
w̃k−1

)
− θ(w∗) ] +

1

2
‖ tk−1w̃k−1 − w∗ − (tk−1 − 1)w̃k−2 ‖2H

≤ · · ·

≤ t21 [ θ(w̃1)− θ (w∗) ] +
1

2
‖ t1w̃1 − w∗ − (t1 − 1)w̃0 ‖2H ≤

1

2
‖ w̃0 − w∗ ‖2H .

The desired inequality of this theorem can thus be established since tk ≥ k+1
2 by

Lemma 1(b).D
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3.2. The case where the subproblems are being solved inexactly. The-
orem 2 shows the O(1/k2) complexity of the objective values for the two-block ma-
jorized accelerated BCD algorithm for solving (2). However, there seems to have no
easy extension of its proof to problems with three or more blocks. In this section,
we consider allowing for inexactness when solving the subproblems. The introduction
of the inexactness is crucial for efficiently solving the multiblock problems. We note
that such an idea has already been incorporated into variants of the BCD and APG
algorithms; see, e.g., [49, 29, 57, 53], but the analyses therein are not applicable to
our setting.

We characterize the decreasing property of the objective values for the imABCD
algorithm in the lemma below. Its proof can be derived similarly as the proof of the
exact case in Proposition 2 by applying the optimality conditions at the iteration
point (ũk, ṽk). We omit the details here for brevity.

Lemma 3. Suppose that Assumption 1 holds. Let the sequences {w̃k} , {(ũk, ṽk)}
and {wk} , {(uk, vk)} be generated by the imABCD algorithm. Then for any k ≥ 1,

θ
(
w̃k
)
−θ(w) ≤ 1

2
‖w−wk ‖2H−

1

2
‖w−w̃k ‖2H+εk ‖w−w̃k ‖Diag(Q̂11,Q̂22)

∀ w ∈ U×V.

For k ≥ 1, we denote the exact solutions at the (k + 1)th iteration as

uk , argmin
u∈U

{
p(u) + ĥ

(
u, vk;wk

)}
, vk , argmin

v∈V

{
q(v) + ĥ

(
uk, v;wk

)}
.(14)

For consistency, we set (u0, v0) = (ũ0, ṽ0) = (u1, v1). Since Q̂11 and Q̂22 are assumed
to be positive definite, the above two problems admit unique solutions and thus uk

and vk are well defined for k ≥ 0. The following lemma shows the gap between (uk, vk)
and (ũk, ṽk).

Lemma 4. Let the sequences {(ũk, ṽk)}and{(uk, vk)}be generated by the imABCD
algorithm, and let {(uk, vk)} be given by (14). For any k ≥ 1, the following inequalities
hold:

(a) ‖uk − u∗ ‖2
Q̂11
≤ ‖uk − u∗ ‖2D1

+ ‖ vk − v∗‖2
Q̂22

= ‖wk − w∗‖2H;

(b) ‖ Q̂1/2
11 (ũk − uk) ‖ ≤ εk, ‖ Q̂1/2

22 (ṽk − vk) ‖ ≤ (1 +
√

2) εk;
(c) ‖ w̃k − wk ‖H ≤

√
7 εk.

Proof. (a) By applying the optimality conditions to the problems in (14), we
deduce that

0 ∈ ∂p
(
uk
)

+∇uh(wk) + Q̂11

(
uk − uk

)
and 0 ∈ ∂p(u∗) +∇uh(w∗).

By the monotonicity of ∂p, we get〈
uk − u∗, ∇uh(wk)−∇uh(w∗) + Q̂11

(
uk − uk

) 〉
≤ 0.(15)

Since ∇h is assumed to be globally Lipschitz continuous, it is known from
Clarke’s mean-value theorem [9, Proposition 2.6.5] that there exists a self-
adjoint and positive semidefinite operator W k ∈ conv

{
∂2h( [wk−1, wk] )

}
such that

∇h
(
wk
)
−∇h

(
wk−1

)
= W k

(
wk − wk−1

)
,
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where the set conv{ ∂2h( [wk−1, wk] ) } denotes the convex hull of all points

in ∂2h(z) for any z ∈ [wk−1, wk]. To proceed, we write W k , (
Wk

11 Wk
12

(Wk
12)
∗ Wk

22

),

where W k
11 : U→ U, W k

22 : V→ V are self-adjoint positive semidefinite linear
operators and W k

12 : U→ V is a linear operator. Since〈(
ūk − u∗
vk − v∗

)
,W k

(
ūk − u∗
vk − v∗

)〉
≥ 0 and Q �W k � Q̂ ,

we can derive that

2
〈
uk−u∗, ∇uh(wk)−∇uh(w∗)

〉
= 2

〈
uk−u∗, W k

11

(
uk−u∗

)
+W k

12

(
vk−v∗

) 〉(16)

≥
(
‖uk − u∗ ‖2Wk

11
+ ‖uk − u∗ ‖2Wk

11
− ‖uk − uk ‖2Wk

11

)
−
(
‖uk − u∗ ‖2Wk

11
+ ‖ vk − v∗ ‖2Wk

22

)
≥ ‖uk − u∗ ‖2Q11

− ‖uk − uk ‖2Q̂11
− ‖ vk − v∗ ‖2Q̂22

.

From (15) and (16), we may obtain that

0 ≥ ‖uk−u∗ ‖2Q11
−‖uk−uk ‖2Q̂11

− ‖ vk−v∗ ‖2Q̂22
+ 2

〈
uk−u∗, Q̂11

(
uk−uk

)〉
= ‖uk − u∗ ‖2Q11

− ‖uk − uk ‖2Q̂11
− ‖ vk − v∗ ‖2Q̂22

+ ‖uk − u∗ ‖2Q̂11

+ ‖uk − uk ‖2Q̂11
− ‖uk − u∗ ‖2Q̂11

= ‖uk − u∗ ‖2Q̂11
− ‖uk − u∗ ‖2D1

− ‖ vk − v∗ ‖2Q̂22
,

which yields ‖uk − u∗ ‖2
Q̂11
≤ ‖uk − u∗ ‖2D1

+ ‖ vk − v∗‖2
Q̂22

. This completes

the proof of part (a).

(b) In order to obtain bounds for ‖ Q̂1/2
11 (ũk − uk)‖ and ‖ Q̂1/2

22 (ṽk − vk)‖, we
apply the optimality conditions to the problems in (7) at (ũk, ṽk) and to the
problems in (14) at (uk, vk) to deduce that〈

Q̂11

(
ũk − uk

)
+ δku , ũ

k − uk
〉
≤ 0 and〈

Q∗12
(
ũk − uk

)
+ Q̂22

(
ṽk − vk

)
+ δkv , ṽ

k − vk
〉
≤ 0.

The first inequality implies that

‖ Q̂1/2
11 (ũk − uk) ‖ ≤ ‖ Q̂−1/211 δku ‖ ≤ εk.

The second inequality yields that

‖ ṽk − vk ‖2Q̂22
≤ ‖ Q̂−1/222 δkv ‖ ‖ Q̂

1/2
22 (ṽk − vk) ‖ −

〈
Q∗12 (ũk − uk), ṽk − vk

〉
≤ ‖ Q̂−1/222 δkv‖ ‖ Q̂

1/2
22 (ṽk − vk)‖+

1

2

(
‖ ũk − uk ‖2Q̂11

+ ‖ ṽk − vk ‖2Q̂22

)
.

Hence,

‖ ṽk − vk ‖2Q̂22
≤ 2 ‖ Q̂−1/222 δkv ‖ ‖ Q̂

1/2
22 (ṽk − vk) ‖+ ‖ ũk − uk ‖2Q̂11

≤ 2εk ‖ Q̂1/2
22 (ṽk − vk) ‖+ ε2k.
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By solving this inequality, we obtain that

‖ Q̂1/2
22 (ṽk − vk) ‖ ≤ ( 1 +

√
2 ) εk.

(c) From parts (a) and (b), we have that

‖wk − w̃k ‖2H = ‖uk − ũk ‖2D1
+ ‖ vk − ṽk ‖2Q̂22

≤ 7ε2k.

This completes the proof of this lemma.

We are now ready to present the main theorem of this section on the O(1/k2)
complexity of the imABCD algorithm.

Theorem 3. Suppose that Assumption 1 holds and the solution set Ω of the prob-
lem (2) is nonempty. Let w∗ ∈ Ω. Assume that a. Then the sequence {w̃k} ,
{(ũk, ṽk)} generated by the imABCD algorithm satisfies that

θ(w̃k)− θ(w∗) ≤ 2 ‖ w̃0 − w∗ ‖2H + c0
(k + 1)2

∀ k ≥ 1,

where c0 is a positive scalar (independent of k).

Proof. By applying Lemma 2 for w = w∗ and w1 = w̃1, we get

2 [ θ(w1)− θ(w∗) ] ≤ ‖w1 − w∗‖2H − ‖w1 − w∗ ‖2H

= ‖ w̃0 − w∗‖2H − ‖w1 − w∗‖2H = ‖w0 − w∗‖2H − ‖w1 − w∗‖2H .

For any k ≥ 2, since wk = (uk, vk) exactly solves the subproblem (7), we may take

w̃k = wk and w = (tk−1)wk−1+w∗

tk
in Lemma 2 to obtain the following inequality:

θ(w)− θ(wk) ≥ 1

2

∥∥∥∥ (tk − 1)wk−1 + w∗

tk
− wk

∥∥∥∥2
H
− 1

2

∥∥∥∥ (tk − 1)wk−1 + w∗

tk
− wk

∥∥∥∥2
H
.

By applying Lemma 1(c) with w+ = wk−1 and w′ = w∗, we get

t2k [ θ(w)− θ(w∗) ] ≤ t2k−1 [ θ(wk−1)− θ(w∗) ].

By combining the above two inequalities and noting that tkw
k = tkw̃

k−1 + (tk−1−1)
(w̃k−1 − w̃k−2), we have for k ≥ 2,

2 t2k
[
θ(wk)− θ(w∗)

]
− 2 t2k−1

[
θ(wk−1)− θ(w∗)

](17)

≤ ‖ tk−1w̃k−1 − w∗ − (tk−1 − 1)w̃k−2 − (tk − 1)
(
wk−1 − w̃k−1

)
‖2H

− ‖ tkwk − w∗ − (tk − 1)wk−1 ‖2H
= ‖λk−1 ‖2H−2

〈
Hλk−1 , (tk−1+tk−1)

(
wk−1−w̃k−1

)
−(tk−1 − 1)

(
wk−2 − w̃k−2

) 〉
+ ‖ (tk−1 + tk − 1)

(
wk−1 − w̃k−1

)
− (tk−1 − 1)

(
wk−2 − w̃k−2

)
‖2H − ‖λk ‖2H ,

where λk , tkw
k − w∗ − (tk − 1)wk−1 = tk(wk − w∗) − (tk − 1)(wk−1 − w∗). By

Lemma 1(b), Lemma 4, and the nonincreasing property of {εk}, we derive that for
all k ≥ 3,

‖ (tk−1 + tk − 1)
(
wk−1 − w̃k−1

)
− (tk−1 − 1)

(
wk−2 − w̃k−2

)
‖H

≤ (tk−1 + tk − 1) ‖wk−1 − w̃k−1 ‖H + (tk−1 − 1) ‖wk−2 − w̃k−2 ‖H

≤ c1(k − 1) εk−2,
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where c1 = 5. Note that in deriving the above inequality, we have used Lemma 4(c).
For k = 2, we also have that

‖ (tk−1 + tk − 1)
(
wk−1 − w̃k−1

)
− (tk−1 − 1)(wk−2 − w̃k−2) ‖H = t2‖

(
w1 − w̃1

)
‖H

≤ c1(k − 1)εk−2,

where we set ε0 = ε1. It follows from (17) that for k ≥ 2, we have

2 t2k
[
θ(wk)− θ(w∗)

]
+ ‖λk ‖2H

≤ 2 t2k−1
[
θ
(
wk−1

)
−θ(w∗)

]
+‖λk−1 ‖2H+2c1(k−1)εk−2‖λk−1 ‖H+c21 (k−1)2 ε2k−2

≤ · · ·

≤ 2 t21
[
θ(w1)− θ(w∗)

]
+ ‖λ1 ‖2H + 2c1

k−1∑
i=1

i εi−1 ‖λi ‖H + c21

k−1∑
i=1

i2 ε2i−1

≤ ‖w1 − w∗ ‖2H + 2c1

k−1∑
i=1

i εi−1 ‖λi ‖H + c21

k−1∑
i=1

i2 ε2i−1 .

Notice that by Lemma 2, ‖w1 − w∗ ‖2H ≤ ‖w1 − w∗ ‖2H = ‖w0 − w∗ ‖2H. Next we
show that the above inequality implies the boundedness of the sequence {‖λk‖H}. If
‖λk‖H ≤ 1 for all k ≥ 1, then we are done. Otherwise, for any given sufficiently large
positive integer m, we have that

‖λkm ‖H := max{‖λi ‖H | 1 ≤ i ≤ m} ≥ 1.

Thus, for any 1 ≤ k ≤ m, we have that

‖λk‖H ≤ ‖λkm‖H ≤
1

‖λkm‖H

(
‖w0−w∗ ‖2H+2c1

km−1∑
i=1

i εi−1‖λi ‖H+ c21

km−1∑
i=1

i2 ε2i−1

)

≤ ‖w0 − w∗ ‖2H + 2c1

km−1∑
i=1

i εi−1
‖λi ‖H
‖λkm ‖H

+ c21

km−1∑
i=1

i2 ε2i−1

≤ ‖w0 − w∗ ‖2H + 2c1

km−1∑
i=1

i εi−1 + c21

km−1∑
i=1

i2 ε2i−1

≤ ‖w0 − w∗ ‖2H + 2c1

∞∑
i=1

i εi−1 + c21

∞∑
i=1

i2 ε2i−1,

where the third inequality follows from the definition of ‖λkm‖H. Thus by letting
m→∞, we get

‖λk‖H ≤ c2 , max

{
1, ‖w0 − w∗ ‖2H + 2c1

∞∑
i=1

i εi−1 + c21

∞∑
i=1

i2 ε2i−1

}
∀ k ≥ 1.

To estimate the bound for ‖wk+1 − w∗‖H, we set w = w∗ and w̃k = wk in Lemma 3
and deduce that
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2798 YING CUI, DEFENG SUN, AND KIM-CHUAN TOH

tk+1 ‖wk+1 − w∗ ‖H ≤ tk+1 ‖wk+1 − w∗ ‖H
=
∥∥ (tk+1 + tk − 1)w̃k − (tk − 1)w̃k−1 − tk+1w

∗ ∥∥
H

≤ (tk+1 − 1)
∥∥wk − w∗ ∥∥H +

∥∥ tkwk − (tk − 1)wk−1 − w∗
∥∥
H

+ (tk+1 + tk − 1)
∥∥ w̃k − wk ∥∥H + (tk − 1)

∥∥ w̃k−1 − wk−1 ∥∥H
≤ t2k

tk+1

∥∥wk − w∗ ∥∥H + c2 + c1 εk−1 tk+1 ,

where the last inequality is obtained by Lemma 1(a). It follows that

t2k
t2k+1

∥∥ wk − w∗ ∥∥H ≤ t2k
t2k+1

(
t2k−1
t2k

∥∥wk−1 − w∗ ∥∥H +
c2
tk

+ c1εk−2

)
,

t2k
t2k+1

t2k−1
t2k

∥∥wk−1−w∗ ∥∥H ≤ t2k
t2k+1

t2k−1
t2k

(
t2k−2
t2k−1

∥∥wk−2−w∗ ∥∥H+
c2
tk−1

+c1εk−3

)
,

... ≤
...

t2k
t2k+1

t2k−1
t2k
· · · t

2
2

t23

∥∥ (w2 − w∗)
∥∥
H ≤

t2k
t2k+1

t2k−1
t2k
· · · t

2
2

t23

(
t21
t22

∥∥w1 − w∗
∥∥
H +

c2
t2

+c1ε0

)
.

Summing up the above inequalities, we obtain∥∥wk+1 − w∗
∥∥
H ≤

t21
t2k+1

∥∥w1 − w∗
∥∥
H + c2

k∑
i=1

ti+1

t2k+1

+ c1

k∑
i=1

εi−1.(18)

By Lemma 1(b), we have

k∑
i=1

ti+1

t2k+1

≤ (3 + k) k

2
(
1
2k + 1

)2 ≤ 2 ∀ k ≥ 1.

Therefore, the inequality (18) implies that for all k ≥ 1,∥∥ (wk+1 − w∗)
∥∥
H ≤

4

(k + 2)2
∥∥w1 − w∗

∥∥
H + 2c2 + c1

∞∑
i=1

εi−1

≤ c3 , max

(∥∥w1 − w∗
∥∥
H ,

4

9

∥∥w1 − w∗
∥∥
H + 2c2+c1

∞∑
i=1

εi−1

)
.

Notice that we have ‖w1 − w∗ ‖H ≤ c3.
The next step is to prove the boundedness of the term ‖ tkũk − u∗ − (tk −

1)ũk−1 ‖Q̂11
. Before that, we need to first bound

∥∥uk − u∗∥∥2Q̂11
. By using Lemma

4, we have that for k ≥ 2,

tk
∥∥uk − u∗∥∥Q̂11

≤ tk
∥∥wk − w∗∥∥H

= ‖(tk−1 + tk − 1)(w̃k−1 − w∗)− (tk−1 − 1)(w̃k−2 − w∗)‖H

≤ (tk − 1)‖(w̃k−1 − w∗)‖H + ‖tk−1(w̃k−1 − w∗)− (tk−1 − 1)(w̃k−2 − w∗)‖H

≤ (tk − 1)
[
‖w̃k−1 − wk−1‖H + ‖wk−1 − w∗‖H

]
+ ‖tk−1(w̃k−1 − wk−1)

−(tk−1 − 1)(w̃k−2 − wk−2)‖H + ‖tk−1(wk−1 − w∗)− (tk−1 − 1)(wk−2 − w∗)‖H

≤ (tk − 1)[
√

7εk−1 + c3 ] + (2tk − 1)
√

7εk−2 + ‖γk−1‖H

≤ tk[ 8ε1 + c2 + c3].
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For k = 1, we also have that ‖uk − u∗‖Q̂11
≤ ‖wk − w∗‖Ĥ ≤ c3. Now we have for all

k ≥ 2,

‖ tkũk − u∗ − (tk − 1) ũk−1 ‖Q̂11

≤ tk

(
‖uk − ũk ‖Q̂11

+ ‖uk − u∗ ‖Q̂11

)
+ (tk − 1)

(
‖uk−1 − u∗ ‖Q̂11

+ ‖uk−1 − ũk−1 ‖Q̂11

)
≤ (2tk − 1) [ 8 ε1 + c2 + c3 ].

In addition, for k = 1, we have

‖ t1ũ1 − u∗ − (t1 − 1)ũ0 ‖Q̂11
= ‖ ũ1 − u∗ ‖Q̂11

≤ ‖u1 − u∗ ‖Q̂11
+ ‖ ũ1 − u1‖Q̂11

≤ ‖w1 − w∗ ‖H + ε1 ≤ c2 + ε1 ≤ (2tk − 1) [ 8 ε1 + c2 + c3 ].

On the other hand,

‖ tkṽk − v∗ − (tk − 1) ṽk−1 ‖Q̂22
= ‖ tk(ṽk − v∗)− (tk − 1) (ṽk−1 − v∗) ‖Q̂22

≤ ‖ tk(vk − v∗)− (tk − 1)(vk−1 − v∗) ‖Q̂22
+‖ tk(ṽk − vk)−(tk − 1) (ṽk−1−vk−1) ‖Q̂22

≤ ‖λk‖H + tk‖ (ṽk − vk)‖Q̂22
+ (tk − 1)‖(ṽk−1 − vk−1) ‖Q̂22

≤ c2 + (2tk − 1)(1 +
√

2)εk−1 ≤ (2tk − 1)[c2 + 3ε1].

Finally, by applying Lemma 3 at w = (tk−1)w̃k−1+w∗

tk
and using Lemma 1(c), we see

that

t2k
[
θ
(
w̃k
)
− θ(w∗)

]
+

1

2
‖ tkw̃k − w∗ − (tk − 1)w̃k−1 ‖2H

≤ t2k−1
[
θ
(
w̃k−1

)
− θ(w∗)

]
+

1

2
‖ tk−1w̃k−1 − w∗ − (tk−1 − 1)w̃k−2 ‖2H

+ εk ‖ tkw̃k − w∗ − (tk − 1)w̃k−1 ‖Diag(Q̂11, Q̂22)

≤ · · ·

≤ t21
[
θ(w̃1)− θ(w∗)

]
+

1

2
‖ t1w̃1 − w∗ − (t1 − 1)w̃0 ‖2H

+

k∑
i=2

εi ‖ tiw̃i − w∗ − (ti − 1)w̃i−1 ‖Diag(Q̂11, Q̂22)

≤ 1

2
‖ w̃0 − w∗ ‖2H +

k∑
i=1

εi ‖ tiw̃i − w∗ − (ti − 1)w̃i−1 ‖Diag(Q̂11, Q̂22)

≤ 1

2
‖ w̃0 − w∗ ‖2H +

k∑
i=1

(2ti − 1) [ 11ε1 + 2c2 + c3 ] εi

≤ 1

2
‖ w̃0 − w∗ ‖2H +

1

4
c0,

where

c0 , 4

∞∑
i=1

(2ti − 1) [ 11ε1 + 2c2 + c3 ] εi
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is a finite value since
∑∞
i=1 ti εi < ∞. Since tk ≥ k+1

2 , we complete the proof of this
theorem.

In order to guarantee that
∑∞
i=1 iεi <∞ in the above theorem, one may stop the

ith subproblem of the imABCD algorithm with εi = c/i2.1 for some constant c.

4. Solving the best approximation problem (1). In this section, we discuss
an application of the imABCD framework to solve the dual of the best approximation
problem (1). The the best approximation problems with only equality constraints have
been studied for more than three decades [28, 2, 14, 15, 16]. The best approximation
problem with the positive semidefinite cone constraint was studied recently; see, e.g.,
[37, 43, 7, 22, 51].

The dual of (1) is given by

minimize
y,S,z,Z

1

2
‖A∗y + S + B∗z + Z +G ‖2 − 〈b, y〉 − 〈d, z〉+δSn+(S)+δ≥0(z)+δ≥0(Z),

(19)

where δC(·) denotes the indicator function of a given set C, i.e., δC(x) = 0 if x ∈ C,
and δC(x) =∞ otherwise. The notation δ≥0(·) is used to denote the indicator function
over a nonnegative orthant. To implement the two-block imABCD algorithm, we take
(y, S) as one block and (z, Z) as the other block. The operator Q and its majorization

Q̂ in Assumption 1 are taken as

Q =


AA∗ A AB∗ A
A∗ I B∗ I
A∗B B BB∗ B
A∗ I B∗ I

 and Q̂ = Q+


c I 0 0 0
0 0 0 0
0 0 c I 0
0 0 0 0


for some scalar c > 0. Notice that the additional proximal term associated with the
linear operator c I is added for the block of y and z to make the conditions D1 � 0
and D2 � 0 in Assumption 1 hold. There are two important reasons for us to merge
the four blocks in such a way. First, based on our previous experiences from devel-
oping several solvers with similar types of constraints, in particular for linear and
least-squares semidefinite programming in [60, 51], we find that, compared to the
linear inequalities and the nonnegative cone constraints, the linear equalities and the
semidefinite cone constraints are more challenging to satisfy numerically. Putting
the corresponding multipliers y (for the linear equalities constraints) and S (for the
positive semidefinite cone constraint) in one group and solving them simultaneously
by the inexact semismooth Newton method may help these two types of constraints
to achieve a high accuracy simultaneously. Second, putting S and z (corresponding
to the linear inequalities constraints) or Z (corresponding to the entrywise nonnega-
tive constraints) in one group often leads to a degenerate Newton system when the
semismooth Newton method is applied to solve the resulting subproblem.

4.1. Solving the subproblems by the Newton-type methods. With fixed
(z, Z) and a properly defined matrix G1 ∈ Sn, the first workhorse of the imABCD for
solving (1) is the following convex program:

minimize
y,S

1

2
‖A∗y+ S +G1‖2 − 〈b, y〉+

c

2
‖y− y0‖2 subject to S ∈ Sn+, y ∈ Rm.
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Let ΠS+n (·) denote the projection onto the cone Sn+. Since the optimal solution (ȳ, S)
always satisfies

S = ΠSn+(−G1 −A∗ȳ),(20)

we may solve y first via the unconstrained minimization problem

minimize
y

ξ(y) , 1
2 ‖A

∗y +G1 + ΠSn+(−G1 −A∗y)‖2 − 〈b, y〉+
c

2
‖y − y0‖2

= 1
2 ‖ΠSn+(G1 +A∗y)‖2 − 〈b, y〉+

c

2
‖y − y0‖2

(21)

and then substitute the solution into (20) to obtain S. Notice that ξ is a continuously
differentiable function and its gradient

∇ξ(y) = AΠSn+(G1 +A∗y)− b+ c (y − y0)

is strongly semismooth [50]. Therefore, the semismooth Newton-CG algorithm with
line search, which is proven to converge globally and local superlinearly/quadratically
[32, 44, 43, 61], can be applied to solve the above unconstrained problem (21). The
details of this algorithm are given below.

SNCG: A semismooth Newton-CG method for solving (21)

Initialization. Given µ ∈ (0, 1/2), η ∈ (0, 1), τ ∈ (0, 1] and ρ ∈ (0, 1). Iterate the
following steps for j ≥ 0.

Step 1. Choose V j ∈ ∂ΠSn+(G1 +A∗y j). Solve the following linear system to find d j

by the conjugate gradient (CG) method:

(AV jA∗ + c I) d+∇ξ(y j) = 0

such that dj satisfies the accuracy condition that

‖
(
AV jA∗ + c I

)
d+∇ξ(y j) ‖ ≤ min

{
η, ‖∇ξ(y j) ‖1+τ

}
.

Step 2. (Line search) Set αj = ρmj , where mj is the first nonnegative integer m for
which

ξ
(
y j + ρmdj

)
≤ ξ(y j) + µρm

〈
∇ξ
(
y j
)
, dj
〉
.

Step 3. Set yj+1 = y j + αjd
j .

To solve the second subproblem involving (z, Z) in (7), we need to deal with the
program

minimize
z,Z

1

2
‖B∗z + Z +G2 ‖2 − 〈d, z〉+

c

2
‖ z − z0 ‖2 subject to z ≥ 0, Z ≥ 0,

(22)

for some properly defined matrix G2 ∈ Sn. Similar to the first subproblem, the
optimal solution (z̄, Z) satisfies that

Z = Π≥0(−B∗z̄ −G2).
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2802 YING CUI, DEFENG SUN, AND KIM-CHUAN TOH

We therefore need to solve the problem

minimize
z

1

2
‖Π≥0(B∗z +G2) ‖2 − 〈d, z〉+

c

2
‖ z − z0 ‖2 subject to z ≥ 0.(23)

Different from (21), the above problem is a constrained SC1 problem (i.e., the objective
function is continuously differentiable with a semismooth gradient). Though we may
still apply a globally convergent semismooth Newton algorithm as proposed in [42], a
strictly convex quadratic programming problem has to be solved in each step, which
itself may be challenging. In fact, the problem (23) is a special case of the general
unconstrained nonsmooth convex program

minimize
x

ζ(x) + ψ(x),(24)

where ζ : X → (−∞,∞) is a strongly convex and smooth function, and ψ : X →
(−∞,+∞] is a convex but possibly nonsmooth function. One can apply Nesterov’s
APG method [39], which converges globally and linearly, to solve such a strongly
convex problem [49]. Alternatively, the solution of (24) can be obtained via the
nonsmooth equation

F (x) , x− Proxψ (x−∇ζ(x) ) = 0,

where Proxψ(x) , argmin
{
ψ(x′) + 1

2 ‖x
′ − x ‖2 | x′ ∈ X

}
denotes the proximal map-

ping of ψ at x; see, e.g., [48, Definition 1.22]. Since the composition of semismooth
functions is semismooth [21], it follows that F is semismooth at x if ∇ζ is semismooth
at x and Proxψ(·) is semismooth at x−∇ζ(x). We may then apply the semismooth
Newton-CG method locally to solve the above nonsmooth equation for a faster conver-
gence rate. Therefore, a convergent and efficient way to solve (23) may be a hybrid
of the APG algorithm and the semismooth Newton-CG method. We present this
algorithm below, where the positive scalar Lζ denotes the Lipschitz constant of ∇ζ.

APG-SNCG: A hybrid of the APG algorithm and the SNCG method for solving
(24)

Choose an initial point x1 ∈ X, positive constants η, γ ∈ (0, 1), ρ ∈ (0, 1/2), and a
positive integer m0 > 0. Iterate the following steps for j ≥ 0.

Step 1: Select V j ∈ ∂F (x j), the generalized Jacobian of F at x j , and apply the
CG method to find an approximate solution d j to

V jd+ F (x j) = 0(25)

such that

R j , V jd j + F (x j) and ‖R j ‖ ≤ ηj ‖F (x j) ‖,(26)

where ηj , min{ η, ‖F (x j) ‖ }. If (26) is achievable, go to Step 2. Otherwise, go to
Step 3.

Step 2: Let mj ≤ m0 be the smallest nonnegative integer m such that

‖F
(
x j + ρmd j

)
‖ ≤ γ ‖F

(
x j
)
‖.
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BEST APPROXIMATION ON A CONVEX SUBSET OF DNN CONE 2803

If the above inequality is achievable, set tj = ρmj and x j+1 = x j + tj d
j . Replace j

by j + 1 and go to Step 1. Otherwise (i.e., the above inequality fails for all m ≤ m0)
go to Step 3.

Step 3: Set x j1 = x̃ j0 = x j , βj1 = 1 and i = 1, compute
x̃ ji = Proxψ/Lζ

(
x ji −∇ζ

(
x ji
)
/Lζ

)
,

βji+1
=

1

2

(
1 +

√
1 + 4β2

ji

)
,

x ji+1 = x̃ ji +
βji − 1

βji+1

(
x̃ ji − x̃ ji−1

)
.

If ‖F (xji+1) ‖ ≤ γ ‖F (x j) ‖, set x j+1 = x ji+1 . Replace j by j + 1 and go to Step 1.
Otherwise, set i = i+ 1 and continue the above iteration.

It is known that for the sequence {x ji}∞i=1 generated by the APG algorithm,
[ζ(xji) + ψ(xji)] − [ζ(x∗) + ψ(x∗)] → 0 as i → ∞, where x∗ is the unique solution
of the problem (24); see, e.g., [5, Theorem 4.4]. By the strong convexity of ζ, this
further implies that ‖xji − x∗‖ → 0. Therefore, F (x ji) → 0 as i → ∞ by the
continuity of the proximal mapping. That being said, the sequence generated by the
APG algorithm can be viewed as a safeguard for the global convergence of {x j} in
the above framework; the condition ‖F (xji+1) ‖ ≤ γ ‖F (x j) ‖ in Step 3 is always
achievable for sufficiently large i. We make two further remarks on this algorithm
below.

Remark 4. It is known from Rademacher’s theorem that the Lipschitz continuous
function F is differentiable almost everywhere. Assume that (26) is achievable at a
differentiable point x j and ‖F (x j)‖ 6= 0; then ‖F (x)‖2 is differentiable at x j and

‖F (x j + td j) ‖2 = ‖F (x j) + t [R j − F (x j) ] + o(t) ‖2

= ‖F (x j) ‖2 + t 〈F (x j) , R j − F (x j) 〉+ o(t)

≤ ‖F (x j) ‖2 + t (ηj − 1) ‖F (x j) ‖2 + o(t).

Since ηj ≤ η < 1, we have ‖F (x j + t d j) ‖ < ‖F (x j) ‖ for t sufficiently small such
that d j is a descent direction of ‖F (x) ‖ at x j . This yields that the direction obtained
by (25) is a descent direction of ‖F (x) ‖ at x j with probability 1.

Remark 5. Equation (25) may not be a symmetric linear system. If this occurs,
one may use the BiCGStab iterative solver (e.g., van der Vorst [56]) to solve the
corresponding equation.

4.2. Decomposing (22) into smaller decoupled problems. For some best
approximation problems, the number of inequalities in BX ≥ d may be ultra large,
and that can make the subproblem (22) extremely expensive to solve. Fortunately,
by the design of imABCD, one can add an appropriate proximal term in (7) to make
the subproblem involving (z, Z) easier to solve, in particular, by decomposing (22)
into smaller decoupled problems.

A practical way to achieve the decomposition of (22) is to add a proximal term

of the form 1
2

∥∥( zZ ) − (
z0
Z0

)
∥∥2
D2

, where the positive semidefinite linear operator D2 is
constructed based on dividing the operator B and the dual variable z into q ≥ 1
parts as
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2804 YING CUI, DEFENG SUN, AND KIM-CHUAN TOH
BX ≡

 B1X...
BqX

 with Bi : Sn → Rmi , X ∈ Sn,

B∗z ≡ (B∗1z1,B∗2z2, . . . ,B∗qzq), z ≡ (z1, z2, . . . zq)∈Rmi1 × Rmi2 × · · · × Rmiq=RmI .

By observing that for any given matrix X ∈ Rm×n,(
X

XT

)
�
(

(XXT )
1
2

(XTX)
1
2

)
,

we may derive that

BB∗ � M , Diag (M1, . . . ,Mq) ,

where

Mi , BiB∗i +
∑

j=1,...,q, j 6=i

(BiB∗jBjB∗i )1/2, i = 1, . . . q.

It therefore follows that(
2M

2I

)
�
(

2BB∗
2I

)
�
(
B
I

)(
B∗ I

)
.

By choosing D2 = diag(2M, 2I)− (B∗, I)∗(B∗, I) � 0, we can show that

1

2

∥∥(B∗, I)

(
z
Z

)
+G2

∥∥2 − 〈d, z〉+
c

2
‖ z − z0 ‖2 +

1

2

∥∥(z
Z

)
−
(
z0
Z0

)∥∥2
D2

=
〈
z,Mz

〉
+
c

2

∥∥z∥∥2 − 〈z, h〉+
〈
Z, Z

〉
+
〈
Z, G2 − Z0 + B∗z0

〉
+ κ

= κ+
〈
Z, Z

〉
+
〈
Z, G2 − Z0 + B∗z0

〉
+

q∑
i=1

1

2

〈
(2Mi + c I)zi, zi

〉
−
〈
zi, hi

〉
,

where h = d+cz0+2Mz0−B(G2+Z0+B∗z0) and κ = c
2

∥∥z0∥∥2+ 1
2

∥∥(
z0
Z0

)
∥∥2
D2

+ 1
2

∥∥G2

∥∥2.

Thus, we can obtain the following decomposition for solving (22) with an additional
proximal term:

minimize
z,Z

{
1

2
‖B∗z + Z +G2 ‖2 − 〈d, z〉+

c

2
‖ z − z0 ‖2

+
1

2

∥∥(z
Z

)
−
(
z0
Z0

)∥∥2
D2
| z ≥ 0, Z ≥ 0

}
⇐⇒ minimize

Z

{〈
Z, Z

〉
+
〈
Z, G2 − Z0 + B∗z0

〉
| Z ≥ 0

}
+

q∑
i=1

minimize
zi

{
1

2

〈
(2Mi + cI)zi, zi

〉
−
〈
zi, hi

〉
| zi ≥ 0

}
.

Observe that the subproblem with respect to Z can be solved analytically. For each
i, the decoupled subproblem with respect to zi is simple convex quadratic program of
the form (24) that can be solved by the APG-SNCG method.
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BEST APPROXIMATION ON A CONVEX SUBSET OF DNN CONE 2805

5. Numerical experiments. In this section, we test our imABCD algorithm
on solving the dual problem (19). The equality and inequality constraints are gener-
ated from the doubly nonnegative relaxation of a binary integer nonconvex quadratic
(ex-BIQ) programming that was considered in [51]:

minimize
x,Y,X

1

2
〈Q,Y 〉+ 〈c, x〉

subject to Diag(Y ) = x, α = 1, X =

(
Y x
xT α

)
, X ∈ Sn+, X ≥ 0,

−Yij + xi ≥ 0, −Yij + xj ≥ 0, Yij − xi − xj ≥ −1,

∀ i < j, j = 2, . . . , n− 1.

The test data for Q and c are taken from the Biq Mac Library maintained by Wiegele,
which is available at http://biqmac.uni-klu.ac.at/biqmaclib.html.

We set G = − 1
2 (Q c

c 0
) in (1). Under Slater’s condition, the KKT optimality

conditions of the problem (1) are

{
X = G+A∗y + B∗z + S + Z, AX = b,

BX − d = Π≥0(BX − d− z), X = ΠSn+(X − S), X = Π≥0(X − Z).

We measure the accuracy of an approximate dual solution (y, z, S, Z) by the relative
residual of the KKT system η , max{ η1, η2, η3, η4 }, where, by letting X = G +
A∗y + B∗z + S + Z,

η1 ,
‖AX − b‖

1 + ‖b‖
, η2 ,

‖BX − d−Π≥0(BX − d− z)‖
1 + ‖d‖

,

η3 ,
‖X −ΠSn+(X − S)‖

1 + ‖X‖+ ‖S‖
, η4 ,

‖X −Π≥0(X − Z)‖
1 + ‖X‖+ ‖Z‖

.

We also report the duality gap defined by

ηgap ,
objp − objd

1 + |objp|+ |objd|
,

where objp , 1
2 ‖X − G‖

2 and objd , − 1
2‖A

∗y + B∗z + S + Z + G‖2 + 〈b, y〉 +

〈d, z〉 + 1
2‖G‖

2. We stop the algorithms if η < ε for some prescribed accuracy ε.
Throughout the numerical experiments, we initialize all the algorithms by setting the
dual variables to be zero.

In order to demonstrate the importance for incorporating the second-order in-
formation when solving the subproblems, we compare our imABCD method with
the two-block accelerated block coordinate gradient descent algorithm proposed by
Chambolle and Pock in [8]. For a fair comparison, the two blocks are also taken as
(y, S) and (z, Z). Let λmax(BB∗) be the largest eigenvalue of BB∗. The algorithm
adapted from [8] is given as follows.
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2806 YING CUI, DEFENG SUN, AND KIM-CHUAN TOH

ABCGD: An accelerated block coordinate gradient descent algorithm for solving
(19).

Initialization. Choose an initial point W 1 = W̃ 0 ∈W. Let t1 = 1.

Step 1. Compute Rk+
1
2 = A∗yk + B∗zk + Sk + Zk +G

and


ỹk = yk − 1

2
(AA∗)−1

(
ARk+ 1

2 − b
)
,

S̃k = ΠSn+

(
Sk − 1

2
Rk+

1
2

)
.

Step 2. Compute Rk = A∗ỹk + B∗zk + S̃k + Zk +G

and


z̃k = Π≥0

(
zk − 1

2λmax(BB∗)
(
BRk − d

))
,

Z̃k = Π≥0

(
Zk − 1

2
Rk
)
.

Step 3. Compute


tk+1 =

1

2

(
1 +

√
1 + 4t2k

)
,

W k+1 = W̃ k +
tk − 1

tk+1

(
W̃ k − W̃ k−1

)
.

We note that as the adapted algorithm from [8] does not cater for inexact com-
putations of the subproblems, we have adopted appropriate majorizations so that
the associated subproblems can be solved exactly. In fact, the above ABCGD algo-
rithm is a special case of our imABCD algorithm by taking the majorized operator
in Assumption 1 as Q̂11 = Diag(2AA∗, 2I) and Q̂22 = Diag(2λmax(BB∗)I, 2I).

Figure 1 shows the performance profile of the imABCD and ABCGD algorithms
for some large-scale ex-BIQ problems with ε = 10−6. A point (x, y) is on the per-
formance profile curve of a method if and only if it can solve exactly (100y)% of all
the tested problems at most x times slower than any other methods. The detailed
numerical results are presented in Table 1. The first four columns list the problem
names, the dimension of the variable y (mE), z (mI), and the size of the matrix
G (ns), respectively. The last several columns report the number of iterations, the
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Fig. 1. Performance profile of imABCD and ABCGD with ε = 10−6.D
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Table 1
The performance of imABCD and ABCGD with accuracy ε = 10−6.

Iterations η ηgap Time

Problem mE ;mI | ns imabcd|abcgd imabcd|abcgd imabcd|abcgd imabcd|abcgd
be120.3.1 121 ; 21420 | 121 4141 | 27781 9.9-7 | 9.9-7 -2.3-7 | -5.6-8 23 | 1:56

be120.3.2 121 ; 21420 | 121 4114 | 23809 9.9-7 | 9.9-7 -2.1-7 | -6.3-8 23 | 1:40

be120.3.3 121 ; 21420 | 121 3599 | 21867 9.9-7 | 9.9-7 -2.3-8 | -6.6-8 20 | 1:30

be120.3.4 121 ; 21420 | 121 4917 | 31783 9.9-7 | 9.9-7 -3.5-7 | -6.7-8 28 | 2:13

be120.3.5 121 ; 21420 | 121 5646 | 31076 9.9-7 | 9.9-7 -5.4-8 | -7.1-8 33 | 2:10

be120.3.6 121 ; 21420 | 121 3951 | 26558 9.9-7 | 9.9-7 -1.8-7 | -4.8-8 22 | 1:52

be120.3.7 121 ; 21420 | 121 4170 | 26176 9.9-7 | 9.9-7 -2.7-7 | -6.5-8 23 | 1:50

be120.3.8 121 ; 21420 | 121 3791 | 23796 9.9-7 | 9.9-7 -1.6-7 | -3.8-8 21 | 1:40

be120.3.9 121 ; 21420 | 121 4932 | 28518 9.9-7 | 9.9-7 -2.2-7 | -5.2-8 29 | 2:00

be120.3.10 121 ; 21420 | 121 4254 | 24803 9.9-7 | 9.9-7 -3.4-7 | -5.3-8 24 | 1:44

be120.8.1 121 ; 21420 | 121 5660 | 32200 9.9-7 | 9.9-7 -3.0-7 | -8.1-8 33 | 2:14

be120.8.2 121 ; 21420 | 121 5857 | 35336 9.9-7 | 9.9-7 -3.1-7 | -7.1-8 35 | 2:26

be120.8.3 121 ; 21420 | 121 5236 | 33259 9.9-7 | 9.9-7 -4.9-7 | -9.2-8 30 | 2:19

be120.8.4 121 ; 21420 | 121 6507 | 40964 9.9-7 | 9.9-7 -4.3-7 | -8.0-8 39 | 2:51

be120.8.5 121 ; 21420 | 121 5985 | 41263 9.9-7 | 9.9-7 -3.1-7 | -6.3-8 36 | 2:50

be120.8.6 121 ; 21420 | 121 4714 | 29524 9.9-7 | 9.9-7 -4.7-7 | -7.8-8 28 | 2:00

be120.8.7 121 ; 21420 | 121 4452 | 29722 9.9-7 | 9.9-7 -3.9-7 | -6.5-8 25 | 2:02

be120.8.8 121 ; 21420 | 121 5982 | 35240 9.9-7 | 9.9-7 -2.8-7 | -6.4-8 35 | 2:26

be120.8.9 121 ; 21420 | 121 5799 | 37397 9.9-7 | 9.9-7 -3.3-7 | -8.5-8 34 | 2:35

be120.8.10 121 ; 21420 | 121 5630 | 35274 9.9-7 | 9.9-7 -3.4-7 | -8.0-8 33 | 2:26

be250.1 251 ; 93375 | 251 3675 | 25038 9.9-7 | 9.9-7 -5.8-7 | -4.9-8 57 | 4:28

be250.2 251 ; 93375 | 251 4213 | 29313 9.9-7 | 9.9-7 -3.7-7 | -6.8-8 1:04 | 5:15

be250.3 251 ; 93375 | 251 4011 | 27211 9.9-7 | 9.8-7 -4.5-7 | -4.4-8 1:03 | 4:52

be250.4 251 ; 93375 | 251 4059 | 28985 9.9-7 | 9.9-7 -3.6-7 | -5.8-8 1:03 | 5:14

be250.5 251 ; 93375 | 251 4361 | 29277 9.9-7 | 9.9-7 -3.9-7 | -5.2-8 1:08 | 5:20

bqp100-1 101 ; 14850 | 101 7277 | 50000 9.9-7 | 1.1-6 -1.2-7 | -1.1-7 38 | 2:46

bqp100-2 101 ; 14850 | 101 3793 | 24170 9.9-7 | 9.9-7 -1.4-7 | -6.7-8 17 | 1:20

bqp100-3 101 ; 14850 | 101 3627 | 22570 9.9-7 | 9.9-7 6.9-8 | -5.1-8 17 | 1:14

bqp100-4 101 ; 14850 | 101 4297 | 27893 9.9-7 | 9.9-7 -2.2-7 | -5.9-8 20 | 1:32

bqp100-5 101 ; 14850 | 101 5095 | 34243 9.9-7 | 9.9-7 -1.2-7 | -4.8-8 25 | 1:53

bqp500-1 501 ; 374250 | 501 6523 | 50000 9.9-7 | 1.3-6 -1.4-6 | -1.2-7 13:35 | 54:18

bqp500-2 501 ; 374250 | 501 7106 | 50000 9.9-7 | 1.7-6 -1.3-6 | -1.6-7 15:02 | 54:23

bqp500-3 501 ; 374250 | 501 6067 | 50000 9.9-7 | 1.1-6 -1.1-6 | -9.1-8 12:56 | 54:34

bqp500-4 501 ; 374250 | 501 5822 | 50000 9.9-7 | 1.2-6 -1.1-6 | -8.0-8 12:51 | 54:53

bqp500-5 501 ; 374250 | 501 7203 | 50000 9.9-7 | 1.8-6 -1.6-6 | -1.7-7 15:55 | 54:46

gka1e 201 ; 59700 | 201 5293 | 37861 9.9-7 | 9.9-7 -2.6-7 | -4.8-8 1:15 | 5:56

gka2e 201 ; 59700 | 201 4623 | 29338 9.9-7 | 9.9-7 -6.8-7 | -7.1-8 1:03 | 4:35

gka3e 201 ; 59700 | 201 6033 | 40016 9.9-7 | 9.9-7 -3.7-7 | -6.0-8 1:25 | 6:20

gka4e 201 ; 59700 | 201 6760 | 47779 9.9-7 | 9.9-7 -5.5-7 | -6.9-8 1:36 | 7:37

gka5e 201 ; 59700 | 201 6247 | 42175 9.9-7 | 9.9-7 -5.3-7 | -7.8-8 1:28 | 6:43
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2808 YING CUI, DEFENG SUN, AND KIM-CHUAN TOH

relative residual η, the relative duality gap ηgap, and the computation time in the
format of “hours:minutes:seconds.” One can see from the performance profile that
the ABCGD algorithm requires at least 5 times the number of iterations taken by
imABCD and is about 4 times slower than the imABCD algorithm. In particular, the
ABCGD method cannot solve all the large-scale bdq500 problems within 50000 iter-
ations, whereas our imABCD can obtain satisfactory solutions after 6000 iterations.
This indicates that even though the computational cost for each cycle of the imABCD
method is larger than that of the ABCGD method, this cost is compensated by tak-
ing many fewer iterations. In fact, the Newton system is well-conditioned in this case
such that it takes only one or two CG iterations to compute a satisfactory Newton
direction.

We also compare our imABCD algorithm with some other BCD-type methods.
The first one is a direct four-block BCD method. In this case, the block z is solved
by the APG-SNCG algorithm, while other blocks have analytical solutions. The
second one is an enhanced version of the four-block inexact randomized ABCD method
(denoted as eRABCD) that is modified from [35], where we use the proximal terms
1
2‖y − yk‖2AA∗ instead of λmax(AA∗)

2 ‖y − yk‖2 when updating the block yk+1 and
1
2‖z − z

k‖2BB∗+‖B‖2I when updating the block zk+1. (Note that the addition of the

term ‖B‖2I is to make the associated subproblem strongly convex so that it is easier
to solve.) A similar modification has also been used in [51] when the randomized
BCD algorithm is used to solve a class of positive semidefinite feasibility problems.
The detailed steps of the eRABCD are given below.

eRABCD: A four-block inexact enhanced randomized ABCD algorithm for solving
(19)

Initialization. Choose an initial point W̃ 0 = Ŵ 0 ∈ W. Set k = 1 and α0 = 1
4 .

Let {εk} be a given summable sequence of error tolerance such that the error vector
δkz ∈ RmI satisfies ‖δkz‖ ≤ εk.

Step 1. Denote R̂k = A∗ŷk +B∗ẑk + Ŝk + Ẑk +G. Choose ik ∈ {1, 2, 3, 4} uniformly

at random and update W̃ k+1
ik

according to the following rule if the kth block is selected:

ik = 1 : ỹk+1 = (AA∗)−1((b−AR̂k)/(4αk) +AA∗ỹk),

ik = 2 : z̃k+1 ≈ argmin
z≥0

{
〈∇zh(Ŵ k+1), z〉+

4αk
2
‖z−z̃k‖2BB∗+‖B‖2I + 〈z, δkz 〉

}
,

ik = 3 : Z̃k+1 = Π≥0(Z̃k − R̂k/(4αk)),

ik = 4 : S̃k+1 = ΠSn+(S̃k − R̂k/(4αk)).

Set W̃ k+1
i = W̃ k

i for all i 6= ik, k = 1, 2, 3, 4.

Step 2. Set W k+1
i =

{
Ŵ k
i + 4αk(W̃ k+1

i − W̃ k
i ), i = ik,

Ŵ k
i , i 6= ik,

i = 1, 2, 3, 4.

Step 3. Compute

 αk+1 =
1

2

(√
α4
k + 4α2

k − α
2
k

)
,

Ŵ k+1 = (1− αk+1)W k+1 + αk+1W̃
k+1.D
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Table 2
The performance of eRABCD, meRABCD, BCD, and mBCD with accuracy ε = 10−5.

Iteration η Time

Problem erabcd|merabcd|bcd|mbcd erabcd|merabcd|bcd|mbcd erabcd|merabcd|bcd|mbcd
bqp50-1 5168 | 20172 | 110848 | 500000 9.9-6 | 9.9-6 | 9.9-6 | 7.6-3 19 | 40 | 8:02 | 18:02

bqp100-1 7789 | 39167 | 203733 | 500000 9.3-6 | 9.0-6 | 9.9-6 | 1.1-2 48 | 2:19 | 33:24 | 52:57

In order to know whether our proposed APG-SNCG method could universally
improve the efficiency for different outer loops, we also test two variants of the BCD
and eRABCD, where the block z is updated by the proximal gradient step. They
are named mBCD and meRABCD. The numerical performance of two selected test
examples is shown in Table 2. Note that in the table, one iteration of the (m)BCD
method refers to one sweep of all the four blocks, while that of the (m)eRABCD
method refers to one sweep of the three steps presented in the algorithm. One can see
that the mBCD and meRABCD perform much worse than their inexact counterparts.
These numerical results may indicate that if one of the blocks is computationally
intensive (such as the block S in (19) that requires the eigenvalue decomposition for
each update), a small proximal term is always preferred for the other blocks in order to
reduce the the number of iterations taken by the algorithm, which is also the number
of updates required by the difficult block. In fact, it has also been noted in [45] that
smaller number of blocks can speed up the performance of the stochastic dual Newton
method.

Table 3 lists the numerical performance of the imABCD, eRABCD and BCD
methods, with the performance profile given in Figure 2. One can see that the BCD
algorithm is much less efficient than the other algorithms, as all the test examples
cannot be solved to the required accuracy within 50000 iteration steps (we thus do
not include its performance in the performance profile). This phenomenon has clearly
demonstrated the power of the acceleration technique. Observe that the imABCD
method is about 3 times faster than the eRABCD method.

Based on the above numerical results, we may conclude that the efficiency of
the imABCD algorithm can be attributed to the double acceleration procedure: the
outer acceleration of the two-block coordinate descent method, and the inner accel-
eration by the proper incorporation of the second-order information through solving
the subproblems in each iteration by Newton type methods.

6. Conclusions. In this paper, for the purpose of overcoming the potential de-
generacy of the matrix best approximation problem (1), we have proposed a two-block
imABCD method with each block solved by the Newton type methods. Extensive nu-
merical results demonstrated the efficiency and robustness of our algorithm in solving
various instances of the large-scale matrix approximation problems. We believe that
our algorithmic framework is a powerful tool to deal with degenerate problems and
might be adapted to other convex matrix optimization problems in the future.
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Table 3
The performance of imABCD, eRABCD, and BCD with accuracy ε = 10−6.

Iterations η ηgap Time

Problem mE ;mI | ns imabcd|erabcd|bcd imabcd|erabcd|bcd imabcd|erabcd|bcd imabcd|erabcd|bcd

be150.3.1 151 ; 33525 | 151 5920 | 28593 | 50000 9.9-7 | 9.7-7 | 3.9-5 -1.8-7 | -8.8-7 | -1.2-5 47 | 2:02 | 7:24
be150.3.2 151 ; 33525 | 151 4576 | 24433 | 50000 9.9-7 | 9.7-7 | 3.9-5 -5.2-7 | -1.3-6 | -1.4-5 35 | 1:42 | 7:21
be150.3.3 151 ; 33525 | 151 4522 | 23251 | 50000 9.9-7 | 9.9-7 | 4.0-5 -4.9-7 | -9.5-7 | -1.3-5 34 | 1:37 | 7:19
be150.3.4 151 ; 33525 | 151 4374 | 23088 | 50000 9.9-7 | 9.6-7 | 3.7-5 -3.9-7 | -8.1-7 | -1.3-5 33 | 1:36 | 7:14
be150.3.5 151 ; 33525 | 151 5997 | 29844 | 50000 9.9-7 | 9.9-7 | 3.8-5 -3.0-7 | -1.0-6 | -9.8-6 46 | 2:04 | 7:23
be150.3.6 151 ; 33525 | 151 4131 | 22946 | 50000 9.9-7 | 9.9-7 | 3.9-5 -2.8-7 | -6.3-7 | -1.7-5 31 | 1:33 | 7:53
be150.3.7 151 ; 33525 | 151 4929 | 24820 | 50000 9.9-7 | 9.9-7 | 4.0-5 -4.9-7 | -1.2-6 | -1.1-5 37 | 1:43 | 7:19
be150.3.8 151 ; 33525 | 151 4424 | 23018 | 50000 9.9-7 | 9.9-7 | 3.6-5 -4.5-7 | -7.5-7 | -1.4-5 33 | 1:34 | 7:12
be150.3.9 151 ; 33525 | 151 5489 | 27988 | 50000 9.9-7 | 9.9-7 | 3.9-5 -3.7-7 | -6.7-7 | -1.1-5 44 | 1:57 | 7:17
be150.3.10 151 ; 33525 | 151 5646 | 28607 | 50000 9.9-7 | 9.6-7 | 3.9-5 -2.7-7 | -7.1-7 | -1.2-5 44 | 1:59 | 7:15
be150.8.1 151 ; 33525 | 151 6006 | 30134 | 50000 9.9-7 | 9.9-7 | 3.7-5 -4.0-7 | -9.5-7 | -9.0-6 46 | 2:01 | 7:18
be150.8.2 151 ; 33525 | 151 6377 | 33413 | 50000 9.9-7 | 9.9-7 | 3.7-5 -5.4-7 | -9.8-7 | -8.3-6 50 | 2:17 | 7:22
be150.8.3 151 ; 33525 | 151 6935 | 31222 | 50000 9.9-7 | 9.9-7 | 4.0-5 -5.4-7 | -1.2-6 | -8.3-6 54 | 2:10 | 7:22
be150.8.4 151 ; 33525 | 151 6091 | 29849 | 50000 9.9-7 | 9.9-7 | 3.8-5 -4.0-7 | -1.1-6 | -8.0-6 46 | 2:03 | 7:18
be150.8.5 151 ; 33525 | 151 6492 | 33640 | 50000 9.9-7 | 9.9-7 | 4.2-5 -4.5-7 | -8.3-7 | -7.6-6 52 | 2:22 | 7:25
be150.8.6 151 ; 33525 | 151 5905 | 29849 | 50000 9.9-7 | 9.9-7 | 3.6-5 -3.3-7 | -1.2-6 | -9.7-6 44 | 2:04 | 7:14
be150.8.7 151 ; 33525 | 151 5918 | 31215 | 50000 9.9-7 | 9.9-7 | 3.7-5 -4.7-7 | -1.3-6 | -1.0-5 44 | 2:08 | 7:13
be150.8.8 151 ; 33525 | 151 6554 | 33624 | 50000 9.9-7 | 9.9-7 | 3.9-5 -5.5-7 | -9.2-7 | -7.9-6 52 | 2:21 | 7:23
be150.8.9 151 ; 33525 | 151 6170 | 28607 | 50000 9.9-7 | 9.8-7 | 4.0-5 -2.6-7 | -8.4-7 | -7.4-6 46 | 1:57 | 7:21
be150.8.10 151 ; 33525 | 151 6232 | 29847 | 50000 9.9-7 | 9.9-7 | 4.0-5 -3.4-7 | -1.1-6 | -9.4-6 47 | 2:01 | 7:17
be200.3.1 201 ; 59700 | 201 6159 | 28607 | 50000 9.9-7 | 9.6-7 | 4.1-5 -3.0-7 | -1.1-6 | -1.5-5 1:12 | 3:02 | 11:37
be200.3.2 201 ; 59700 | 201 5463 | 28590 | 50000 9.9-7 | 9.6-7 | 4.3-5 -6.4-7 | -1.1-6 | -1.6-5 1:04 | 3:06 | 13:36
be200.3.3 201 ; 59700 | 201 6182 | 30123 | 50000 9.9-7 | 9.8-7 | 4.3-5 -4.7-7 | -1.4-6 | -1.3-5 1:14 | 3:16 | 12:01
be200.3.4 201 ; 59700 | 201 5922 | 28607 | 50000 9.9-7 | 9.8-7 | 4.4-5 -5.8-7 | -1.3-6 | -1.3-5 1:11 | 3:03 | 12:07
be200.3.5 201 ; 59700 | 201 6511 | 33535 | 50000 9.9-7 | 9.8-7 | 4.1-5 -5.8-7 | -1.3-6 | -1.2-5 1:19 | 3:44 | 12:08
be200.3.6 201 ; 59700 | 201 5492 | 28211 | 50000 9.9-7 | 9.9-7 | 4.3-5 -1.8-7 | -9.8-7 | -1.6-5 1:08 | 3:03 | 13:56
be200.3.7 201 ; 59700 | 201 5403 | 28593 | 50000 9.9-7 | 9.8-7 | 4.2-5 -5.4-7 | -1.1-6 | -1.6-5 1:05 | 3:08 | 12:41
be200.3.8 201 ; 59700 | 201 6108 | 30028 | 50000 9.9-7 | 9.9-7 | 4.1-5 -5.2-7 | -1.3-6 | -1.4-5 1:14 | 3:22 | 12:05
be200.3.9 201 ; 59700 | 201 6095 | 29909 | 50000 9.9-7 | 9.9-7 | 4.2-5 -3.9-7 | -1.2-6 | -1.4-5 1:15 | 3:12 | 11:56
be200.3.10 201 ; 59700 | 201 5554 | 28211 | 50000 9.9-7 | 9.9-7 | 4.0-5 -6.0-7 | -1.2-6 | -1.6-5 1:06 | 3:04 | 11:51
be200.8.1 201 ; 59700 | 201 7009 | 34304 | 50000 9.9-7 | 9.8-7 | 4.0-5 -7.2-7 | -1.4-6 | -7.9-6 1:24 | 3:50 | 12:16
be200.8.2 201 ; 59700 | 201 6295 | 33897 | 50000 9.9-7 | 9.9-7 | 4.0-5 -7.9-7 | -1.5-6 | -1.0-5 1:15 | 3:47 | 12:05
be200.8.3 201 ; 59700 | 201 7310 | 35879 | 50000 9.9-7 | 9.9-7 | 4.1-5 -5.9-7 | -1.2-6 | -8.3-6 1:30 | 4:00 | 12:22
be200.8.4 201 ; 59700 | 201 7726 | 34628 | 50000 9.9-7 | 9.7-7 | 4.2-5 -6.4-7 | -1.2-6 | -6.7-6 1:40 | 3:58 | 12:36
be200.8.5 201 ; 59700 | 201 8082 | 37110 | 50000 9.9-7 | 9.9-7 | 4.1-5 -7.1-7 | -1.0-6 | -6.8-6 1:46 | 4:13 | 12:43
be200.8.6 201 ; 59700 | 201 7058 | 34304 | 50000 9.9-7 | 9.9-7 | 3.9-5 -6.8-7 | -1.4-6 | -7.6-6 1:27 | 3:47 | 12:23
be200.8.7 201 ; 59700 | 201 5642 | 31222 | 50000 9.9-7 | 9.9-7 | 3.9-5 -7.3-7 | -1.7-6 | -1.5-5 1:07 | 3:27 | 12:12
be200.8.8 201 ; 59700 | 201 6047 | 30134 | 50000 9.9-7 | 9.9-7 | 3.9-5 -5.8-7 | -1.4-6 | -1.1-5 1:13 | 3:20 | 12:15
be200.8.9 201 ; 59700 | 201 7445 | 34304 | 50000 9.9-7 | 9.7-7 | 4.0-5 -7.4-7 | -1.3-6 | -7.4-6 1:35 | 3:50 | 12:23
be200.8.10 201 ; 59700 | 201 7028 | 34304 | 50000 9.9-7 | 9.3-7 | 3.9-5 -7.6-7 | -1.4-6 | -8.3-6 1:25 | 3:49 | 12:13
be250.1 251 ; 93375 | 251 3675 | 19265 | 50000 9.9-7 | 9.8-7 | 5.2-5 -5.8-7 | -1.5-6 | -3.0-5 57 | 2:34 | 18:42
be250.2 251 ; 93375 | 251 4213 | 22835 | 50000 9.9-7 | 9.9-7 | 5.1-5 -3.7-7 | -9.6-7 | -2.8-5 1:04 | 2:58 | 19:55
be250.3 251 ; 93375 | 251 4011 | 23125 | 50000 9.9-7 | 9.8-7 | 5.1-5 -4.5-7 | -1.1-6 | -3.0-5 1:03 | 3:12 | 19:53
be250.4 251 ; 93375 | 251 4059 | 23125 | 50000 9.9-7 | 9.5-7 | 4.7-5 -3.6-7 | -1.0-6 | -2.4-5 1:03 | 3:09 | 17:13
be250.5 251 ; 93375 | 251 4361 | 23125 | 50000 9.9-7 | 9.8-7 | 5.2-5 -3.9-7 | -9.5-7 | -2.7-5 1:08 | 3:07 | 20:24
be250.6 251 ; 93375 | 251 4122 | 22708 | 50000 9.9-7 | 9.9-7 | 5.2-5 -2.0-7 | -6.9-7 | -2.9-5 1:08 | 3:30 | 19:53
be250.7 251 ; 93375 | 251 5756 | 28225 | 50000 9.9-7 | 9.8-7 | 4.9-5 -3.4-7 | -1.1-6 | -2.1-5 1:37 | 4:21 | 17:32
be250.8 251 ; 93375 | 251 3398 | 18562 | 50000 9.9-7 | 9.8-7 | 5.5-5 -5.0-7 | -10.0-7 | -3.3-5 57 | 2:40 | 20:17
be250.9 251 ; 93375 | 251 5299 | 27990 | 50000 9.9-7 | 9.9-7 | 4.9-5 -5.8-7 | -1.0-6 | -2.4-5 1:29 | 4:18 | 17:33
be250.10 251 ; 93375 | 251 4678 | 24443 | 50000 9.9-7 | 9.9-7 | 5.0-5 -3.5-7 | -1.0-6 | -2.6-5 1:22 | 3:40 | 20:02
bqp250-1 251 ; 93375 | 251 7546 | 34304 | 50000 9.9-7 | 9.6-7 | 4.7-5 -7.6-7 | -1.6-6 | -1.4-5 2:07 | 5:37 | 18:28
bqp250-2 251 ; 93375 | 251 6788 | 34304 | 50000 9.9-7 | 9.9-7 | 4.8-5 -6.8-7 | -1.7-6 | -1.5-5 1:57 | 5:22 | 18:02
bqp250-3 251 ; 93375 | 251 5433 | 28225 | 50000 9.9-7 | 9.9-7 | 4.8-5 -8.1-7 | -1.4-6 | -2.1-5 1:29 | 4:09 | 20:32
bqp250-4 251 ; 93375 | 251 6997 | 34064 | 50000 9.9-7 | 9.9-7 | 5.0-5 -5.6-7 | -1.4-6 | -1.3-5 1:58 | 5:18 | 18:28
bqp250-5 251 ; 93375 | 251 7495 | 34304 | 50000 9.9-7 | 9.4-7 | 4.7-5 -8.3-7 | -1.6-6 | -1.5-5 2:09 | 5:26 | 18:27
bqp250-6 251 ; 93375 | 251 6362 | 34131 | 50000 9.9-7 | 9.9-7 | 4.9-5 -7.8-7 | -1.5-6 | -1.4-5 1:50 | 5:26 | 19:17
bqp250-7 251 ; 93375 | 251 5950 | 33578 | 50000 9.9-7 | 9.9-7 | 5.0-5 -5.4-7 | -9.7-7 | -2.1-5 1:40 | 5:18 | 20:21
bqp250-8 251 ; 93375 | 251 7693 | 34304 | 50000 9.9-7 | 9.9-7 | 5.0-5 -6.8-7 | -1.4-6 | -1.1-5 2:20 | 5:39 | 18:57
bqp250-9 251 ; 93375 | 251 5625 | 33431 | 50000 9.9-7 | 9.9-7 | 4.8-5 -8.9-7 | -1.3-6 | -1.9-5 1:37 | 5:10 | 18:52
bqp250-10 251 ; 93375 | 251 6924 | 34187 | 50000 9.9-7 | 9.9-7 | 4.6-5 -6.1-7 | -1.7-6 | -1.7-5 1:59 | 5:25 | 20:13
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Fig. 2. Performance profile of imABCD and eRABCD for with accuracy ε = 10−6.
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