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Abstract
This paper concerns with a noisy structured low-rank matrix recovery problem which
can be modeled as a structured rank minimization problem. We reformulate this
problem as a mathematical program with a generalized complementarity constraint
(MPGCC), and show that its penalty version, yielded by moving the generalized com-
plementarity constraint to the objective, has the same global optimal solution set as
the MPGCC does whenever the penalty parameter is over a certain threshold. Then,
by solving the exact penalty problem in an alternating way, we obtain a multi-stage
convex relaxation approach.We provide theoretical guarantees for our approach under
a mild restricted eigenvalue condition, by quantifying the reduction of the error and
approximate rank bounds of the first stage convex relaxation in the subsequent stages
and establishing the geometric convergence of the error sequence in a statistical sense.
Numerical experiments are conducted for some structured low-rank matrix recovery
examples to confirm our theoretical findings. Our code can be achieved from https://
doi.org/10.5281/zenodo.3600639.
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1 Introduction

The task of noisy structured low-rank matrix recovery is to seek a low-rank matrix
with a certain structure consistent with some noisy linear measurements. Let X be
the target matrix to be recovered and b = AX + ξ be the noisy measurement vector,
where A : Rn1×n2 → R

m is the sampling operator and ξ ∈ R
m is the noisy vector

with ‖ξ‖ ≤ δ for some δ > 0. The noisy structured low-rank matrix recovery problem
can be modeled as the rank minimization problem

min
X∈Rn1×n2

{
rank(X) s.t. ‖AX − b‖ ≤ δ, X ∈ Ω

}
, (1)

whereΩ ⊆ R
n1×n2 is a compact convex set describing the structure of X . Throughout

this paper, we assume that X is a global optimal solution of (1) with rank(X) = r ,
and that the sampling operator A is defined by AX := (〈A1, X〉, . . . , 〈Am, X〉)T for
X ∈ R

n1×n2 , where A1, . . . , Am are the given matrices in R
n1×n2 . Such a structured

rank minimization problem has wide applications in system identification and control
[11,13], signal and image processing [7,17], machine learning [36], multi-dimensional
scaling in statistics [31], finance [30], and quantum tomography [16]. For instance,
one is often led to seek a low-rank Hankel matrix in system identification and control,
a low-rank correlation matrix in finance and a low-rank density matrix in quantum
tomography.

Due to the combinatorial property of the rank function, the problem (1) is gener-
ally NP-hard. One popular way to deal with NP-hard problems is to use the convex
relaxation technique, which typically yields a desirable local optimal solution via a
single or a sequence of numerically tractable convex optimization problems. Fazel
[11] initiated the research for the nuclear norm relaxation method, motivated by the
fact that the nuclear norm is the convex envelope of the rank function in the unit ball
on the spectral norm. In the past decade or so, this relaxation method has received
much attention from many fields such as information, computer science, statistics,
optimization, and so on (see, e.g., [5,16,20,21,28,33,38]), and it has been shown that
a single nuclear norm minimization problem can recover the target matrix X under a
certain restricted isometry property (RIP) of A when δ = 0 and Ω = R

n1×n2 [33] or
yield a solution satisfying a certain error bound when δ > 0 and Ω = R

n1×n2 [4].
For its recoverability and error bounds under other conditions, the reader may refer to
[10,28,34] and references therein.

Most of the existing low-rank matrix optimization models target the case Ω =
R
n1×n2 . When the structure on the target matrix is known, it is reasonable to consider

the rank minimization problem (1) with Ω indicating the available information. How-
ever, the (hard) constraint X ∈ Ω often contradicts the role of the nuclear norm in
promoting a low-rank solution. For example, whenΩ consists of the set of correlation
matrices, the nuclear norm relaxation method for (1) may fail in generating a low-rank
solution since the nuclear norm becomes a constant in the setΩ . In addition, although
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some error bounds have been established for the nuclear norm relaxation method in
the noisy setting [4,28,29], they are minimax-optimal up to a logarithmic factor of the
dimension [29], instead of a constant factor like the l1-norm relaxation method for
sparse regression [32]. These two considerations motivate us to seek more efficient
convex relaxations.

1.1 Main contribution

The main contribution of this work is the introduction of a multi-stage convex relax-
ation approach via an equivalent Lipschitz optimization reformulation. This approach
can efficiently reduce the error bounds obtained from the nuclear norm convex relax-
ation. More specifically, we reformulate (1) as an equivalent MPGCC by using a
variational characterization of the rank function and verify that its penalized version,
yielded by moving the generalized complementarity constraint to the objective, has
the same global optimal solution set as the MPGCC does once the penalty parameter
is over a certain threshold. This exact penalty problem not only has a convex feasible
set but also possesses a Lipschitz objective function with a bilinear structure, which
offers a favorable Lipschitz reformulation for (1). To the best of our knowledge, this
is the first equivalent Lipschitz characterization for low-rank optimization problems
(although the nuclear norm relaxation is a Lipschitz characterization for low-rank
optimization problems, it generally does not have the same global optimal solution
set as the rank optimization problem does). With this reformulation, we propose a
multi-stage convex relaxation approach by solving the exact penalty problem in an
alternatingway. Under a restricted eigenvalue conditionweaker than the RIP condition
used in [4,25], we quantify the reduction of the error and approximate rank bounds of
the first stage nuclear norm convex relaxation in the subsequent stages, and establish
the geometric convergence of the error sequence in a statistical sense. Among others,
the latter entails an upper estimation for the stage number of the convex relaxations to
make the estimation error to reach the statistical error level. The analysis shows that
the error and approximate rank bounds of the nuclear norm relaxation are reduced
most in the second stage and the reduction rate is at least 40% for the problems with a
relatively worse restricted eigenvalue property, and the reduction becomes less as the
number of stages increases and can be ignored after the fifth stage.

1.2 Related works

The idea of using the multi-stage convex relaxation for low-rank optimization prob-
lems is not new. In order to improve the solution quality of the nuclear norm relaxation
method, some researchers pay their attention to nonconvex surrogates of low-rank opti-
mization problems. Since seeking a global optimal solution of a nonconvex surrogate
problem is almost as difficult as solving a low-rank optimization problem itself, they
relax nonconvex surrogates into a sequence of simple matrix optimization problems,
and develop the reweighted minimization methods (see [12,22,26]). In contrast to our
multi-stage convex relaxation approach, such sequential convex relaxation methods
are designed by solving a sequence of convex relaxation problems of nonconvex sur-
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rogates instead of the equivalent reformulation. We also notice that the theoretical
analysis in [25] for the reweighted trace norm minimization method [12] depends
on the special property of the log-determinant function, which is not applicable to
general low-rank optimization problems, and the theoretical guarantees in [22] were
established only for the noiseless recovery problem.

Additionally, some researchers have reformulated low-rank optimization problems
as smooth nonconvex problems with the help of low-rank decomposition of matrices
in the attempt to achieve a desirable solution by solving the smooth nonconvex prob-
lems in an alternating way (actually by solving a sequence of simple convex matrix
optimization problems); see, e.g., [19,35]. This class of convex relaxationmethods has
a theoretical guarantee, but is not applicable to those problems with hard constraints
such as the problem (1).

Finally, it is worthwhile to point out that ourmulti-stage convex relaxation approach
is highly relevant to the one proposed by Zhang [43] for sparse regularization prob-
lems and the rank-corrected procedure for the matrix completion problem with fixed
coefficients [24]. The former is designed via solving a sequence of convex relaxation
problems for the nonconvex surrogates of the zero-norm regularization problem. Since
the singular values vectors are involved in low-rank matrix recovery, the analysis tech-
nique in [43] is not applicable to our multi-stage convex approach to problem (1). In
particular, for low-rank matrix recovery, it is not clear whether the error sequence
yielded by the multi-stage convex relaxation approach shrinks geometrically or not in
a statistical sense, and if it does, under what conditions. We will answer these ques-
tions affirmatively in Sect. 4. The rank-corrected procedure [24] is actually a two-stage
convex relaxation approach in which the first-stage is to find a good initial estima-
tor and the second-stage is to solve the rank-corrected problem. This procedure has
already been applied to nonlinear dimensionality reduction problems [8] and tensor
completion problems [1]. However, when the rank of the true matrix is unknown,
the rank-corrected problem in [24] needs to be constructed heuristically with the
knowledge of the initial estimator, while each subproblem in our multi-stage convex
relaxation approach stems from the global exact penalty of the equivalent MPGCC. In
addition, the analysis in [24] ismore reliant on concentration inequalities in probability
analysis, whereas our analysis is deterministic and relies on the restricted eigenvalue
property of A.

1.3 Notation

We stipulate n1 ≤ n2. Let Rn1×n2 be the vector space of all n1 × n2 real matrices
endowedwith the trace inner product 〈·, ·〉 and its induced norm ‖·‖F . LetOn×κ be the
set inRn×κ consisting of allmatriceswhose columns are of unit length and aremutually
orthogonal to each other, and denoteOn×n byOn . For a given matrix X ∈ R

n1×n2 , we
denote by ‖X‖∗ and ‖X‖ the nuclear normand the spectral normof X , respectively, and
by σ(X) ∈ R

n1 the singular value vector of X with entries arranged in a non-increasing
order, and write On1,n2(X) := {(U , V ) ∈ O

n1 × O
n2 | X = U [Diag(σ (X)) 0]V T}.

Let e and I be the vector of all ones and the identity matrix whose dimensions are
known from the context.
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Let Φ be the family of closed proper convex functions φ:R → (−∞,+∞] satis-
fying

int(dom φ) ⊇ [0, 1], 1 > t∗ := argmin
0≤t≤1

φ(t), φ(t∗) = 0 and φ′−(1) < +∞.

(2)

For each φ ∈ Φ, let ψ : R → (−∞,+∞] be the associated closed proper convex
function:

ψ(t) :=
{

φ(t) if t ∈ [0, 1],
+∞ otherwise.

(3)

Then fromconvex analysis [37]weknow that the conjugateψ∗ ofψ has the properties:

{
∂ψ∗(t) = [

(ψ∗)′−(t), (ψ∗)′+(t)
] ⊆ [0, 1] ∀t ∈ R, (4a)

(ψ∗)′+(t1) ≤ (ψ∗)′−(t) ≤ (ψ∗)′+(t) ≤ (ψ∗)′−(t2) ∀t1 < t < t2. (4b)

In addition, we also need the eigenvalues of A∗A restricted to a set of low-rank
matrices, where A∗ denotes the adjoint of A. To this end, for a given positive integer
k, we define

ϑ+(k) := sup
0<rank(X)≤k

〈X ,A∗A(X)〉
‖X‖2F

and ϑ−(k) := inf
0<rank(X)≤k

〈X ,A∗A(X)〉
‖X‖2F

.

(5)

2 Exact penalty for an equivalent reformulation

First of all, we shall provide an equivalent reformulation of the rank minimization
problem (1) with the help of the following variational characterization of the rank
function.

Lemma 1 Let φ ∈ Φ. Then, for any given X ∈ R
n1×n2 , it holds that

φ(1)rank(X) = min
W∈Rn1×n2

{ n1∑
i=1

φ(σi (W )) : ‖X‖∗ − 〈W , X〉 = 0, ‖W‖ ≤ 1
}
. (6)

Proof We first argue that φ(1)rank(X) is a lower bound for the optimal value of (6).
Indeed, let W be an arbitrary feasible point of (6). From [18, Equation (3.3.25)],

‖X‖∗ = 〈W , X〉 ≤ 〈σ(W ), σ (X)〉 ≤ ‖σ(X)‖1 = ‖X‖∗,
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which implies that
∑n1

i=1(1 − σi (W ))σi (X) = 0. Along with σi (W ) ∈ [0, 1] for i =
1, . . . , n1, we obtain σi (W ) = 1 if σi (X) �= 0, and consequently

∑n1
i=1 φ(σi (W )) ≥

φ(1)rank(X), i.e., φ(1)rank(X) is a lower bound for the optimal value of (6). Now
consider the matrix

W ∗ = U1V
T

1 + t∗U2[Diag(e) 0]V T

2 with ([U1 U2], [V1 V2]) ∈ O
n1,n2(X),

where U1 ∈ O
n1×κ and V1 ∈ O

n2×κ for κ = rank(X), and t∗ is defined in (2). It is
immediate to check that W ∗ is feasible to (6) and

∑n1
i=1φ(σi (W ∗)) = φ(1)rank(X).

This shows that the optimal value of (6) is equal to φ(1)rank(X). The proof is com-
pleted. ��

Recall that φ(1) > 0 for each φ ∈ Φ. By Lemma 1, we readily have the following
result.

Proposition 1 Let φ ∈ Φ. Then, the rank minimization problem (1) is equivalent to

min
X ,W∈Rn1×n2

n1∑
i=1

φ(σi (W ))

s.t. ‖A(X) − b‖ ≤ δ, X ∈ Ω, (7)

‖X‖∗ − 〈W , X〉 = 0, ‖W‖ ≤ 1

in the sense that if X∗ is globally optimal to (1), then (X∗,U∗
1 (V ∗

1 )T+t∗U∗
2 [Diag(e) 0]

(V ∗
2 )T) is a global optimal solution of the problem (7) where ([U∗

1 U∗
2 ], [V ∗

1 V ∗
2 ]) ∈

O
n1,n2(X∗) with U∗

1 ∈ O
n1×r and V ∗

1 ∈ O
n2×r for r = rank(X∗); and conversely, if

(X∗,W ∗) is a global optimal solution to (7), then X∗ is globally optimal to (1).

The constraints ‖X‖∗ − 〈W , X〉 = 0 and ‖W‖ ≤ 1 involve a complementarity
relation which, for the positive semidefinite (PSD) rank minimization problem, is
exactly the PSD cone complementarity relation. In view of this, we call the problem
(7) anMPGCC. Due to the presence of the nonconvex constraint ‖X‖∗ −〈W , X〉 = 0,
the MPGCC (7) is as difficult as the original problem (1). Nevertheless, it provides us
a new view to tackle the difficult rank minimization problem (1). Since numerically
it is usually more convenient to handle nonconvex objective functions than to handle
nonconvex constraints, we are motivated to investigate the following penalization of
(7):

min
X ,W∈Rn1×n2

n1∑
i=1

φ(σi (W )) + ρ(‖X‖∗ − 〈W , X〉)

s.t. ‖A(X) − b‖ ≤ δ, X ∈ Ω, ‖W‖ ≤ 1. (8)

Next we shall verify that (8) is an exact penalty version for (7) in the sense that
there exists a constant ρ > 0 such that the global optimal solution set of (8) associated
to any ρ > ρ coincides with that of (7). To the best of our knowledge, there are only
a few works devoted to mathematical programs with matrix cone complementarity
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constraints [9,41], which mainly focus on the optimality conditions, but not the exact
penalty conditions.

Theorem 1 Let φ ∈ Φ and denote byF the feasible set of the problem (1). Then, there
exists a constant α > 0 such that for all X ∈ F , σr (X) ≥ α, and the global optimal
solution set of (8) associated to any ρ > φ′−(1)/α is the same as that of (7).

Proof We prove the first part of the conclusions by contradiction. Suppose that there
exists a sequence {Xk} ⊂ F such that σr (Xk) → 0. Notice that {Xk} is bounded since
F is bounded. Let X̂ be an accumulation point of {Xk}. By the closedness of F and
the continuity of σr (·), we have X̂ ∈ F and σr (X̂) = 0. This implies rank(X̂) ≤ r−1,
contradicting the fact that the optimal value of (1) is equal to r . So, such α exists.

Fix an arbitrary ρ > φ′−(1)/α. Then, for any X ∈ F and each i ∈ {1, 2, . . . , r},

{1} = argmin
t∈[0,1]

{
φ(t) + ρσi (X)(1 − t)

}
. (9)

Let Sρ and S∗
ρ be the feasible set and the global optimal solution set of the penalty

problem (8) associated to ρ, respectively, and denote by S and S∗ the feasible set
and the global optimal solution set of (7), respectively. We first establish the inclusion
S∗

ρ ⊆ S∗. To achieve this goal, we need to verify that each (X∗,W ∗) ∈ S∗
ρ satisfies

‖X∗‖∗ − 〈W ∗, X∗〉 = 0 and rank(X∗) = r . (10)

Since S∗ ⊂ S ⊂ Sρ and rφ(1) is the optimal value of the problem (7), it holds that

rφ(1) ≥
n1∑
i=1

φ(σi (W
∗)) + ρ(‖X∗‖∗ − 〈W ∗, X∗〉). (11)

In addition, from [18, Equation (3.3.25)], it follows that

n1∑
i=1

φ(σi (W
∗)) + ρ(‖X∗‖∗ − 〈W ∗, X∗〉)

≥
n1∑
i=1

[
φ(σi (W

∗)) + ρσi (X
∗)(1 − σi (W

∗))
]

≥
r∑

i=1

[
φ(σi (W

∗)) + ρσi (X
∗)(1 − σi (W

∗))
]

≥
r∑

i=1

min
t∈[0,1]

[
φ(t) + ρσi (X

∗)(1 − t)
] = rφ(1),
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where the second inequality is by the nonnegativity of φ(σi (W ∗)) and σi (X∗)(1 −
σi (W ∗)) for all i , and the last one is due to (9). Together with (11), we obtain that

n1∑
i=1

φ(σi (W
∗)) + ρ(‖X∗‖∗ − 〈W ∗, X∗〉)

=
r∑

i=1

[
φ(σi (W

∗)) + ρσi (X
∗)(1 − σi (W

∗))
]

=
r∑

i=1

min
t∈[0,1]

[
φ(t) + ρσi (X

∗)(1 − t)
] = rφ(1).

This, alongwith (9), implies that σi (W ∗) = 1 for i = 1, . . . , r . Substituting σi (W ∗) =
1 for i = 1, . . . , r into the last equation and using the nonnegativity of φ in [0, 1], we
deduce that

∑n1
i=r+1 φ(σi (W ∗)) = 0 and ‖X∗‖∗ = 〈W ∗, X∗〉 = 〈σ(X∗), σ (W ∗)〉.

This means that σi (W ∗) = t∗ for i = r + 1, . . . , n1 and rank(X∗) = r . Thus, the
claimed equalities in (10) hold. Hence, S∗

ρ ⊂ S and
∑n1

i=1 φ(σi (W ∗)) = rφ(1) for
each (X∗,W ∗) ∈ S∗

ρ . Since the optimal value of (7) is rφ(1), we have S∗
ρ ⊆ S∗. For

the reverse inclusion, let (X∗,W ∗) be an arbitrary point fromS∗. Then (X∗,W ∗) ∈ Sρ

and
∑n1

i=1 φ(σi (W ∗)) = rφ(1). While the last equation implies that the optimal value
of (8) is exactly rφ(1). Thus, S∗ ⊆ S∗

ρ . The proof is then completed. ��
Theorem 1 extends the exact penalty result of [2, Theorem 3.3] for the zero-norm

minimization to the matrix setting, and further develops the exact penalty result of
the rank-constrained minimization problems in [3, Theorem 3.1]. Observe that the
objective function of (8) is globally Lipschitzian over its feasible set. Combining
Theorem 1 with Proposition 1, we conclude that the rank minimization problem (1)
is equivalent to the Lipschitzian optimization problem (8).

3 Amulti-stage convex relaxation approach

The penalty problem (8) is equivalent to the problem (1), but it depends on the lower
bound α for the r th largest singular value of all X ∈ F , which may be difficult to
estimate. This means that a sequence of penalty problems of the form (8) with non-
decreasing ρ should be solved so as to target achieving a global optimal solution
of (1). The problem (8) associated to a given ρ > 0 is not globally solvable due
to the nonconvexity of the objective function, but it becomes a nuclear semi-norm
minimization with respect to X if the variable W is fixed and has a closed form
solution of W (as will be shown later) if the variable X is fixed. This motivates us to
propose amulti-stage convex relaxation approach to (1) by solving (8) in an alternating
way.
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Algorithm 1 (A multi-stage convex relaxation approach)
Initialization: Choose a function φ ∈ Φ. Take W 0 = 0 and set k := 1.

while the stopping conditions are not satisfied do

1. Solve the following nuclear semi-norm minimization problem

Xk ∈ argmin
X∈Rn1×n2

{‖X‖∗ − 〈Wk−1, X〉 : ‖A(X) − b‖ ≤ δ, X ∈ Ω
}
. (12)

If k = 1, select a suitable ρ1 > 0 and go to Step (S.3); else go to Step (S.2).
2. Select a suitable ratio factor μk ≥ 1 and set ρk := μkρk−1.
3. Solve the following minimization problem

Wk ∈ argmin
W∈Rn1×n2

{ n1∑
i=1

φ(σi (W )) − ρk 〈W , Xk 〉 : ‖W‖ ≤ 1
}
. (13)

4. Let k ← k + 1, and then go to Step (S.1).

end while

The subproblem (12) corresponds to the penalty problem (8) associated to ρk−1
with the variable W fixed to Wk−1. Since the set Ω is assumed to be compact, its
solution Xk is well defined. Let Xk have the SVD as Uk[Diag(σ (Xk)) 0](V k)T. By
[18, Eq.(3.3.25)], it is easy to check that Z∗ = Uk[Diag(z∗) 0](V k)T is globally
optimal to (13) where

z∗ ∈ argmin
z∈Rn1

{
n1∑
i=1

ψ(zi ) − ρ〈z, σ (Xk)〉
}

; (14)

and conversely, ifW ∗ is globally optimal to (13), then σ(W ∗) is optimal to (14).Write

Wk := Uk[Diag(wk
1, . . . , w

k
n1) 0](V k)T with wk

i ∈ ∂ψ∗(ρkσi (Xk)). (15)

Together with [37, Theorem 23.5], it follows that such Wk is an optimal solution of
the subproblem (13). This means that the main computational work of Algorithm 1
consists of solving a sequence of subproblems (12). Unless otherwise stated, in the
sequel we choose wk

i = wk
j whenever σi (Xk) = σ j (Xk), which ensures that 1 ≥

wk
1 ≥ · · · ≥ wk

n1 ≥ 0.
Since ‖Wk−1‖ ≤ 1, the function ‖ ·‖∗ −〈Wk−1, ·〉 is a semi-norm overRn1×n2 . So,

the subproblem (12) is a nuclear semi-norm minimization problem. When k = 1, it
reduces to the nuclear normminimization problem, i.e., the first stage of Algorithm 1 is
exactly the nuclear normconvex relaxation. It should be emphasized thatAlgorithm1 is
different from the reweighted trace normminimizationmethod [12,25] and the iterative
reweighted algorithm [22]. The former is proposed from the primal and dual viewpoint
by solving an equivalent Lipschitz reformulation in an alternating way, whereas the
latter is proposed from the primal viewpoint by relaxing a smooth nonconvex surrogate
of (1).
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To close this section, we illustrate the choice ofwk
i in (15) with two specific φ ∈ Φ.

Example 1 Let φ1(t) = t for t ∈ R. Clearly, φ1 ∈ Φ with t∗ = 0. Moreover, for the
function ψ1 defined by (3) with φ1, an elementary calculation yields that

ψ∗
1 (s) =

{
s − 1 if s > 1;
0 if s ≤ 1

and ∂ψ∗
1 (s) =

⎧⎨
⎩

{1} if s > 1;
[0, 1] if s = 1;
{0} if s < 1.

(16)

Thus, one may choose wk
i =

{
1 if σi (Xk) ≥ 1

ρk
;

0 otherwise
for the matrix Wk in formula (15).

Example 2 Let φ2(t) = −t − q−1
q (1− t + ε)

q
q−1 + ε + q−1

q for t ∈ (−∞, 1+ ε) with
0 < q < 1, where ε ∈ (0, 1) is a constant. One can check that φ2 ∈ Φ with t∗ = ε.
For the function ψ2 defined by the Eq. (3) with φ2, an elementary calculation yields
that

∂ψ∗
2 (s) =

⎧
⎪⎪⎨
⎪⎪⎩

{1} if s ≥ ε
1

q−1 − 1;
{1 + ε − (s + 1)q−1} if (1 + ε)

1
q−1 − 1 < s < ε

1
q−1 − 1;

{0} if s ≤ (1 + ε)
1

q−1 − 1.

Hence, one may take wk
i = min

[
1+ ε − (ρkσi (Xk) + 1)q−1, 1

]
for the matrix Wk in

(15).

Remark 1 A constant ε ∈ (0, 1) is introduced in φ2 so as to ensure that (φ2)
′−(1) <

+∞, and then the problem (8) is a global exact penalization of (1). Thus, once (X̂ , Ŵ )

yielded by Algorithm 1 satisfies ‖X‖∗ − 〈X ,W 〉 = 0, X̂ is at least a local minimum
of the problem (1) since each feasible solution of (1) is locally optimal.

4 Theoretical guarantees of Algorithm 1

In this section, we shall provide the theoretical guarantees of Algorithm 1 under a mild
condition for the restricted eigenvalues of A∗A, which is stated as follows.

Assumption 1 There exist a constant c ∈ [0,√2) and an integer s ∈ [1, n1−2r
2 ] such

that ϑ+(s)
ϑ−(2r+2s) ≤ 1 + 2c2s

r , where ϑ+(·) and ϑ−(·) are the functions defined by (5).

Assumption 1 requires the restricted eigenvalue ratio of A∗A to grow sublinearly
in s. This condition, extending the sparse eigenvalue condition used for the analysis
of sparse regularization (see [42,43]), is weaker than the RIP condition δ4r <

√
2− 1

used in [4] for n1 ≥ 4r , where δkr is the kr -restricted isometry constant of A defined
as in [4]. Indeed, from the definitions of ϑ+(·) and ϑ−(·), it is immediate to have that

ϑ+(r)

ϑ−(2r + 2r)
≤ 1 + δ4r

1 − δ4r
< 1 + 2

√
2 − 2

2 − √
2

< 1 + 2 × 0.8432.
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This shows that c = 0.843 is such that ϑ+(s)
ϑ−(2r+2s) ≤ 1 + 2c2s

r for s = r . In addition,

this condition is also weaker than the RIP condition δ3r < 2
√
5 − 4 used in [25] for

n1 ≥ 3r , where r is an arbitrary even number or r is an odd number greater than 11.
To see this, let r be an arbitrary even number or be an odd number greater than 11.
Then,

max

(
ϑ+(r/2)

ϑ−(2r + r)
,

ϑ+((r − 1)/2)

ϑ−(2r + r − 1)

)
≤ 1 + δr/2

1 − δ3r
≤ 1 + δ3r

1 − δ3r
< 1 + 4

√
5 − 8

5 − 2
√
5
. (17)

So, c = 1.34 and 1.403 are respectively such that ϑ+(s)
ϑ−(2r+2s) ≤ 1+ 2c2s

r for s = r
2 and

r−1
2 .
Recall that X is assumed to be a global optimal solution of (1) with rank(X) = r .

In the sequel, we let X have the SVD asU [Diag(σ (X)) 0]VT
, whereU = [U1 U 2] ∈

O
n1 and V = [V 1 V 2] ∈ O

n2 with U 1 ∈ O
n1×r and V 1 ∈ O

n2×r , and write T :=
T (X) where T (X) is the tangent space at X associated to the constraint rank(X) ≤ r
(see (32)). Let

γk−1 := ‖PT (Wk−1 −U 1V
T

1 )‖F√
2r(1 − ‖PT ⊥(Wk−1)‖) for k = 1, 2, . . . . (18)

The proofs of all the results in the subsequent subsections are given in “Appendix 3”.

4.1 Error and approximate rank bounds

Under Assumption 1, when γk−1 ∈ [0, 1/c) for some k ≥ 1, we can establish the
following error bound and approximate rank bound for the solution Xk of the kth
subproblem.

Proposition 2 Suppose that Assumption 1 holds and 0 ≤ γk−1 < 1/c for some k ≥ 1.
Then

∥∥Xk − X
∥∥
F ≤ Ξ(γk−1) and

∥∥PT ⊥(Xk)
∥∥∗ ≤ Γ (γk−1), (19)

where Ξ : [0, 1/c) → R+ and Γ : [0, 1/c) → R+ are the increasing functions defined
by

Ξ(t) := 2δ
√

ϑ+(2r + s)

ϑ−(2r + s)
· 1

1 − ct

√
1 + r t2

2s
and Γ (t) := 2δ

√
ϑ+(2r + s)

ϑ−(2r + s)
·

√
2r t

1 − ct
.

(20)

Remark 2 (a) Since ‖PT ⊥(Xk)‖∗ = 0 implies that rank(Xk) ≤ 2r , it is reasonable
to view ‖PT ⊥(Xk)‖∗ as a measure for the approximate rank of Xk . So, the sec-
ond inequality in (19) provides an approximate rank bound for Xk . The error and
approximate rank bounds in (19) consist of two parts: one part is the statistical error

123



580 S. Bi et al.

Ξ(0) = 2δ
√

ϑ+(2r+s)
ϑ−(2r+s) from the noise and the operator A, and the other part is the

estimation error from γk−1.

(b) Since W 0 = 0, we have γ0 = 1√
2r

‖U 1V
T

1 ‖F = 1√
2

< 1
c . Hence, under Assump-

tion 1, the error and approximate rank bounds of the nuclear norm convex relaxation
are

∥∥X1 − X
∥∥
F ≤ Ξ(γ0) = Ξ(1/

√
2) and

∥∥PT ⊥(X1)
∥∥∗ ≤ Γ (γ0) = Γ (1/

√
2).

(21)

Moreover, if Assumption 1 is satisfied with s = r/2 and c <
√
2 − 2(1−δ3r (1+

√
5/2))√

3(1−δ3r )

for δ3r < 2
√
5−4, then the error boundΞ(γ0) is tighter than the bound

3δ
√
1+δ3r

1−δ3r (1+
√
5/2)

given by [25, Theorem III.1] with C1,1 = 1 for the nuclear norm relaxation because

Ξ(γ0) =
√

ϑ+(2.5r)
√
6δ(

1 − c/
√
2
)
ϑ−(2.5r)

≤
√
1 + δ3r

√
6δ(

1 − c/
√
2
)
(1 − δ3r )

<
3δ

√
1 + δ3r

1 − δ3r (1 + √
5/2)

.

Remark 2 (b) says that under Assumption 1 the solution X1 of the first stage convex
relaxation has the error and approximate rank bounds as in (21). However, it is not clear
whether Xk (k ≥ 2) has such error and approximate rank bounds or not. The following
theorem states that if in addition σr (X) > 2Ξ(γ0) and ρ1 and μk are appropriately
chosen, all Xk (k ≥ 2) have the bounds as in (19), and more importantly, their error
and approximate rank bounds are, respectively, smaller than those of X1. To achieve
this result, we need the sequence {γ̃k}k≥1, which is defined recursively with γ̃0 = γ0
as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γ̃k :=
√
r(1 − b̃k) + (

√
2̃ak + 1)β̃k√

2r(1 − ãk)(1 − β̃2
k )

with ãk = (ψ∗)′+
[
ρkΞ(γ̃k−1)

]
, (22a)

b̃k = (ψ∗)′−
[
ρk(σr (X) − Ξ(γ̃k−1))

]
, β̃k = − 1√

2
ln
[
1 −

√
2Ξ(γ̃k−1)

σr (X)

]
.

(22b)

Theorem 2 Suppose that Assumption 1 holds and σr (X) > 2Ξ(γ0). If the parameters

ρ1 and μk are chosen such that ã1 <
(̃b1−β̃2

1 )
√
r−β̃1

(1−β̃2
1 )

√
r+√

2β̃1
and μk ∈ [

1, Ξ(γ̃k−2)
Ξ(γ̃k−1)

]
, respec-

tively, then all Xk (k ≥ 1) satisfy the inequalities in (19), and for k = 2, 3, . . . it holds
that

∥∥Xk − X
∥∥
F ≤ Ξ(γk−1) ≤ Ξ(γ̃k−1) < Ξ(γ̃k−2) < · · · < Ξ(γ̃0) = Ξ(γ0),

‖PT ⊥(Xk)‖∗ ≤ Γ (γk−1) ≤ Γ (γ̃k−1) < Γ (γ̃k−2) < · · · < Γ (γ̃0) = Γ (γ0).
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Table 1 Reduction rate of the error bounds of the first stage in the 2nd–5th stage

ρ1 c 0 0.1 0.3 0.5 0.7 0.9

φ1
[ 0.29α
σr (X)

, α

σr (X)

)
Ξ(γ̃1)/Ξ(γ0) 0.819 0.766 0.658 0.547 0.433 0.316

Ξ(γ̃2)/Ξ(γ0) 0.818 0.763 0.652 0.537 0.420 0.302

Ξ(γ̃3)/Ξ(γ0) 0.818 0.763 0.651 0.536 0.420 0.302

Ξ(γ̃4)/Ξ(γ0) 0.818 0.763 0.651 0.536 0.420 0.302

φ2
[ 0.24α
σr (X)

, 4.42α
σr (X)

]
Ξ(γ̃1)/Ξ(γ0) 0.975 0.969 0.955 0.934 0.905 0.856

Ξ(γ̃2)/Ξ(γ0) 0.967 0.958 0.931 0.888 0.816 0.689

Ξ(γ̃3)/Ξ(γ0) 0.965 0.954 0.920 0.760 0.752 0.572

Ξ(γ̃4)/Ξ(γ0) 0.965 0.953 0.915 0.744 0.714 0.516

Ξ(0)/Ξ(γ0) 0.817 0.759 0.644 0.528 0.413 0.297

Remark 3 (a) Theorem 2 shows that under Assumption 1 and σr (X) > 2Ξ(γ0), if
ρ1 and μk are chosen appropriately, then the error and approximate rank bounds of
Xk (k ≥ 2) improve those of X1 at least by 1− Ξ(γ̃k−1)

Ξ(γ0)
and 1− Γ (γ̃k−1)

Γ (γ0)
, respectively.

(b) The choice of ρ1 depends on Ξ(γ0). Take the function φ1 in Example 1 for
instance. If σr (X) = αΞ(γ0) for α ≥ 2.5, by virtue of the definitions of ã1, b̃1 and
β̃1 and (16), it is easy to check that ã1 = 0, b̃1 = 1 and β̃1 ∈ [0, 0.6), and hence
(̃b1 − β̃2

1 )
√
r − β̃1 > 0. This means that

( 1
(α−1)Ξ(γ0)

, 1
Ξ(γ0)

)
is the range of choice

for ρ1. For numerical computations, one may estimate r and σr (X) with the help of
σ(X1).

To close this subsection, we illustrate the ratios Ξ(γ̃k−1)
Ξ(γ0)

and Γ (γ̃k−1)
Γ (γ0)

by using φ1

and φ2 with q = 1/2 and ε = 10−3. To this end, we suppose that Assumption 1 holds
with r = 10, s = r/2 and σr (X) = αΞ(γ0) for α ≥ 4.5. Then, for those c in the first
row of Table 1, one may compute the ratios Ξ(γ̃k−1)

Ξ(γ0)
and Γ (γ̃k−1)

Γ (γ0)
as those in the last

six columns of Table 1 with ρ1 chosen as the middle point of the interval and μk ≡ 1.
We see that the error bound of the first stage is reduced most in the second stage, and
as the number of stages increases, the reduction becomes less. For Algorithm 1 with
φ1, the reduction is close to the limit Ξ(0)

Ξ(γ̃0)
when k = 5, but for Algorithm 1 with φ2,

there is a little room for the reduction especially for those A∗A with c ≥ 0.5.

4.2 Geometric convergence

Generally speaking, because of the presence of the noise, it is impossible for the error
sequence {‖Xk − X‖F }k≥1 to decrease and then converge geometrically. However,
one may achieve its geometric convergence in a statistical sense as in the following
theorem.

Theorem 3 Suppose that Assumption 1 holds and σr (X) > max(2,
√
2 + α)Ξ(γ0)

holds with α = 1+√
2̃a1

(1−ã1)(1−β̃2
1 )

√
r+4s

. If ρ1 and μk are chosen as in Theorem 2, then for

k = 1, 2, . . .,
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∥∥Xk − X
∥∥
F ≤ Ξ(0)

1 − cγ̃1

[
1 + (1 − b̃1)

√
r

2(1 − ã1)(1 − β̃2
1 )

√
s

]

+
[ α Ξ(γ0)

σr (X) − √
2Ξ(γ0)

]k−1∥∥X1 − X
∥∥
F . (23)

Remark 4 (a) The requirement σr (X) > max(2,
√
2 + α)Ξ(γ0) in Theorem 3 is bit

stronger than σr (X) > 2Ξ(γ0). Take φ1 for example. When σr (X) ≥ 2.4Ξ(γ0), this
requirement is automatically satisfied. Also, now we have that � := α Ξ(γ0)

σr (X)−√
2Ξ(γ0)

≤
0.76.
(b) The first term of the sum on the right hand side of (23) represents the statistical
error arising from the noise and the sampling operator A, and the second term is the
estimation error related to the multi-stage convex relaxation. Clearly, the statistical
error is of a certain order of Ξ(0). Thus, to guarantee that the second term is less than
the statistical error, at most k stage convex relaxations are required, where

k = log(Ξ(0)) − log(‖X1 − X‖F )

log �
+ 1 ≤ log(Ξ(0)/Ξ(γ0))

log �
+ 1.

Take � = 0.7 for example. When s = r , one can calculate that k ≤ 2 if c = 0.3, and
k ≤ 4 if c = 0.7. This means that, for those A∗A with a worse restricted eigenvalue
condition, more than two stage convex relaxations are needed to yield a satisfactory
solution.

For the analysis in the previous two subsections, the condition σr (X) ≥ αΞ(γ0) for
a certain α > 2 is required for the decreasing of the error and approximate rank bounds
of the first stage convex relaxation and the contraction of the error sequence. Such a
condition is necessary for the low-rank recovery since, when the smallest nonzero
singular is mistaken as a zero, the additional singular vectors will yield a large error.
In fact, in the geometric convergence analysis of sparse vector optimization (see [43]),
the error bound of the first stage was implicitly assumed not to be too large. In addition,
we observe that the structure information of X does not lend any help to the low-rank
matrix recovery in terms of convergence rates. However, when the true matrix has a
certain structure, it is necessary to incorporate such structure information into model
(1). Otherwise, the solution Xk yielded by the multi-stage convex relaxation may not
satisfy the structure constraint, and then it is impossible to control the error of Xk to
the true matrix X .

Finally, we point out that when the components ξ1, ξ2, . . . , ξm of the noisy vector ξ
are independent (but not necessarily identically distributed) sub-Gaussians, i.e., there
exists a constant σ ≥ 0 such that E[etξi ] ≤ eσ 2t2/2 holds for all i and any t ∈ R, by
Lemma 8 in “Appendix 3”, the conclusions of Theorems 2 and 3 hold with δ = √

mσ

with probability at least 1 − exp(1 − c1m
4 ) for an absolute constant c1 > 0. For

the random A, the following result is immediate by [4, Theorem 2.3] and the first
inequality in (17).
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Theorem 4 Fix δ ∈ (0, 1/2) and let A be a random measurement ensemble obeying
the following conditions: for any given X ∈ R

n1×n2 and any fixed 0 < t < 1,

P

{
|‖A(X)‖2 − ‖X‖2F | > t‖X‖2F

}
≤ C exp(−c2m) (24)

for fixed constants C, c2 > 0 (which may depend on t). If m ≥ 3C(n1 + n2 + 1)r

with C >
log(36

√
2/δ)

c2
, then Assumption 1 holds for s = r/2 and c =

√
2δ
1−δ

with

probability exceeding1−2 exp(−dm)where d = c2− log(36
√
2/δ)

C .Consequently, when
0 ≤ γk−1 < 1/c, the bounds in (19) holds with probability at least 1 − 2 exp(−dm)

for such random measurements.

As remarked after [4,Theorem2.3], the condition in (24) holdswhenA is aGaussian
randommeasurement ensemble (i.e., A1, . . . , Am are independent from each other and
each Ai contains i.i.d. entries N (0, 1/m)); or when each entry of each Ai has i.i.d.
entries that are equally likely to take 1√

m
or − 1√

m
; or when A is a random projection

(see [33]).

5 Numerical experiments

In this section, we shall test the theoretical results of Sect. 4 with Algorithm 1 solving
low-rank matrix recovery problems, including matrix sensing and matrix completion
problems. During the testing, we choose φ2 with q = 1/2 and ε = 10−3 for the
function φ in Algorithm 1. Although Table 1 shows that Algorithm 1 with φ1 reduces
the error faster than Algorithm 1 with φ2 does, our preliminary testing indicates that
the latter has a little better performance in reducing the relative error. In addition, we
choose ρ1 = 10/‖X1‖ and μk = 5/4 (k ≥ 2) for Algorithm 1. All the results were
run on the Windows system with an Intel(R) Core(TM) i7-7700 CPU 2.80GHz.

5.1 Low-rankmatrix sensing problems

We test the performance of Algorithm 1 with some matrix sensing problems in which
some entries are known exactly. Specifically, there are 5 entries of the true X ∈ R

n1×n2

assumed to be known exactly. We generate the true X of rank r in the following
command

XR = randn(n1,r); XL = randn(n2,r); Xbar = XR*XL’.

For these problems, Ω = {
X ∈ R

n1×n2 | B(X) = d, ‖X‖ ≤ R
}
for a constant

R > 0 with

B(X) := (〈Ei j , X〉 : (i, j) ∈ Υfix)
T and d := (〈Ei j , X〉 : (i, j) ∈ Υfix)

T, (25)

where Ei j is an n1×n2 matrix with the (i, j)th entry being 1 and other entries being 0,
and Υfix is the set consisting of the indices of known entries. We successively generate
the matrices A1, . . . , Am ∈ R

n1×n2 with i.i.d. standard normal entries to formulate the
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sampling operatorA. SuchA satisfies the RIP propertywith a high probability by [33],
which means that the restricted eigenvalues of A∗A can satisfy Assumption 1 with
a high probability from the discussions after Assumption 1. Then, we successively
generate the standard Gaussian noises ε1, . . . , εm to formulate the observation vector
b by

b = A(X) + 0.1(‖A(X)‖/‖ε‖)ε with ε = (ε1, . . . , εm)T. (26)

For the testing in the rest of this subsection, we choose R = 103‖X‖ and δ = 0.1‖b‖.
Let δS(·) denote the indicator function of a set S, i.e., δS(x) = 0 if x ∈ S and

otherwise δS(x) = +∞, and let C = Wk−1. Then the subproblem (12) can be
equivalently written as

min
X ,Z∈Rn1×n2 ,z∈Rm

‖X‖∗ − 〈C, X〉 + δR(z) + δΛ(Z)

s.t. A(X) − z − b = 0, B(X) − d = 0, X − Z = 0 (27)

where R := {z ∈ R
m | ‖z‖ ≤ δ} and Λ := {Z ∈ R

n1×n2 | ‖Z‖ ≤ R}. After an
elementary calculation, one may obtain the dual problem of (27) as follows

min
Y ,Γ ∈Rn1×n2 ,ξ,u∈Rm ,ζ∈R|Υfix |

〈b, ξ 〉 + 〈d, ζ 〉 + δ‖u‖ + R‖Y‖∗

s.t. C − A∗(ξ) − B∗(ζ ) − Y − Γ = 0, ξ − u = 0, ‖Γ ‖ ≤ 1. (28)

Based on the optimality condition of (27), wemeasure the accuracy of an approximate
optimal solution (X , Z , z,Y , Γ , ξ, u, ζ ) for the problem (27) and its dual (28) via

η = max
{
ηP , ηz, ηZ , ηD, ηΓ

}
and ηgap := |objP + objD|

1 + |objP | + |objD|
where

ηP :=
√

‖A(X) − z − b‖2 + ‖B(X) − d‖2 + ‖X − Z‖2F
1 + ‖b‖ ,

ηz = max(‖z‖ − δ, 0)

1 + ‖z‖ , ηZ = max(‖Z‖ − R, 0)

1 + ‖Z‖ , ηΓ = max(‖Γ ‖ − 1, 0)

1 + ‖Γ ‖ ,

ηD :=
√

‖C − A∗(ξ) − B∗(ζ ) − Y − Γ ‖2F + ‖ξ − u‖2
1 + ‖C‖F .

We solve the problem (27) with the powerful Schur-complement based semi-proximal
ADMM (alternating direction method of multipliers) [23] for its dual (28). We ter-
minate the semi-proximal ADMM when max(η, ηgap) ≤ 10−6. In the sequel, if
Xk is the output of Algorithm 1 in a certain stage, its relative error is defined by
‖Xk − X‖F/‖X‖F .
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Fig. 1 Performance of Algorithm 1 in the first fifteen stages

5.1.1 Performance of Algorithm 1 in different stages

We generate randomly a matrix sensing problem with 5 known entries as above with
n1 = n2 = 100, r = 6 and m = 2328 to test the performance of Algorithm 1
in different stages. Figure 1 plots the relative error of Algorithm 1 in the first fifteen
stages.We see thatAlgorithm1 reduces the relative error of the nuclear norm relaxation
method most in the second stage, and after the third stage the reduction becomes
insignificant. This performance coincides with the analysis results shown as in Table 1.

5.1.2 Performance of Algorithm 1 with different samples

We generate randomly a matrix sensing problem with 5 known entries as above with
n1 = n2 = 100 and r = 5 to test the performance of Algorithm 1 with the number
of samples m = αr(2n1 − r) for α ∈ {1.0, 1.1, . . . , 3.0}. Figure 2 plots the relative
error and rank curves of the first stage convex relaxation and the first five stages
convex relaxation, respectively. We see that the relative errors of the first stage convex
relaxation and the first five stages convex relaxation decrease as the number of samples
increases, but the relative error of the latter is always smaller than that of the former.
Moreover, the first five stages convex relaxation reduces those of the first stage convex
relaxation at least 25% for α ∈ [1.0, 3.0], and the reduction becomes less as the
number of samples increases. In particular, the rank of X1 is higher than that of X
even for α = 3, i.e., the number of samples m = 3r(2n1 − r), but the rank of X5

equals that of X for m = 1.2r(2n1 − r).

5.2 Comparison with the nuclear norm relaxationmethod

In this subsection, we shall compare the performance of Algorithm 1 with that of the
popular nuclear norm relaxation method (NNRM) by taking the low-rank PSD matrix
completion problem for example. Though the sampling operators for such problems
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Fig. 2 Performance of the first stage and the first five stages convex relaxation

do not satisfy the RIP property, it is possible for the restricted eigenvalues of A∗A
to satisfy Assumption 1. For these problems, the sampling operator A : Sn → R

m is
defined by

A(X) := (〈Ei j , X〉 : (i, j) ∈ Υsample)
T (29)

where Ei j is same as the one in Eq. (25), and Υsample is the set consisting of the indices
of sampled entries; the observation vector b is generated randomly in the same way
as in (26); and Ω = {

X ∈ S
n+ | E1(X) = d, E2(X) ≤ g

}
where E1 : Sn → R

l1 and
E2 : Sn → R

l2 are the linear operators, and d ∈ R
l1 and g ∈ R

l2 are the given vectors.
Since Ω ⊆ S

n+, the objective function ‖X‖∗ − 〈Wk−1, X〉 of (12) over the feasible
set becomes 〈I − Wk−1, X〉. Write C = I − Wk−1. Then, the subproblem (12) takes
the following form

min
X∈Sn ,z∈Rm ,y∈Rl2

〈C, X〉 + δSn+(X) + δR(z) + δ
R
l2+
(y)

s.t. AX − z − b = 0,

(
E1
E2

)
X −

(
d
g

)
+
(
0
y

)
= 0. (30)

After an elementary calculation, the dual problem of (30) has the following form

min
Γ ∈Sn ,ξ∈Rm ,ζ∈Rl1 ,s,u∈Rl2

〈b, ξ 〉 + 〈d, ζ 〉 + 〈g, s〉 + δ‖ξ‖ + δSn+(Γ ) + δ
R
l2+
(u)

s.t. C + A∗(ξ) + E∗
1 (ζ ) + E∗

2 (s) − Γ = 0, s − u = 0. (31)

Notice that the NNRM for the problem (1) is solving the problem (30) with C ≡ 0.
For Algorithm 1 and the NNRM, we solve the subproblem of the form (30) with
the Schur-complement based semi-proximal ADMM [23] for its dual (31). Based on
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the optimality condition of (30), we measure the accuracy of an approximate optimal
solution (X , z, y, Γ , ξ, ζ, s, u) for the problem (30) and its dual problem (31) in terms
of

η = max
{
ηP , ηX , ηy, ηD, ηΓ , ηu

}
and ηgap := |objP + objD|

1 + |objP | + |objD| ,

where ηP and ηD are defined as in Sect. 5.1, and ηX , ηy, ηΓ , ηu are defined by

ηX = ‖X − ΠS+(X)‖F
1 + ‖X‖F , ηy =

‖y − Π
R
l2+
(y)‖

1 + ‖y‖ , ηΓ = ‖Γ − ΠS+(Γ )‖F
1 + ‖Γ ‖F ,

ηu =
‖u − Π

R
l2+
(u)‖

1 + ‖u‖ .

Here, for a given closed convex set S, ΠS(·) denotes the projection mapping onto
S. During the testing, we terminate the semi-proximal ADMM once max(η, ηgap) ≤
10−6, and terminate Algorithm 1 at the kth iterate when rank(Xk−1) = rank(Xk),
where rank(Xk) is the number of nonzero singular values of Xk less than 10−8‖Xk‖.
In the rest of this subsection, the sampling ratio is defined by 2m

n(n+1)−2nfix
where m is

the number of samples and nfix is the number of known entries, and the relative error

is defined by ‖X f −X‖F
‖X‖F where X f is the output of solvers.

5.2.1 Low-rank correlation matrix completion problems

A correlation matrix is a real symmetric PSD matrix with all diagonals being 1. We
generate the true correlation matrix X ∈ S

n+ of rank r in the following command:
L = randn(n,r); W = weight*L(:,1:1); L(:,1:1) = W; G = L*L’;
M = diag(1./sqrt(diag(G)))*G*diag(1./sqrt(diag(G))); Xbar = (M+M’)/2.

In this way, one can control the ratio of the largest eigenvalue and the smallest
nonzero eigenvalue of X by weight. We assume that some off-diagonal entries of

X are known. Thus, E1(X) =
(
diag(X)

B(X)

)
for X ∈ S

n , g1 =
(
e
d

)
, E2 ≡ 0 and

g2 = 0, where the operator B : Sn → R
|Υfix| and the vector d ∈ R

|Υfix| are defined as
in Sect. 5.1. The noise vector ξ and the observation vector b are generated in the same
way as in (26).

Table 2 reports the numerical results of NNRM and Algorithm 1 for some examples
generated randomly with n = 1000. The information of X is reported in the first three
columns, where the second column lists the number of known off-diagonal entries for
X , and the third column gives the ratio of the largest eigenvalue of X to the smallest
nonzero eigenvalue of X . For each test example, we sample partial unknown off-
diagonal entries uniformly at random to formulate the operator A, where the sample
ratio is 1.92% for rank(X) = 5 and 4.32% for rank(X) = 10. The fourth and the fifth
columns report the results of the NNRM and Algorithm 1, respectively, where relerr
and rank mean the relative error and the rank of solutions, iter and time are the total
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Table 2 Performance of NNRM and Algorithm 1 for low-rank correlation completion

r off-diag eigr NNRM Algorithm 1

relerr(rank) iter time relerr(rank) iter time ns

5 0 1.19 5.06e-1(1000) 95 25.7 1.58e-1(5) 2279 579.7 4

0 2.86 3.86e-1(1000) 101 25.1 1.51e-1(5) 906 228.9 3

0 4.36 2.68e-1(1000) 105 27.1 1.51e-1(5) 883 226.5 3

100 1.17 4.92e-1(1000) 94 23.5 1.53e-1(5) 1941 491.1 4

100 2.79 3.40e-1(1000) 114 28.6 1.47e-1(5) 916 231.3 3

100 4.23 2.73e-1(1000) 105 27.8 1.48e-1(5) 932 240.3 3

10 0 1.36 3.29e-1(1000) 73 19.0 1.44e-1(10) 849 217.9 3

0 3.52 2.59e-1(1000) 76 19.7 1.39e-1(10) 626 163.2 3

0 6.39 1.80e-1(1000) 84 21.5 1.33e-1(10) 520 132.2 3

100 1.42 3.08e-1(1000) 73 18.2 1.42e-1(10) 949 241.8 3

100 3.31 2.50e-1(1000) 76 19.8 1.38e-1(10) 623 159.3 3

100 6.35 1.86e-1(1000) 85 22.4 1.37e-1(10) 551 141.5 3

number of iterations and the total computing time in second for the semi-proximal
ADMM, and ns is the number of stages required by Algorithm 1.

We see that the solutions yielded by the NNRM have high relative errors as well as
full ranks, while those given by Algorithm 1 not only have much lower relative error
but also achieve the rank of the true matrix. Among others, the relative error of the
NNRM is reduced at least 25% by that of Algorithm 1, and for those problems with
1.92% sample ratio, the reduction is close to 45%. The last column of Table 2 shows
that Algorithm 1 yields the desirable results for almost all problems within 3 stages.

5.2.2 Low-rank covariance matrix completion problems

We generate the true covariance matrix X ∈ S
n+ of rank r in the following command:

L = randn(n,r)/sqrt(sqrt(n)); W = weight*L(:,1:1);
L(:,1:1) = W; G = L*L’; Xbar = (G+G’)/2.

In this case, E1 = B and g1 = d where B : S
n → R

|Υfix| and d ∈ R
|Υfix|

are defined as in Sect. 5.1, E2(X) := 〈Eii , X〉 for (i, i) ∈ Υdiag where Eii is an
n × n matrix with the (i, i)th entry being 1 and other entries being 0, and Υdiag

is the index set of unknown diagonal entries of X , and g2 ∈ R
|Υdiag| is the vec-

tor consisting of the upper bounds for unknown diagonal entries of X . We set
g2 = (1 + 0.01rand(1, 1))‖X‖∞ones(|Υdiag|, 1).

Table 3 reports the numerical results of NNRM and Algorithm 1 for some problems
generated randomly with n = 1000. The information of the true covariance matrix
X is reported in the first two columns, where the second column lists the number of
known diagonal and off-diagonal entries of X , and the third one reports the ratio of
the largest eigenvalue of X to the smallest nonzero eigenvalue of X . For each test
example, we sample the upper triangular entries uniformly at random to formulate the
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Table 3 Performance of NNRM and Algorithm 1 for low-rank covariance completion

r
(diag,
offdiag)

eigr NNRM Algorithm 1

relerr(rank) iter time relerr(rank) iter time ns

5 (200, 0) 1.18 4.80e-1(36) 950 244.6 2.25e-1(5) 2443 631.1 4

(200, 0) 4.59 3.19e-1(32) 777 205.6 1.82e-1(5) 2292 597.4 4

(0, 200) 1.20 4.86e-1(36) 350 88.1 2.21e-1(5) 1240 316.2 4

(0, 200) 4.26 3.24e-1(33) 272 69.9 1.90e-1(5) 827 213.1 4

(100, 100) 1.21 4.74e-1(36) 1409 366.5 2.24e-1(5) 3696 960.2 4

(100, 100) 4.07 3.33e-1(33) 715 181.1 1.80e-1(5) 2206 563.4 4

13 (200, 0) 5.33 2.20e-1(53) 290 75.2 1.54e-1(13) 638 164.2 3

(200, 0) 7.72 1.90e-1(48) 309 79.1 1.45e-1(13) 619 159.8 3

(0, 200) 5.17 2.20e-1(53) 147 37.6 1.55e-1(13) 386 101.3 3

(0, 200) 9.01 1.78e-1(45) 142 36.7 1.43e-1(13) 385 99.2 3

(100, 100) 4.58 2.30e-1(54) 286 74.8 1.56e-1(13) 599 155.0 3

(100, 100) 8.11 1.85e-1(48) 248 64.4 1.46e-1(13) 481 124.2 3

sampling operator A, where the sample ratio is 1.91% for rank(X) = 5 and 5.72%
for rank(X) = 13. The fourth and the fifth columns report the results of NNRM and
Algorithm 1, respectively.

We see that the solutions yielded by the NNRM have high relative errors and ranks,
while the solutions given by Algorithm 1 have the desirable relative errors as well
as the same rank as the true matrix does. The relative error of the NNRM is reduced
at least 20% by Algorithm 1, and for those problems with 1.92% sample ratio, the
reduction is at least 40%. Comparing with the time columns in Table 2, we see that for
the low-rank matrix covariance completion, the time gap between Algorithm 1 and
NNRM becomes much smaller, and the time of the former is only about twice that
of the latter. In addition, along with the results in Table 2, Algorithm 1 has no direct
relation with the ratio of the largest eigenvalue and the smallest nonzero eigenvalue
of X .

5.3 Applications to real data

Let M be an estimated n × n correlation matrix. In this part, we shall seek a low-rank
correlation matrix under a given noise level δ > 0 by applying Algorithm 1 to the
problem (1) with b = A(M), where A is the sampling operator formulated as in
Sect. 5.2.

Example 3 The M is a 500 × 500 correlation matrix extracted from the correlation
matrix, which is based on a 10, 000 gene micro-array data set obtained from 256 drugs
treated rat livers; see Natsoulis et al. [27] for details.

Example 4 The M is an estimated 943 × 943 correlation matrix based on 100, 000
ratings for 1682 movies by 943 users. Due to missing data, the generated matrix M
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Fig. 3 Performance of NNRM, Tstage and Algorithm 1 for low-rank correlation estimation
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Fig. 4 Performance of NNRM, Tstage and Algorithm 1 for low-rank correlation estimation

is not positive semi-definite [15]. This rating data set can be downloaded from http://
www.grouplens.org/node/73.

We apply NNRM, Tstage (Algorithm 1with the first two stages) and Algorithm 1 to
solving the problem (1) with b = A(M). We adopt the stopping criterion as described
in Sect. 5.2 for Algorithm 1. Figures 3 and 4 below plot the relative error, rank and
time curves of the three solvers with M from Examples 3 and 4 , respectively, under
the number of samples m = α( n

2+n
2 − nfix) where nfix = nfix_diag = n for α ∈

{0.1, 0.2, . . . , 1.0}. Here, the relative error is defined by ‖X f −M‖F‖M‖F where X f denotes
the output of three solvers. Since the matrix M in Example 4 is highly polluted, we
take δ = 0.75 for it instead of δ = 0.1 as for M from Example 3.

From Figs. 3 and 4 , we see that NNRM gives the outputs with the lowest relative
error but full rank within the least time, Tstage yields the outputs with much lower
rank and a little higher relative error than those of NNRM by using about 5 times
computing time of NNRM, while Algorithm 1 gives the outputs with the lowest rank
and a little higher relative error than those ofNNRMandTstage though it requiresmore
computing time.We find that when the number of samples is over 0.7( n

2+n
2 −nfix), for

the M in Example 3, Tstage and Algorithm 1 yield a solution with the rank lower than
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120 and 81, respectively, and the relative error is less than 0.12 and 0.14, respectively;
while for the M from Example 4, they give a solution with the rank lower than 28 and
18 respectively, and the relative error is less than 0.8027 and 0.8043, respectively. That
is, the relative error of the solution to the M is close to the given noise level. Notice
that the matrix M from these two examples has a high rank; for example, for the M
from Example 3, its rank (i.e., the number of singular values greater than 10−5‖M‖)
is 300. So, if one wants to seek the lowest rank estimation, Algorithm 1 is an ideal
choice; and if one only wants to seek a low rank estimation, then Algorithm 1 with
the first two stages is a desirable choice.

6 Conclusions

Wehave proposed amulti-stage convex relaxation approach to the structured rankmin-
imization problem (1) by solving the exact penalty problem of its equivalent MPGCC
in an alternating way. It turned out that this approach not only has favorable theo-
retical guarantees but also reduces effectively the rank and error of the nuclear norm
relaxation method. There are several topics worthwhile to pursue, such as to develop
more effective algorithms for seeking the solution of subproblems, to establish the
theoretical guarantee for the case where the subproblems are solved inexactly, and to
apply this approach to other classes of low-rank optimization problems, say, low-rank
plus sparse problems.
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7 Appendix

7.1 Technical lemmas

Let M ∈ R
n1×n2 be a matrix of rank κ > 0, and let T (M) be the tangent space at

M associated to the rank constraint rank(X) ≤ κ (see [6, Section 2.3]). Then, the
subspace T (M) and its orthogonal complementarity T (M)⊥ in Rn1×n2 take the form
of

T (M) = {
X ∈ R

n1×n2 | X = U1U
T

1 X + XV1V
T

1 −U1U
T

1 XV1V
T

1

}
,

T (M)⊥ = {
X ∈ R

n1×n2 | X = U2U
T

2 XV2V
T

2

}
, (32)

where ([U1 U2], [V1 V2]) ∈ O
n1,n2(M) with U1 ∈ O

n1×κ and V1 ∈ O
n2×κ . In this

part, letting X̃ ∈ R
n1×n2 be a matrix of rank κ > 0, and letting ([Ũ1 Ũ2], [Ṽ1 Ṽ2]) ∈

O
n1,n2(X̃) with Ũ1 ∈ O

n1×κ and Ṽ1 ∈ O
n2×κ , we shall derive an upper bound for the
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projection of the perturbed Ũ1ṼT

1 by a matrix W ∈ R
n1×n2 onto T (X̃) and T (X̃)⊥,

respectively.

Lemma 2 For a given W ∈ R
n1×n2 , by letting ([U1 U2], [V1 V2]) ∈ O

n1,n2(W ) with
U1 ∈ O

n1×κ and V1 ∈ O
n2×κ , and writing w = σ(W ), the following inequalities

hold:

‖PT (X̃)⊥ (W )‖ ≤ wκ+1 + (w1 − wκ+1)
∥∥Ũ1Ṽ

T

1 −U1V
T

1

∥∥2, (33a)

‖PT (X̃)(Ũ1Ṽ
T

1 − W )‖F ≤ (1 + √
2wκ+1)‖U1V

T

1 − Ũ1Ṽ
T

1 ‖F + √
κ max

(|1 − w1|, |1 − wκ |).
(33b)

Proof LetΣ1 := Diag(w1, . . . , wκ) andΣ2 := Diag(wκ+1, . . . , wn1). Then, we have

∥∥PT (X̃)⊥(W )
∥∥

= ∥∥Ũ2Ũ
T

2

[
U1(Σ1 − wκ+1 I )V

T

1 + (wκ+1U1V
T

1 +U2[Σ2 0]V T

2 )
]
Ṽ2Ṽ

T

2

∥∥
≤ ∥∥Ũ2Ũ

T

2 U1
∥∥∥∥Σ1 − wκ+1 I

∥∥∥∥Ṽ2Ṽ T

2 V1
∥∥+ wκ+1

= (w1 − wκ+1)
∥∥Ũ2Ũ

T

2 U1V
T

1

∥∥∥∥Ṽ2ṼT

2 V1U
T

1

∥∥+ wκ+1

= (w1 − wκ+1)
∥∥Ũ2Ũ

T

2 (U1V
T

1 − Ũ1Ṽ
T

1 )
∥∥∥∥Ṽ2ṼT

2 (V1U
T

1 − Ṽ1Ũ
T

1 )
∥∥+ wκ+1

≤ (w1 − wκ+1)
∥∥U1V

T

1 − Ũ1Ṽ
T

1

∥∥2 + wκ+1,

where the first inequality is using ‖wκ+1U1V T

1 + U2[Σ2 0]VT

2 ‖ ≤ wκ+1, and the
second equality is due to ‖Z‖ = ‖ZQT‖ for any Z and Q with QTQ = I . So,
the inequality (33a) holds. In order to establish (33b), we first notice that for any
Z ∈ R

(n1−κ)×(n2−κ),

∥∥PT (X̃)(U2ZV
T

2 )
∥∥
F =

√∥∥Ũ1ŨT

1 U2ZV T

2

∥∥2
F + ∥∥Ũ2ŨT

2 U2ZV T

2 Ṽ1Ṽ T

1

∥∥2
F

≤
√

‖Z‖2∥∥ŨT

1 U2
∥∥2
F + ‖Z‖2∥∥V T

2 Ṽ1
∥∥2
F

= ‖Z‖
√∥∥(Ṽ1ŨT

1 − V1UT

1 )U2
∥∥2
F + ∥∥V T

2 (Ṽ1ŨT

1 − V1UT

1 )
∥∥2
F

≤ √
2‖Z‖‖Ṽ1ŨT

1 − V1U
T

1 ‖F ,

where the first equality is by the expression of PT (X̃)(·). Then, it holds that
∥∥PT (X̃)(W − Ũ1Ṽ

T

1 )
∥∥
F

≤ ∥∥PT (X̃)(Ũ1Ṽ
T

1 −U1Σ1V
T

1 )
∥∥
F + ∥∥PT (X̃)(U2[Σ2 0]VT

2 )
∥∥
F

≤ ∥∥Ũ1Ṽ
T

1 −U1Σ1V
T

1

∥∥
F + √

2‖[Σ2 0]‖‖Ṽ1ŨT

1 − V1U
T

1 ‖F
≤ (1 + √

2wκ+1)
∥∥U1V

T

1 − Ũ1Ṽ
T

1

∥∥
F + ∥∥U1(I − Σ1)V

T

1

∥∥
F

≤ (1 + √
2wκ+1)‖U1V

T

1 − Ũ1Ṽ
T

1 ‖F + √
κ max

(|1 − w1|, |1 − wκ |).

This shows that the inequality (33b) holds. Thus, we complete the proof. ��
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When the matrix W in Lemma 2 and a matrix X close to X̃ have a simultaneous
ordered SVD, the term ‖Ũ1ṼT

1 − U1V T

1 ‖ in (33a)–(33b) can be upper bounded as
follows.

Lemma 3 ([24, Theorem 3]) Let X ∈ R
n1×n2 be an arbitrary matrix of rank κ > 0.

For any given ω > 2, if ‖X − X̃‖F ≤ η for some η ∈ (
0, σκ(X̃)/ω

]
, then it holds that

∥∥U1V
T

1 − Ũ1Ṽ
T

1

∥∥
F ≤ 1√

2
ln
( ω

ω − √
2

)
,

where ([U1 U2], [V1 V2]) ∈ O
n1,n2(X) with U1 ∈ O

n1×κ and V1 ∈ O
n2×κ .

7.2 Properties of restricted eigenvalues

This part includes two results on the restricted eigenvalues of A∗A. The first gives
a relation among ϑ+(·), ϑ−(·) and π(·, ·) where for given positive integers k, l with
k + l ≤ n1,

π(k, l) := sup
0<rank(X)≤k,

0<rank(Y )≤l,〈X ,Y 〉=0

〈X ,A∗A(Y )〉‖X‖F
‖A(X)‖2‖Y‖ . (34)

Lemma 4 For any given positive integer k, l with k + l ≤ n1, π(k, l) ≤√
l
2

√
ϑ+(l)

ϑ−(k+l) − 1.

Since the proof of Lemma 4 is similar to that of [42, Proposition 3.1], we omit it.
The second one is an extension of [42, Lemma 10.1] in the matrix setting, stated as
follows.

Lemma 5 Let G ∈ R
n1×n2 ,UJ ∈ O

n1×|J | with J ⊆ {1, . . . , n1} and VJ ′ ∈
O

n2×|J ′| with J ′ ⊆ {1, . . . , n2} be given matrices. Let ([P1 P2], [Q1 Q2]) ∈
O

|J |,|J ′|(UT

J GVJ ′) with P1 ∈ O
|J |×s and Q1 ∈ O

|J ′|×s for an integer 1 ≤ s ≤
min(|J |, |J ′|). Define G := L⊥ ⊕ J1 where L = {

UJ ZV T

J ′ | Z ∈ R
|J |×|J ′|} and

J1 = {
UJ P1Z(VJ ′Q1)

T | Z ∈ R
s×s

}
. Then, for any H ∈ G, the following inequality

holds with l = maxZ∈L⊥ rank(Z):

max
(
0, 〈H ,A∗A(G)〉) ≥ ϑ−(l + s)

(‖H‖F − s−1π(l + s, s)
∥∥PL(G)

∥∥∗
)‖H‖F

− ϑ+(l + s)‖H‖F‖PG(G − H)‖F .

Proof Let H be an arbitrary matrix from G. If ‖H‖F ≤ π(l+s,s)
s

∥∥PL(G)
∥∥∗, the con-

clusion is clear. So, we assume that ‖H‖F >
π(l+s,s)

s

∥∥PL(G)
∥∥∗. By the definition

of ϑ+(l + s), ‖APG(H − G)‖2 ≤ ϑ+(l + s)‖PG(H − G)‖2F and ‖A(H)‖2 ≤
ϑ+(l + s)‖H‖2F . Then,
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〈
H ,A∗APG(G − H)

〉

≥ −‖A(H)‖‖APG(H − G)‖ ≥ −ϑ+(l + s)‖H‖F‖PG(H − G)‖F . (35)

We proceed the arguments by considering the following two cases.
Case 1 rank(UT

J GVJ ′) ≤ s ≤ min(|J |, |J ′|). Now, by the expression ofPJ1 , we have

PJ1(G) = UJ P1P
T

1 U
T

J GVJ ′Q1Q
T

1 V
T

J ′ = UJ P1
[
Diag(σ (UT

J GVJ ′)) 0
]
QT

1

VT

J ′ = UJU
T

J GVJ ′V T

J ′ ,

where the last two equalities are due to UT

J GVJ ′ = P1[Diag
(
σ(UT

J GVJ ′)
)

0]QT

1 .
Note that PL(G) = UJUT

J GVJ ′V T

J ′ by the definition of L. So, PL(G) = PJ1(G),
i.e., G ∈ G. Then,

〈A(H),A(G)〉 = 〈A(H),A(H)〉 + 〈A(H),APG(G − H)〉
≥ ϑ−(l + s)‖H‖2F − ϑ+(l + s)‖H‖F‖PG(H − G)‖F .

This inequality implies the desired result. Thus, we complete the proof for this case.
Case 2 1 ≤ s < rank(UT

J GVJ ′). Let k be the smallest positive integer such that
sk ≥ min(|J |, |J ′|). Clearly, k ≥ 2. Let li and l̃i for i = 1, 2, . . . , k be such that

l1 = · · · = lk−1 = s, lk = |J | − s(k − 1), l̃1 = · · · = l̃k−1 = s, l̃k = |J ′| − s(k − 1).

For each 2 ≤ i ≤ k, define the subspaceJi := {
UJ P̃i Z(VJ ′ Q̃i )

T | Z ∈ R
li ×̃li

}
, where

P̃i ∈ O
|J |×li is the matrix consisting of the (

∑i−1
j=1 l j +1)th column to the (

∑i
j=1 l j )th

column of P; and Q̃i ∈ O
|J ′|×̃li is thematrix consisting of the (

∑i−1
j=1 l̃ j +1)th column

to the (
∑i

j=1 l̃ j )th column of Q. Clearly, J1 ⊥ Ji for i ≥ 2. From the definition of
G, we have G ⊥ Ji for i �= 1. For each i ≥ 1, it is easy to calculate that

PJi (Z) = UJ P̃i (UJ P̃i )
TZVJ ′ Q̃i (VJ ′ Q̃i )

T ∀Z ∈ R
n1×n2 .

This, together with PL(G) = UJUT

J GVJ ′V T

J ′ , implies that PL(G) = ∑k
i=1 PJi (G).

Then, 〈H ,A∗A(G)〉 = 〈H ,A∗APG(G)〉 + ∑
i>1

〈
H ,A∗APJi (G)

〉
. Consequently,

we have

〈
H ,A∗A(G)

〉− 〈
H ,A∗APG(G − H)

〉

= 〈H ,A∗A(H)〉 +
∑
i>1

〈
PG(H),A∗APJi (G)

〉

= 〈H ,A∗A(H)〉
[
1 +

∑
i>1

〈H ,A∗APJi (G)〉‖H‖F
‖A(H)‖2‖PJi (G)‖

‖PJi (G)‖
‖H‖F

]

≥ 〈H ,A∗A(H)〉
[
1 − π(l + s, s)

∑
i>1 ‖PJi (G)‖

‖H‖F
]
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≥ 〈H ,A∗A(H)〉
[
1 − π(l + s, s)‖PL(G)‖∗

s‖H‖F
]

≥ ϑ−(l + s)‖H‖F
[
‖H‖F − s−1π(l + s, s)‖PL(G)‖∗

]
, (36)

where the first inequality is using the definition of π by the fact that H ∈ G,PJi (G) ∈
Ji and rank(PJi (G)) ≤ s, G ⊥ Ji for i > 1, and the second inequality is due to

∑
i>1

‖PJi (G)‖ ≤ s−1
∑
i=1

∥∥PJi (G)
∥∥∗ = s−1‖PL(G)‖∗

implied by ‖PJi+1(G)‖ ≤ s−1‖PJi (G)‖∗. Combining (36) with (35), we get the
result. ��

7.3 Proofs of the results in Sect. 4

This part includes the proofs of all the results in Sect. 4. For convenience, in this part
we write Δk := Xk − X for k = 1, 2, . . .. We first establish two preliminary lemmas.

Lemma 6 If ‖PT ⊥(Wk−1)‖ < 1 for some k ≥ 1, then with γk−1 defined by (18) we
have

‖PT ⊥(Δk)‖∗ ≤ γk−1
√
2r‖PT (Δk)‖F .

Proof By the optimality of Xk and the feasibility of X to the subproblem (12),

‖Xk‖∗ − 〈Wk−1, Xk〉 ≤ ‖X‖∗ − 〈Wk−1, X〉.

Recall from [40] that ∂‖X‖∗ = {U1V
T

1 + W | W ∈ R
(n1−r)×(n2−r) with ‖W‖ ≤ 1}.

Then,

‖Xk‖∗ − ‖X‖∗ ≥ 〈U 1V
T

1 , Xk − X〉 + ‖PT ⊥(Xk − X)‖∗.

The last two equations imply that 〈U 1V
T

1 ,Δk〉+‖PT ⊥(Δk)‖∗ ≤ 〈Wk−1,Δk〉.Hence,

〈U 1V
T

1 ,PT (Δk)〉 + ‖PT ⊥(Δk)‖∗ ≤ 〈Wk−1,Δk〉.

This, along with 〈Wk−1,Δk〉 = 〈PT ⊥(Wk−1),PT ⊥(Δk)〉+〈Wk−1,PT (Δk)〉, yields
that

‖PT ⊥(Δk)‖∗ − 〈PT ⊥(Wk−1),PT ⊥(Δk)〉 ≤ 〈PT (Wk−1 −U 1V
T

1 ),PT (Δk)〉.
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Using the relation |〈Y , Z〉| ≤ ‖Y‖‖Z‖∗ for any Y , Z ∈ R
n1×n2 , we obtain that

(
1 − ‖PT ⊥(Wk−1)‖)‖PT ⊥(Δk)‖∗ ≤ ‖PT (Wk−1 −U 1V

T

1 )‖F‖PT (Δk)‖F .

From this inequality and the definition of γk−1, we obtain the desired result. ��
Lemma 7 Suppose that‖PT ⊥(Wk−1)‖ < 1 for somek ≥ 1. Let ([Pk

1 Pk
2 ], [Qk

1 Qk
2]) ∈

O
n1−r ,n2−r (U

T

2ΔkV 2) with Pk
1 ∈ O

(n1−r)×s and Qk
1 ∈ O

(n2−r)×s for an integer
s ∈ [1, n1−r ], and defineMk := T ⊕Hk withHk = {

U 2Pk
1 Y (V 2Qk

1)
T |Y ∈ R

s×s
}
.

Then,

∥∥Δk
∥∥
F ≤

√
1 + rγ 2

k−1/(2s)
∥∥PMk (Δ

k)
∥∥
F .

Proof By the definitions of the subspaces T ⊥ and Hk , for any Z ∈ R
n1×n2 we have

PT ⊥(Z) = U 2U
T

2 ZV 2V
T

2 and PHk (Z) = U 2P
k
1 (U 2P

k
1 )TZV 2Q

k
1(V 2Q

k
1)

T.

By this, it is easy to check thatPHk (Δk) = PHk (PT ⊥(Δk)).By the SVDofU
T

2ΔkV 2,

PT ⊥(Δk) = U 2
(
U

T

2ΔkV 2
)
V

T

2 = U 2P
k[Diag(σ (U

T

2ΔkV 2)) 0
]
(Qk)TV

T

2 (37)

where Pk = [Pk
1 Pk

2 ] and Qk = [Qk
1 Qk

2]. Together with the expression of
PHk (PT ⊥(Δk)),

PHk (Δk) = PHk (PT ⊥(Δk)) = U 2P
k
1

[
Diag

(
σ s,↓(U

T

2ΔkV 2)
)
0
]
(Qk

1)
TV

T

2 , (38)

where σ s,↓(U
T

2ΔkV 2) is the vector consisting of the first s components of

σ(U
T

2ΔkV 2). Notice that PMk (Δk) = PT (Δk) + PHk (Δk) since the subspaces
T andHk are orthogonal. By combining this with equalities (37) and (38), it follows
that

‖Δk − PMk (Δ
k)‖ = ‖PT ⊥(Δk) − PHk (Δ

k)‖ ≤ s−1‖PHk (Δ
k)‖∗,

‖Δk − PMk (Δ
k)‖∗ = ‖PT ⊥(Δk) − PHk (Δ

k)‖∗ = ‖PT ⊥(Δk)‖∗ − ‖PHk (Δ
k)‖∗.

Together with ‖P(Mk )⊥(Δk)‖2F ≤ ‖P(Mk )⊥(Δk)‖‖P(Mk )⊥(Δk)‖∗ and Lemma 6,

‖P(Mk )⊥(Δk)‖F ≤ (‖Δk − PMk (Δ
k)‖‖Δk − PMk (Δ

k)‖∗
)1/2 ≤ 1

2
√
s
‖PT ⊥(Δk)‖∗

≤ γk−1
√
2r

2
√
s

∥∥PT (Δk)
∥∥
F

≤ γk−1
√
2r

2
√
s

∥∥PMk (Δ
k)
∥∥
F ,
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where the second inequality is using the fact that ab ≤ (a + b)2/4 for a, b ∈ R. The
result then follows by noting that ‖Δk‖2F = ‖PMk (Δk)‖2F + ‖P(Mk )⊥(Δk)‖2F . ��

Proof of Proposition 2 Since γk−1 ∈ [0, 1/c), by the definition of γk−1, it is clear that
‖PT ⊥(Wk−1)‖ < 1. From Assumption 1 and Lemma 4 of “Appendix B”,

π(2r + s, s)γk−1

s
≤ ck−1√

2r
with ck−1 = cγk−1 < 1. (39)

LetHk andMk be defined as in Lemma 7. Using Lemma 5 of “Appendix B” withL =
T ⊥,J1 = Hk,G = Mk, H = PMk (Δk) andG = Δk and the factPMk (G−H) = 0,
we have

max
(
0, 〈PMk (Δ

k),A∗A(Δk)〉)

≥ ϑ−(2r + s)
(∥∥PMk (Δ

k)
∥∥
F − π(2r + s, s)

s

∥∥PT ⊥(Δk)
∥∥∗
)∥∥PMk (Δ

k)
∥∥
F

≥ ϑ−(2r + s)
(
‖PMk (Δ

k)‖F − ck−1
∥∥PT (Δk)

∥∥
F

)
‖PMk (Δ

k)‖F
≥ ϑ−(2r + s)(1 − ck−1)‖PMk (Δ

k)‖2F ≥ 0, (40)

where the second inequality is due to Lemma 6 and Eq. (39), and the last one is due
to ‖PT (Δk)‖F ≤ ‖PMk (Δk)‖F . In addition, by the definition of ϑ+(·), it holds that

max
(
0, 〈PMk (Δ

k),A∗A(Δk)〉) ≤ ‖A(PMk (Δ
k))‖‖A(Δk)‖ ≤ 2δ

√
ϑ+(2r + s)‖

PMk (Δ
k)‖F

where the second inequality is using ‖A(Δk)‖ ≤ ‖A(Xk) − b‖ + ‖A(X) − b‖ ≤ 2δ.

Together with (40), we obtain ‖PMk (Δk)‖F ≤ 2δ
√

ϑ+(2r+s)
(1−ck−1)ϑ−(2r+s) . The first inequality

in (19) then follows by Lemma 7. For the second inequality in (19), from Lemma 6 it
follows that

∥∥PT ⊥(Xk)
∥∥∗ = ∥∥PT ⊥(Δk)

∥∥∗ ≤ √
2rγk−1

∥∥PT (Δk)
∥∥
F ≤ √

2rγk−1
∥∥PMk (Δ

k)
∥∥
F

≤ 2δ
√
2rγk−1

√
ϑ+(2r + s)

(1 − ck−1)ϑ−(2r + s)

where the first equality is due to X ∈ T , and the second inequality is since Mk =
T ⊕Hk . This shows that the second inequality in (19) holds. We complete the proof.

��

Proof of Theorem 2 By the strict increasing of Ξ(·) in (20), it suffices to prove that

0 ≤ γk ≤ γ̃k < γ̃k−1 < · · · < γ̃1 < γ̃0 = 1/
√
2. (41)
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To establish the relations in (41), by the definition of γ̃k in (22a), we need to prove
that

{
0 ≤ ãk ≤ ãk−1 ≤ · · · ≤ ã1 ≤ b̃1 ≤ · · · ≤ b̃k−1 ≤ b̃k ≤ 1, (42a)

0 ≤ β̃k < β̃k−1 < · · · < β̃1 < 1. (42b)

By the definitions of ãk and b̃k and Eq. (4a), {̃ak}k≥1 ⊆ [0, 1] and {̃bk}k≥1 ⊆
[0, 1]. We next establish the monotone relations in (42a)–(42b) and (41) by induction
on k. Let (U 1, V 1) ∈ O

n1,n2(X1) where U 1 = [U 1
1 U 1

2 ] with U 1
1 ∈ O

n1×r and
V 1 = [V 1

1 V 1
2 ] with V 1

1 ∈ O
n2×r . By (15), W 1 = U 1

[
Diag(w1

1, . . . , w
1
n1) 0

]
(V 1)T

with 1 ≥ w1
1 ≥ · · · ≥ w1

n1 ≥ 0. Since γ0 = 1/
√
2, by Proposition 2 we have

‖X1−X‖F ≤ Ξ(γ0) = Ξ(γ̃0). From [18, Theorem3.3.16], σi (X1) ≥ σr (X)−Ξ(γ̃0)

for i = 1, . . . , r andσi (X1) ≤ Ξ(γ̃0) for i = r+1, . . . , n1. From thegiven assumption
σr (X) > 2Ξ(γ0) = 2Ξ(γ̃0), clearly, ρ1Ξ(γ̃0) < ρ1(σr (X) − Ξ(γ̃0)). Together
with (22a)–(22b) and (4b), we obtain ã1 ≤ b̃1. In addition, by recalling that w1

i ∈
∂ψ∗(ρ1σi (X1)) for each i , from (22a)–(22b) and (4b),

w1
i ≥ b̃1, i = 1, 2, . . . , r and 0 ≤ w1

i ≤ ã1, i = r + 1, . . . , n1. (43)

Now using Lemma 2 with X̃ = X and W = W 1 and the relations in (43) yields that

‖PT ⊥(W 1)‖ ≤ w1
r+1 + (1 − w1

r+1)
∥∥U 1

1 (V 1
1 )T −U 1V

T

1

∥∥2,
‖PT (W 1 −U1V

T

1 )‖F ≤ √
r(1 − b̃1) + (

√
2̃a1 + 1)

∥∥U 1
1 (V 1

1 )T −U 1V
T

1

∥∥.

Since ‖X1−X‖F ≤ Ξ(γ̃0), applyingLemma3withω = σr (X)/Ξ(γ̃0), X̃ = X , X =
X1 and η = Ξ(γ̃0) we obtain ‖U 1

1 (V 1
1 )T −U1V

T

1 ‖ ≤ β̃1 < 1. Thus, it holds that

{
1 − ‖PT ⊥(W 1)‖ ≥ (1 − ã1)

(
1 − β̃2

1

)
, (44a)

‖PT (W 1 −U1V
T

1 )‖F ≤ √
r(1 − b̃1) + (

√
2̃a1 + 1)β̃1. (44b)

Along with ã1 <

√
r (̃b1−β̃2

1 )−β̃1√
r(1−β̃2

1 )+√
2β̃1

< 1 and the definitions of γ1 and γ̃1, we have

0 ≤ γ1 ≤ γ̃1. Also, γ̃1 < 1√
2
is implied by ã1 <

√
r (̃b1−β̃2

1 )−β̃1√
r(1−β̃2

1 )+√
2β̃1

. The desired (41)

holds for k = 1.
Now assume that the conclusion holds for k ≤ l − 1 with l ≥ 2. We shall show that

it holds for k = l. Since the conclusion holds for k = l − 1, we have γl−1 ≤ γ̃l−1 <

1/
√
2. This means that the assumption of Proposition 2 holds for k = l. Consequently,

‖Xl − X‖F ≤ Ξ(γl−1) ≤ Ξ(γ̃l−1).

By [18, Theorem 3.3.16], σi (Xl) ≥ σr (X) − Ξ(γ̃l−1) for i = 1, . . . , r and σi (Xl) ≤
Ξ(γ̃l−1) for i = r + 1, . . . , n1. Let (Ul , V l) ∈ O

n1,n2(Xl) where Ul = [Ul
1 Ul

2]
with Ul

1 ∈ O
n1×r and V l = [V l

1 V l
2] with V l

1 ∈ O
n2×r . From Eq. (15), Wl =
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Ul
[
Diag(wl

1, . . . , w
l
n1) 0

]
(V l)T with 1 ≥ wl

1 ≥ · · · ≥ wl
n1 ≥ 0. Along with the

definitions of ãl and b̃l and Eq. (4b),

wl
i ≥ b̃l , i = 1, 2, . . . , r and 0 ≤ wl

i ≤ ãl , i = r + 1, . . . , n1. (45)

Since the conclusion holds for k = l − 1, we have Ξ(γ̃l−1) < Ξ(γ̃0), and then
σr (X)

Ξ(γ̃l−1)
> 2. Using Lemma 2 with X̃ = X and W = Wl and Lemma 3 with ω =

σr (X)
Ξ(γ̃l−1)

, X̃ = X , X = Xl and η = Ξ(γ̃l−1) and following the same arguments as
those for k = 1, we have

{
1 − ‖PT ⊥(Wl)‖ ≥ (1 − ãl)(1 − β̃2

l ), (46a)

‖PT (Wl −U 1V
T

1 )‖F ≤ √
r(1 − b̃l) + (

√
2̃al + 1)β̃l . (46b)

Notice that 1 ≤ μl ≤ Ξ(γ̃l−2)
Ξ(γ̃l−1)

. So, ρl−1 ≤ ρl ≤ ρl−1Ξ(γ̃l−2)
Ξ(γ̃l−1)

. By the definitions of

ãl and b̃l and Eq. (4b), ãl ≤ ãl−1 and b̃l ≥ b̃l−1. In addition, since γ̃l−1 < γ̃l−2, we
have Ξ(γ̃l−1) < Ξ(γ̃l−2), and then β̃l < β̃l−1. Equations (46a) and (46b) and the
definitions of γl and γ̃l imply that 0 ≤ γl ≤ γ̃l < γ̃l−1. Thus, the conclusion holds for
k = l. ��
Proof of Theorem 3 Notice that the assumption of Theorem 2 is satisfied. The mono-
tone relations in (42a)–(42b) hold for all k ≥ 2. For k = 1, clearly, (23) holds. Now
fix k ≥ 2. Let (Uk−1, V k−1) ∈ O

n1,n2(Xk−1) where Uk−1 = [Uk−1
1 Uk−1

2 ] with
Uk−1
1 ∈ O

n1×r and V k−1 = [V k−1
1 V k−1

2 ] with V k−1
1 ∈ O

n2×r . Then Wk−1 =
Uk−1[Diag(wk−1

1 , . . . , wk−1
n1 ) 0](V k−1)T with 1 ≥ wk−1

1 ≥ · · · ≥ wk−1
n1 ≥ 0. By

following the same arguments as those for Theorem 2, we have

1 − ‖PT ⊥ (Wk−1)‖ ≥ (1 − ãk−1)(1 − β̃2
k−1),∥∥PT (Wk−1 −U 1V

T

1 )
∥∥
F ≤ √

r(1 − b̃k−1) + (1 + √
2̃ak−1)

∥∥Uk−1
1 (V k−1

1 )T −U1V
T

1

∥∥.

Also, from [24, Equation(49)-(51)],
∥∥Uk−1

1 (V k−1
1 )T − U 1V

T

1

∥∥
F ≤ ‖Xk−1−X‖F

σr (X)−√
2Ξ(γ0)

.

Thus, together with the definition of γk−1, it immediately follows that

γk−1 ≤ 1 − b̃1√
2(1 − ã1)(1 − β̃2

1 )
+ 1 + √

2̃a1√
2r(1 − ã1)(1 − β̃2

1 )
· ‖Xk−1 − X‖F
σr (X) − √

2Ξ(γ0)
.

From the first part of Theorem 2 and the first inequality of (19), it follows that

‖Xk − X‖F ≤ 2δ
√

ϑ+(2r + s)

(1 − cγk−1)ϑ−(2r + s)

(
1 +

√
r

2s
γk−1

)
= Ξ(0)

(1 − cγk−1)

(
1 +

√
r

2s
γk−1

)

≤ Ξ(0)

1 − cγ̃1

[
1 + (1 − b̃1)

√
r

2(1 − ã1)(1 − β̃2
1 )

√
s

]
+
[ α Ξ(γ0)

σr (X) − √
2Ξ(γ0)

]
‖Xk−1 − X‖F

(47)
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where the second inequality is using Ξ(γ0) = Ξ(0)
1−cγ̃0

√
4s+r
4s . Since σr (X) > (

√
2 +

α)Ξ(γ0) implies 0 ≤ α Ξ(γ0)

σr (X)−√
2Ξ(γ0)

< 1, the desired inequality follows by the recur-

sion (47). ��

Lemma 8 If the components ξ1, ξ2, . . . , ξm of ξ are independent sub-Gaussians, then
‖ξ‖ ≤ √

mσ with probability at least 1 − exp(1 − c1m
4 ) for an absolute constant

c1 > 0.

Proof Notice that ‖ξ‖ = supu∈Sm−1〈u, ξ 〉, where Sm−1 denotes the unit sphere in
R
m . Let U := {u1, . . . , um} denote 1/2 covering of Sm−1. Then, for any u ∈ Sm−1,

there exists u ∈ U such that u = u + Δu with ‖Δu‖ ≤ 1/2. Consequently, 〈u, ξ 〉 =
〈u, ξ 〉 + 〈Δu, ξ 〉 ≤ 〈u, ξ 〉 + 1

2‖ξ‖. This, by ‖ξ‖ = supu∈Sm−1〈u, ξ 〉, implies that
‖ξ‖ ≤ 2〈u, ξ 〉 = 2

∑m
i=1 uiξi . By the Hoeffding-type inequality (see [39]), there

exists an absolute constant c1 > 0 such that for every t > 0,

P {‖ξ‖ ≥ t} ≤ P

{∣∣
m∑
i=1

uiξi
∣∣ ≥ t/2

}
≤ exp

(
1 − c1t

2/(4σ 2)
)
.

Taking t = √
mσ , we obtain the desired result from the last equation. ��
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